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Introduction

This year marks the 20th edition of the Workshop on Innovative Use of NLP for Building Educational
Applications. As in previous years, we are happy to welcome a plethora of work on various aspects and
types of educational applications – from traditionally popular tasks around language learning to novel
applications related to teaching math and programming languages. This year, we have also extended BEA
to a 2-day event, which allowed us to accept more valuable work from our authors: in total, we received a
record number of 169 submissions, and from these, we have accepted 12 papers as talks and 63 as poster
and demo presentations, for an overall acceptance rate of 44 percent. As in previous years, we have put
the main emphasis on the high quality of research when selecting the papers to be accepted, but we also
hope that we have managed to bring together a diverse program. One aspect in which BEA continues to
excel is the range of languages that are covered by the work submitted and presented at our workshop: this
year, accepted papers feature work on educational applications developed for Arabic, English, Estonian,
Finnish, Germanic languages, Indian languages, Italian, Romanian, Russian, and Spanish.
In addition to the diverse oral, poster and demo presentations, this year, Kostiantyn Omelianchuk from
Grammarly will give a keynote on How LLMs Are Reshaping GEC: Training, Evaluation, and Task
Framing. BEA 2025 will also incude, for the first time, a half-day tutorial on LLMs for Education:
Understanding the Needs of Stakeholders, Current Capabilities and the Path Forward. Finally, BEA
2025 has hosted a shared task on Pedagogical Ability Assessment of AI-powered Tutors, which attracted
a large number of participants, and the program includes an oral presentation on the shared task from the
organizers as well as extended poster sessions for shared tasks participants presenting their systems.
Last but not least, we would like to thank everyone who has been involved in organizing the BEA work-
shop this year. We are particularly grateful to our sponsors who keep providing their support to BEA: this
year, our sponsors include Cambridge University Press & Assessment, Duolingo English Test, Grammar-
ly, National Board of Medical Examiners, SigIQ.ai, and Squirrel Ai Learning.
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Keynote Talk
How LLMs Are Reshaping GEC: Training, Evaluation, and

Task Framing
Kostiantyn Omelianchuk

Grammarly

Abstract: This keynote will explore the evolving role of Large Language Models (LLMs) in training and
evaluating Grammatical Error Correction (GEC) systems, using Grammarly as a case study. It will cover
the shift from primarily using human-annotated corpora to semi-synthetic data generation approaches,
examining its impact on model training, evaluation practices, and overall task definition. Key topics
include task definition challenges, trade-offs between data types, observed biases in models, and recent
advances in LLM-based evaluation techniques. The talk will also explore scalable approaches for multi-
lingual GEC and outline implications for future research.

Bio: Kostiantyn Omelianchuk is an Applied Research Scientist and Area Tech Lead at Grammarly, whe-
re he works on practical applications of NLP, with a primary interest in Grammatical Error Correction
(GEC). He has over nine years of experience in the field and has co-authored several papers, including
GECToR: Grammatical Error Correction – Tag, Not Rewrite, a widely used approach in the GEC com-
munity. His research explores edit-based modeling, the use of large language models for text correction
and simplification, and the transition from human-annotated to synthetic data for training and evalua-
tion. His recent work focuses on multilingual GEC, LLM-based evaluation methods, and synthetic data
generation.
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Motivation and Objectives: Recent advancements
in Large Language Models (LLMs) have opened
unprecedented opportunities in education but the
current development goals of LLMs stand in con-
trast to the requirements of educational applica-
tions. This tutorial aims to bridge the gap be-
tween two major communities: Natural Language
Processing (NLP) researchers and Artificial Intel-
ligence in Education (AIED) practitioners. Our
objectives are: (1) to help NLP researchers under-
stand the requirements and challenges of education,
enabling them to develop LLMs that align with
educational needs, and (2) to enable educators and
AIED practitioners to gain a deeper understand-
ing of the capabilities and limitations of current
NLP technologies , fostering effective integration
of LLMs in educational contexts. By facilitating
cross-disciplinary dialog, we aim to uncover the
potential of LLMs in education.

First, we identify several critical challenges:
LLMs must be aligned to complement established
pedagogical theories and educational practices, in-
corporating principles such as scaffolding (Macina
et al., 2023b; Sonkar et al., 2024a) or Socratic ques-
tioning (Shridhar et al., 2022), effective feedback
mechanisms (Daheim et al., 2024), and cognitive
load management (Settles and Meeder, 2016). This
ensures that AI systems enhance rather than un-
dermine learning processes. We emphasize that
LLMs need to be integrated with existing AIED
technologies, including knowledge tracing models
and intelligent tutoring systems (ITS). As high-
lighted by UNESCO (Miao and Cukurova, 2024),
we also need to explore human-AI collaboration to
preserve human agency while leveraging the bene-
fits of LLMs. The use of LLMs also raises ethical
concerns about data privacy and security and fair-
ness for students, necessitating robust safeguards.
Finally, AI literacy among educators, students, and
policymakers is important for ensuring that stake-
holders understand their potential and limitations.

1 Tutorial Overview and Structure

1. LLMs meet AIED (60 min)
Intro to LLMs (20 min)
Learning science, AIED foundations (20 min)
Misalignment b/w LLMs & AIED (20 min)

2. Case Studies & Coffee Break (120 min)
Intelligent Tutoring Systems (30 min)
Coffee break (30 min)
Automated feedback & assessment (20 min)
Content (e.g. problem) generation (20 min)
Student modeling and adaptivity (20 min)

3. Closing Discussion (30 min)
LLM development for education
Human, ethical and societal aspects
Closing remarks

We will begin with an introduction of key LLM
technologies and AIED usecases, focussing on the
needs of stakeholders in education, such as peda-
gogy, and opportunities to harness LLMs for ed-
ucation applications. Then, we will outline how
these needs stand in contrast with current LLM
development which instead focusses on solving
correctness. Afterwards, we will delve into a series
of case studies that highlight how LLMs can be
adapted for: (1) robust, personalized, and scalable
conversational tutoring systems; (2) adaptive and
personalized content generation of educational ma-
terial, lesson plans, and assessments; (3) grading
and delivery of detailed and personalized feedback
on student work. We will examine the current ca-
pabilities of LLMs in these domains, discussing
recent research findings and practical applications.
The tutorial will interweave the applications with
critical challenges such as pedagogical alignment,
ethical considerations, and human factors in AI-
assisted education. We finally conclude with a
discussion of LLM development for education that
emphasizes human, ethical, and societal aspects.
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2 LLMs Meet AIED

LLM Training & AIED Requirements LLMs
offer significant potential in education but require
careful tuning to align with pedagogical goals.
For instance, LLMs tend to provide direct an-
swers instead of scaffolding learning which can
hinder learning (Macina et al., 2023b; Sonkar et al.,
2024a). We will first discuss how LLMs are
trained using supervised fine-Tuning (SFT) (Wei
et al., 2022), instruction tuning, and reinforcement-
learning-based optimization methods (Ziegler et al.,
2019; Rafailov et al., 2023). Connected to this, we
also highlight the shortcomings of current bench-
marks (Hendrycks et al., 2020; Cobbe et al., 2021;
Hendrycks et al., 2021) that are used to evaluate
LLMs, mainly for solving accuracy. Evaluation of
AIED systems is different from this, as pedagog-
ical factors play a large role and have dominated
the development of educational systems (Graesser
et al., 2005). We highlight these educational needs
from different perspectives and show how LLM
development goals do not align to them. For exam-
ple, students require space to think and learn, also
by making mistakes (Macina et al., 2023a; Sonkar
et al., 2024a), and teachers require flexible student
simulations (Markel et al., 2023).

Human Factors & Ethical Considerations: In-
tegrating LLMs into educational contexts brings
several human-centered challenges that must be
addressed to ensure effective and ethical use. For
example, teachers are often not included in the de-
velopment loop (Shankar et al., 2024), but gain-
ing their trust, also through model explainabil-
ity (Cortez et al., 2024) is important. We will dis-
cuss how instructors can be included effectively,
for example, to decide, when and which NLP mod-
els to use or which inputs to give to the models. We
will also discuss how they can modify the generated
outcomes as needed (Lu et al., 2023) and prompt
architectures to provide responses to MCQs based
on student simulations (Lu and Wang, 2024).

The application of LLMs in schools also raises
ethical considerations related to attribution, plagia-
rism, and the potential for AI-generated content to
be presented as original work. To address these is-
sues, universities and educational authorities must
strengthen and enforce academic integrity policies
while educating students about responsible AI use.
Promoting awareness and developing guidelines is
essential in maintaining the integrity of academic
work in the age of GenAI (Okaiyeto et al., 2023).

3 LLMs for Educational Applications

3.1 Intelligent Tutoring Systems (ITSs)

ITSs have long been the focus of AIED develop-
ments including systems such as AutoTutor-based
(Nye et al., 2014), example-tracing tutors (Aleven
et al., 2009) or Cognitive tutor (Anderson et al.,
1997). However, they require extensive human
authoring. While LLMs hold great promise to over-
come this and enable applications like student tutor-
ing (Chen et al., 2024) or teacher training (Gregor-
cic et al., 2024; Markel et al., 2023). Yet, they still
face limitations, such as generating factually incor-
rect responses or not offering sufficient pedagogy
(Sonkar et al., 2023).

In this tutorial, we will cover a range of works
that attempt to alleviate these shortcomings, for
example, such that use LLMs within structured
dialogs (Schmucker et al., 2024; Pal Chowdhury
et al., 2024), data-driven approaches to adding scaf-
folding capabilities (Macina et al., 2023a; Sonkar
et al., 2023; Jurenka and et al., 2024), and mitigat-
ing hallucinations by adding intermediate reason-
ing steps for prompted LLMs (Wang et al., 2024b;
Daheim et al., 2024). As large amounts of dialog
tutoring data can be hard to collect, we will also dis-
cuss synthetic data creation methods (Wang et al.,
2024a; Chevalier et al., 2024).

Finally, we will touch upon evaluation protocols
that, ideally, should include relevant stakeholders
and evaluate learning effectiveness. Such studies
include using LLMs in real classrooms, for exam-
ple, for computer science (Nie et al., 2024) or math
education (Cheng et al., 2024), or using LLMs as
student simulations to evaluate the effectiveness
of automatic dialog tutors (Macina et al., 2023a).
Such student simulations can also be effective for
teacher training (Gregorcic et al., 2024; Wang and
Demszky, 2023) and training teaching assistants
(Markel et al., 2023).

3.2 Automated Feedback and Assessment

Hint and Feedback mechanisms play an important
role in determining learning outcomes. We will
discuss studies that show both the potential and
limitations of LLMs in generating quality feedback.
(McNichols et al., 2024) show fine-tuned LLMs
have limited generalization capabilities. Contrarily,
(Dai et al., 2024) find GPT-4 outperforms human in-
structors in important aspects of effective feedback
dimensions such as feeding-up, feeding-forward,
and process level. However, student dynamics are
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complex; (Nazaretsky et al., 2024) highlights a
preference for human-generated feedback when
students know its source. We will discuss solutions
to overcome these challenges such as reinforcement
learning (Scarlatos et al., 2024) and LLM-based
student simulation models (Phung et al., 2024).

Another important aspect of feedback is its emo-
tional and motivational impact on students. We will
discuss the importance of affective feedback (Li
et al., 2024a; Baral et al., 2023). We will also
explore how LLMs can be used to provide not
just cognitive but also emotional support, offer-
ing praise (Thomas et al., 2023) and addressing
negative self-talk (Thomas et al., 2024). Addition-
ally, we will touch on ongoing efforts to integrate
AI-driven emotional assessment in educational set-
tings (Vistorte et al., 2024) to create empathetic
learning environments.

Finally, we’ll shift our focus to automatic as-
sessment. We will review their performance in Au-
tomated Short/Long Answer Grading (Kortemeyer,
2023a; Sonkar et al., 2024b) and Automated Essay
Grading (AEG) (Mizumoto and Eguchi, 2023), ref-
erencing open-source benchmarks (Ruseti et al.,
2024; Dzikovska et al., 2013; Blanchard et al.,
2013) for these tasks. Next we will summarize
some findings on the real-world deployment of
LLMs for grading, which show promise despite
certain limitations. We will start with studies on
math grading (Morris et al., 2024; Gandolfi, 2024)
including those which involve handwritten recog-
nition (Liu et al., 2024a). We will also expand
the analysis to other subjects like physics (Korte-
meyer, 2023b), computer science (Nilsson and Tu-
vstedt, 2023), and biology (Mackey et al., 2023) to
highlight their capabilities and limitation across do-
mains. We will also explore hybrid grading strate-
gies that incorporate human oversight to enhance
reliability (Kaya and Cicekli, 2024).

3.3 Educational Content Generation
LLM-generated content serves teachers (e.g., for
curating lessons and exercises) and students (e.g.,
for writing essays and problem-solving). We will
examine studies that use controllable generation
to adapt LLMs to diverse learners based on diffi-
culty, grade level, and readability score (Rooein
et al., 2023; Kew et al., 2023). We will also discuss
LLMs in controlled content generation, focusing
on readability scores (Imperial and Tayyar Mad-
abushi, 2023) and novel prompting techniques for
difficulty assessment (Rooein et al., 2024).

We will also explore strategies to control and
align generated questions with students’ abilities,
expert requirements, and question taxonomies like
Bloom’s (Elkins et al., 2024; Hwang et al., 2023).
We will mention studies on improving adaptability
in question generation (Scaria et al., 2024; Wang
et al., 2022) and cover methods like PFQS (Li
and Zhang, 2024) for improved control by gen-
erating answer outlines before question genera-
tion. Evaluation of generated educational ques-
tions typically involves expert assessments (Scaria
et al., 2024; Biancini et al., 2024), while tools like
SQUET (Moore et al., 2024) offer automated qual-
ity evaluation. However, challenges remain, as
studies show GPT models underperforming in eval-
uating the pedagogical quality of generated ques-
tions (Bulathwela et al., 2023).

Finally, we will also discuss multimodal and mul-
tilingual LLMs in education – research has demon-
strated the effectiveness of multimodal learning
in enhancing educational outcomes, e.g., in sci-
ence (Bewersdorff et al., 2024). These findings
are supported by learning theories emphasizing the
cognitive benefits of integrating multiple modes of
information, such as combining multimodal repre-
sentations like text and images (Mayer, 2024).

3.4 Adaptivity and Personalization
In this section, we will discuss personalized learn-
ing’s potential to address diverse student needs,
based on educational theories emphasizing tai-
lored learning experiences. We discuss knowl-
edge space theory (Doignon and Falmagne, 1985),
Vygotsky’s Zone of Proximal Development (Vy-
gotsky, 1978), and Ebbinghaus’s memory model
(Ebbinghaus, 1913), which have influenced appli-
cations like Duolingo’s spaced repetition (Settles
and Meeder, 2016) and ETS’s assessments (Carl-
son and von Davier, 2017). We then introduce
Knowledge Tracing (KT) techniques, from basic
Rasch models (Rasch, 1960) and Item Response
Theory (IRT) (Lord, 1980) to advanced Bayesian
Knowledge Tracing (Corbett and Anderson, 1994)
and Deep Knowledge Tracing (Piech et al., 2015).

Traditionally, KT models have focused on ques-
tion IDs rather than textual content due to dataset
limitations. However, the attention mechanism is
well-suited for sequence modeling tasks like knowl-
edge tracing. We will cover models such as MC-
QStudentBert (Parsa Neshaei et al., 2024), AKT
(Ghosh et al., 2020), SAKT (Pandey and Karypis,
2019), Dtransformer (Yin et al., 2023), and SAINT
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(Choi et al., 2020), which leverage attention mech-
anisms to capture complex relationships between
knowledge components and student interactions.
The emergence of datasets with auxiliary informa-
tion, like XES3G5M (Liu et al., 2024b), has facili-
tated the application of pre-trained LLMs in KT, as
explored in works like (Lee et al., 2024).

LLMs have also expanded the scope of KT by
enabling adaptive exercise generation (Cui and
Sachan, 2023; Srivastava and Goodman, 2021) and
domain-specific modifications to transformer archi-
tecture, e.g. SparseKT (Huang et al., 2023) which
models student behaviors like forgetting (Im et al.,
2023). LLMs have also been used in student sim-
ulation models like OKT (Liu et al., 2022), which
predicts actual student textual responses. Despite
these advances, challenges remain, such as LLMs’
limited context windows which hinder capturing
long-range learning trajectories (Li et al., 2024b).

4 Vision and Path Forward

AI in education offers significant opportunities but
requires careful technical, ethical, regulatory, and
pedagogical consideration. Requirements include
balancing technology with human agency, inclu-
sion, and diversity (Miao and Cukurova, 2024),
addressing privacy (Baraniuk, 2024; Leitner et al.,
2019; O’Hara and Straus, 2022) and transparency
(Holmes et al., 2022), promoting AI literacy (Su
et al., 2023; Su and Yang, 2023), but also develop-
ing LLMs that meet pedagogical goals. We aim to
build a common ground between various stakehold-
ers, namely policymakers, educators, developers,
and researchers, which can form a basis for human-
centered AI development in education.

5 Diversity & Inclusion considerations

Our tutorial aims to bring together NLP, LS and
AIED researchers as well as practitioners. The
tutorial is designed to be understandable to an au-
dience with a range of backgrounds. Our group
of presenters is made up of diverse backgrounds,
seniority-levels, genders, and affiliations.
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Jakub Macina is a fourth year PhD at ETH ad-
vised by Mrinmaya Sachan and Manu Kapur. His
research focuses on understanding and improving
generative models’ reasoning and pedagogical ca-
pabilities. His work has been published in venues
such as ACL, EMNLP, and RecSys.
Donya Rooein is a Postdoc at Bocconi University;
her work revolves around leveraging NLP for Edu-
cation. She explores the synergy between machine
learning, linguistics, and practitioner insights to
enhance education systems. Her work has been
published in different ML, NLP, and AIED venues,
including NAACL, WWW, and EdMedia.
Mrinmaya Sachan is an Assistant Professor at
ETH Zurich, focusing on NLP and its interface
with Education. His group has published rele-
vant research on the challenges of Pedagogy and
LLMs, Educational Chatbots and Tutors, Student
Modeling and Assessment across various NLP and
Education-focused venues.
Shashank Sonkar is a final-year PhD student at
Rice University advised by Richard G. Baraniuk.
His work focuses on pedagogical alignment of
LLMs, learner modeling, and intelligent assess-
ment. His work has been published in EMNLP,
COLING, AIED, EDM, and LAK.

7 Type of Tutorial & Target Audience

The tutorial will be introductory and present re-
search from the fields of NLP, AIED and learning
sciences. We will discuss seminal as well as re-
cent papers to build a common ground for partic-
ipants. Therefore, we welcome participants from
any of these backgrounds. While it is helpful to
have knowledge of either NLP / ML or learning
sciences, it is not a requirement. The tutorial will
be self-contained and welcomes an estimated 50-
100 attendees based on recent BEA iterations. We
will recommend the attendees a small reading list
comprising of papers listed in the appendix.
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Christopher Brooks, José Cambronero, Sumit Gul-
wani, Adish Singla, and Gustavo Soares. 2024. Au-
tomating human tutor-style programming feedback:
Leveraging gpt-4 tutor model for hint generation and
gpt-3.5 student model for hint validation. In Proceed-
ings of the 14th Learning Analytics and Knowledge
Conference, pages 12–23.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. In Advances in Neural Information Processing
Systems, pages 505–513.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Georg Rasch. 1960. Probabilistic models for some in-
telligence and attainment tests. Danish Institute for
Educational Research, Copenhagen.

Donya Rooein, Amanda Cercas Curry, and Dirk Hovy.
2023. Know your audience: Do llms adapt to dif-
ferent age and education levels? arXiv preprint
arXiv:2312.02065.

Donya Rooein, Paul Röttger, Anastassia Shaitarova, and
Dirk Hovy. 2024. Beyond flesch-kincaid: Prompt-
based metrics improve difficulty classification of ed-
ucational texts. In Proceedings of the 19th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA 2024), pages 54–67, Mexico City,
Mexico. Association for Computational Linguistics.

Stefan Ruseti, Ionut Paraschiv, Mihai Dascalu, and
Danielle S McNamara. 2024. Automated pipeline for
multi-lingual automated essay scoring with reader-
bench. International Journal of Artificial Intelligence
in Education, pages 1–22.

Nicy Scaria, Suma Dharani Chenna, and Deepak Sub-
ramani. 2024. Automated educational question gen-
eration at different bloom’s skill levels using large
language models: Strategies and evaluation. In In-
ternational Conference on Artificial Intelligence in
Education, pages 165–179. Springer.

Alexander Scarlatos, Digory Smith, Simon Woodhead,
and Andrew Lan. 2024. Improving the validity of
automatically generated feedback via reinforcement
learning. In International Conference on Artificial
Intelligence in Education, pages 280–294. Springer.

Robin Schmucker, Meng Xia, Amos Azaria, and Tom
Mitchell. 2024. Ruffle &riley: Insights from de-
signing and evaluating a large language model-based
conversational tutoring system. In International Con-
ference on Artificial Intelligence in Education, pages
75–90. Springer.

Burr Settles and Brendan Meeder. 2016. A trainable
spaced repetition model for language learning. In
Proceedings of the 54th annual meeting of the associ-
ation for computational linguistics, volume 1, pages
1848–1858.

Shashi Kant Shankar, Gayathri Pothancheri, Deepu Sasi,
and Shitanshu Mishra. 2024. Bringing teachers in
the loop: Exploring perspectives on integrating gen-
erative ai in technology-enhanced learning. Interna-
tional Journal of Artificial Intelligence in Education,
pages 1–26.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions
for teaching math word problems. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4136–4149, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Shashank Sonkar, Naiming Liu, Debshila Mallick, and
Richard Baraniuk. 2023. CLASS: A Design Frame-
work for Building Intelligent Tutoring Systems Based
on Learning Science principles. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 1941–1961.

Shashank Sonkar, Kangqi Ni, Sapana Chaudhary, and
Richard G Baraniuk. 2024a. Pedagogical align-
ment of large language models. arXiv preprint
arXiv:2402.05000.

Shashank Sonkar, Kangqi Ni, Lesa Tran Lu, Kristi
Kincaid, John S Hutchinson, and Richard G Bara-
niuk. 2024b. Automated long answer grading with
ricechem dataset. In International Conference on
Artificial Intelligence in Education, pages 163–176.
Springer.

Megha Srivastava and Noah Goodman. 2021. Question
generation for adaptive education. arXiv preprint
arXiv:2106.04262.

Jiahong Su, Davy Tsz Kit Ng, and Samuel Kai Wah
Chu. 2023. Artificial intelligence (ai) literacy in
early childhood education: The challenges and op-
portunities. Computers and Education: Artificial
Intelligence, 4:100124.

Jiahong Su and Weipeng Yang. 2023. Artificial intelli-
gence (ai) literacy in early childhood education: An

8

https://aclanthology.org/2024.bea-1.5
https://aclanthology.org/2024.bea-1.5
https://aclanthology.org/2024.bea-1.5
https://doi.org/10.18653/v1/2022.emnlp-main.277
https://doi.org/10.18653/v1/2022.emnlp-main.277


intervention study in hong kong. Interactive Learn-
ing Environments, pages 1–15.

Danielle Thomas, Xinyu Yang, Shivang Gupta, Ade-
tunji Adeniran, Elizabeth Mclaughlin, and Kenneth
Koedinger. 2023. When the Tutor Becomes the Stu-
dent: Design and Evaluation of Efficient Scenario-
Based Lessons for Tutors. In LAK23: 13th Inter-
national Learning Analytics and Knowledge Confer-
ence, LAK2023, page 250–261, New York, NY, USA.
Association for Computing Machinery.

Danielle R Thomas, Jionghao Lin, Shambhavi Bhushan,
Ralph Abboud, Erin Gatz, Shivang Gupta, and Ken-
neth R Koedinger. 2024. Learning and ai evaluation
of tutors responding to students engaging in nega-
tive self-talk. In Proceedings of the Eleventh ACM
Conference on Learning@ Scale, pages 481–485.

Angel Olider Rojas Vistorte, Angel Deroncele-Acosta,
Juan Luis Martín Ayala, Angel Barrasa, Caridad
López-Granero, and Mariacarla Martí-González.
2024. Integrating artificial intelligence to assess emo-
tions in learning environments: a systematic literature
review. Frontiers in Psychology, 15:1387089.

Lev Semyonovich Vygotsky. 1978. Mind in society:
The development of higher psychological processes.
Harvard University Press, Cambridge, MA.

Junling Wang, Jakub Macina, Nico Daheim, Sankalan
Pal Chowdhury, and Mrinmaya Sachan. 2024a.
Book2Dial: Generating teacher student interactions
from textbooks for cost-effective development of ed-
ucational chatbots. In Findings of the Association for
Computational Linguistics ACL 2024, pages 9707–
9731, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Rose Wang, Qingyang Zhang, Carly Robinson, Susanna
Loeb, and Dorottya Demszky. 2024b. Bridging the
novice-expert gap via models of decision-making: A
case study on remediating math mistakes. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 2174–2199, Mexico City,
Mexico. Association for Computational Linguistics.

Rose E Wang and Dorottya Demszky. 2023. Is chat-
gpt a good teacher coach? measuring zero-shot
performance for scoring and providing actionable
insights on classroom instruction. arXiv preprint
arXiv:2306.03090.

Xu Wang, Simin Fan, Jessica Houghton, and Lu Wang.
2022. Towards process-oriented, modular, and versa-
tile question generation that meets educational needs.
arXiv preprint arXiv:2205.00355.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Yu Yin, Le Dai, Zhenya Huang, Shuanghong Shen, Fei
Wang, Qi Liu, Enhong Chen, and Xin Li. 2023. Trac-
ing knowledge instead of patterns: Stable knowledge
tracing with diagnostic transformer. In Proceedings
of the ACM Web Conference 2023, WWW ’23, page
855–864, New York, NY, USA. Association for Com-
puting Machinery.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.
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Abstract

This study examines the lexical and syntactic
interventions of human and LLM proofread-
ing aimed at improving overall intelligibility in
identical second language writings, and evalu-
ates the consistency of outcomes across three
LLMs (ChatGPT-4o, Llama3.1-8b, Deepseek-
r1-8b). Findings show that both human and
LLM proofreading enhance bigram lexical fea-
tures, which may contribute to better coherence
and contextual connectedness between adjacent
words. However, LLM proofreading exhibits a
more generative approach, extensively rework-
ing vocabulary and sentence structures, such
as employing more diverse and sophisticated
vocabulary and incorporating a greater number
of adjective modifiers in noun phrases. The
proofreading outcomes are highly consistent in
major lexical and syntactic features across the
three models.

1 Introduction

The use of generative large language models
(LLMs) in second language (L2) writing has gained
popularity for providing real-time feedback on vo-
cabulary, grammar, and style (e.g., Han et al., 2024;
Meyer et al., 2024). These models offer immediate
corrective suggestions, enhancing the precision and
quality of L2 writing—a role once largely filled by
human editors with expertise. As LLMs increas-
ingly replace or supplement human intervention,
questions arise about their impact on L2 writings.

While previous studies have concentrated on gen-
eral error correction through LLM proofreading
(e.g., Heintz et al., 2022; Su et al., 2023; Wu et al.,
2023; Katinskaia and Yangarber, 2024), recent stud-
ies have shown that LLMs do not consistently out-
perform state-of-the-art supervised grammatical er-
ror correction models on minimal-edit benchmarks,
often producing more fluency-oriented rewrites in-
stead (Davis et al., 2024). This tendency stems in

*Contributed equally to the study.

part from the fact that LLMs, by default, generate
transformative fluency corrections rather than mini-
mal edits when processing ungrammatical text (e.g.,
Coyne et al., 2023; Fang et al., 2023; Loem et al.,
2023). However, little research has examined how
this generative rewriting behavior affects broader
lexical and syntactic characteristics of L2 writing
compared to human proofreading, especially when
the proofreading goal extends beyond grammatical
accuracy to overall intelligibility. Moreover, it re-
mains unclear whether different LLMs yield consis-
tent proofreading outcomes. This study addresses
these gaps by posing three guiding questions: (1)
What are the similarities and differences in lexical
features between human proofreading and LLM
proofreading of L2 writings? (2) What are the
similarities and differences in syntactic features be-
tween human proofreading and LLM proofreading
of L2 writings? (3) Do three different LLMs pro-
vide consistent proofreading outcomes in terms of
lexical and syntactic features in L2 writing?

Our findings show that while both human and
LLM proofreading enhance lexical and syntactic
features, LLMs are more likely to make more ex-
tensive lexical and syntactic edits. By quantifying
these changes through a range of lexical and syntac-
tic indices, we reveal that LLMs favor more gener-
ative rewrites, which may improve fluency but risk
altering nuance or inflating perceived proficiency.

2 Background

2.1 Proofreading in L2 writing

Proofreading is a complex issue in writing research,
particularly for L2 writers, as it involves varying
scopes of interventions. Traditional definitions of
proofreading often restrict it to surface-level error
correction that focuses on resolving orthographic
and grammatical errors without altering content
(Carduner, 2007; Hyatt et al., 2017). However, re-
search shows that professional human proofreaders
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occasionally restructure content to improve the log-
ical flow of ideas and make the writing easier to
understand (Salter-Dvorak, 2019). Noting these
varying practices in proofreading, Harwood et al.
(2009, p. 167) provided a quite general definition
of proofreading as “[any] third-party interventions
(entailing written alteration) on assessed work in
progress.”

Previous studies have shown that human proof-
reading displays variability not just in scope, but
also in quality. Harwood (2018) found that 14
proofreaders made between 113 and 472 changes
to the same L2 learner essay, with some interven-
tions improving clarity and others introducing new
errors, leading to inconsistent quality. Similarly,
Shafto (2015) argued that proofreading is a highly
attention-dependent task, meaning that symptoms
such as tiredness can heavily impact human proof-
readers’ ability to detect and correct ungrammatical
and unnatural expressions.

The debate surrounding the adequacy of L2
proofreading is also characterized by varying per-
spectives from stakeholders (i.e., students, faculty,
researchers). While L2 students often seek proof-
reading services to improve their grades or enhance
their writing skills, some faculty view such assis-
tance as a form of academic dishonesty (Salter-
Dvorak, 2019; Turner, 2011). Despite these diver-
gent opinions, there is a general consensus that
proofreaders can significantly enhance language
accuracy and clarity in L2 writing, provided that
the original authorial voice is maintained (Turner,
2024; Warschauer et al., 2023; Zou and Huang,
2024).

2.2 LLMs in L2 writing and proofreading
While automated written corrective feedback has
been present in L2 classrooms for over a decade
(cf. Wilson et al., 2014), recent research is now
exploring how LLM assistants can be incorporated
into holistic writing workflows (Zhao, 2024). Re-
searchers examine the integration of the LLM in
prewriting (Xiao, 2024) and postwriting stages
(Osawa, 2024), as well as its role in fostering
metacognitive skills through iterative revisions that
include editing and proofreading (Su et al., 2023;
Warschauer et al., 2023; Zou and Huang, 2024).

Among these LLM integrations, several studies
have highlighted the capabilities of LLM proof-
reading (or more broadly, editing). For instance,
Su et al. (2023) found that ChatGPT effectively
assessed grammar, clarified meaning, and sug-

gested lexical and syntactic refinements. Similarly,
Yan and Zhang (2024) observed that ChatGPT
identified and corrected a range of linguistic er-
rors—including lexical (e.g., word choice, idioms),
grammatical (e.g., verb tense, articles), structural
(e.g., run-on or fragmented sentences), mechani-
cal (e.g., spelling, punctuation), and stylistic (e.g.,
formality) aspects.

Few studies have compared LLM proofread-
ing directly to human revisions. For instance,
Heintz et al. (2022) compared outputs edited by
LLMs with those revised by human editors using
sentences written by non-native English speakers.
They found that while Wordvice AI1 achieved near-
human accuracy (77%) in correcting grammar and
spelling errors, it lagged behind human editors in
areas like vocabulary refinement and fluency ad-
justments. Similarly, Jiang et al. (2023) analyzed
2,197 T-units2 and 1,410 sentences from weekly
writing samples of 41 Chinese students in an online
high school language program at a U.S. university.
They found that ChatGPT-4 achieved high preci-
sion (88%) in correcting errors at the T-unit level
(in comparison to human judgments), but some-
times overcorrected valid sentences or misinter-
preted context-dependent issues, such as ambigu-
ous word order and culturally embedded idioms.

2.3 Summary of findings and research gaps

To briefly summarize, previous research has demon-
strated that proofreading in L2 writing is highly
variable in both scope and quality, with interven-
tions ranging from surface-level corrections to con-
tent restructuring. Recently, LLMs have been
shown to offer performance comparable to, or even
surpassing, that of human editors in L2 writing
proofreading, although they exhibit limitations in
context-sensitive judgment and cultural awareness.

Despite these insights, still little is known about
the fine-grained linguistic interventions that could
be made by LLMs compared to human proofread-
ers. Additionally, existing research has focused
primarily on grammatical error detection and cor-
rection, overlooking broader language use. For
example, although LLMs may facilitate vocabulary
expansion, it remains unclear how their sugges-
tions differ from those of human proofreaders, and
detailed syntactic changes remain underexplored.

1https://wordvice.ai/proofreading
2A T-unit is often defined as the minimal grammatical unit,

comprising a single independent clause plus any subordinate
clauses or dependent phrases attached to it (Lu, 2010).
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Moreover, most studies have examined only one
type of LLM, leaving open the question of whether
these linguistic changes are specific to one model
or generalizable across other LLMs.

3 Methods

3.1 Dataset

This study utilizes the ICNALE Edited Essays
dataset, one of the publicly available corpora within
the International Corpus Network of Asian Learn-
ers of English (ICNALE) project (Ishikawa, 2018,
2021). The dataset comprises 656 essays written by
328 L2 learners and their edited versions produced
by professional native English-speaking proofread-
ers.

The L2 participants were college students learn-
ing English in ten regional contexts: Japan (JPN),
Korea (KOR), China (CHN), Taiwan (TWN),
Indonesia (IDN), Thailand (THA), Hong Kong
(HKG), the Philippines (PHL), Pakistan (PAK), and
Singapore (SIN). Each participant wrote two argu-
mentative essays in response to the prompts: (1)
“It is important for college students to have a part-
time job” and (2) “Smoking should be completely
banned at all restaurants”.

3.1.1 Rationale for dataset selection and
representativeness

The ICNALE dataset was chosen for three main
reasons. First, it provides paired original and pro-
fessionally proofread versions, allowing for direct
comparison with LLM-generated outputs. Second,
it includes explicit L2 proficiency labels, facili-
tating stratified analyses across proficiency levels.
Last, it offers balanced regional coverage across
ten Asian countries or regions (see Table 1). How-
ever, we acknowledge that broad generalizations
to other genres or demographic groups (e.g., narra-
tive writing, younger learners) must be made with
caution.

3.1.2 Proficiency band
All participants were classified into four L2 pro-
ficiency bands (linked to the Common European
Framework of Reference for Languages) based on
their recent scores in standardized English tests
(e.g., TOEFL, TOEIC) or their performance in a
standard receptive vocabulary test3 (Nation and

3The vocabulary test consists of 50 multiple-choice items
designed to measure vocabulary knowledge within the 1,000–
5,000 word range. A typical item (from the 4,000-word level)
presents a short sentence containing a target word and asks

Beglar, 2007). Table 1 shows the proficiency distri-
bution of each regional learner group.

Region A2_0 B1_1 B1_2 B2_0 Total

JPN 10 10 10 10 40
KOR 10 10 10 10 40
CHN 10 10 10 10 40
TWN 10 10 10 10 40
IDN 10 10 10 3 33
THA 10 10 10 2 32
HKG – 10 10 10 30
PHL – 10 10 10 30
PAK – 10 10 3 23
SIN – – 10 10 20

Total 60 90 100 78 328

Table 1: Distribution of participants by region and profi-
ciency

3.1.3 Proofreading process and proofreader
profiles

The ICNALE project recruited five experienced
proofreaders with strong academic backgrounds
and extensive experience in editing scholarly work.
Their profiles are summarized in Table 2.

ID Age Sex Degree Experience (years) L1 English

A 28 Female BA 3 Canadian
B 32 Female MS 5 Australian
C 27 Female BS 3 American
D 38 Female BS 10 British
E 31 Female PhD 2 Australian

Table 2: Profiles of proofreaders in the ICNALE project

As documented in the ICNALE project, the pro-
fessional proofreaders were tasked with editing er-
rors and inappropriate wording to ensure that each
essay became fully intelligible (Ishikawa, 2021,
p. 496). No standardized rubric or adjudication
mechanism was imposed at the original corpus
compilation stage. All revisions were performed
in MS Word using the Track Changes function,
which allowed every edit, addition, or deletion to
be recorded.

A calibration study in which all five proofread-
ers revised the same eight essays revealed substan-
tial variability in editing behavior (cf. Ishikawa,
2018, p. 122). The number of edited word tokens
ranged from 40.00 to 59.63—a difference of 19.63
tokens, or 40.97% of the average. Ishikawa (2021)
attributed this variation to the inherent subjectivity
of human editing, shaped by individual judgments
of intelligibility.

test-takers to select the most appropriate definition.
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Figure 1: Overview of the experiment

3.2 LLM selection and prompt design

Figure 1 outlines the experiment. First, to compare
the human proofreading in the ICNALE project
with LLM proofreading, we selected three text-
generating LLMs: GPT-4o (used in ChatGPT, ac-
cessed via OpenAI’s API; Achiam et al., 2023,
hence we called them Chatgpt-4o), Llama3.1-8b
(Touvron et al., 2023), and Deepseek-r1-8b (Guo
et al., 2025). ChatGPT-4o was chosen due to its
widespread accessibility, although its underlying
parameter count and architecture remain propri-
etary. In contrast, both Llama3.1-8b and Deepseek-
r1-8b are open models with 8 billion parameters
that are lightweight enough for local installations,
with Deepseek-r1-8b being a distilled version of
Llama3.1-8b.

Each model was tasked with reading the origi-
nal L2 writings and generating a proofread version
based solely on a standardized prompt, with no ac-
cess to additional learner information. The exact
prompt used was as follows: “You are a profes-
sional proofreader and a native speaker of English.
Edit any errors or inappropriate wording noticed in
learner essays so that they are fully intelligible. Re-
turn only the final edited version of the essay. Do
not include any explanations, comments, reason-
ing, or additional thoughts in your response.” This
prompt was designed to align with the instructions
given to ICNALE proofreaders—“They were asked
to edit any error or inappropriate wording noticed
in learner essays so that they could be fully intelli-
gible. They were also required not to ‘rewrite’ the
original texts, that is, not to add new content or to
alter organization” (Ishikawa, 2021, p. 496)—en-
suring consistency with the human proofreading
protocol for fair comparison.

3.3 Lexical and syntactic analyses

The proofread-and-generated texts, along with the
learner and edited texts in the ICNALE dataset,
were processed to extract lexical and syntactic
features using the source codes of publicly avail-
able NLP tools: TAALED (cf. Kyle et al., 2024),
TAALES (cf. Kyle et al., 2018) and TAASSC (cf.
Kyle and Crossley, 2018). We measured lexical and
syntactic aspects of the learner and proofread es-
says based on the concept of linguistic complexity,
which provides a descriptive-analytic framework
for L2 production (Bulté and Housen, 2012; Bulté
et al., 2024).

3.3.1 Lexical features

Lexical features were evaluated in terms of two
aspects: diversity and sophistication. Lexical diver-
sity indices reflect vocabulary variation and repeti-
tion, with higher scores indicating a broader vocab-
ulary range and fewer repetitions. In this study, we
employ common measures such as the number of
unique words and the moving-average type-token
ratio—the latter mitigating the impact of text length
on traditional lexical diversity measures (Kyle et al.,
2024).

Lexical sophistication indices, on the other hand,
focus on measuring the use of advanced words
(Laufer and Nation, 1995; Meara and Bell, 2001).
They are typically assessed based on relative word
frequency, semantic concreteness, and domain or
register distinctiveness, with less frequent, less con-
crete, and more domain-specific words generally
considered more sophisticated (Kyle et al., 2018).
We also incorporate the concept of ngram sophisti-
cation by analyzing associations and dependency
relations within bigrams (Kyle and Eguchi, 2021).
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3.3.2 Syntactic features
Syntactic features can be examined from multiple
perspectives. Traditional approaches, such as mea-
suring the average length of T-units, focus on the
overall length of syntactic structures and operate
under the assumption that longer units generally
indicate greater complexity (Lu, 2010, 2011).

In contrast, fine-grained syntactic complexity
indices (Kyle and Crossley, 2018) provide a more
nuanced analysis by capturing specific structural
characteristics rather than relying on surface-level
measures like sentence length. These indices are
often categorized into clausal-level (e.g., nominal
subjects per clause), phrasal-level (e.g., dependents
per nominal, including adjectives and prepositions),
and morphosyntactic-level features (e.g., use of
past tense).

To the best of our knowledge, there is no con-
sensus on which fine-grained indices reliably cap-
ture syntactic complexity as perceived by human
judges. Nevertheless, L2 writing studies suggest
that higher-proficiency learners (identified by hu-
man ratings) tend to use more elaborated noun
phrases (e.g., Biber et al., 2011).

3.4 Statistical methods

3.4.1 Evaluating linguistic features across
groups

Prior to statistical analyses, we confirmed that the
five groups of texts (i.e., original [ORIG], human-
proofread [EDIT], and the three LLM-proofread
versions) were largely comparable in length.4 This
comparability, with the exception of Deepseek-r1-
8b, indicates that subsequent improvements in lex-
ical and syntactic domains are not simply due to
different text lengths.

We calculated a range of 49 lexical and 143 syn-
tactic indices from every text in the five groups
and identified features showing significant between-
group variance in two stages. First, we conducted
visual inspection of box plots to exclude the in-
dices with a great number of outliers, little indi-
vidual variance, and/or unnoticeable mean differ-
ences. Second, we applied a linear mixed-effects
model to each index, using Group (e.g., ORIG,
EDIT, ChatGPT-4o) as a categorical fixed effect
with ORIG as the baseline. Proficiency was in-
cluded as a fixed effect that interacted with Group,

4The differences in the number of word tokens relative
to the original text were: EDIT: –1.02, ChatGPT-4o: +6.13,
Llama3.1-8b: –3.38, and Deepseek-r1-8b: –15.11***.

and Participants were included as a random ef-
fect. We retained only those models that converged
successfully to ensure reliable estimates. From
these convergent models, we focused primarily on
the main effect of the proofreading mode, while
also examining whether any observed mode effects
were moderated by Proficiency. These procedures
yielded six lexical and nine syntactic indices. De-
tailed descriptions of each index are provided in
Appendix A.

For each of these indices, we reported the re-
sults of four pairwise comparisons, between ORIG
and human or LLM proofreading, from the linear
mixed-effects models. To avoid a Type I error due
to multiple comparisons, we applied a Bonferroni
adjustment to the alpha level, reducing it from .05
to .0125.

3.4.2 Evaluating consistency across LLMs
The linear mixed-effects analyses informed us
that the cross-model evaluation should exclude
five more syntactic features, which showed multi-
collinearity or overlapping metrics. For the rest ten
features,5 we calculated the standardized z-scores
so that each metric contributed equally to a com-
posite measure of overall lexical and syntactic com-
plexity.

Next, we restructured the data so that each
row represented an essay and each column con-
tained the composite score derived from the out-
put of a different model, treating these composite
scores as “ratings” of the same essay. We then
calculated the Pearson correlation coefficients be-
tween the ratings for every pair of models’ proof-
read output and computed Cronbach’s alpha (Cron-
bach, 1951) across these scores to assess their
overall consistency. All datasets and code used
for this analysis are available in the supplemen-
tary repository: https://osf.io/mhtpg/?view_
only=13ce0959a80e4d498b6761aba197bc83.

4 Results

4.1 Lexical features

Table 3 summarizes the analysis of the selected
lexical sophistication and diversity features. First,
all proofreading modes, including human editing,
led to significantly higher bigram mutual informa-
tion (raw_bg_MI) scores. This finding suggests that

5Lexical features: mattr, b_concreteness, mcd, usf,
cw_lemma_freq_log, and raw_bg_MI; Syntactic features:
nonfinite_prop, amod_dep, nominalization, and be_mv.
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Index EDIT ChatGPT-4o Llama3.1-8b Deepseek-r1-8b

raw_bg_MI +0.35 / 1.80*** +0.65 / 3.30*** +0.62 / 3.17*** +0.60 / 3.03***

usf -1.37 / 0.15 -9.21 / 0.99*** -8.48 / 0.91*** -12.09 / 1.30***

b_concreteness +0.00 / 0.02 -0.15 / 0.83*** -0.12 / 0.67*** -0.21 / 1.11***

cw_lemma_freq_log -0.02 / 0.03 -0.30 / 0.54*** -0.26 / 0.47*** -0.37 / 0.67***

mattr +0.01 / 0.18 +0.07 / 2.20*** +0.08 / 2.63*** +0.10 / 3.41***

ntypes +0.63 / 0.05 +19.98 / 1.68*** +16.68 / 1.40*** +16.80 / 1.41***

Table 3: Lexical features compared; For each index, two numbers are shown: the value on the left indicates
the unstandardized main effect coefficient, while the value on the right (following the backslash) represents the
standardized coefficient, calculated as the ratio of the coefficient to the residual standard deviation of the dependent
variable; Significance vs. ORIG is marked (∗p < 0.0125, ∗ ∗ p < 0.0025, ∗ ∗ ∗p < 0.00025); negative values are
red and positive values are blue; interaction effects are omitted.

Figure 2: raw_bg_MI compared across ORIG, EDIT,
and LLM-proofread texts by proficiency

both human and LLM proofreading improved the
lexical sophistication in terms of the coherence or
contextual connectedness of adjacent words. How-
ever, LLM proofreading substantially increased
raw_bg_MI to the extent that differences between
lower and higher proficiency levels became less
distinguishable (Figure 2).

In contrast, only the LLM-proofread texts
showed significant changes in additional lexical
sophistication measures, including a shift toward
more contextually distinctive words (usf), less
concrete words (b_concreteness), and lower-
frequency content words (cw_lemma_freq_log).
Human proofreading, by comparison, did not pro-
duce significant differences in these measures.

As for lexical diversity, significant improve-
ments were observed only in the LLM-proofread
texts, with increases in metrics such as mattr (Fig-
ure 3) and ntypes, indicating a broader range of
vocabulary use.

Figure 3: mattr compared across ORIG, EDIT, and
LLM-proofread texts by proficiency

4.2 Syntactic features

Table 4 summarizes the analysis of the selected
syntactic features. Regarding the mean length of
T-units (mltu), neither human nor LLM proofread-
ing produced a consistent pattern: human proof-
reading (EDIT) and ChatGPT-4o tended to reduce
T-unit length, while Llama3.1-8b and Deepseek-
r1-8b tended to increase it, suggesting no uniform
effect on the length of minimal grammatical units.

At the clause level, all LLM-proofread texts
showed a significant increase in the total number
of clauses (all_clauses) compared to the origi-
nal learner essays, with Deepseek-r1-8b exhibit-
ing the largest effect. Moreover, LLM-proofread
texts contained a higher proportion of nonfinite
clauses (nonfinite_prop), whereas human edit-
ing resulted in a slight reduction in this index.

At the phrase level, LLM proofreading increased
the number of noun phrases (np), along with a
rise in noun phrase dependencies (np_deps). This
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Index EDIT ChatGPT-4o Llama3.1-8b Deepseek-r1-8b

mltu -115.49 / 0.31 -105.73 / 0.28 +44.26 / 0.12 +118.42 / 0.31
all_clauses +15.55 / 0.10 +133.76 / 0.84*** +99.12 / 0.62*** +179.00 / 1.12***

nonfinite_prop -1.33 / 0.29 +2.01 / 0.44*** +2.63 / 0.57*** +5.52 / 1.20***

np -21.30 / 0.08 +91.96 / 0.36** +41.27 / 0.16 +194.91 / 0.76***

np_deps -35.03 / 0.08 +79.21 / 0.17 +91.91 / 0.20 +217.81 / 0.47**

amod_dep +17.54 / 0.01 +137.65 / 0.75*** +127.44 / 0.70*** +204.54 / 1.12***

nominalization +58.12 / 0.40** +152.04 / 1.05*** +102.85 / 0.71*** +213.63 / 1.47***

be_mv +10.37 / 0.12 -56.53 / 0.63*** -41.60 / 0.47** -84.02 / 0.94***

past_tense -15.80 / 0.29 -17.38 / 0.32 -17.77 / 0.32 -19.31 / 0.35**

Table 4: Syntactic features compared; Interpretation of the table follows the same conventions described in Table 3

Figure 4: amod_dep compared across ORIG, EDIT, and
LLM-proofread texts by proficiency

suggests that LLM proofreading not only added
more noun phrases but also enriched their internal
structure. In particular, the marked increase in
adjective modifier dependencies (amod_dep; e.g.,
“various jobs”) suggests that LLM outputs favor
more descriptive noun phrases (Figure 4).

At the morphological-syntactic level, both hu-
man and LLM proofreading showed significant
increases in nominalization, but the increases
were more pronounced in the LLM outputs (Fig-
ure 5). In contrast, the non-auxiliary use of the
main verb “be” declined significantly under LLM
proofreading, while human proofreading showed
only a slight increase (be_mv). Additionally, all
proofreading modes consistently reduced the use
of past tense (past_tense).

4.3 Cross-model consistency

Based on the features that demonstrated meaning-
ful group differences—and after removing indices
with multicollinearity and conceptual overlap—we

Figure 5: nominalization compared across ORIG,
EDIT, and LLM-proofread texts by proficiency

Pair Lexical Syntax

ChatGPT-4o – Llama3.1-8b 0.70 0.62
ChatGPT-4o – Deepseek-r1-8b 0.60 0.53
Llama3.1-8b – Deepseek-r1-8b 0.56 0.65

Table 5: Pairwise Pearson correlations for lexical and
syntactic features across LLMs

selected ten lexical or syntactic features. The com-
posite lexical and syntactic scores exhibit strong
internal consistency across the LLMs, with Cron-
bach’s alpha values of 0.83 and 0.81, respectively.

Table 5 presents the pairwise Pearson correla-
tions among the three LLM proofreading models.
For lexical features, ChatGPT-4o and Llama3.1-8b
correlate at 0.70, while Deepseek-r1-8b correlates
at 0.60 with ChatGPT-4o and 0.56 with Llama3.1-
8b. For syntactic features, the corresponding cor-
relations are 0.62, 0.53, and 0.65. These findings
suggest that, despite minor variations, particularly
with Deepseek-r1-8b, the LLMs tended to modify
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vocabulary and syntactic structures in a relatively
consistent manner when proofreading L2 writings,
as measured by our selected indices.

5 Discussions

We compared the lexical and syntactic features of
original L2 writings with those of texts that were
proofread by human and LLMs. We also evalu-
ated the consistency of LLM proofreading across
different models.

Lexical features We found significant increases
in bigram association strength, a ngram-level index
of lexical sophistication, across all the proofread-
ing modes. However, only LLM-proofread texts
demonstrated notable changes in both word-level
sophistication and diversity. Together, these results
suggest that while both human and LLM proofread-
ing improved the natural sequence of vocabulary–
thus, enhancing the intelligibility of L2 writings–
LLM proofreading provided an additional boost in
lexical diversity and sophistication. In fact, this
boost sometimes reduced or even eliminated typi-
cal differences between proficiency levels. Given
that lexical sophistication and diversity are impor-
tant constructs when evaluating L2 writing profi-
ciency (Kyle et al., 2018, 2021), texts produced
using LLM proofreading may obscure learners’
true writing abilities and artificially inflate their
advanced language skills, ultimately undermining
accurate assessment and long-term development.

We also observed that LLMs often replaced re-
peated words with alternative expressions—even
when such changes are unwarranted—calling for
caution. For example, “I often can smell” became
“I often catch a whiff”, altering the intended mean-
ing. Consequently, L2 writers using LLM proof-
reading should be mindful of unintended shifts in
meaning or style and double-check suggested edits.

Syntactic features Compared with the marked
lexical shifts, syntactic edits were subtler but
still distinct pattern of edits. First, both human
and LLM proofreading consistently reduced past-
tense verbs, favoring present or neutral tense—a
pattern often associated with factual, persuasive
prose (Burrough-Boenisch, 2003; Fang and Maglio,
2024).

However, LLMs made more extensive structural
modifications, including a higher proportion of non-
finite clauses (e.g., “Because the company that need
worker will ask the job experiences”→ “Compa-

nies looking to hire often require prior work experi-
ence”) and a marked increase in adjective modifier
dependencies (e.g., “become the social problem”
→ “become a significant social problem”). They
also introduced more nominalizations (e.g., “we
should...” → “(our) primary responsibility”) and
reduced the non-auxiliary use of the main verb “be”
(e.g., “is not the first" → “should not take prece-
dence”).

Meanwhile, although the increase in overall
noun complexity following LLM proofreading was
not statistically robust (dp_deps), the gains were
primarily driven by the insertion of adjective modi-
fiers rather than by broader grammatical restructur-
ing. For example, the structural complexity of noun
phrases involving prepositional phrases (e.g., “dis-
advantages of works”) or coordination (e.g., “ad-
vantages and disadvantages”) remained largely un-
changed.

Cross-model consistency We found that the
three LLMs exhibit generally consistent proofread-
ing performance in terms of the major lexical and
syntactic features. We speculate that this consis-
tency arises from fundamental similarities in how
they are trained and optimized for language gener-
ation tasks. Consequently, while different LLMs
may produce distinct outputs, their overall patterns
of lexical enhancement and syntactic restructuring
remain comparable.

6 Conclusions

Our study shows that while both human and LLM
proofreading improve lexical and syntactic features
in L2 writing, LLMs typically implement more
generative edits, reworking vocabulary and sen-
tence structures to a greater extent. Although these
changes may enhance clarity and style, they risk
overshadowing the original meaning or authorial
voice and potentially inflate apparent language pro-
ficiency.

This finding has important implications for L2
writing practice. Acknowledging the great simi-
larities in proofreading outcomes across different
LLMs, more attention should be given to the ques-
tion of “how to use LLM-proofreading effectively”
rather than “what LLM to use for proofreading.”
This key question can be addressed in reference to
the observations that we have reported above, such
as non-mandatory lexical substitution and exces-
sive syntactic restructuring. Being aware of these
tendencies in LLM-proofreading, L2 writers can
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better maintain control over their writing process
while strategically making use of LLMs for linguis-
tic improvements.

Limitations

This study has several limitations. First, the same
proofreading directive may be interpreted differ-
ently by human and LLM proofreaders, potentially
affecting the nature and extent of the modifications.

Second, the analysis lacks qualitative compar-
isons between original and edited texts, which
could reveal subtler aspects of the revisions. As
one reviewer noted, LLM-proofread essays may
appear more sophisticated but sometimes sacrifice
coherence or introduce unintended nuances, mak-
ing them harder to read. A more systematic quali-
tative analysis (ideally supported by human percep-
tion data comparing human- and LLM-proofread
texts) would clarify whether LLM edits genuinely
improve writing quality or simply enhance surface-
level features.

Third, the task effects and proficiency-level
constraints limit generalizability: our analysis fo-
cused solely on argumentative writing by Asian
university-level students who already possess a cer-
tain level of L2 English proficiency. Consequently,
these findings may not extend to other types of writ-
ing or to L2 groups with different backgrounds.
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A Descriptions of the selected indices

Index Description

Lexical indices

ntypes Counts the number of unique words, taking into account their part-of-speech.
mattr Computes the type-token ratio over a 50-word sliding window.
b_concreteness Uses psycholinguistic norms to assess word concreteness across categories

based on large-scale ratings, indicating how tangible or abstract a word is
perceived to be (Brysbaert et al., 2014).

usf Measures the number of distinct stimuli that elicit a target word in a word
association experiment; lower USF scores suggest the use of words that are
more contextually distinct (Nelson et al., 1998).

cw_lemma_freq_log Represents the logarithm of lemma frequencies for content words, computed
with reference to an English web corpus (Schäfer and Bildhauer, 2012).

raw_bg_MI Calculates raw bigram mutual Information to quantify the strength of asso-
ciation between consecutive words, with higher values indicating a stronger
collocational relationship; this is measured against an English web corpus.

Syntactic indices

mltu Measures the average length of T-units, where a T-unit is defined as a main
clause plus any subordinate clause(s) attached to it.

all_clauses Counts the total number of clauses in the text (normed by 10,000 words).
nonfinite_prop Computes the proportion of nonfinite clauses (e.g., gerunds, infinitives) relative

to the total number of clauses.
np Counts the total number of noun phrases, highlighting the nominal complexity

within sentence structures (normed by 10,000 words).
np_deps Counts the number of internal dependencies within noun phrases (e.g., adjec-

tives, prepositions, coordinations) (normed by 10,000 words).
amod_dep Measures the frequency of adjective modifier dependencies (normed by 10,000

words).
nominalization Counts the frequency of nominalizations (i.e., words that convert verbs or

adjectives into noun forms) identified by tokens containing predefined suffixes
such as -al, -ness, among others (normed by 10,000 words).

be_mv Measures the frequency of the verb “be” when used as a main verb (excluding
its auxiliary function) (normed by 10,000 words).

past_tense Measures the frequency of past tense verbs (normed by 10,000 words).
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Abstract

The rapid advancement of Large Language
Models (LLMs) has transformed various do-
mains, particularly computer science (CS) ed-
ucation. These models exhibit remarkable ca-
pabilities in code-related tasks and problem-
solving, raising questions about their poten-
tial and limitations in advanced CS contexts.
This study presents a novel bilingual (En-
glish–Romanian) multimodal (text and image)
dataset of multiple-choice questions derived
from a high-level computer science compe-
tition. A particularity of our dataset is that
the problems are conceived such that some of
them are easier solved using reasoning on pa-
per, while for others writing code is more ef-
ficient. We systematically evaluate State of
The Art LLMs on this dataset, analyzing their
performance on theoretical programming tasks.
Our findings reveal the strengths and limita-
tions of current LLMs, including the influence
of language choice (English vs. Romanian),
providing insights into their applicability in
CS education and competition settings. We
also address critical ethical considerations sur-
rounding educational integrity and the fairness
of assessments in the context of LLM usage.
These discussions aim to inform future educa-
tional practices and policies. To support fur-
ther research, our dataset will be made publicly
available in both English and Romanian. Addi-
tionally, we release an educational application
tailored for Romanian students, enabling them
to self-assess using the dataset in an interactive
and practice-oriented environment.

1 Introduction

In recent years, LLMs have demonstrated revolu-
tionary potential in natural language processing
and code generation, enabling applications such
as automated code writing systems and algorith-
mic problem-solving (Raihan et al., 2024; Rasheed
et al., 2025). For instance, models like GPT-o3
exhibit remarkable proficiency in code generation

and problem-solving (OpenAI et al., 2025), yet
their deployment in high-stakes domains remains
constrained by efficiency and reliability challenges.

In the educational domain, LLMs exhibit consid-
erable promise for enabling personalized learning
and automating feedback; however, their capacity
to manage complex, competition-level program-
ming challenges—particularly in bilingual or non-
English contexts—remains underexplored, with
emerging critiques questioning their reliability in
high-stakes scenarios, such as mathematical reason-
ing. Recent analyses, such as (Petrov et al., 2025;
Mirzadeh et al., 2024; Hendrycks et al., 2021)
reveal that LLMs frequently produce plausible-
sounding but logically flawed solutions, raising
concerns about their suitability for rigorous assess-
ments. While benchmarks like HumanEval (Chen
et al., 2021; Yu et al., 2024) and MBPP (Austin
et al., 2021) evaluate general coding proficiency,
they often neglect pedagogical dynamics, such as
adaptive scaffolding for learners or ethical align-
ment with institutional values. Furthermore, stud-
ies caution that deploying LLMs in multilingual
environments amplifies risks of semantic misinter-
pretation and cultural misalignment, necessitating
rigorous scrutiny of their pedagogical robustness.
(Rystrøm et al., 2025; Marchisio et al., 2024)

Our work aims to address this gap by conduct-
ing a rigorous evaluation of LLMs using a bilin-
gual dataset, thus shedding light on their strengths,
weaknesses, and the nuances of language-specific
performance. Our dataset is uniquely comprised
of multiple-choice questions that were originally
administered as part of a pre-university exam for
prospective students. This setting not only sim-
ulates a high-stakes assessment environment, but
also provides rich insights into the performance of
LLMs on tasks that require both theoretical knowl-
edge and practical application. Our approach al-
lows us to identify key strengths and limitations
of state-of-the-art LLMs, highlighting scenarios
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where additional context either bolsters perfor-
mance or introduces redundancy and inefficiency.
By dissecting performance variations across lan-
guages and problem types, we provide a nuanced
understanding of how LLMs navigate complex edu-
cational assessments, such as those encountered in
advanced computer science competitions and early
university admissions. Moreover, our study raises
important ethical considerations, as the use of au-
tomated assessments in educational settings must
balance technological innovation with fairness and
academic integrity.

Finally, to encourage further exploration and
replication, the bilingual dataset1 developed
through this work will be made publicly available,
offering a valuable resource for future research
in both educational technology and competitive
programming evaluation and an educational appli-
cation2 tailored for Romanian students, enabling
them to self-assess using the dataset in an interac-
tive and practice-oriented environment.

Main Contributions

The main contributions of our work can be summa-
rized as follows:

• We introduce a novel multimodal and bilin-
gual dataset comprising Romanian and En-
glish. The dataset includes 100 multiple-
choice questions, all enriched with exten-
sive solutions in Romanian. This paper fo-
cuses specifically on benchmarking LLM per-
formance on the Multiple Choice Question
(MCQ) portion, including its multimodal as-
pects; the programming problems are pro-
vided as part of the dataset release for com-
pleteness and future research but are not eval-
uated here. We consider the evaluation of
complex coding problems a distinct challenge
requiring separate methodologies.

• Our dataset is uniquely designed so that
multiple-choice problems can be solved
through either mathematical and algorithmic
reasoning or by generating executable Python
code. Crucially, the benchmark tasks the
LLMs with autonomously determining the
most suitable approach—producing either di-
rect answers or executable Python code.

1https://huggingface.co/datasets/EHollower/
MateInfoUB

2https://mateinfo-ub.github.io/

• We provide an open-source educational ap-
plication enabling students to interactively
attempt and practice all problems included in
our dataset, thereby facilitating practical en-
gagement and learning.

Related Work
The evaluation of LLMs for code generation has
advanced significantly, supported by benchmarks
that measure functional correctness and problem-
solving capability. Seminal datasets such as Hu-
manEval (Chen et al., 2021; Yu et al., 2024) and
MBPP (Mostly Basic Python Problems) (Austin
et al., 2021) have become standard, focusing on
generating standalone code from English-language
prompts (Paul et al., 2024). While effective for as-
sessing basic coding abilities, these benchmarks of-
ten emphasize isolated tasks, neglecting integrated
reasoning, debugging, and pedagogical scaffolding
(Fujisawa et al., 2024; Zhang et al., 2024). They
also overlook ethical alignment (Abdulhai et al.,
2024), which is critical in educational deployments.

Recent datasets attempt to address these gaps.
APPS (Hendrycks et al., 2021) and CodeContests
(Quan et al., 2025) introduce complex algorithmic
problems from competitive programming, pushing
models toward more advanced problem-solving.
However, these datasets are monolingual and in-
sufficiently capture linguistic diversity (Marchisio
et al., 2024), despite growing evidence that non-
English prompts introduce semantic errors and cul-
tural misalignment (Rystrøm et al., 2025).

In educational contexts, systems for automated
feedback (Sarsa et al., 2022) and personalized tu-
toring (Wu and Hu, 2023; Petrov et al., 2025) rarely
engage with high-stakes scenarios such as program-
ming competitions or university admissions. This
leads to concerns about fairness (Mouselinos et al.,
2023), academic integrity (Huang et al., 2025), and
linguistic exclusion (Gao et al., 2024).

Multilingual benchmarks like DS-1000 (Lai
et al., 2022) and MultiPL-E (Cassano et al., 2022)
broaden the scope but primarily target English pro-
gramming tasks rather than bilingual educational
assessments. Studies reveal that language choice
affects problem comprehension (Moumoula et al.,
2025), with LLMs showing systematic bias in non-
English settings and often generating plausible yet
logically flawed responses (Petrov et al., 2025;
Mirzadeh et al., 2024). As a result, emerging frame-
works call for pairing benchmarks with fairness
audits (Du et al., 2025) and cultural robustness
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evaluations (Rystrøm et al., 2025).
Several recent benchmarks have expanded be-

yond single-turn code generation to include interac-
tion and feedback mechanisms. MINT introduces
multi-turn tool use and natural language feedback
(Wang et al., 2024), while InterCode and AppWorld
emphasize coding with execution feedback and
app-driven interaction (Yang et al., 2023; Trivedi
et al., 2024). SciCode curates scientific comput-
ing tasks (Tian et al., 2024), and XCODEEVAL
targets multilingual, multitask code understanding
and generation (Khan et al., 2023). However, these
benchmarks largely isolate competencies: tool use
is decoupled from theoretical reasoning, and scien-
tific or multilingual problems are rarely embedded
in pedagogically structured tasks.

Unlike existing benchmarks that focus on iso-
lated coding tasks, our dataset integrates theoret-
ical understanding with practical implementation
through hybrid problem formats. Each item in the
dataset focuses on one or more core competencies:
code synthesis, mathematical reasoning, and algo-
rithmic thinking. This flexible format mirrors the
diversity of real-world computer science assess-
ments and addresses the "theoretical blind spots"
highlighted by (Chan et al., 2024), where language
models struggle when reasoning is detached from
implementation. By evaluating symbolic manipu-
lation alongside executable code generation, our
dataset offers a more comprehensive measure of
educational readiness.

2 Data Collection and Examples

The problem set used in our study is derived from
MateInfoUB, an annual computer science contest
specifically aimed at 12th-grade students. This
contest also functions as an admission exam for the
Faculty of Mathematics and Computer Science at
the University of Bucharest. The competition is
structured into two phases:

• Phase 1: An online round consisting of chal-
lenging multiple-choice questions. Students
have access to a programming environment,
but are restricted to using only publicly avail-
able resources. The use of forums, messen-
gers, or Large Language Models (LLMs) is
strictly prohibited.

• Phase 2: A live programming contest mod-
eled after the International Olympiad in Infor-
matics (IOI) format, featuring four program-
ming problems. Students’ solutions can earn

partial points based on correctness and effi-
ciency.

Our work exclusively focuses on the first phase
of the contest, and our dataset is obtained directly
from the contest organizers in Romanian, currently
also available online 3. Extensive solutions accom-
panying each problem, manually written by the
authors and by undergraduate students as part of
their academic practice (practică) at the university
are also available for reference and further research.

Some tasks are accompanied by an image con-
taining a code snippet, a diagram, a graph or similar.
For those tasks, we augment the statement with a
clear textual description of the image’s content.

Our final dataset is composed of the problems
with statements and multiple choice answers in
Romanian, as well as their direct translation in En-
glish. The translations are generated automatically,
by using Gemini 2.0 Flash with very strict instruc-
tions enforcing a verbatim translation. The english
translations are then manually checked for correct-
ness.

In the following, we provide two examples that
illustrate the characteristics of the dataset.

Example: Multimodal Problem Requiring
Visual Analysis

Figure 1 presents a typical multiple-choice ques-
tion from our dataset. The problem requires de-
termining the number of distinct Minimum Span-
ning Trees (MSTs) present in the provided graph.
Problems of this nature are challenging for LLMs,
as solutions depend significantly on visual inter-
pretation and structural observation of the graph.
Previous studies have noted similar limitations in
visual reasoning tasks performed by LLMs (Liu
et al., 2023).

Figure 2 presents another multiple choice ques-
tion from our dataset. Given a map that illustrates
a river with two banks and four islands linked by
eight bridges, the task asks for the minimum num-
ber of additional bridges that must be built so that
a tourist can cross each bridge exactly once. Prob-
lems of this nature are challenging for LLMs be-
cause they require integrating visual-spatial rea-
soning with graph-theoretical concepts, such as
identifying Eulerian paths, which are not explicitly
stated, but must be inferred from the structure of
the image or diagram.

3https://mateinfo-ub.github.io/#/toate-datele
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Figure 1: Example multiple-choice problem requir-
ing visual analysis (in Romanian); English translation:
"AMP-uri (easy, 2 points); How many minimum span-
ning trees does the following graph have?"

Figure 2: Example multiple-choice problem requiring
visual analysis (in English).

3 Benchmarking

In this section, we present a comprehensive
overview of our benchmarking strategy designed to
evaluate various aspects of Large Language Models
(LLMs) performance on our bilingual, multimodal
dataset. The benchmarking aims to highlight differ-
ences in performance across multiple dimensions,
including language, presentation modality, avail-
ability of multiple-choice options, and problem-
solving approaches.

3.1 Methodology

Our evaluation is based on state-of-the-art LLM
models from various vendors, namely gemini-2.0-
flash and gemini-2.5-pro-exp-03-25 from Google
AI Studio, mistral-large-latest (April 2025)
from Mistral AI, and meta-llama/Llama-3.3-
70B-Instruct-Turbo-Free, deepseek-ai/DeepSeek-
R1 and deepseek-ai/DeepSeek-V3 from To-
gether AI (Together AI, 2025)

We use the models via the exposed API, starting
a new chat instance for each task. We provide the
models with the task’s statement and the multiple-
choice answers. We then instruct the models to
provide reasoning steps, followed by either an an-
swer or a Python script that computes the answer.

For minimizing benchmarking frictions, we
clearly provide the models with the expected output
format, which resembles XML. While very forgiv-
ing, in some instances, the models fail to adhere to
it (if, for instance, their answer exceeds the API’s
length limit). In such situations, we consider the
models’ answers incorrect.

3.2 Evaluation Baseline

We evaluate the accuracy of our models on the orig-
inal tasks. Due to the multiple choice nature of the
tasks, verifying the correctness of the models’ solu-
tions is trivial. We run each model on each problem
3 times, for minimizing the randomness caused by
the LLMs’ seed selection. We chose to use the
models’ default API settings (i.e., without forcing
temperature to 0) to reflect typical usage and ob-
tain realistic levels of correctness, confidence, and
creativity, as would be experienced by a standard
user.

3.3 AI vs. Human Contestants

As our dataset comes from real contests, we com-
pare the performance of the models with the results
obtained during the 2021, 2022, 2023, and 2024
editions of the contest. We evaluated the models by
measuring their percentile scores compared to the
results of the students who qualified for the final
stage of the contest.

3.4 Original Romanian Baseline vs. English
Translations

LLMs have been notoriously bad at reasoning in
languages other than English. By comparing our
baseline benchmark with the performance of LLMs
on English translations of the statements, we gain
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insights about the model’s effectiveness in a lan-
guage typically underrepresented in NLP research,
as opposed to English.

A comparative analysis of English and Roma-
nian benchmarks highlights language-specific chal-
lenges and differences in LLM capabilities between
languages.

3.5 Original Multiple-Choice vs. No
Multiple-Choice Variants

We investigate how the presence or absence of mul-
tiple choice answer options affects LLM perfor-
mance. By removing the multiple-choice frame-
work, we challenge the models’ capability to gen-
erate answers without guidance from predefined
options.

3.6 Chain-of-Thought vs. Direct Answer

In our benchmarks, when prompting the models
for an answer, we ask the models to provide a de-
tailed description of the solution. The models thus
respond with reasoning steps to solve the task, fol-
lowed by the answer.

We measure how the performance of the models
is impacted by the absence of the reasoning steps,
by prompting the models to directly output the
answer, without justifying it.

3.7 Answer-only vs. Hybrid Approach

Finally, we conduct experiments to compare LLM’s
performance across two different reasoning strate-
gies:

• Hybrid approach: The model autonomously
chooses whether to solve the problem via code
generation or direct reasoning (our baseline).

• Think-only: The model is restricted to pro-
viding direct theoretical or conceptual so-
lutions, without the possibility of running
python code.

We do not consider the third option (forcing the
model to produce python code), as we experimen-
tally see the model can write a trivial script printing
a hard-coded answer, making the experiment unin-
teresting.

4 Results

In this section, we present the findings of our bench-
marking evaluations.

Overall, our analyses suggest significant varia-
tions in LLMs performance across different scenar-
ios.

We acknowledge that the outreach of bench-
marks might be limited by the size relatively small
of our dataset, but our measurements suggest the
following trends:

• Language Comparison: Our measurements
indicate various differences in model accu-
racy and problem-solving capabilities when
problems are presented in Romanian versus
English, with some models benefiting from a
verbatim translation of the statements to En-
glish, a language they are more familiar with,
while and others perform better when exposed
to the original statements.

• Multiple-choice Contexts: We observe that
the availability of multiple-choice options
slightly improves model accuracy compared
to scenarios where these options are not pro-
vided.

• Reasoning Strategies: Benchmarks indicate
a promising performance of hybrid strategies,
where models autonomously select between
code generation and direct reasoning, outper-
forming exclusive reasoning approaches.

• Human Performance Comparison: Com-
paring the performance of models with the
performance of high school students taking
part in the contest, we find that newer models
consistently outperform most students.

• Breadth of Capabilities: Models demon-
strate a broader range of problem-solving
skills than originally anticipated, effectively
addressing a very diverse set of exercises. In
particular, of the 100 exercises in our dataset,
all but three were solved by at least one model,
highlighting their versatility and adaptability
to different types of problems.

Detailed findings from each of our experiments
are discussed in the following sections.

4.1 Baseline and comparison with human
rankings

We find models quite capable, with newer models
capable of solving most tasks. On average, mod-
els achieve a difficulty-weighted accuracy of 52%
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(easy problems are worth 2 points, medium prob-
lems 3 points, and hard problems 5 points). A
complete breakdown of the accuracy of the models
is available in Table 1.

Model Easy (%) Medium (%) Hard (%)

Gemini 2.5 Exp 96.7 85.6 76.7
Gemini 2.0 Flash 71.3 60.0 35.0
Llama 3.3 70B 51.3 31.1 18.3
DeepSeek R1 54.0 34.4 21.7
DeepSeek V3 72.0 63.3 30.0
Mistral Large 62.0 43.3 31.7

Table 1: Performance metrics for different models
across difficulty levels in Romanian (larger is better).

One can see that Gemini 2.5, a reasoning-
focused model, outperforms all others, including
DeepSeek R1. However, upon closer examination,
we found that DeepSeek R1 frequently produces
answers that exceed the API’s maximum response
length, leading to truncation and, consequently, in-
correct outputs.

In some cases, such as when attempting to manu-
ally solve complex counting problems, the model’s
output becomes excessively long. We consider it
most appropriate to adhere to the API vendor’s con-
figured maximum response length and treat trun-
cated or incomplete answers as incorrect.

As we have data on the scores obtained by stu-
dents qualified in the 2021, 2022, 2023 and 2024
editions of the contest, we can compute the per-
centile (i.e. the percentage of students doing better
than the model) of the qualified students. The re-
sults are available in Table 2.

Model 2021 2022 2023 2024

DeepSeek V3 38.22 27.12 26.15 9.95
Gemini 2.5 Exp 0.64 1.69 0.51 0.00
Gemini 2.0 Flash 50.96 55.93 56.41 1.05
Llama 3.3 70B 100.00 100.00 100.00 100.00
DeepSeek R1 100.00 100.00 79.49 100.00
Mistral Large 100.00 92.09 85.64 9.95

Table 2: Average percentiles of models compared to real
students across different years (smaller is better).

Models show a constant improvement over the
years, which we theorize can be explained by a
combination of the following hypotheses:

• Older contests have more ad-hoc problems,
which models tend to struggle with.

• Starting in 2022, the UK stopped its financial
support for EU students, including Romania.

Thus, many students exploring alternative op-
portunities took part in the contest. As alter-
native abroad universities grew in popularity
among high school students, interest in the
contest could have decreased.

• The student participating in the contest in
2022, 2023 and 2024 were the most impacted
by the Covid-19 remote studying mandates
during early high school.

We strongly believe that our dataset is not tainted
(i.e., that models were not trained on it). While
the statements were publicly available before we
started our research, we are the first to compile
a dataset that maps these problems to their corre-
sponding answers.

In other words, while it is plausible that model
training corpora may have included the raw state-
ments, the solutions could not have been included,
since all tasks are original, and our dataset is the
first to pair them with verified multiple-choice an-
swers.

4.2 Original language vs. English translation
Our experiments show that most models perform
better on the Romanian version of the questions
than on the English one. This gap likely arises
from two factors. First, our English statements are
verbatim translations of the original Romanian text,
which can lose nuance and clarity and introduce
artifacts (translationese) that impair model under-
standing.

Second, since the raw Romanian problems were
publicly available before our work, it is plausi-
ble that models encountered those during training,
whereas our English translations are novel; thus,
they effectively function as a partial unseen valida-
tion set. We therefore consider the benchmark bilin-
gual, while acknowledging that translation quality
and prior exposure may both contribute to the ob-
served performance drop.

The DeepSeek family of models sees a 10% gain
in accuracy when solving the English variant, sug-
gesting reduced multilingual abilities of the mod-
els.

The results of the experiment are available in
Table 3.

4.3 Multiple-choice options provided vs. not
provided

We observe a slight decline in performance when
the multiple choice variants are not provided, which
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Figure 3: Performance of models when the multiple choice options are provided vs when they are not.

Model English (%) Romanian (%)

DeepSeek V3 0.61 0.55
Gemini 2.5 Exp 0.84 0.86
Gemini 2.0 Flash 0.50 0.55
Llama 3.3 70B 0.33 0.34
DeepSeek R1 0.52 0.37
Mistral Large 0.43 0.46

Overall Average 0.54 0.52

Table 3: Average scores for models across different
languages.

aligns with the contests’ design goals of making
the variants unhelpful for solving the tasks. Con-
sidering that models tend to guess an answer and
hallucinate a justification when they cannot solve
the task, we believe that the difference is caused
by models having a higher chance of guessing the
correct answer. The results can be seen in Figure 3.

4.4 Chain-of-Thought vs. Direct Answer

We observe a slight decline in performance when
models are only prompted for the answer, as op-
posed to first providing a justification, or reasoning.
While we expect reasoning models like Gemini 2.5
Exp and DeepSeek-R1 to be invariant to the change
(due to their own reasoning process), DeepSeek-
R1’s internal chain-of-thought reasoning increases
in length, which causes some of its answers to be
truncated and invalidated. The full results are avail-
able in Table 4.

Model Easy Medium Hard Average

With Reasoning

DeepSeek V3 0.70 0.63 0.41 0.58
Gemini 2.5 Exp 0.96 0.85 0.74 0.85
Gemini 2.0 Flash 0.68 0.56 0.35 0.53
Llama 3.3 70B 0.50 0.33 0.16 0.33
DeepSeek R1 0.65 0.43 0.26 0.45
Mistral Large 0.61 0.44 0.28 0.45

Overall Average 0.53

Without Reasoning

DeepSeek V3 0.73 0.54 0.48 0.58
Gemini 2.5 Exp 0.95 0.81 0.79 0.85
Gemini 2.0 Flash 0.56 0.50 0.11 0.39
Llama 3.3 70B 0.53 0.27 0.19 0.33
DeepSeek R1 0.28 0.12 0.00 0.13
Mistral Large 0.48 0.35 0.15 0.33

Overall Average 0.43

Table 4: Comparison of average scores with and without
reasoning for various models.

4.5 Answer-only vs. Hybrid Approach

In Figure 4, we can see the distribution of python
answers and direct answers, when the models can
choose unconstrained how to provide an answer for
a given task (i.e., models can freely pick between
providing a direct answer and providing a python
code).

When Python is no longer allowed, the models
perform unexpectedly worse, as more than half of
their answers rely on executing Python code. We
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Figure 4: Percentage of direct answers vs python answers when the models are given the choice between the two.
Columns are scaled the number of tasks of each difficulty (10 easy, 6 medium, 4 hard).

run the experiment on a subset of the models, and
the results are available in Table 5.

Model Easy Medium Hard

Python Code Allowed

DeepSeek V3 0.70 0.63 0.41
Gemini 2.0 Flash 0.68 0.56 0.35

Python Code Not Allowed

DeepSeek V3 0.65 0.48 0.28
Gemini 2.0 Flash 0.59 0.43 0.20

Table 5: Comparison of average scores for DeepSeek
V3 and Gemini 2.0 Flash with and without Python code.

4.6 Discussion of Benchmark Results

Our findings have two key implications for
computer-science education. First, assessments
should combine tool-enabled tasks with those re-
quiring scaffolding and manual reasoning to accu-
rately gauge student mastery. Second, instructors
and contest organizers should monitor for anoma-
lous solution patterns—such as perfectly formatted
code or implausibly high confidence scores—to
detect unauthorized LLM use.

We also provide descriptive plots covering the
experiments contained in our research. They are
available in Appendix B.

5 Application

In parallel with our experiments, and inspired by
our dataset, we develop a web-based application,
which can be used as a training ground of students
looking to compete in the contest.

The application is freely accessible online 4 and,
among others, allows students to:

• Preview the statements of all editions of the
contest.

• Simulate an edition of the contest.

• Automatically grade their attempt.

The application is implemented in React, and is
hosted on Github Pages. Due to its limited func-
tionalities, it does not require any kind of dynamic
backend, and all of its assets, including statements,
solutions, and images, can be packaged statically,
making deployment easier.

Screenshots of the application and a description
of its functionalities are available in the Appendix
A.

6 Future Work

Several avenues for further research are highlighted
by our preliminary findings and current limitations.
Key directions include:

4https://mateinfo-ub.github.io/
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• Expanded Benchmarking: Conducting ex-
tensive experiments involving additional com-
petitive programming datasets (potentially us-
ing cross-validation) and further expanding
multilingual analyses. This could also involve
analyzing model performance over varying
levels of intrinsic problem complexity.

• Live Contest-Based Evaluation: Introduc-
ing the second phase featuring a plethora of
programming contests modeled after the In-
ternational Olympiad in Informatics (IOI),
with multiple problems graded on partial cor-
rectness and efficiency. This would enable
a deeper analysis of LLMs’ algorithmic rea-
soning and problem-solving capabilities in a
structured, task-oriented environment.

• Fine-Tuning and Contextual Support: In-
vestigating the impact of fine-tuning LLMs on
domain-specific data, leveraging RAG meth-
ods, or exploring the effect of providing in-
cremental contextual hints or scaffolding to
guide model reasoning.

• Model Efficiency and Scalability: Exploring
methods to optimize model inference times
and computational efficiency for real-world
educational deployment.

• Enhanced Ethical Solutions: Developing
and evaluating robust technological and ed-
ucational solutions that address challenges of
academic integrity related to the use of LLM.

Pursuing these directions can deepen the under-
standing of LLM capabilities and limitations, con-
tributing to their sustainable and ethical integration
in education.

Limitations

Although our study provides valuable insights into
Large Language Models’ (LLMs) performance on
bilingual educational assessments, several limita-
tions must be acknowledged.

First, although our dataset features a diverse set
of problems from a high-stakes computer science
competition, the scope remains limited to the Ro-
manian educational context. Generalization of our
findings to other linguistic or educational settings
may require additional validation.

Second, our dataset and benchmarks currently
focus primarily on the immediate accuracy of LLM-
generated solutions. Future work should explore

complementary evaluation metrics, including effi-
ciency, robustness to variations in problem presen-
tations, and detailed error analyses, which would
provide deeper insights into model performance
and reliability in educational contexts.

Lastly, our benchmarking has not explored the
impact of methods such as retrieval-augmented gen-
eration (RAG) or fine-tuning of LLMs. Future work
incorporating these approaches could reveal further
improvements in performance and greater adapt-
ability to specific educational tasks and datasets.

Ethical Considerations

A central motivation for this study is assessing
the current capabilities of Large Language Mod-
els (LLMs) due to significant ethical challenges
posed by their increasing accessibility during on-
line assessments, particularly in competitive con-
texts such as MateInfoUB. Our benchmarking ex-
plicitly aims to identify tasks and problem struc-
tures that LLMs struggle to solve reliably. The
insights gained allow educators and contest orga-
nizers to structure future contests in a way that
mitigates unfair advantages gained through unau-
thorized LLM use.

Although our current findings suggest it remains
possible to maintain fairness in online competi-
tions for now by emphasizing problems that LLMs
find challenging, this strategy will likely become
less effective as LLM capabilities rapidly improve.
Therefore, it is increasingly important for educa-
tional institutions and competition organizers to
proactively adopt technical solutions designed to
uphold academic integrity. Such solutions could
include software capable of capturing contestant
screens, monitoring interactions, and verifying par-
ticipant authenticity. Additionally, educational ef-
forts should emphasize ethical awareness and re-
sponsible technology use, preparing students to
navigate the evolving landscape of educational as-
sessments responsibly.

At the same time, we acknowledge that releasing
a dataset modeled after real pre-university exams in-
troduces the risk of misuse, particularly fine-tuning
LLMs to artificially boost exam performance with-
out genuine understanding. Our benchmark is in-
tended for controlled research and diagnostic eval-
uation, not as training material for high-stakes test-
ing. Responsible use requires avoiding practices
that could compromise the integrity and fairness of
educational assessments.
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A Online Training Platform

In the image 5 one can see the user interface of the application during a simulation of the 2022 edition of
the contest, and the image 6 shows the user interface after the contest’s timer ends or the user manually
stops it.

While simple, the application contains all the necessary features for an exam-like environment:

• A timer.

• A menu with all of the problems of the contest, ordered by difficulty and color-coded based on the
answer provided (blue during the contest and green / red afterwards).

• A problem viewer, where users can read the statements and provide answers.

Figure 5: Screenshot of the web application while solving a contest.

Figure 6: Screenshot of the web application correcting an attempt.

In addition to the simulation page, the application contains pages with the pdf statements, exactly as
they were during the corresponding exams, and links to useful resources.
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B Experiment Plots

In this section, we present visualizations of our experimental results.

Figure 7: Accuracy of the unconstrained Python and direct answers of the models.

In Figure 7, we plot the accuracy of the models when providing an answer as Python code or as a direct
answer. As the models can freely choose how to answer, we can see some interesting trends. For example,
on hard problems, models are significantly more likely to get the right answer when providing Python
code.

In Figure 8, we plot the percentile of the models when comparing their score with the scores of students
advancing to the next phase of the contest, by year. For instance, Gemini 2.5 Exp ranks first for 3 out of
the 4 years, while Llama 3.3 ranks last all years.

Figure 8: Percentage of students with a lower score than the models, by year.

Figure 9 plots the accuracy of models by language. Except for DeepSeek-R1, models tend to achieve a
higher score in Romanian, the original language of the tasks.

When prevented to
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Figure 9: Performance of the models by language

Figure 10: Performance of the models when they are allowed to produce Python code and when they have to provide
the answer directly.
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Abstract

Automatic Short Answer Grading (ASAG)
refers to automated scoring of open-ended tex-
tual responses to specific questions, both in
natural language form. In this paper, we pro-
pose a method to tackle this task in a setting
where annotated data is unavailable. Crucially,
our method is competitive with the state-of-the-
art while being lighter and interpretable. We
crafted a unique dataset containing a highly
diverse set of questions and a small amount
of answers to these questions; making it more
challenging compared to previous tasks. Our
method uses weak labels generated from other
methods proven to be effective in this task,
which are then used to train a white-box (lin-
ear) regression based on a few interpretable
features. The latter are extracted expert fea-
tures and learned representations that are in-
terpretable per se and aligned with manual la-
beling. We show the potential of our method
by evaluating it on a small annotated portion
of the dataset, and demonstrate that its abil-
ity compares with that of strong baselines and
state-of-the-art methods, comprising an LLM
that in contrast to our method comes with a
high computational price and an opaque rea-
soning process. We further validate our model
on a public Automatic Essay Scoring dataset
in English, and obtained competitive results
compared to other unsupervised baselines, out-
performing the LLM. To gain further insights
of our method, we conducted an interpretability
analysis revealing sparse weights in our linear
regression model, and alignment between our
features and human ratings.1

1 Introduction

Applications of Large Language Models (LLMs)
are emerging in the field of education and have

1Code available at furrutiav/unasages-bea2025

taken complementary roles to those of teachers
(Jeon and Lee, 2023). For instance, LLMs have
been used, with mixed results, to train teachers to
learn new strategies (Wang and Demszky, 2023).
One aspect of education that can greatly benefit of
automation is that of grading or scoring (Lan et al.,
2024). Such automation could greatly improve the
flexibility of teaching and target on the fly specific
educational shortcomings of students.

In this work, we focus on two of these au-
tomations: (i) Automatic Short Answer Grad-
ing (ASAG) and (ii) Automatic Essay Scoring
(AES); both instances of automated scoring for
open-ended questions. More specifically, ASAG
focuses on grading short, open-ended responses.
These responses are typically a few sentences to a
paragraph long and are often fact-based, requiring
concise answers. In contrast, AES evaluates longer,
more complex pieces of writing, which typically
contain an introduction, body, and conclusion, and
involve argumentation, analysis, and critical think-
ing. AES is one of the earliest research problems
in natural language processing (Page, 1966, 1967).

One crucial aspect of automated grading on
open-ended questions is the ability to interpret the
grade. The machine learning community has prior-
itized increasing explainability in models, leading
to the emergence of Explainable AI. This area fo-
cuses on building tools to understand the decisions
made by learning models (Gunning et al., 2019;
Arrieta et al., 2020; Fel et al., 2022), or even advo-
cates for the sole use of white-box models (Rudin,
2019). However, white-box models typically dis-
play poorer performances compared with black-
box ones (Loyola-Gonzalez, 2019). Thus, in line
with the explainable trend, recent methods have
focused on developing novel tools to increase the
performance of white-box models, sometimes up
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Figure 1: Full process. Phase 1, Generation of Weak Labels using Unsupervised methods: Signal Clustering (Chen
et al., 2010a) or through an LLM (Jiang et al., 2023b). Phase 2, domain Expert Features (EFs) extraction and
Natural Language Learned Features (NLLFs) obtained from answers to Binary Subtask Questions (BSQs) (Urrutia
et al., 2023). Phase 3, feature selection, interpretable model training and analysis.

to that of black-box models (Urrutia et al., 2023).
Finally, most studies rely on supervised learn-

ing with annotated datasets (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022),
where a few items are associated to many anno-
tations. A situation that is barely encountered in
real-life scenarios. Moreover, only a few works
in this area focus on non-English language (Latif
et al., 2024). The majority of them are restrained
to English, and none of them in (Latin-American)
Spanish.

Motivation and Contributions. In this work, we
tackle the issues raised above in a single framework
(see Figure 1). First, we propose a method that al-
lows us to reach high performance in ASAG and
AES tasks in an unsupervised way. Second, we
show the potential of our model to create inter-
pretable white-box predictions based on sparse fea-
tures, in a setting where strong generalization abil-
ities are required because of highly diverse ques-
tions with a few answers.

Therefore our contributions are as follows: (i)
we present a novel Non-English language dataset
that is particularly challenging for ASAG systems,
as it involves many questions with few answers,
(ii) we propose a novel framework that unifies un-
supervised and supervised methods into a single
ASAG/AES system. In particular, we use weak
labels from opaque unsupervised methods for su-
pervised learning in white-box models, (iii) we
propose a way to maximize the impact of the best-
labeled training examples by weighting the loss

function regarding the degree of consensus between
each weak label, (iv) we compare our method with
strong ASAG and AES baselines on two distinct
datasets of different languages, and show that our
method significantly outperforms previous white-
box models, and falls barely short to LLM-based
ASAG or to SOTA AES, (v) we run a thorough
analysis on the AES dataset to demonstrate the
interpretability of our method by: looking at our
model’s sparse weights, comparing it with SOTA
using their integrated gradients but also showing
our features are aligned with humans scores.

2 Related Work

In the context of ASAG, several methods have been
proposed. Recent work has focused on generating
understandable scoring by decomposing items (i.e.,
questions and responses to math problems) into
rubrics whose validity can be inferred with lan-
guage models (Hellman et al., 2023). Similar work
have focused on directly fine-tuning pre-trained
language models for ASAG (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022), or
training language models only based on student re-
sponses (Steimel and Riordan, 2020). Some works
developed a hybrid ASAG system that evaluates an-
swers to mathematical questions based on determin-
istic methods and the quality of explanations using
text-based scoring methods (Cahill et al., 2020).
Note that many semi-supervised (Brooks et al.,
2014; Weegar and Idestam-almquist, 2024; Basu
et al., 2013) or similarity-based methods (Bexte
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et al., 2023) allow to use less labels, but they still
need some of them.

In the context of AES, Taghipour and Ng (2016)
were pioneers in training neural networks for AES,
using a CNN-LSTM on the Automated Student As-
sessment Prize (ASAP; Hamner et al. 2012) dataset.
Even though supervised models remain the most
efficient (Yang et al., 2020), unsupervised methods
like the one we are proposing show promising re-
sults. For instance, AESPrompt (Tao et al., 2022)
obtains competitive results in one-shot essay scor-
ing using continuous prompt learning. Wang et al.
(2023) created a fully unsupervised approach using
heuristic signals learning as a proxy task, as ulti-
mate goal to train a BERT-based essay scorer, and
obtained state-of-the-art performances on ASAP.
Recent works have focused on the ability of LLMs
to automatically score the proficiency of written
essays on ASAP (Mansour et al., 2024; Lee et al.,
2024). Stahl et al. (2024) even proposed prompt-
ing strategies for joint essay scoring and feedback
generation to gain more interpretability.

Regarding general explanability, techniques that
could be used for ASAG and AES such as Chain-
of-Thought (CoT) (Wei et al., 2022) can provide
a superficial level of explanation but are prone
to structural biases in the text that put in ques-
tion their fidelity (Turpin et al., 2023; Paul et al.,
2024). Moreover, these techniques are fragile as
pre-trained language models show lack of robust-
ness on adversarial or unusual writing (Lottridge
et al., 2023). Importantly, these writing types are
often present in the answers of young children like
in the ASAG dataset of this study.

3 Methods

The task of automatically assigning scores to short
answers/essays involves finding a model M that
assigns a score ŷi between 1 and Smax to each pair
of question/answer or instruction/essay. First, we
use unsupervised methods to create weak labels.
Second, we represent every document using inter-
pretable features. Third, we select features and
train a non-negative linear regression model on the
weak labels, using a special loss to maximize the
weak labels quality. We show the model is both
white-box, sparse and interpretable.

Weak-supervision We propose to train an unsu-
pervised model M by leveraging high-level heuris-
tic signals, or weak labels. Our method (see Figure
1, Phase 1) involves utilizing two distinct signals:

(i) scores derived from the unsupervised Signal
Clustering method (SC; Chen et al. 2010b, see be-
low) and (ii) scores obtained from an LLM using
zero-shot in-context learning. For a given question-
answer/instruction-essay pair (qi, ai), we denote
as Zi the signal of the answer with SC or LLMi

the LLM-based signal. To weakly-supervise the
training of M , we use yi = Zi or yi = LLMi in
order to minimize the loss function L(ŷi, yi).

Signal Clustering (or Z-score) Based on Chen
et al. (2010a), this method is simple yet allows
for surprisingly good results in unsupervised au-
tomatic essay scoring. Basically, it initialize each
essay score with a simple value, and then iteratively
propagates the scores to other samples in the same
cluster. For their essay scoring task, the authors
of the original paper used the number of unique
terms in the answer as the initial score. It uses the
following inductive formula:

Zi0 : Initial score for the i-th answer,

Sit =
∑

j ̸=i

Simij · Zi(t−1),

Zit =
Sit − 1

N−1

∑
k ̸=i Skt

σt
,

where Sit is the score for the i-th answer at step
t, Simij is the similarity between the i-th answer
and the j-th answer, and Zit is the Z-score of the
i-th with σt the standard deviation of S·t at step t.
We call Zi the Z-score of the i-th answer at final
step. We update Zi until convergence.

Interpretable Features Following the work of
Urrutia et al. (2023), we incorporated a set of
expert-derived features (EF) coming from expert
domain knowledge, and also high-level explainable
features such as Natural Language Learned Fea-
tures (NLLF; Urrutia et al. 2023). NLLFs encode
answers to simpler-than-the-task binary questions,
called Binary Subtask Questions (BSQs), into a
human-readable feature vector. It allows the model
to represent each sample as a vector of probabilities
on other interpretable simpler sub-tasks, like "Is
the answer written clearly and concisely?". More
details are available in (Urrutia et al., 2023) and
in Appendix B. We also use the concatenation of
both type of features (EF+NLLF). For EF, we use
in ASAG/AES a list of 36/14 hand-crafted features,
to describe the answers to math questions/essays
(Table 6/7 in Appendix). Figure 1 shows the feature
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Question

Don Antonio bought 3 boxes of cereal at $673
each. The seller charged him $2100. Is what they
charged him correct? Explain in your own words.

Answers
If Don Antonio bought 3 boxes, it’s fine.
No, because he should be charged less.
It’s not wrong, I got 2019.

Score
{2, 3}
{4, 3}
{6, 7}

Figure 2: Examples of a Question, Answers and Scores from our ASAG dataset. Translated from Spanish.

extraction in Phase 2, with an example of BSQ and
the NLLF vector for an essay.

Interpretable Model: Linear Regression We
trained a linear regression on two types of weak
labels (see Figure 1, Phase 3).

Signal Filtering We propose a method to maxi-
mize the impact of well-labeled examples through
the weighting of the loss function with respect to
the degree of consensus among weak labels (see
Figure 1, Phase 3). Basically, we compute linear
weights utilizing the difference between the pre-
dicted scores generated by the LLM and the ones
derived from the Signal Clustering method, both of
which obtained in a unsupervised way. For a given
question-answer pair (qi, ai) and weak-label yi ∈
{Zi,LLMi}, the weighted loss is wSF

i · L(ŷi, yi),
where:

wSF
i = 1− |Zi − LLMi|

Smax − Smin
.

Feature Selection In order to keep our model
interpretable, we used two tricks (see Figure 1,
Phase 3). First, we only chose BSQs formulation
that were positively correlated with the score of the
student2 i.e., describing events that were seen as
positive by the teacher. Second, we forced the lin-
ear regression model to learn only positive weights
(Slawski and Hein, 2013) as they are applied on
features that are positives w.r.t. the score. Section
5 shows that this setting allows for sparsity in the
parameters space of the linear regression model.

4 Experiment and Results

4.1 Datasets and Evaluation Metrics

We ran experiments on two distinct tasks using two
datasets in different languages. The first set of ex-
periments (Section 4.1.1) tackles ASAG in Spanish
while the second set of experiments (Section 4.1.2)
tackles AES in English.

2using weak labels

Task Genre Avg. Length Score Range # Essays

1
PER

350 2-12 1783
2 350 1-6 1800
3 150 0-3 1726

4
SDE

150 0-3 1772
5 150 0-4 1805
6 150 0-4 1800

7
NAR

250 0-30 1569
8 650 0-60 723

Table 1: Properties of the different tasks in the AES
dataset called ASAP. Genre: PER (persuasive), SDE
(source-dependent), NAR (narrative).

4.1.1 Automatic Short Answer Grading in
Spanish

The dataset comprises written answers from fourth-
grade students to mathematics questions. The
question-answers pairs were collected using the
online e-learning platform ConectaIdeas, which is
currently deployed and use by teachers and stu-
dents in Chile. Its data was already used in past
scientific studies (Urrutia Vargas and Araya, 2023;
Urrutia and Araya, 2023). It encompasses a total of
63,612 answers to 1,248 unique questions collected
across two academic years. The answers were ob-
tained from a total of 3,463 fourth-grade students,
with 231 for the 2017 period and 3,232 for the 2022
period. The answers have on average a total of 50
characters. Each question has on average a total of
52 answers per question for 2022 and 30 for 2017.

The data are annotated based on the scoring of
answers for one academic year (2017). Answers
from the unlabeled academic year are utilized to
train automatic systems, while those from the la-
beled academic year serve as a test set for evalu-
ating the performance of these systems. Annota-
tion was conducted by two elementary mathematics
teachers, assigning scores ranging from 1 to 7 (i.e.,
from insufficient to excellent). Only the scores
from one teacher were utilized as the ground-truth,
while the scores from the other teacher were uti-
lized to analyze human performance, in this sense
we can make a model that predicts the grading be-
havior of one teacher. We calculate the agreement
between their scores and obtained a Correlation of
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Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - .2734 - - -
Jaccard Sim. None - .2758 - - -
Cosine Sim. None - .3759 - - -

ULRA
LF - .5112 - - -
EF - .4264 - - -
EF+LF - .4218 - - -

Z-score None - .5104 - - -
LLM None - .5727 - - -
LLM-CoT None - .4778 - - -

Linear Regression

Z-score ✗ - .4937 .3853 .5096
LLM-based signal ✗ - .4815 .3538 .4312
Z-score ✓ - .5018 .3899 .5450
LLM-based signal ✓ - .4974 .3712 .4791

BERT

Z-score ✗ .5220 - - -
LLM-based signal ✗ .5085 - - -
Z-score ✓ .5280 - - -
LLM-based signal ✓ .5430 - - -

Human None - .7568 - - -

Table 2: Results of the ASAG models using Pearson correlation: the cheap baselines using similarity, the ULRAs
using different weak linguistics signals, the Z-score and LLM predictions, and our weakly supervised models. For
the weakly supervised models, the linear model utilizes all combinations of two feature sets (EF and NLLF), while
the BERT model is trained on text data.

.76. Figure 2 shows an example of the dataset.

4.1.2 Automatic Essay Scoring in English
We ran experiments using the Automated Student
Assessment Prize3 (ASAP) dataset (Hamner et al.,
2012). This dataset has been widely used in several
AES studies (Xie et al., 2022; Jiang et al., 2023b;
Muangkammuen and Fukumoto, 2020; Mansour
et al., 2024; Mathias and Bhattacharyya, 2018). For
instance, it has been used by Wang et al. (2023) to
assess the ULRA model for an usupervised AES
task. It is composed of 12,978 essays divided into
8 different sets. Each of the sets corresponds to a
specific essay task or prompt, which can be seen
as domain. The tasks are of different genres: per-
suasive, source-dependent response, and narrative.
The statistics of the dataset is shown in Table 1.

As a validation metrics, we report Quadratic
Weighted Kappa (QWK) in order to compare the
different models, generally utilized to measure the
agreement between groundtruth scores and pre-
dicted scores on this dataset and in AES research.

4.2 Baselines

Dummy Baseline We use a regression model
based on the answer length in terms of number of
characters.

Similarity Measures We calculate the similar-
ity between the question and the answer to assess

3https://www.kaggle.com/c/asap-aes

its correctness based on the shared information be-
tween them.We use two methods: Jaccard Similar-
ity on sparse embeddings (Bag-of-Words; (Harris,
1954)), and cosine similarity with dense vectors ob-
tained from the [CLS] token of a multilingual Sen-
tence Transformer (Reimers and Gurevych, 2019).

Signal Clustering (Z-score) Based on Chen
et al., we use answer length as the initial scoring
and assessed answer similarity based on the shared
terms between two answers.

Mixtral We used a recent LLM to address the
task in a zero-shot format (Jiang et al., 2023a),
using a simple prompt containing the definition of
the task. More details in Appendix C.

ULRA We implemented the unsupervised ULRA
method of Wang et al. (2023) which showed state-
of-the-art results on Automated Essay Scoring,
which is close to ASAG. This model consists of
using multiple quality signals obtained from heuris-
tics as the pseudo-groundtruth, and then training
a neural model by learning from the aggregation
of these signals. The idea is that the final score
should depend on an aggregation of these simple
signals. For the ASAG task, we adapt the method
translating the original Linguistic Features (LF) to
Spanish, and by using our own Expert Features
(EF) as pseudo-groundtruth. For the AES task, we
utilized the LF from the original paper on the same
task. Note that ULRA was also considered as a
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Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - .3893 - - -
Jaccard Sim. None - -.1821 - - -
Cosine Sim. None - .0237 - - -
ULRA (Wang et al., 2023) LF - .6423 - - -
Z-score (Chen et al., 2010b) None - .5809 - - -
LLM (Jiang et al., 2023a) None - .5119 - - -
LLM-CoT (Wei et al., 2022) None - .4152 - - -
MTS† (Lee et al., 2024) None - .550 - - -

Linear Regression

Z-Score ✗ - .5528 .6083 .6141
LLM-based signal ✗ - .5762 .5720 .6385
Z-score ✓ - .5603 .6123 .6255
LLM-based signal ✓ - .5797 .5814 .6451

BERT

Z-Score ✗ .5728 - - -
LLM-based signal ✗ .4418 - - -
Z-score ✓ .5764 - - -
LLM-based signal ✓ .4781 - - -

AES-Prompt† (one-shot)
None - .639 - - -

(Tao et al., 2022)
R2-BERT† (supervised)

None - .794 - - -
(Yang et al., 2020)
Human None - .7384 - - -

Table 3: Results of the models on the AES task using the average of the QWK over the different essay tasks. We
report the cheap baselines using similarity, ULRAs using different weak linguistics signals, the Z-score and LLM
predictions, and our weakly supervised models. Human scores were re-calculated here. † From original papers.

weak label generation method, but did not generate
favorable results.

Weakly supervised BERT We evaluated differ-
ent BERT models (Devlin et al., 2019) with a re-
gression head on top of the [CLS] vector to pre-
dict the weak signals. For the ASAG task, we
used BETO, a Spanish BERT transformer (Cañete
et al., 2023). For the AES task, we used an English
BERT.4

Multi-trait Specialization We compare with the
work of Lee et al. (2024), who proposed an unsu-
pervised method using LLMs to predict the quality
of essays in a zero-shot way. Their method learns
to decompose the writing proficiency into distinct
traits, as some are known to be useful for judg-
ing global essay quality (Ke and Ng, 2019) such
as Position and Thesis Clarity, Organization and
Structure or Supporting Details and Evidence.

4.3 Experimental Protocol
The transformers library (Wolf et al., 2019)
was used to access the pre-trained model and to
train our models. We used BETO as backbone
for NLLF generation, and the 4-bit version of
Mixtral-8x7b5 as LLM. The linear regressions
were trained using scikit-learn (Pedregosa et al.,
2012). We standardized every features before the

4bert-base-cased, bert-base-spanish-wwm-cased
5mistralai/Mixtral-8x7B-Instruct-v0.1

logistic regression. For the ASAG task, Pearson
correlation measured the correlation between pre-
dicted scores from automatic models and ground-
truth scores from one teacher. We evaluated our
model on the 1,315 manually annotated examples.
For the AES task, we randomly split the data into a
training, a validation and a test sets following the
proportion 60/20/20 like Wang et al. (2023).

4.4 Results
4.4.1 Results on ASAG
Table 2 shows the results of the different baselines
and models. It is notable that naive baselines like
a linear regression using the answer length can
reach a correlation of .27, and are surpassed by
similarity between answer and question using a
sentence-bert. Best machine results (.57) are ob-
tained with an LLM, surprisingly without using the
CoT mechanism, but still far away from human
performances (.75). All our weakly supervised ap-
proaches benefit from the Signal Filtering method.
Adding NLLF to our method helps when using Z-
value or the LLM output as weak label, allowing to
reach a score close to the one of the LLM, but with
an interpretable white-box algorithm (contrary to
BERT). ULRA methods, using general and/or do-
main expert features, tend to display lower scores
when compared with Signal Clustering and remain-
ing methods in this task. Finally, the scores of the
BERT model trained with the weak-labels are im-
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Figure 3: Highest coefficients of the Linear Regression with Signal Filtering using EF+NLLF on AES tasks 2 and 4.
The box represents the 95% confidence interval. Biases are respectively of 3.37 and 1.35 for tasks 2 and 4.

proved when applying Signal Filtering, with the
best one of .543 using an LLM-based signal as
weak labels.

4.4.2 Results on AES

Table 3 shows the results of the different baselines
and models on the AES task. Simple baselines
achieve a moderate correlation (e.g., .4785 when us-
ing the answer length), while basic similarity mea-
sures, such as Jaccard and Cosine, perform poorly,
with negative or near-zero correlations. Among
the models, our method achieves the highest score
(.645), outperforming other methods such as ULRA
(.642), Z-score (.581), and LLM (.512), though all
falling short of human-level performance (.738).
Interestingly, the LLM with a CoT approach per-
forms worse than the standard LLM, with a cor-
relation of only .415, which is unexpected given
the reported success of CoT in other contexts, spe-
cially for a task such as essay scoring in English.
Notably, all of our weakly supervised models bene-
fit significantly from the Signal Filtering method.
Furthermore, adding the NLLF mechanism further
enhances performance. Indeed, combining LLM-
based labels, Signal Filtering, and NLLF reaches
reaches the highest performance, outperforming
prompt engineering baselines such as MTS or AES-
Prompt. Finally, the BERT models trained with the
weak-labels display lower scores (highest BERT
score of .577 using Z-score and Signal Filtering).
As a way to cross-check our results, existing works
assessed the capacity of various LLMs on this tasks
and dataset (Mansour et al., 2024; Lee et al., 2024).
The performances we obtained (QWK of 0.51), are

in line with the ones reported in Lee et al. (2024)6,
but higher than the ones reported in Mansour et al.
(2024).

5 Analysis
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1. Proportion of alphabetic characters that are vowels
2. Number of tokens that do not contain numbers
3. Exist a number in the answer
4. Proportion of vowels in the answer
5. Maximum number of consecutive non- vowel characters
in a token
6. The answer is written in a way that can be easily
understood
7. The answer explains why a character is wrong
8. The answer is correctly written in numerical format
9. The answer shows a correct calculation of a
quantity
10. The answer correctly identifies the value

Figure 4: Highest coefficients of the Linear Regression
with Signal Filtering using EF+NLLF features (Table 9).
The box represents the 95% confidence interval. Bias is
4.65.

ASAG Coefficients Our best linear model uses a
combination of only 6 coefficients: 4 hand-crafted
features (EF) and 2 natural language learned fea-
tures (NLLF). Figure 4 shows, from the most rel-
evant features, that correct answers require a bal-
anced use of vowels7 (Features 1 and 5) or numbers

60.48 with a Mistral-7b-instruct
7Words with a balanced vowel-consonant structure, like

the CVCVC pattern, are easier for children to process
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Essay Prompt 2:

Essay Prompt and Scores

Write a persuasive essay to a
newspaper reflecting your vies on

censorship in libraries. Do you
believe that certain materials,
such as books, music, movies,

magazines, etc., should be removed
from the shelves if they are found
offensive? Support your position

with convincing arguments from your
own experience, observations,

and/or reading.

Essay (Text) 1
IG for ULRA

W E AL L D ON ' T T H IN K OF AN Y TH ING W H EN YOU R CH IL
DR EN CH EC K O UT B O OK S F RO M THE L IB RA RI ES . B UT ON
THE O TH ER H AN D , W E D O NO T WA NT YOU R CH IL DR EN GE
TT ING H OL D TO THE CE NS OR S H IP OF BA D B O OK , M O VI E
, M US IC OR MA GA Z IN ES . PA RE NT D ON ' T WA NT TO CO ME

H OM E AN THE RE CH IL D L EA R N A NE W W OR D F RO M THE NE
W B O OK OR M O VI E H E / SH E J US T CH EC KE D O UT F RO

M THE L IB AR Y , OR R EA DI NG A MA GA Z IN E F RO M THE L IB
AR Y . IT MI G HT MA KE S YOU R CH IL DR EN AT TI TU DE CH AN GE

P UT TI NG BA D IN FL E UN CE ON YOU R K ID B EC A US E OF A T
RI P TO THE L IB AR Y . S O THE RE F OR THE CH IL DR EN SH O U
LD H AV E A SEC TI ON W H ER E THE Y P IC K O UT THE RE B O OK
AND THE Y SH O U LD N ' T B E AB LE TO CH EC K O UT THE CE NS
OR S H IP B O OK . W E NE ED TO MA KE S UR E O UR CH IL DR EN

B E M OR E CO N VI NC ED AB O UT T H IS TO PI C .

1. 2. 3. 4. 5. 6.
0.5

0.0

0.5

IG for Our method

-0.49
(0.36)

-0.47
(0.34)

-0.22
(0.16)

-0.12
(0.09)

-0.06
(0.04)

-0.02
(0.02)

Higher Feature Attribution Score
NLLF EF

Reference scores:

Range: [1, 6] Real: 2.0

Predicted scores:

ULRA: 2.1 Our: 2.0

1. Number of wordtype
2. The essay has a clear and
logical organization
3. The essay takes a clear
position on whether or not to
remove offensive materials
from libraries
4. The essay provides a thorough
analysis or explanation
5. Polysyllabic Grade Level
(SMOG)
6. Familiar Word Difficulty (DC)1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Integrated Gradient Intensity

Essay Prompt 4:

Write a response that explains why
the author concludes the story with
this paragraph. In your response,
include details and examples from
the story that support your ideas.

Essay (Text) 2

The author ended the story with the paragraph of Sa eng vow ing
to re take the test in the spring , because he wanted to show

that the g eese and the hi bis cus plant represent a sort of
re birth or revival to Sa eng . He wanted to end the story
on a positive note . Spring is an arch ot yal season . It is
a season of birth and growing . Sa eng saw the hi bis cus
after she failed the first test . It took her to her memories

back in Vietnam , which comfort ed here she believes that maybe
when she sees the plant fl oris hing and she g eese returning

, she will experience that same revival again .

1. 2. 3. 4. 5.

0.2

0.0

0.2

0.24
(0.37)

0.22
(0.33)

0.14
(0.21)

0.06
(0.09)

-0.02
(1.00)

Reference scores:

Range: [0, 3] Real: 2.0

Predicted scores:

ULRA: 1.9 Our: 2.0

1. The essay avoids restating the
conclusion without providing additional
insights or analysis
2. The essay demonstrates a clear
understanding of the text
3. Number of difficult words
4. Number of complex words
5. Number of adjective words

Figure 5: IG feature attribution examples from our method and ULRA on tasks 2 and 4 of the AES dataset.

(Feature 2, 3). In addition, NLLFs address common
questions in which students are asked to explain if
a character is making or not the right choice (Feat.
7) or just if the answer is clear (Feat. 6).

AES Coefficients Figure 3 show the coefficients
of two of the eights linear regression models trained
using NLLF+EF, respectively on tasks 2 and 4, per-
suasive and source-dependent genre, respectively.
Most features have coefficients equal to zero, mak-
ing the linear regression model very sparse, and
leaving six usable features for each of the two mod-
els: 3 EF and 3 NLLF for the task 2, and 4 EF
and 2 NLLF for the task 4. For the persuasive task,
NLLFs are about argumentative techniques of the
writer, whether or not it takes strongly position, and
the structure of the essay.

AES IG Interpretability We claim that our sys-
tem is white-box, but also interpretable. To back
up our claim, we compare the two best perform-
ing models with a classical interpretation technique
using Integrated Gradients (IG; Sundararajan et al.
2017) in order to attribute a score to each input
feature. Figure 5 shows examples of feature attribu-
tion comparing our method and ULRA8. Whereas

(Jiménez González and Garcia, 1995; Brame, 1974) and help
recognize proper words like a measure of coherence (Urru-
tia Vargas and Araya, 2023).

8For the linear regression, the integrated gradient is simply
the product between the feature and its weight.

the attribution from the IG is complex to analyze
in ULRA, our method offers two interesting advan-
tages: (i) it is simple to interpret as it has only a
few parameters which are all described in natural
language, (ii) it identifies whether essays offer clear
analyses or lack clear stances.

AES Human Interpretability We designed two
experiments to manually validate our claim that
NLLF values are coherent with humans judgments.
First, we manually annotated 171 examples w.r.t
the BSQ labels, in order to estimate the perfor-
mances of the LLM and the NLLF Generator
(NLLFG) in the subtasks. We find that both the
LLM and the NLLFG obtain satisfying accuracies
of .89 and .84, in concordance with the analysis of
Urrutia et al. (2023). Second, for each BSQ, we
selected pairs of examples based on deciles in the
normalized distribution of the BSQ NLLF values.
Each pair came from examples separated either by
high (9 bins), medium (5 bins), or low (1 bin) dis-
tances in the distribution. We asked a human to
annotate for each pair of examples, the one with
highest NLLF value and the bin distance between
the examples of the pair. This rendered a 6-class
ordinal problem with 171 pairs. We obtained an
accuracy of .44 (random is .16), an accuracy with
a tolerance of 1 (Gaudette and Japkowicz, 2009) of
.77 (random is .44) and a Krippendorff (2013)’s α
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of 0.63 (random is 0). More details in Appendix F.

6 Conclusion and Future Work

In unsupervised ASAG of young students to diverse
open ended questions in Spanish, and unsupervised
AES in English, SoTA LLM-based methods are
still far away from human performances. More-
over, the models trained in answer scores made
with LLMs can be approximated by much simpler
and interpretable models. Weak supervision on
LLM labels but also on target values that are way
simpler including Signal Clustering is a potential
avenue of research for white-box model using sev-
eral types of interpretable features such as the com-
bination of linguistic-based expert-domain ones
and compositionality-based learned ones. Future
work should focus on more intensive search on the
prompt space, as well as involve supervised learn-
ing (and not only weakly supervised learning) and
out-of-distribution question analysis. Regarding
the interpretability, the integrated gradients could
be back-propagated up to the tokens in order to vi-
sualize the impact of each of them on each NLLF.

Limitations

Our work has been put in use in Spanish for a very
specific type of questions that are from math ex-
ams, and in English essay with a higher quality of
the text content. It would be interesting to try it
in a multilingual setting, using multilingual LLMs.
Future works would also imply weakly supervised
multi-task learning, and more advanced prompt
engineering such as the one of Lee et al. (2024),
that allows for decomposing an essay into multiple
traits to better score it using an LLM. Finally, it
would be interesting to use manually crafted BSQs
using the annotation guidelines instead of gener-
ating them, in order to see if it will improve the
quality of the final model.
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A ASAG Dataset Statistics

We present a summary of the dataset in Table 4,
including the total number of students, different
questions and student answers. We added the aver-
age number of answers per question for each year.

Year #Students #Questions #Answers Avg. #Ans. per Question

2022 3,232 1,204 62,297 ≈ 52
2017 231 44 1,315 ≈ 30

Total 3,463 - 63,612 -

Table 4: Summary of students, total questions, total
answers, and average answers per question across years.

B Features

B.1 EF

We manually designed linguistic features, detailed
in Table 6, aimed at capturing structural, mor-
phological, and statistical properties of student re-
sponses for ASAG task in Chilean Spanish. Given
the unique characteristics of children’s writing in
a mathematical context, we categorize EF into six
groups: morphological features, which analyze the
presence of numbers, digit counts, and the ratio of
numerical to non-numerical tokens, essential for
evaluating arithmetic-based responses; syntactic
features, focusing on tokenization, negation length,
and the distribution of non-numeric tokens, which
help assess the sentence structure typical of early
learners; lexical features, which measure charac-
ter frequencies to detect common patterns in chil-
dren’s spelling and word usage in Chilean Spanish;
structural features, capturing answer length, re-
peated character sequences, and vowel/consonant
distributions, which are indicative of fluency and
coherence; punctuation features, which count and
analyze punctuation marks, distinguishing between
mathematical symbols (e.g., decimal points, equa-
tion signs) and non-mathematical punctuation that
might indicate explanatory attempts; and phonolog-
ical features, assessing vowel proportions relative
to alphabetic characters to identify phonetic sim-
plifications or spelling mistakes common in young
learners.

For example, the phonological feature measur-
ing the proportion of alphabetic characters that are
vowels (Feature 1) distinguishes between responses
like A1 (0.33) and A2 (0.52) to the same ques-
tion, with A2 being more phonetically fluent (see
Table 5). Similarly, syntactic complexity can be
estimated through the number of tokens without

digits (Feature 2), where a detailed explanation (12
tokens, A2) correlates with a higher score than a
brief response (2 tokens, A1). Morphological traits
such as the binary presence of a number (Feature 3)
allow us to capture relevant numerical grounding in
an answer; for instance, A2 includes a number and
scores higher. Phonological depth is further cap-
tured by vowel density (Feature 4), where answers
with higher vowel proportion (0.31) exhibit better
coherence than sparse ones (0.25). Finally, struc-
tural complexity, such as the maximum number of
consecutive non-vowel characters in a token (Fea-
ture 5), helps detect unnatural or noisy tokens, e.g.
A1 has a high value (5) due to “Hkflg”, suggest-
ing incoherence, compared to A2’s more natural
phrasing (value of 2).

B.2 NLLF

Following the method outlined in Urrutia et al.,
we utilize a selected roughly 12% subset of the
train-set to generate the NLLF. We ask to a Mix-
tral to generate a diverse pool of Binary Subtask
Questions (BSQ) for our ASAG/AES task. A mem-
ber of our research team manually removes irrele-
vant BSQ. We chose 12 binary questions through
automatic selection via Agglomerative Clustering,
taking the centroid. We automatically answer the
selected binary questions on the portion of the train-
set with the same LLM to teach a Spanish/English
BERT model in answering to all the selected binary
questions. We generated a total of 24 features from
the sigmoid of the logits of the trained BERT to pro-
vide Yes or No answers to the 12 binary questions
(Table 6), i.e. two features per binary question.

C LLM

We used a simple prompt containing the definition
of the task. For the AES task, initially, we use an
unspecified prompt to score answers, yet observed
a tendency for the model to assign notably low
scores to answers containing kid misspelling errors.
Subsequently, we refined our prompt specifying
“not penalize for spelling mistakes and focus on
the intended meaning conveyed by the student’s
answer”. This adjustment yielded enhancements in
the performance of the LLM.

D ULRA as Weak Signal

In the AES dataset, the LLM performances are out-
performed by the ones obtained using the ULRA
method, which is unsupervised but also black-box.
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Feature Question (Q) and Answer (A1-A2) Feature Value Score
Proportion of al-
phabetic characters
that are vowels

Q: Si Jose multiplica 150 veces 1 ¿Cuál sería su resultado? Explica - -

A1: 150x1 es 51 (Low vowel ratio) 0.33 3.0
A2: sería 150 porque 150 veces 1 sería 150 (Higher vowel ratio) 0.52 7.0

Number of tokens
without numbers

Q: José compró 4 cajas de leche a $245 cada una. El vendedor le cobró en
total $950. ¿Está correcto lo que le cobró el vendedor? Explica.

- -

A1: está bien (short, lacks analysis) 2 2.0
A2: está mal la respuesta es 980 se multiplica 245 x4 y el resultado es 980
(detailed reasoning)

12 7.0

Exist a number in
the answer

Q: Paulina tiene 16 lápices para repartir entre 4 amigas. Su mamá le dice a
Paulina que le va a dar 5 lápices a cada amiga. ¿Es correcto lo que le dice su
mamá?

- -

A1: no es mal porque no (no number) 0 3.0
A2: la mamá está mal porque son 4 lápices para cada amiga (includes
number)

1 7.0

Proportion of vow-
els in the answer

Q: Una manzana pesa 0,35 g, otra 0,251 g y la última 0,51 g. ¿Cuánto pesan
entre las tres?

- -

A1: 150x1 es 51 (low vowel ratio) 0.25 4.0
A2: sumo todas las manzanas es 1,111. y sumé 0,35 más 0,251 más 0,51 y
me dio ese resultado (more fluent)

0.31 7.0

Max. consecutive
non-vowel charac-
ters

Q: ¿Cuál es el resultado de 501x2? Comenta cómo resolviste el ejercicio y
explica qué es la multiplicación.

- -

A1: Hkflg (noisy token) 5 1.0
A2: es 1 002, lo resolví con sumas y la multiplicación es una suma repetida
(coherent)

2 7.0

Table 5: Examples of five expert features with their feature values for question/answer pairs in the ASAG task in
Chilean Spanish (examples presented in their original language, Spanish).

For these reasons, we propose an additional experi-
ments where we train a logistic regression model
on our interpretable vector of expert and natural
language learned representations, using the scores
from ULRA as a weak label. The results are shown
in Table 8. We can see that the use of a more ac-
curate weak signal does not allow to improve the
global performances.

E Prompt used for Zero-shot ICL with
LLM

Figure 6 is the prompt used for ASAG dataset. The
model is guided to assign grades while disregard-
ing spelling errors and focusing on the content of
the student’s response. Figure 7 is the prompt used
for Task 1 and Task 3-8 of the AES dataset, where
the range of possible scores is task-specific and
highlighted in blue, where [[MIN]] is the mini-
mum score and [[MAX]] the maximum. Figure 8
presents the prompt for Task 2 of the AES dataset,
which is the only task differing from the other eight
tasks in its focus on grading according to Writing
Applications. Throughout all figures, the orange
text represents the model’s initial response.

Instruction and Model answer

You are a teacher who assigns grades
(between 1 and 7) to fourth grade students’
answers to open-ended math questions. Do
not discount for spelling or grammatical
errors. Focus on what the student is trying
to say with his or her answer. Indicate the
grade after the prefix ’Score:’

Got it. Give me a question between <Q></Q>
and an answer between <A></A>. Then ask me
’What is the score for the answer to the
question?’. I will then give you the note
after the prefix ’Score:’

Follow-up instruction

Question: <Q> [[Q]] </Q> Answer: <A> [[A]]
</A> What is the score for the answer to
the question?

Figure 6: Prompt used for Zero-shot ICL with LLM on
the ASAG dataset. Translated from Spanish. the orange
text represents a model’s initial response.
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Feature Name Type of Feature
Exist a number in the answer EF (Morphological)
Number of digits in the answer EF (Morphological)
Number of numerical values in the answer EF (Morphological)
The answer is composed of digits EF (Morphological)
The answer is NaN (Not a Number) EF (Morphological)
Proportion of digit characters in the answer EF (Morphological)
Number of tokens in the answer EF (Syntactic)
Number of tokens that do not contain numbers EF (Syntactic)
Ratio of non-numeric tokens to the total number of tokens EF (Syntactic)
Ratio of punctuation marks to the total number of tokens EF (Syntactic)
Ratio of vowels to the total number of tokens EF (Syntactic)
Length of the negation of the answer EF (Syntactic)
Frequency of character ’x’ in the answer EF (Lexical)
Frequency of character ’y’ in the answer EF (Lexical)
Frequency of character ’g’ in the answer EF (Lexical)
Frequency of character ’h’ in the answer EF (Lexical)
Frequency of character ’j’ in the answer EF (Lexical)
Frequency of character ’k’ in the answer EF (Lexical)
Frequency of character ’w’ in the answer EF (Lexical)
Frequency of character ’ñ’ in the answer EF (Lexical)
Number of characters in the answer EF (Structural)
Length of the longest number in the answer EF (Structural)
Length of the longest sequence of repeated characters EF (Structural)
Maximum number of consecutive vowels in a token EF (Structural)
Maximum number of consecutive non-vowel characters in a token EF (Structural)
Number of punctuation marks in the answer EF (Punctuation)
Number of mathematical punctuation marks in the answer EF (Punctuation)
Proportion of punctuation characters in the answer EF (Punctuation)
Proportion of non-mathematical punctuation characters EF (Punctuation)
Proportion of punctuation and digit characters in the answer EF (Punctuation)
Proportion of non-digit and non-mathematical punctuation characters EF (Punctuation)
Proportion of alphabetic characters that are vowels EF (Phonological)
Proportion of vowels in the answer EF (Phonological)

The answer shows a correct calculation of a quantity NLLF
The answer does not show a correct calculation of a quantity NLLF
The answer explains why a character is wrong NLLF
The answer does not explain why a character is wrong NLLF
The answer is free of conceptual errors NLLF
The answer contains conceptual errors NLLF
The answer shows a correct understanding of the question NLLF
The answer does not show a correct understanding of the question NLLF
The answer correctly indicates a quantity NLLF
The answer does not correctly indicate a quantity NLLF
The answer is written in a way that can be easily understood NLLF
The answer is not written in a way that can be easily understood NLLF
The answer is written clearly and concisely NLLF
The answer is not written clearly and concisely NLLF
The answer is correctly written in numerical format NLLF
The answer is not correctly written in numerical format NLLF
The answer is accompanied by an explanation NLLF
The answer is not accompanied by an explanation NLLF
The answer is complete and does not lack any relevant information NLLF
The answer is incomplete or lacks relevant information NLLF
The answer addresses the question NLLF
The answer does not address the question NLLF
The answer correctly identifies the value NLLF
The answer does not correctly identify the value NLLF

Table 6: Expert features (EF) and Natural Language Learned Features (NLLF) for the ASAG task Everything was
translated from Spanish.
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Feature Name Code
Long-Word Ratio RIX
Polysyllabic Grade Level SMOG
Complex Word Grade Level GF
Familiar Word Difficulty DC
Number of sentences S
Number of adjective words JJ
Number of unique words UW
Number of preposition / subordinating - conjunction words IN
Number of long words LW
Number of determiner words DT
Number of difficult words DW
Number of complex words CW
Number of noun words NN
Number of commas CO
Number of wordtype WT
Number of non-basic words NBW
Number of words W
Number of characters CH
Number of adverb words RB

Table 7: Linguistic Features from Wang et al. (2023) for the AES task.

Method SF Text EF NLLF EF + NLLF
ULRA - .6423 - - -

LR
✗ - .5712 .6041 .6227
✓ - .5707 .6035 .6193

Table 8: Results of the Logistic Regression model using
the scores of ULRA as a target during the weakly super-
vised learning. SF is Signal Filtering.

Instruction and Model answer

You are a teacher who assigns grades
(between [[MIN]] and [[MAX]]) to essays
from students ranging in grade levels from
Grade 7 to Grade 10. You will help me break
down the ’assign grade to student essay’
task. To do this, I will give you a sample
essay along with the assignment. Indicates
the score after the prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
’What is the score for the essay?’. I will
then give you the score after the prefix
’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> What is the score for the essay?

Figure 7: Prompt used for Zero-shot ICL with LLM on
the Task 1 and Tasks 3 to 8 of the AES dataset. The
blue text highlights the range of values specific to each
task, while the orange text represents a model’s initial
response.

Instruction and Model answer

You are a teacher who assigns grades
(between 1 and 6) to essays from students
ranging in grade levels from Grade 7 to
Grade 10. You will help me break down the
’assign grade to student essay according to
Writing Applications’ task. To do this, I
will give you a sample essay along with the
assignment. Indicates the score after the
prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
’According to Writing Applications, what is
the score for the essay?’. I will then give
you the score after the prefix ’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> According to Writing Applications,
what is the score for the essay?

Figure 8: Prompt used for Zero-shot ICL with LLM
on the Task 2 of the AES dataset. The orange text
represents a model’s initial response.
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Feature Name Coef. Std. err. [0.025 0.975]
Intercept 4.65 0.01 4.64 4.67
The answer is correctly written in numerical format 0.00 0.00 0.00 0.00
The answer is written in a way that can be easily understood 0.50 0.01 0.47 0.52
The answer shows a correct calculation of a quantity 0.00 0.00 0.00 0.00
The answer correctly identifies the value 0.00 0.00 0.00 0.00
The answer shows a correct understanding of the question 0.00 0.00 0.00 0.00
The answer explains why a character is wrong 0.12 0.01 0.10 0.13
The answer is accompanied by an explanation 0.00 0.01 0.00 0.03
Exist a number in the answer 0.27 0.01 0.24 0.30
Frequency of character ’g’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’h’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’k’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’w’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’x’ in the answer 0.03 0.01 0.02 0.04
Frequency of character ’y’ in the answer 0.11 0.02 0.07 0.14
Number of characters of the answer 0.14 0.12 0.00 0.35
Number of tokens in answer 0.00 0.00 0.00 0.00
Length of the negation of the answer 0.00 0.06 0.00 0.21
Length of the longest number in the answer 0.11 0.01 0.08 0.13
Maximum number of consecutive non- vowel characters in a token 0.15 0.01 0.12 0.17
Number of digits in the answer 0.00 0.00 0.00 0.00
Number of mathematical punctuation marks in the answer 0.00 0.01 0.00 0.02
Number of tokens that do not contain numbers 0.35 0.18 0.00 0.59
Number of numerical values in the answer 0.00 0.00 0.00 0.00
Number of tokens in the answer 0.00 0.00 0.00 0.00
Proportion of alphabetic characters that are vowels 0.43 0.04 0.35 0.52
Proportion of punctuation characters in the answer 0.00 0.00 0.00 0.00
Proportion of punctuation and non- vowel characters in the answer 0.14 0.01 0.10 0.16
Proportion of vowels in the answer 0.21 0.05 0.10 0.30
Ratio of non-numeric tokens to the total number of tokens 0.00 0.02 0.00 0.05
Ratio of punctuation marks to the total number of tokens 0.00 0.00 0.00 0.00

Table 9: Coefficients of the Linear Regression with Signal Filtering using EF+NLLF features in the ASAG dataset.
[0.025, 0.975] refers to the 95% confidence interval of the coefficient.

F Human validation of the NLLFs

F.1 NLLFG Classifiers

Here we analyze how accurate were the NLLF gen-
erated by the BERT-like model, and also the weak
labels by the LLM. We took 190 examples from
the validation set used to train the NLLFG of the
ASAP task, and asked an expert to manually label
them regarding the labels of a BSQ. More precisely,
we manually annotated 10 examples sampled uni-
formly per BSQ having non-zero weights in the lin-
ear regressions (approximately 2-3 BSQs per essay
set) across 8 essay sets. We compare the labeling
of the expert with the outputs of the NLLFG and
LLM models, using classical classification metrics
such as precision, recall and F1-score.

The results for both the models are available in
Table 10. The LLM obtained a better F1-score
than the smaller transformer model, which was
expected. It is interesting to note that the accuracy
of the NLLFG model is 0.78, close to the ones of
the LLM (0.86). The macro F1-scores are more
divergent as the LLM reaches 0.84 and the NLLFG
0.74, which is still better than random.

Model Label Prec. Rec. F1 Acc.

Mixtral
Yes 91 88 89

86
No 76 82 79

NLLFG
Yes 90 78 84

78
No 57 76 65

Table 10: Performance of NLLFG and Mixtral on a
manually annotated set of 190 examples. The dataset
consists of 10 uniformly selected examples per BSQ
(approximately 2-3 BSQs per essay set) across 8 essay
sets.

F.2 NLLFs Before the Linear Regression

We designed another experiment to assess the re-
liability of the NLLF with respect to human an-
notation, showing pairs of examples to a human,
and asking which should have the highest value in
NLLF and what is the distance in values between
the examples of the pair. As the NLLF are normal-
ized before the linear regression, hence each score
depends on the whole group and becomes relatives
to the other examples (the best has a highly positive
score and the worst has a highly negative score).

Pairs of examples with various distances in-
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Figure 9: Metrics between the human annotation and the real values of the NLLFs, for the AES task.
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Figure 10: Examples were picked from bins with high,
medium and low distance between each others. For
a pair of examples, the annotator has to find which
example has the highest value, and what is the distance
between the examples.

between the examples were randomly selected re-
garding their places in the distributions: pairs from
the first and last deciles of the distribution, pairs
from the 3rd and 8th, and pairs from the 5th and
6th. We ask a human to tell for each pair, which
example is the highest in the distribution, and how
large is the distance between them. It gave us a
classification problem with 6 ordinal classes: First-
High (1H), First-Medium (1M), First-Low (1L),
Second-Low (2L), Second-Medium (2M), Second-
High (2H).

We focused on the 19 BSQs having non-zero
weights in the linear regressions, and randomly
selected 3 examples of High, Medium and Low
distances between the pairs, which gave us a total
of 171 pairs to annotate coming from 6 classes.
Figure 10 shows the bins of the examples from the
different categories.

The results overall are shown in Figure 9, with
the confusion matrix and the We report a Krippen-
dorff (2013)’s alpha of 0.63, an Accuracy of 0.43

Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - 0.0015 - - -
Jaccard Sim. None - -0.1335 - - -
Jaccard Sim. None - 0.3170 - - -

ULRA
LF - 0.4562 - - -
EF - 0.3713 - - -
EF+LF - 0.3902 - - -

Z-score None - 0.4346 - - -
LLM None - 0.5629 - - -
LLM-CoT None - 0.4631 - - -

Linear Regression

Z-score ✗ - 0.4472 0.3627 0.4167
LLM-based signal ✗ - 0.4212 0.2984 0.3772
Z-score ✓ - 0.4471 0.3435 0.4915
LLM-based signal ✓ - 0.3682 0.2925 0.4115

BERT

Z-score ✗ 0.3965 - - -
LLM-based signal ✗ 0.3867 - - -
Z-score ✓ 0.2451 - - -
LLM-based signal ✓ 0.3848 - - -

Human None - 0.7403 - - -

Table 11: Results on ASAG using the QWK

(random is 0.17) and an accuracy with a tolerance
of 1 (Gaudette and Japkowicz, 2009) of 0.77 (ran-
dom is 0.44). This shows that human rank the ex-
amples in an order similar to the ones of the NLLF
values 77% of the time using a tolerance of 1 in the
ordinal classification.

G Others

Table 11 shows the results on the ASAG dataset
using QWK. The results are very similar: LLM is
better than our method, which is itself better than
ULRA.
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Abstract

Multiple-Choice Tasks are one of the most com-
mon types of assessment item, due to their fea-
ture of being easy to automatically and objec-
tively grade. A key component of Multiple-
Choice Tasks are distractors – i.e., the wrong
answer options – since poor distractors affect
the overall quality of the item: e.g., if they are
obviously wrong, they are never selected. Thus,
previous research has focused extensively on
techniques for automatically generating distrac-
tors, which can be especially helpful in settings
where large pools of questions are desirable or
needed. However, there is no agreement within
the community about the techniques that are
most suited to evaluate generated distractors,
and the ones used in the literature are some-
times not aligned with how distractors perform
in real exams. In this review paper, we per-
form a comprehensive study of the approaches
which are used in the literature for evaluating
generated distractors, propose a taxonomy to
categorise them, discuss if and how they are
aligned with distractors performance in exam
settings, and what are the differences for differ-
ent question types and educational domains.

1 Introduction

Multiple-Choice Tasks are a very popular form of
students’ assessment, due to their standardised for-
mat: they are easy to (automatically) grade and they
remove subjectivity from the scoring process, and
can thus be used to quickly and efficiently assess
large numbers of students, in both high-stakes and
low-stakes settings. A challenging step of curating
high-quality Multiple-Choice Tasks – also referred
to as Multiple-Choice Questions (MCQs) – is the
generation of distractors, i.e., the incorrect options.
Indeed, high-quality distractors must satisfy sev-
eral properties (see §2.3), such as being incorrect
but plausible, and consistent with the context but
objectively wrong. The generation of high qual-
ity distractors has been shown to be challenging

even for human experts (Shin et al., 2019), and
to target this issue and generate large quantities
of distractors (which are needed for large pools
of questions) recent research has explored many
approaches to automatically generate distractors,
as discussed in two recent surveys (Awalurahman
and Budi, 2024; Alhazmi et al., 2024). According
to the assessment and testing literature (Nunnally
and Bernstein, 1994), the most reliable approach
to evaluate distractors is pretesting: new MCQs
are shown to students in exam settings, and their
response patterns are used to assess the distractors.
Unfortunately, pretesting is unfeasible when auto-
matically generating large numbers of distractors
and undesirable in some settings, e.g., due to exam
security concerns (Ha et al., 2019); thus, automat-
ically generated distractors are most commonly
evaluated with static approaches or with manual
evaluation. However, the best techniques to au-
tomatically evaluate generated distractors are not
commonly agreed across the community and the
ones used in practice are rarely aligned with the
performance of distractors in real exam settings.
Hence, in this paper, i) we perform a comprehen-
sive review of the approaches used in the literature
for automated distractor evaluation, ii) we propose
a new taxonomy to categorise them, iii) we discuss
which ones are the most aligned with pedagogi-
cal theory and with the performance of distractors
in real exam settings (also focusing on different
educational domain and question types), and iv)
provide some guidelines for future research.

2 Related Work

2.1 Distractor Generation

Two very recent surveys provide a good overview
of approaches to distractor generation and the
trends in the literature (Awalurahman and Budi,
2024; Alhazmi et al., 2024). Similarly to many
other domains, distractor generation has seen a

55



rapid shift in recent years: the majority of ap-
proaches are now based on (large) language models,
in contrast with research pre-transformers which
was primarily based on traditional machine learn-
ing. We refer to the two survey papers mentioned
above for a detailed description of the different
techniques used in distractor generation.

2.2 Distractor Evaluation
The task of distractor evaluation is much less stud-
ied than distractor generation, even though it is be-
coming increasingly relevant: indeed, with modern
generative models it is very easy to experiment with
different prompts and generate a large set of distrac-
tors, and it is thus crucial to have ways to automat-
ically and reliably evaluate them. Unfortunately,
neither of the survey papers mentioned above fo-
cused sufficiently on the techniques and metrics
which are used to automatically evaluate distrac-
tors. Considering fully automated metrics, Alhazmi
et al. (2024) only mention ranking-based (Pre-
cision, Recall, F1-score, Mean Reciprocal Rank
(MRR), Normalized Discounted Cumulative Gain
(NDCG), and Mean Average Precision (MAP)) and
n-gram metrics (BLUE, ROUGE, and METEOR),
while Awalurahman and Budi (2024) only men-
tions BLEU, ROUGE and METEOR. While these
are all metrics that are indeed used in the litera-
ture, this list leaves out many others, which are
very relevant and potentially more aligned with the
performance of distractors in exam settings.

Few papers have distractor evaluation as main
focus, proposing automated approaches for the
task. Pho et al. (2015) work on distractors that are
Named Entities in a knowledge graph, and propose
an approach to evaluate them based on the syntac-
tic and semantic relation between the distractors
and the correct answer, and their relatedness in the
graph. Ghanem and Fyshe (2023) generate “bad
distractors” and train a model to estimate whether a
given distractor is good or bad. Finally, Raina et al.
(2023) propose an ensemble of three metrics which
are meant to measure the incorrectness, plausibility,
and diversity of distractors.

2.3 About Good Distractors
The educational literature is rich in recommenda-
tions and guidelines on how to create good distrac-
tors for MCQs. Ideally, these guidelines should be
implemented within the models for automated dis-
tractor generation and evaluation, but our literature
review suggests that in many cases the approaches

used for evaluating automatically generated distrac-
tors in the NLP and AI for Education communities
are somewhat disconnected from them. It is im-
portant to note that there are differences between
educational domains – e.g., guidelines for lan-
guage learning and mathematics cannot be exactly
the same – but there are many common aspects.
Distractors that are too easy fail to assess students’
true understanding, while those that are too difficult
or misleading can cause confusion and frustration;
thus, distractors should be plausible, but objectively
unacceptable (Yeung et al., 2019). Potentially, dis-
tractors should try to capture the common errors
and misconceptions of students (Lee et al., 2016;
Scarlatos et al., 2024), which enables targeted inter-
ventions. Also, distractors should be independent
from one another, otherwise one or more could
be excluded with logical reasoning, thus hinder-
ing the quality of the question. Distractors should
be semantically and grammatically coherent with
the context (Ghanem and Fyshe, 2023; Gao et al.,
2019), and similar in length, style, and grammatical
form to the correct answer (Pho et al., 2015). In
language pedagogy literature, there is the recom-
mendation that the target word and the distractors
belong to the same word class (Heaton, 1988), ide-
ally being “false synonyms” (Goodrich, 1977).

3 Taxonomy

Figure 1 presents the taxonomy we propose to cate-
gorise approaches from the previous literature. We
group the different approaches based on the type
of information that they use for evaluation. Dy-
namic approaches are based on learners’ answers,
and static approaches leverage only the textual
information from the distractors (and potentially
the correct answer, the question, and the reading
passage). Dynamic approaches (§4), and specifi-
cally Traditional Distractor Analysis, can be seen
as the gold standard, since they are based on stu-
dents’ responses and are an actual measurement
of how distractors perform in exam settings; they
can be further divided into approaches based on
real students and the ones based on responses from
Question Answering (QA) models. On the other
hand, static approaches (§5) can be seen as an al-
ternative to dynamic ones, as they can be used
when it is unfeasible to obtain students’ responses.
Static approaches can be further divided into three
groups: i) comparative approaches evaluate gener-
ated distractors by comparing them to some refer-
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DE
Manual Evaluation

Automated Evaluation

Dynamic §4

Traditional Distractor Analysis §4.1

Based on AI models §4.2

Others §4.3

Static §5

Comparative §5.1

String Matching

Hybrid

Semantic SimilarityStand-alone §5.2

Learned §5.3

Figure 1: The taxonomy we propose to categorize the different approaches for Distractor Evaluation (DE).

ence ones, which are considered as gold standard,
ii) stand-alone approaches consist in computing
some measures of similarity between distractors
and between distractors and the correct answer,
and iii) learned approaches are machine learning
models trained to predict the quality of generated
distractors. From a practical point of view, there
are notable similarities between distractor gener-
ation evaluation and difficulty estimation. In dif-
ficulty estimation, the gold standard is difficulty
from pretesting – e.g., from Item Response The-
ory (Hambleton and Swaminathan, 2013) – but
approaches have been proposed for difficulty esti-
mation from text for when students’ responses are
not available (Benedetto et al., 2022).

Previous approaches are described in Sections 4
and 5, and Table 1 provides an overview of all the
papers we discuss in this survey, grouped according
to the proposed taxonomy. The table also shows
the educational domain which each paper worked
on, whether manual evaluation is used in addition
to automated evaluation metrics, and whether dis-
tractors are evaluated individually or as a set.

4 Dynamic Approaches

Dynamic approaches to distractor analysis use stu-
dents’ responses to measure how well distractors
perform in exams. They can be further divided into
traditional distractor analysis §4.1 and AI-based
dynamic approaches §4.2, depending on whether
human or virtual students’ responses are used.

Traditional distractor analysis is most commonly
used in the Education and Assessment literature:
it studies how distractors perform in real exams,
observing the response patterns of human students,
and can thus be considered the optimal approach

to distractor evaluation. When it is unfeasible to
use traditional distractor analysis due to cost, time
constraints, or concerns about safety, AI-based dy-
namic approaches can be used. These are based on
same techniques, but use the responses of QA mod-
els as a proxy for the responses from real students.
Similar to difficulty estimation tasks, which are
ideally performed via pretesting with real learners,
research explored the possibility of using machine
learning and AI to simulate it (Benedetto et al.,
2022; AlKhuzaey et al., 2021). This includes the
setting of virtual pretesting, which became more
popular in recent years (Park et al., 2024; Uto et al.,
2024; Benedetto et al., 2024).

Previous research also experimented with some
approaches based on the responses of human learn-
ers but different from the ones used in traditional
distractor analysis; they will be discussed in §4.3.

4.1 Traditional Distractor Analysis

Traditional distractor analysis is based on studying
how often distractors are selected, and which is
the (average) skill level of the learners selecting
different distractors. Again, these metrics are based
on how distractors perform in real exam settings,
thus can be considered as the optimal ones.

Distractors that are never (or rarely) selected by
students are poor distractors (Nunnally and Bern-
stein, 1994); the rule of thumb mentioned in several
papers is that each distractor should be selected by
at least 5% of the students (Haladyna and Down-
ing, 1993), with the exception of very easy MCQs,
which are correctly answered by more than 90% of
the students (Gierl et al., 2017). Only three articles
evaluate automatically generated distractors using
the frequency with which participants select each
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of them: (Aldabe and Maritxalar, 2010; Zhang and
VanLehn, 2021; Lee et al., 2016).

Another indication of distractor quality from the
Education literature is the difference between the
number of students selecting each distractor and
the number of students selecting the correct answer:
if a distractor is chosen more often than the cor-
rect answer, this is probably an indication of poor
instructions or a misleading question (Nunnally
and Bernstein, 1994). We did not find any paper
evaluating generated distractors with this metric.

Lastly, since a good distractor is one that is se-
lected by students who perform poorly and ignored
by those who perform well (Gronlund, 1968), dis-
tractors that are selected by students that are (on
average) of higher skill level than the students se-
lecting the correct choice are poor distractors. We
found only two papers using this factor to evaluate
automatically generated distractors: Mitkov and Ha
(2003) and Lee et al. (2025) divide students into
a group of highly skilled students and a group of
beginners, and label distractors that are selected by
more students in the upper group than by students
in the lower group as poor distractors.

4.2 AI-based Dynamic Approaches
Fundamentally, these use measurements similar
to the ones from traditional distractor analysis, but
based on the responses from QA models rather than
human learners. Using machine learning models
as a proxy of students, they should be validated
accordingly. This is rarely done in the literature.

Chung et al. (2020) make the assumption that
poor distractors will reduce the difficulty of the
MCQ task for a QA model, thus use accuracy as
an indicator of distractor quality, by comparing dis-
tractors generated with different models: the higher
the accuracy, the worse the quality of the distrac-
tors. Similarly, Offerijns et al. (2020) study how
the accuracy of a QA model changes when using
manually-curated distractors rather than automati-
cally generated ones: they observe that results are
similar, thus claim that the generated distractors
are on-par with the human-curated ones.

Guo et al. (2024) use the generated distractors
to augment a dataset, which is then used to train
a QA model. The quality of generated distractors
is evaluated by measuring the QA accuracy on a
separate test set: a better performance on the test
set would indicate that the generated distractors
were effective for training the model, and thus they
are good distractors.

4.3 Others

Some papers use human responses for distractor
evaluation, but in a setting different from traditional
distractor analysis. Kalpakchi and Boye (2021) re-
cruit participants on a crowd-sourcing platform and
ask them to answer reading comprehension MCQs
without providing them with reading passages. The
authors claim that this approach can evaluate the
plausibility of distractors by measuring how often
they are selected. Luo et al. (2024) compare the
response accuracy of three students on questions
with distractors generated with different models,
and claim that lower accuracy in responding to a
question would indicate that there were better dis-
tractors. Yoshimi et al. (2023) evaluate distractors
by measuring how the response accuracy of human
annotators changes when using the original com-
pared to generated distractors, aiming to make the
accuracy as close as possible in the two settings.
This is similar to the approach by Offerijns et al.
(2020) but using humans rather than QA models.

5 Static Approaches

Static approaches evaluate distractors using only
the content of the items, without considering learn-
ers’ responses. Importantly, most of these ap-
proaches are not aligned per se with how distrac-
tors would perform in real exam settings, thus they
should be validated (but often are not, in previous
literature). They can be divided into Comparative,
Stand-alone, and Learned approaches.

5.1 Comparative

Comparative approaches are based on a compar-
ison between generated distractors and the refer-
ence ones available in the test dataset: this assumes
that these reference distractors are of good quality
and are the only distractors of good quality for a
question. In other words, any generated distrac-
tor which is different from the reference ones is
massively penalised. Both assumptions are some-
what problematic for distractor evaluation: experi-
mental datasets often do not contain high-quality
pretested questions (particularly the publicly avail-
able ones), and it might happen that other distrac-
tors are as effective, if not better, than the ones in
the datasets. This disadvantage comes from the
fact that most comparative approaches were not
originally thought of for distractor evaluation, but
rather for Machine Translation, and thus have fun-
damental issues when it comes to distractor eval-
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uation (Rodriguez-Torrealba et al. (2022); Taslim-
ipoor et al. (2024), inter alia). However, even with
these major shortcomings, they are by far most
commonly used approaches to evaluate new dis-
tractor generation models, due to their popularity
and ease of implementation.

5.1.1 String Matching
String matching is the single most frequently used
approach for distractor evaluation in the literature.
Most papers used BLEU (Papineni et al., 2002)
and/or ROUGE (Lin, 2004) to compare the gen-
erated distractors with reference ones in the ex-
perimental datasets (see Table 2 for the list of all
papers). Other common metrics are Precision, Re-
call, F1-score, MRR, and NDCG (the list of papers
is shown in Table 3). Notably, this distinction is
also due to the fact that papers in the two tables
mostly work on different types of questions: pa-
pers in 2 mainly work with reading comprehension
questions with longer text answers, while papers in
3 mainly work with either cloze items or science
tests with single word or named entity answers.

Paper BLEU ROUGE
(Gao et al., 2019) X X
(Zhou et al., 2019) X X
(Chung et al., 2020) X X
(Qiu et al., 2020) X X
(Maurya and Desarkar, 2020) X X
(Offerijns et al., 2020) X X
(Rodriguez-Torrealba et al., 2022) X X
(Xie et al., 2022) X X
(Qu et al., 2023) X X
(Login, 2024) X X
(Zhou and Li, 2024) X X
(Qu et al., 2024) X X
(De-Fitero-Dominguez et al., 2024) X X
(Luo et al., 2024) X
(Lin et al., 2024) X X
(Taslimipoor et al., 2024) X
(Wang et al., 2025) X X

Table 2: List of papers using BLEU and/or ROUGE.

Other papers evaluated generated distractors us-
ing metrics based on string matching, but different
from the metrics mentioned above. Liang et al.
(2018) and Bitew et al. (2022) use Mean Aver-
age Precision, Luo et al. (2024) use Accuracy, and
Kalpakchi and Boye (2021) measures the fraction
of MCQs for which at least one generated distractor
matches one of the reference ones.

McNichols et al. (2023); Feng et al. (2024); Fer-
nandez et al. (2024), and McNichols et al. (2024)
(all working on maths questions) define and use
three alignment-based metrics: i) partial match

Paper Pr
ec

is
io

n

R
ec

al
l

F1 M
R

R

N
D

C
G

(Liang et al., 2018) X X X X
(Kalpakchi and Boye, 2021) X
(Ren and Zhu, 2021) X X X X
(Bitew et al., 2022) X X X
(Chiang et al., 2022) X X X X
(Panda et al., 2022) X X
(Wang et al., 2023) X X X
(Yoshimi et al., 2023) X
(Dutulescu et al., 2024) X X X X
(Yu et al., 2024) X X X X X

Table 3: List of papers using Precision, Recall, F1 score,
Mean Reciprocal Rank, or NDCG for evaluation.

evaluates whether at least one of the generated dis-
tractors matches one of the reference ones, ii) exact
match evaluates whether all the generated distrac-
tors match the reference ones, and iii) proportional
match measures the proportion of generated dis-
tractors which match the reference ones. In addi-
tion to these three metrics, Scarlatos et al. (2024)
define weighted proportional, which is a reinterpre-
tation of the proportional match: it re-weights each
“match” in the proportional metric giving more im-
portance to reference distractors which are most
commonly selected by students. Notably, consid-
ering all the evaluation metrics based on string
matching, this weighted proportional is the only
one which explicitly takes into consideration how
well distractors perform in real exams.

5.1.2 Semantic Similarity
Several articles evaluate generated distractors by
measuring their semantic similarity to the reference
ones, using diverse techniques for capturing the se-
mantic meaning of distractors and their distance
from the reference ones. While this is arguably
more reliable than string matching, it still relies
entirely on the quality of distractors in the exper-
imental dataset. The most common approach is
BERTScore (Zhang et al., 2019), which is used
by Login (2024); Qu et al. (2024, 2023) to com-
pute the similarity between generated distractors
and the reference ones. Other embedding tech-
niques are used in other articles: Ren and Zhu
(2021) use Word2Vec (Mikolov et al., 2013), Mau-
rya and Desarkar (2020) use BERT (Devlin et al.,
2019) embeddings, and more recently Taslimipoor
et al. (2024) apply Sentence-BERT (Reimers and
Gurevych, 2019) to compute similarity. Notably,
no one of these papers give weights to how differ-
ent reference distractors perform in real exams.
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5.1.3 Hybrid lexical-semantic
As a middle-ground between the purely lexical
string matching approach described in §5.1 and
the semantic embeddings from §5.1.2, some pa-
pers used METEOR (Banerjee and Lavie, 2005)
for evaluating the similarity between generated and
reference distractors. Specifically, it was used by
Login (2024); Zhou and Li (2024); Maurya and De-
sarkar (2020); Xie et al. (2022); Lin et al. (2024).
This has the same limitations as the approaches
described above, as it relies entirely on the quality
of the reference distractors, and implies that those
are the only good distractors for a given question.

5.2 Stand-alone Approaches

Stand-alone approaches are all the evaluation tech-
niques which are based on textual information only
and do not rely on reference distractors. As such,
they are meant to detect high-quality distractors
even when these do not match some reference ones,
and are not susceptible to low-quality distractors in
the reference data. Most of these evaluation metrics
are meant to capture the plausibility and diversity
requirements of good distractors.

5.2.1 Estimating plausibility
Pho et al. (2015) focus on the relatedness be-
tween the distractors and the correct answer op-
tion, primarily working on questions whose re-
sponses are named entities. The semantic similarity
is then measured looking at the distance between
the named entities of each distractor and the correct
answer option in a taxonomy of named entities.

Plausibility is modelled as the cosine similarity
between each generated distractor and the correct
answer option in (Rodriguez-Torrealba et al., 2022;
De-Fitero-Dominguez et al., 2024). The authors
state that higher similarity to the correct answer
option means better distractors and use such ap-
proach for evaluating the distractors. Still, they
do not study the correlation between the results
obtained with their evaluation metric and an evalu-
ation based on students’ responses, thus this metric
might reward distractors which are too close to the
correct answer, and thus low quality.

A different take on plausibility is taken by Raina
et al. (2023): they define plausibility as the sum of
the confidence scores of a multiclass QA model for
each of the distractors. This approach assumes that
the confidence of a MCQA model is a good proxy
of the confidence of real students, and evaluates this
assumption by using a dataset which provides sta-

tistical information about how often distractors in
the dataset are selected by real students (Mullooly
et al., 2023); this is one of few works validating the
metrics used for distractor evaluation.

5.2.2 Estimating diversity
More papers focused on studying the diversity of
generated distractors, using Pairwise-BLEU, Dis-
tinct (Li et al., 2016), or other techniques. Pairwise-
BLEU is used by Qu et al. (2023) and Wang et al.
(2025), while Distinct is used by Qu et al. (2024)
and Qu et al. (2023). Two different approaches are
used by Raina et al. (2023), who use the BERT
Equivalence Metric (BEM) (Bulian et al., 2022),
and Taslimipoor et al. (2024), who use Sentence-
BERT to measure the semantic similarity between
different generated distractors. In all these papers
the authors claim that high diversity is desirable,
hence similarity between distractors should be low.

5.2.3 Others
Kalpakchi and Boye (2021) propose a set of eval-
uation metrics, including several stand-alone ap-
proaches different from all the approaches used
by other papers. Most of them are filters which
could actually be implemented within a DG model
itself, and include measures such as i) the fraction
of MCQs with two or more generated distractors
which are equal, ii) the fraction of MCQs for which
generated distractor match the correct answer, and
others (we refer to the paper for the full list).

5.3 Learned Approaches

Learned evaluation metrics are machine learning
models – with different architectures – specifically
trained to evaluate the quality of generated distrac-
tors. Several approaches have been used in the
literature, and they try to capture different charac-
teristics that good distractors are expected to have.
Notably, these approaches are on average the most
recent of all the papers surveyed.

The first learned metric to evaluate generated
distractors was proposed by Ghanem and Fyshe
(2023), which is one of the few papers exclusively
focusing on the evaluation of generated distractors.
The proposed approach consists in automatically
generating bad distractors, and training a model
to estimate whether a distractor is good or bad (i.e.
binary classification); the metric is validated with
manual evaluation. A similar approach is used by
Raina et al. (2023) and Qu et al. (2024). In the first
paper, a model is trained to distinguish between
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the correct answer option and the distractors, in
a binary classification setting; the probability that
such trained model assigns to each distractor (more
specifically, 1 − P ) indicates how incorrect each
distractor is. 1 In the latter, an Alberta model is
trained to predict whether a given distractor is a
correct answer to the corresponding question, and
return a classification score in the range [0, 100];
the authors refer to this as faithful score.

Three papers focused on learned approaches to
estimate the plausibility of generated distractors.
In two of them (McNichols et al., 2023; Feng et al.,
2024) the authors, who define plausibility as the
likelihood of a distractor being selected by real
students, compute it by training a BERT-based ma-
chine learning model on real students’ responses
to predict the fraction of students selecting each
distractor. The trained model assigns a probability
score to each distractor, and these scores are then
combined in two ways: i) by summing the selection
probability of all distractors, and ii) by computing
the entropy among them (to make sure that all are
selected with reasonable frequency by students).
In the third (Lee et al., 2025), the authors train a
pairwise ranker to select, given a pair of distractors,
the more plausible. Ground truth plausibility is es-
timated from students’ responses, thus this metric
is aligned distractor performance in exam settings.

Finally, in one paper which performs distractor
generation via reinforcement learning from pref-
erence feedback (Wang et al., 2025), the authors
leverage the same reward model that was used in
training during the reinforcement learning phase to
then evaluate the generated distractors.

6 Discussion

6.1 Alignment with exam performance

Considering all the evaluation approaches de-
scribed above, the only ones which are by definition
aligned with how distractors perform in real exam
settings are the techniques from traditional distrac-
tor analysis (§4.1), since they evaluate distractors
based on the responses of real students. We ar-
gue that these approaches should be used whenever
possible. Unfortunately, in most cases, that is not
feasible, and some alternative approaches have to
be used. In all these cases, it is important to validate
the evaluation approach to ensure that they align
with the exam performance of distractors, but this

1The metric is validated using student response data from
a publicly available dataset (Mullooly et al., 2023).

is rarely done in the literature. The main reason for
this is that most of the publicly available datasets –
e.g., RACE (Lai et al., 2017), SQuAD (Rajpurkar
et al., 2016), or the MCQ dataset by Ren and Zhu
(2021) – do not provide such information, thus it
is impossible to properly validate the evaluation
metrics on them and all evaluations are built upon
weak foundations. One notable exception is the
Cambridge MCQ Reading Dataset (Mullooly et al.,
2023), which contains an indication of how often
distractors are selected by students in real exam
settings: the dataset contains both good and bad
distractors, and can thus be used to validate differ-
ent evaluation metrics. Similarly, private datasets,
such as the Eedi dataset used by Scarlatos et al.
(2024) and others, likely contain statistics about
students’ responses, and thus provide the informa-
tion needed to validate the evaluation metrics (as
it is done for the weighted proportional metric de-
scribed in §5.1.1). However, they are inaccessible
for the wider research community.

6.2 Evaluating individual distractors and
distractor sets

The taxonomy proposed in §3 categorises evalua-
tion metrics based on the information used for eval-
uating generated distractors. However, another rel-
evant dimension to consider is whether evaluation
metrics work on individual distractors or distrac-
tors as a set of options. Indeed, distractors should
ideally be evaluated with both, since they capture
different aspects in relation to designing a good
question item. The number of papers that evaluate
distractors individually is an overwhelming major-
ity in the literature, and only few use metrics that
consider distractors as a set, as shown in Table 1.

All the comparative approaches in §5.1 focus
on evaluating individual distractors. While this is
very relevant, as it can help detect distractors which
are too close to or too far from the correct answer
option, it is a suboptimal evaluation. Indeed, in real
exam settings distractors are shown to students in a
set of (usually) four items (one being correct), and
distractor evaluation metrics should also consider
the similarity and differences between the distrac-
tors – thus evaluating sets of distractors. Notably,
even considering the papers which perform a man-
ual evaluation of the distractors, these are evaluated
individually (e.g., annotators are asked to classify
each of them as acceptable or not acceptable (al-
though out of the main scope of this survey paper,
we include an analysis of manual evaluation in the
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appendix §A). From our analysis, a total of 15 pa-
pers (out of the 40 doing automated evaluation) use
automated metrics that evaluate distractors as a set
rather than as individual items.

6.3 Educational domains and question types
In the context of distractor generation and evalu-
ation for MCQs, question types and educational
domains play a crucial role in designing effective
evaluation metrics. These factors influence the
characteristics of distractors and the criteria used
to assess their quality. The subject or educational
domain influences the complexity, language, and
knowledge required for distractor evaluation. For
instance, in science and mathematics, evaluation
metrics should check for scientific validity or in
language learning, like in reading comprehension
questions, evaluation should assess linguistic simi-
larity and conceptual relevance. These aspects of
evaluation have not been investigated explicitly in
the literature, however we can see that for exam-
ple almost all papers experimenting with the RACE
dataset for reading comprehension, evaluate distrac-
tors using metrics from machine translation (see
Table 2) while most distractor generations in the
domain of science (Liang et al., 2018; Ren and Zhu,
2021; Bitew et al., 2022; Dutulescu et al., 2024) or
with Cloze-style questions (where answers and dis-
tractors are single words or named entities) (Chiang
et al., 2022; Panda et al., 2022; Wang et al., 2023;
Yoshimi et al., 2023; Yu et al., 2024) are mainly
evaluated using ranking based statistical measures
(see Table 3).

6.4 About manual evaluation
Although not discussed in this survey, since our
focus is on automated metrics which could be used
in an automated generation and evaluation pipeline,
manual evaluation is still used by the majority of
papers (see Appendix A), sometimes in addition
to the automated metrics and in other cases as the
single evaluation approach. Annotators are domain
experts, or the authors themselves, or recruited
from crowd-sourcing platform – thus leading to
annotations of varying reliability.

7 Conclusions

In this survey paper we have performed a compre-
hensive study of the metrics and techniques which
are used to automatically evaluate generated dis-
tractors in the context of Multiple-Choice Tasks,
and have proposed a taxonomy to categorise them.

We have seen that there is not a commonly agreed
metric in the literature, and different authors and re-
search groups tend to use different evaluation tech-
niques. Most importantly, the metrics which are
most commonly used in the literature (e.g., BLEU
and ROUGE) are sub-optimal and arguably not
aligned with how distractors actually perform in
exams: indeed, they evaluate newly generated dis-
tractors by comparing them with some reference
ones assuming that the references are i) of high
quality and ii) the only distractors of high quality
that can be created for the given question. Both
assumptions are very strong, and not really sup-
ported by previous research, especially for publicly
available datasets such as RACE (which is one of
the most commonly used datasets).

Ideally, distractors should be evaluated with Tra-
ditional Distractor Analysis (i.e., with real learn-
ers) but, when this is not possible, the evaluation
metrics used in its place should aim at being more
aligned with how distractors perform in real exam
settings and with the requirements that good dis-
tractors are expected to satisfy (according to vast
literature from Education and Assessment), such
as being consistent and coherent with the question
and the correct option, and being plausible enough
to distract learners. This highlights the need for
validating the evaluation metrics which are used in
distractor generation and evaluation settings and
developing new, more aligned, ones. The develop-
ment of such metrics should also take into consider-
ation the differences between different educational
domains, as the requirement might be different de-
pending on the specific application scenario.

Limitations

When collecting the papers to review, we have per-
formed several searches and used snow-balling to
collect all the relevant publications which we could
find. However, there is always a possibility that we
might have missed some relevant research works.
Also, we have highlighted the limitations of the cur-
rent approaches to distractor evaluation, and this
survey paper serves as motivation to focus more on
the evaluation of distractors but, at this stage, we
do not have an alternative approach to propose that
might target these issues (yet).
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A On Manual Evaluation

Even though manual evaluation is not scalable to
large amounts of distractors and cannot be used in
a fully-automated content generation pipeline, it is
still the most commonly used approach to evaluated
distractors in distractor generation papers. From
our analysis, a total of 23 papers out of 40 use man-
ual evaluation in addition to automated evaluation;
in addition to these, we also find 9 papers where
the manual annotation is the only evaluation that is
performed.

There are not commonly agreed guidelines on
how to evaluate the distractors manually, and differ-
ent papers follow different approaches and provide
different labels, in some cases limiting the anno-
tation to good and bad distractors, and in some
other cases ranking on a Likert scale (e.g., from
1 to 5) some aspects of the distractors. In general,
we observe that the annotators are either asked
to provide an overall evaluation of the distractors
(i.e., whether they are good distractors), or evaluate
them according to the following aspects: plausibil-
ity (also referred to as distracting ability), fluency,
coherence with the text (also referred to as valid-
ity), diversity (between the generated distractors),
and being related to students’ misconceptions. No-
tably, only two papers explicitly ask annotators to
evaluate the diversity of the generated distractors
– thus evaluating them as a set – and most of the
papers perform an evaluation of individual distrac-
tors. Table 4 provides an overview of which of
these aspects are considered in the different papers
which perform manual evaluation of distractors.
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Abstract

This paper investigates the potentials of Large
Language Models (LLMs) as adaptive tutors
in the context of second-language learning. In
particular, we evaluate whether system prompt-
ing can reliably constrain LLMs to generate
only text appropriate to the student’s compe-
tence level. We simulate full teacher-student
dialogues in Spanish using instruction-tuned,
open-source LLMs ranging in size from 7B
to 12B parameters. Dialogues are generated
by having an LLM alternate between tutor and
student roles with separate chat histories. The
output from the tutor model is then used to eval-
uate the effectiveness of CEFR-based prompt-
ing to control text difficulty across three profi-
ciency levels (A1, B1, C1). Our findings sug-
gest that while system prompting can be used
to constrain model outputs, prompting alone is
too brittle for sustained, long-term interactional
contexts - a phenomenon we term alignment
drift. Our results provide insights into the fea-
sibility of LLMs for personalized, proficiency-
aligned adaptive tutors and provide a scalable
method for low-cost evaluation of model per-
formance without human participants.

1 Introduction

The popularization of large language models
(LLMs), particularly through the emergence of
user-friendly interfaces such as ChatGPT, has led
many stakeholders across society to consider how
to use such technology effectively and safely to
facilitate access to knowledge and education (Yan
et al., 2024). Language education has not been im-
mune to this hype, and with seemingly good cause,
since LLMs show potential across a range of areas
where they might enhance language learning.

One such area is their inherent interactivity. In-
teractive feedback is widely regarded as an im-
portant factor in second-language (L2) learning
(Loewen and Sato, 2018). For L2 learners far re-
moved from their target language community, op-

portunities for such interaction can be rare. With
LLMs, though, learners appear to now have the
opportunity to engage with a "speaker" of the tar-
get language freely and at their own pace (Kohnke
et al., 2023). Other potential benefits include per-
sonalized teaching (Klimova et al., 2024) and re-
duced L2 anxiety (Hayashi and Sato, 2024).

These ideas build on decades of research on in-
telligent tutoring systems and computer-assisted
learning (Psotka et al., 1992; Slavuj et al., 2015). In
contrast to earlier rule-based approaches (D’Mello
and Graesser, 2023), appropriately implemented
LLMs may offer a more adaptable and effective
solution. However, current use of LLMs in lan-
guage learning mostly relies on general-purpose
tools like ChatGPT, where learners are encouraged
to acquire "prompt-engineering" skills to get the
most out of their AI language tutor (Hwang et al.,
2024). It remains unclear exactly how effective and
appropriate this approach is for creating successful
language tutoring technology.

This paper takes steps to address this problem by
examining whether, and to what extent, the com-
plexity of LLM outputs can be constrained through
prompting based on the Common European Frame-
work of Reference for Languages (CEFR). We find
that, while prompting may initially constrain LLM
outputs in Spanish, these effects diminish over time.
We refer to this as alignment drift, arguing that
system prompting may prove to be too unstable for
sustained, longer interactions.

2 Related Work

2.1 Exploring the Use of LLMs as Language
Tutors

While a growing body of work considers LLMs
as interactive language tutors (Kohnke et al., 2023;
Lin, 2024; Kostka and Toncelli, 2023), empirical re-
search is limited, and many questions remain unan-
swered (Han, 2024). Nevertheless, the few stud-
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ies that have been conducted so far offer promis-
ing results on the benefits of using LLMs as lan-
guage tutors, particularly in L2 English learning
(Tyen et al., 2022, 2024; Zhang and Huang, 2024).
Among other findings, Tyen et al. (2024) reported
that users enjoyed interacting with LLMs more
than plain reading and responded well to adaptive
difficulty in interactions. Adaptive cognitive tutors
hence have the potential to contribute positively to
motivation, a psychological process increasingly
viewed as crucial to L2 learning outcomes (Dornyei
and Ryan, 2015).

2.2 Assessing L2 Proficiency with CEFR
Defining what it means to be "proficient" in an
additional language is not a trivial task, with nu-
merous definitions proposed (Park et al., 2022). Of
these, the CEFR is particularly well known. Since
its introduction in 2001, the framework has been
highly influential in assessing L2 proficiency. Un-
like previous approaches with a strong focus on
grammatical competency, the CEFR emphasizes
social and communicative competences (Leclercq
and Edmonds, 2014).

The CEFR comprises a six-level scale (A1, A2,
B1, B2, C1, C2) with A1 as the beginner level
and C2 as the most advanced. Several official
ways have been developed to represent these profi-
ciency levels, each with language-agnostic descrip-
tions (Council of Europe, 2025a). For instance,
the CEFR Global scale offers a concise, three- to
four-sentence summary of each level, designed as a
holistic overview to facilitate communication with
non-specialist users. However, its creators acknowl-
edge that it is "desirable" to present the CEFR
levels in "different ways for different purposes."
(Council of Europe, 2025b). The Self-assessment
grid, which provides separate definitions for skills
like speaking and writing at each level, has little
to no focus on grammatical content (Council of
Europe, 2025d).

2.3 Adapting Text Difficulty with LLMs
The potential for LLMs to produce simpler text
for improved accessibility has not gone unnoticed
(Freyer et al., 2024). Indeed, the CEFR framework
has been used alongside LLMs to simplify learn-
ing materials in French (Jamet et al., 2024); and
for a range of purposes in English, such as general
writing (Uchida, 2025) and simplifying or writ-
ing stories (Malik et al., 2024; Imperial and Tay-
yar Madabushi, 2023). Alfter (2024) also attempted

to generate CEFR-aligned vocabulary lists using
LLMs across five languages, including Spanish and
French, but found performance issues outside of
English.

Common to these studies is the use of prompt-
ing. Notably, Malik et al. (2024) demonstrated
that GPT-4 made fewer errors generating stories
at the desired proficiency level as the detail about
CEFR increased in the prompts. In contrast, Alfter
(2024) found that using numeric levels from 0 to 4
was more effective than explicitly mentioning the
CEFR, although the prompts had no description of
the levels.

Beyond prompting, other approaches include
fine-tuning (Malik et al., 2024) or experimentation
with decoding strategies. For example, Tyen et al.
(2022) experimented with different decoding strate-
gies for constraining LLM text difficulty to CEFR
levels, using a classifier fine-tuned on Cambridge
English exam sentences (Xia et al., 2016), to select
the best LLM-generated sentence for the user. A
similar approach was used by Glandorf and Meur-
ers (2024), focusing on grammatical constructs for
different CEFR levels in English.

We identify some gaps in the literature. Firstly,
most studies focus on English, with only a few
exceptions (Jamet et al., 2024; Alfter, 2024). More-
over, aside from Tyen et al. (2022, 2024), all stud-
ies focus on single generations rather than longer
chats. This paper thus contributes to the literature
by addressing chat-based scenarios in an additional
language, Spanish.

2.4 Simulating Dialogues with LLMs
One challenge when evaluating LLM performance
in chat-based scenarios is the cost of human par-
ticipants, particularly during initial testing. Tyen
et al. (2022) addressed this by using "self-chatting",
where the model interacts with itself, although no
further specification was provided. More broadly,
dialogue simulation using LLMs have emerged
with the purpose of refining chatbots with the
generated data (Sekulic et al., 2024; Tamoyan
et al., 2024). Specific teacher-student dialogue
simulation remains under-explored, although some
work exists such as simulating Q/A scenarios (Ab-
basiantaeb et al., 2024).

In this paper, we therefore simulate teacher-
student interactions using LLMs in order to de-
termine the robustness of CEFR-based prompting
for constraining text difficulty in Spanish. To our
knowledge, this study is the first to simulate both
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Figure 1: System prompt provided to each tutor LLM for level A1. Level-specific words are underlined in red and
replaced for B1 and C1 (see Appendix A.3). The list in curly brackets is from the CEFR Global Scale (Council of
Europe, 2025b).

the teacher and student perspectives through sys-
tem prompts in the context of language learning.

3 Experimental Design

Data generation (Section 3) and analysis (Sections
4 & 5) were carried out in Python (v3.12.3), with
the exception of running linear mixed effects mod-
els in R (v4.4.3). All code and the dataset is avail-
able on the GitHub repositories:

• Generation: INTERACT-LLM/Interact-LLM
(Version tag: v1.0.3-alignment-drift)

• Dataset & Analysis:
INTERACT-LLM/alignment-drift-llms

3.1 Model Selection and Implementation
We choose to focus on smaller, state-of-the-art
open-source LLMs in the range 7B to 12B. With
the exception of Mistral, their official reports
mention multilingual capabilities. All models are
instruction-tuned for chatting:

• Llama-3.1-8B-Instruct by Meta (Grattafiori
et al., 2024)

• Gemma-3-12B-IT by Google (Gemma Team
et al., 2025)

• Mistral-7B-v0.3-Instruct by Mistral AI
(Jiang et al., 2024)

• Qwen-2.5-7B-Instruct by Alibaba Cloud
(Qwen Team et al., 2025)

For convenience, we refer to the models simply
as Llama, Gemma, Mistral, and Qwen. For details
about the inference, including the hyperparameters,
see Appendix A.1.

3.2 Teacher-Student Dialogue Simulation

We simulated a language tutoring scenario by de-
ploying an LLM with separate chat histories as
both the "tutor" and "student". Current LLM sys-
tems are stateless (Yu et al., 2025), with the entire
chat history being processed by the model during
each interaction. This allowed us to instantiate a
single LLM object, and then interchange the chat
history, maintaining one history for the student and
another for the tutor (see the graphical overview in
Appendix A.2).

We ran simulations for three different system
prompts, designed to instruct the LLM to match
its responses to the proficiency level of a begin-
ner (A1), intermediate (B1), and advanced (C1)
Spanish language learner.1 Across the three lev-
els, the dialogue began with a fixed initial message,
"Hola",2 sent by the "student". By standardizing
the initial message, we eliminated variability in the
student LLM responses which could influence the
tutor LLM’s output. This enabled a direct compari-
son of how the system prompt impacted the tutor
LLM’s first message across levels.

1See Section 3.3 for details on how the system prompts
were defined.

2Tyen et al. (2022) also begin all chats with a "Hello".
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Despite being instructed to "keep everything in
Spanish" (Figure 1), a number of models generated
non-Spanish text.3 For instance, Gemma and Llama
tended to include English content. This happened
primarily for the A1 level, where they sometimes
provided English translations in parentheses along-
side their Spanish sentences. Also, Qwen occasion-
ally switched mid-generation to Mandarin Chinese.
To avoid confounding our analysis, we applied a
simple language detection algorithm to the tutor
LLM’s outputs using the Python library lingua.4 If
English or Mandarin was detected in any sentence,
we re-generated the tutor LLM’s response before
continuing the dialogue.

A total of 30 dialogues were simulated for each
of the three system prompts per LLM, resulting in
90 dialogues for each LLM and 360 overall. Each
dialogue consisted of nine turns.

3.3 System Prompts
We created custom system prompts in English for
the tutor LLM. These prompts differed only in key,
level-specific phrasing. Along with terms such
as "beginner," "intermediate," and "advanced," an
additional description of a learner’s abilities at the
particular level was provided, taken from the CEFR
Global scale (see Section 2.2). Figure 1 shows
the system prompt for A1 with the level-specific
wording highlighted (prompts for B1 and C1 can
be viewed in Appendix A.3).

The system prompt for the student LLM was
kept relatively simple as it was beyond the scope
of this study to optimize it:

You are a student learning Spanish, re-
sponding to a teacher who is facilitating
a natural dialogue with you.

4 Metrics

We extracted various metrics to examine the in-
fluence of different system prompts on the tutor
LLM’s outputs.

4.1 Traditional Readability Metrics
We computed three readability metrics for Span-
ish using Textstat.5 Recent applications of these
metrics primarily focus on healthcare (Rao et al.,
2024) or the financial sector (Moreno and Casasola,
2016; Losada, 2022), but their English counterparts

3We also discuss this in a subsection of the Limitations.
4https://github.com/pemistahl/lingua-py
5https://textstat.org/

have traditionally been used to assess L2 reading
complexity (Greenfield, 2004). We therefore draw
on these studies to justify our use of Spanish read-
ability metrics in this context.

Fernández Huerta (Fernández Huerta, 1959)
and Szigriszt-Pazos (Szigriszt Pazos, 2001) are
Spanish adaptations of the Flesch Reading Ease
(Flesch, 1948) score, measuring readability based
on syllables per word and words per sentence, with
Spanish-specific weightings.6 Unsurprisingly, the
two metrics are highly correlated (Melón-Izco et al.,
2021), but there are conflicting claims about which
one is most widely used (Moreno and Casasola,
2016; San Norberto et al., 2014). Both are com-
monly reported together, as is the case in this paper.

Gutiérrez de Polini is a metric specifically cre-
ated for Spanish (Gutiérrez de Polini, 1972). Un-
like the previous two metrics, it does not rely on
syllables, but instead considers the number of char-
acters per word and words per sentence (Vásquez-
Rodríguez et al., 2022).

All three metrics produce lower scores for more
difficult texts and higher scores for easier texts. For
detailed tables showing the interpretation of the
scores, see Appendix A.4.

4.2 Structural Complexity

We computed additional structural features using
the TextDescriptives Python library (Hansen et al.,
2023), applied with the Spanish spaCy (Honnibal
et al., 2020) model es_core_news_md.7

The Mean Dependency Distance (MDD) is a
measure of syntactical complexity commonly used
to capture language processing difficulty in both L1
and L2 research (Gao and Sun, 2024). It represents
a sentence-level average of dependency distance,
which measures the linear distance between a word
and its syntactic head. TextDescriptives follows the
definition by Oya (2011) to compute the MDD.8

We extract Text Length of each message, oper-
ationalized as the token count, as it is included in
the definition of the C1 level in the CEFR Global
scale (i.e., the student can understand "a wide range
of demanding, longer texts" (Council of Europe,

6Note that the formula for Fernández Huerta is said to
be reported incorrectly on many websites (Fernández, 2017).
Losada (2022) reports the correct one which is implemented
by Textstat.

7https://github.com/explosion/spacy-
models/releases/tag/es_core_news_md-3.8.0

8More information can be found in the documentation for
the TextDescriptives package: https://hlasse.github.io/
TextDescriptives/dependencydistance.html
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Figure 2: Average readability metrics over the total number of messages sent by the tutor LLM for each model,
grouped by CEFR level (A1, B1, C1). The higher the score, the easier the message is to read. The shaded area
around each curve represents a 95% confidence interval.

2025b)). A small study on ChatGPT also showed
that the model tended to generate longer texts for
higher levels of CEFR (Ramadhani et al., 2023).
Moreover, in machine classification studies of texts
across languages, text length was considered an
important predictor of CEFR level (Bestgen, 2020;
Yekrangi, 2022).

4.3 LLM-based Surprisal Scores

Following Cong (2025), we extract LLM surprisal
scores, defined as the negative log-probability of a
word sequence computed by an LLM. Cong (2025)
describes it as a "naturalness" measure that cap-
tures both "syntactical grammaticality" and "se-
mantic plausibility", with more natural sentences
corresponding to lower surprisal scores. They ar-
gue that it can be used to examine L2 proficiency,
demonstrating that BERT-based surprisal scores
decrease as L2 proficiency increases. The use of
LLM surprisal extends beyond this study, serving
as a predictor for human language processing, in-
cluding brain activity (Michaelov et al., 2024) and
reading times (Wilcox et al., 2023).

We use the minicons Python library (Misra,
2022) to extract sentence-level surprisal in chat
messages, normalized by token count. We then
compute the mean surprisal score for each chat
message, referred to as Message Surprisal in this

paper. However, we use EuroBERT (210m), a newer
BERT model designed for longer sequences and
further optimized for European languages, includ-
ing Spanish (Boizard et al., 2025).

5 Results

We focus solely on analyzing the tutor LLM’s re-
sponses. Aside from restricting English and Man-
darin generations during the simulations, the only
preprocessing applied was the removal of emojis
from Gemma’s outputs.

In addition to graphically assessing the effect of
system prompts on LLM generations, we perform
a simple statistical analysis, running linear mixed
effects models separately for each LLM for each
metric:

metricmodel ∼ level + (1|chatid)

Where the dependent variables is one of the six
extracted metrics (Section 4) with level (A1/B1/C1)
as the fixed effect. Chatid is used as a random ef-
fect to account for any individual variation in the
simulated chats. To address the issue of multiple
comparisons due to the large number of linear mod-
els, we Bonferroni adjust the p-values. Refer to
Appendix A.5 for all model outputs.
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Figure 3: Readability metrics as separate density plots for each CEFR level (A1, B1, C1).

5.1 Readability Metrics

The average readability scores over time are shown
for all models and CEFR levels in Figure 2. Across
LLMs, scores from all three readability metrics de-
crease as proficiency increases, with A1 having the
highest scores (easier to read) and C1 the lowest
scores (harder to read).9 However, despite starting
from different baselines, all curves slowly decrease
in readability over time, reducing the differences
between CEFR levels as well. A notable excep-
tion is Gemma, which has a sudden spike around
the last messages in B1 for the Fernández Huerta
and Szigriszt-Pazos scores. The same behavior is
present but less pronounced for the Gutiérrez de
Polini scores.

Despite differences in average scores, the con-
fidence intervals reveal some overlap between the
levels. These differ across LLMs with a model
such as Qwen having a much greater overlap be-
tween levels B1 and C1 than Llama. Both these
models also begin with generally higher Fernán-
dez Huerta and Szigriszt-Pazos scores across levels
than Gemma and Mistral.

When examining the full distribution of scores as
density plots (Figure 3), the overlap between levels

9As expected (Section 4.1), there is a clear resemblance in
scores from Fernández Huerta and Szigriszt-Pazos, but it is
worth noting that the scores are not identical.

across all models is more evident. The distributions
also reveal that a small, but not insignificant, por-
tion of Fernández Huerta/Szigriszt-Pazos scores
reaches around 50 for C1 for Llama and Gemma.
This is well below the average scores, and indi-
cates that the LLMs are capable of producing quite
complex text, even if they often do not.

Despite the overlapping scores, all mixed effects
models revealed that B1 and C1 (p < 0.001) had
significantly lower readability scores than the base-
line A1 (β0). Across LLMs, the estimates (β) for
Fernández Huerta ranged between -4 and -9 for B1
and -12 and -17 for C110 (See Appendix A.5.1).

5.2 Structural Features

Figure 4 shows the text length and MDD. From
the averages over time, general trends are that C1
has the highest text lengths, followed by B1 and
then A1. However, like the readability metrics, the
values converge across levels over time, although
by increasing in this case.

The same pattern occurs for the MDD scores for
Llama and Qwen, although with closely intersecting
curves for C1 and B1. The results are even more
muddled for Gemma and Mistral. These results

10Given the nature of mixed effects models, no direct con-
clusion can be drawn about the significance of the difference
between levels B1 and C1, as the tests only evaluate the differ-
ence relative to the baseline, A1.

75



Figure 4: Text Length (token count) and Mean Dependency Distance (MDD). Top: Average metrics over time (95%
CI). Bottom: Density plots of the full distributions. Note that the x-axis for the Text Length distributions shows
different scales.

are reflected in the full distributions. Qwen is an
outlier when it comes to text length with a much
greater uncertainty in average lengths, having a
few generations that reach above 2000 tokens as
seen on the density plot, which is far above the
other LLMs whose highest generations are around
800-1000 tokens.

Although the distributions align more closely
for the structural metrics than the ones for read-
ability, the average values for B1 and C1, aside
from a few exceptions, still remain significantly
higher than A1 in the mixed effects models (mostly
p < 0.001). However, the estimates for text length
reveal a much greater difference between levels,
when compared to differences in the estimates for
MDD, relative to their baseline (Appendix A.5.2).

5.3 Message Surprisal Scores

Although the differences between levels in surprisal
scores are much smaller across LLMs, we still see

the average surprisal curves being "sandwiched" in
the same way as the other metrics with A1 in the
top, B1 in the middle, and C1 at the bottom (Figure
5). This trend is clearer for Llama, whereas Qwen’s
curves continuously intersect each other. Surprisal
scores are generally quite low with the density plots
in Figure 5, revealing right-skewed distributions for
all LLMs, centered around 1 or 1.5. The estimates
are therefore also quite small in the mixed effects
models, though significantly different from A1 for
all LLMs, except for Qwen (Appendix A.5.2).

6 Discussion

Our results demonstrate that system prompting
based on CEFR levels influences the tutor LLM
outputs, with all metrics exhibiting differences in
the intended order (from A1 to B1 to C1), as can
be clearly observed in the plots over time. Addi-
tional statistical significance of the differences can
be seen in the linear mixed effects models.

76



Figure 5: Message Surprisal (mean sentence surprisal) for each LLM. Top: Average Message Surprisal over time
(95% CI). Bottom: Density plots of the full distributions.

However, the differences between system
prompts consistently diminished over time, leading
to largely overlapping distributions. We adopt the
term alignment drift to describe the tendency of
LLMs to revert to unconstrained behavior over time.
While prompting may thus be useful for constrain-
ing LLM outputs, its influence appears brittle for
longer conversations. This raises concerns about
the viability of prompting alone for developing
level-specific LLM language tutors in chat-based
environments. Nonetheless, further evaluation with
a broader range of system prompts is needed before
drawing definitive conclusions.

Moreover, the effect of system prompts was not
consistent across metrics. Notwithstanding over-
laps in how these metrics are calculated, our results
suggests that all models demonstrate greater vari-
ability in terms of readability, and less variability
with regards to syntactic complexity. The surprisal
scores were even more inconsistent, although they
displayed expected tendencies, at least for some
LLMs. The low surprisal scores might be an effect
of an LLM evaluating other LLMs, which likely
have more similar probability distributions than
humans (Holtzman et al., 2019).

Nevertheless, even when evaluating the readabil-
ity metrics, it remains debatable whether the differ-
ences between levels are large enough to accurately
reflect the intended proficiency levels. With av-
erage values ranging between 110 and 70 for the
Fernández Huerta scores, the readability is equiva-
lent to Spanish school children, even at an average
of 70 (see Appendix A.4). While it is unclear how
this translates to L2 learners of Spanish, it could

suggest that the LLMs have not managed generate
text appropriate for the proficiency levels, at least
for the C1 level. Refer to the Limitations for other
considerations of the metrics.

An additional concern is that the observed align-
ment drift could have been driven by a possible drift
in the student LLM (i.e., the tutor adapting to the
student and vice versa). As we neither optimized
nor examined the student LLM, it remains unclear
how this influenced the outcome or how this would
differ with human users. However, LLMs have
also shown difficulty in following system prompts
over the course of multi-turn dialogue in other
domains with real user messages (Qiu and Yang,
2024). Hence, we do not expect a substantial dif-
ference between using human or LLM students
given our current framework. We leave it to future
research to investigate the exact influence of the
student LLM on the tutor LLM’s alignment drift,
potentially including human students as a point of
comparison.

As a final remark, we note that the LLMs did
not perform equally, which could help inform the
choice of a suitable LLM to serve as an language
tutor in Spanish, at least for initial development. A
model like Llama is relevant to highlight as a well-
performing model although its license might be too
restrictive for some applications (Meta, 2024).

7 Conclusion

This study presented a novel method for evaluating
the performance of LLMs in a language learning
context through simulated teacher-student interac-
tions. The purpose of these experiments was to
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test whether system prompting alone is enough to
constrain the complexity of LLM generated output
in a way which is suitable for language learners at
different stages.

While we see clear value in carefully designed
prompting, it is also evident from our results that
this solution is potentially too brittle for extended
interactions due to a consistent alignment drift
across interactions. This suggests that prompt en-
gineering in and of itself may not be enough to
fully constrain LLM behavior, although more ex-
perimentation with system prompting is required
before this can be confirmed. We encourage further
research in this direction, particularly measuring
alignment drift of LLMs in contexts other than L2
English learning.

Ethical Considerations

We wish to stress the importance of additional
considerations and evaluation of LLMs before
their real-world deployment in educational con-
texts. Firstly, we recognize that the models may re-
flect cultural biases that could be inappropriate for
the target student population. Therefore, cultural
alignment may be necessary before their implemen-
tation (Tao et al., 2024; Li et al., 2024). Moreover,
some of the models may not be properly instruction-
tuned to align with human principles (e.g., the re-
moval of toxic content). For instance, Mistral,
designed for demonstration purposes, lacks "mod-
eration mechanisms" according to the Mistral AI
team (Jiang et al., 2024). Such a model would re-
quire further development before being suitable for
real-world applications.

These ethical concerns are increasingly urgent
when considering the impact that generative AI
may have on language learners. For example, L2
learners might over-rely on ChatGPT (Yang and
Li, 2024) such as using it to write complete assign-
ments rather than as a supplementary tool (Yan,
2023). More broadly, the ELIZA effect (Weizen-
baum, 1966), describing our tendency to attribute
human-like qualities such as "understanding" to
machines (Mitchell and Krakauer, 2023), may con-
tribute problematically to the overtrust of AI chat-
bots (Reinecke et al., 2025). We urge developers to
prioritize the responsible implementation of LLM
systems for education and believe that our research
contributes to work in this direction.

Limitations

Imperfect Metrics
Despite covering a range of metrics to capture text
difficulty, there are many dimensions to what con-
stitutes a text as readable or complex in the context
of L2 learning. This study offers an initial attempt
at automated scoring of LLMs in Spanish in this
context, but further deliberation is warranted.

Additionally, while the Spanish readability met-
rics used in this study are widely applied across
domains, their intended use is generally unknown
(Aponte et al., 2024). As such, it is uncertain
whether they are entirely suitable for measuring
the content of shorter dialogue. At least, their En-
glish counterparts such as the Flesch Reading Ease
were developed for longer formats, making their
robustness for shorter text questionable (Rooein
et al., 2024).

For the purpose of this study, the metrics were
deemed sufficient to provide simple, interpretable
measures of the impact of system prompts on LLM
generations. Nevertheless, further work is required
to explore metrics and to develop more precise
methods to measure LLM adaptation.

System Prompts
This study only tested a single set of system
prompts as the focus of the paper was to examine
whether LLMs could be influenced by them, rather
than the extent of that influence. However, future
work may find that the system prompts could be
optimized on a variety of parameters. We discuss a
few possibilities in the sections below.

English System Prompts & Generations
Outside Spanish
Despite the target language being Spanish, we de-
fined the system prompt in English. This might
explain why the American multilingual models,
Gemma and Llama, were prone to producing English
content. However, this does not account for why
Qwen occasionally generated Mandarin Chinese de-
spite the absence of Mandarin in the system prompt.
This unintended behavior may instead reflect the
composition of the training data, with Qwen likely
containing more Chinese-language data11 than the
American models, where English likely dominates.

11Qwen 2.5’s predecessor, Qwen 7B, has a technical memo
stating that most of its training data is "in English and Chi-
nese." (Qwen Team, 2023). However, Qwen 2.5’s technical
report does not explicitly mention this, aside from including
evaluation on these two languages (Qwen Team et al., 2025).
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Future work could experiment with monolingual
models and/or explore the use of system prompts
in the target language. For most official languages
in Europe, the current framework can easily ac-
commodate the modification of system prompts
as the Council of Europe (2025c) provides official
translations of their scale in these languages.

LLM knowledge of CEFR
Although LLM generations varied across levels A1
to C1 in our study, it remains uncertain whether
it was effective to use the CEFR framework with
descriptions such as "A1" as opposed to relying
solely on terms like "beginner". It depends on
whether the state-of-the-art LLMs in our study have
acquired knowledge about the CEFR framework
from their training data.

Benedetto et al. (2025) seems to suggest oth-
erwise, reporting that several smaller 7B models
struggled to generate CEFR-aligned text, consist-
ing with findings by Malik et al. (2024). However,
as their 7B models are slightly older than those
used in this study, it is unclear how directly their
findings apply here. Similarly, the 7B models in
Malik et al. (2024) showed improvements when
provided with details about CEFR, while this was
not the case in Benedetto et al. (2025).

Further research is needed to consider the sta-
bility and usability of CEFR knowledge in LLMs,
such as through the creation of robustness bench-
marks.
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Practical and ethical challenges of large language
models in education: A systematic scoping review.
British Journal of Educational Technology, 55(1):90–
112.

Lu Yang and Rui Li. 2024. ChatGPT for L2 learning:
Current status and implications. System, 124:103351.

Aryan Yekrangi. 2022. Leveraging simple features and
machine learning approaches for assessing the CEFR
level of English texts. Itä-Suomen yliopisto | Univer-
sity of Eastern Finland.

Lingfan Yu, Jinkun Lin, and Jinyang Li. 2025. Stateful
Large Language Model Serving with Pensieve. In
Proceedings of the Twentieth European Conference
on Computer Systems, pages 144–158, Rotterdam
Netherlands. ACM.

Zhihui Zhang and Xiaomeng Huang. 2024. The im-
pact of chatbots based on large language models on
second language vocabulary acquisition. Heliyon,
10(3):e25370.

82

https://www.spanishreadability.com/gutierrez-de-polinis-readability-formula
https://www.spanishreadability.com/gutierrez-de-polinis-readability-formula
https://www.spanishreadability.com/szigriszt-pazos-perspicuity-index
https://www.spanishreadability.com/szigriszt-pazos-perspicuity-index
https://aclanthology.org/2024.scichat-1.3/
https://aclanthology.org/2024.scichat-1.3/
https://aclanthology.org/2024.scichat-1.3/
https://doi.org/10.1109/MIPRO.2015.7160383
https://doi.org/10.1109/MIPRO.2015.7160383
https://hdl.handle.net/20.500.14352/62699
https://hdl.handle.net/20.500.14352/62699
https://hdl.handle.net/20.500.14352/62699
https://doi.org/10.48550/arXiv.2407.03974
https://doi.org/10.48550/arXiv.2407.03974
https://doi.org/10.1093/pnasnexus/pgae346
https://doi.org/10.1093/pnasnexus/pgae346
https://doi.org/10.18653/v1/2022.bea-1.28
https://doi.org/10.18653/v1/2022.bea-1.28
https://aclanthology.org/2024.nlp4call-1.18/
https://aclanthology.org/2024.nlp4call-1.18/
https://doi.org/10.29140/vli.v14n1.2078
https://doi.org/10.29140/vli.v14n1.2078
https://doi.org/10.29140/vli.v14n1.2078
https://doi.org/10.18653/v1/2022.tsar-1.18
https://doi.org/10.18653/v1/2022.tsar-1.18
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1162/tacl_a_00612
https://doi.org/10.1162/tacl_a_00612
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.18653/v1/W16-0502
https://doi.org/10.18653/v1/W16-0502
https://doi.org/10.1007/s10639-023-11742-4
https://doi.org/10.1007/s10639-023-11742-4
https://doi.org/10.1111/bjet.13370
https://doi.org/10.1111/bjet.13370
https://doi.org/10.1016/j.system.2024.103351
https://doi.org/10.1016/j.system.2024.103351
http://urn.fi/urn:nbn:fi:uef-20220442
http://urn.fi/urn:nbn:fi:uef-20220442
http://urn.fi/urn:nbn:fi:uef-20220442
https://doi.org/10.1145/3689031.3696086
https://doi.org/10.1145/3689031.3696086
https://doi.org/10.1016/j.heliyon.2024.e25370
https://doi.org/10.1016/j.heliyon.2024.e25370
https://doi.org/10.1016/j.heliyon.2024.e25370


A Appendix

A.1 Technical Details about Inference
All LLM inference was run using the Hugging
Face transformers package (Wolf et al., 2020) on
a cloud-based interactive HPC platform (Python
v3.12.3, Ubuntu v24.04). Llama, Mistral, and
Qwen were run on a single NVIDIA L40 GPU (48
GB), with 96 GB of system memory and 8 vCPUs,
while Gemma was run on a system utilizing two
NVIDIA L40 GPUs. Due to the higher resource
demands of Gemma, we chose to run it with a
lower precision (bfloat16). This minor difference
in precision from the other models was not
considered impactful for the model comparisons.

We used standard hyperparameters for all
generations: temperature = 1, top_p = 1.0,
min_p = 0.05, top_k = 50, and repetition
penalty = 1.1. Hyperparameter-tuning was left
for future work.
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A.2 Illustration of Simulation Framework

Graphical overview of the simulation framework. The actual simulations consisted of nine rounds, not two. The
example text (abbreviated) is taken from a simulated conversation by Mistral in A1. For the implementation in code,
refer to the file on GitHub: INTERACT-LLM/Interact-LLM/src/scripts/alignment_drift/simulate.py.
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A.3 System Prompts for B1 and C1
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A.4 Interpretation of Readability Scales
Due to slight differences in reporting, we provide
two variations of the interpretation tables for Fer-
nández Huerta and Szigriszt-Pazos. While such
tables are commonly reported for the two metrics,
interpretations of Gutiérrez de Polini were diffi-
cult to find beyond the version proposed by Scott
(2024b).

Fernández Huerta Szigriszt-Pazos Level

90–100 86–100 Very easy
80–90 76–85 Easy
70–80 66–75 Somewhat easy
60–70 51–65 Normal
50–60 36–50 Somewhat difficult
30–50 16–35 Difficult
0–30 0–15 Very difficult

Table modified from Checa-Moreno et al. (2021)

Fernández Huerta Level Spanish Grade Level US Grade Level Age Group

101 - Extremely Easy 1º - 3º Primaria 1st - 3rd Grade 6-8 year olds
90 - 100 Very Easy 4º Primaria 4th Grade 9-10 year olds
80 - 89 Easy 5º Primaria 5th Grade 10-11 year olds
70 - 79 Somewhat Easy 6º Primaria 6th Grade 11-12 year olds
60 - 69 Average 1º - 2º ESO 7th-8th Grade 12-14 year olds
50 - 59 Slightly Difficult 3º - 4º ESO 9th-10th Grade 14-16 year olds
30 - 49 Difficult 1º - 2º Bachillerato 11th-12th Grade 16-18 year olds
Less than 30 Extremely Difficult Universidad College 18+ year olds

Table modified from Scott (2024a)

Szigriszt-Pazos Level Spanish Grade Level US Grade Level Age Group

> 85 Very Easy 1º – 2º Primaria 1st – 2nd Grade 6–7 year olds
76 – 85 Easy 3º – 4º Primaria 3rd – 4th Grade 8–9 year olds
66 – 75 Slightly Easy 5º – 6º Primaria 5th – 6th Grade 10–11 year olds
51 – 65 Average 1º – 2º ESO 7th – 8th Grade 12–14 year olds
36 – 50 Slightly Difficult 3º – 4º ESO 9th – 10th Grade 14–16 year olds
16 – 35 Difficult Bachillerato 11th – 12th Grade 16–18 year olds
≤ 15 Very Difficult Universidad College and Above 19+ year olds

Table modified from Scott (2024c)

Gutiérrez de Polini Level Spanish Grade Level English Grade Level Age Group

> 70 Very Easy 1º - 2º Primaria 1st - 2nd Grade 6-7 year olds
≤ 70 Easy 3º - 4º Primaria 3rd - 4th Grade 8-9 year olds
≤ 60 Slightly Easy 5º - 6º Primaria 5th - 6th Grade 10-11 year olds
≤ 50 Average 1º - 2º ESO 7th - 8th Grade 12-14 year olds
≤ 40 Slightly Difficult 3º - 4º ESO 9th - 10th Grade 14-16 year olds
≤ 33 Difficult 1º - 2º Bachillerato 11th - 12th Grade 16-18 year olds
≤ 20 Very Difficult Universidad y superior College and Above 19+ year olds

Table modified from (Scott, 2024b)
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A.5 Linear Mixed Effects Models
The reported p-values were Bonferroni adjusted to
mitigate the problem of multiple comparisons.

Significance levels:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

A.5.1 Readability Metrics

Term Est. SE t p (Adj.) Sig.

Fernández Huerta

Llama 3.1 8B Instruct (Intercept) 95.7719 0.8474 113.0244 0.0000 ***
levelB1 -7.6024 1.1983 -6.3441 0.0000 ***
levelC1 -15.5678 1.1983 -12.9911 0.0000 ***

Gemma 3 12B IT (Intercept) 97.2703 0.7435 130.8189 0.0000 ***
levelB1 -4.3123 1.0515 -4.1010 0.0072 **
levelC1 -16.7604 1.0515 -15.9389 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 92.1334 0.6449 142.8548 0.0000 ***
levelB1 -5.5725 0.9121 -6.1096 0.0000 ***
levelC1 -12.9711 0.9121 -14.2213 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 100.5074 0.7862 127.8371 0.0000 ***
levelB1 -8.7210 1.1119 -7.8435 0.0000 ***
levelC1 -12.3339 1.1119 -11.0928 0.0000 ***

Szigriszt-Pazos

Llama 3.1 8B Instruct (Intercept) 92.2449 0.8384 110.0213 0.0000 ***
levelB1 -7.7317 1.1857 -6.5207 0.0000 ***
levelC1 -15.7243 1.1857 -13.2614 0.0000 ***

Gemma 3 12B IT (Intercept) 93.8222 0.7454 125.8662 0.0000 ***
levelB1 -4.5200 1.0542 -4.2877 0.0000 ***
levelC1 -17.2403 1.0542 -16.3543 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 88.3932 0.6472 136.5679 0.0000 ***
levelB1 -5.4730 0.9153 -5.9792 0.0000 ***
levelC1 -12.9145 0.9153 -14.1088 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 96.7888 0.7979 121.2972 0.0000 ***
levelB1 -8.6988 1.1285 -7.7085 0.0000 ***
levelC1 -12.4825 1.1285 -11.0615 0.0000 ***

Gutierrez de Polini

Llama 3.1 8B Instruct (Intercept) 46.1233 0.3910 117.9475 0.0000 ***
levelB1 -3.3663 0.5530 -6.0871 0.0000 ***
levelC1 -7.0727 0.5530 -12.7891 0.0000 ***

Gemma 3 12B IT (Intercept) 45.7901 0.3059 149.7104 0.0000 ***
levelB1 -2.8591 0.4325 -6.6100 0.0000 ***
levelC1 -8.1961 0.4325 -18.9483 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 43.1317 0.2913 148.0795 0.0000 ***
levelB1 -1.9720 0.4119 -4.7874 0.0000 ***
levelC1 -5.3057 0.4119 -12.8804 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 46.9324 0.3823 122.7674 0.0000 ***
levelB1 -3.2680 0.5406 -6.0447 0.0000 ***
levelC1 -5.7047 0.5406 -10.5519 0.0000 ***
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A.5.2 Structural Features and Surprisal

Term Est. SE t p (Adj.) Sig.

Text Length

Llama 3.1 8B Instruct (Intercept) 115.3815 9.6949 11.9012 0.0000 ***
levelB1 76.9000 13.7107 5.6088 0.0000 ***
levelC1 122.5185 13.7107 8.9360 0.0000 ***

Gemma 3 12B IT (Intercept) 92.8037 7.4934 12.3847 0.0000 ***
levelB1 82.4185 10.5973 7.7773 0.0000 ***
levelC1 162.6963 10.5973 15.3527 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 162.7148 7.2390 22.4776 0.0000 ***
levelB1 55.7667 10.2375 5.4473 0.0000 ***
levelC1 88.3074 10.2375 8.6259 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 100.1481 25.5238 3.9237 0.0144 *
levelB1 110.4185 36.0961 3.0590 0.2160
levelC1 166.1407 36.0961 4.6027 0.0000 ***

Mean Dependency Distance

Llama 3.1 8B Instruct (Intercept) 2.2618 0.0294 76.9691 0.0000 ***
levelB1 0.3063 0.0416 7.3711 0.0000 ***
levelC1 0.3763 0.0416 9.0548 0.0000 ***

Gemma 3 12B IT (Intercept) 2.3462 0.0314 74.6559 0.0000 ***
levelB1 0.1491 0.0444 3.3543 0.0864
levelC1 0.1758 0.0444 3.9555 0.0144 *

Mistral 7B Instruct v0.3 (Intercept) 2.6218 0.0230 114.2368 0.0000 ***
levelB1 0.0866 0.0325 2.6682 0.6552
levelC1 0.1845 0.0325 5.6831 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 2.1601 0.0333 64.9271 0.0000 ***
levelB1 0.2777 0.0471 5.9023 0.0000 ***
levelC1 0.3498 0.0471 7.4337 0.0000 ***

Message Surprisal

Llama 3.1 8B Instruct (Intercept) 1.3636 0.0564 24.1764 0.0000 ***
levelB1 -0.2940 0.0798 -3.6855 0.0288 *
levelC1 -0.5212 0.0798 -6.5340 0.0000 ***

Gemma 3 12B IT (Intercept) 1.8314 0.0350 52.3230 0.0000 ***
levelB1 -0.2618 0.0495 -5.2897 0.0000 ***
levelC1 -0.5552 0.0495 -11.2155 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 1.1499 0.0292 39.3876 0.0000 ***
levelB1 -0.2128 0.0413 -5.1553 0.0000 ***
levelC1 -0.3331 0.0413 -8.0668 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 1.4898 0.0491 30.3121 0.0000 ***
levelB1 -0.1237 0.0695 -1.7793 1.0000
levelC1 -0.1338 0.0695 -1.9247 1.0000
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Abstract
Competitive programming contests play a cru-
cial role in cultivating computational thinking
and algorithmic skills among learners. How-
ever, generating comprehensive test cases to
effectively assess programming solutions re-
mains resource-intensive and challenging for
educators. This paper introduces an inno-
vative NLP-driven method leveraging gener-
ative AI (large language models) to auto-
mate the creation of high-quality test cases for
competitive programming assessments. We
extensively evaluated our approach on di-
verse datasets, including 25 years of Ro-
manian Informatics Olympiad (OJI) data for
5th graders, recent competitions hosted on
the Kilonova.ro platform, and the Interna-
tional Informatics Olympiad in Teams (IIOT).
Our results demonstrate that AI-generated test
cases substantially enhanced assessments, no-
tably identifying previously undetected errors
in 67% of the OJI 5th grade programming
problems. These improvements underscore
the complementary educational value of our
technique in formative assessment contexts.
By openly sharing our prompts, translated
datasets, and methodologies, we offer practi-
cal NLP-based tools that educators and con-
test organizers can readily integrate to en-
hance assessment quality, reduce workload,
and deepen insights into learner performance.

1 Introduction

Competitive programming has gained substantial
recognition in education for fostering computa-
tional thinking, problem-solving, and algorithmic
skills (Wing, 2006; Ackovska et al., 2015). How-
ever, comprehensive and effective test creation re-
mains labor-intensive and challenging for educa-
tors due to the need to anticipate various student
solution strategies and edge cases (Petrović and
Ivković, 2019; Luxton-Reilly et al., 2021). Re-
cent advancements in Natural Language Process-
ing (NLP) and generative AI, particularly large

language models (LLMs) such as GPT-4 (OpenAI,
2023), have opened new possibilities for automat-
ing complex educational tasks (Wang et al., 2024).

This research investigates leveraging generative
NLP techniques to automatically generate robust
and diverse test cases for programming problems.
Our approach aims to complement expert-crafted
tests, potentially reducing educators’ workload
and enhancing the quality of formative assess-
ments. We specifically analyze scenarios where
AI-generated tests improve upon initial expert
tests, revealing additional student errors or mis-
conceptions.

2 Background and Related Work

NLP techniques have increasingly been applied in
educational settings to automate tasks such as au-
tomatic scoring (Burrows et al., 2015; Attali and
Burstein, 2006), feedback generation (Kochmar
et al., 2020), and educational data mining (Romero
and Ventura, 2020). Generative models, in par-
ticular, have demonstrated significant potential in
automating content creation and providing per-
sonalized educational experiences (Kasneci et al.,
2023).

Previous studies have proposed methods for au-
tomated test case generation primarily using pre-
defined templates, symbolic execution, or genetic
algorithms (Candea and Godefroid, 2022; Fraser
and Arcuri, 2011). However, such approaches of-
ten lack flexibility or require significant domain-
specific tuning. Our research differentiates itself
by using generative NLP (specifically, LLMs) for
dynamic, contextually appropriate test generation
inspired by patterns used on competitive platforms
such as Codeforces (Codeforces, 2023).

Using LLMs for software testing in education
has been explored in works like Jalil et al. (Jalil
et al., 2023) and Mezzaro et al. (Mezzaro et al.,
2024), but these studies address general testing
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pedagogy and gamified exercises rather than test-
case generation for competitive programming or
Olympiad-style problems.

While significant interest exists regarding large
language models’ (LLMs) capabilities in com-
petitive programming contexts (OpenAI et al.,
2025; Huang et al., 2024), relatively little research
has explored leveraging LLMs specifically to as-
sist in creating problems which can be given at
Olympiads and other prestigious competitive pro-
gramming contests, with the only existent research
to our knowledge ((Liu et al., 2024), (Wang et al.,
2025), (Li and Yuan, 2024)) involves exploring the
way LLMs can help with preparing tasks given
to interview coding platforms such as LeetCode,
tasks that are often easier than those given at
IOI style competitions. Our work directly ad-
dresses this gap by providing empirical evidence
drawn from extensive historical and contempo-
rary competitive programming datasets, impacting
a broader range of problems given in contempo-
rary contests.

Our primary contributions include introducing
a novel generative NLP method for automated test
case creation, empirically demonstrating its effec-
tiveness across multiple competitive programming
datasets, and openly sharing our methodology and
datasets to support further research.

3 Methodology

3.1 Contests Selection

We decided to select a couple of different contests
for our tests spanning different formats and plat-
forms for our test. We focused on contests that
used CMS, a widely used platform for an impor-
tant set of contests where we had access to the offi-
cial data, and kilonova.ro, a platform that has open
access to sources and tests.

3.1.1 OJI

The Olimpiada Judet,eană de Informatică (OJI) is
the county-level Computer Science Olympiad in
Romania. We selected this competition due to
its significance within the Romanian informatics
community, backed by a long-standing tradition
of over 25 years and the presence of a highly
qualified scientific committee. Moreover, as pre-
sented in (Dumitran et al., 2024), the OJI dataset
has been fully translated into English and thor-
oughly benchmarked. Preliminary experiments

using the 5th-grade problems1 yielded promising
results, motivating us to extend our evaluation by
incorporating additional contests. A limitation of
the OJI dataset is that we did not have access to
the official submissions made during the contest;
instead, we relied on the sources submitted post-
contest via the Kilonova online judge. Neverthe-
less, the number of available submissions is sub-
stantial, making OJI one of the most resource-rich
datasets for programming contests in Romania.

3.1.2 IIOT
The International Informatics Olympiad in Teams
is an international team Olympiad in Informatics
which was founded in 2016 and ever since, it be-
came an increasingly prestigious contest in Roma-
nia and worldwide, being the only Olympiad style
team contest currently held in Romania. We se-
lected this competition due to its innovative na-
ture, both in terms of the format as well as due
to the nature of problem preparation, highly re-
garded as being innovative, the current team con-
sisting of dozens of former IOI and Olympiad par-
ticipants, as well as highly reputed coaches world-
wide. We have obtained access to the official con-
test server from the organizers, which allowed us
to grade the problems using the same environment
and the same submissions made during the con-
test. In addition, a large variety of post contest
source codes is available via the aforementioned
Kilonova2 judge.

3.1.3 Micul Gates, Info Oltenia, FII Code
We aimed to include in our evaluation contests
from 2025, as their scientific committees may
have leveraged Large Language Models (LLMs)
and other modern tools in the test creation pro-
cess. This allowed us to investigate whether our
methodology still yields consistent results under
these new conditions. Consequently, we extended
our experiments to recent contests hosted on the
Kilonova platform. An additional advantage of us-
ing these local contests is that we had access to the
official contestant submissions, providing a more
complete and reliable dataset for our analysis.

FIICode3 is an annual programming contest
held by students from UAIC, with an online quali-

1The OJI V problem set used can be accessed at: https:
//kilonova.ro/problem_lists/453

2The IIOT problem set used can be accessed at: https:
//kilonova.ro/problem_lists/1286

3The FII Code 2025 problem set used can be accessed at:
https://kilonova.ro/problem_lists/1398
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fication round and an onsite final round. The prob-
lem difficulty is usually similar to a Codeforces
Div. 2 Round.

Info Oltenia4 is an annual programming con-
test organized by teachers and enthusiasts from
the Oltenia region in south-west of Romania. This
contest has a long tradition and is essential in train-
ing the students from the region for OJI and ONI.

Micul Gates5 is an annual junior programming
contest organized in Oltenia targeted at middle
school students who are starting their competitive
programming journey.

These local contests, while being less presti-
gious than the Olympiad in Informatics, are very
important for training both beginners and experts
alike. Therefore, having a quality grading and
testing environment in places often overlooked by
problem setters is essential in order to nurture the
young students’ development. Thus, we found in-
cluding these contests important for fulfilling the
goals of our research.

3.1.4 RoAlgo Weekly

Furthermore, we also extened our methods to a
new series of contests, RoAlgo Weekly Contests,
organized by a group of volunteers from RoAlgo,
the largest Romanian online competitive program-
ming community. These contests involve very
easy problems, resembling the tasks given at na-
tional informatics exams and college admission
tests and we worked with the problem setting team
and offered them the tools developed as part of
our research. We have observed an improvement
in the contest quality and the productivity of the
team, as the process of preparing problems be-
came faster, while also improving the quality of
the test data.

3.2 Platforms and Evaluation &
Reevaluation

3.2.1 Kilonova

Kilonova is an open-source competitive program-
ming platform from Romania, whose accessibility
has facilitated its use in various research activities
(Dumitran et al., 2024, 2025). Its open nature pro-
vides valuable features beneficial for NLP-driven
research: submissions and evaluation results are

4The Info Oltenia 2025 problem set used can be accessed
at: https://kilonova.ro/problem_lists/1342

5The Micul Gates 2025 problem set used can be accessed
at: https://kilonova.ro/problem_lists/1347

publicly accessible and easy to collect program-
matically; problem statements are structured in
Markdown, an LLM-friendly format; and test files
for most problems are conveniently downloadable.
Additionally, the platform offers a straightforward
API for integration and automation.

With cooperation from platform administrators,
we established a mirror of the official Kilonova
instance, containing a comprehensive set of his-
torical and contemporary programming problems.
Using Python scripting, we developed a semi-
automated pipeline for each problem, consisting
of the following steps:

1. Obtaining the official model solution;

2. Instructing the LLM to generate new test
cases based on the problem statement and
specified constraints;

3. Packaging and uploading the new test cases
to the mirrored platform;

4. Selectively reevaluating previously accepted
submissions to measure the effectiveness and
robustness of the newly generated tests.

This selective reevaluation capability allowed
targeted assessment of the incremental value pro-
vided by AI-generated test cases without disrupt-
ing the broader user experience.

3.2.2 CMS
CMS (Contest Management System) has been the
de facto standard online judging platform for the
International Olympiad in Informatics since 2012
(Maggiolo et al., 2012), and is widely adopted for
national and international programming contests
including ICPC, OJI (since 2021), and IIOT. The
widespread adoption of CMS is due primarily to
its robustness, scalability, and comprehensive sup-
port for managing multiple test datasets.

In our research context, CMS provided sig-
nificant advantages, notably its inherent support
for parallel management of distinct sets of tests,
facilitating direct and meaningful comparison of
submission performance across different testing
methodologies. However, the platform lacks a
comprehensive API, necessitating more manual
and labor-intensive processes for uploading tests
and retrieving evaluation results, which somewhat
limited our automation capabilities compared to
Kilonova.
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3.2.3 Scoring System
In our research, we have relied on IOI-style scor-
ing, where a solution code can earn between 0
and 100 points depending on the proportion of
test cases on which they produce a correct out-
put within the time and memory parameters, as
this was the scoring system used in every contest
in our dataset except for FIICode (FIICode used
ICPC style scoring, where a solution must pass
all test cases to earn full credit). While the scor-
ing system differs slightly across various IOI style
contests, our research relied on scoring solutions
with a score between 0 and 100 points, propor-
tional to the number of test cases passed by the
AI-generated test cases (4 points per test case, 25
test cases in total, therefore a maximum score of
100 can be achieved).

3.3 Generative AI-Based Test Generation

We utilized o3-mini-high, the newest and most
powerful publicly available model developed by
OpenAI for coding-related tasks. Through pre-
cise prompt engineering, we guided the model to
generate tests based on patterns inspired by the
Codeforces problem set. The prompts included
detailed problem descriptions and explicit instruc-
tions for creating edge cases, boundary values, and
complex scenarios designed to challenge diverse
programming strategies. The generated tests were
integrated with existing contest management sys-
tems (CMS, Kilonova) for immediate and scalable
evaluation.

Leveraging our competitive programming expe-
rience, we used testlib6, the standard C++ library
for contest tasks (used by Codeforces/Polygon).
Initially, we used an LLM to generate testlib com-
ponents (generator, validator, parameters, batch
file). This batch file ran the generator with a model
solution manually extracted from contest sources
(official or Kilonova). We used English prob-
lem statements generated via prior work (Dumi-
tran et al., 2024).

3.3.1 Prompting
Our initial prompt, designed to guide the LLM in
generating testing components, was structured as
follows:

You are given a competitive program-
ming problem in markdown. Based on

6https://github.com/MikeMirzayanov/
testlib

this problem, please create the follow-
ing tools in order to test students’ source
codes against a set of strong test cases.

• Test case generator (ideally, you
should use the testlib.h li-
brary developed for Codeforces).
The generator should compile ac-
cording to C++17 standards and
you should avoid direct usages of
opt method unless you write a
function that specifically creates
that template

• Validator for validating the tests
generated

• Test case parameters which can
be used by the testcase generator
aforementioned

• A batch file for Windows that runs
the generator for all test cases.

The test cases generated must be com-
prehensive, cover all possible corner
cases and include tests with maximum
parameters for the input constraints as
well as inputs spread out (add more
large tests). generate a set of 25 test
case parameters which can be used
by the generator. the pattern for test
case names should be test01.in,
test02.in etc. Below you get the
task attached.

While this initial prompt yielded promising re-
sults, we observed inconsistencies...

Therefore, we developed an upgraded version...
This revised prompt was:

You are given a competitive program-
ming problem in markdown. Based on
this problem, please create the follow-
ing tools in order to test students’ source
codes against a set of strong test cases.

• Test case generator:
– It uses the testlib.h library

developed for Codeforces
– The generator must be written

in C++ 17
– Use argvs for parameters,
cout for printing

Here is an example based on an-
other problem which should be
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your model:
(here, the model code based on one
of the preliminary results was at-
tached)

• Validator for validating the tests
generated

• Test case parameters which can
be used by the testcase generator
aforementioned

• A batch file for Windows that runs
the generator for all test cases
Here is a model for the batch file.
(here, the model batch file was at-
tached)

The test cases generated must be com-
prehensive, cover all possible corner
cases and include tests with maximum
parameters for the input constraints as
well as smaller tests (prioritize larger
test cases). Generate a set of 25 test
case parameters which can be used by
the generator. The pattern for test
case names should be test01.in,
test02.in etc.

Task is attached.

This prompt enhances flexibility for complex
programming challenges by making its generated
parts easy to adjust.

4 Experiments

4.1 Experimental Setup
We investigated two primary applications for the
LLM-generated test data:

1. Complementary Role: Augmenting exist-
ing human-authored test suites to improve
coverage, potentially catching more edge
cases or maximum constraint scenarios.

2. Replacement Role: Assessing if LLMs can
fully replace human effort in test case gener-
ation for simpler problems without compro-
mising test quality.

All experiments used the refined prompt (detailed
earlier) via the OpenAI API with English prob-
lem statements as input. For each problem, an
LLM generated 25 test cases. We compared solu-
tion performance on the original human tests ver-
sus these AI-generated tests, specifically measur-
ing how many initially 100-point solutions failed
on the AI data. Findings are detailed below.

4.2 OJI Dataset Analysis

For the Romanian National Olympiad in Infor-
matics (OJI) dataset, we focused on the comple-
mentary role (point 1 above), evaluating if LLM-
generated tests could enhance existing human-
curated suites.

Using an internal Kilonova instance, we re-
placed official tests with the 25 LLM-generated
tests and re-judged previously 100-point solutions,
recording the number still passing.

15
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10.1-25%
25.1-50%
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Figure 1: Impact of AI-generated tests on previously
accepted OJI V solutions. The chart shows the dis-
tribution of 46 problems based on the percentage of
their 100-point solutions that failed when re-evaluated
against the LLM-generated test set.

Figure 1 shows the AI tests’ effectiveness on the
OJI V dataset. While ≈33% (15/46) of problems
showed no change for 100-point solutions, most
≈67%, 31/46) saw some previously accepted so-
lutions fail the new tests. Notably, for≈13% (6/46
problems), over 25% of prior 100-point solutions
failed (4 in the 25.1-50% range, 2 over 50%). This
significant failure rate in a subset of problems un-
derscores the potential for LLM-generated tests to
uncover non-trivial edge cases or scenarios missed
by human-authored test data, thus serving a valu-
able complementary role.

4.3 IIOT

As we got access to the official contest server, we
were able to extract more complex data for the
problems, thus being able to identify the number
of solutions which passed both sets of test data as
well as only one of them.

We have tested our method on the batch prob-
lems given at this year’s preliminary rounds, the
most standard category of problems given in
olympiads in informatics. As we had wider ac-
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cess to data, we have been able to extract more
information out of grading the original and the AI
generated dataset.

Problem 100p Before 100p After Both Sets Only Original Only AI
walrus 114 113 109 5 4
azugand 49 49 47 2 2
expansionplan 0 0 0 0 0
problemsetting 65 65 65 0 0
binarygrid 21 21 21 0 0
divisor 58 57 57 1 0
homework 0 7 0 0 7
rummy 2 2 2 0 0
videogame 2 2 2 0 0
tetristiling 2 2 2 0 0
progressiveart 56 43 41 15 2
rummy 2 2 2 0 0
kingdomroads 1 1 1 0 0
indexing 81 51 51 30 0
rmi 81 77 73 8 4
sandwich 44 27 19 25 8
boardgame 43 43 41 2 2
weights 7 7 7 0 0
andqueries 12 11 9 3 2
pali2 51 3 3 48 0
maxdifference 36 30 29 7 1
lake2 5 4 4 1 0
pizza 53 31 31 22 0
subjects 117 104 103 14 1
matred 17 11 11 6 0

Table 1: IIOT results with original and AI set

The addition of AI-generated test cases demon-
strably improved the grading process for this
dataset. For several problems, the AI tests proved
stronger than the original human-authored ones;
notably, for pali2 and pizza, numerous solu-
tions previously accepted failed the AI tests, often
due to incorrect answers (WA) or exceeding time
limits (TLE).

However, these results also preclude using AI
tests as a complete replacement for human cura-
tion at this stage. Conversely, for problems like
sandwich, walrus, and homework, a signif-
icant number of solutions passed the AI tests de-
spite failing the original human-authored set, in-
dicating the AI tests missed certain critical cases
captured by the originals.

Therefore, while LLMs show significant
progress in test case generation, they cannot yet
reliably replace human effort entirely across all
scenarios. Our findings indicate that a hybrid
approach—augmenting human-curated test sets
with LLM-generated cases—currently offers
the most robust path toward improving test data
quality and ensuring more accurate grading (i.e.,
maximizing the acceptance of correct solutions
while rejecting incorrect ones).

4.4 Local and Regional Contests

Similarly to IIOT dataset, we had access to all the
official submissions made by the contestants dur-

ing the rounds, as well as the complete statistical
data on the number of accepted solutions. How-
ever, due to the limitations of the Kilonova online
judge, we were only able to test whether the new
test data can help us in a complementary setup.

4.4.1 Info Oltenia
Applying the same methodology to the Info Olte-
nia contest (hosted on Kilonova), we analyzed 18
problems, noting this contest uses distinct prob-
lem sets and committees per age group. Results
are summarized in Figure 2.
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Figure 2: Impact of AI-generated tests on previously
accepted Info Oltenia solutions (18 problems ana-
lyzed). The chart shows the distribution based on the
failure rate of 100-point solutions against LLM tests.

As shown in Figure 2, the LLM-generated tests
frequently identified flaws missed by the origi-
nal suites. Notably, ≈28% (5/18 problems) saw
over 25% of their prior 100-point solutions fail
the new tests, with ≈17% (3/18) exceeding a
50% failure rate. This significant impact, poten-
tially linked to the varied committees, highlights
the value of LLM tests in complementing human-
authored sets, especially where original test qual-
ity may vary.

4.4.2 FIICode
For the FII Code 2025 contest hosted on Kilonova,
we evaluated both original and upsolved submis-
sions against LLM-generated tests. This analy-
sis strongly confirmed the exceptional quality of
the original human-authored test cases, reflect-
ing the contest’s reputation for rigorous problem
setting, often driven by Balkan/Central European
Olympiad in Informatics (BOI/CEOI) and Interna-
tional Olympiad in Informatics (IOI) medalists.

The LLM-generated tests had a remarkably
minimal impact. Across the six problems that re-
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ceived accepted solutions during the contest or up-
solving period7, five saw absolutely no change in
the verdict for submissions that initially scored
100 points when re-evaluated against the aug-
mented test set. For the single exception, Iggy
and Bits, where one submission out of 41 pre-
viously accepted solutions failed after the addition
of the LLM tests (reducing the 100-point count
from 41 to 40). This outcome, with only a sin-
gle verdict change among hundreds of 100-point
solutions across the contest, highlights the robust-
ness of the original test suite and indicates limited
added value from simple LLM test augmentation
in this high-quality setting.

4.4.3 Micul Gates 2025

Applying our methodology to the Micul Gates
2025 contest on Kilonova, we found the LLM-
generated tests demonstrated higher relative
strength compared to the original suite for this
event. Notably, no submission passed the AI tests
while failing the original ones.

Furthermore, the AI tests proved strictly
stronger for problem stalpi, where all 5 orig-
inally accepted solutions failed the new tests. For
the other evaluated problems receiving accepted
solutions (joc, numere, sir), the 100-point
counts remained unchanged8. This suggests the
LLM successfully generated more comprehensive
or challenging test cases than the original set in
this instance.

4.5 Qualitative Application: RoAlgo Weekly
Contests

RoAlgo Weekly Contests are a series of con-
tests hosted on Kilonova where the challenges
are of a much lower level than those given at
the olympiads and programming contests, and the
problem setting team has used our method to gen-
erate the test data, which has improved their work
significantly as there was no need of humanly gen-
erated data anymore. The testers have checked the
data generated and there were no errors whatso-
ever.

7Problems analyzed were Maximize Grandi’s
Function (190 AC solutions), No More Threes (124
AC), Golderberg (107 AC), Frumusel (89 AC), Iggy
and Bits (41 AC), and More or Less (14 AC).
An additional problem, Accent, received no accepted
solutions.

8Analyzed problems and initial AC counts: joc (28),
numere (5), sir (7), stalpi (5). sophie had 0 AC.

5 Results Analysis and Discussion

Our experiments across diverse datasets highlight
the potential and nuances of using LLMs for test
case generation in programming education con-
texts.

5.1 Overall Verdict Analysis

To understand the types of errors uncovered by
the AI-generated tests across different datasets, we
analyzed the distribution of verdicts for solutions
that passed the original tests but failed the aug-
mented set. The primary verdict types considered
are:

• WA (Wrong Answer): The program pro-
duced incorrect output on at least one test
case.

• TLE (Time Limit Exceeded): The program
failed to complete within the allocated time
limit.

• MLE (Memory Limit Exceeded): The pro-
gram consumed more memory than permit-
ted.

• RE (Runtime Error): The program termi-
nated abnormally (e.g., crash, invalid mem-
ory access).

Due to the very low frequency of Runtime Er-
rors (only 4 instances across all analyzed datasets
where AI tests caused a previously accepted solu-
tion to fail with RE), they have been omitted from
the following chart (Figure 3) for clarity.

In the OJI V dataset, reflecting problems for
younger students, Wrong Answer (WA) verdicts
dominated the newly failed solutions (250 in-
stances). This suggests the AI tests primarily
caught logical errors or missed edge cases com-
mon among less experienced programmers. In
contrast, the IIOT dataset, featuring more complex
problems, showed a more balanced distribution
between WA (96 instances) and Time Limit Ex-
ceeded (TLE) errors (81 instances), with a smaller
number of Memory Limit Exceeded (MLE) cases
(13 instances). This indicates the AI tests for
IIOT were effective at identifying suboptimal al-
gorithms or implementations (TLE) alongside log-
ical flaws (WA).
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Figure 3: Distribution of primary verdicts (WA, TLE,
MLE) for solutions that passed original tests but failed
AI-generated tests, stacked by dataset category. RE
verdicts (4 instances total) omitted due to low fre-
quency.

5.2 Illustrative Cases: Successes and
Challenges

The quantitative data is complemented by specific
examples. The AI tests demonstrated remarkable
success in cases like pali2 (IIOT), where 48 out
of 51 previously accepted solutions failed on a
maximal TLE-inducing test missed by the origi-
nal setters. Similarly, for cartele (OJI), nearly
two-thirds of solutions failed on various corner
cases identified by the AI. This often occurred
with older problems where manual test genera-
tion standards might have been less rigorous, high-
lighting the AI’s ability to systematically explore
edge conditions.

However, the LLM approach faced challenges
with certain problem types, particularly those in-
volving complex geometric properties or very
specific input constraints, such as The Dutch
Farmer (IIOT) and Vedere (InfoOltenia). Gen-
erating valid and meaningful tests for such prob-
lems remains difficult even for humans and repre-
sents an area requiring more sophisticated prompt-
ing or validation. Furthermore, as seen in the
IIOT analysis (e.g., sandwich, walrus), AI
tests sometimes missed cases caught by human ex-
perts, leading to solutions erroneously passing the
AI set.

5.3 Implications for Assessment and
Education

Our findings strongly support the use of LLM-
generated test cases in a complementary role.
They demonstrably enhance existing test suites by
uncovering errors missed by human setters, partic-
ularly for edge cases and performance limitations.
This directly improves the accuracy and fairness
of assessments. As evidenced by the RoAlgo
Weekly contests, this approach can also increase
the productivity of problem-setting teams, espe-
cially for less complex problems, by providing a
strong baseline set of tests.

The results also clearly indicate that current
LLM-based generation is not yet reliable enough
for full replacement of human-authored tests in
all scenarios, especially for complex problems or
high-stakes competitions. The instances where AI
tests were weaker than human tests highlight the
need for expert oversight.

The most effective approach appears to be a
hybrid model: leveraging LLMs to generate a
broad set of candidate tests, including challeng-
ing boundary and performance cases, followed by
human expert review, selection, and potential aug-
mentation. This combines the scalability and sys-
tematic exploration of AI with the nuanced under-
standing and validation capabilities of human ex-
perts.

Furthermore, integrating AI-generated tests can
provide valuable formative feedback, helping ed-
ucators identify common student misconceptions
or areas where algorithmic understanding is weak
(e.g., distinguishing WA-prone vs. TLE-prone
problems). Reducing the burden of manual test
creation can free up educator time for more direct
student interaction and instructional design.

6 Future Work

While initial results are promising, we can sig-
nificantly improve outcomes for certain problems
by using more specific prompts for the generator,
such as instructing models to output code for spe-
cific graph types.

Additionally, experimenting with more LLMs
beyond OpenAI’s o3-mini-high could provide
valuable comparisons of different generation
methods. We also note that generating more than
the current 25 test cases per problem would better
align with real-world competitive programming
requirements, especially for difficult problems.
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Building on this, we propose three research di-
rections:

• ICPC-Style Contests: Adapt the methodol-
ogy for team competitions.

• Platform Generalization: Validate on more
platforms (e.g., LeetCode, HackerRank, uni-
versity systems, other olympiads).

• Human-AI Co-Design: Develop tools
for educator-guided refinement and AI-
suggested edge cases for human validation.

These directions aim to test the limits of auto-
mated generation while ensuring alignment with
real-world assessment practices.

Limitations

While our approach demonstrates significant
promise in automating test generation for pro-
gramming contests, several limitations merit dis-
cussion:

• Platform Coverage: Our analysis focused
primarily on contests hosted on the Kilo-
nova.ro platform and the IIOT dataset (eval-
uated using CMS). While these represent
diverse formats (national olympiads, team
competitions, online platforms), they do
not encompass all important paradigms like
ICPC-style contests or widely used platforms
such as Codeforces or AtCoder. Expand-
ing to these platforms could reveal context-
dependent variations in test-generation effi-
cacy but faces challenges in accessing both
contestant solutions and original test cases
due to privacy and intellectual property con-
straints.

• Model Dependencies: The quality and ef-
fectiveness of the generated tests are in-
trinsically linked to the capabilities of the
underlying LLM (in our case, OpenAI’s
o3-mini-high model9) and the precision
of the prompt engineering. Performance may
vary significantly when using different LLMs
(e.g., open-source models or those from other
providers) or less optimized prompts. While
we release our final prompts to aid repro-
ducibility (see Appendix X), the core model
capability remains a key factor.

9You might want to specify if this is known to be based
on GPT-4 or a similar architecture, if permissible.

• Generalizability for Full Replacement:
Our findings strongly support the use of
LLM-generated tests in a complementary role
to enhance existing human-authored suites,
particularly effective for identifying edge
cases or performance issues missed in older
or less rigorously tested problem sets (e.g.,
OJI V, Info Oltenia). However, the results,
particularly from the high-quality FIICode
contest and instances in the IIOT dataset
where AI tests missed errors caught by hu-
man tests, indicate that current LLM-based
generation is not yet consistently reliable
enough for full replacement of expert-curated
tests, especially in high-stakes competitions
or for problems with very complex logical or
constraint structures. Human oversight and
validation remain essential.

• Cost and Scalability: Although utilizing
proprietary LLM APIs can raise concerns
about operational costs, our extensive evalu-
ation across multiple contests demonstrated
exceptional cost-effectiveness. The entire
process of generating 25 test cases for each
analyzed problem incurred a total API cost of
only $4.64 USD. This was achieved through
an efficient combination of targeted API
calls (averaging approximately $0.1 USD per
problem) and leveraging free user interface
interactions during development where feasi-
ble. This low cost underscores the method’s
practicality and affordability for educators
and contest organizers seeking substantial
improvements in test coverage and potential
time savings compared to manual creation,
without significant financial investment.

• Fixed Number of Generated Tests: We
standardized on generating 25 test cases per
problem for this study. While effective in re-
vealing previously undetected errors across
various datasets, this fixed number may not
be universally optimal. Real-world com-
petitive programming practices often involve
larger test sets, especially for more difficult
problems. Future work could investigate gen-
erating a larger or adaptive number of tests
based on problem complexity or type, al-
though this would proportionally impact the
(currently very low) generation cost.
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Ethical Considerations

The use of generative AI in educational assess-
ments raises several ethical concerns that require
careful mitigation:

• Transparency: All AI-generated content in
our experiments is clearly documented, with
prompts and methodologies openly released
to enable scrutiny (Mitchell et al., 2019).

• Data Privacy: Contestant solutions were
anonymized and used in compliance with
GDPR and platform terms of service. No
personally identifiable information was pro-
cessed by our models. In fact the contestant
data was never given to the models and only
the open available problem definition were
offered to them.
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store the sequence by replacing the−1 values with
the same number of his choice. Your task is to de-
termine the length of the longest palindromic con-
tiguous substring that can be obtained after choos-
ing an optimal value for x.

TLE test for Longest Palindrome: N =
200000, a1 = a2 = . . . = an = −1

Cartele abridged statement: You are given an
access card system developed in a school, with
every student having one such card. The system

prints every day the log of the students, with vari-
ous information shown. Knowing the set of infor-
mation, find the number of boys and girls who are
still at school, the number of seconds where we
had at least one student in school and the biggest
timespan where an odd number of boys were at
school at the same time.

WA test for Cartele:
C = 3, N = 8, logs =

[[b i 0 10 28], [f i 0 10 30], [b e 0 10 33]
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, [f i 0 10 58], [f i 0 11 4]]
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Abstract

Large Language Models (LLMs) offer many
opportunities for scalably improving the teach-
ing and learning process, for example, by simu-
lating students for teacher training or lesson
preparation. However, design requirements
for building high-fidelity LLM-based simula-
tions are poorly understood. This study aims
to address this gap from the perspective of key
stakeholders—teachers who have tutored LLM-
simulated students. We use a mixed-method ap-
proach and conduct semi-structured interviews
with these teachers, grounding our interview de-
sign and analysis in the Community of Inquiry
and Scaffolding frameworks. Our findings in-
dicate several challenges in LLM-simulated
students, including authenticity, high language
complexity, lack of emotions, unnatural atten-
tiveness, and logical inconsistency. We end by
categorizing four types of real-world student
behaviors and provide guidelines for the design
and development of LLM-based student simu-
lations. These include introducing diverse per-
sonalities, modeling knowledge building, and
promoting questions.

1 Introduction

Interactive student simulations provide a valuable
tool for educators and students to prepare for
lessons in a safe environment (Bradley and Kendall,
2014; McGarr, 2021; Chin et al., 2013) but often re-
quire substantial human resources, for example, for
peer role-playing (Wang et al., 2021). Among other
benefits, simulations allow pre-service teachers to
practice guiding and managing students (Markel
et al., 2023; McGarr, 2021), a skill they often feel
unprepared for (Shank, 2023). In addition, in-
service teachers can use simulations to enhance ed-
ucational content and pedagogy (Aguilar and Kang,
2023). At the same time, students can benefit from
learning by teaching a simulated peer (Chin et al.,
2013). However, the need for human resources,
e.g., to role-play students (Wang et al., 2021) or

to set up mixed reality simulations (Aguilar and
Telese, 2020), hinders a large-scale adaptation.

Simulating students using Large Language Mod-
els (LLMs) promises to alleviate this because
LLMs can be accessed at any time and do not re-
quire involving vulnerable groups such as young
learners. This is particularly attractive in educa-
tional settings, since frequent practice and expo-
sure to diverse student behaviors are crucial to
learning to teach effectively (Dagdag and Bandera,
2021; Loewenberg Ball and Forzani, 2009). More-
over, practicing with computer-simulated students
reduces psychological strain from fear of making
mistakes, among others (Chase et al., 2009). Fi-
nally, LLMs can offer personalized experiences by
adapting to individual user needs and educational
contexts (Eapen and Adhithyan, 2023) which has
been shown to positively impact pre-service teacher
training (Arnesen et al., 2019).

Specifically, we focus on the dialogue tutoring
setting (Macina et al., 2023b), in which a human
teacher is helping an LLM-simulated student to
solve a problem. The goal of such a simulation
is for the teacher to experience a realistic tutoring
setting to improve their teaching skills.

To be useful, LLMs need to faithfully repli-
cate real-world student behaviors, but the extent
to which they can do so has not yet been explored
well. In addition to more well-known shortcom-
ings, such as their tendency to generate unnatural
or false responses (Fu et al., 2024b; Tamkin et al.,
2021), LLMs may be inconsistent with personal
values (Kovač et al., 2024) and under-represent
certain demographic groups when simulating per-
sonas (Wang et al., 2024a). Furthermore, a recent
review highlighted that almost half of the studies
that involved simulated learners did not validate
whether their model was realistic enough to repre-
sent real students (Käser and Alexandron, 2024).
This tendency raises questions about the reliability
of these simulations in educational contexts. This
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paper aims to address these concerns by answering
the following research questions:

RQ1. How do LLM-simulated students deviate
from the authentic behaviors of K12 stu-
dents?

RQ2. How can LLM students be improved to bet-
ter represent authentic student behaviors?

To answer these research questions, we con-
ducted semi-structured interviews with 12 teachers
who extensively interacted with LLM-simulated
students during the creation of a dialogue tutor-
ing dataset MathDial (Macina et al., 2023a). We
used an analysis of this dataset to design interview
questions based on two frameworks: the Commu-
nity of Inquiry (CoI) (Garrison, 2016), which de-
scribes learning in online environments, and the
Scaffolding theory (Reiser, 2004), which provides
guidelines for effective teaching. See Fig. 1 for an
overview of our interview design and analysis.

Our results indicate that LLMs can replicate
some of the behaviors of an attentive student but
still lack authenticity and diversity. Participants
noted that the LLM students’ responses were too
technical and complex, lacked emotional expres-
sion, and sometimes were logically inconsistent
or overly involved. We compared these findings
with real-life student behaviors, which we classi-
fied into four categories in terms of scaffolding
support needed as well as cognitive and social pres-
ence. Grounded in the Community of Inquiry and
Scaffolding frameworks, these four categories offer
a framework for designing educational LLM sys-
tems. We use these results to provide guidelines for
developing more realistic LLM student simulations,
including introducing diverse student personalities,
modeling gradual knowledge building, and promot-
ing question-asking.

2 Related Work

2.1 AI-Simulated Students in Tutoring

Simulations of learners have been used for vari-
ous purposes, including teacher preparation, peer
learning, and system evaluation (VanLehn et al.,
1994). For example, (Matsuda et al., 2007) exam-
ined whether a machine learning model can repli-
cate how students learn to solve linear equations.
However, many early simulations required signifi-
cant effort, despite modeling narrow settings (Mat-
suda et al., 2015).

LLMs have made these simulations consider-
ably more accessible. Recent applications include
simulating students to assess the quality of automat-
ically generated questions (Lu and Wang, 2024), or
using LLMs as teachable agents for learning debug-
ging (Ma et al., 2024). However, whether the re-
sulting model is realistic enough to represent a real
student is not fully understood. A survey (Käser
and Alexandron, 2024) found that only 3% of the
studies that simulate learners do a post-factum vali-
dation of their model. Moreover, there is a grow-
ing trend of not validating LLM outputs or relying
on LLMs validating themselves (Shankar et al.,
2024). In contrast, we base our work on first-hand
insights of teachers communicating with LLM stu-
dents, which provides a deeper understanding of
the realism of these models.

Namely, we interviewed teachers who took part
in the collection of an existing open-source dataset
MathDial (Macina et al., 2023a). We chose this
dataset over other educational datasets such as
NCTE (Demszky and Hill, 2023), Bridge (Wang
et al., 2024b), or TalkMoves (Suresh et al., 2022),
because, to the best of our knowledge, it is the
only publicly available dataset of interactions be-
tween real teachers and LLM-simulated students.
Additionally, the MathDial dataset is enriched by
teacher annotations such as realism ratings.

2.2 Believability of LLM Simulations

According to (Park et al., 2023), believable agents
provide an illusion of life and present a facade of
realism in the way they appear to make decisions
and act of their own volition. One common ap-
proach to evaluating believability is to compare
LLM-generated and real-world (Hämäläinen et al.,
2023). In our work, we use a similar approach by
contrasting the experiences of teachers with LLM
simulations and real interactions.

What constitutes a believable simulation is often
dependent on its context; for example, applications
in psychology focus on personal experience (Chen
et al., 2023), while character motivation is impor-
tant in games research (AlJammaz et al., 2024).
In education, the focus is often on cognitive as-
pects, with the social component addressed in a too
broad or unsystematic way (Jin et al., 2024; Jinxin
et al., 2023). In this work, we also account for the
social aspect by using the Community of Inquiry
framework, which we introduce next.
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Figure 1: An illustration of our study stages: 1) We analyze an existing teacher-LLM tutoring dataset using the
Community of Inquiry framework and derive interview questions from this analysis. 2) We interview teachers
involved in data collection. 3) We outline guidelines for LLM student design and development.

2.3 Community of Inquiry and Scaffolding

Two important considerations in our study are the
environment in which teachers use simulations and
the form of teaching that is used. For the former,
simulations are usually naturally used in an online
setting, for example, through a web application.
The Community of Inquiry (CoI) is a framework
that is frequently used to understand online con-
versations in the context of education (Garrison,
2016). We adopt this framework to ground our
interviews. CoI is based on three pillars: social
presence, cognitive presence, and teaching pres-
ence. Social presence is defined as the ability of
learners to project themselves socially and emotion-
ally, thereby being perceived as “real people” in
mediated communication (Garrison and Arbaugh,
2007). Cognitive presence is described in Garri-
son et al. (2001) as the extent to which learners
are able to construct and confirm meaning through
sustained reflection and discourse. Teaching pres-
ence is the design, facilitation, and direction of cog-
nitive and social processes to achieve personally
meaningful and educationally worthwhile learning
outcomes (Garrison et al., 1999).

However, since the CoI framework gives limited
attention to the active role of the teacher in guid-
ing learning (Richardson and Lowenthal, 2017),
we enriched the teaching presence with the Scaf-
folding theory (Wood et al., 1976; Quintana et al.,
2004). In the setting of tutoring using scaffolding,
the teacher guides the students and allows them
to cognitively engage with the problem. Teach-
ers usually follow a set of teaching strategies or
moves (VanLehn, 2011; Nye et al., 2014; Hennessy
et al., 2016) such as questioning with various ef-
fectiveness on learning (Michaels et al., 2008; Hen-
nessy et al., 2016). The level of scaffolding needed
depends on the student (Quintana et al., 2004; Van-

Lehn, 2011) and often includes actively engaging
them with the problem, including failure, which is
more productive for learning (Kapur and Bielaczyc,
2012). In our paper, we investigate how the behav-
ior of LLM-simulated students influences teaching
strategies.

3 Methods

To answer RQ1, we focus on the existing open-
source dataset MathDial (Macina et al., 2023a),
in which teachers helped LLM-simulated students
to solve a math problem, as shown in Fig. 1. To
understand teachers’ perceptions of LLM students’
realism, we conducted interviews with participants
of the MathDial study, described in Section 3.1. We
then describe how analyzing the MathDial dataset
provided initial insights into the realism of LLM
student simulations (Section 3.2) and informed the
development of interview questions (Section 3.3).

3.1 Participants
We recruited 12 teachers or tutors of STEM sub-
jects among those who took part in the MathDial
study (Macina et al., 2023a) through Prolific.1 We
pre-screened participants to ensure they taught tech-
nical subjects, aligning with experience in the study.
After signing the consent form, each participant re-
ceived as a reminder three example dialogues that
they personally had in the MathDial study.

10 out of 12 participants teach mathematics,
while the rest focus on natural sciences. The partici-
pants teach children and adolescents, in institutions
ranging from primary schools to universities. 3 par-
ticipants have been teaching for less than 3 years,
while the rest — for more than 11 years. Most
participants (8 out of 12) are UK-based, while the
others work in Canada. 10 participants are female,

1https://www.prolific.com/
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and the rest 2 are male, which is in line with the
80% proportion of female participants in the pre-
ceding study. The participants had an average of
35 dialogues with LLM students in the MathDial,
with a standard deviation of 28. More details on
participants’ data can be found in Appendix A.

3.2 Developing Questions: MathDial Dataset
Analysis

To design interview questions that capture teachers’
perspectives on LLM students and address RQ1,
we first analyzed the existing open-source tutoring
MathDial dataset (Macina et al., 2023a), focusing
on teachers’ assessment of realism. In MathDial,
teachers were asked to chat with a sixth-grade stu-
dent simulated by an LLM and help them solve a
math word problem. The LLM2 was first prompted
to generate an initial incorrect solution and then to
act as a student who believes this solution is correct.
The student persona was based on a name chosen
from a culturally diverse set, a gender, and a spec-
ified type of confusion (see Macina et al. (2023a)
for details). MathDial consists of 2861 dialogues
produced by 90 participants, all of whom work as
teachers. In addition to metadata such as teacher
moves, each conversation is annotated by teachers
with a rating on whether the interaction felt typi-
cal for a sixth-grade student, as well as optional
open-ended “feedback about the conversation”.

Topic Modeling of Teacher Feedback. We first
analyze the open-ended feedback from teachers us-
ing Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) topic modeling to find any concerns they had
about LLM simulations. One of the recurring top-
ics in the LDA analysis was “repetitive”. By man-
ual review, we found that 51 of the 377 feedbacks
provided mentioned the student giving repetitive
answers. Furthermore, 6 of 44 teachers who left
feedback mentioned that it was frustrating for them
when the student was stuck on the same solution.

Statistical Analysis of Teacher-assessed Re-
alism. Here, we show a quantitative analysis of
interaction realism ratings and the corresponding
conversations. We focused on how conversations
that the tutors rated as non-typical (21% of conver-
sations) differed from those rated as typical (79%
of conversations). We have performed statistical
tests to check the independence of features when
comparing typical and non-typical interactions. We

2gpt-3.5-turbo, accessed through the OpenAI GPT-3 API
[gpt-3.5-turbo]; available at: https://platform.openai.
com/docs/models/gpt-3-5-turbo

chose features that are directly related to learning
outcomes (e.g., the correctness of the final answer)
or have the potential to impact student learning
(e.g., emotions (Felten et al., 2006)). We used
the Mann-Whitney U test (McKnight and Najab,
2010) for numerical features and the Chi-squared
independence test (McHugh, 2013) for categori-
cal features. Since we tested3 multiple hypotheses,
we used the Benjamini-Hochberg procedure (Ben-
jamini and Hochberg, 1995) to control for small
p-values that occur by chance.

According to statistical tests, features whose
distribution differed significantly among typical
and non-typical interactions included the correct-
ness of final student answer, conversation length,
count of teacher moves revealing solution, and
sentiment scores of teacher utterances computed
using VADER (Hutto and Gilbert, 2014) (see Ta-
ble 1). Conversations rated by teachers as non-
typical were usually longer, less successful, and the
solution was revealed more often. Sentiment scores
of teacher messages were lower in non-typical inter-
actions, while student sentiment remained similar
for both types of conversations, leaning towards
higher values. The unusual conversations might be
more difficult for teachers as the students struggle
to progress in their solutions. Detailed results of
the statistical analysis can be found in Appendix C.

Comparative Analysis between Educational
Datasets. A comparison between LLM-human di-
alogues and human-human conversational datasets
showed that LLM students tend to be more ac-
tive in conversation compared to real-life students.
That is, we have compared MathDial and datasets
with human-human interactions: 1) with transcripts
from math classes (Suresh et al., 2022; Demszky
and Hill, 2023) and 2) with text-based one-on-one
tutoring dialogues in language learning (Caines
et al., 2022; Stasaski et al., 2020). We computed di-
alogue metrics such as the total word count and the
proportion of words contributed by teachers and
students. The proportion of words in LLM-human
dialogue is heavily skewed towards the LLM stu-
dent, who contributes 68% of the total words. This
contrasts sharply with human-to-human conversa-
tional data, where students typically account for
only 12% to 34% of the word count.

3The analysis was done in Python using SciPy (Virtanen
et al., 2020) and statsmodels (Seabold and Perktold, 2010)
libraries. The significance level was set at 0.05.
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Table 1: Comparison of conversations rated by teachers as typical or not.

Statistic of conversational dynamics Typical interactions Non-typical interactions

Proportion of dialogues 79% 21%
Success rate in resolving confusion 83% 43%
Average dialogue length (in turns) 12± 5.4 16± 6.4
Average frequency of teachers revealing solution 0.14± 0.18 0.22± 0.2
Average sentiment score of teacher messages 0.15± 0.3 0.1± 0.29
Average sentiment score of student messages 0.18± 0.32 0.17± 0.31

3.3 Interview Procedure and Questions

All the interviews were held online and lasted 1
hour. The interviews started with a warm-up task,
in which participants were consecutively shown
two short tutoring dialogues and were asked to dis-
tinguish whether the student responses were written
by a human or an AI. This exercise served as an in-
troduction to the interview topic: comparing inter-
actions with real and simulated students. The main
part of the interview focused on the experiences
participants themselves had when communicating
with LLM students in the MathDial study.

We developed the interview questions from the
Community of Inquiry and Scaffolding frame-
works (Section 2.3) and the MathDial data anal-
ysis (Section 3.2). We iteratively refined the in-
terview questions based on team discussions and
feedback from pilot interviews. We finalized a
set of 9 questions prompting teachers to reflect on
how their real students differ from LLM students.
Questions related to social presence explored the at-
tentiveness of students and their emotions, as LLM
students tend to be repetitive and show higher senti-
ment scores. Questions from the cognitive presence
category were motivated by observed deviations in
LLM students’ learning and focused on students’
confusion, understanding, and solutions complex-
ity. Finally, to address teaching presence, we asked
about teachers’ strategies, especially scaffolding
and giving feedback, as teachers resorted to telling
parts of the solution when the LLM student be-
haved unusually. The full list of interview ques-
tions and the rationale behind them can be found
in Appendix B.

To summarize the discussion of each question,
participants were asked to answer a 5-point Likert
scale question assessing interactions with LLM
students, e.g., realism of their emotions (see Fig. 2).
After the interview, participants were reimbursed
34 USD per hour. The research was approved by

the university Ethics Committee (EK-2024-N-6).
The interview data was analyzed using thematic

analysis (Clarke and Braun, 2021). The initial cod-
ing was done by the main author, independently
checked by two other team members, and itera-
tively refined. Finally, the codes were grouped into
themes such as student emotions, language com-
plexity, responsiveness, and demographics, as well
as teachers’ strategies and challenges.

4 Results

The main finding from the Likert scale survey an-
swers (see Fig. 2) is that the LLM students did
not authentically represent real human emotions.
Apart from that, LLM students generally were able
to simulate the learning process. Namely, aspects
like teaching strategies, students’ reactions to feed-
back, and math confusion were rated as more real-
istic. According to teacher ratings, LLM students
were for the most part fairly attentive. In addition,
the frequency of frustrating interactions and overly
complicated solutions were rated relatively low.

Lack of Emotional Responses from LLM-
simulated Students. 8 out of 12 participants noted
that they did not seem to get particularly emotional
responses from the LLM student. All teachers ex-
cept one speculated that this perceived emotion-
lessness might just be the result of communication
being only text-based and not being able to read
the body language of the student.

To half of the participants, the student messages
felt overall positive, with occasional emotions such
as gratitude or relief. However, when asked about
the common emotions of their real-life students
when confused, all teachers primarily named neg-
ative ones such as frustration, fear, or embarrass-
ment. A couple of participants believe their stu-
dents react with denial, which LLMs did not por-
tray: ’a human student is not going to immediately
abandon a solution they’ve come up with.’ (P11).
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Figure 2: 5-point Likert scale ratings by teachers to questions about interactions with LLM-simulated students.

Eight participants mentioned that some of their
students tend to give up or become quiet when they
don’t know how to solve a problem. LLM students
failed to show this behavior: ’There weren’t any
students that just said, “Forget it. I can’t do it. I
give up.” There was always a reattempt.’ (P02).

High Attentiveness. 10 out of 12 participants
agreed that the LLM students felt rather attentive
in the conversations. With real-life students, teach-
ers see more diverse behaviors, e.g., ’You will
have some children that are incredibly attentive,
whereas, ... there are some children who have
got very little interest in being there.’ (P12). Al-
though LLM students generally resembled engaged
students, P05 highlighted a difference: LLM stu-
dents ’didn’t ask any ... questions to help their
understanding or make links with other things’.

Inconsistent Behavior over Multiple Interac-
tions. Two-thirds of participants pointed out that
sometimes the LLM student felt like they were not
following previous conversation. However, just as
many teachers stressed that they are used to their
students going off tangent, e.g., ’They always con-
tradict themselves, and always say random things.
And so that’s not unusual at all.’ (P01).

Complex and Verbose Language Use by LLM-
simulated Students. One of the frequently men-
tioned properties of LLM students which did not
feel human-like to participants was the high lan-
guage complexity. Also, two teachers noted how
math formulas were extensively used by LLM stu-
dents, which did not feel authentic. One participant
highlighted how this hindered ensuring student un-
derstanding, as in real teaching students don’t rely
on ’mathematical language necessarily, they would
actually talk to you in words.’ (P09).

Adaptation of Teaching Strategies for Interac-
tions with LLM Students. Teachers have to adapt
to the pace of their students; therefore, they pay
high attention to the process of student learning,
and they find several differences between LLM and
actual students.

All participants emphasized the importance of
scaffolding by breaking the problem down into
smaller steps, as well as trying to give hints and not
reveal parts of the solution. However, a quarter of
participants noted that these approaches sometimes
had to be adjusted when talking to LLM students,
namely, teachers had to resort to telling parts of
the solution. Two participants supposed that LLM-
simulated students might have struggled because

’rather than try and take a step at a time, they were
trying to solve everything altogether.’ (P01).

In MathDial, participants also frequently used
approaches such as asking questions, finding other
ways to solve a problem, and repeating. Partici-
pants found it to be ’no different to real life: you
often have to repeat things and, if someone doesn’t
appear to understand how you said something the
first time, you have to rephrase it.’ (P05). For
P11, the experience of communicating with LLM
felt ’analogous to working with humans: if your
instructions are bad, your results are bad. ... as
we ... learn more about how AI works, we are kind
of also learning how humans work.’ (P11).

The Influence of Context on the Perception
of Interactions with LLM-simulated Students.
The participants teach students from different back-
grounds, and some of their opinions on LLM stu-
dents are also influenced by their diverse experi-
ences. For example, P06 described that in some of
the MathDial dialogues, ’That was interpretation
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where the gap was rather than actually a problem
with the math. A common issue, actually, because
a lot of our students ... have dyslexia’. Other teach-
ers also mentioned dyscalculia, being non-verbal
and having other special education needs, or having
English not as their first language.

Differences in perception of interactions with
LLM students could also be caused by the settings
in which the participants teach. For example, P05
primarily works as a tutor and commented about
LLM-simulated students: ’They seem to demon-
strate a good growth mindset. That was probably
quite different with students ... I work with, be-
cause it’s one-to-one tuition and a lot are lacking
that confidence already.’ (P05).

Half of the participants compared students’ be-
havior across different subjects, e.g.: ’I have taught
many subjects, and the only ones that really results
sometimes in sobbing is math. ... Math can really
trigger deep, deep emotions.’ (P11).

5 Discussion

5.1 Guidelines for LLM Students Design:
Four Behavior Types

As our RQ1 aims to assess how believable the
LLM student simulations are, we identify different
groups of student behaviors in real life. Specifi-
cally, we do this based on the CoI framework and
Scaffolding theory. In real-life education, some stu-
dents need more scaffolding support, which means
that the teacher provides step-by-step guidance to
them and needs to engage them more actively in the
process. Other students are more independent and
actively participate in the problem-solving activity.
Within both of these groups, we more specifically
examine the social and cognitive presence of the
students. That is, social presence relates to behav-
iors that help students engage and interact with the
tutor, including demonstrating emotional expres-
siveness. On the other hand, cognitive presence
focuses on how students process information, solve
problems, and build knowledge. Table 2 provides
an overview of behaviors not captured by LLM
students for each category, as well as the impor-
tance participants placed on these issues and our
proposed solutions, thereby addressing RQ2.

High Scaffolding Needs and Social Pres-
ence. Most of the interviewees agreed that LLM-
simulated students were too engaged in conversa-
tions. We suggest that such simulations should
have varying customizable levels of engagement,

much as real students would. Sometimes, the simu-
lated student might even stay silent or lose interest
and attention, which could also give a valuable
reason for teachers to self-reflect on the quality of
teaching (Markel et al., 2023).

Participants often found the language used by
LLM students to be too complex, lengthy, and tech-
nical, especially for children. Therefore, we pro-
pose having more variations in language complex-
ity, intentionally regulating the length and formality
of responses. Other suggestions include introduc-
ing grammar, spelling, or punctuation mistakes and,
in the case of mathematics, limiting notations and
the rigor of equations.

In addition to these behavioral tendencies, LLM
students lacked emotional responses, especially the
more negative ones: frustration, fear, or embar-
rassment. We propose to model a diverse range
of student personalities, which in turn would lead
to a diverse representation of emotions (Rusting
and Larsen, 1997; Santos, 2016). A popular ap-
proach to portraying personalities is the Big Five
theory (Costa and McCrae, 1999) which is also
widely used in the development of LLMs (Jiang
et al., 2024; Liu et al., 2024). This method of
modeling diverse personalities might also broader
represent previously mentioned engagement lev-
els (Donovan et al., 2020; Zhang et al., 2020).

High Scaffolding Needs and Cognitive Pres-
ence. The way in which some LLM students’ cog-
nitive processes worked seemed unrealistic to our
participants: their knowledge sometimes did not
build gradually but made huge jumps. This is not
only unrealistic, but it deprives teachers of prac-
ticing a recognized approach to teaching: leverag-
ing the zone of proximal development (Vygotsky,
1978). The study (Jin et al., 2024) also focused on
this limitation of LLMs and modulated the knowl-
edge state as the conversation progressed, which
could also be used in the setting of our research.
One improvement we suggest future works to inte-
grate is knowledge tracing (Scarlatos et al., 2025;
Fu et al., 2024a) which is commonly used to esti-
mate student knowledge and predict their responses.
Another aspect that could be modeled to resem-
ble human learning is forgetting information over
time (Zhong et al., 2024).

Low Scaffolding Needs and Social Presence.
Another behavior that LLM students failed to repre-
sent was asking questions. This meant that teachers
had more control over the discussion flow, which is
not always the case in real life. Jin et al. (2024) pro-
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Table 2: Real-life student behavior LLMs failed to show and suggested solutions.

High scaffolding needs Low scaffolding needs
Social
presence

Writing simple and short
Having negative emotions, being disengaged
Introducing diverse personalities

Asking questions
Promoting question-asking

Cognitive
presence

Gradual knowledge-building
Introducing memory

Disagreeing with teacher
Changing tactic based on feedback
No interventions needed

Human-simulation gap Realistic behavior

poses a way to address this in the case of using sim-
ulated LLM students in the learning-by-teaching
scenario. That is, their solution was to switch to
the mode of asking questions with a period of three
messages. We propose to use a similar technique
that is more context-aware.

Low Scaffolding Needs and Cognitive Pres-
ence. Some students of our participants react with
denial when told that their solution is wrong. In
contrast, LLM students sometimes agree too read-
ily with the teacher, completely changing their ap-
proach. This tendency of LLMs is called syco-
phancy bias (Perez et al., 2023) and originates from
LLMs designed to follow instructions. Although
this is useful in many contexts, when practicing
interactions with a student, it is beneficial to put
the effort into finding the correct method together.

Our participants sometimes observed that the
LLM student was stuck on the same math problem
solution, which was mostly recognized as com-
mon student behavior. This is in line with previous
research, as LLMs are prone to being more stub-
born when discussing mathematics than subjective
topics (Ranaldi and Pucci, 2023). Dealing with
students who struggle to progress is important for
teachers; therefore, we do not recommend elimi-
nating such types of interactions.

Practical Application Example. We propose
that designers of LLM student simulations adopt a
profile-oriented design approach (Jin et al., 2025;
Wolff and Seffah, 2011), which involves incorporat-
ing diverse student personality traits and learning
behaviors described in Table 2. Teachers could first
pick a specific profile type of a simulated student,
as well as their learning pace and knowledge level
of a given topic. Using a base-prompt, a specific
chatbot could be created for the teachers to interact
with. A post-generation prompt could be used to
make the final utterance shorter and simpler. This
approach could increase the diversity of simulated

student behaviors while ensuring consistency and
realism, thereby making the simulations more in-
clusive and valuable for teacher practice.

5.2 Teacher Perceived Limitations of LLM
Students

An overall trend we observed during the analysis
was that LLMs mainly represented only certain stu-
dent types and behaviors, depriving participants of
richer teaching experiences. LLMs indeed have a
tendency to portray an averaged representation of
the data they were trained on. Our suggestion is to
rather evaluate models by simulating the spectrum
of student personas to allow for a more comprehen-
sive teaching experience.

While LLMs often portrayed attentive students,
some participants felt they resembled students with
more surprising traits such as having learning chal-
lenges like dyslexia. We propose that LLM sim-
ulations should have the option to configure the
simulated context, allowing teachers to get more
valuable experience.

6 Conclusion

In this paper, we investigate the effectiveness of
LLMs in simulating real K12 student behaviors by
gathering insights from teachers who have tutored
LLM-simulated students. Our findings reveal that
LLMs fall short in replicating properties inherent
in real-life students: emotions, especially nega-
tive, rather simple language, and the steady pace of
learning. We address this issue by proposing a cat-
egorization of real-life student behaviors based on
the level of needed scaffolding and relation to cog-
nitive or social presence, and assess the LLM per-
formance in representing each category. This cate-
gorization could serve as a guideline for evaluating
novel LLM models for student simulations, for ex-
ample by including more diverse student behavior
types. Addressing these issues could enhance the

107



effectiveness and realism of future LLM student
simulations in education, ultimately making educa-
tional resources more accessible, affordable, and
personalized for a broader population.

Limitations

Our study has several limitations that future work
could address. First, the dataset we analyzed gen-
erated the student simulations with an older GPT-
3.5-turbo model. Future work could explore the
differences in how other LLMs simulate students.
Interestingly, for some tasks, more advanced mod-
els might perform worse: e.g., in Milička et al.
(2024) GPT-4 (OpenAI, 2023), when prompted to
simulate a one-year-old, gave more correct answers
to logical questions than GPT-3.5-turbo. Moreover,
studies comparing different LLMs find that some
are more sensitive to the phrasing of math prob-
lems (Opedal et al., 2024) or less capable of re-
flecting emotional states (Ishikawa and Yoshino,
2025).

Secondly, the demographics of the study partici-
pants were limited: most of the participants were
from the UK and the majority were female. While
the high proportion of female teachers in our study
reflects trends in the teaching profession (Govern-
ment data about the UK’s different ethnic groups,
2024), we acknowledge the potential impact of
gender on the study results. For example, Sun
et al. (2024) has shown that gender could influence
the perceived anthropomorphism of a simulated
persona. Further work could conduct larger-scale
studies with more diverse demographics to analyze
these dynamics further.

Finally, we limited the study scope to mathemat-
ics. However, as our participants also highlighted,
real-life students’ behavior differs depending on the
subject. Similarly, LLMs might have varying atti-
tudes towards different subjects, e.g., GPT models
exhibit more anxiety when talking about mathe-
matics (Abramski et al., 2023). Exploring other
subjects and educational contexts could provide a
more comprehensive understanding of the use of
LLMs in student simulation.
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A Participant Information

Table 3: Participant demographics, teaching experience, and the number of dialogues with LLM students in
MathDial (Macina et al., 2023a).

ID Age Gender Country Student
Ages

Subjects Teaching
Experience

#Dialogues

P01 40–49 Female UK 5–9
Primary school subjects,
including mathematics

15+ years 50

P02 40–49 Female Canada 10–14 Mathematics 11–15 years 40

P03 30–39 Female UK 0–9
Primary school subjects,
including mathematics

1–3 years 100

P04 40–49 Female UK 5–9
Primary school subjects,
including mathematics

15+ years 70

P05 30–39 Female UK 5–17
Mathematics, computer
science, literature

11–15 years 19

P06 40–49 Female UK 18+ Environmental science 15+ years 35

P07 20–29 Female Canada 5–14, 18+ Mathematics, chemistry 1–3 years 30

P08 40–49 Male UK 18+ Applied statistics 15+ years 20

P09 50–59 Female UK 10–17
Mathematics, English as a
foreign language, literature

15+ years 25

P10 20–29 Female Canada 5–17
Biochemistry, English as a
foreign language

1–3 years 10

P11 50–59 Female Canada 5–17
Mathematics, computer
science

15+ years 10

P12 40–49 Male UK 5–14
Primary school subjects,
including mathematics

11–15 years 5
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B Interview Questions

Table 4: Interview questions and their connection to preceding MathDial analysis and theoretical frameworks:
Community of Inquiry (CoI) (Garrison, 2016) and Scaffolding (Reiser, 2004)

Qualitative and Quantitative Questions Rationale

1

Question: In MathDial, how attentive were the students?
Probes: Did it seem like the student was following what you were
saying? If not, what were the examples when the student seemed
like they didn’t follow you? Were there cases when the student
contradicted themselves? How do these cases compare to your
real life experience?
Evaluation: How attentive the MathDial students felt like?
1 (Not at all) - 5 (Extremely)

MathDial analysis: Some par-
ticipants mentioned in the feed-
back field that the student’s mes-
sages were repetitive
CoI framework: Social pres-
ence

2

Question: How engaged are your students in math problem dis-
cussions?
Probes: How much do they participate in conversation? How
does it compare with the dialogues you had in the study?
Evaluation: How engaged were the MathDial students?
1 (Much less than your students) - 5 (Much more than your stu-
dents)

MathDial analysis: Compared
to human-human educational
datasets, the student in MathDial
talks much more
CoI framework: Social pres-
ence

3

Question: Which interactions with MathDial students were frus-
trating for you?
Probes: How similar were they to the real life teaching? How do
you deal with these?
Evaluation: How often were MathDial interactions frustrating?
1 (Never) - 5 (Almost always)

MathDial analysis: The par-
ticipants answers tend to have
lower sentiment scores in con-
versations where the student in-
teractions are perceived as non-
typical
CoI framework: Social pres-
ence

4

Question: Did you adjust your teaching strategies in MathDial?
Probes: For example, how did you balance giving hints and
giving parts of the solution? How do you do it in your real life
teaching?
Evaluation: How similar to real life were your teaching strategies
in MathDial?
1 (Not at all) - 5 (Extremely)

MathDial analysis: The teach-
ers tended to more often reveal
part of the solution in conver-
sations with non-typical interac-
tions
Theoretical framework: Scaf-
folding theory and Teaching pres-
ence from CoI

5

Question: What feedback do you give your students?
Probes: How do they typically react to it? Were the student’s
reactions to feedback in MathDial similar to the typical reaction
of your students?
Evaluation: How realistic were students’ reactions to feedback
in MathDial?
1 (Not at all) - 5 (Extremely)

MathDial analysis: There was
a cap on the number of messages
teachers could send, so the feed-
back might have been rather lim-
ited
CoI framework: Teaching pres-
ence
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Table 4: Interview questions and their connection to preceding MathDial analysis and theoretical frameworks:
Community of Inquiry (CoI) (Garrison, 2016) and Scaffolding (Reiser, 2004)

Qualitative and Quantitative Questions Rationale

6

Question: What emotions are common to your students due to
math confusion?
Probes: How closely was it represented in the MathDial study?
How do you behave when the students convey emotions you
listed?
Evaluation: How realistic were students’ emotions in MathDial?
1 (Not at all) - 5 (Extremely)

MathDial analysis: Sentiment
score of student utterances is dis-
tributed independently of how
typical the student interactions
were
CoI framework: Social pres-
ence

7

Question: What was the common reason of confusion in Math-
Dial?
Probes: How does it align with most common issues your stu-
dents have?
Evaluation: How realistic was students’ confusion in MathDial?
1 (Not at all) - 5 (Extremely)

MathDial analysis: Some teach-
ers assessed student’s confusion
as non-typical
CoI framework: Cognitive pres-
ence

8

Question: In real life teaching, how do you ensure the concept
understanding?
Probes: What do you usually do after the correct solution was
found? Do you continue the problem discussion? If yes, how?
Evaluation: It was easy to ensure understanding of students in
MathDial
1 (Strongly disagree) - 5 (Strongly agree)

MathDial analysis: Mainly the
teachers stopped the dialogue af-
ter the student has found the cor-
rect solution
CoI framework: Cognitive pres-
ence

9

Question: In real life teaching, how do you handle overcompli-
cated solutions?
Probes: For example, do you let them explore their solution fur-
ther? Or do you try to guide them to an easier solution?
Evaluation: How often were MathDial solutions overcompli-
cated?
1 (Never) - 5 (Almost always)

MathDial analysis: LLM stu-
dents sometimes used more com-
plex methods (e.g., introduc-
ing variables) when the problem
could be solved without them
CoI framework: Cognitive pres-
ence
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C Statistical Tests on MathDial

Table 5: Results of statistical tests comparing distribution of numerical features in typical and non-typical inter-
actions in MathDial. U-statistic (McKnight and Najab, 2010) and p-value adjusted using Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) are provided, with significant results (adjusted p-value < 0.05) marked
with an asterisk (∗).

(a) Teacher-annotated and sentiment features

Feature U-statistic
Adjusted
p-value

Teacher-assessed cognition of LLM student
Confusion authenticity 220357 7.47e-145∗

Step of first error in solution 74669 7.02e-01

Counts of teacher-annotated teacher moves
Revealing parts of solution 876991 6.93e-36∗

Constraining to make
progress

790520 3.75e-12∗

Talking casually 600816 7.49e-04∗

Generalizing aspects of
problem

721417 3.52e-03∗

Teacher sentiment scores
Mean 605884 3.52e-03∗

Median 605894 3.52e-03∗

Minimum 606569 3.52e-03∗

Standard deviation 620603 3.62e-02∗

Maximum 631284 1.46e-01

LLM student sentiment scores
Minimum 615997 1.77e-02∗

Maximum 690558 2.97e-01
Mean 653972 7.41e-01
Median 655628 7.98e-01
Standard deviation 661922 8.96e-01

(b) Interaction and problem-related metrics

Feature U-statistic
Adjusted
p-value

Conversation characteristics
Number of turns 920056 5.24e-46∗

Conversation index 685230 4.61e-01

Ground-truth solution characteristics
Number of words 638996 3.04e-01
Number of steps 650522 6.35e-01

Math problem characteristics
Order of the prob-
lem in session

648169 6.81e-01

Identifier 652030 7.02e-01
Sentiment score 660511 8.98e-01
Number of words 669497 8.98e-01

Arithmetic operation percentages in solution
Addition 701925 7.25e-02
Subtraction 676748 6.73e-01
Multiplication 652588 6.73e-01
Division 663954 9.77e-01
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Table 6: Results of statistical tests comparing distribution of categorical features in typical and non-typical
interactions in MathDial. χ2 statistic (McHugh, 2013) and p-value adjusted using Benjamini-Hochberg proce-
dure (Benjamini and Hochberg, 1995) are provided, with significant results (adjusted p-value < 0.05) marked with
an asterisk (∗).

Feature χ2 statistic Adjusted p-value

Teacher-assessed cognition of LLM student
Correctness of final answer 479.83 1.28e-103∗

Error category (calculation or conceptual) 6.38 6.35e-01

Teacher and LLM student data
Teacher identifier 358.66 3.74e-33∗

Student’s name (from prompt) 40.82 3.55e-02∗

Student’s math struggle type (from prompt) 9.56 1.97e-01
Student’s gender (from prompt) 0.81 6.35e-01

Topics mentioned in math problem
Time 0.15 8.68e-01
Percent 0.09 8.96e-01
Money 0.07 8.96e-01
Age 0.03 8.96e-01
Fractions 0.04 8.96e-01
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Abstract

Decoder-only large language models have
shown superior performance in the fluency-
edit English Grammatical Error Correction, but
their adaptation for minimal-edit English GEC
is still underexplored. To improve their effec-
tiveness in the minimal-edit approach, we ex-
plore the error rate adaptation topic and pro-
pose a novel training schedule method. Our
experiments set a new state-of-the-art result
for a single-model system on the BEA-test set.
We also detokenize the most common English
GEC datasets to match the natural way of writ-
ing text. During the process, we find that there
are errors in them. Our experiments analyze
whether training on detokenized datasets im-
pacts the results and measure the impact of the
usage of the datasets with corrected erroneous
examples. To facilitate reproducibility, we have
released the source code used to train our mod-
els.1

1 Introduction

Grammatical Error Correction (GEC) is a Natu-
ral Language Processing task that covers the de-
tection and correction of errors in texts. Current
state-of-the-art models are either Sequence-to-Edit
(Seq2Edit) models (encoder-only Transformers)
that are trained to tag erroneous tokens and ap-
ply proper changes to them (Omelianchuk et al.,
2020), or Sequence-to-Sequence (Seq2Seq) models
(encoder-decoder Transformers) that are trained to
generate the correct version of a given text (Rothe
et al., 2021).

Over the years, two main directions have been es-
tablished in GEC research: minimal-edit GEC and
fluency-edit GEC (Bryant et al., 2023). The former
focuses on applying only the minimal changes nec-
essary to make the text grammatical and error-free.
In contrast, fluency-edit GEC goes beyond minimal
corrections to achieve native-language fluency.

1github.com/richardxoldman/llms-for-minimal-gec

Current decoder-only large language models
(LLMs) achieve state-of-the-art performance on
many NLP tasks. Instruction-tuned LLMs are able
to produce high-quality texts and correct errors in
the zero-shot approach, even without task-specific
fine-tuning (Davis et al., 2024). On the JFLEG
dataset (Napoles et al., 2017), which is a fluency-
edit GEC dataset, the GPT3 and GPT4 models
are capable of producing state-of-the-art results
(Loem et al., 2023; Coyne et al., 2023). LLMs
were also used by the winners of the recent multi-
lingual grammatical error correction shared task –
MultiGEC-2025 (Masciolini et al., 2025).

However, for a minimal-edit GEC, there is only
one research work that reports better results com-
pared to other solutions on English minimal-edit
GEC benchmarks (Liang et al., 2025). The prob-
lem encountered by LLMs can be explained by the
phenomenon of overcorrection (Fang et al., 2023).

To further explore LLMs adaptation for minimal-
edit GEC, there is a need to find solutions that
could allow LLMs to produce more strict outputs.
Junczys-Dowmunt et al. (2018) by exploring the
error rate adaptation topic show that neural net-
work based solutions need more erroneous exam-
ples. Their experiments show that removing the
correct examples leads to greater recall. Our in-
tuition is that for modern LLMs, which are able
to produce fluent corrections with high linguistic
freedom even in the zero-shot manner, the opposite
direction is needed, as there is a need for higher
precision.

Sun and Wang (2022) propose a method for a
precision-recall trade-off that requires beam-search
decoding, which increases computational resources
and inference time compared to greedy decod-
ing. To overcome this issue, we propose a novel
training schedule method to control the precision-
recall trade-off during training instead of inference.
Our method allows for the application of standard
greedy decoding during inference without the need
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...to a cafe and and I drank a drink.
I recommend you to practise any sport...

She is one of the ones that...
Sometimes we go to partyies in the city.

...and I was very happy to hug him because I miss
him...

Table 1: Examples of changes in target texts made dur-
ing detokenization process by the Llama 3 70b model.
Deletions are highlighted with a strikethrough, and in-
sertions are highlighted in bold.

for external tools or algorithms to control the infer-
ence process.

Since LLMs are trained on raw texts and exist-
ing GEC datasets are available in word-tokenized
(henceforth referred to as ”tokenized”) format
(Bryant et al., 2023), it forces models to switch
from working on raw texts to tokenized texts.

Another case that would require detokenized
texts is any work that leverages probability dis-
tributions for language models, for example the
Scribendi Score reference-less metric (Islam and
Magnani, 2021).

To solve this issue, we detokenize the most com-
mon GEC datasets and verify whether training
models on detokenized texts leads to better results.
The detokenization process involved the usage of
the LLM, during which we discovered that even
the most popular datasets contain errors in annota-
tions. We make the detokenized datasets available
to the public to make them accessible to other re-
searchers2.

In summary, our contributions in this work are
as follows:

• The LLM that achieves the state-of-the-art
single-model system on the BEA-19 Shared
Task test set.

• The study of error rate adaptation in the con-
text of LLMs.

• The novel training schedule method that en-
ables control of the precision-recall trade-off
during training.

• The detokenization of the most common En-
glish GEC datasets, and the detailed analysis
of annotation errors in them.

2 Datasets and their detokenization

The most common GEC datasets for English are
available in a tokenized format due to evaluation
tools that use the M2 format (Dahlmeier and Ng,
2012) such as ERRANT (Bryant et al., 2017).
LLMs are trained on raw texts, so the tokeniza-
tion process forces them to switch to the tokenized
text and also to learn the tokenization process. To
solve this issue, we detokenize FCE-train (Yan-
nakoudakis et al., 2011), W&I+LOCNESS train
and dev part (hereafter, we refer to the train split of
this dataset as BEA-train, the dev split as BEA-dev
and the test split as BEA-test) (Bryant et al., 2019)
CoNLL-2014-test (Ng et al., 2014), and JFLEG
datasets — these are the datasets we decided to use
in our work, as they are one of the most commonly
used GEC resources (Bryant et al., 2023). The
statistics about them are given in the Appendix.

For the FCE-train, BEA-train, and BEA-dev
datasets, the source texts were available in the raw
format (the only work needed was to properly split
them line by line). To detokenize the target texts
of these datasets, we used the Sacremoses Detok-
enizer3, but it did not correctly detokenize all the
examples.

To improve the detokenization process, we lever-
aged the Llama-3.1-70b-Instruct model (denoted
as Llama 3 70b), where the model task was only
to detokenize the target text. We included a source
text that is properly detokenized in the prompt to
help the model in the detokenization process. The
prompt is given in the Appendix.

In order to detokenize the CoNLL-2014 input
texts, we had to properly split paragraphs at the
sentence level, which are available in SGML for-
mat. We did this using a simple Python script with
split rules and then manually adjusted examples
that were not properly handled by the script.

For the JFLEG dataset we only had to detokenize
inputs of the dataset, since the dataset has only dev
and test splits. Due to the small size of the JFLEG
dataset, we used Sacremoses Detokenizer and then
manually adjusted the texts.

It should be emphasized that our work does not
affect the examples in the test sets. The source
texts for both the BEA-test and the CoNLL-2014-
test were unchanged. The BEA-test target texts
are hidden on the CodaLab platform and are not
available publicly. There was no need to detokenize

2github.com/richardxoldman/detokenized-gec-datasets
3pypi.org/project/sacremoses/
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Dataset modified essential optional erroneous not assessable

wrong
annotations
(estimated

lower bound)
BEA-dev 6.52% 80.77% 2.80% 12.59% 3.85% 5.22%

BEA-train 6.22% 78.67% 4.90% 9.80% 6.64% 4.89%
FCE-train 8.42% 71.68% 12.24% 12.24% 3.85% 6.04%

Table 2: Details for annotations to examples changed by the Llama 3 70b model.

the CoNLL-2014-test target texts, since the scoring
script uses the M2 format to compute the results.
It makes outcomes based on our version of the
datasets fully comparable to the previous research.

The results reported on our version of the BEA-
dev dataset may differ slightly from those reported
by other researchers due to the changes described
in Section 2.1, but are intended to select the most
promising model, not to report the final results.

2.1 Incorrect annotations in datasets

In less than 10% of the examples, the Llama 3 70b
model, when used for detokenization, occasionally
modified the text beyond simply removing spaces
in the correct version of the text. Table 1 shows ex-
amples of differences between the target texts in the
dataset and the changes made by the Llama 3 70b
model. Our initial investigation showed that those
changes are mostly errors that were not corrected
by a human annotator. Given this, we decided to
do a manual annotation of such samples.

For our annotation purposes, the considered sen-
tences were assigned four labels: essential, op-
tional, erroneous and not assessable.

The essential label was assigned to sentences
in which corrections were necessary and actually
contributed to improving their accuracy.

The optional label was attributed to sentences
in which the corrections made were not necessary,
as their original versions were considered correct
as well (e.g. sentences originally written in capital
letters, which were then changed to lower case).

The erroneous label refers to situations where
the corrections either do not fix the original mis-
takes in the sentences or create new mistakes in
sentences that were already correct.

Finally, the not assessable label is used to mark
corrections for which the quality, for various rea-
sons, cannot be assessed by the annotator.

For BEA-dev, all examples (284) modified by
the Llama 3 70b model were verified, whereas for

the other two datasets, random samples of the same
size (284 examples) were checked. The results of
the annotation process are shown in Table 2.

2.2 Detokenization impact

To verify whether the detokenization process and
the modification of examples by the Llama 3 70b
model have an impact on the GEC models, we
decided to train the LLMs on the FCE-train and
the BEA-train datasets in four different processing
setups:

1. detokenized-filtered: Detokenized datasets
excluding examples modified by the Llama 3
70b model.

2. tokenized-filtered: Tokenized datasets corre-
sponding to the examples that remained un-
modified in the detokenized version.

3. detokenized-full: Detokenized datasets in-
cluding all examples, both modified and un-
modified.

4. tokenized-full: Tokenized datasets corre-
sponding to the full set of detokenized exam-
ples (original, untouched datasets).

Please note that tokenized-* setups refer to the
original examples ”as is”, without any modifica-
tions introduced by the Llama 3 70b model.

The detokenized-filtered setup compared to the
tokenized-filtered setup shows whether the deto-
kenization process has an impact on the models’
performance, since both models are fine-tuned on
the same examples with the same hyperparameter
setup. The details about the hyperparameters are
given in the Appendix.

The *-full setups against the *-filtered setups
show whether the changes made by the Llama 3
70b model in the datasets have an impact on the re-
sults, because the detokenized-full setup contains
the modified examples by the Llama 3 70b model,

120



Model Size Setup BEA-dev JFLEG-dev

P R F0.5 GLEU

Qwen 2.5 1.5B detokenized-filtered 57.90 42.10 53.86 56.10
Qwen 2.5 1.5B tokenized-filtered 59.00 38.48 53.31 56.17
Qwen 2.5 1.5B detokenized-full 57.86 42.75 54.04 56.22
Qwen 2.5 1.5B tokenized-full 59.92 37.79 53.63 56.01
Llama 3 Small 3B detokenized-filtered 63.34 47.52 59.39 57.42
Llama 3 Small 3B tokenized-filtered 63.31 47.29 59.29 57.58
Llama 3 Small 3B detokenized-full 63.04 48.32 59.42 57.56
Llama 3 Small 3B tokenized-full 62.61 46.22 58.46 56.96
Gemma 2 9B detokenized-filtered 68.84 56.40 65.93 58.70
Gemma 2 9B tokenized-filtered 68.84 55.90 65.79 58.99
Gemma 2 9B detokenized-full 69.07 57.13 66.30 58.72
Gemma 2 9B tokenized-full 69.86 55.67 66.47 58.40

Table 3: Results for different dataset processing setups.

Dataset M R U
BEA-dev 50.74% 38.87% 10.39%

BEA-train 46.93% 40.28% 12.79%
FCE-train 61.33% 31.96% 6.71%

Table 4: Details about the operations performed by the
Llama 3 70b model. The labels stand for: Missing,
Replacement and Unnecessary.

whereas the tokenized-full setup contains all the
original examples (also the erroneous ones). Again,
the number of training examples is the same, but
the difference lies in the quality of the annotations
in examples that were changed by the Llama 3 70b
model.

All models were trained for one epoch on the
FCE-train dataset and then for one epoch on the
BEA-train dataset. In this and subsequent experi-
ments, we report the results for the BEA-dev and
JFLEG-dev datasets, since these datasets give a
view for both minimal-edit and fluency-edit GEC.
Table 3 presents the results for 3 different LLMs
of different sizes: Qwen2.5-1.5B-Instruct (denoted
as Qwen 2.5), Llama-3.2-3B-Instruct (denoted as
Llama 3 Small) and gemma-2-9b-it (denoted as
Gemma 2).

2.3 Results analysis

The results show that LLMs can learn the tokenized
version of the texts and in some cases even achieve
better metric scores compared to the models trained
on the detokenized texts. We can see that there are
no clear gains in terms of F0.5 score from using the

detokenized version of datasets.
The transition from the tokenized-filtered to the

tokenized-full setup increases precision in each
experiment but lowers recall and GLEU values. In
all cases, transition from the detokenized-filtered
setup to the detokenized-full setup improves recall
and slightly improves the GLEU score. It shows
that the changes made by the Llama 3 70b model
result in outputs with higher linguistic freedom,
which is expected, since the most common change
made by the Llama 3 70b model is the Missing op-
eration (Table 4), while using the original sentences
makes the models produce more strict outputs.

We can also see that the size of the models signif-
icantly impacts the results. Therefore, for the next
experiments we will further explore the Gemma
2 model, as it is the best performing model. Al-
though Gemma 2 achieves the best F0.5 score on
the tokenized-full setup, the next experiments will
be performed on the detokenized version of the
datasets, as they contain corrected erroneous anno-
tations. The other reason is that our systems can be
used in the work of other researchers who need a
model that produces detokenized output. It would
be also simply practical in terms of using the sys-
tem in the environment where the output does not
require removing the unnecessary spaces.

3 Overcorrection problem

In the minimal-edit GEC task, the goal is to find
and correct only those parts of the texts that are
clearly erroneous, without making further improve-
ments to their fluency. Due to the pre-training goal
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Figure 1: Visualization of the fine-tuning process for our best performing Gemma 2 model on the BEA-dev dataset.

of LLMs, which is to maximize the probability of
the next token, and the flexibility they gain from
instruction fine-tuning process, LLMs tend to pro-
duce more fluent output. While this characteristic
may be advantageous for fluency-edit GEC, the ob-
jective of minimal-edit GEC is to apply only the
minimal necessary corrections.

Standard minimal-edit GEC benchmarks, which
are based on texts written by English language
learners, put a greater weight on precision than on
recall, because suggesting an incorrect change is
considered more negative than ignoring an error
(Ng et al., 2014). Therefore, a proper adaptation
of the model is needed to correct errors with high
precision.

For the Chinese minimal-edit GEC, Yang and
Quan (2024) proposes an alignment model which
is used to filter only minimal corrections from the
initial correction, which may be fluent.

One of the most recent works proposes the novel
method for LLM fine-tuning, Edit-Wise Prefer-
ence Optimization (EPO) that fits the minimal-edit
GEC task better than the standard supervised fine-
tuning (SFT) approach (Liang et al., 2025). In our
work, we explore the SFT approach with a focus
on the datasets rather than the different training
approaches, and show that proper data preprocess-
ing or training schedule can lead to the successful
minimal-edit LLM model.

4 Data augmentation

During GEC model fine-tuning, datasets play a cru-
cial role in the whole process. One of the most
important attributes of the GEC datasets is the er-
ror rate. The common practice for neural models
that are trained from scratch is to remove unedited
pairs (Chollampatt and Ng, 2018; Kiyono et al.,
2019), because for these models there is a need for
improved recall.

Large language models produce fluent output
with high recall, which may suggest that removing
unedited pairs for LLMs is unnecessary and could

worsen the results. Furthermore, it may be possi-
ble that providing additional unedited pairs could
improve minimal-edit error correction for LLMs.

To provide more real examples that may not
be fluent, but are still acceptable, we propose a
data augmentation method to split each example
(consisting of source text and corrected text) into
two pairs. The new pair is created by using the
corrected text as both the source and target text.
For example, the sentence pair “Alice have a cat.”
and “Alice has a cat.” can be split into the following
examples:

• Alice have a cat.→ Alice has a cat.

• Alice has a cat.→ Alice has a cat.

Our method can be applied to any dataset and
does not require any additional models/tools to
extend a given dataset.

5 Training schedule

Current approaches to GEC training scheduling
consist of dividing data into 2 or 3 groups based on
data quality and then training a model in the correct
order, from the lowest quality data to the highest
(Bout et al., 2023). We follow this approach, but to
control the precision-recall trade-off, we propose
to extend it even further.

In the final stage (with the highest quality dataset
– in our case it is BEA-train dataset), we split the
data into two groups. The first group contains only
erroneous texts, whereas the second group contains
only correct examples. During the stage, we first
train the model on the first group (only erroneous
examples), and then we train the model on the
second group (only correct examples) with lower
learning rate. Figure 1 shows the step-by-step train-
ing schedule for the best performing model on the
BEA-dev set.

Our intuition behind this approach is that a
model first learns how to correct errors and later is
tuned to understand which examples are correct but
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Dataset processing approach Erroneous sentences BEA-dev JFLEG-dev

FCE-train BEA-train P R F0.5 GLEU

ONLY-ERRONEOUS 100% 100% 60.74 58.79 60.34 58.16
UNCHANGED 65.43% 69.02% 68.99 57.12 66.24 58.73
AUGMENTED 39.55% 40.83% 71.42 53.42 66.92 58.21

Table 5: Results for the dev sets for the experiment with our data augmentation method.

in some cases not perfectly fluent. During the last
stage, when the model is fine-tuned only on cor-
rect examples, the model only learns to not apply
corrections to texts.

Choosing a proper learning rate value (or num-
ber of examples) enables controlling the precision-
recall trade-off in LLMs, as lowering learning rate
should make the model learn not to correct more
smoothly while still being able to correct the errors
in texts.

6 Experiments

6.1 Data augmentation experiments
To test whether the addition of unedited pairs can
positively affect LLMs in the minimal-edit GEC
task, we train the Gemma 2 model4 with the same
hyperparameter setup as in the experiment from
Section 2 in three different dataset processing ap-
proaches:

• only erroneous examples (denoted as ONLY-
ERRONEOUS)

• erroneous examples + unedited examples (de-
noted as UNCHANGED)

• erroneous examples + unedited examples +
unedited examples created from erroneous ex-
amples by applying our data augmentation
method (denoted as AUGMENTED)

As in the previous experiment, we first train one
epoch on the FCE-train dataset and then one epoch
on the BEA-train dataset.

Table 5 shows the results on the BEA-dev and
JFLEG-dev datasets. We can see that unedited
examples are needed to improve the LLMs per-
formance. Even on the fluency-edit dataset, the
scores are better when unedited pairs are added to

4For the data augmentation and training schedule experi-
ments we also tested the gemma-2-9b-it-SimPO model and
achieved slightly better results, but we decided to use the
original Gemma 2 model as our goal is not to maximize the
benchmark scores.

the dataset (the UNCHANGED approach). For
the AUGMENTED approach, the F0.5 score is
the highest among all approaches, but the GLEU
score is lower compared to the UNCHANGED
approach.

This study shows that lowering the error rate in
the GEC datasets is a way to make LLMs produce
minimal-edit outputs. It also shows that when new
solutions are available, such as modern LLMs, ap-
proaches or practices from previous research, such
as removing unedited pairs, should be reevaluated
and tested again.

6.2 Training schedule experiment

We also carried out an experiment with different
learning rate values for the last group (only correct
examples) for our training schedule method for the
Gemma 2 model. We also test whether applying
our data augmentation method for the FCE-train
dataset improves the results.

Note that in this experiment data augmentation
method is not applied to the BEA-train dataset.

Table 6 shows how the precision-recall trade-off
depends on the learning rate value. It can be ob-
served that even small changes in the learning rate
value noticeably influence the trade-off, making the
hyperparameter very sensitive.

When applying the data augmentation method
for the FCE-train dataset, the BEA-dev set F0.5
score can be improved compared to the best value
achieved in the previous experiment (the AUG-
MENTED dataset processing approach).

Although the data augmentation method was
designed to enhance precision, we observe that
results with data augmentation on the FCE-train
have higher recall. In this experiment, we hypothe-
size that training on the FCE-train provides general
GEC knowledge, while fine-tuning on the BEA-
train determines the model’s behavior in terms of
the precision-recall trade-off as model is first fine-
tuned on erroneous examples and then on the cor-
rect ones.
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Learning rate FCE-train
Augmented

BEA-dev JFLEG-dev

P R F0.5 GLEU

1e-7 ✗ 65.90 58.18 64.19 58.58
1e-7 ✓ 65.10 58.33 63.62 58.60
2e-7 ✗ 69.30 56.05 66.17 58.64
2e-7 ✓ 69.22 56.40 66.21 58.66

2.5e-7 ✗ 70.94 53.73 66.67 58.47
2.5e-7 ✓ 70.96 54.40 66.89 58.28
3e-7 ✗ 73.63 48.72 66.80 57.60
3e-7 ✓ 73.52 50.10 67.23 57.90

3.5e-7 ✗ 75.81 44.92 66.65 56.74
3.5e-7 ✓ 75.38 46.82 67.18 57.35
4e-7 ✗ 77.49 40.15 65.34 55.48
4e-7 ✓ 76.74 43.49 66.57 56.15
5e-7 ✗ 79.74 24.79 55.29 50.26
5e-7 ✓ 78.88 31.78 60.85 52.91

Table 6: Results for the dev sets for the experiment with our training schedule method.

Figure 1 shows the complete training process for
the model with the highest F0.5 score.

6.3 Results on the test datasets

From each experiment, we choose the most promis-
ing model based on its performance on the BEA-
dev dataset to evaluate it on the BEA-test, CoNLL-
2014-test, and JFLEG-test datasets. In Table 7,
Gemma 2 Augmentation refers to the best model
from Section 6.1 (only applying the data augmen-
tation method) and Gemma 2 Training-Schedule
refers to the best model from Section 6.2.

Table 7 shows that our model from the training-
schedule experiment achieves a new state-of-the-
art single model result on the BEA-test dataset
and has competitive results with other solutions
on the CoNLL-2014-test dataset. It should be
noted that our models were trained only on two
relatively small datasets, whereas other solutions
were trained on a much larger number of examples,
except for the Mistal-7b-EPO model.

To get more insights about the impact of the dif-
ferent model selection on the results, we also per-
formed a single experiment with the gemma-2-27b-
it and llama-2-13b-chat (Gemma 2 (27b) Training-
Schedule and LLama-2-13b Training-Schedule in
the tables) models with the same training schedule
and hyperparameters as the best performing model
on the BEA-dev dataset, so the model training is
exactly the same as for the Gemma 2 Training-
Schedule model.

The Llama-2-13b achieves even worse results
than these reported by (Omelianchuk et al., 2024).
It can be explained by using different datasets dur-
ing fine-tuning process. The precision and recall
are both worse than those of the Gemma 2 model.
This suggests that model size is not the only im-
portant factor; other details about the LLM, such
as its novelty, architecture, and the dataset used for
training, also matter.

The Gemma 2 (27b) achieves even a better score
than the best Gemma 2 9b model on the BEA-test
set, but it may be slightly overtuned for precision
due to the same learning rate value in the final stage
with the bigger model, which can be observed in
the worse results for the CoNLL-2014-test dataset.

Table 8 shows the results for the JFLEG-test
dataset. We can see that even if our models are fine-
tuned for minimal-edit GEC, they achieve a higher
score than the average of the scores computed for
the JFLEG-test references. It suggests that LLMs
can find a proper balance between minimal-edit
GEC and fluency-edit GEC.

7 Conclusions

Our work demonstrates that there are several ways
to fine-tune an LLM for minimal-edit grammatical
error correction, without the need for pre-training
them on a large number of examples. We pro-
pose easy-to-implement methods for controlling
the precision-recall trade-off during fine-tuning.

Moreover, we show that choosing a more recent
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Model Size CoNLL-2014-test BEA-test

P R F0.5 P R F0.5

T5 Large (Rothe et al., 2021) 700M - - 66.04 - - 72.06
T5 XL (Rothe et al., 2021) 3B - - 67.65 - - 73.92
T5 XXL (Rothe et al., 2021) 11B - - 68.75 - - 75.88
GECToR (Tarnavskyi et al., 2022) 355M 74.40 41.05 64.00 80.70 53.39 73.21
TemplateGEC (Li et al., 2023) 770M 74.80 50.00 68.10 76.80 64.80 74.10
FLAN-T5 XXL (Cao et al., 2023) 11B 75.00 53.80 69.60 78.80 68.50 76.50
DeCoGLM (Li and Wang, 2024) 335M 75.10 49.40 68.00 77.40 64.60 74.40
BART Base (Wang et al., 2024) 400M 76.20 52.20 69.80 77.70 67.50 75.40
Llama-2-13b (Omelianchuk et al., 2024) 13B 77.30 45.60 67.90 74.60 67.80 73.10
Mistral-7b-EPO (Liang et al., 2025) 7B 76.71 52.56 70.26 78.16 68.07 75.91
Gemma 2 Augmentation 9B 73.80 56.16 69.43 74.86 71.35 74.13
Gemma 2 Training-Schedule 9B 75.74 51.47 69.24 79.87 68.90 77.41
Llama-2-13b Training-Schedule 13B 71.07 50.11 65.59 74.10 67.54 72.69
Gemma 2 (27b) Training-Schedule 27B 77.38 47.88 68.89 82.28 67.03 78.70

Table 7: Single model results for the minimal-edit GEC test sets.

Model GLEU
Source (Uncorrected) 40.54
Reference (Average) 62.37

Conv Seq2Seq (Ge et al., 2018) 62.42
Transformer

(Stahlberg and Kumar, 2021)
64.70

GPT-3.5 (Coyne et al., 2023) 63.40
GPT-4 (Coyne et al., 2023) 65.02
Gemma 2 Augmentation 63.72

Gemma 2 Training-Schedule 62.91
Llama-2-13b Training-Schedule 62.53

Gemma 2 (27b) Training-Schedule 62.42

Table 8: Results for the fluency-edit GEC dataset
(JFLEG-test).

LLM is also an important factor that impacts the
overall performance of the model. The Gemma 2
9b model, even as a smaller model achieved much
better performance compared to the Llama-2-13b
model.

The detokenization process did not improve
model performance, but our findings on the errors
in the most common GEC datasets show the need
for a proper curation of datasets. Our work also
shows that LLMs can be effectively used as a deto-
kenization tool.

8 Limitations

Our work covers only experiments on English GEC
datasets, so it would be beneficial to extend the re-

search to check how LLMs would perform in other
languages. We did not conduct experiments on
other types of models. It is hard to tell whether our
methods would improve the Seq2Seq or Seq2Edit
approaches.

The other issue is that we applied only greedy de-
coding during inference. The results could be even
better if different decoding methods were applied.
It would also be worth comparing these methods
applied in LLMs with the Seq2Seq or Seq2Edit
models.

The reusability of the training schedule method
is limited by the requirement for extensive learning
rate tuning for any different model or dataset due to
high sensitivity to minor changes in learning rate.

Obtaining the highest F0.5 might be considered
overfitting for a specific test set and evaluation met-
ric, but in practical terms, the style of grammar
correction depends on specific needs, guidelines,
etc., so this might be a desired behavior.

Lastly, running our models requires a lot of mem-
ory and computational power, so for many people
it would be impossible to run them on their devices.
Our models may not be practical for everyday use,
but they can be used to create synthetic datasets
that can be used to train smaller models.
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A Training details

We trained our <=13b models on a 2xA100 (80GB)
GPU setup and the 27b model on a 4xA100 (80GB)
GPU setup. We used 4xA100 (80GB) GPU setup
to run the Llama 3 70b model for the detokeniza-
tion process. A single model training took 2-3
hours. The hyperparameter values are described in
Table 10. The following prompt was used during
training our models and during inference:

Correct the following text, making only minimal
changes where necessary.

### Text to correct:
<source text>
### Corrected text:
<target text>

B Detokenization prompt

The following prompt was used to detokenize the
datasets:

You will receive two texts: source text and cor-
rected text. Corrected text may not have proper
spaces. Your task is to remove/add proper spaces
to the corrected text. Do not write any comments,
just write corrected text with proper spaces.

Source text: <source text>
Corrected text: <target text>
Only change spaces, you must not change punc-

tuation.

Dataset #Examples Erroneous
sentences

FCE-Train 28.4k 65.43%
BEA-train 34.3k 69.02%
BEA-test 4.5k –
BEA-dev 4.4k 67.36%

CoNLL-2014-test 1.3k 71.90%
JFLEG-dev 754 95.36%
JFLEG-test 747 95.31%

Table 9: Details of the datasets used in our work. Note
that there ratio of erroneous sentences could be differ-
ent compared to the statistics about the datasets from
different research works due to the changes made by the
Llama 3 70b model during the detokenization process.

Hyperparameter name Value
learning rate 5e-6

batch size 4
gradient accumulation steps 4

warmup steps (for each dataset) 100
lr scheduler linear

epochs (for each dataset) 1
optimizer AdamW8bit

weight decay 0.01

Table 10: Hyperparameter values used to train our mod-
els.
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Abstract

While Generative AI has demonstrated strong
potential and versatility in content generation,
its application to educational contexts presents
several challenges. Models often fail to align
with curriculum standards and maintain grade-
appropriate reading levels consistently. Further-
more, STEM education poses additional chal-
lenges in balancing scientific explanations with
everyday language when introducing complex
and abstract ideas and phenomena to younger
students. In this work, we propose COGENT,
a curriculum-oriented framework for generat-
ing grade-appropriate educational content. We
incorporate three curriculum components (sci-
ence concepts, core ideas, and learning objec-
tives), control readability through length, vo-
cabulary, and sentence complexity, and adopt
a “wonder-based” approach to increase stu-
dent engagement and interest. We conduct a
multi-dimensional evaluation via both LLM-as-
a-judge and human expert analysis. Experimen-
tal results show that COGENT consistently pro-
duces grade-appropriate passages that are com-
parable or superior to human references. Our
work establishes a viable approach for scaling
adaptive and high-quality learning resources.

1 Introduction

Educational content, particularly reading materials,
is considered an integral part of supporting effec-
tive learning across disciplines. Traditionally, the
creation of educational materials has relied mainly
on human authors. This limits scalability and adapt-
ability when curriculum standards evolve or when
diverse learning needs must be addressed at scale.
Generative AI techniques, such as Large Language
Models (LLMs), have demonstrated remarkable
potential in various content generation (Achiam
et al., 2023; Team et al., 2024). However, their
application to educational contexts presents several

* Equal contribution.

challenges. While models can generate grammat-
ically correct and coherent passages, they often
fail to align with established curriculum standards
(Xiao et al., 2023; Liu et al., 2024b). Moreover, it
is difficult to maintain consistent grade-appropriate
reading levels, as both sentence structure and vo-
cabulary complexity impact student comprehen-
sion and learning outcomes (Zamanian and Hey-
dari, 2012). STEM education poses an additional
challenge of balance between science and everyday
language when introducing complex and abstract
concepts to younger students (Blown and Bryce,
2017; Gilbert and Byers, 2017). Therefore, creating
materials that effectively bridge science terminolo-
gies with real-world examples while maintaining
pedagogical value requires professional knowledge
and multi-dimensional efforts (Bansiong, 2019).

To address these problems, here we propose a
framework Curriculum-Oriented Generation for
Educational Content (COGENT), which creates
science reading materials aligned with curriculum
standards and adapts to grade-specific readability
requirements. This framework consists of three
components: curriculum formulation, controllable
content generation, and multi-dimensional evalua-
tion. Grounded in well-established education stan-
dards such as the Next Generation Science Stan-
dards (NGSS) (States, 2013), we build the struc-
tured guidance by linking science concepts (e.g.,
grades 1-5) with core ideas and their correspond-
ing learning objectives, which creates systematic
alignment with pedagogical value. For readability
control, we implement constraints on word num-
ber, vocabulary, and sentence complexity based on
grade-level reading proficiency (Flesch, 1948). Fur-
ther, inspired by inquiry-based learning (Dewey,
1986), we incorporate a “wonder-based” learning
approach that transforms core scientific ideas into
inquiry-driven topics to engage students with sci-
ence learning and discovery.

To comprehensively evaluate our framework and
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its pedagogical effectiveness, we build a multi-
dimensional validation protocol and conduct quan-
titative analyses of the generated content across
curriculum alignment, comprehensibility, and read-
ability metrics. Based on the COGENT frame-
work, our experiments with three representative
LLMs (Gemma-2-9B, GPT-4o, Claude-3.5-Sonnet)
indicate that: (1) models can follow curriculum
guidance to create educational content that aligns
closely with established pedagogical standards;
(2) models not only maintain high comprehensi-
bility but also demonstrate adaptability in adjust-
ing length, vocabulary, and sentence complexity
to meet grade-specific reading requirements. The
findings suggest that with proper scaffolding and
constraint mechanisms, LLM-based systems can
serve as a complement to human expertise in educa-
tional content development, which enables access
to high-quality, curriculum-aligned reading materi-
als across diverse educational contexts. This work
not only advances our understanding of how to ef-
fectively harness models for educational purposes
but also establishes a foundation for future inves-
tigations into automated content generation, with
broader applications for personalized learning.

2 Related Work

2.1 AI-generated Content in Education

Advancements in LLMs have accelerated the adop-
tion of AI in educational contexts, particularly in
automating traditionally time-consuming content
generation tasks such as providing feedback, cre-
ating assessment materials, and generating learn-
ing recommendations (Yan et al., 2024; Liu et al.,
2024b,c). These efforts provide customized learn-
ing materials to students based on individual fac-
tors such as learning status, preferences, and goals
(Wang et al., 2024; Liu et al., 2024a). For example,
Kuo et al. (2023) demonstrated how to generate
dynamic learning paths for students based on their
most recent knowledge mastery assessment results.
Similarly, Kabir and Lin (2023) enhances content
generation by incorporating knowledge concept
structures throughout the process. While these
methods show promise, they mainly focus on stu-
dents’ own learning trajectories and knowledge
structures, with little attention given to standard-
ized curriculum frameworks. Additionally, the gen-
erated content often fails to appropriately differen-
tiate reading levels.

To evaluate LLM-generated content, researchers

combined automatic and expert analysis. For in-
stance, Lee et al. (2024) investigated LLMs’ ca-
pability in generating test questions, with both au-
tomatic evaluation and expert analysis confirming
that these models can produce questions with high
validity and reliability for language learning. Simi-
larly, Zelikman et al. (2023) developed a reading
comprehension exercise generation system for mid-
dle school English learners, demonstrating that AI-
generated materials can not only meet students’
learning needs but, in some cases, surpass the qual-
ity of human-written materials. In computer sci-
ence education, Lee and Song (2024) examined the
effectiveness of AI-generated content in explain-
ing programming concepts, further validating the
potential of LLMs in educational content creation.

While current evaluation of AI-generated con-
tent focuses mainly on language and facts (Xiao
et al., 2023), real-world educational assessment re-
quires broader criteria including curriculum align-
ment, pedagogical scaffolding, and grade-level ap-
propriateness (Bansiong, 2019; Berndt and P. Way-
land, 2014). This lack of comprehensive evaluation
standards hinders educators’ interest and trust in
implementing AI-generated resources.

2.2 Evaluation Metrics of Education
Materials

The evaluation of educational content includes
three aspects: readability, comprehensibility, and
curriculum alignment. These factors collectively
determine whether learning materials are “appro-
priate to the student’s age and level of knowledge”
and “prepared in line with the curricula.”

Comprehensibility and Readability serve as fun-
damental metrics in analyzing educational texts
(Zamanian and Heydari, 2012). Readability is a
textual characteristic that measures how easily text
can be read and understood (Klare, 1974), while
comprehensibility reflects how effectively readers
can construct meaning from the text (Sadoski et al.,
2000; Beck et al., 1991). As Lakoff and Johnson
(1980) emphasizes, “understanding is only possible
through the negotiation of meaning.” When these
aspects are misaligned, students may experience
frustration or disengagement (Bansiong, 2019).

Curriculum alignment aims to ensure it meets ed-
ucational standards while remaining appropriate for
learners’ grade levels (Anderson, 2002). This eval-
uation ensures that educational materials are not
only readable and comprehensible but also serve
their intended pedagogical purposes within the edu-
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cational framework (Squires, 2012; Wijngaards-de
Meij and Merx, 2018).

2.3 Value of “Wonder” in Science Education
“The most beautiful thing we can experience is the
mysterious. It is the source of all true art and
science.” (Einstein, 1931)

Inquiry-based learning is rooted in the work of
Dewey (1986), who underlines that education be-
gins with the curiosity of the learner. Inquiry is
understood in two ways: (1) “inquiry as means”
(inquiry in science) refers to using inquiry as an
instructional approach to help students develop
their understanding of science content; (2) “inquiry
as ends” (inquiry about science) refers to inquiry
as a learning outcome (National Research Coun-
cil, 2000; Abd-El-Khalick et al., 2004). However,
when students inquire about scientific knowledge,
they often experience a gap between their intuitive
comprehension and their ability to express under-
standing (Blown and Bryce, 2017). They frequently
struggle to express their observations and questions
using scientific language. This disconnect high-
lights the need for level-appropriate educational
content that can bridge the gap between students’
intuitive understanding and formal scientific lan-
guage. Given this challenge, it is recommended to
introduce scientific concepts through “wonder why”
questions that trigger children’s natural curiosity
while reducing the barriers of science terminolo-
gies (Chin and Brown, 2002; Gilbert and Byers,
2017). Moreover, wonder-based explanatory texts
are effective for reading comprehension, science
learning, and conceptual change (Lindholm, 2018;
Jirout, 2020).

3 Curriculum-Oriented Generation for
Educational Content

The framework is designed to transform abstract
curriculum components into engaging, wonder-
based reading materials that improve students’ un-
derstanding while adhering to grade-specific read-
ability requirements. It consists of three parts: cur-
riculum formulation, controllable content genera-
tion, and multi-aspect evaluation (see Figure 1).

3.1 COGENT-based Generation
To simulate human teachers and editors (Bybee,
2014), we incorporate structured curriculum infor-
mation to guide LLM-based educational content
generation, ensuring pedagogical alignment, devel-
opment progress, and topic coverage. Here, we

Level Avg. words Avg. lexile Avg. unique words

Grade 1 (Ages 6-7) 101 430 57.9
Grade 2 (Ages 7-8) 200 545 87.7
Grade 3 (Ages 8-9) 319 605 132.8
Grade 4 (Ages 9-10) 468 770 183.2
Grade 5 (Ages 10-11) 558 920 219.5

Table 1: Linguistic features of human-written science
reading passages at elementary grade levels.

ground our approach in the Next Generation Sci-
ence Standards (NGSS), a well-established K-12
science education framework (States, 2013).1 We
decompose the curriculum into three hierarchical
elements: science concepts, core ideas, and learn-
ing objectives. As shown in Figure 2, science con-
cepts can be mapped to core ideas, and each core
idea is related to learning outcomes, creating a
comprehensive curriculum coverage matrix. More
specifically, for elementary school students (grades
1-5, ages 6-11), 29 science concepts (e.g., “Mat-
ter and Its Interactions”) are broken down into
79 core ideas (e.g., “Structure and Properties of
Matter. Matter can be described and classified by
its observable properties.”), then further mapped
to specific learning outcomes that detail what stu-
dents should master at each grade level (e.g., “To
describe and classify different kinds of materials
by their observable properties (Grade 2).”).

Importantly, concepts and core ideas can appear
across multiple grade levels, requiring different
depths of explanation and language complexity (see
Figure 2). As shown in Table 1, human-written sci-
ence reading passages show clear patterns across
grade levels: the average number of words, read-
ing difficulty scores (lexile) (White and Clement,
2001), and lexical diversity all increase steadily
as students progress from grade 1 to grade 5. We
thus indicate the word number and target readabil-
ity level (Klare, 1974; Flesch, 1948)2 along with
the curriculum input to ensure generated content
matches students’ reading abilities at each grade.

Moreover, to enhance students’ interest and en-
gagement, we consider “Science as Wonder” and
“everyday language” as a bridge to connect scien-

1While we demonstrate our framework using NGSS as a
representative example in this paper, the hierarchical decom-
position underlying COGENT can be adapted to other national
education frameworks and subjects, such as the National Cur-
riculum in England (Department for Education, 2014) or Sin-
gapore’s Ministry of Education curriculum standards (Ministry
of Education Singapore, 2023).

2In our experiments, based on human-written passages, we
set the word count to be the grade level multiplied by 100.
Flesch Kincaid Grade Level is used for readability control.
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Figure 1: Overview of the framework of curriculum-oriented generation for educational content (COGENT).

Figure 2: Our curriculum decomposition example grounded in the Next Generation Science Standards (NGSS),
which consist of four domains. It has a hierarchical structure where Science Concepts (e.g., LS1) branch into Core
Ideas (e.g., LS1-A: Structure and Function), which then connect to specific Learning Outcomes for each grade level
(e.g., 1-LS1-1). The same core idea may appear across multiple levels with increasing complexity. For example,
LS1-A (Structure and Function) progresses from grade 1 to grade 4.

tific concepts and their daily experiences. Given
the decomposed curriculum items, each core idea
can be used to generate multiple exploration ques-
tions. For example, the core idea about environ-
mental adaptation can be linked to wonder topics
such as “Why do birds migrate?” or “How can we
help protect animals’ home?” This approach main-
tains curriculum alignment while fostering student
curiosity through diverse and interesting content.
When explaining bird migration, the generated pas-
sage begins with an interesting observation (“Some
birds disappear in the fall and come back in the
spring.”), followed by clear explanations of stories
and scientific concepts, and concludes with broader
implications for environmental understanding.

3.2 Multi-dimensional Evaluation

While LLM-generated content can be modulated
along desired dimensions to meet specific require-
ments, it may not perform consistently and pre-
cisely (Saha et al., 2024; Li et al., 2025). We thus
propose a multi-dimensional evaluation to validate
pedagogical effectiveness and generation quality.

First, we evaluate Curriculum Alignment
through scoring and categorization schemes. The
scoring evaluates how well the content adheres to
the specified curriculum item, and the categoriza-
tion examines whether the passage delivers exact
core ideas and outcomes at each grade level. Eval-
uation examples are shown in Table 7.

132



Curriculum Alignment Scoring: We rate the pas-
sage compliance with the standards using a 5-point
scale (1 = does not align at all, 5 = fully aligned).
Given a sample set, we calculate the average score
to determine its overall curriculum alignment.
Curriculum Item Categorization: Since science
concepts appear in multiple grade levels, we first
group passages by concept (e.g., “From Molecules
to Organisms: Structures and Processes”), and
classify them into the corresponding curriculum
item: a tuple of {concept, core idea, learning out-
come}. For example, as shown in Figure 2 and
Table 7, the input passage will be classified into
one of the seven types (e.g., “Type A (core idea):
Structure and Function. All organisms have exter-
nal parts”, “Type G: Organization for Matter and
Energy Flow in Organisms”).

We then evaluate the Comprehensibility from
four aspects following previous work (Celikyilmaz
et al., 2020). This is to show how effectively read-
ers can construct meaning from the text. Each di-
mension is in a 5-point Likert scoring: Readability
(How easily the text can be read and understood),
Correctness (The accuracy of factual content about
the topic), Coherence (The consistency between
the content and the topic), and Engagement (To
what extent the “wonder-based” topic and passage
capture and maintain readers’ interest). Examples
can be found in Table 8.

Moreover, we use four common statistical meth-
ods to assess Text Readability based on linguis-
tic features: Flesch Reading Ease/Flesch Kincaid
Grade Level (Flesch, 1948) evaluates readability us-
ing sentence length and syllable count, with scores
from 0-100 (higher meaning easier to read) or con-
verted to grade levels. Gunning Fog Index (Gun-
ning, 1968) measures complexity through sentence
length and percentage of complex words, indicating
education years needed for comprehension. Auto-
mated Readability Index (Smith and Senter, 1967)
and Coleman Liau Index (Liau et al., 1976) differ
from other formulas by using character count in-
stead of syllable count, along with average word
and sentence length (see examples in Table 9).

4 Experimental Setting

We conducted extensive experiments on science
reading passage generation to examine both the
effectiveness and pedagogical value of COGENT.
Since this task requires structured instruction fol-
lowing and coherent language generation, we

Grade Type Gemma-2 GPT-4o Claude-3.5

1 BASE 91.13 110.30 98.10
1 COGENT 82.03 113.30 99.17
2 BASE 151.13 206.13 204.54
2 COGENT 119.85 193.13 199.69
3 BASE 250.63 336.61 290.33
3 COGENT 215.44 311.09 292.67
4 BASE 350.50 468.77 404.86
4 COGENT 365.53 418.23 395.09
5 BASE 418.23 590.21 518.63
5 COGENT 387.21 556.19 492.00

Table 2: Statistics of the generation length.

applied and tested three representative LLMs:
Gemma-2-9B-IT (Team et al., 2024), GPT-4o3 (ver-
sion 20240806), and Claude-3.5-Sonnet4 (version
20241022). We use the default generation param-
eters (e.g., temperature, top-p) in their model con-
figurations. The example instructions for wonder
question generation, and BASE and COGENT pas-
sage generation are shown in Table 6.

4.1 Comparison through Grouped Generation
and Human-written Passages

First, we collect and assess grouped passages gen-
erated from the same curriculum inputs to evaluate
COGENT’s capability in generating diverse yet
consistent content. Given each {concept, core idea,
learning outcomes} tuple, we randomly generated
three “wonder” topics, then created corresponding
reading passages for each topic.

Moreover, we collect 50 human-written passages
and build an evaluation set for extensive compar-
ison. These passages were selected from verified
educational resources and textbooks, covering var-
ious science concepts across elementary school
grades 1-5. Each sample was annotated with cor-
responding curriculum standards and readability
metrics, which provide a high-quality reference.

4.2 Evaluation Methods and Process

For automated evaluation, we leverage LLM-as-a-
judge for automated scoring on the Curriculum
Alignment and Comprehensibility scoring (Saha
et al., 2024). In our preliminary testing, Claude-3.5-
Sonnet performs well as a consistent and accurate
evaluator. To assess the grouped generation, we
reported the average scores of three passages per
topic to reduce intrinsic bias from the LLM-based
annotator. We use an off-the-shelf tool to calcu-

3https://platform.openai.com/docs/models/gpt-4o
4https://docs.anthropic.com/en/docs/about-

claude/models/all-models
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Metric Description BASE COGENT p-value

Curriculum Alignment How well content aligns with curriculum standards 4.08 4.62 .021*
Comprehensibility How effectively readers can construct meaning from the text

(readability, correctness, coherence, and engagement)
4.76 4.81 .083

Table 3: Statistical comparison of curriculum alignment and comprehensibility metrics: BASE vs COGENT. p-value
is calculated through pairwise Mann-Whitney U tests with Bonferroni correction (** p <.01, * p <.05).

Figure 3: Curriculum alignment scores (left) and comprehensibility scores (right) of Gemma-2-9B, GPT-4o, and
Claude-3.5-Sonnet generated passages using BASE and COGENT framework.

Figure 4: Results on four readability metrics of LLM-generated passages using BASE and COGENT framework.

late Text Readability scores.5 Moreover, for cur-
riculum item categorization, we group the 79 core
ideas based on their science concepts and classify
samples within each group. The accuracy is an indi-
cator to measure the distinctness of grade-specific
explanation depth and learning objectives.

For expert analysis, we recruited six elemen-
tary science teachers who have more than 10 years’
teaching experience to conduct expert analysis.
Teachers evaluated passages from grades 1-5, with
each grade having three passages: human-written,
BASE-generated, and COGENT-generated. The
human evaluation consists of two surveys: Cur-
riculum Alignment survey requires teachers to
indicate their agreement on whether the passages
aligned with corresponding grade-level science
concepts and core ideas, and Comprehensibility
survey requires them to rate each passage on four
dimensions (readability, correctness, coherence,

5https://github.com/textstat/textstat

and engagement). Both surveys used the same
items as the LLM-as-a-judge evaluation.

5 Experimental Results and Discussions

5.1 Results on Grouped Generation

In our experiments, we generated passages (three
samples per curriculum item) with Gemma-2-9B,
GPT-4o, and Claude-3.5-sonnet; the total number is
711. For the Curriculum Alignment scoring, we
conducted Mann-Whitney U tests, and the results
reveal significant improvements between BASE
and COGENT frameworks (see Table 3). More
specifically, COGENT (Mean = 4.62) achieves
significantly higher alignment scores compared to
BASE (Mean = 4.08) (p < .05), indicating that CO-
GENT effectively incorporates curriculum informa-
tion into generated passages. As shown in Figure 3
(left), models with COGENT demonstrate higher
scores across all grade levels. While Gemma-2-9B
is in a smaller parameter size, it can provide rea-
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Metric BASE COGENT Human BASE vs COGENT BASE vs Human COGENT vs Human

Curriculum Alignment 3.23 4.15 3.49 .008** .067 .029*
Comprehensibility 4.47 4.58 4.16 .053 .022* .014*

Table 4: Statistical comparison of curriculum alignment and comprehensibility: BASE vs COGENT vs Human
p-value is calculated through pairwise Mann-Whitney U tests with Bonferroni correction (** p <.01, * p <.05).

Figure 5: Results on curriculum alignment and comprehensibility of Human, BASE, and COGENT.

Figure 6: Results on readability metrics of human-written passages, BASE, and COGENT framework.

sonable outputs following the curriculum condition,
and GPT-4o performs slightly better.

Meanwhile, results of Curriculum Item Cate-
gorization also demonstrate COGENT’s effective-
ness on pedagogical alignment. For each model,
we calculated and averaged the classification ac-
curacy on 237 samples. GPT-4o achieves 0.785
with COGENT guidance, a 20% improvement com-
pared to 0.654 of the BASE. Similarly, Claude-
3.5 improves from 0.616 to 0.726 (17.8% relative
gain) and Gemma-2 improves from 0.633 to 0.747.
These improvements suggest that LLMs can fol-
low the curriculum guidance to effectively reflect
grade-specific content and objectives.

Regarding Comprehensibility, models with
BASE and COGENT perform well and compara-
ble (4.76 vs 4.81) (p = .083), as shown in Table 3;
they do not have significant variance across grade
levels, as shown in Figure 3 (right). This demon-
strates that adding curriculum targets in the science
reading passages does not affect the ease of com-
prehension. Moreover, we observed that tested
LLMs perform well (<6% averaged error rate) re-
garding Factual Correctness on the elementary

Grade Human BASE COGENT

1 57.9 66.5 (+14.8%) 66.5 (+14.8%)

2 87.7 110.6 (+26.1%) 100.7 (+14.9%)

3 132.8 153.2 (+15.3%) 137.1 (+3.2%)

4 183.2 196.1 (+7.0%) 174.0 (-5.0%)

5 219.5 230.5 (+5.0%) 209.0 (-4.8%)

Table 5: Comparison of unique words. Red and blue
indicate the intensity of higher and lower scores com-
pared with human-written passages, respectively.

school content writing (Hughes and Bae, 2023).
We observed that LLMs are well-conditioned

on the word count (see Table 2) at all grade lev-
els. This ability to control length is important for
creating grade-appropriate passages, as it is one
of the factors that affect readability. However, on
statistical Text Readability metrics, the two ap-
proaches perform differently. Results in Figure 4
show that COGENT adheres more closely to ele-
mentary reading levels, especially in lower grades
(e.g., 1-2), where the BASE approach exceeds the
intended level by around 2.5 grades. The above
results highlight the distinction between readability
(e.g., word count and sentence complexity) and ac-
tual comprehension ease, which depends on factors
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Figure 7: Expert analysis: curriculum alignment comparison of Human, BASE, and COGENT.

Figure 8: Expert analysis: comprehensibility score comparison among Human, BASE, and COGENT.

like coherence, engagement, and contextual clarity
(Bansiong, 2019). Without curriculum informa-
tion, LLMs are prone to produce content beyond
the indicated grade level, and grade-appropriate
generation should meet both requirements.

5.2 Comparison to Human-written Passages

We used the same wonder topics and word num-
bers as the 50 human-written passages for a par-
allel comparison. Table 4 shows Mann-Whitney
U test results among BASE, COGENT, and Hu-
man. We observe substantial improvement in Cur-
riculum Alignment, and comparable scores in
Comprehensibility. COGENT demonstrates much
higher alignment scores (Mean = 4.15) than both
BASE (Mean = 3.23) and Human (Mean = 3.49)
(p < .05). Similar to grouped generation (Section
5.1), COGENT achieves better alignment scores
at all grades. This indicates that COGENT-guided
passages align better with curriculum standards.
Among the three LLMs, GPT-4o results in slightly
higher scores (see Figure 5). Surprisingly, Human,
BASE, and COGENT all receive lower alignment
ratings in grades 3-5. This occurs because the won-
der topics extracted from the human references are
not well-matched in these higher grades.

Second, Comprehensibility evaluation results
show that both BASE (Mean = 4.47) and COGENT
(Mean = 4.58) outperform Human (Mean = 4.16)
(p < .05), while the difference between COGENT
and BASE is not statistically significant. Interest-

ingly, all three approaches maintain relatively high
comprehensibility scores, while human-written pas-
sages show a notable decline from grade 3. There
is a similar trend in readability evaluation results.

Third, Text Readability assessment results
demonstrate that COGENT’s performance more
closely correlates with human references, although
the latter slightly exceeds target grade levels. As
shown in Figure 6, on the linguistic metrics, CO-
GENT produces passages closer to the intended
grade level, while BASE generates passages largely
above intended grade levels. For example, when
targeting grade 1 content, BASE produces text at
grade 3-4 reading level, which creates potential
comprehension barriers for early readers. Interest-
ingly, we notice a sharp increase in difficulty level
at grade 3, which represents the significant tran-
sition in science education at this level. In grade
2, science learning focuses on concrete concepts
through basic observation, classification, and sim-
ple investigations of the natural world, while start-
ing from grade 3, teachers introduce more complex
scientific concepts requiring deeper analysis and
abstract thinking.

We also calculate the unique word numbers of
each passage created by Human, BASE, and CO-
GENT. Both BASE and COGENT show higher
vocabulary diversity than human writing in early
grades, with BASE producing up to 26.1% more
unique words at grade 2. This gap narrows in
higher grades, where BASE still generates more
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unique words (+5-7%), while COGENT shifts to
slightly lower lexical diversity (−5%) than human
writing. The trend suggests that COGENT vocab-
ulary usage becomes more aligned with human
patterns as grade levels increase.

5.3 Expert Analysis

We conducted expert analysis by comparing auto-
mated approaches (w/ GPT-4o) and human refer-
ence (15 reading passages). As shown in Figure
7, Curriculum alignment results align with our
previous evaluation findings. COGENT achieves
consistently higher alignment scores. In contrast,
human-written passages maintain moderate align-
ment across all grades, while the BASE shows
declining alignment scores in higher grades. At
each grade level, COGENT maintains the highest
proportion of positive ratings. Human-generated
content generally receives favorable evaluations.
BASE shows the most inconsistent performance,
with a particularly lower rating at grade 4.

Regarding Comprehensibility (see Figure 8),
experts assigned the highest ratings to COGENT-
generated passages, with significant difference
compared to human-written passages (p < .05). In-
terestingly, BASE-generated passages and human-
written passages exhibit similar comprehensibility
levels in lower grades; however, their performance
diverges significantly from grade 3. This diver-
gence suggests that as grade levels increase and sci-
ence concepts become more complex and abstract,
the BASE framework fails to maintain appropri-
ate readability, coherence, and engagement levels.
In contrast, our framework maintains consistent
comprehensibility scores at all grade levels. This
highlights that based on our COGENT framework,
LLM-generated reading materials achieve compa-
rable or superior quality compared with human-
authored passages, and they can be a reasonable
supplement to meet both curriculum alignment and
readability requirements.

6 Conclusion

We presented COGENT, a curriculum-oriented
framework for generating grade-appropriate edu-
cational content by incorporating structured cur-
riculum components (e.g., concepts, core ideas,
and learning objectives) alongside controlled read-
ability parameters and the “wonder-based” inquiry
approach. Extensive experiments with three LLMs
and expert evaluations demonstrate that COGENT

significantly improves curriculum alignment, main-
tains high comprehensibility while controlling text
readability to match grade levels, and generates pas-
sages comparable or superior to human-written pas-
sages. These findings establish that properly guided
LLMs can serve as effective tools for scaling adap-
tive learning resources, with implications for educa-
tional equity and accessibility. Since COGENT is a
general framework, future work could explore fine-
grained personalization, interdisciplinary applica-
tions, and long-term learning outcomes to further
enhance automated educational content generation.

Limitations

While this study advances the practical applica-
tion of LLMs, it has some potential limitations
that warrant future study. First, our framework fo-
cused on elementary education (grades 1-5); future
work could extend it to middle and high school
curricula and adapt the evaluation metrics for more
complex science concepts. Second, we did not in-
clude elementary students in our sample analysis
due to several considerations: their limited subject
knowledge and lack of understanding of curricu-
lum standards would affect their ability to evaluate
quality. Additionally, in readability assessments,
younger students tend to focus on surface-level
features (like pictures and length) rather than the
accuracy of scientific content, clarity of explana-
tions, or scaffolding of complex ideas. These could
potentially introduce bias in the assessment results.
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Wonder-based Topic Question Generation (w/ NGSS Standard)

You are a science teacher (elementary school grade 1). According to the Science Concept, Core Ideas and Learning Outcomes,
generate 5 different topics in the form of a short question for elementary grade 1 students.
- The generated text should meet the Flesch Kincaid Grade Level for elementary grade 1 students.
=== Science Concept ===
From Molecules to Organisms: Structures and Processes
=== Core Ideas ===
Structure and Function • All organisms have external parts. Different animals use their body parts in different ways to see, hear,
grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have
different parts.
=== Learning Outcomes ===
Students who demonstrate understanding can: Use materials to design a solution to a human problem by mimicking how plants
and/or animals use their external parts to help them survive, grow, and meet their needs.
*** System Output ***
1. How do animals use their legs to move?
2. What do plants use their leaves for?
3. How does a bird use its beak to eat food?
4. Why do turtles have hard shells?
5. How do flowers help plants grow?

BASE Passage Generation

You are a science teacher (elementary school grade 1). Generate a 100-word reading passage around the Wonder Topic for
elementary grade 1 students. Mix science and everyday language.
=== Wonder Topic ===
Why do turtles have hard shells?

COGENT-based Content Generation (w/ NGSS Standard)

You are a science teacher (elementary school grade 1). Generate a 100-word reading passage around the Wonder Topic to teach
students the Science Concept and Core Ideas, to meet the Learning Outcomes. Mix science and everyday language.
- The generated text should meet the Flesch Kincaid Grade Level for elementary grade 1 students.
=== Wonder Topic ===
Why do turtles have hard shells?
=== Science Concept ===
From Molecules to Organisms: Structures and Processes
=== Core Ideas ===
What the student needs to learn:
Structure and Function • All organisms have external parts. Different animals use their body parts in different ways to see, hear,
grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have
different parts.
=== Learning Outcomes ===
Students who demonstrate understanding can: Use materials to design a solution to a human problem by mimicking how plants
and/or animals use their external parts to help them survive, grow, and meet their needs.

Table 6: Example instructions for wonder question generation, and the BASE and COGENT passage generation.
Here the curriculum items are based on the NGSS standard (States, 2013). In our experiments, based on human-
written passages, we set the word count to be the grade level multiplied by 100. Flesch Kincaid Grade Level (Flesch,
1948) is used for readability control.
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Curriculum Alignment Scoring

I will show you a science reading passage for elementary school students. Rate its curriculum alignment on a 5-point scale (1 =
does not align at all, 5 = fully aligned).
[Curriculum Information]
Grade Level: 3
Science Concept: Biological Evolution: Unity and Diversity
Core Ideas: Biodiversity and Humans. Populations live in a variety of habitats and change in those habitats affects the organisms
living there.
Learning Outcomes: Make a claim about the merit of a solution to a problem caused when the environment changes and the
types of plants and animals that live there may change.
[Input Passage Content]
When a forest turns into a field, big changes happen for the plants that live there. Forests are full of tall trees, bushes, and smaller
plants that grow in the shade. But fields are open spaces with lots of sunlight and fewer trees. As the forest becomes a field,
many of the forest plants can’t survive. Trees that once stood tall are cut down or die. The plants that grew in their shade now
have too much sun. Some of these plants might dry up or wilt because they’re not used to so much light.
... ...
When habitats change, the living things in them have to change too. Some can’t survive, but others find new ways to live. Nature
is always changing, and plants and animals are always trying to keep up.
[System Output]
Alignment Score: 5

Curriculum Item Categorization

Classify the science reading passage for elementary school students into one of the following types according to the curriculum
definition. Give me the type label.
[Curriculum Item Categories]
"Type": "A",
"Concept": "From Molecules to Organisms: Structures and Processes",
"Core Ideas": "Structure and Function • All organisms have external parts. Different animals use their body parts in different
ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air.
Plants also have different parts",
"Learning Outcomes": "Use materials to design a solution to a human problem by mimicking how plants and/or animals use
their external parts to help them survive, grow, and meet their needs.",
"Type": "B",
"Concept": "From Molecules to Organisms: Structures and Processes",
"Core Ideas": "Growth and Development of Organisms • Adult plants and animals can have young. In many kinds of animals,
parents and the offspring themselves engage in behaviors that help the offspring to survive.",
"Learning Outcomes": "Read texts and use media to determine patterns in behavior of parents and offspring that help offspring
survive.",
...
...
"Type": "G",
"Concept": "From Molecules to Organisms: Structures and Processes",
"Core Ideas": "Organization for Matter and Energy Flow in Organisms • Plants acquire their material for growth chiefly from air
and water.",
"Learning Outcomes": "Support an argument that plants get the materials they need for growth chiefly from air and water.",
[Input Passage Content]
Cats have special hairs called whiskers. These whiskers are not like normal fur. They are thick and stiff. Whiskers grow on a
cat’s face and legs. They help cats in many ways. Cats use whiskers to feel things around them. This helps them move in the
dark. Whiskers can sense air movement too. This tells cats if something is nearby. When hunting, whiskers help cats know if
they can fit through small spaces. Cats also use whiskers to show how they feel. If a cat is happy, its whiskers point forward.
When scared, the whiskers go back. Whiskers are very important for cats. They help cats stay safe and find food.
[System Output]
Predicted Type: A

Table 7: Example instructions for curriculum alignment scoring and curriculum item categorization.
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Comprehensibility Assessment

I will show you a science reading passage for elementary school students. Rate its comprehensibility on readability, correctness,
coherence, and engagement. Give me the score of each aspect in a 5-point Likert.
[Target Grade Level]
Grade 3
[Comprehensibility Aspects]
- Readability: How easily the passage can be read and understood
- Correctness: The accuracy of factual content about the topic
- Coherence: The consistency and unity between the content and the topic
- Engagement: To what extent the “wonder-based” topic and passage capture and maintain readers’ interest
[Input Passage Content]
Topic: What happens to plants if a forest becomes a field?
When a forest turns into a field, big changes happen for the plants that live there. Forests are full of tall trees, bushes, and smaller
plants that grow in the shade. But fields are open spaces with lots of sunlight and fewer trees. As the forest becomes a field,
many of the forest plants can’t survive. Trees that once stood tall are cut down or die. The plants that grew in their shade now
have too much sun. Some of these plants might dry up or wilt because they’re not used to so much light.
... ...
When habitats change, the living things in them have to change too. Some can’t survive, but others find new ways to live. Nature
is always changing, and plants and animals are always trying to keep up.
[System Output]
Readability: 5, Correctness: 5, Coherence: 5, Engagement: 5

Table 8: Example instructions for the comprehensibility assessment.

Text Readability Assessment

Topic: What do plants use roots for?
Grade Level: 2
Plants have roots that grow under the ground. Roots are very important for plants. They help plants get water from the soil. The
roots also hold the plant in place. This keeps the plant from falling over. Some roots can even store food for the plant. Roots
come in different shapes and sizes. Some are long and thin, while others are short and thick. Plants use their roots to drink water,
just like we use our mouths. The roots also help plants get nutrients from the soil. These nutrients help the plant grow big and
strong. Without roots, plants would not be able to live and grow.
Readability Scores:
Flesch Reading Ease: 96.28, Flesch Kincaid Grade Level: 2.0,
Gunning Fog Index: 3.93, Automated Readability Index: 4.1, Coleman Liau Index: 6.06

Topic: What does a fish’s gills do?
Grade Level: 4
Have you ever wondered how fish can breathe underwater? Unlike us, fish don’t have lungs to take in air. Instead, they have
special organs called gills that help them get oxygen from the water around them. These gills are a great example of how animals
have special body parts that help them survive in their environment. Fish gills are like tiny, feathery structures on the sides of a
fish’s head. They’re hidden under flaps called gill covers, which protect them. When a fish opens its mouth, water flows in and
passes over the gills. As this happens, the gills grab oxygen from the water, just like our lungs grab oxygen from the air we
breathe. The gills are made up of many thin, flat sheets called gill filaments. These filaments are packed with tiny blood vessels.
As water moves over the filaments, oxygen from the water passes into the blood vessels. At the same time, carbon dioxide,
which is a waste gas, moves from the blood into the water. This swap of gases is how fish b̈reatheünderwater. Fish gills do more
than just help with breathing. They also play a part in getting rid of waste from the fish’s body and keeping the right balance
of salt and water. Some fish that live in salt water have special cells in their gills that can remove extra salt from their bodies.
Different types of fish have gills that are slightly different, depending on where they live and how they behave. For example,
fast-swimming fish like tuna have gills that can take in more oxygen quickly. This helps them keep up their speedy swimming.
On the other hand, fish that live in waters with less oxygen, like some catfish, have gills that are really good at grabbing what
little oxygen is there. It’s amazing how fish gills work so well for life underwater. They’re a perfect fit for the fish’s watery home,
just like our lungs are a perfect fit for life on land. This shows how animals have body parts that are just right for where they live
and what they need to do to survive.
Readability Scores:
Flesch Reading Ease: 81.12, Flesch Kincaid Grade Level: 5.8,
Gunning Fog Index: 7.44, Automated Readability Index: 7.7, Coleman Liau Index: 8.0

Table 9: Two evaluation examples of the text readability assessment.
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[Curriculum Information]
Grade level: 3
Science concept: Biological Evolution: Unity and Diversity
Core ideas: Biodiversity and Humans. Populations live in a variety of habitats and change in those habitats affects the organisms
living there.
Learning objectives: Make a claim about the merit of a solution to a problem caused when the environment changes and the
types of plants and animals that live there may change.
Topic Question: Why do birds migrate?

[Human-written Passage]
Migration is very hard work, but the work has big benefits, such as food—lots of it! Many birds that migrate north in spring
arrive just as huge numbers of insects are hatching. It’s a buggy banquet full of protein for both hungry arriving adults and the
young birds soon to be hatched. Growing chicks especially need lots of insect protein to grow big and strong. Spring also brings
new seeds, fruits, and nectar-filled flowers. Thanks to all this food, many migratory birds raise more young than birds that stay in
warm places all year long. Migration is also dangerous. Storms can kill birds or send them off course. Many migrating birds
crash into windows and brightly lit tall buildings. One of the biggest problems for any migrating bird is the loss of habitat. Birds
need healthy habitats everywhere they spend time throughout the year. That includes the places they nest and raise their young,
the places they spend the winter, and the places they stop along their migratory journeys to rest and feed. They need wild unbuilt
places like woods, beaches, grasslands, and wetlands. When natural areas are replaced by roads, homes, shopping centers, farms,
and other human-made structures, there is less of the healthy habitat birds need throughout the year. A healthy habitat is also a
place where there are plenty of native plants—the kinds of plants that grow naturally in a particular area. Those plants provide
more nutritious fruit and host many more insects than plants that are from other places. When people replace native plants with
nonnative plants, the amount of the right kind of food available to birds is reduced. Many people want to help migratory birds. In
all kinds of communities, people are planting native plants that provide food and places for hummingbirds and songbirds to nest
and rest. They are working to protect grasslands for the hawks that hunt there and other birds that nest there. Beaches, wetlands,
and bodies of water are being cleaned and protected to provide healthy habitats for shorebirds, wading birds, and swimming
birds like ducks and geese.

[BASE-generated Passage]
Have you ever seen a group of birds flying high in the sky, all moving in the same direction? They might be migrating! Migration
is when birds travel from one place to another at certain times of the year. But why do they do this? One big reason birds migrate
is to find food. When winter comes, many insects hide away and plants stop growing in colder places. Just like how we go to the
grocery store when our refrigerator is empty, birds fly to warmer places where they can find plenty of tasty insects, seeds, and
berries to eat. Some birds, like hummingbirds, travel thousands of miles just to find their favorite flower nectar! Another reason
birds migrate is to stay safe and comfortable. Cold weather can be dangerous for birds – their tiny bodies need lots of energy
to stay warm. By flying to warmer places, they can save their energy for important things like finding food and building nests.
Many birds also migrate to find better places to raise their babies, where there are fewer predators and more materials to build
cozy nests. When the weather changes again, many birds fly back to where they started. This cycle happens every year. Some
clever birds, like geese, even use the sun and stars to help them find their way, just like a natural compass! So, the next time you
see birds flying in a group, think about their amazing journey. They might be heading to their warm winter vacation or coming
back home for spring!

[COGENT-generated Passage]
Have you ever wondered why some birds disappear in the fall and come back in the spring? This is called migration. Birds fly
long distances to find better places to live and eat. It’s like taking a vacation, but for birds, it’s about survival. Many birds migrate
because the weather changes. When it gets cold, some birds can’t find enough food. Insects hide, and plants stop growing. So,
these birds fly to warmer places where they can find more to eat. When spring comes, they fly back to their old homes. Birds
face many challenges during migration. Flying long distances is hard work. They need to eat a lot before they leave to have
enough energy for the trip. Some birds fly over big oceans or deserts where they can’t stop to rest or eat. They have to be strong
and healthy to make it. Another problem is that the places birds visit are changing. People build houses and cities where birds
used to stop and rest. This makes it harder for birds to find safe places to sleep and eat during their journey. Some birds get
confused by bright lights in cities and fly into buildings. Weather can also be a big problem for migrating birds. Strong winds
and storms can blow them off course. They might end up in places they don’t know, where it’s hard to find food. Climate change
is making some areas too hot or dry for birds, so they have to find new places to go. Birds have amazing ways to deal with these
challenges. They can fly very high to catch good winds that help them travel faster. Many birds migrate in big groups, which
helps them stay safe from predators. Some birds can even sleep while they’re flying! People are trying to help migrating birds.
They’re making special areas called wildlife refuges where birds can rest and eat safely. Some cities turn off bright lights at night
during migration season to help birds fly safely. Scientists are studying birds to learn more about how to protect them. You can
help migrating birds too. Planting trees and flowers in your yard gives birds places to rest and eat. Keeping cats inside helps
protect birds from getting hurt. By taking care of the places where birds live and stop during migration, we can make sure they
have safe journeys every year.

Table 10: Three passages upon the same curriculum information. Text spans in blue highlight where scientific
concepts and ideas are introduced. It also marks explanations of scientific phenomena that directly connect to
learning objectives.
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Abstract

In this work, we assess the potential of using
synthetic data to train models for content scor-
ing. We generate a parallel corpus of LLM-
generated data for the SRA dataset. In our
experiments, we train three different kinds of
models (Logistic Regression, BERT, SBERT)
with this data, examining their respective abil-
ity to bridge between generated training data
and student-authored test data. We also ex-
plore the effects of generating larger volumes
of training data than what is available in the
original dataset. Overall, we find that train-
ing models from LLM-generated data outper-
forms zero-shot scoring of the test data with
an LLM. Still, the fine-tuned models perform
much worse than models trained on the origi-
nal data, largely because the LLM-generated
answers often do not to conform to the desired
labels. However, once the data is manually
relabeled, competitive models can be trained
from it. With a similarity-based scoring ap-
proach, the relabeled (larger) amount of syn-
thetic answers consistently yields a model that
surpasses performance of training on the (lim-
ited) amount of answers available in the origi-
nal dataset.

1 Introduction

Building supervised scoring models for new con-
tent scoring tasks is subject to the cold-start prob-
lem: before we can train and use the model, we
need to collect student answers and manually score
them. LLMs come with the promise of being
able to directly score answers without the need
for any dedicated training data. Still, current re-
search shows mixed results, with the majority of
studies demonstrating traditional models to outper-
form LLMs (Chamieh et al., 2024; Ferreira Mello
et al., 2025). Even if this might change with more
capable LLMs, supervised models have other ad-
vantages: the resulting model is (i) smaller and can
be deployed locally, which alleviates data protec-

Figure 1: Conceptual overview. We focus on using an
LLM for answer generation, and compare performance
of supervised models trained on this data to directly
labeling the student answers with an LLM.

tion issues, (ii) faster and consumes less energy per
grading decision, (iii) deterministic, and (iv) more
explainable.

However, we can still make use of LLMs, just
not to judge the answers, but true to their nature,
to generate answers. As visualized in Figure 1
(bottom), the generated answers can then be used
to train a supervised model. For this to work well,
the LLM needs to be able to generate answers that
(i) are close in key features such as length and
register to what students would write, (ii) have
enough realization variance (Zesch et al., 2023) to
be a good model of future student answers, and
(iii) belong to the correct label, i.e. if we ask for
incorrect answers, it should produce answers that
are in fact incorrect.

While style and variance have the potential of
being controlled by prompting (Yu et al., 2023),
label match seems more challenging (Chen et al.,
2023; Gao et al., 2023). There might also be con-
siderable differences in answer quality depending
on the label, due to the ‘Anna Karenina principle’1,

1After the famous novel by Tolstoy, which begins as fol-
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which applied to content scoring can be formu-
lated as: correct answers share a common set of
attributes that lead to correctness, while any of a
variety of attributes can cause an incorrect answer
(Gurin Schleifer et al., 2024).

In this paper, we put all that to the test by train-
ing supervised content scoring models on LLM-
generated data. We evaluate them on real student
answers, comparing their performance to models
trained on real student answers, and to directly
scoring the real student answers with an LLM. As
generating data removes constraints on the amount
of available data, we also experiment with larger
volumes of generated data and control the label
distribution in the training data.

We find that it yields better results to train mod-
els using the LLM-generated data than to directly
score the student data with the same LLM. Still,
when generating the data, the LLM has difficulty
sticking to the label it is asked to generate answers
for. Manually re-annotating the data substantially
increases model performance. Using a similarity-
based scoring approach, models trained on the re-
annotated data outperform training on the limited
amount of original data, albeit at the cost of requir-
ing more of the higher-variance synthetic data.

All our experimental code and data are available
on GitHub.2

2 Related Work

Studies that contrast the success of traditional su-
pervised scoring methods with LLM-based scoring
show the former to perform better (Chamieh et al.,
2024; Ferreira Mello et al., 2025). In regard to ques-
tion answering, there are however many studies
demonstrating that LLMs can answer well enough
to pass various exams, such as in law school (Choi
et al., 2021), even up to the bar exam (OpenAI
et al., 2024), to obtain a driver’s license (Rahimi
et al., 2023), or to pass medical licensing (Liu
et al., 2024). In the realm of content scoring, Ro-
drigues et al. (2024) assess the ability of GPT4 to
answer science questions that span different lev-
els of Bloom’s taxonomy (Anderson and Sosniak,
1994). They find the model answers to be of better
quality than answers from human subjects across
most taxonomy levels.

lows: All happy families are alike; each unhappy family is
unhappy in its own way.

2https://github.com/mariebexte/
llm-augmentation-scoring

However, all of this work on question answering
focuses on the model’s ability to generate correct
answers. Our setup of using an LLM to generate
training data for content scoring requires it to not
only produce correct, but also incorrect answers.
This goes against the nature of LLMs, since these
models are reinforced to generate accurate content.

Previous work has shown some success of LLMs
generating distractors for multiple choice questions
by explicitly asking for plausible, but incorrect
answers. This body of work spans questions target-
ing language and factual knowledge (Bitew et al.,
2025), reading comprehension (Taslimipoor et al.,
2024) as well as programming tasks (Hassany et al.,
2025). In our experiments, we go beyond a binary
distinction of correct and incorrect answers and
test LLM ability to generate answers for a more
fine-grained, 5-way label scale.

Somewhat contrary to the motivation for our
work, Dinh et al. (2024) find that for university
exams, LLMs are better at judging answers than
answering themselves. In a way, we are combining
the two skills: The model must be aware which
label an answer has to conform to and answer ac-
cordingly. The paradigm of using LLM-generated
data to train models has been described as data-
generation-based zero-shot learning (Gao et al.,
2023). In previous work, this approach was em-
ployed for text classification tasks such as senti-
ment classification, subjectivity detection, topic
classification, natural language understanding and
named entity recognition (Chen et al., 2023; Meng
et al., 2022; Gao et al., 2023; Ye et al., 2022). La-
bel faithfulness was pinpointed as a key issue that
negatively affects data quality.

Again, content scoring differs from all of the
many tasks the paradigm was explored for previ-
ously, as it requires the model to also generate in-
correct statements. Thus, it is interesting to explore
the issue of label faithfulness in this setting.

3 Source Dataset

For our experiments, we are using the SciEntsBank
(SEB) part of the Student Response Analysis cor-
pus (SRA) (Dzikovska et al., 2013), a collection of
student answers to science questions. Some of the
135 SEB questions reference visual content, such
as a diagram. Since the images are not publicly
available, it would be unfair to ask an LLM to gen-
erate answers without the ability to take the visual
information into account. Therefore, we discard
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Label SRA SRA-gen
Correct A controlled experiment is an ex-

periment where you only change
one variable.

The key feature of a controlled experiment is that it allows for
control over extraneous variables to ensure that any observed
results can be attributed solely to the manipulated factor.

Partially correct To do one at a time. Comparing two groups of subjects, with one group receiving
an intervention and another not

Contradictory A controlled experiment is a ex-
periment that you can control by
weight and the length of string.

The experiment is considered controlled if it lacks any external
variables, making it impossible to detect significant effects

Irrelevant The longer the string the shorter
the swings.

A controlled experiment is when you try out different ways
to study for tests with your friends and compare which way
works best without getting too many distractions around

Non-domain By not being good. Isn’t that something scientists use to test ideas?

Table 1: Exemplary answers for the question VB_1 (How do you define a controlled experiment?).

these questions, which leaves us with 84 questions.
On average, there are 43 answers for each question.
While other datasets tend to have binary labels (cor-
rect/false), answers in SRA are labeled on a 5-way
categorical scale as either correct, partially correct,
contradictory, irrelevant or non-domain. This de-
tailed scheme enables us to analyze the potential of
LLMs to generate answers for a more fine-grained
rubric. Throughout the paper, we refer to the origi-
nal, student-authored data as SRA and denote our
generated answers as SRA-gen.

4 LLM-based Answer Generation

For each of the five labels in the dataset, we gen-
erate 100 answers. This is done in increments of
10, i.e. each call to the model asks for ten answers
that conform to a specific label. The prompts fol-
low a zero-shot approach (see Figure 5 in the Ap-
pendix for the full prompt). Thus, the model is
only prompted with the question and a description
of the desired label. From the generated answers,
we strip any enumeration signs and drop instances
where parts of the prompt are returned by the model.
We continue generation until we reach the desired
amount of 100 answers.

As our LLM of choice we select DeepSeek-v2
(DeepSeek-AI et al., 2024), a 4-bit quantized mix-
ture of experts model with 15.7B parameters. We
access a local model server via the Ollama API
(version 0.5.7). All parameters of the model are
left at their default values. Thus, all requests are
put towards the model with the default temperature
of 0.8.

4.1 Data Analysis

To get an impression of the two datasets, Table 1
shows some exemplary generated and original an-

SRA SRA-gen

Avg. answer length (chars) 64.9 125.2
Avg. token length (chars) 4.2 5.1
MATTR .58 .86
MTLD 26.5 122.0
# types 116 1354
# unique types 20 1258

Table 2: Comparison of the two datasets.

swers. An obvious difference is that answers in
SRA-gen tend to be longer.

Table 2 gives a quantitative comparison of the
two datasets. Values are averaged across all ques-
tions. Answers in SRA-gen are on average twice as
long as answers in SRA. Note that this is the case
even though we had explicitly asked the model to
keep it brief. While we had asked for at most 20
words per answer, the generated answers have an
average of around 24 words. Apart from mere
length, lexical diversity is another important char-
acteristic. Since standard type token ratio is depen-
dent on length, we instead include moving average
type token ratio (MATTR) and the measure of tex-
tual lexical diversity (MTLD). Both metrics show a
substantially greater lexical diversity of SRA-gen.

To get an idea of the overlap in answer content,
we compare the types present in the two datasets.
Thus, we compare the sets of unique (lowercased)
tokens for each question. On average, SRA and
SRA-gen share 96 types. SRA (SRA-gen) has an
average of 20 (1258) types that to not occur in the
respective other dataset. Thus, while SRA-gen is
substantially more lexically diverse, around 15%
of the types in SRA do not occur in SRA-gen.

In screening the generated answers, we noticed
some patterns. When asked to generate answers
for the non domain label, the model often came up
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Third-
person

Lack of Randomization: Without random as-
signment of participants to groups, there is a
risk of bias influencing the outcomes, making
interpretation difficult or misleading.

Elaborate Plucking one end of an infinitely long taut string
will not create any sound as it has no physi-
cal medium to transmit the vibrational energy
through; there’s nothing else to pass on the

’wave’ from where Darla plucked

Refusal I’m sorry, but it seems there was a misunder-
standing or error in your request. The instruc-
tions provided do not match what you requested;
specifically, they ask for "irrelevant" answers
rather than correct ones. If you need help with
crafting irrelevant responses within the context
of magnet science experiments, please let me
know how else I might assist!

Wrong
language

我觉得这个跟我们学的东西好像不一样，
会不会是问错了？ [I don’t think this seems to
be the same as what we’ve been learning, could
this be the wrong question?]

Table 3: Failure modes when generating answers.

with (rhetorical) questions, an example of which is
included in Table 1. Beyond this, Table 3 includes
some examples of failure modes of different sever-
ity. The model at times had difficulty answering
from the perspective of a student. Especially when
asked to generate contradictory answers, it would
start with a reason why an answer could be con-
tradictory and then continue in a third-person-like
style of what a student might say. Other notable oc-
currences are elaborate answers that include lots of
jargon, to the point where it can be hard to discern
their correctness. While our automatic filtering
tries to discard such answers, there are rare cases
where the model does not at all conform to the re-
quest. A few times, the model also does not answer
in English.

5 Experimental Setup

Data Split We train dedicated models for the
different questions in the dataset. To train on SRA,
we perform leave-one-out cross validation. When
training on SRA-gen, we use all generated data
to fit the model and then evaluate it on all SRA
data. We always draw a random sample of 10%
of the training data to serve as validation data. All
scoring methods are evaluated on the exact same
data splits.

Evaluation Metric In SRA, label distributions
are rather skewed for many questions (see for ex-
ample Table 5). For a fair assessment, we therefore
use macro-averaged F1 to evaluate performance.

Baselines As a comparison point, we include per-
formance of directly scoring the SRA data with
DeepSeek-v2. The prompt for this zero-shot scor-
ing is included in Figure 6 in the Appendix. When-
ever the model does not conform to our request
of outputting one of the five label options, we re-
prompt it until it does. We also include the perfor-
mance of a majority classifier.

Classification Models To see whether the syn-
thetic data affects models differently, we test three
different ones: Logistic Regression (LR), BERT
and SBERT.

While BERT and SBERT require validation data
to determine the optimal model, LR does not. Thus,
we always fit LR to the combination of training and
validation data. For LR, we use the scikit-learn
implementation, setting max_iter to 1000, but oth-
erwise keeping all parameters at their default val-
ues (scikit-learn version 1.6.1). Answers are repre-
sented as lowercased unigrams and bigrams. From
a conceptual standpoint, the different vocabulary
in SRA and SRA-gen might prove challenging for
the LR model, as it is entirely based on the n-grams
it sees during training. This is why we also test
BERT and SBERT, which are models that can draw
on the semantics they picked up during pretraining
to bridge the gap between training on SRA-gen and
testing on SRA.

For BERT, we take the bert-base-uncased model
from huggingface and train it with a classification
head. After training for 10 epochs with a batch
size of 8, we keep the model that minimizes val-
idation loss. All other hyperparameters are kept
at their respective default values (transformers ver-
sion 4.50.3).

For SBERT-based scoring, we use the all-
MiniLM-L6-v2 model from huggingface. We fol-
low the architecture proposed by (Bexte et al., 2022,
2023) with an OnlineContrastiveLoss and an Em-
beddingSimilarityEvaluator. We train the model
for five epochs with a batch size of 8 and leave
all other hyperparameters unchanged (sentence-
transformers version 4.0.1). Again, we keep the
model that performs best on the validation data.
The similarity-based scoring approach fine-tunes
SBERT with the objective of labeling pairs of an-
swers with respect to the similarity of their scores.
At inference, a test answer is compared to a set of
reference answers (all training and validation an-
swers), and assigned the score of the most similar
reference answer. Since this search is also possi-
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Method Training Data
SRA SRA-gen

Majority baseline .21 .21
LLM Scoring .21 .21

SBERTpre .44 .30

LR .46 .25
BERT .40 .25
SBERTfine .55 .28

Table 4: Macro-averaged F1 across all questions.

ble without any fine-tuning of the model, we ad-
ditionally report performance of directly using the
pretrained SBERT model without any adaptation
to the training data. We refer to this as SBERTpre
and denote the fine-tuned model with SBERTfine.

6 Training on Synthetic Data

6.1 SRA vs. SRA-gen

In our first experiment, we compare scoring per-
formance of models trained on the original SRA
data vs. our generated data. To keep results com-
parable, we sample data from SRA-gen following
the same label distribution as in SRA. To even out
sampling effects, we repeat this 20 times and re-
port the average performance. Aggregated results
are shown in Table 4. Directly scoring the SRA
data with DeepSeek-v2 performs at the level of the
majority baseline. Due to the non-deterministic
nature of the LLM, we run this scoring five times,
obtaining a range of performance. We report the
average here, but include detailed results in Figure
7 in the Appendix. In extreme cases, repeatedly
administering the exact same prompt can produce
macro-averaged F1 values ranging from below .3
to above .6. We also observe that the model al-
most exclusively labels answers as either correct or
partially correct. Thus, the closeness to majority
baseline performance is unsurprising.

For all three of the fine-tuned model types we
test, training a model from SRA-gen performs
slightly better than majority baseline and zero-shot
LLM scoring. However, this performance is still a
long way off from training on SRA. On SRA, the
fine-tuned SBERT model gives the best results (.55
F1). Likely due to the limited training data, LR
(.46) outperforms BERT (.40). Interestingly, the
pretrained SBERT model (.44) also outperforms
BERT on SRA, and does better than all other mod-
els on SRA-gen. Thus, we choose to break down
results for individual questions for this model in
Figure 2. To see variation between the 20 SRA-gen
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Figure 2: SBERTpre: Performance per question.

samples we draw (Figure 8), and for the same re-
sults for the fine-tuned SBERT model (Figure 9)
refer to the Appendix.

In Figure 2, we see that the pattern of using the
LLM-generated data as training data being superior
to zero-shot scoring with an LLM (green bars) is
consistent across the majority of questions. For
some questions, even the fine-tuned model is not
doing much better than the majority baseline. Only
for one of the questions for which a successful
model can be learned on SRA do we see compara-
ble performance when using SRA-gen as training
data. Do however note that this only holds for the
pretrained model. Fine-tuning SBERT on SRA
outperforms training on SRA-gen for all questions.

6.2 Amount of Generated Training Data
As generating training data puts us at liberty to
surpass the amount of data that is present in the
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original dataset, we now explore how performance
changes with larger amounts of synthetic data. We
do this in a balanced fashion, i.e. with an equal
amount of answers for each label, starting with just
one per label and going up to 100. This means
that we use training data ranging from as little as
five to as many as 500 answers. We sample each
amount 20 times, and report average, best and worst
performance.

We again choose to do this analysis for the pre-
trained SBERT model, as this is the model that gave
the best performance on SRA-gen in the previous
experiment. To see the full curve, refer to Figure 10
in the Appendix. From a low amount of training
data onwards, performance remains on a consis-
tent low level. The average performance is below
the majority baseline performance of .21 macro-
averaged F1, and even the best runs do just slightly
better than this baseline. Thus, the relatively low
performance on SRA-gen we saw in the previous
experiment was not due to the limited amount of
training data. Do also note that the balanced la-
bel distribution we enforce here leads to overall
lower performance than what we had observed in
the previous experiment, where training and test
data shared the same label distribution.

7 Training on Cleaned Synthetic Data

Apart from the answers themselves, their labels
are a crucial element of the generated data. While
we are asking the LLM to generate answers that
conform to a target label, there is no guarantee
that they actually do. Thus, we perform manual
annotation to assess whether the generated answers
match the label they are supposed to belong to.
Table 5 shows the three questions we select for this
assessment.

We first manually clean the labels and then run
scoring experiments that compare performance of
training on the as-generated labels vs. the manu-
ally cleaned labels.

7.1 Label cleaning
As a first calibration round, three annotators (two
authors of this paper and a research assistant) man-
ually label the answers in SRA to make sure that
there is substantial agreement with the original la-
bels. Table 6 shows the Cohen’s Kappa (Cohen,
1960) we obtain.3 We also include agreement with

3Note that we believe to have found two mislabeled in-
stances for question ME_27b, and one for question VB_1. We
report agreement with the corrected labels.

ID Question # Answers
c. p.c. con. irr. n.-d.

M
E

_2
7b How can you use a magnet to

find out if the key is iron or alu-
minum?

22 12 1 4 1

PS
_4

bp

Darla tied one end of a string
around a doorknob and held the
other end in her hand. When
she plucked the string (pulled
and let go quickly) she heard
a sound. How would the pitch
change if Darla made the string
longer?

24 0 10 6 0

V
B

_1 How do you define a controlled
experiment?

21 3 1 14 1

Table 5: Questions chosen for manual annotation.

ME_27b PS_4bp VB_1
G R1 R2 R3 G R1 R2 R3 G R1 R2 R3

Gold - .77 .62 .84 - .91 .91 .96 – .79 .72 .91
R1 .77 - .45 .69 .91 - .91 .91 .79 – .80 .83
R2 .62 .45 - .62 .91 .91 - .91 .72 .80 – .68
R3 .84 .69 .62 - .96 .91 .91 - .91 .83 .68 –
Adj. .88 .73 .66 .96 .95 .95 .95 .95 .83 .96 .84 .83

Table 6: Kappa agreement of our annotations with the
labels in SRA (Adj. = adjudicated annotations).

the adjudicated labels, which we determined by tak-
ing the majority label. Where all three annotators
had decided on different labels (two cases), the dis-
agreement is resolved via discussion. Agreement
between adjudicated labels and gold SRA labels
ranges from .83 to .95. This shows that we can
reliably annotate the data. Thus, we proceed with
annotating the same prompts in SRA-gen.

For each of the three questions, we take 50 an-
swers per label. This makes for a total of 250
answers per question, of which we randomize the
order and hide the as-generated label. All three an-
notators now annotate the answers and we again de-
rive adjudicated annotations by taking the majority
label where possible. The remaining cases where
all annotators disagree (12 for question ME_27b, 9
for question PS_4bp, 41 for question VB_1) are re-
solved through discussion. Table 9 in the Appendix
shows kappa agreement for this round of anno-
tation. Agreement is overall lower, as the LLM-
generated data has substantially more variance than
the original SRA data.

Label Accuracy With the manual label annota-
tions we can now compute the accuracy for each
label by comparing what the LLM was asked to
generate with what the annotators agreed was ac-
tually generated. Table 7 shows these results, and

149



Human Label Acc.
LLM Label corr. part. corr. contr. irr. non-d.

ME_27b
correct 12 13 3 22 0 .24
partially correct 13 17 4 16 0 .34
contradictory 3 2 18 26 1 .36
irrelevant 1 4 6 37 2 .74
non-domain 0 2 3 1 44 .88

PS_4bp
correct 22 3 14 11 0 .44
partially correct 14 14 8 14 0 .28
contradictory 3 9 26 12 0 .52
irrelevant 0 0 3 47 0 .94
non-domain 6 2 2 11 29 .58

VB_1
correct 23 26 0 1 0 .46
partially correct 26 18 3 3 0 .36
contradictory 0 13 14 23 0 .28
irrelevant 2 4 8 35 1 .70
non-domain 0 0 4 10 36 .72

Table 7: Adherence of the LLM to the label it was asked
to generate answers for. Accuracy: the fraction of the
50 generated answers that does match the desired label.

Figure 3 compares label accuracies across ques-
tions. Only for one question and label (irrelevant
for PS_4bp) nearly all generated answers conform
to the desired label. Non-domain answers are only
generated when the LLMs is asked for such: very
rarely is an answer from a different label manually
found to be non-domain. Overall, accuracy of non-
domain and irrelevant answers is higher than for
the other labels. Consistently, over half of the cor-
rect, partially correct and contradictory answers do
not conform to the desired label. Contradictory an-
swers are often determined to be irrelevant, and for
VB_1 13 of them are even partially correct. Correct
answers are regularly found to actually be partially
correct or irrelevant. For PS_4bp, 14 correct an-
swers are even found to in fact be contradictory.
This is somewhat contrary to the general consensus
that LLMs are doing well with answering correctly.
It may however be due to a difficulty of having to
come up with multiple answers in one go, i.e. ten
correct answers instead of just one.

7.2 Model training with cleaned data

To assess the benefit of cleaning labels in SRA-gen,
we can now compare the success of models trained
on the as-generated vs. cleaned labels. Table 8
summarizes these results. When training on 40 in-
stances from SRA-gen, we draw a sample with the
same distribution as in SRA 20 times and report
the average performance. Training on as-generated
SRA-gen data consistently does worse when a bal-
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Figure 3: Accuracy of the labels in SRA-gen.

anced sample of 250 answers vs. just 40 answers is
used to train. This is likely due to models benefit-
ing from the matching label distribution in training
and test data for the smaller sample.

The cleaned labels consistently lead to an in-
crease in performance. For the 40 training answers,
this increase is however much more subtle than
for the full 250 SRA-gen answers. On this larger
amount of training data, performance often reaches
the level of training on the original SRA data. The
SBERT model consistently gives the best perfor-
mance, and is the only model for which training
on the 250 cleaned SRA-gen answers consistently
outperforms training on the 40 SRA answers.

Overall, our results demonstrate that the LLM-
generated answers themselves do carry enough
meaning to inform a model, but that manual clean-
ing is necessary to remove noise in their labels. As
we have seen the label distribution in the training
data to affect model performance, the comparison
between the 250 as-generated vs. cleaned SRA-gen
answers is however not entirely ‘fair’: While the
SRA-gen data was drawn with a balanced distribu-
tion of 50 answers per label, this distribution has
shifted once the labels were cleaned. We therefore
take a look at the performance of balanced sam-
pling with as-generated vs. cleaned SRA-gen data
in Figure 4. Since the fine-tuned SBERT model
gives the best performance on cleaned SRA-gen
data, we choose this model for this analysis. Do
note that we can only compute the curve for the
cleaned data up to 28 answers per label, as the total
number of answers for the most infrequent label
limits our ability to draw a balanced sample. For
training with 5, 10, 15, 20 and 25 answers per label,
we draw 20 training samples each and report best,
average and worst performance.

For all three questions, the as-generated labels
constantly lead to low average performance lev-
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Data LR BERT SBERTpre SBERTfine

# train 40 40 40 250 250 40 40 40 250 250 40 40 40 250 250 40 40 40 250 250

Generated ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Cleaned - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓

ME_27b .34 .16 .19 .09 .32 .36 .10 .17 .07 .32 .33 .20 .31 .26 .29 .33 .12 .29 .08 .41
PS_4bp .58 .25 .25 .00 .46 .49 .29 .27 .03 .47 .73 .32 .45 .00 .21 .82 .26 .61 .07 .91
VB_1 .33 .13 .30 .06 .37 .33 .24 .29 .09 .31 .33 .28 .25 .16 .46 .35 .22 .31 .02 .41

Avg. .42 .18 .25 .05 .38 .39 .21 .25 .06 .37 .46 .27 .34 .14 .32 .50 .20 .40 .06 .58

Table 8: Effect of cleaning the LLM labels via manual annotation (macro-averaged F1). For BERT and SBERT,
results are averaged across three runs for a more reliable performance estimate. ‘Generated’ denotes whether we are
training on SRA (✗) or SRA-gen (✓). ‘Cleaned’ indicates if we are using the as-generated (✗) or cleaned (✓) labels.

els of below .2 F1. With the cleaned labels, per-
formance rises once more data is added, and the
curves indicate that it might rise further if there
was more data available. This controlled compari-
son thus confirms the beneficial effect of manually
cleaning the labels.

8 Conclusion

We generate answers to the questions in the SRA
dataset with an LLM. Using these answers as train-
ing data leads to relatively poor performance. Di-
rectly scoring the SRA data with an LLM even
performs slightly worse, showing an inability of
the model to reliably apply the 5-way label scale.
This is supported by our analysis of the extent to
which the LLM sticks to the label we ask it to gen-
erate answers for. Up to 75% of the answers the
model was asked to generate for a specific label
were found not to conform to this label. Training
a model with manually relabeled generated data
demonstrates the detrimental effect of the noisy
labels: With cleaned labels, model performance in-
creases substantially, reaching a comparable level
to training on the original SRA data - albeit at the
demand of larger volumes of training data. In light
of our analysis of the lexical diversity in SRA vs.
SRA-gen, this is likely due to diverging content in
SRA vs. SRA-gen. Thus, more SRA-gen data is
needed to sufficiently cover the content of SRA.

With a similarity based scoring model, training
on the larger sample of generated data even consis-
tently leads to superior performance over training
on the small amount of available original SRA data.
One benefit of the similarity-based model might
be that one highly similar answer with the correct
label suffices for the model to correctly label an
answer of interest.

In conclusion, one can overcome the cold-start

Figure 4: SBERTfine: Balanced sampling of SRA-gen
with as-generated (left) vs. cleaned (right) labels.

problem with the help of an LLM in the sense of
not having to collect data from real students, but
not without the manual effort of labeling the gener-
ated answers. Future work could explore automatic
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cleaning of the generated data to alleviate the man-
ual labeling effort. While we saw limited success
in preliminary experiments, future work could also
quantify the effect of using few-shot prompting,
both in zero-shot labeling and generating answers.

Limitations

While our results provide interesting insights into
the possibility of generating training data with an
LLM, there are a number of limitations to our find-
ings. First, we only experiment with one LLM.
Other LLMs may behave differently, which limits
our conclusions to DeepSeek-v2. Even within the
realm of prompting an LLM, the precise choice of
prompt can have substantial impact (Sclar et al.,
2024). While we did carefully craft our prompts,
subtle changes to the wording may affect results.
Within the prompt design, a key aspect might be
the amount of answers the model is asked to gen-
erate in one go. We always asked for ten answers,
but results may differ if the model were asked to
generate just one or even all 500 answers at once.

Even beyond model choice and prompt design,
model parameters will affect results. We left these
untouched, but varying the temperature will affect
both answer generation and scoring ability of the
model.

Ethical Considerations

In considering the use of generated training data
for model training, one has to be cautious about the
normative language LLMs produce. An inability
to produce sufficiently ‘student-like’ language may
lead to a model with inferior performance on real
student answers that deviate from language norms.
Since content scoring is however less about lan-
guage form and more about content, this should
not affect the score of an answer.

Automated scoring of student answers in general
is not without ethical and legal issues. It is high-
risk as per the European Union AI Act, and LLM
use poses ‘systematic risks’.

A main concern of LLMs and deep learning in
general is a lack of transparency. This is somewhat
alleviated by the use of an LLM to generate syn-
thetic answers as opposed to using it to directly
score student answers. Still, our work shows that
based on the synthetic answers it is again most suc-
cessful to apply deep learning. This in turn is much
less transparent than the use of a shallow learning
method such as logistic regression - which we test

as well, but find to perform worse. However, the
deep learning model we find to perform best oper-
ates in a similarity-based fashion. Thus, it at least
allows backtracking to the reference answers that
lead to a predicted score.
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Appendix

This appendix contains some supplementary ma-
terial to increase transparency of our experiments.
It includes the prompt used to generate SRA-gen
in Figure 5 and the prompt used to score the an-
swers in SRA in Figure 6. The main paper con-
tains the agreement we achieve in labeling the orig-
inal SRA data in Table 6. Here, we include the
same statistics for our annotation of the generated
data in Table 9. We also include some more de-
tailed results of our scoring experiments. Due to
the non-deterministic nature of the LLM, repeated
administration of the same prompt leads to differ-
ing results. Thus, Figure 7 depicts the variation in
performance when administering the same prompt
to the same model five times. Figures 8 (pretrained
SBERT) and 9 (SBERT) show question-wise re-
sults for scoring based on SRA-gen vs. SRA. Fi-
nally, Figure 10 shows performance of training the
pretrained SBERT model with balanced samples of
SRA-gen.

LLM R1 R2 R3 Adjudicated

ME_27b
LLM - .49 .19 .36 .39
R1 .49 - .32 .48 .62
R2 .16 .32 - .48 .63
R3 .36 .48 .48 - .81
Adjudicated .39 .62 .63 .81 -

PS_4bp
LLM - .55 .33 .39 .45
R1 .55 - .59 .59 .77
R2 .33 .59 - .56 .75
R3 .39 .59 .56 - .75
Adjudicated .45 .77 .75 .75 -

VB_1
LLM – .63 .26 .22 .34
R1 .63 – .41 .31 .55
R2 .26 .41 – .46 .69
R3 .22 .31 .46 – .59
Adjudicated .34 .55 .69 .59 –

Table 9: Kappa agreement of our annotations with the
labels in SRA-gen.
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<purpose>
You are a school teacher.
Your students are going to answer the following question:
{question}

You are now thinking about possible answers students could give.

[LABEL_INSTRUCTIONS]
</purpose>
<format_rules>
Use markdown output and put each correct answer as a single bullet point.
Keep the answers as short as possible. A maximum of 20 words per answer.
</format_rules>
<output>
Create 10 [correct/partially correct or incomplete/contradictory/irrelevant/non domain]
responses following the given rules.
</output>

LABEL_INSTRUCTIONS={

CORRECT: Generate a list of 10 possible correct answers.
That is the important part, generating that list of exactly 10 answers!

PARTIALLY_CORRECT_INCOMPLETE: Generate a list of 10 possible partially correct
or incomplete answers. Partially correct or incomplete means that the student answer is
a partially correct answer containing some but not all information from the reference
answer. The important part is to generate a list of 10 student answers belonging to that
category (partially correct incomplete)!

CONTRADICTORY: Generate a list of 10 possible contradictory answers. That means that
the given answers are not correct and explicitly contradict the correct answer. The
important part is to generate a list of 10 answers belonging to that contradictory
category!

IRRELEVANT: Generate a list of 10 possible irrelevant answers. Irrelevant means that
the student answer is talking about domain content but not providing the necessary
information to be correct. The important part is to generate a list of 10 student answers
belonging to that irrelevant category!

NON_DOMAIN: Generate a list of 10 possible 'non domain' answers. 'Non domain' means that
the student utterance does not include domain content, e.g., "I don't know", "what the
book says", "you are stupid". The important part is to generate a list of 10 student
answers belonging to that category!}

Figure 5: Prompt used to generate training data. We follow the
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<purpose>
You are a school teacher.
A student has answered the following question:
{question}
This is the answer the student gave:
{answer}
You now have to score this answer.
These are the possible scores:
Correct: A correct answer to the question.
Partially correct or incomplete: This means that the student answer is a partially
correct answer that contains some but not all necessary information.
Contradictory: This means that the student answer is not correct and explicitly
contradicts the correct answer.
Irrelevant: This means that the student answer is talking about domain content but
not providing the necessary information to be correct.
Non-domain: This means that the student answer does not include domain content, e.g.,
"I don't know", "what the book says", "you are stupid".
</purpose>
<format_rules>
Only output the score.
</format_rules>
<output>
Decide on the score of the student answer.
</output>

Figure 6: Prompt used to score answers with the LLM.
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Figure 7: Performance variation across five runs of scoring the answers using an LLM.
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Figure 8: SBERTpre performance variation across 20 samples of generated training data that follow the same label
distribution as the original SRA data. Left: Comparison of the average performance to directly scoring the data with
an LLM. Right: Detailed results of the best, average and worst sample.
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Figure 9: SBERTfine performance variation across 20 samples of generated training data that follow the same label
distribution as the original SRA data. Left: Comparison of the average performance to directly scoring the data with
an LLM. Right: Detailed results of the best, average and worst sample.
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Figure 10: Average performance of SBERTpre when using a balanced sample of SRA-gen training data. Light blue
lines show average results for individual questions.
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Abstract
Establishing the difficulty of test items is an
essential part of the language assessment de-
velopment process. However, traditional item
calibration methods are often time-consuming
and difficult to scale. To address this, recent
research has explored natural language process-
ing (NLP) approaches for automatically pre-
dicting item difficulty from text. This paper
investigates the use of transformer models to
predict the difficulty of second language (L2)
English vocabulary test items that have mul-
tilingual prompts. We introduce an extended
version of the British Council’s Knowledge-
based Vocabulary Lists (KVL) dataset, contain-
ing 6,768 English words paired with difficulty
scores and question prompts written in Span-
ish, German, and Mandarin Chinese. Using
this new dataset for fine-tuning, we explore
various transformer-based architectures. Our
findings show that a multilingual model jointly
trained on all L1 subsets of the KVL achieve
the best results, with analysis suggesting that
the model is able to learn global patterns of
cross-linguistic influence on target word diffi-
culty. This study establishes a foundation for
NLP-based item difficulty estimation using the
KVL dataset, providing actionable insights for
developing multilingual test items.

1 Introduction

Calibrating the difficulty of test items is a core as-
pect of language assessment design, ensuring that
tests are fair, consistent, and aligned with learner
proficiency. Traditionally, this calibration relies
on pre-testing large item samples or expert judg-
ment, which are expensive and time-consuming.
Consequently, there is an increasing interest in au-
tomating item calibration using machine learning
methods (Yancey et al., 2024; Yaneva et al., 2024),
which offer greater scalability, efficiency, and con-
sistency, and can be more easily integrated into
item development pipelines.

While transformer-based encoder models such as
BERT (Devlin et al., 2019) have been successfully
applied to question difficulty estimation from text
(QDET) in domains related to content knowledge
assessment, approaches in language assessment —
where difficulty is more closely tied to the linguistic
properties of the item — still largely rely on hand-
crafted features (AlKhuzaey et al., 2024). This is
particularly true in QDET for L2 English vocabu-
lary items, which commonly rely on small datasets
that are not suitable for fine-tuning transformers
(Benedetto et al., 2023).

To address this gap, our paper introduces a new
multilingual resource for vocabulary QDET: an ex-
tended version of the British Council’s Knowledge-
based Vocabulary Lists (KVL), containing 6,768
English vocabulary items paired with difficulty
scores and prompts in Spanish, German, and Man-
darin Chinese. We use the KVL to fine-tune vari-
ous transformer-based architectures for vocabulary
test item difficulty prediction, leveraging its unique
structure to provide insights on how best to model
vocabulary difficulty in multilingual settings. Our
exploratory work serves as a benchmark for future
development of generalisable, L1-agnostic models
for explainable item calibration.

Our paper begins with an overview of how the
KVL has been extended and adapted for NLP-
based applications. This is followed by a sum-
mary of the latest research in two domains that
this study intersects: question difficulty estima-
tion from text and lexical complexity prediction.
Next, we outline the aims of the study, providing
the motivation and context for the experimental
design. The transformer-based architectures that
we investigated are outlined, including the proce-
dures followed for model selection and fine-tuning.
We present findings from model performance eval-
uations, an ablation study and an error analysis.
Finally, the paper ends with a discussion of the
results and outlines directions for future work.
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2 The Knowledge-based Vocabulary Lists

The Knowledge-based Vocabulary Lists (KVL)
(Schmitt et al., 2021, 2024) were the outcome of a
collaborative research project between the British
Council and researchers from the University of Not-
tingham, University of Innsbruck and Waseda Uni-
versity. Productive English language word knowl-
edge was assessed using prompts designed to test
form-based recall of individual lemmas in a transla-
tion format (cf. Laufer and Goldstein, 2004). Items
comprising an L1 translation of the English target
word, plus contextualising sentences were devel-
oped separately in three L1s (Mandarin Chinese,
German, Spanish) to create a bank of 7,679 items
for each language. Participants were required to
input the remainder of the word in English, as per
this example from the Spanish language version1:

casa Vivo en una casa grande que tiene tres
dormitorios.
h _ _ _ _

During a period between late-2018 to mid-2020,
3.3 million responses were collected from over
100,000 respondents via crowdsourcing. An on-
line platform, promoted across the British Coun-
cil’s social media channels, presented participants
with blocks of ten random items stratified by target
word frequency. Feedback was given after each
block, and participants were encouraged to com-
plete more items to “beat their best”, as an example
of game-based data collection (Kim et al., 2024).

Difficulty estimates were derived separately for
each L1 subset of the data, using random-item-
random-person (RPRI) Rasch models (De Boeck,
2008) built within a generalised linear mixed model
(GLMM) framework (Dunn, 2024). Original KVL
project outputs used these estimates to create a
rank-order list of the top 5,000 words for each L1.

For this research, we use the existing 5000 items
in the KVL and publicly release an additional
1,768 English vocabulary test items for each L1.
This extended dataset contains 20,304 items in
total (6,768 per L1) and is divided into 80% train
(16,242 items), 10% development (2,031 items)
and 10% test (2,031 items) sets2.

1The German and Chinese versions had similar, yet distinct
prompts, for example in German: “Haus Ich wohne in
einem Haus mit Garten.” And in Chinese: “房子 我买了
一座房子。”

2https://www.britishcouncil.org/data-science-and-
insights/resources

3 Related Work

3.1 Question Difficulty Estimation from Text
Question difficulty estimation from text (QDET)
concerns the prediction of test item difficulty based
solely on its textual features. There is growing in-
terest in using QDET for high stakes assessment
calibration, given its efficiency and scalability com-
pared to traditional methods (AlKhuzaey et al.,
2024). The majority of work in this area explores
supervised approaches to QDET, with transformer-
based encoder models achieving the best results in
recent years (Gombert et al., 2024; Yaneva et al.,
2024). There is also a growing interest in unsu-
pervised approaches to the task, using generative
models as ‘test-takers’, extracting their uncertainty
as a proxy for human difficulty (Loginova et al.,
2021; Uto et al., 2024; Zotos et al., 2025).

Research related to vocabulary-based QDET,
however, is relatively limited. Most prior ap-
proaches to this task use hand-crafted linguistic
features (such as word frequency and word length)
as inputs to predictive models (Suyong and Hua,
2018; Settles et al., 2020), with other approaches in-
corporating embeddings such as word2vec (Ehara,
2018) and GloVe (Susanti et al., 2020). Beyond
word-based features, contextual factors such as the
similarity between correct answers and distractors
in multiple choice vocabulary tests (Susanti et al.,
2017, 2020) as well as semantic descriptors from
dictionary entries of target words (Nakanishi et al.,
2012), have also had limited exploration.

3.2 Lexical Complexity Prediction
Lexical complexity prediction (LCP) is a subfield
of complex word identification (CWI), which con-
cerns the automatic detection of complex words
from text, primarily for the purpose of text sim-
plification. LCP extends the binary classification
used for CWI to form a regression problem, with
the goal of predicting a continuous ‘complexity’
value for a given word. These values are domain-
specific, and can range from crowd-sourced per-
ceived complexity ratings to morphosyntactically
derived features (North et al., 2023). Different
to vocabulary QDET, the input text used for LCP
typically involves predicting the complexity of a
word in context. Given the format of the KVL
dataset, the task of LCP aligns more closely with
our investigation than much of the previous work
in vocabulary QDET.
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The most successful approaches to LCP to
date make use of transformer-based architectures
(Bani Yaseen et al., 2021; Kelious et al., 2024a).
Particularly relevant to this work, however, are in-
vestigations into multilingual applications of LCP.
Sheang (2019) showed that a multilingual CNN
model trained jointly on word embeddings and lin-
guistic features of Spanish, German and English
datasets led to improved performance of prior mod-
els for Spanish and German. Similarly, Finnimore
et al. (2019) found that jointly training models with
languages from the same family improved cross-
lingual CWI. Zaharia et al. (2020) experimented
with multilingual transformers for cross-lingual
CWI, showing that XLM-RoBERTa performs best
for unseen German or French target words. More
recently, LLMs have been explored for unsuper-
vised multilingual LCP, however these approaches
did not outperform supervised transformer-based
equivalents (Kelious et al., 2024b).

4 Research aims

As described above, the KVL dataset is unique in
that it contains multilingual test items (comprising
L1 source word, L1 context and EN clue) for the
same set of English target words across three L1s.
To explore this multi-faceted structure, we defined
four transformer-based models for experimentation:
(1) individual monolingual models for each test
item component; (2) ensembles combining these
component-specific models; (3) multilingual mod-
els fine-tuned on the full test item text separately
for each L1; and (4) a single multilingual model
trained on the full test item text across all L1s.

Comparing the performance of these models al-
lowed for multiple avenues of investigation: the
influence of test item components on model pre-
dictions, the suitability of monolingual versus mul-
tilingual models and training data, as well as the
effectiveness of different architectures for captur-
ing cross-component and cross-lingual interactions
within items. In addition to overall model perfor-
mance, we were also interested in whether model
error revealed potential biases—such as systematic
under- or overestimation for particular items. These
areas of interest were distilled into three primary
research questions for the study:

• How accurately can different transformer-
based model architectures predict vocabulary
item difficulty for the KVL dataset?

• How do the individual components of the test
item contribute to the models’ predictions?

• Is there any systematic bias contributing to
errors in the best-performing model?

5 Modelling setup

Item difficulty prediction was modelled as a regres-
sion task. The target values for prediction were
transformations of the GLMM item-level condi-
tional modes. These were inversed to reflect item
difficulty (as opposed to ‘item easiness’ in the orig-
inal study) and scaled to values between zero and
one. Models were fine-tuned with mean squared
error (MSE) as the loss function. As the KVL
were originally designed for ranking vocabulary
difficulty, Spearman’s rank correlation coefficient
(RHO) was used as the main model evaluation met-
ric. The root mean squared error (RMSE) metric
was also calculated to evaluate model fit. Where
relevant, statistical significance tests of the models
were carried out via bootstrap, using 10,000 iter-
ations and Bias-Corrected and Accelerated (BCa)
intervals (Efron, 1987).

For the multilingual models, the structure of the
input text begins with the question content (L1
source word, L1 context, EN clue), in the same
order as it is presented in the vocabulary test items,
followed by the target answer (EN target word).
Each part of the input text was delineated with the
models’ pre-defined separation token, as shown in
the example input text below:

casa [SEP] Vivo en una casa grande que
tiene tres dormitorios. [SEP] h____
[SEP] house

For the ensemble models, each part of the text
was processed and tokenised separately.

5.1 Model architectures

Figure 1 provides an overview of the different archi-
tectures explored for this study. For the individual
monolingual models and multilingual models, the
768-dimensional embedding of the first token (<s>
for RoBERTa-based models and [CLS] for BERT-
based models) from the final hidden layer is passed
through a dropout layer followed by a single linear
layer (the regression head) to predict the difficulty
score. For the monolingual ensemble models, the
predictions from the individual component models
are stacked together and passed through a Ridge re-
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(a) Individual component models

(b) Ensemble of monolingual models

(c) Multilingual model

Figure 1: Model architectures for transformer-based
approaches.

gression model. Each L1-specific ensemble learns
a distinct weighting scheme for the predictions.

5.2 Model selection

Multiple pre-trained transformer models avail-
able through the Hugging Face platform3 were
considered for use in the architectures explored
in this research. Preliminary model evaluation
was carried out in order to select the best model
for each of the architectures. Using a fixed set
of hyperparameters, candidate models for each of
the architectures described above were evaluated.
The models were fine-tuned with the train set,
and tested with the development set, reporting the

3https://www.huggingface.co

RMSE and RHO of the predictions for the best
model after five epochs. From this investigation,
the following models were selected for further
experimentation (see Table A.2 in the Appendix
for results for all candidate models):

Multilingual model: XLM-RoBERTa (Con-
neau et al., 2020) is pre-trained on text from
100 languages using a large-scale CommonCrawl-
based corpus. It employs SentencePiece tokenisa-
tion and is trained with a masked language mod-
elling (MLM) objective. XLM-RoBERTa has
been shown to outperform other multilingual trans-
former models in multiple NLP tasks, including
cross-lingual complex word identification (Zaharia
et al., 2020).

Monolingual English models: BERT (Devlin
et al., 2019) is pre-trained on English text from
BooksCorpus and Wikipedia using a WordPiece
tokeniser. It learns contextualised word representa-
tions through masked language modelling (MLM)
and next sentence prediction (NSP).

Monolingual L1 models: BERT models pre-
trained for Spanish4 (Cañete et al., 2020), German5

(Chan et al., 2020) and Chinese6 (Devlin et al.,
2019). These models follow the BERT architecture
and are pre-trained using equivalent L1 texts. For
consistency, where relevant we use the cased, base
model versions of each of the models listed above.

5.3 Model fine-tuning

Each of the models selected for experimentation
was tuned for optimal hyperparameters. With a
batch size fixed at 32 and dropout rate set to model
defaults (0.1 for all models), Optuna7, a hyperpa-
rameter optimisation framework for Python, was
used to search for the best learning rate, weight de-
cay and warm up ratio for each of the models. The
models were fine-tuned with the train set, and evalu-
ated with the development set, reporting the RMSE
and RHO of the predictions for the best model after
five epochs. See Table A.3 in the Appendix for the
best hyperparameters for each model.

Using the optimised hyperparameters, four
sets of models were fine-tuned on the train and
development sets and evaluated on the test set.
These included: (1) individual models for each test
item component (L1 source word, L1 context, EN

4https://huggingface.co/dccuchile/bert-base-spanish-
wwm-cased

5https://huggingface.co/deepset/gbert-base
6https://huggingface.co/google-bert/bert-base-chinese
7https://optuna.readthedocs.io/en/

163

https://www.huggingface.co
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/deepset/gbert-base
https://huggingface.co/google-bert/bert-base-chinese
https://optuna.readthedocs.io/en/stable/


Model ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

L1 source word 0.156 0.522 0.142 0.565 0.130 0.561 0.143 0.550
L1 context 0.168 0.432 0.159 0.424 0.137 0.507 0.155 0.455
EN clue 0.169 0.400 0.155 0.389 0.139 0.477 0.154 0.422
EN target word 0.145 0.633 0.135 0.625 0.111 0.727 0.130 0.661

Table 1: RMSE and Spearman’s Rho for individual component models evaluated on the KVL test set.

Model ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

EN target word 0.145 0.633 0.135 0.625 0.111 0.727 0.130 0.661
Monolingual ensemble 0.142 0.646 0.129* 0.651 0.106* 0.747* 0.126 0.681
Multilingual (L1-specific) 0.126* 0.734* 0.116* 0.776* 0.108 0.725 0.117 0.745
Multilingual (all-in-one) 0.116* 0.775* 0.108* 0.793 0.097* 0.785* 0.107 0.785
*Statistically significant improvement in performance compared to the prior model in the table. Significance testing was
not applied to L1 average results.

Table 2: RMSE and Spearman’s Rho results for the transformer-based architectures evaluated on the KVL test set.

clue, and EN target word), fine-tuned separately
for each L1 subset; (2) monolingual ensembles
fine-tuned per L1 subset; (3) multilingual models
fine-tuned per L1 subset (L1-specific); and (4) an
‘all-in-one’ multilingual model fine-tuned on all
L1 subsets combined.

6 Results

6.1 Model performance
Table 1 reports the individual models’ performance
for each test item component. The EN target word
model yields the highest scores across all L1s for
both RMSE and RHO, and is particularly high for
the Chinese subset, with a RHO of 0.73. Overall,
the next best predictor is the L1 word (average
correlation: 0.55), followed by L1 context (0.46)
and EN clue (0.42).

Table 2 presents results for the monolingual en-
semble8, L1-specific multilingual and all-in-one
multilingual models evaluated on the KVL test set,
alongside the individual EN target word model serv-
ing as a baseline. Results marked with an asterisk
showed significant improvement in performance
compared to the prior model in the table. On av-
erage, the ensemble architecture offers a small im-
provement in performance over the EN target word
model for both RMSE and RHO, however the in-
crease is not statistically significant for either met-
ric in the ES subset, and not significant for RHO

8The learned Ridge regression weights for each component
model in the ensembles can be found in Table A.1 in the
Appendix.

in the DE subset. The L1-specific model consider-
ably outperforms the ensemble approach for the ES
and DE subsets, with RHO increasing from 0.65 to
0.73 and 0.78, respectively. This performance in-
crease is not seen for the CN subset, which shows a
marginally poorer but non-significant performance
difference for RMSE and RHO. The all-in-one
model achieves the best L1 average performance
in both RMSE and RHO as well as demonstrat-
ing the most consistent RHO across L1 subsets,
with scores of 0.78 for ES, 0.79 for DE, and 0.79
for CN. For the DE subset, however, this perfor-
mance increase is not significantly higher than the
L1-specific model for RHO.

6.2 Influence of test item component

An ablation study of the test item components was
conducted for the ensemble, L1-specific and all-in-
one models. Single components were systemati-
cally removed from the models, in order to inves-
tigate their influence on model performance. The
models were fine-tuned using the train and devel-
opment set and evaluated on the test set. The full
model results for RMSE and RHO coefficients with
statistical significance are reported in Table A.4 in
the Appendix.

Figure 2 reports the relative percentage change in
RHO for each of the models after removing individ-
ual components, across the L1 subsets. Statistically
significant differences in model performance are
marked with an asterisk. For the monolingual en-
semble models, we can see that removing the EN
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Figure 2: Relative percentage change in Spearman’s Rho after individual component removal.

target word results in the largest decrease in perfor-
mance – around 10% for ES and DE and 15% for
the CN subset. The removal of other components
have no statistically significant impact, with the
exception of the DE subset which shows a small
5% degradation for the L1 word.

For the L1-specific models, we can see a more
varied distribution of impact for each of the com-
ponents. Statistically significant degradation of
performance is seen in all three L1s for L1 context,
ES and DE for L1 word and DE and CN for the
EN clue. The results for the EN target word in the
CN subset are notably different to those of the ES
and DE, with a much lower degradation in perfor-
mance after its removal (around 7%, compared to
between 20-25% for DE and ES, respectively). The
EN clue is in fact more impactful than the EN word
in this case, showing a statistically significant 9%
reduction in performance after its removal.

Looking to the all-in-one multilingual model, we
can see that the ablation results begin to generalise,
showing a similar pattern of impact across the L1
subsets. Results from the statistical significance
tests show that removing the EN clue had no signif-
icant impact on the all-in-one model performance
for any of the L1 subsets, and the removal of the
L1 word has no significant impact on model perfor-
mance for the ES and CN subsets.

6.3 Error analysis

Figure 3 shows the model residuals plotted against
the difficulty values for each L1 subset tested on
the best performing model, the all-in-one multilin-
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Figure 3: Error plot for the all-in-one multilingual
model across L1s.

gual model. The graph shows that the majority of
predictions fall within a range of -0.2 and +0.2 of
the difficulty values. Across all L1 subsets, the
model tends to underestimate the difficulty of test
items as vocabulary item difficulty increases. This
pattern becomes more pronounced for items with
difficulty values of approximately 0.6 and above.
The extent to which these higher difficulty values
are impacted needs to be interpreted with caution.
First of all, the GLMM difficulty estimates that
the model was trained on have their own degree of
error; see Schmitt et al. (2024) for further details.
In addition, the fact that the GLMM scores were
scaled linearly to values between 0 and 1 may also
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Figure 4: Example SHAP output for the ES test item for the EN target word "bar" (verb).

impact the distribution of the difficulty values at
the low and high end of the scale.

In order to investigate the token-level contribu-
tions of the input text to the model predictions,
further analysis using SHAP (SHapley Additive ex-
Planations) (Lundberg and Lee, 2017) was carried
out. SHAP is a python package 9 that assigns Shap-
ley values – a game-theoretic attribution metric – to
features of a given predictive model. When apply-
ing SHAP to transformer architectures, each token
of the input text is treated as an individual feature,
affording the investigation of specific words or sub-
word units within the sequence. In our application,
this allows for fine-grained interpretability of how
tokens within different components of the input
text contribute to the model’s final prediction.

For each L1 subset of the KVL test data, the top
10% of model errors (68 vocabulary test items per
L1) were individually inspected using SHAP. For
each item text, the token that contributed the most
to the incorrect prediction was recorded, along with
which component it was part of. Figure 4 provides
an example of the SHAP analysis output for the ES
item text for the English target word “bar” (verb).
All tokens highlighted in red in the figure contribute
to increasing the model’s prediction (towards diffi-
cult) and all tokens highlighted in blue contribute
to decreasing the model’s prediction (towards easy).
For this example, the model predicted the item to
be too easy (prediction = 0.52, label = 0.93, error
= -0.41). On inspecting the SHAP output, we can
see that the EN target word “bar” is the token that
contributes the most to the erroneous prediction.

Figure 5 shows the component and prediction
direction of the tokens identified in the analysis
procedure described above. Reflecting the general
tendency of the model predictions reported in Fig-
ure 3, there was a higher proportion of ‘too-easy’
predictions (57% of errors investigated). Tokens
identified in the EN target word component account
for 44% of the items investigated, followed by
tokens in the L1 context (25%), L1 word (14%) and
EN clue (7%). The separation token <\s> was also
identified as containing the top contributing token

9https://shap.readthedocs.io/en/latest/index.html
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Figure 5: Location of the most influential tokens at-
tributed to the top 10% of model errors.

for 8% of the errors (see Table A.5 in the Appendix
for an overview of all identified tokens). On in-
specting the tokens, some global patterns emerged.

• Simple vs. complex words in the L1 word
and L1 context. For items that the model pre-
dicted as too easy, simple or common words
were often given high attributions. For exam-
ple, pronouns:“ich” (I), “我” (I), “mich” (me),
or every day words: “饭” (meal), “heute” (to-
day), “noche” (night). For items that were
predicted too difficult, attribution tended to be
given to more complex words such as “pre-
cisar” (specify) and “排放” (emission).

• Sub-word tokenization in EN word. For
items that the model predicted as too easy,
the sub-word with the highest attribution
was often a simpler or more common word
nested within the target word, for exam-
ple with the compound nouns “bookcase”,
“sunshine” and “workday”. For items that
were predicted too difficult, words were often
split into non-morphologically aligned sub-
tokens: “poison”, “fireman”, “killer”, or suf-
fixes: “questionable”, “punishment”.
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• Difficult senses in EN target word. Whole
EN target words accounted for 26% of all
items that were predicted too easy, compared
to only 8% for items predicted as too diffi-
cult. Common features of these EN target
words were difficult senses (e.g. “short” as an
adverb, “bar” as a verb), cognates with low
frequency (e.g. “crystal”, “tragic”), or avoid-
ing cognates in L1 source word (e.g. using
“rastrear” instead of “explorar” for EN target
word “explore”).

7 Discussion

The experiments and analysis detailed above ex-
plored L2 English vocabulary test item difficulty
prediction using transformer-based architectures,
with a view to establishing: (1) the best model for
prediction; (2) the relative importance of test item
components; and (3) potential areas of systematic
bias in the best model. The outcomes of these aims
are discussed below.

Initial results from fine-tuning individual com-
ponent models highlighted the predictive strength
of each component in isolation, with the EN target
word input emerging as the most effective stan-
dalone predictor. These findings align with prior
work in QDET for vocabulary testing, which has
shown that features based solely on the English
target word can yield a strong performance (Suy-
ong and Hua, 2018; Ehara, 2018; Settles et al.,
2020). The English target word model performed
especially well on the Chinese subset, achieving a
RHO of 0.73, compared to 0.63 for both Spanish
and German. This may reflect the inconsistent role
of cognateness in shaping word difficulty: while
Spanish and German learners may be influenced
by cognates or “false friends" (Otwinowska and
Szewczyk, 2019), English word difficulty for Chi-
nese learners—whose L1 shares no cognates with
English—may be more directly linked to features
solely attributed to the English word. As a result,
the relationship between the English target word
and item difficulty may be easier to model for the
Chinese subset of the KVL. A similar pattern was
observed by Schmitt et al. (2024) in their analysis
of the KVL, where GLMM difficulty scores for the
Chinese subset correlated more strongly with word
frequency –a feature often used as a proxy for word
difficulty (Hashimoto and Egbert, 2019)– than they
did for Spanish and German.

Although the monolingual ensemble models
showed limited improvement over the simpler En-

glish target word models, there may be some set-
tings where this architecture is a suitable choice.
Given the statistically significant improvement seen
for the ensemble model fine-tuned with the Chinese
subset, it may be that this approach is better suited
to non-cognate language pairs where cross-lingual
interaction does not play an important role in de-
termining item difficulty. Furthermore, the ensem-
ble model weights can be used as a simple proxy
for component importance, offering an efficient,
broader view of component relevance that may be
more practically applicable for test item piloting.
However, for scenarios similar to this study, in a
multilingual setting with target words and context,
our results suggest that a unified multilingual trans-
former architecture is the best choice. These find-
ings align with prior research in multilingual LCP,
which highlight the benefits of including sentence
context (Bani Yaseen et al., 2021; Kelious et al.,
2024a) as well as the joint modelling of different
L1s (Zaharia et al., 2020).

Findings from the ablation study highlighted the
advantage of cross-component representation learn-
ing within a unified transformer architecture and
revealed interesting insights into the impact of fine-
tuning on all L1s. Results showed that in the L1-
specific approach, the model fine-tuned for Chinese
assigns less importance to the English target word
input compared to its Spanish and German coun-
terparts. This is somewhat unexpected, given the
very strong performance of the English target word
model for Chinese shown in Table 2. One possible
explanation is that the L1-specific model fine-tuned
on the Chinese subset is less able to align repre-
sentations of English and Chinese source words
due to the lack of script overlap. This is reflected
in prior research showing that multilingual mod-
els benefit from shared subword representations
across languages, and that subword overlap corre-
lates with cross-lingual transfer performance (Wu
and Dredze, 2019; Pires et al., 2019). In the case
of Chinese, the absence of shared subwords with
English may limit the model’s ability to learn cross-
lingual connections. This may be a contributing
factor as to why there is no significant improvement
in the L1-specific model compared to the ensemble
approach for the Chinese subset.

Building on this idea, the ablation results for
the all-in-one multilingual model were much more
consistent across L1 subsets. The observed gen-
eralisation suggests that the all-in-one model may
be learning broader, language-independent features
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of vocabulary item difficulty compared to the L1-
specific and ensemble models. The parallel struc-
ture of the KVL dataset, where each of the English
target word and clue appears across three different
L1s, likely supports this generalisation by encour-
aging the model to disentangle language- and item-
specific features from global patterns. Furthermore,
the distribution of component impact for the Chi-
nese subset of the L1-specific model reported in
Figure 2 shifts considerably toward the Spanish and
German distributions seen in the all-in-one model.
This may be an indication that the limitations of
cross-lingual transfer for orthographically distant
language pairs described above are alleviated in this
setting when models are fine-tuned jointly across
languages with parallel data.

Findings from the error analysis revealed valu-
able insights about the systematic behaviour of the
all-in-one multilingual model. In addition to the
effects of label re-scaling and GLMM model error
discussed in Section 6.3, the normal distribution
of difficulty values in the KVL dataset may fur-
ther contribute to the all-in-one model’s tendency
to under-predict higher difficulty items. To test
this, it would be of value to investigate the impact
of including a larger proportion of high difficulty
items during fine-tuning. This could be achieved
using data-augmentation or re-sampling methods
(Pan et al., 2021; Kelious et al., 2024b), or even the
development of further KVL test items.

The small-scale SHAP analysis on the multilin-
gual model’s top 10% of errors, provided some gen-
eral observations that can be applied to the future
development of knowledge-based vocabulary lists,
and test item writing more generally. In particular,
the findings illustrated the impact of vocabulary
complexity in the L1 word and L1 context com-
ponents, suggesting that careful consideration of
the word choices in the item text is needed when
creating such resources for the NLP domain. Is-
sues from the SHAP analysis that emerged relating
to model behaviour, such as non-morphologically
aligned sub-word tokenization and poor word sense
disambiguation provide direction for improving the
all-in-one model, such as multi-task learning with
POS-tagging, morphological supervision or cross-
lingual word sense disambiguation. Finally, given
the limited scope of the SHAP-based analysis, in-
terpretations are isolated to the individual word
and subword level. Further investigation into the
model’s attention across tokens may be able to pro-
vide richer insight into the model behaviour.

8 Future Work

In addition to the suggestions outlined in the dis-
cussion above, there are several further avenues for
future work. First, model probing for features previ-
ously found to be predictive of vocabulary item dif-
ficulty (Dunn, 2024; Hashimoto and Egbert, 2019)
could help explore the item text beyond the com-
ponent level, to uncover which linguistic correlates
of item difficulty are being captured by the models.
The all-in-one multilingual model could be further
optimised by incorporating architectural adapta-
tions shown to benefit QDET and LCP in other
domains, such as scalar mixing (Gombert et al.,
2024) or concatenating transformer embeddings
with linguistically derived features (AlKhuzaey
et al., 2024; North et al., 2023). Given the require-
ment of large amounts of training data for encoder-
based transformer approaches, it would also be
of value to compare the all-in-one model results
to zero-shot and few-shot methods using LLMs,
such as those recently investigated by Smădu et al.
(2024). Finally, expanding the KVL dataset to in-
clude additional L1 subsets, especially those ortho-
graphically distant from English, will contribute to
further exploring the role of cross-lingual transfer
within multilingual transformer models, helping to
corroborate the findings of this research.

9 Conclusion

This research investigated the use of transformer-
based architectures for predicting vocabulary item
difficulty, applying recent advances in multilingual
and cross-lingual lexical complexity prediction to
question difficulty estimation. Leveraging the con-
tent and structure of the KVL dataset—which has
not previously been used in NLP research—this
study examined the effects of multilingual text
items across several transformer-based architec-
tures. The analysis provided insights into the
relative importance of different test item com-
ponents across L1s, revealing how these models
capture and generalise features of item difficulty. In
particular, a multilingual model fine-tuned on data
with all L1 variations demonstrated the strongest
performance, benefiting from cross-lingual transfer
and the parallel structure of the KVL dataset to pro-
duce more generalised and consistent attributions
across L1s. These findings point to the potential
of L1-agnostic, explainable transformer-based
models for supporting test development pipelines
through scalable and interpretable item calibration.
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Limitations

One limitation of our study is the use of the proba-
bilistic values derived from the GLMM framework
as observed difficulty values, an issue that is dis-
cussed in more detail by Schmitt et al. (2024). To
address this, we used a non-parametric correlation
measure (Spearman’s Rho) to evaluate our mod-
els based on rank ordering. This approach helps
account for the potential error in the precision of es-
timates that might not be fully captured by RMSE.

Another limitation that is specific to the all-in-
one multilingual model lies in the way training
data was combined across L1s. The GLMM dif-
ficulty values used as labels in the models were
derived from different population samples for each
L1, which could raise questions about the compara-
bility of these values across languages. To mitigate
this, target labels were derived by concatenating the
individually scaled subsets rather than applying a
single normalisation across the entire KVL dataset.
While this approach preserves the internal struc-
ture of each L1 subset difficulty scores, it does not
fully account for differences in score distribution
origins. However, given that predictions improved
when the model was evaluated on individual L1
subsets, the all-in-one model can still be viewed as
a practical means of enhancing L1-specific perfor-
mance, rather than as a universal predictor of item
difficulty.
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A Appendix

Component model ES DE CN
L1 source word 14.97% 39.93% 23.93%
L1 context 18.80% 6.46% 13.94%
EN clue 5.69% 1.66% 0.00%
EN target word 60.54% 51.93% 62.13%

Table A.1: Ridge regression ensemble model weights across L1 subsets.

Input text Pre-trained ES DE CN L1 average
model RMSE Corr RMSE Corr RMSE Corr RMSE Corr

L1 context BERT-mono* 0.139 0.449 0.133 0.437 0.125 0.503 0.132 0.463
L1 context XLM-R 0.140 0.429 0.134 0.429 0.127 0.483 0.134 0.447
L1 context mBERT 0.141 0.416 0.135 0.412 0.128 0.451 0.135 0.426
L1 source word BERT-mono* 0.135 0.496 0.123 0.584 0.118 0.596 0.125 0.559
L1 source word XLM-R 0.149 0.376 0.132 0.486 0.119 0.555 0.133 0.472
L1 source word mBERT 0.142 0.409 0.129 0.506 0.119 0.543 0.130 0.486
EN clue BERT 0.144 0.365 0.139 0.358 0.131 0.396 0.138 0.373
EN clue RoBERTa 0.145 0.355 0.139 0.343 0.131 0.392 0.138 0.363
EN target word BERT 0.123 0.592 0.116 0.629 0.096 0.752 0.112 0.658
EN target word RoBERTa 0.134 0.513 0.133 0.506 0.110 0.624 0.126 0.548
All components XLM-R 0.103 0.761 0.099 0.777 0.088 0.800 0.097 0.779
All components mBERT 0.107 0.744 0.103 0.751 0.094 0.773 0.101 0.756
*BERT-mono refers to the monolingual models for each L1 outlined in Section 5.2. Hyperparameters were fixed at 2e-5
for learning rate, 0.1 for weight decay and 0.1 for warm up ratio.

Table A.2: RMSE and Spearman’s Rho for each of the transformer models considered for the final experiments.
Models were fine-tuned on the train set and evaluated on the development set.
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Model name Input
language Input text Learning

rate
Weight
decay

Warmup
ratio

bert-base-spanish-wwm-cased ES L1 source word 3e-5 0 0.1
gbert-base DE L1 source word 2e-5 0 0.1
bert-base-chinese CN L1 source word 2e-5 0.1 0
bert-base-spanish-wwm-cased ES L1 context 3e-5 0 0.1
gbert-base DE L1 context 2e-5 0 0.1
bert-base-chinese CN L1 context 3e-5 0 0
bert-base-cased ES EN clue 2e-5 0.1 0.1
bert-base-cased DE EN clue 2e-5 0.1 0
bert-base-cased CN EN clue 3e-5 0 0
bert-base-cased ES EN target word 3e-5 0 0
bert-base-cased DE EN target word 1e-5 0 0.1
bert-base-cased CN EN target word 2e-5 0 0
xlm-roberta-base ES All components 3e-5 0.1 0.1
xlm-roberta-base DE All components 3e-5 0 0.1
xlm-roberta-base CN All components 3e-5 0.1 0.1
xlm-roberta-base XX All components 3e-5 0.1 0.1
Search space for hyperparameters: learning rate (1e-5, 2e-5, 3e-5), weight decay (0, 0.1), warm up ratio (0, 0.1).

Table A.3: Optuna hyperparameter results for the models selected for the final experimentation. Models were
fine-tuned on the train set and evaluated on the development set.

Full component model
- removed component

ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

Ensemble 0.142 0.646 0.129 0.651 0.106 0.747 0.126 0.681
- L1 word 0.142 0.641 0.134* 0.620* 0.108 0.742 0.128 0.668
- L1 context 0.142 0.639 0.128 0.651 0.107 0.742 0.126 0.677
- EN clue 0.142 0.643 0.129 0.650 0.106 0.747 0.126 0.680
- EN word 0.155* 0.578* 0.138* 0.591* 0.122* 0.637* 0.138 0.602
L1-specific 0.126 0.734 0.116 0.776 0.108 0.725 0.117 0.745
- L1 word 0.133* 0.707* 0.122* 0.732* 0.110 0.732 0.122 0.724
- L1 context 0.129 0.711* 0.123* 0.717* 0.116* 0.681* 0.123 0.703
- EN clue 0.125 0.742 0.119 0.755* 0.119* 0.658* 0.121 0.718
- EN word 0.152* 0.545* 0.138* 0.614* 0.117* 0.674* 0.136 0.611
All-in-one 0.116 0.775 0.108 0.793 0.097 0.785 0.107 0.784
- L1 word 0.122* 0.756 0.112 0.770* 0.102* 0.769 0.112 0.765
- L1 context 0.138* 0.640* 0.126* 0.672* 0.114* 0.693* 0.126 0.668
- EN clue 0.121* 0.766 0.115* 0.783 0.101* 0.780 0.112 0.776
- EN word 0.151* 0.570* 0.139* 0.580* 0.123* 0.630* 0.138 0.593
*Statistically significant improvement in performance compared to the ‘full component’ models (as reported in
Table 2). Significance testing was not applied to L1 average results.

Table A.4: RMSE and Spearman’s Rho results for the ablation study models. Models were fine-tuned on the train
and development set, and evaluated on the test set.
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Too easy Too difficult
ES DE CN ES DE CN
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(
denkwürdig
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资
属
重大
(

L
1

co
nt

ex
t

coche
Mi
domingos
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mezclar
pavor
físico
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comida

Imitator
heute
Unrecht
Front
ich
Beunruhigung
wird
wirklich
mich
Handy
und
Ich

我
旅行
音
我
骄傲
去
饭
信任
从小
回家
人们
我

bomba
entero
media
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la
investigacion
profesional
efectivo

künstlerische

涌
的看法
美洲
腺
系统
器
养
郊
排放

E
N

cl
ue

*

- - -

m___________
(masterpiece)
n________
(nominated)
n____ (nurse)
e________
(expensive)
t________
(terrorism)

b_____ (better)
n____ (nurse)
t______ (traffic)
q___ (quit)
p___ (plus)
m___________
(masterpiece)
r______ (reality)

o______
(olympic)
o_______
(oversize)
e__________
(examination)

E
N

ta
rg

et
w

or
d

unity
bar
grand
jasmine
tragic
glow
grin
sunshine
explore
pasta
dominate
introduction
lyrics
recycled
tropics
recycling

short
bar
communicator
grand
forget
crystal
tragic
cheerful
vote
kangaroo
learned
boost
dominated
recipe
ecosystem
sitting
café
bookcase

bar
unity
grand
short
bookcase
stop
tried
glow
written
cheerful
gown
workday
recipe
learned
birth
tragic
cite
sweat

poison
quantity
memorable
excellent
falling
venture
incomplete
questionable
fireman
chorus
incoming

kidnapping
faceless
climate
questionable
incoming
balancing
guilt
definite
minority
established
breakout
poison
taking
climbing

chinese
relate
rely
killer
governmental
inexpensive
disorder
punishment
questionable
qualify
backward
antisocial
issue
fireman

*The associated EN target word for the EN clue component is included in brackets for interpretability. Within the
component groups, words are listed in order of largest to smallest model prediction error for their associated item.

Table A.5: The words and subwords (in bold) contributing to the top 10% of the all-in-one multilingual model
errors, according to SHAP analysis.
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Abstract
Heterogeneity in student populations poses a
challenge in formal education, with adaptive
textbooks offering a potential solution by tai-
loring content based on individual learner mod-
els. However, creating domain models for text-
books typically demands significant manual ef-
fort. Recent work by Chau et al. (2021) demon-
strated automated concept extraction from dig-
ital textbooks, but relied on costly domain-
specific manual annotations. This paper in-
troduces a novel, scalable method that mini-
mizes manual effort by combining contextu-
alized word embeddings with weakly super-
vised machine learning. Our approach clusters
word embeddings from textbooks and identi-
fies domain-specific concepts using a machine
learner trained on concept seeds automatically
extracted from Wikipedia. We evaluate this
method using 28 economics textbooks, com-
paring its performance against a tf-idf baseline,
a supervised machine learning baseline, the
RAKE keyword extraction method, and human
domain experts. Results demonstrate that our
weakly supervised method effectively balances
accuracy with reduced annotation effort, offer-
ing a practical solution for automated concept
extraction in adaptive learning environments.

1 Introduction

In formal education, the incremental mastery of
concepts and the knowledge and competencies that
build on them is essential for students to success-
fully read and understand texts in a specific school
subject. Students often struggle to comprehend
the relevant concepts within educational materials,
leading to difficulties in understanding and apply-
ing the knowledge effectively. Many schoolbooks
therefore contain a glossary with a list of the key
concepts which are manually compiled by the re-
spective schoolbook authors, providing a somewhat
subjective list of the relevant concepts.

In the digital counterpart to traditional school-
books, computer-based learning platforms, a sim-

ilar challenge arises: modelling the domain for
which the platform provides learning materials and
exercises. Most digital systems rely on handcrafted
ontologies (or related domain representations) that
have been designed by domain experts. They com-
pile a list of domain-specific vocabulary, a very
resource-intensive, costly, inefficient, and time-
consuming process. In the worst case, such domain
ontologies have to be newly constructed for ev-
ery adaptive learning platform from scratch even if
other systems already exist in the same domain. To
reduce the effort required, Chau et al. (2021) pre-
sented an approach automating concept extraction
from digital textbooks. While they demonstrate
that such extraction can be successfully carried out,
the approach still requires an extensive, domain-
specific, manual annotation effort of the textbook as
a basis for a supervised machine learning approach.
Another particular challenge exists for concept ex-
traction in the educational domain: textbooks not
only contain specific vocabulary from one subject
domain. In particular, school books usually contain
content domain specific words, school domain spe-
cific words (homework, teacher, exercise, ...) and
example specific words.

Keyword extraction (or concept extraction), a
fundamental task in natural language processing
(NLP) and information retrieval, aims to identify
and extract the most important terms or phrases that
best represent the content of a document. These
extracted keywords can play a crucial role in var-
ious applications, such as document summariza-
tion, information retrieval, text classification, and
topic modeling, but usually not in the educational
domain. Nevertheless, the progress in automatic
keyphrase extraction has produced methods that
are also useful for the related area of automatic
concept extraction from textbooks.

This work focuses on the core task of extracting
domain-specific vocabulary. It introduces an ap-
proach supported by distributional semantics that
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uses contextualized word embeddings, moving be-
yond simple keyword extraction. Recent methods
have explored using word embeddings for concept
extraction. However, these methods often have
low precision or rely on supervised training with
large amounts of labeled data and only use static
word embeddings. Some very recent approaches
to keyword extraction, such as (Qian et al., 2021),
use contextualized word embeddings provided by
BERT, which shows improved performance. Nev-
ertheless, these approaches primarily focus on key-
word extraction in the scientific domain. This
means they aim to extract a few specific keywords
from documents that mostly cover one particular
topic domain, as noted by (Sammet and Krestel,
2023). These methods still use labeled data and
treat contextual word embeddings merely as a more
advanced embedding type. This work explores
whether the improved performance of contextual-
ized word embeddings also applies to the broader
task of glossary extraction in the educational do-
main. This domain presents a unique challenge due
to its multi-theme vocabulary. The approach uses
contextualized word embeddings, such as BERT, to
select domain-specific expressions in educational
texts through a clustering method. Supervision is
only required in the form of a small seed list of
domain-relevant words. This list can be easily com-
piled from Wikipedia articles and helps separate
clusters of words relevant to the specific domain
from those that are specific to the text but belong
to a different domain.

Our approach for glossary extraction from struc-
tured textbooks could support both glossary build-
ing for traditional schoolbooks, domain modeling
for adaptive learning platforms, and potentially also
student modeling in digital learning environments.
Our goal is to create a domain-specific glossary ex-
traction method that accurately reflects the concept
annotations made by expert users at the section
level. This method can then be used to build both
domain and student models for more advanced per-
sonalization. To evaluate our method, we assess
how closely it matches external expert annotations
and internal expert annotations (i.e., glossaries com-
piled by the schoolbook authors).

2 Related Work

There is a broad number of research strands related
to keyword extraction. However, there is little work
within the educational field. Therefore, we will

focus on approaches with components similar to
those in our own method. To present only the main
ideas, we will discuss one or two approaches for
each method. More detailed overviews are avail-
able in (Chau et al., 2021) and (Khan et al., 2022).

Keyword extraction Automatic keyphrase ex-
traction (AKE) has been extensively studied using
different approaches, such as rule-based learning,
supervised learning, unsupervised learning, or deep
neural networks. Since AKE systems are designed
to only extract a very small list of relevant key-
words, most systems consist of two parts: (1) pre-
processing data and extracting a list of candidate
keyphrases using lexical patterns and heuristics;
and then (2) determining which of these candi-
dates are correct keyphrases. Methods for find-
ing the relevant keyphrases are: statistical meth-
ods or frequency-based methods, clustering-based
methods, graph-based methods, embedding-based
methods, and machine learning methods.

The most basic frequency-based approach is the
statistical measure tf-idf (term frequency-inverse
document frequency (Jones, 2004)). This method
effectively finds relevant terms within a document
(high recall) but often includes many irrelevant
terms (low precision). Therefore, most approaches
combine tf-idf with other measures to narrow down
the list of potential keywords.

In graph-based approaches, an entire document
is modeled as a graph of semantic relationships be-
tween the terms and a ranking approach then selects
the terms with the highest number of relationships.
Prominent approaches are (i) RAKE (Rose et al.,
2010) in which a graph of word co-occurrences is
constructed and the top ranked words in this graph
are extracted as key words, (ii) TextRank (Mihal-
cea and Tarau, 2004) in which documents are rep-
resented as undirected and unweighted graphs and
(iii) PositionRank (Florescu and Caragea, 2017),
a fully unsupervised, graph-based model, that si-
multaneously incorporates the position of words
and their frequency in a document to compute a
PageRank score for each candidate word. The most
recent graph-based approaches employ contextual-
ized word embeddings for calculating the ranking,
cf. KPRank (Patel and Caragea, 2021).

In clustering-based approaches, clustering algo-
rithms group candidate phrases into topic clusters
and the most representative ones from each clus-
ter are selected as key phrases. Liu et al. (2009)
employ cooccurrence-based term relatedness, and
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a Wikipedia-based term relatedness for clustering.
Grineva et al. (2009) develop a graph-based ap-
proach for identifying domain specific terms in
multi-theme documents - an unsupervised topic-
based clustering method that partitions a graph into
thematically cohesive groups of terms.

In supervised statistical learning approaches, all
terms in a document must be classified as either pos-
itive or negative instances of relevant keyphrases.
This classification is based on patterns learned from
annotated training sets. For example, Hulth (2003)
define manual rules combined with frequency mea-
sures to extract all potential keyword expressions
from a text. A classifier then determines which
of these are actual keyword expressions. Current
methods use word embeddings to represent words.
For instance, Wang et al. (2014) examine word
embeddings to measure the relationships between
words in graph-based models. Recent methods also
use neural networks (cf. Zhang et al., 2016).

In approaches that view AKE as a sequence
labelling task, Alzaidy et al. (2019) predict a se-
quence of labels where the two labels are keyphrase
word or non-keyphrase word. The recent availabil-
ity of contextualized word embeddings has enabled
further improvement in AKE as sequence labelling,
as in (Sahrawat et al., 2019) or (Sammet and Kres-
tel, 2023) where a fine-tuned BERT labels relevant
keyphrases in abstracts from economics articles.

Concept extraction In concept or term extrac-
tion approaches, the goal is to extract not only a
small list of the most general candidates but also
extract more specific terms that can be used in ap-
plications such as domain ontology construction,
text classification, or information extraction. The
two possible approaches here are constructing a
domain model from scratch or using contrastive
corpora to identify domain-relevant terms.

Bordea et al. (2013) propose a domain-
independent method for extracting terms. They find
general terms in a document, similar to keyphrase
extraction, and then use these to build a domain
model. Based on this model, they identify other
semantically similar terms in the document. The
method’s performance varies across domains but is
more stable than basic term extraction approaches
like TermExtractor.

Only a few methods address concept extraction
in education. One method, proposed by Chau et al.
(2021), uses a supervised feature-based machine
learning approach to automatically extract concepts

from digital textbooks. This method trains a super-
vised learning model to classify whether a term or
phrase is a concept. It bases this classification on a
detailed set of features. One of the few approaches
that explicitly aims at constructing domain-specific
glossaries, presented by Park et al. (2002), focuses
on building domain-specific glossaries. This is sim-
ilar to the goal of this article. This method uses a
tf-idf-based approach.

Ontology extraction Textbooks and the educa-
tional domain play a greater role in the domain of
ontology extraction, i.e, building concept hierar-
chies for textbooks or ontologies from textbooks.

(Wang et al., 2015) present an approach that
uses Wikipedia as an external resource to build a
concept hierarchy for textbooks. The goal is to
extract keyphrases for each chapter of a given book.
First, they extract a set of related and important
Wikipedia concepts for each book chapter. Second,
they use local features to extract related concepts
for each chapter separately, utilizing measures such
as textual similarity between a book chapter and
candidate concepts. The resulting candidate set
consists of the top N candidates based on their co-
sine similarity score and those candidates whose
title appears in the chapter title (i.e., titleMatch
equals 1). These two simple but powerful features
can capture most of the related and important con-
cepts for each book chapter.

A similar approach is described in (Conde et al.,
2016). This paper introduces LiTeWi, a method
that combines term extraction techniques (like lin-
guistic filters and tf-idf) with Wikipedia. It uses
Wikipedia as a knowledge base to improve term
extraction accuracy by removing terms not related
to Wikipedia entries within the specified domain.

Summing up, to the best of our knowledge, cur-
rent automatic term and concept extraction meth-
ods perform unexpectedly poorly and are not tai-
lored for the educational field. Improving auto-
matic extraction of domain-specific concepts would
be beneficial for immediate tasks such as student
modeling and content recommendation in learn-
ing platforms or tutoring systems. Furthermore, it
would advance the automatic extraction of domain,
i.e. specific glossaries and the construction of on-
tologies, both of which are crucial for developing
learning platforms that currently rely heavily on
manual domain models.

For documents with multiple themes, clustering
seems to be the most promising approach. This
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method has been mainly used for extracting key-
words. To encode the domain-specific meaning
of concepts that require clustering, contextualized
word embeddings seem to be the most promising
approach. However, these embeddings have only
been used for supervised single-word or sequence
labeling of keywords in scientific documents. Our
work combines these two methods for domain-
specific vocabulary extraction. Our method out-
performs other methods and does not require large
amounts of labeled data for training and testing.

3 Method

In our approach, called GlossEx, we extract con-
cepts specific to a given domain from text. We do
not just extract a small list of keyphrases. Instead,
we extract all phrases or words that represent the
main concepts of that text. This creates a special-
ized vocabulary list, which is similar to manually
compiling a glossary for a specific text.

3.1 Task formulation and dataset

We are trying to solve the following technical task:
Given a document D that represents a specific do-
main, our goal is to extract the specialized vocab-
ulary V of that domain from D. We are explor-
ing this task within the domain of teaching eco-
nomics in schools. For our dataset, we selected
28 economics textbooks used for the economic
curriculum in German secondary schools. We ex-
pect our method to identify domain-specific con-
cepts such as “workforce”, “consumption”, “en-
trepreneur”, and similar terms. In order to extract
the domain-specific vocabulary, we propose the
following pipeline:

1. Document preprocessing, i.e. tokenization,
lemmatization, POS-tagging, . . .

2. Extract salient vocabulary S contained in D

3. Cluster vocabulary items in S based on their
contextualised embeddings

4. Obtain V by filtering S using limited domain
knowledge

This pipeline is based on the following observa-
tions: Because D represents a specific domain, it
features specialized vocabulary. Conversely, this
specialized vocabulary is particularly prominent in
D compared to general, non-domain-specific doc-
uments. The second step of the pipeline uses this

observation. However, economic textbooks contain
three distinct types of salient vocabulary in addi-
tion to the general vocabulary found in any text:
(i) specialized vocabulary (which is the extraction
target), (ii) education-specific vocabulary (such as
instructions like “write” or “analyze”), and (iii) ex-
ample vocabulary (which appears prominently due
to its presence in running or repeated examples).

Therefore, we need to exclude education spe-
cific vocabulary and example vocabulary from S
in order to obtain V . This is done through Items 3
to 4. The clustering step in Item 3 serves to sta-
bilise the filtering method in Item 4: We observe
that contextual embeddings form useful clusters,
so that specialized and non-specialized vocabulary
form local clusters in embedding space. Therefore,
we exploit this property to include or exclude com-
plete clusters in V instead of single lemmas. Item 4
accesses limited domain knowledge to differentiate
between the 3 salient categories described above.
We use the limited domain knowledge to label each
cluster with one of the three categories listed above,
and eventually only return lemmas in clusters la-
beled as specialised vocabulary.

Next, we describe in detail how to implement
each step of the proposed pipeline. The focus is
on German economics textbooks, but the general
method applies to various domains and languages,
provided the necessary models are available. We
also present the specific German processing tools.

3.2 Preprocessing
The NLTK library (Bird et al., 2009) is used
for splitting sentences and tokenizing text. The
Hanover Tagger (Wartena, 2019), which is specif-
ically designed for German, is used for sentence-
level lemmatization and POS tagging. All subse-
quent steps are applied to the lemmatized document
D, unless stated otherwise.

3.3 Extracting Salient Vocabulary
We extract the salient vocabulary S from D using
the method proposed by Lemay et al. (2005). This
method calculates scores for all lemmas. These
scores show whether a lemma appears more often
in D than is typical for the language in general.
Thus, this method distinguishes the salient vocabu-
lary of D from general vocabulary. For evaluation,
we use two general German word frequency lists:

1. A frequency list1 derived from the DeReKo
1DeReKo-2014-II-MainArchive-STT.100000 obtained
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(Lüngen, 2017). DeReKo is a very large cor-
pus that is representative of contemporary Ger-
man.

2. The SUBTLEX-DE frequency list (Brysbaert
et al., 2011), which has been shown to better
explain cognitive saliency of words in deci-
sion time experiments.

We only consider nouns and verbs, and we dis-
card stopwords and lemmas that appear less than
four times in D, as well as tokens that contain spe-
cial characters. Note, that the method described
in (Lemay et al., 2005) differs from tf-idf. Specif-
ically, tf-idf calculates frequencies only within a
single corpus, whereas our method compares fre-
quencies between two corpora.

3.4 Clustering Vocabulary

We cluster lemmas in S by agglomerative cluster-
ing of contextualised embeddings. To compute em-
beddings, we use the bert-base-german-cased
BERT model provided by Chan et al. (2020). We
embed each (non-lemmatized) sentence individu-
ally (after subword tokenization). Then, embed-
dings of subword tokens are mean-pooled to derive
embeddings of the original tokens. Finally, lemma
embeddings are the mean of all token embeddings
associated with the respective lemma.

Agglomerative clustering is computed by the
respective scikit-learn implementation (Pedregosa
et al., 2011) using default parameters. In prelim-
inary experiments, we found agglomerative clus-
tering to perform better for our task than k-means
clustering or spectral clustering methods. We set
the number of clusters (which is a required parame-
ter of agglomerative clustering) to |S|

4 . This means
the expected number of words in a cluster is 4.

This approach differs from graph-based algo-
rithms, such as the one proposed by Grineva et al.
(2009). We do not use graph topology to find clus-
ters. Instead, we directly cluster lemmas in the em-
bedding space. In the graph paradigm, this means
we are working with a fully connected graph where
edge weights are determined by a distance metric
in the embedding space.

3.5 Filtering by Domain Knowledge

In the last step, we select clusters that contain spe-
cialized vocabulary from a specific domain. How-

from https://www.ids-mannheim.de/digspra/kl/
projekte/methoden/derewo/

ever, obtaining this information directly from em-
beddings is difficult. Therefore, we create two lists:
Vedu and Veco. Vedu contains seed words related
to the education domain, and Veco contains seed
words related to the economics domain. These lists
inject a limited amount of domain knowledge into
our method, which helps us determine if a clus-
ter contains terms associated with the education
domain, the economics domain, or neither.

Application of seed lists Each cluster C (repre-
senting a set of lemmas in D) receives two scores:
an association score for educational vocabulary
(σedu) and an association score for economics vo-
cabulary (σeco). The scores for a cluster are cal-
culated by taking the average of the 10 smallest
pairwise distances between any word in that cluster
and any word in either the educational vocabulary
(Vedu) or the economics vocabulary (Veco). The dis-
tances between words are measured using the Eu-
clidean distances of fastText embeddings2 (Grave
et al., 2018). It is important to note that this method
uses static word embeddings, which differs from
the approach in Section 3.4 where contextualized
embeddings from a German BERT model (Chan
et al., 2020) are used. fastText embeddings are cho-
sen because their model can create embeddings for
any string based on its character n-grams. This
avoids the problem of out-of-vocabulary words.
Specifically, clusters are kept if they meet one of
the following conditions:

σeco + 0.03 < σedu (1)

σeco < min{0.3, σedu} (2)

In simpler terms, this means that clusters are se-
lected if they are generally close to the economics
vocabulary (Veco) or if they are significantly closer
to Veco than to the educational vocabulary (Vedu).
These thresholds are specific to the embedding
space used and are set manually. The thresholds
were determined before any labeled data was avail-
able, so their manual setting does not affect the
validity of the results. With a small amount of la-
beled data, it would be possible to automatically
adjust these thresholds.

Construction of seed lists The lists are created
independently from the evaluation data to avoid cir-
cularity. With the PetScan interface we extracted
Wikipedia article titles and wikidata entity names

2obtained from https://fasttext.cc/docs/en/
crawl-vectors.html
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with the following hyperparameters: To populate
Vedu, we run one query on the “Bildung” (engl.:
education) category with maximum depth 6 and re-
quire the found pages to link to the Wikipedia page
“Schule” (engl.: school). To populate Veco, we
run two queries on the “Wirtschaftswissenschaft”
(engl.: economics) category with maximum depth
6. For the first query, we require found pages to
link to the Wikipedia page “Markt” (engl.: mar-
ket). For the second query, we require found pages
to link to the Wikipedia page “Bedarf” or to the
Wikipedia page “Bedürfnis” (both engl.: need). We
combine the results of both queries.

To create the final seed lists, which contain only
single lemmas, the preprocessing method described
in Section 3.2 is applied to every page title returned
by PetScan. The resulting lemmas are then saved.
Consequently, Vedu contains 562 unique lemmas,
and Veco contains 677 unique lemmas. Although
these lists may seem large, they contain a signif-
icant amount of noise. Additionally, as shown in
Section 4.3, extracting specialized vocabulary us-
ing only the words in the seed lists, without our
GlossEx method, leads to poor performance.

4 Results and Evaluation

The main evaluation metrics are precision and re-
call. The goal is to assess how much of the spe-
cialized vocabulary the proposed method finds and
how many lemmas it returns are actually special-
ized vocabulary.

4.1 Data

To evaluate the GlossEx method, we use 28
partially digitized German economics textbooks,
which cover various school types and years. Nine-
teen of these textbooks also have paired OCR-
scanned glossaries. For all lemmas that appear
at least four times in the corpus, we collect ex-
pert judgments whether each lemma is domain-
specific vocabulary in the field of economics. One
expert (not an author of this paper) labeled all
3,458 unique lemmas with binary labels. Out of
these, 469 lemmas (13.56%) are labeled as domain-
specific vocabulary. To assess inter-annotator
agreement, another expert (also not an author of
this paper) independently labeled a subset of 510
lemmas. Cohen’s κ (Cohen, 1960) between both
annotators is 0.66, which is considered substantial
agreement according to Landis and Koch (1977).
Furthermore, the f1-score between both annotators

is 0.79, which sets an upper bound on the models’
performance. However, this bound is not specific
to any particular textbook.

4.2 Baselines

We compare our method GlossEx described in Sec-
tion 3 to several baselines. The first set of base-
lines comprises methods that are widely used for
keyword extraction, namely tf-idf (Jones, 2004),
Rapid Automatic Keyword Extraction (RAKE)
(Rose et al., 2010), and supervised learning on
static word embeddings. Note, that the supervised
baseline requires labels and therefore uses strictly
more information than is available to our method.
Thus, the supervised baseline serves as an upper
bound to see how much worse methods that do not
require explicit labels perform.

A second set of baselines evaluates how well we
can extract keywords using two methods: either by
simply using the seed lists from Section 3.5 or by
using the glossaries included in textbooks. By com-
paring two seed lists as a baseline, we ensure that
our algorithm can discover domain-specific vocab-
ulary beyond the initial input. By comparing two
glossaries as a baseline, we confirm the relevance
of our problem. This comparison shows that text-
book glossaries do not contain all the vocabulary
that experts consider domain-specific.

tf-idf measures how relevant a term is to a spe-
cific document within a collection of documents
(corpus). A term is more relevant if it appears often
in the document (high term frequency) but less rel-
evant if it appears in many other documents (high
inverse document frequency). To apply tf-idf in
our context, given a textbookD: Term frequency is
the frequency ft of term t in D. Inverse document
frequency is the logarithm of the inverse ratio of
sections in D that also contain t. The formula for
tf-idf is:

tf-idf(t,D) = ft∑
t′ ft′

· log
(
N

gt

)
(3)

Here, N is the total number of sections inD, and gt
is the number of sections inD that contain the term
t. Typically, a threshold τ ∈ R is used to identify
domain-specific vocabulary. Any term with a tf-
idf score greater than τ is considered part of this
vocabulary. In our specific case, we choose the τ
value that maximizes the f1-score of the predicted
domain-specific vocabulary.
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Rapid Automatic Keyword Extraction RAKE
(Rose et al., 2010) selects keyphrases from docu-
ments for information retrieval via assigning each
keyphrase a score based on cooccurrence statistics
and returning the 33% top scoring keyphrases. We
use the implementation provided by the rake-nltk
library.3 We only consider single keywords, i.e. the
maximum keyphrase length is 1. As stopwords, we
provide the list of German stopwords provided by
the NLTK (Bird et al., 2009).

Supervised Learning The task of domain-
specific vocabulary extraction can be described as
a binary classification problem if we are given lem-
mas and binary labels that show if each lemma is
specific to a certain domain. We represent lemmas
using their static fastText embeddings, as described
in Section 3.5. Then, we train a multi-layer per-
ceptron (MLP) to predict the correct label from
these embeddings. To get predictions for all lem-
mas in a textbook, we use 5-fold stratified cross-
validation. We use the scikit-learn library for both
cross-validation and the MLP.

Glossaries Nineteen textbooks in our dataset in-
clude a glossary. We assess how much of the
domain-specific vocabulary these glossaries cover
and whether they also contain general, non-domain-
specific vocabulary. We extract all elements from
these 19 glossaries. We then keep all individual
tokens, excluding stopwords, and lemmatize them.
From these, we only keep nouns and verbs. We
then return only the remaining lemmas from the
glossary that appear in the given textbook D.

Seed Lists In this case, we return all entries from
the seed lists described in Section 3.5 that also
appear as domain-specific vocabulary in the text-
book. This baseline tests whether GlossEx can
discover new domain-specific vocabulary and suc-
cessfully discard non-domain-specific vocabulary.
However, the seed lists directly determine which
lemmas are returned as domain-specific and which
are discarded after the clustering step (see Sec-
tion 3.4). Therefore, there is a close relationship
between the precision of the seed lists (i.e., how
many of the seed list entries are actually domain-
specific vocabulary) and the precision of GlossEx.

4.3 Results
Overall Performance In Table 1, we present
the precision, recall, and f1-score for all meth-

3https://pypi.org/project/rake-nltk/

Precis. Recall F1
Method

tf-idf 0.152 0.685 0.230
RAKE 0.172 0.854 0.283

Glossary 0.821 0.258 0.382
Wiki-Seedlist 0.367 0.065 0.103

GlossEx-dereko (ours) 0.543 0.584 0.545
GlossEx-subtlex (ours) 0.518 0.645 0.559

Supervised 0.754 0.524 0.589

Table 1: Precision, recall, and f1-scores of GlossEx and
baselines. Scores are averages across the 28 textbooks
in our dataset. Best results (excluding supervised) are in
bold, and second best results are underlined. “dereko”
and “subtlex” refer to the background corpus.

ods. These scores are macro-averaged across all 28
textbooks in the dataset. The supervised baseline
shows the best overall performance, as expected.
Because the data is imbalanced (with only a few
domain-specific words), the precision for this base-
line is higher than its recall. Conversely, tf-idf and
RAKE perform poorly in terms of f1-score. These
methods identify many words as domain-specific
vocabulary, leading to high recall but low precision.
RAKE performs better than tf-idf, even though the
optimal score threshold is used for tf-idf.

Using glossaries improves performance. How-
ever, these results cannot be directly compared
because glossaries are only available for 19 text-
books. Therefore, the reported results are averaged
only over these 19 textbooks. Generally, glossaries
mainly contain domain-specific vocabulary. How-
ever, they miss 75% of the domain-specific vocabu-
lary in textbooks, which is indicated by the low re-
call. The seed list extracted from Wikipedia yields
low precision, low recall, and consequently, a very
low f1-score. Still, the precision is higher than that
of tf-idf and RAKE. This is expected because the
construction method directly uses the Wikipedia
category hierarchy. This primarily confirms that
our method’s performance is not simply due to a
very strong starting point through the seed lists.

Finally, GlossEx achieves an improvement over
the seed lists in terms of f1-score and recall. This
shows that GlossEx can indeed leverage distribu-
tional semantics to identify domain-specific vo-
cabulary. Our method also significantly reduces
the gap between baseline methods and supervised
learning. Compared to supervised learning, our
method achieves higher recall at the expense of
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Figure 1: GlossEx f1-score vs. increasing seed list size.

lower precision. Therefore, exploring more precise
methods to characterize the contextual semantics
of words in textbooks seems to be a promising
direction for improving our method.

Since GlossEx relies on external data, we must
characterize the influence of the background corpus
and seed list on its performance. As seen in Table 1,
using SUBTLEX-DE instead of DeReKo (referred
to as “subtlex” and “dereko”) as the background
corpus results in higher recall but lower precision.
One possible reason for this is that DeReKo has
broader vocabulary coverage, which leads to fewer
lemmas appearing prominent for a given document.
Additionally, the DeReKo corpus contains many
newspaper texts, which might bias frequency esti-
mates for terms related to topics like politics and
financial news.

Effect of Seed List Size To assess how the size
of the seed list affects our method’s performance,
we repeatedly select random seed lists of different
sizes. These sample sizes, denoted as n, are cho-
sen from the set {10, 20, 50, 100, 200, 300, 400}.
From the complete set of all entries in the seed
lists, for each sample size n, we sample k = 100
seed lists. In all instances, both the economics and
education seed lists have the same number of en-
tries. We then re-evaluate our method using these
selected seed lists.

Figure 1 shows that the performance of GlossEx
consistently improves as the seed list size increases.
This outcome is expected and these findings also
indicate that GlossEx is resilient to direct overlaps
between seed lists and textbook vocabulary. The
Wikipedia seed list, for example, contains only a
few domain-specific terms. However, GlossEx can
fully utilize the semantic information found in these
entries. In summary, our results demonstrate that
GlossEx performs well with 100 to 200 noisy seed
words. However, it achieves optimal performance
when provided with more, higher-quality entries.

5 Discussion and Future Work

Our method, GlossEx, uses traditional machine
learning and natural language processing (NLP)
techniques for domain vocabulary extraction, such
as clustering and word embeddings. Unlike pre-
vious methods, we also include contextualized
embeddings derived from large language models
(LLMs). Recent versions of generative LLMs have
been very successful in various zero-shot applica-
tions (Brown et al., 2020; Achiam et al., 2023).
These advancements are promising for all areas
of NLP, including education (Alhafni et al., 2024;
Wen et al., 2024), making the use of LLMs for
domain-specific vocabulary extraction in a zero- or
few-shot manner an exciting direction for future re-
search. However, we believe that combining LLMs
with modular approaches like ours is most effective,
because we can not only identify, but also explain
why certain words are considered domain-specific.
This explanation comes from traceable differences
in word occurrences in domain-specific versus gen-
eral texts, and from semantic similarity to known
domain-specific words. This built-in interpretabil-
ity makes GlossEx a valuable approach even in the
era of LLMs.

6 Conclusion

Given educational materials, how can we system-
atically extract the domain concepts to be learned
and understood by students? Answering this is
relevant for building glossaries for textbooks, for
domain and student modeling for adaptive learn-
ing platforms, and for the automatic derivation of
activity models for text-based learning materials.
In this paper, we investigated how computational
linguistic methods such as distributional semantic
analysis and clustering can be combined to auto-
matically extract a domain-specific glossary. We
presented a pipeline to extract specialized vocabu-
lary from single documents, e.g. , textbooks. The
pipeline is optimized for documents from the edu-
cational domain, where pedagogical terminology
cannot easily be separated from subject domain
concepts by statistical methods alone. Pursuing a
weakly supervised approach, we injected only a
limited amount of domain knowledge in the form
of a seed list readily obtained from Wikipedia. We
evaluated the method on German economics text-
books. Evaluation is both automatic, by comparing
the extracted vocabulary to paired glossaries, and
manual by human domain experts.
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Data and Code Availability

Our implementation of GlossEx is available at
https://github.com/LGirrbach/GlossEx. We
cannot release the textbook material used in this
paper because it is copyrighted. However, the text-
book titles are included in our code release.

Limitations

While our approach to automatic concept extraction
using contextualized word embeddings and weakly
supervised learning shows promising results, there
are some limitations to our approach.

First, the reliance on pre-trained language mod-
els such as BERT, which are primarily trained on
general corpora, may not fully capture the nuances
of domain-specific language used in educational
texts. This can lead to less optimal performance
in identifying and clustering domain-specific vo-
cabulary, particularly in specialized fields not well-
represented in the training data.

Second, the quality and comprehensiveness of
the seed lists used to guide the clustering process
significantly influence the results. Although we
used Wikipedia to generate these lists, the potential
gaps in coverage can affect the accuracy of the ex-
tracted concepts. In future work, one could explore
more refined methods for seed list generation or
incorporate additional domain-specific resources
to support the robustness of the approach.

Third, the performance of GlossEx is evaluated
on a relatively small and specific dataset of German
economics textbooks. This limits the generalizabil-
ity of our findings to other subjects and educational
contexts. Extensive testing on diverse datasets is
necessary to validate the broader applicability of
our approach.

Finally, while our approach reduces the need for
extensive manual annotation, it still requires some
level of domain knowledge for seed list creation
and cluster validation. This semi-supervised nature
means that the method is not entirely free from
human intervention, which could be a limitation in
fully automating the concept extraction process.

Addressing these limitations in future research
will be crucial for enhancing the scalability, accu-
racy, and applicability of our method in various
educational settings.
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Supplementary Material
A Qualitative Examples

This section presents the predictions made by GlossEx (using SUBTLEX-DE as its background corpus)
on a specific textbook. The predicted lemmas are divided into two categories: correctly predicted
(true positives) and incorrectly predicted (false positives). The results for Westermann: Kompetenz
Politik-Wirtschaft 2006 (Gymnasium Niedersachsen, Stufe 8) are as follows:

Correct Lemmas Incorrect Lemmas

Einkommen, Haushalt, Ökonom, Geld, Markt,
Wirtschaft, Händler, Anbieter, Knappheit,
Angebot, Bedürfnis, Käufer, Nachfrage

Herr, Ergebnis, Person, Wunsch, Cent, Mark,
Laden, Mensch, Mitglied, Form, Preis, Verfü-
gung, Mittel, Stand, Kauf, Wochenmarkt, Euro,
Prinzip, kaufen, Taschengeld

Our method successfully identifies words with domain-specific meaning, such as “Haushalt” (English:
budget) and “Nachfrage” (English: demand). However, GlossEx also identifies common economic terms
that are part of everyday language, like “Laden” (English: shop) and “Euro”. Additionally, GlossEx finds
words such as “Person” (English: person) and “Mensch” (English: human). These terms have a strong
semantic similarity to other human-related words, such as “Käufer” (English: buyer), and are therefore
included in the list of predicted lemmas. An examination of results from other textbooks generally
supports these findings.
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Abstract

This paper presents an automatic speech assess-
ment system designed for Swedish language
learners. We introduce a novel hybrid approach
that integrates Microsoft Azure speech ser-
vices with open-source Large Language Mod-
els (LLMs). Our system is implemented as a
web-based application that provides real-time
quick assessment with a game-like experience.
Through testing against COREFL English cor-
pus data and Swedish L2 speech data, our sys-
tem demonstrates effectiveness in distinguish-
ing different language proficiencies, closely
aligning with CEFR levels. This ongoing work
addresses the gap in current low-resource lan-
guage assessment technologies with a pilot sys-
tem developed for automated speech analysis.

1 Introduction

In recent years, the integration of state-of-the-art ar-
tificial intelligence (AI) technologies—particularly
large language models (LLMs)—has shown con-
siderable promise across a range of domains, in-
cluding Intelligent Computer-Assisted Language
Learning (ICALL), Technology-Enhanced Lan-
guage Learning (TELL), and Second Language
Acquisition (SLA) (Zhang and Zou, 2022; Huang
et al., 2023). A growing body of research has
demonstrated the effectiveness of AI-driven lan-
guage assessment tools (Daniels, 2022; Huawei
and Aryadoust, 2023; Settles et al., 2020), high-
lighting their potential to facilitate language learn-
ing within contextually rich environments (Zou
et al., 2023; Dizon, 2020; Huang et al., 2023). For
instance, Brena et al. (2021) proposed supervised
machine learning approaches capable of evaluating
L2 English fluency and pronunciation with reported
accuracy rates exceeding 90%. Despite these ad-
vancements, a recent systematic review of AI-based
assessment in language learning (Chen et al., 2024)
indicates a marked imbalance: 88% of the reviewed
tools were developed for English learning, and only

3 out of 25 studies focused on assessing learners’
speaking skills. This disparity underscores a signif-
icant gap in the current research landscape.

This paper aims to address the gap in auto-
matic speech assessment tools, specifically for non-
English languages by proposing a hybrid AI ap-
proach. We examine the adaptability of a pro-
nunciation assessment tool optimized for English
(Azure Speech Services; Microsoft 2024) to the
low-resource Swedish language, then extend it by
integrating large language models for content and
delivery assessment, forming a detailed assessment
system. In addition, the system is built as a Web
App, providing real-time feedback as well as a
game-like user experience. In the following sec-
tions, we will first justify the importance of build-
ing an automatic Swedish speech assessment sys-
tem by reviewing recent related studies and ap-
plications around low-resource language speech
assessment. We will then introduce our system de-
sign, followed by the evaluation and validation of
the system with the English speech data from the
COREFL corpus (Lozano et al., 2020) and an initial
collection of Swedish L2 samples. Finally, we will
discuss the results of the system tested for Swedish
speech assessment and address the conclusions.

2 Related Work

2.1 Automatic Speech Assessment Systems

Using mobile-assisted language learning (MALL)
applications like Duolingo and Babbel has been a
popular option for learners (Lehman et al., 2020;
Loewen et al., 2020), especially for those study-
ing low-resource languages for which accessible
learning resources are scarce. Although MALL
apps offer beginners a quick start, there is a lack
of efficient or systematic follow-ups. Those apps
mostly give a binary score (“correct or not”), or star-
based assessment restricted to pronunciation prac-
tices, providing neither a comprehensive overview
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of speaking ability nor detailed feedback such as
pronunciation suggestions (Lehman et al., 2020;
Chang et al., 2022).

For more detailed pronunciation assessment, Mi-
crosoft Azure Speech Studio (Microsoft, 2024) of-
fers metrics related to accuracy, fluency, complete-
ness, and prosody, as illustrated in Figure 1. While
the service provides a multifaceted analysis at the
phoneme, word, and sentence levels, the resulting
scores remain relatively abstract and are not ac-
companied by pedagogically oriented feedback or
actionable guidance for instructional use. In our ex-
periments, the open-source Azure SDK was found
to be primarily optimized for English language as-
sessment, exhibiting limited capacity to accurately
process Swedish phonemes. Notably, the system
was unable to generate prosody scores for Swedish
speech. Despite these limitations, the platform rep-
resents a promising prototype for pronunciation
assessment and has the potential to be developed
into a more robust tool for evaluating spoken lan-
guage performance, particularly in the context of
low-resource languages.

Figure 1: Assessment interface of Azure Speech Studio

2.2 Swedish Learner Data

While the rapid advancement of artificial intelli-
gence models has provided language education
with handy tools for quick evaluations (Daniels,
2022; Löber et al., 2024), there is a lack of reliable
and detailed automatic systems targeting lower-
resource languages such as Swedish. Recent re-
search has been working on filling the blank of
Swedish learner data sets through building corpora
of which language and proficiency levels are col-
lected from coursebooks (COCTAILL corpus, rep-
resenting learners’ receptive ability) and learner
essays (SweLL-pilot, representing learners’ pro-
ductive ability) (Volodina et al., 2019).

Nevertheless, the current progress has been made
centering mostly texts rather than speech. The ab-

sence of a variety of publicly accessible, annotated
Swedish speech data remains a significant obstacle
for training robust (deep) learning models. While
resources like Common Voice (Mozilla Founda-
tion, 2020) provide raw speech data from native
speakers, there is a scarcity of language learner
speech samples on the spectrum of proficiency lev-
els needed for developing language assessment or
learning applications.

Getman et al. (2023) introduced an AI-assisted
language learning application aimed at support-
ing children’s second language acquisition in
low-resource languages, specifically Swedish and
Finnish, through the self-collection of relevant
datasets. They also highlighted a significant gap
in the field, noting: “To the best of our knowl-
edge, in the context of Computer-Assisted Pro-
nunciation Training (CAPT) for L2 Swedish and
Finnish children, there are no previous work on
automatic pronunciation assessment, not even for
L2 Swedish and L2 Finnish adults” (Getman et al.,
2023, p. 86026). In response to this gap, the present
study contributes to the underexplored area of auto-
matic speech assessment for L2 Swedish by devel-
oping a dedicated assessment system and conduct-
ing initial evaluations based on authentic speech
data produced by L2 learners.

2.3 Language Proficiency Assessment
Standards

The Common European Framework of Reference
for Languages (CEFR; Council of Europe 2001)
has been a widely recognized standard for assess-
ing language proficiency, and recent research (Chen
et al., 2024; Volodina et al., 2024) continues to use
the CEFR standards and descriptors as reference-
framework. While the Common European Frame-
work of Reference for Languages (CEFR) remains
a widely recognized standard, its limitations have
been noted. As Alderson (2007, p. 660) observed,
“the methodologies being used [to compile these de-
scriptions] are unclear or suspect.” The CEFR’s ab-
stract classification into six proficiency levels (A1
to C2) relies heavily on human evaluators—such
as language instructors and linguists—which intro-
duces concerns regarding subjectivity and scalabil-
ity. Furthermore, although learners may be broadly
categorized according to CEFR levels, the frame-
work offers limited granular guidance tailored to
specific proficiency levels or individual languages.
This highlights a disconnect between the standard-
ized assessment framework and the practical de-
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mands of language learning and instruction (Settles
et al., 2020).

Our proposed automated speech system gener-
ates detailed analysis including:

• Overall performance Scores in pronuncia-
tion, content, and delivery of the speech; the
corresponding CEFR level

• Word-level pronunciation performance
demonstrating specific pronunciation
strengths and weaknesses

• Real-time feedback with next-step learning
suggestions

By combining the traditional assessment metrics
and detailed, heuristic assessment analysis, we aim
to build a system that generates more readable,
informative results, to better serve both learners
and educators.

3 System Design

Building on the automated speaking assessment
framework developed by Educational Testing Ser-
vice (ETS) and outlined by Zechner and Evanini
(2019), the primary innovation of our system lies
in the integration of complementary technologies
to evaluate distinct dimensions of speech perfor-
mance. The system is structured around three core
modules: Pronunciation Assessment (based on two
read-aloud tasks), Content and Delivery Assess-
ment (based on a free-speech task), and CEFR
Level Classification. The implementation takes the
form of a web-based application featuring a gami-
fied interface designed to enhance user engagement
and learning experience.

3.1 Pronunciation Assessment Module

The system incorporates the pronunciation as-
sessment module provided by Microsoft Azure’s
Speech SDK (Microsoft, 2024), which generates
evaluation scores across five dimensions: Accuracy,
Completeness, Fluency, Confidence, and Word-
level confidence scores. Although the module does
not support prosodic analysis for Swedish, our in-
tegration extends its applicability to the Swedish
language and compensates for this limitation by
supplementing it with two additional assessment
modules.

3.2 Content-and-Delivery Assessment Module

The system utilizes a generative large language
model (Llama 3.1; Touvron et al. 2023) to assess as-
pects of speech beyond pronunciation, specifically

Figure 2: Average combined scores of pronunciation,
content and delivery

focusing on content relevance and language com-
plexity in delivery. Based on predefined prompts
(see details in Appendix F), the model produces
quantified evaluation scores for these dimensions.
Additionally, Llama 3 is prompted to generate
human-like feedback in the form of constructive
suggestions (see detailed examples in Appendix G),
offering learners insights into how they can im-
prove both the content and delivery of their spoken
language.

3.3 CEFR Classification Module

Due to the lack of available Swedish data, and
in order to provide an overall CEFR-based profi-
ciency label for speech performance, we conducted
a preliminary calibration of the combined scores
generated by the two aforementioned AI modules.
This calibration aligns the system’s output with
CEFR proficiency levels, using threshold values
derived from test results on 55 carefully sampled
English speech recordings ranging from A1 to C2,
drawn from the COREFL corpus (Lozano et al.,
2020) (see Figure 2). Notably, the system demon-
strates strong discriminative capability at lower pro-
ficiency levels, whereas the distinction between B1
and B2 remains relatively subtle. The observed de-
cline in scores from C1 to C2 is consistent with the
known ambiguity of official CEFR descriptors at
higher proficiency levels, as previously discussed
by Isbell (2017) and Settles et al. (2020).

3.4 Web Implementation and User
Experience Design

In our system, the player assumes the role of Frog,
a character motivated to learn Swedish, and en-
gages with Professowl, a fictional language profes-
sor who provides feedback and evaluations of the
player’s spoken Swedish. This narrative framing is
intended to enhance learner engagement by embed-
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ding assessment within an interactive and playful
context.

Figure 3: Professowl guiding Frog through the pronun-
ciation assessment tasks

The dialogue flow begins with Professowl guid-
ing Frog through reading two Swedish sentences of
different CEFR proficiency levels and then a free
speech on the topic of “self introduction”. Pro-
fessowl gives corresponding feedback including
scores and suggestions in an encouraging way.

4 Preliminary Results and Discussion

Given the limited availability of Swedish L2 speech
data, we collected five original sets of preliminary
speech samples from L2 learners at varying profi-
ciency levels (see detailed results in Appendix C
and D). These samples were manually evaluated by
an experienced Swedish language instructor using
the same scoring metrics employed by the auto-
mated system, enabling a direct comparison be-
tween human and machine assessments. While the
dataset remains modest relative to high-resource
languages such as English, it establishes an essen-
tial foundation and provides a baseline for subse-
quent analyses.

Due to the scale difference between Azure as-
sessment metrics (0 to 100%) and our assessment
metrics (1 to 5 Likert Scale) for the human rating,
the system assessment scores were proportionally
converted to 1 to 5 point scale based on thresholds
at 20%, 40%, 60%, 80%.

As illustrated in Figure 4, a general alignment
can be observed between the system-generated as-
sessments and those provided by the human eval-
uator. However, the system is currently unable to
assess prosody in Swedish, resulting in missing
scores for this dimension. Furthermore, limitations
in handling Swedish phonological characteristics
lead to a rigid, word-by-word evaluation approach.
For instance, commonly (phonologically) reduced

Figure 4: Average Pronunciation Scores Comparison

function words in Swedish—such as att ‘to’ and
i ‘in/at’ were frequently misclassified as “weak
words” even when produced fluently. This issue is
highlighted in the comparison of strong and weak
word assessments between the system and the hu-
man evaluator (Appendix E).

5 Conclusion and Future Work

In this paper, we present an initial prototype of a
speech assessment system designed for Swedish.
Our speech analyzer generates meaningful evalua-
tion scores, provides reference word lists based on
word-level pronunciation performance, and deliv-
ers both general feedback and personalized sugges-
tions to support language learning.

The system combines Microsoft Azure’s speech
services with large language models to divide the
assessment process into distinct tasks, each handled
by separate tools. The game-like user experience
design intends to promote learners’ engagement
(Hung, 2017; Hung et al., 2018). This approach
demonstrates the potential of digital language learn-
ing tools in low-resource settings.

For future work, we plan to focus on several key
aspects to improve the effectiveness and reliability
of our system. First, we aim to achieve greater inte-
gration stability by stabilizing the speech services
and embedding appropriate transition cues. This
will reduce unintended delays during gameplay and
ensure a smoother user experience throughout the
learning process.

Second, we intend to enhance our phonologi-
cal analysis capabilities by improving the system’s
ability to recognize and analyze phonological pat-
terns in naturally spoken Swedish. This further
development will enable more precise assessment
of learners’ pronunciation and speaking skills, par-
ticularly the nuances of Swedish phonology that
are crucial for assessing language proficiency.
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Third, we plan to significantly expand our data
by collecting a larger and more comprehensive
dataset covering learners at all proficiency levels
from A1 to C2. This expanded dataset will better
represent the full spectrum of Swedish learners and
enable more robust training and reliable evaluation
of our assessment algorithms.

Finally, we are focusing on improved validation
procedures. To do this, we will engage additional
teachers and annotators to rate language samples,
thus confirming the accuracy of our automated as-
sessments through inter-rater reliability measures.
Furthermore, we plan to calibrate our CEFR classi-
fication system using authentic data from Swedish
second language learners. This should help ensure
that our proficiency level assignments conform to
established CEFR standards and reflect the specific
characteristics of Swedish language acquisition.

Limitations

This study presents a prototype system for au-
tomatic speech assessment in Swedish as a sec-
ond language, but several limitations should be
acknowledged. First, the evaluation relies on a
small and preliminary dataset consisting of only
five learner speech samples, which restricts the
generalizability and statistical robustness of the
findings. Second, the calibration of CEFR levels
was based on English L2 data due to the lack of suf-
ficient annotated Swedish learner corpora, which
may have introduced cross-linguistic biases in pro-
ficiency classification. Third, the Azure speech
assessment module lacks support for prosodic fea-
tures in Swedish, limiting the system’s ability to
fully capture suprasegmental aspects of pronunci-
ation. Additionally, the rigid word-by-word eval-
uation method often misinterprets function word
reductions common in fluent speech, potentially pe-
nalizing natural speaking patterns. Furthermore, de-
spite the robustness of the Microsoft Azure speech
assessment analysis, the reliance limits replicability
of this work. Other open-source alternatives such
as Whisper-based assessment will be considered in
future research to maximize the accessibility of the
system.

Ethical Concerns

The development and deployment of automated
language assessment tools raise several ethical con-
siderations. Firstly, the system’s reliance on propri-
etary and opaque evaluation mechanisms—such as

Azure’s speech scoring—may reinforce biases that
are not easily observable or correctable by devel-
opers or users. Secondly, collecting and process-
ing learner speech data involves privacy risks and
must comply with ethical data handling standards,
including informed consent and secure data stor-
age. In this study, all participants were aged 18 or
over and provided express consent for their speech
data to be used for research purposes. Special care
should be taken if the system is later extended to
include minors or vulnerable populations, partic-
ularly in educational game-based settings. Lastly,
while large language models can offer helpful feed-
back, they may inadvertently reinforce normative
language ideologies or reflect implicit biases. To
ensure fairness, pedagogical relevance, and user
well-being, ongoing evaluation and human over-
sight are essential throughout system development
and deployment.
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A Assessment Criteria

Figure 5 provides detailed descriptors for the pronunciation metrics used in our assessment system.
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B Detailed Scoring Descriptors

Table 1 provides detailed descriptors for the pronunciation metrics used in our assessment system.

Score Accuracy Completeness Fluency Prosody

1 Incomprehensible
speech with almost
no sounds that are
accurate

Missing many impor-
tant words (< 60%)

Very snatchy speech
with frequent unnatu-
ral breaks

No variation in stress
or intonation, or the
rhythm is completely
off

2 Many obvious errors
in pronunciation, dif-
ficult to understand

Several missing
words (60–75%)

Frequent hesitations
and stops

Unnatural rhythm, in-
tonation and stress
patterns

3 Some noticeable er-
rors but generally
accurate and under-
standable

Most words included
with some minor
omission (75–85%)

Generally fluent flow
with some unnatural
stops

Some natural stress
and intonation pat-
terns

4 High accuracy with
minor errors that
don’t affect compre-
hension

Nearly complete (85–
95% coverage)

Generally smooth
speech with occa-
sional pauses

Generally appropri-
ate stress, rhythm and
intonation

5 Most sounds are per-
fectly correct, native-
like speaking

Complete (95–100%
coverage)

Natural, native-like
speech flow with ap-
propriate pauses

Native-like rhythm,
stress, and intonation

Table 1: Detailed scoring descriptors for pronunciation metrics
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C Preliminary Test Results (Human Assessment)

Figure 6 provides the human teacher’s assessment results on the test speech samples.
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D Preliminary Test Results (System Assessment)

Figure 7 provides the system’s assessment results on the test speech samples.
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E Preliminary Test Results (Strong/Weak Words Comparison)

Table 2 shows the assessment results comparison between the system and the teacher as for strong/weak
words pronunciation.

Sentence Student ID Evaluator Strong words Weak words

S1

#001
System här, bott, Sverige, tre, är i
Teacher Jag, bott, i, Sverige, tre, och

trivs, mycket, bra, här
här, är

#002
System här, Sverige, tre, trivs, mycket bott, i, och
Teacher Jag, har, bott, i, Sverige, tre,

år, och trivs, mycket, bra, här
–

#003
System Sverige, och, mycket, bra, här Jag, har, tre, år, trivs
Teacher har, bott, i, Sverige, tre, år,

och, mycket, bra, här
jag, trivs

#004
System Jag, i, är, och, mycket Sverige, i, tre, trivs, bra
Teacher jag, bott, i Sverige, och, my-

cket
tre, trivs, bra

#005
System jag, har, bott, och, trivs Sverige, tre, år
Teacher har, bott, i Sverige, trivs, my-

cket, bra
år

S2

#001
System Det, krävs, omfattande, åt-

gärder, hantera
att

Teacher Det, krävs, omfattande, för,
att, hantera

åtgärder, klimatförändringar

#002
System Det, krävs, omfattande, för,

hantera
att

Teacher Det, krävs, omfattande, åt-
gärder, för, att, hantera, kli-
matförändringar

–

#003
System hantera, klimatförändringarna Det, krävs
Teacher Det, åtgärder, för, att, hantera krävs, omfattande, klimat-

förändringar

#004
System att Det, krävs, åtgärder, för,

hantera
Teacher att, hantera krävs, omfattande, åtgärder,

klimatförändringarna

#005
System hantera ätgärder, För, att
Teacher det, hantera åtgärder

Table 2: Comparison of strong and weak word analysis between system and teacher
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F LLaMA Model Prompting Details

The "content and delivery assessment module" employs Llama 3.1 with carefully designed and tested
prompts to ensure consistent feedback. The prompt details and model configuration are as follows:

F.1 Detailed Prompt
The following prompt template is passed with relevant values for evaluating the content and delivery of
every speech input:

You are Professowl, a Swedish language teacher. Analyze the following student’s
self-introduction in Swedish: "$input"

Provide feedback in this JSON format:
{
"analysis": {
"relevance": number, // 0-100, how well the content works as a self-introduction
"complexity": number, // 0-100, language complexity level
"feedback": string, // One sentence including both relevance and complexity scores
"suggestions": string[] // 2-3 short, specific suggestions in English
}
}

Focus on:
- Content and relevance for self-introduction
- Sentence structure and vocabulary use
- Grammar and language flow

Example response:
{
"analysis": {
"relevance": 80,
"complexity": 65,
"feedback": "Your self-introduction is quite relevant (80/100) with moderate language
complexity (65/100), showing good basic vocabulary and structure.",
"suggestions": [
"Try using more descriptive adjectives when talking about your interests",
"Add information about your future plans in Sweden",
"Practice using more complex sentence connections"
]
}
}

Always include both scores in the feedback sentence.

F.2 Model Configuration
To ensure consistent and reliable outputs, the following configuration parameters are used:

• Model: Llama 3.1

• Temperature: 0.3

• Output format: JSON

• Deployment: Local Ollama instance
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G System Feedback Examples

The following examples demonstrate system feedback generated by the LLaMA model for speech samples.
The feedback structure is designed to be encouraging and provides score-based assessment as well as
actionable suggestions.

G.1 Example 1
"Your self-introduction is somewhat relevant (70/100) with relatively low language complexity (55/100),
indicating a good start but some areas for improvement. Consider adding more specific details about your
work or interests. Practice using correct verb forms, e.g.,’Jag har flyttat’ instead of ’Jag flyttar’. Use more
precise vocabulary when describing your age 30 år gammal’ could be ’trettiotre år gammal)"

G.2 Example 2
"Your self-introduction is somewhat relevant (70/100) with relatively low language complexity (50/100),
showing basic vocabulary and simple sentence structure. Consider adding more details about yourself,
such as your hobbies or background. Practice using more formal language for a university setting. Try to
use more cohesive linking words between sentences."
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Abstract

Grammatical Error Correction (GEC) relies
on accurate error annotation and evaluation,
yet existing frameworks, such as errant, face
limitations when extended to typologically
diverse languages. In this paper, we introduce
a standardized, modular framework for
multilingual grammatical error annotation.
Our approach combines a language-agnostic
foundation with structured language-specific
extensions, enabling both consistency and
flexibility across languages. We reimplement
errant using stanza to support broader
multilingual coverage, and demonstrate the
framework’s adaptability through applications
to English, German, Czech, Korean, and
Chinese, ranging from general-purpose
annotation to more customized linguistic
refinements. This work supports scalable and
interpretable GEC annotation across languages
and promotes more consistent evaluation in
multilingual settings. The complete codebase
and annotation tools can be accessed at https:
//github.com/open-writing-evaluation/
jp_errant_bea.

1 Introduction

Grammatical Error Correction (GEC), which aims
to automatically detect and correct errors in written
text, has emerged as one of the most important and
widely studied tasks in Natural Language Process-
ing (NLP) for educational applications, particularly
those supporting language learning and writing im-
provement. It benefits both native speakers (L1), by
enhancing clarity and fluency in their writing, and
non-native learners (L2), by providing immediate,
structured feedback that reinforces correct gram-
matical patterns, boosts writing confidence, and,
ultimately, supports language development and ac-
quisition (Marjokorpi, 2023; Van Beuningen et al.,
2012). Over the years, the lion’s share of research
has focused on advancing GEC systems—evolving
from rule-based and statistical approaches to neural

architectures, such as neural machine translation
with transformers (Zhao et al., 2019) and, more re-
cently, prompting-based approaches built on large
language models (Zeng et al., 2024; for a compre-
hensive review, see Bryant et al., 2023).

Yet, automatic error annotation and evaluation
play an equally critical role in GEC. Error anno-
tation identifies and categorizes linguistic errors,
while evaluation measures how effectively GEC
systems correct them. Together, these two com-
ponents help establish standardized benchmarks,
influencing everything from system development
to the quality of corrections eventually delivered
to users. However, despite their importance, they
have historically received less attention and are of-
ten treated as ancillary to system development and
dataset creation.

Among existing tools for automatic error anno-
tation and evaluation (e.g., M2, Dahlmeier and Ng,
2012; GLEU, Napoles et al., 2015), errant (ER-
Ror ANnotation Toolkit) has established itself as
the de facto framework for English GEC. What
makes errant stand out is its detailed linguistic
annotations, with a total of 55 possible error types
for English (Bryant et al., 2017). errant’s signif-
icance was solidified in the Building Educational
Applications 2019 Shared Task: Grammatical Er-
ror Correction (BEA-2019), where it was used to
standardize multiple datasets and served as the offi-
cial scorer (Bryant et al., 2019).

While this toolkit has proven effective for En-
glish, further refinements are needed to improve
its versatility and adaptability, especially in multi-
lingual scenarios. Recent years have seen growing
interest in multilingual GEC, as demonstrated by
initiatives like the MultiGEC-2025 Shared Task,
which brought together efforts across twelve typo-
logically diverse European languages (Masciolini
et al., 2025a,b). However, this surge in interest has
outpaced the development of consistent multilin-
gual annotation resources.
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As noted by Masciolini et al. (2025a), only
three languages in MultiGEC–namely Czech, Ger-
man, and Greek–have received errant-style an-
notation. For the remaining languages, the au-
thors acknowledge that, due to limited time and
resources, they implemented only coarse-grained
alignment between original and corrected texts to
support holistic scoring, without access to the kind
of detailed error analysis enabled by errant for
English. Even in existing adaptations of errant
for various languages, implementations vary con-
siderably in their design choices–ranging from an-
notation label schemes to tokenization and part-
of-speech (POS) tagging tools–and differ in the
level of granularity applied to language-specific
error types. Although differences in orthographies
and morphosyntactic structures across languages
are unavoidable, greater consistency in annotation
practices is highly desirable.

To address these challenges, our goal is to de-
velop a consistent and reusable framework for
grammatical error annotation that can be readily
adapted across typologically diverse languages.
Drawing inspiration from the original errant’s
dataset-agnostic design, we extend its core philoso-
phy to multilingual settings by separating the anno-
tation pipeline into two components: a shared archi-
tecture that applies across languages, and optional
extensions tailored to language-specific features.
Even within the language-specific layer, we intro-
duce structured templates for common error types,
such as spelling, word order, and word boundary
errors, which can be reused or adapted across lan-
guages with similar orthographic or syntactic pat-
terns. In addition, our implementation relies on the
stanza toolkit for tokenization and POS tagging,
which provides standardized processing pipelines
for over 70 languages (Qi et al., 2020), allowing
our framework to be readily extended to annotate
new GEC datasets of other languages when they
become available.

The rest of the paper is organized as follows: §2
reviews the original errant framework, discusses
challenges in its multilingual adaptations, and mo-
tivates the use of stanza for more consistent cross-
linguistic preprocessing. §3 introduces our pro-
posed grammatical error typology, which combines
a language-agnostic core with structured, language-
specific extensions. §4 presents our reimplementa-
tion of English errant and demonstrates the frame-
work’s applicability to multiple languages, ranging
from generic use in European languages, to minor

template refinements for Korean, and deeper cus-
tomization for Chinese. Finally, §5 summarizes
our contributions and emphasizes the framework’s
flexibility and extensibility for multilingual GEC.

2 Background and Related Work

2.1 Description of errant

errant is a unified framework for error annotation
and evaluation in English GEC. It provides a rule-
based, dataset-agnostic approach for extracting and
categorizing edits between original and corrected
sentences, making it a crucial tool for system eval-
uation and benchmarking (Bryant et al., 2017).

At the core of its annotation pipeline is a linguis-
tically enhanced alignment algorithm that identifies
edit boundaries between sentence pairs. This algo-
rithm, originally proposed by Felice et al. (2016),
extends the Damerau-Levenshtein distance with a
linguistically informed cost function that considers
part-of-speech tags, lemmas, and character similar-
ity. Unlike surface-level edit distance, this method
prioritizes alignments between tokens that are syn-
tactically or morphologically related (e.g., meet
and meeting), and handles both one-to-one edits
and multi-token reordering. A rule-based merging
strategy is then applied to combine adjacent edits
where appropriate, based on patterns frequently ob-
served in learner data, such as phrasal verb edits.
This alignment process significantly improves the
consistency and quality of extracted edits (Felice
et al., 2016).

Following alignment, errant applies a rule-
based annotation scheme to categorize edits into
fine-grained grammatical error types, enabling both
comprehensive feedback and error-type evalua-
tion. Specifically, it defines 25 primary error types
based on POS and morphological properties ob-
tained from spaCy1, and further classifies them
into three edit operations: Missing, Unnecessary,
and Replacement, resulting in a total of 55 pos-
sible error types (e.g., R:VERB:TENSE indicates a
replacement error related to verb tense). To store
annotations, errant generates output in M2 format,
the standard representation for GEC annotations
since its adoption in the CoNLL-2013 Shared Task
(Ng et al., 2013). Each annotated sentence consists
of the original tokenized text (denoted by an S line)
followed by one or more error annotation lines (A
lines). Each A line specifies the error span, the

1https://spacy.io
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error type, the suggested correction, and additional
metadata (see Figure 1 for an example in English).

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0

Figure 1: Example of an annotated sentence in M2 format
from BEA-2019.

With edits extracted and categorized in a stan-
dardized format, errant can then be used to sys-
tematically evaluate GEC system outputs against
gold-standard references. It calculates precision
and recall between system-generated edits and
gold-standard corrections and utilizes a harmonic
mean F0.5 score, which weights precision twice as
much as recall to prioritize accurate and contextu-
ally appropriate corrections over excessive edits.
Thanks to its detailed annotation schema, errant
supports multi-granularity evaluation–analyzing
system effectiveness not only at the overall level but
also across specific error types and edit operations,
enabling a fine-grained and transparent assessment
of GEC models.

In BEA-2019, errant was used to standardize
multiple datasets, some of which were annotated
using different error type frameworks, while others
lacked annotations entirely. This allowed for error
distribution comparisons across datasets that were
previously hindered by these annotation discrep-
ancies. In addition, errant facilitated multi-level
system evaluation by supporting error-type analysis
across 24 main categories for all 21 participating
teams2. This enabled a detailed assessment of each
system’s strengths and weaknesses and made it
easier to identify which error types were the most
challenging to correct (Bryant et al., 2019).

While errant provides a linguistically informed
foundation for GEC annotation and evaluation, it
is not without limitations. One minor issue is its
tendency to overuse the OTHER category (i.e., un-
specified errors), leading to less precise error cate-
gorization. For instance, certain errors that could
be classified as specific grammatical types (e.g.,
verb tense or prepositions) are instead grouped un-
der OTHER (Korre and Pavlopoulos, 2020).

Another issue, as discussed in Wang et al. (2025),
arises in end-to-end evaluation scenarios. errant
assumes pre-defined sentence boundaries, and mis-

2errant defines 25 categories, including UNKnown (error
detected but unable to be corrected; Bryant et al., 2017). In
BEA-2019, this category was not included.

alignment can result in an inability to generate eval-
uation results between gold-standard references
and system outputs. However, in real-world GEC
applications, such as learner essays, inconsisten-
cies in sentence segmentation are a common issue,
often caused by differences in preprocessing steps.
To address this, Wang et al. (2025) introduced joint-
preprocessing errant, incorporating an alignment-
based approach to detect and resolve segmentation
discrepancies before evaluation.

2.2 Challenges in existing multilingual
adaptations of errant

Given its demonstrated success in English, errant
has been adapted to multiple languages, includ-
ing Arabic (Belkebir and Habash, 2021), Chi-
nese (Hinson et al., 2020; Zhang et al., 2022; Gu
et al., 2025), Czech (Náplava et al., 2022), Ger-
man (Boyd, 2018), Greek (Korre et al., 2021),
Hindi (Sonawane et al., 2020), and Korean (Yoon
et al., 2023). While these adaptations have enabled
broader use of errant-style annotation, they also
reveal several challenges that arise when extend-
ing the framework to languages with a range of
orthographic and morphosyntactic characteristics.

Inconsistent annotation labels A minor issue
in multilingual adaptations of errant is inconsis-
tent annotation labels for similar error types. The
original errant for English defines three edit op-
erations: Missing, Unnecessary, and Replacement,
while treating word order (WO) as a main error cate-
gory, similar to NOUN or VERB errors. In errant_zh,
an adaptation for Chinese, these operations were
denoted as insertion, deletion, substitution, and
transposition (Hinson et al., 2020). Meanwhile,
ChERRANT, another Chinese adaptation, later re-
vised them to Missing, Redundant, Substitute, and
Word-order (Zhang et al., 2022). While these dif-
ferences do not affect core functionality, the lack
of consistent labeling across adaptations can cre-
ate confusion. Nevertheless, this issue is relatively
straightforward to address, as it primarily involves
terminology standardization.

Inconsistent preprocessing tools A moderate
challenge in multilingual GEC annotation lies in
linguistic preprocessing tools, particularly word
segmentation and POS tagging. While spaCy, the
default NLP library in errant for English, sup-
ports multiple languages, its effectiveness varies
across linguistic systems, prompting many adap-
tations to incorporate alternative tools. For exam-
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ple, German errant retained much of the spaCy
pipeline but found its lemmatization insufficient,
replacing it with TreeTagger for better accuracy
(Boyd, 2018). For non-European languages, en-
tirely different tools are used, such as Kkma POS
Tagger for Korean KAGAS (Yoon et al., 2023) and
LTP (Language Technology Platform) for Chinese
ChERRANT (Zhang et al., 2022).

Although these variations allow for language-
specific optimizations, different tokenization strate-
gies and POS tagging schemes can lead to discrep-
ancies in how errors are identified and classified.
This is particularly problematic for multilingual
GEC models, where standardized evaluation across
multiple languages is crucial. Since a system’s
measured performance is inherently tied to how its
errors are annotated, such variations can obscure
true system similarities or differences and compro-
mise the reliability of multilingual benchmarks.

Inconsistent annotation granularity A more
significant challenge in multilingual GEC anno-
tation involves the varying levels of granularity for
language-specific errors. While errant provides
detailed error categories for English, adaptations
to other languages, especially non-European lan-
guages, often fail to maintain this level of detail.
For instance, errant_zh uses only four basic edit
operations at the character level, without POS in-
formation (Hinson et al., 2020).

Recent work has begun addressing this limitation
by introducing more fine-grained annotations tai-
lored to specific linguistic properties. For example,
Gu et al. (2025) propose a refined error typology
for Chinese that accounts for phonetic similarity,
visual similarity, and other structural errors specific
to Chinese. While this framework was developed
for Chinese, many of its principles can be read-
ily applied to languages with similar logographic
orthographies.

2.3 stanza as a multilingual alternative to
spaCy

The original errant framework relies on spaCy
for preprocessing tasks such as tokenization and
POS tagging. However, spaCy’s multilingual ca-
pabilities are relatively limited, covering only a
small number of languages and exhibiting incon-
sistent performance across linguistic families. This
has contributed to the fragmented landscape of
language-specific adaptations in prior errant vari-
ants.

To promote cross-lingual consistency, our imple-
mentation adopts stanza (Qi et al., 2020), a fully
neural pipeline trained on Universal Dependencies
(UD) and other multilingual corpora. stanza sup-
ports over 70 languages and applies a consistent ar-
chitecture and UD-based annotation scheme across
its modules—including tokenization, multi-word
token expansion, POS and morphological tagging,
dependency parsing, and named entity recogni-
tion3. Benchmark evaluations indicate strong per-
formance across typologically diverse languages.

Crucially, our aim is not to promote a specific
tool, but to align the preprocessing stage with
the same linguistic principles that underlie our er-
ror typology. Like UD, our taxonomy adopts a
cross-linguistically consistent core structure with
optional language-specific extensions. Using a UD-
compatible parser such as stanza ensures that all
languages are analyzed under a shared morphosyn-
tactic framework, which is essential for scalable
and comparable multilingual grammatical error an-
notation. In this sense, it is the UD standard, rather
than any particular NLP library, that provides the
conceptual and practical foundation for our ap-
proach.

3 Multilingual Error Typology

An error typology provides a systematic framework
for identifying, classifying, and analyzing errors
in written text. We propose a two-tiered typology
consisting of a language-agnostic foundation and a
set of structured, language-specific extensions. The
first level includes the widely adopted MRU (Missing,
Replacement, Unnecessary) framework, ensuring
consistency in annotation and evaluation across lin-
guistic systems. The second level provides a struc-
tured template for language-specific extensions, al-
lowing related languages to share annotation strate-
gies and avoid redundant reimplementation. By
designing this layered approach, we promote stan-
dardization across languages while allowing flexi-
bility for language-specific refinements.

3.1 Language-agnostic error annotation

The MRU framework classifies errors into three core
operations: Missing (M), where essential elements
are omitted; Replacement (R), where an incorrect el-
ement substitutes the correct one; and Unnecessary
(U), where superfluous elements cause redundancy.

3https://stanfordnlp.github.io/stanza/
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Each error is further specified with POS tags for
precise categorization.

Missing (M) An essential linguistic element is
omitted from a sentence, leading to incomplete
or ungrammatical structures. These errors typically
involve the absence of words or phrases necessary
for grammaticality or semantic clarity, such as miss-
ing determiners. In annotation, missing errors are
further categorized based on POS tags or syntactic
functions. For example, M:NOUN indicates a miss-
ing noun.

Replacement (R) An incorrect linguistic element
is used in place of the correct one. These errors
frequently involve incorrect word forms or inap-
propriate lexical choices (e.g., R:VERB denotes an
erroneous verb substitution). To further reduce am-
biguity in annotation, we implement the R:P1→P2
pattern, where P1 is replaced by P2.

Unnecessary (U) A superfluous linguistic element
is present in a sentence, resulting in redundancy or
ungrammaticality. These errors often involve ex-
traneous words or phrases that disrupt sentence
structure or meaning. Similar to missing and re-
placement errors, unnecessary errors are annotated
with POS information to specify the redundant ele-
ment. For example, U:DET denotes an unnecessary
determiner.

3.2 Language-specific error annotation

To accommodate language-specific characteristics,
we introduce a set of structured extensions to the
MRU core. Our approach maintains consistency with
established annotation schemes such as errant
while capturing morphological and syntactic errors
unique to different languages. Algorithm 1 presents
our proposed classification routine for Replacement
errors. Given a pair of word sequences—the source
(S) and the target (T )—the algorithm classifies
the error into one of the following types: spelling
errors (R:SPELL), word order errors (R:WO), or
word boundary errors (R:WB). Spelling similarity
is computed using two metrics: phonetic similarity
and visual (shape-based) similarity. The thresholds
α1 and α2 govern sensitivity to phonetic and visual
matches, respectively.

The classification uses the following notation:

• S, T : word sequences in the source and target
sentences.

• SIM(phonetic) and SIM(shape): similarity
functions comparing pronunciation and visual
form.

• SET(S): returns a bag-of-words representa-
tion of S, disregarding word order.

• MERGE(S): reconstructs a character sequence
from the tokenized input (i.e., merging tokens
without spaces) to test for boundary align-
ment.

This structured yet extensible framework al-
lows consistent error categorization across lan-
guages, while also accommodating language-
specific scripts and segmentation conventions.

Algorithm 1 Pseudo-code for error classification
1: function ERRORCLASSIFICATION (S, T ):
2: if (SIM (phonetic) > α1) ∧ (SIM (shape) > α2) then
3: return R:SPELL:PHONOGRAPHIC
4: else if (SIM (phonetic) > α1) then
5: return R:SPELL:PHONETIC
6: else if (SIM (shape) > α2) then
7: return R:SPELL:SHAPE
8: else if (SET (S) == SET (T )) then
9: return R:WO

10: else if (MERGE(S) == MERGE(T )) then
11: return R:WB
12: end if
13: return {R}

Spelling errors We classify spelling errors by
their underlying cause: sound-based phonetic sim-
ilarity (R:SPELL:PHONETIC), visual resemblance
in orthographic shape (R:SPELL:SHAPE), or a com-
bination of both (R:SPELL:PHONOGRAPHIC). For
sound-based phonetic errors, we introduce a tran-
scription system to represent pronunciation, such
as a pronouncing dictionary for English, pinyin
for Chinese, or romanization for other languages.
This allows us to compare words based on their
phonetic similarity and identify errors caused by
mispronunciation or phoneme substitution. For
orthographic shape errors, we assess visual similar-
ity by converting characters into font images and
applying similarity metrics. This approach helps
detect errors caused by visually similar characters,
such as mistyped letters in Latin-based scripts or
miswritten strokes in logographic writing systems
like Chinese and Japanese. By combining these
methods, we systematically classify and analyze
spelling errors across different languages.

Word order errors Word order errors are
flagged when the source sequence (S) and the tar-
get sequence (T ) contain the same set of words
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but differ in arrangement. In such cases, all words
from the original sequence are retained, but their
relative positions are altered. These errors are par-
ticularly common in languages with flexible word
order, where reordering affects grammaticality or
readability. Identifying and categorizing such er-
rors enables more structured syntactic analysis and
improves grammatical error correction.

Word boundary errors Word boundary errors
occur when the source sequence (S) and the target
sequence (T ) yield the same sequence after merg-
ing their respective word components. These errors
typically involve incorrect spacing, where words
that should remain separate are mistakenly merged,
or conversely, a single word is improperly split into
multiple tokens. Since the fundamental content re-
mains unchanged but the segmentation differs, such
errors impact readability, syntactic structure, and
lexical integrity. Addressing these errors ensures
accurate word segmentation and proper grammati-
cal representation.

Figure 2 illustrates representative examples of
the three major subtypes of Replacement errors
classified by our algorithm.

R:SPELL:PHONETIC their→ there
R:WO You can help me→ Can you help me
R:WB ice cream→ icecream

Figure 2: Examples of Replacement error types: pho-
netic spelling error (R:SPELL:PHONETIC), word order
error (R:WO), and word boundary error (R:WB).

4 Implementation of Multilingual Error
Annotation

Our implementation demonstrates how grammati-
cal error annotation can be consistently extended
across typologically diverse languages. We be-
gin by reimplementing errant for English using
stanza and validating its performance. We then ap-
ply the same system to other European languages
without language-specific modules. For Korean,
we introduce targeted refinements using language-
specific templates. Finally, for Chinese, we show
how deeper customization can be incorporated by
modifying segmentation and retraining the stanza
pipeline.

4.1 Reimplementing errant for English
We reimplemented errant using stanza for POS
tagging and dependency parsing, as described in
§2.3. This enables our annotation system to be

more consistent across languages while preserv-
ing the linguistic precision required for English-
specific grammatical labels.

We integrated the English-specific classification
module from the original errant, which iden-
tifies detailed grammatical error types, such as
NOUN:POSS for possessive noun suffix errors. This
module relies on universal POS tags (Petrov et al.,
2012) and dependency relation tags to categorize
errors. For instance, if the first token in an edit
is tagged as PART and its dependency relation is
case:poss, the classifier assigns the NOUN:POSS
label accordingly.

A key distinction between the original errant
and our implementation lies in error categorization.
As illustrated in Figure 3, errant originally an-
notates that is as a missing OTHER error, whereas
our implementation classifies it more precisely
as a missing PRON error. Additionally, we refine
verb annotation by distinguishing auxiliary verbs
in passive constructions, categorizing is played as a
Replacement error from VERB to AUX VERB. These
refinements enhance interpretability by providing
more specific and linguistically meaningful labels
for complex constructions.

Original errant:
S Volleyball is a sport play every place ...
A 4 4|||M:OTHER|||that is|||REQUIRED|||-NONE-|||0
A 4 5|||R:VERB:FORM|||played|||REQUIRED|||-NONE-|||0

Our implementation:
S Volleyball is a sport play every place ...
A 4 4|||M:PRON|||that|||REQUIRED|||-NONE-|||0
A 4 5|||R:VERB → AUX VERB|||is played|||REQUIRED|||-NONE-|||0

Figure 3: Differences between errant and our imple-
mentation

To evaluate the overall alignment, we compared
both implementations using outputs from the state-
of-the-art GEC system, T5 (Rothe et al., 2021).
The results in Table 1 support that our implementa-
tion reproduces errant’s scores, with only minor
variations.

TP FP FN Prec Rec F0.5

errant 2589 1639 4030 0.6123 0.3911 0.5501
Ours 2565 1613 4028 0.6139 0.3890 0.5503

Table 1: GEC results for English using T5

4.2 Applying universal annotation to
European languages

Without language-specific classification modules,
our grammatical error annotation system remains
capable of generating generic error annotations us-
ing the core MRU framework combined with POS
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Czech S Mám velkou rodinu , tak nemohla jsem mít naději , že něco dostanu .
Náplava et al. (2022) A 5 7|||R:WO|||jsem nemohla|||REQUIRED|||-NONE-|||0

Ours A 5 7|||R:VERB AUX -> AUX VERB|||jsem nemohla|||REQUIRED|||-NONE-|||0
(‘I have a big family, so I couldn’t hope to get anything.’)

German S Dagegen wieder , bekommen BA Studenten die ein extra Jahr oder mehr studiert haben , leichter Jobs .
Boyd (2018) A 0 3|||R:OTHER|||Dahingegen|||REQUIRED|||-NONE-|||0

A 4 5|||U:PNOUN||||||REQUIRED|||-NONE-|||0
A 5 6|||R:NOUN|||BA-Studenten|||REQUIRED|||-NONE-|||0

Ours A 0 2|||R:ADV ADV -> ADV|||Dahingegen|||REQUIRED|||-NONE-|||0
A 2 3|||U:PUNCT||||||REQUIRED|||-NONE-|||0
A 5 5|||M:PUNCT|||-|||REQUIRED|||-NONE-|||0
(‘On the other hand, BA students who have studied an extra year or more find jobs more easily again.’)

Figure 4: Examples of grammatical error annotation for Czech and German

labels. We applied this approach to German (Boyd,
2018) and Czech (Náplava et al., 2022) to assess
whether structured, interpretable annotations could
still be produced in the absence of custom heuris-
tics.

As shown in Figure 4, our system improves clar-
ity by attaching POS information to word order
and punctuation errors, allowing more consistent
cross-lingual comparisons. For Czech, the example
highlights differences in word order (WO) annota-
tion: our method distinguishes between auxiliary
and main verbs by incorporating POS information,
whereas prior work generally treated such cases
as generic WO errors. By capturing the syntactic
function of the words involved, our method en-
ables more precise and interpretable annotation. A
similar improvement is seen for German, where
our universal framework avoids language-specific
categories while maintaining clear and consistent
labeling.

Compared to previous implementations, our an-
notation outputs remain broadly consistent in terms
of overall operation counts, with only minor vari-
ations, as shown in Table 2. This suggests that
our universal framework based on the MRU scheme
can replicate established annotation distributions.
Table 3 lists the most frequent error annotations
produced by our system alongside those from pre-
vious implementations. Our system makes the syn-
tactic categories involved in each replacement edit
explicit (R:P1 → P2), reflecting a different an-
notation choice rather than a direct re-labeling of
existing tags.

Future work could explore how to map between
these representations to support compatibility and
facilitate comparative evaluations. Another direc-
tion is to extend this annotation scheme to addi-
tional languages: because our framework leverages
universal POS tags and dependency labels from
stanza, it can be readily applied to the ten other
languages in the MultiGEC dataset (Masciolini

et al., 2025a) without additional customization.

Missing Replacement Unnecessary Total
Czech

Náplava et al. (2022) 693 3707 515 4915
Ours 695 3672 530 4897

German
Boyd (2018) 1341 4406 638 6385

Ours 1310 4348 612 6270

Table 2: Comparison of operation counts (Missing,
Replacement, Unnecessary) on the development sets of
Czech (first 1000 sentences; Náplava et al., 2022) and
German (Boyd, 2018).

4.3 Refining language-specific annotations for
Korean

Previous research on Korean grammatical error an-
notation has relied on extensive linguistic resources
(Yoon et al., 2023). However, grammatical errors
in Korean often manifest at the morpheme level, as
observed in L2 writing from the National Institute
of Korean Language (NIKL) corpus. In contrast,
prior error annotation approaches primarily operate
at the word level, which aligns with our methodol-
ogy. To ensure consistency in annotation, previous
work established two priority rules for assigning a
single error type to each word because of the poten-
tial ambiguity in error classification, particularly
when multiple error types could apply to the same
token: (i) INSERTION > DELETION > others, and
(ii) WS (word segmentation = WB) > WO > SPELL

> SHORTEN (incorrect contraction of a word) >
PUNCTUATION > OTHERS.

Building on these foundations, we implement
language-specific error types based on Algorithm 1
and refine the WB (word boundary) category by in-
troducing two subtypes: WB:M for missing spaces
and WB:U for extraneous spaces. The former oc-
curs when spaces are absent between words, caus-
ing multiple words to merge into a single unit,
which can obscure meaning and hinder readabil-
ity. The latter arises when superfluous spaces are
inserted between or within words, disrupting the
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Czech German
Náplava et al. (2022) Ours Boyd (2018) Ours
Annotation Count Annotation Count Annotation Count Annotation Count

DIACR 989 NOUN→ NOUN 760 PUNCT 942 DET→ DET 832
OTHER 834 VERB→ VERB 465 SPELL 816 NOUN→ NOUN 814
PUNCT 487 PUNCT 396 DET:FORM 693 PUNCT 800
SPELL 457 ADJ→ ADJ 299 OTHER 670 ADJ→ ADJ 466
VERB 271 PRON 161 ORTH 529 VERB→ VERB 305

WO 227 DET→ DET 101 ADP 348 DET 241
NOUN:INFL 209 ADV→ ADV 100 ADJ:FORM 277 ADP→ ADP 170

PRON 187 NOUN→ ADJ 98 PRON 273 PRON 170
MORPH 177 PUNCT→ PUNCT 95 NOUN:FORM 260 PRON→ PRON 144

ORTH:CASING 124 ADP→ ADP 94 DET 242 AUX→ AUX 143

Table 3: Comparison of the top 10 most frequent error annotations on the development sets of Czech (first 1000
sentences; Náplava et al., 2022) and German (Boyd, 2018).

natural flow of the text.
Additionally, we extend grammatical error an-

notation to functional morphemes, categorizing
errors into (i) postposition errors (ADP), (ii) ver-
bal ending errors (PART), and (iii) honorific suf-
fix errors (HON). These errors are further classified
into missing (M), unnecessary (U), and incorrect
usage (R). Figure 5 illustrates corrections from
two annotators: the noun phrase음식이 eumsig-i
(‘food.NOM’) is replaced with음식을 eumsig-eul
(‘food.ACC’), annotated as R:NOUN -> NOUN:ADP,
reflecting a case marker correction. Similarly,막였
습니다 magyeossseubnida is replaced with먹었습
니다 meogeossseubnida (‘ate’), which constitutes
a spelling error due to phonetic and orthographic
similarity.4

S 비행기 1음식이 안 3막였습니다 .
A 1 2|||R:NOUN -> NOUN:ADP|||음식을|||REQUIRED|||-NONE-|||0
A 3 4|||R:Orthographic|||먹었습니다|||REQUIRED|||-NONE-|||0
A 3 4|||R:VERB -> VERB|||맞았습니다|||REQUIRED|||-NONE-|||1

Figure 5: Examples from the Korean M2 file: I didn’t
eat the airplane food (Annotator 0), and The airplane
food didn’t agree with me (Annotator 1)

4.4 Integrating deeper customization for
Chinese

Chinese grammatical error annotation presents
unique challenges due to the lack of explicit word
boundaries (Qiu et al., 2025). Previous systems
(Zhang et al., 2022; Gu et al., 2025) adopt segmen-
tation schemes based on different linguistic assump-
tions: for instance, LTP5 emphasizes compound
words as cohesive lexical units, whereas stanza,
trained on the Chinese GSD treebank6, adopts a

4Annotator 1 annotates a replacement with 맞았습니다
maj-assseubnida (‘agree’), altering the meaning of the sen-
tence. This highlights a potential challenge in grammatical
error annotation—distinguishing between true errors and al-
ternative valid expressions that change sentence semantics.

5https://github.com/HIT-SCIR/ltp
6https://github.com/UniversalDependencies/UD_

Chinese-GSD

finer-grained, morpheme-level segmentation strat-
egy that tends to split compound expressions into
smaller units.

These design choices reflect distinct philoso-
phies rather than flaws. However, segmentation
differences can affect downstream grammatical er-
ror annotation, including both the token spans and
the syntactic interpretation of the correction. For
example, whether a multi-character expression like
为什么 wèishéme (‘why’) is treated as one token
or multiple (为 什么) influences how missing or
replacement errors are classified.

To illustrate the flexibility of our framework, we
adopt an LTP-style segmentation approach, which
aligns more closely with native speaker intuitions
about lexical units in Chinese. While the default
stanza pipeline uses GSD-style morpheme-level
segmentation, our framework allows researchers
to substitute this with alternative schemes, such as
LTP’s compound-word-based segmentation. This
optional customization demonstrates that language-
specific preprocessing decisions, such as tokeniza-
tion granularity, can be adapted within our frame-
work to better support accurate and interpretable
error annotation.

We achieve this integration by re-annotating the
Chinese GSD treebank with LTP-informed word
boundaries and retraining stanza on this revised
corpus. This ensures compatibility with our pre-
ferred segmentation standard while preserving the
benefits of stanza’s POS tagging and parsing
pipeline. As shown in Figure 6, the resulting anno-
tations show more consistent edit spans and error
categories, especially in contexts where compound
expressions are frequent.

Ultimately, this customization demonstrates the
modularity of our framework: rather than enforcing
a one-size-fits-all solution, we allow researchers
to tailor tokenization to fit linguistic expectations,
making the system more robust and adaptable
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Chinese GSD-based WB (Gu et al., 2025):
S ... 解释 为 10什幺 这样 的 情况 ...
A ...
A 10 11|||R:PROPN -> PRON VERB AUX|||什么 出现 了|||REQUIRED|||-NONE-|||0
Correction: ... 解释为什么出现了这样的情况 ...

Our LTP-based WB:
S ... 解释 7为 8什幺 这样 的 情况 ...
A ...
A 7 8|||R:ADP -> ADV VERB|||为什么 出现|||REQUIRED|||-NONE-|||0
A 8 9|||R:PROPN -> AUX|||了|||REQUIRED|||-NONE-|||0
Correction: ... 解释为什么出现了这样的情况 ...
Correction: ... jiěshì wèishéme chūxiàn le zhèyàng de qíngkuàng ...
Correction: (‘... explain why this kind of situation has occurred ...’)

Figure 6: Fragments of grammatical error annotation examples in Chinese with different word boundaries. Incorrect
GSD-based segmentation of为什么 wèishéme (‘why’) leads to misleading annotation什么出现了 shénme chūxiàn
le (‘what has occurred’), while LTP-based segmentation为什么出现 wèishéme chūxiàn (‘why occurred’) provides
an accurate representation.

across languages and segmentation conventions.

5 Conclusion

This work advances grammatical error annotation
and evaluation by introducing a standardized, mod-
ular framework for multilingual grammatical er-
ror typology. Building upon the foundations of
errant, we designed a two-tiered system that sep-
arates language-agnostic annotation from struc-
tured language-specific extensions. This approach
supports consistency across typologically diverse
languages while allowing targeted customizations
when needed.

We reimplemented errant using stanza to pro-
vide broader multilingual support, and demon-
strated that our system produces accurate and inter-
pretable annotations in English. We then demon-
strated how our framework can be applied to
other languages with varying levels of customiza-
tion. For European languages, we showed that our
POS- and dependency-based system can generate
reliable annotations without requiring language-
specific classification modules. For Korean, we
applied minor refinements to capture morphologi-
cally salient features such as postpositions and spac-
ing errors. Finally, for Chinese, we demonstrated
how deeper customization–through the integration
of language-specific tokenization and retraining
of NLP components–can be incorporated into our
framework to support fine-grained, linguistically
coherent error annotation.

By balancing consistency and flexibility, our
framework enables scalable, interpretable, and
reusable grammatical error annotation across lan-
guages. This supports more consistent evaluation

and clearer cross-linguistic comparison in multilin-
gual GEC research.

Limitations

While our framework presents a unified and ex-
tensible approach to multilingual grammatical er-
ror annotation, the implementations described in
this paper are primarily intended to demonstrate its
adaptability across different languages and levels
of customization. A detailed analysis of annota-
tion improvements, including task-specific gains
and downstream evaluation effects, is left to future
work.

Although we rely on existing NLP tools such as
stanza for tokenization and parsing, which offer
broad multilingual coverage and consistent anno-
tation schemes, these tools are not explicitly op-
timized for processing noisy or learner-generated
text. This may introduce variability in some edge
cases, particularly in languages with complex mor-
phosyntax or ambiguous word segmentation.
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Abstract

Evaluation of Grammatical Error Correction
(GEC) systems is becoming increasingly chal-
lenging as the quality of such systems increases
and traditional automatic metrics fail to ade-
quately capture such nuances as fluency ver-
sus minimal edits, alternative valid corrections
compared to the ‘ground truth’, and the dif-
ference between corrections that are useful in
a language learning scenario versus those pre-
ferred by native readers. Previous work has sug-
gested using human post-editing of GEC sys-
tem outputs, but this is very labor-intensive. We
investigate the use of Large Language Models
(LLMs) as post-editors of English and Swedish
texts, and perform a meta-analysis of a range
of different evaluation setups using a set of re-
cent GEC systems. We find that for the two
languages studied in our work, automatic eval-
uation based on post-editing agrees well with
both human post-editing and direct human rat-
ing of GEC systems. Furthermore, we find
that a simple n-gram overlap metric is suffi-
cient to measure post-editing distance, and that
including human references when prompting
the LLMs generally does not improve agree-
ment with human ratings. The resulting eval-
uation metric is reference-free and requires
no language-specific training or additional re-
sources beyond an LLM capable of handling
the given language.

1 Introduction

Grammatical Error Correction (GEC) is an im-
portant technology for supporting native and non-
native writers, and supporting the development of
language learners (for a recent survey see, for in-
stance, Bryant et al., 2023). In recent years, neural
networks and in particular Large Language Models
(LLMs) have led to rapid improvements in the accu-
racy of such systems, but these developments have

made apparent the difficulty of efficiently evaluat-
ing such systems.

For the most part, reference-based metrics have
been used for the evaluation of GEC. These met-
rics depend upon human-created reference correc-
tions and either rely on text similarity measures
similar to those used in Machine Translation – ex-
amples include GLEU (Napoles et al., 2015) and
GREEN (Koyama et al., 2024) – or on comparing
the edits made by the GEC system with those by
the human; for instance, M2 (Dahlmeier and Ng,
2012) and ERRANT (Bryant et al., 2017). These
reference-based metrics have been shown to cor-
relate less well with human quality estimates than
other approaches, in particular with recent neural
GEC systems (Kobayashi et al., 2024). In addi-
tion, the manual process of creating references is
time-consuming.

Reference-free metrics, typically based on neural
models, have been proposed as an alternative, but
these tend to either be complex and requiring addi-
tional (language-specific) training data (Yoshimura
et al., 2020; Maeda et al., 2022), or to be simplis-
tic but may correlate relatively poorly with human
preferences (Islam and Magnani, 2021).

Östling et al. (2024) proposed using human post-
editing to create one reference per GEC system
output, and then use a text similarity metric be-
tween the system output and its post-edited version
as a measure of GEC system quality. This was
evaluated on a small number of GEC systems in
Swedish, so it is unclear to what extent the resulting
scores correlate with human preferences. In addi-
tion, human post-editing of every system output is
a very time-consuming task. Our goal in this work
is to investigate whether the human post-editing
step can be performed by an LLM, and how the
evaluation setup can be modified to achieve max-
imal correlation with human evaluation by either
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post-editing, ranking, or direct scoring.
Our main research questions are:

• RQ1: does LLM-based post-editing provide a
scoring of GEC systems that aligns with hu-
man preferences?
(Answer: yes, there is a high level of agree-
ment with different types of human quality
assessments.)

• RQ2: how does the choice of text similarity
metric affect post-editing based GEC evalua-
tion?
(Answer: Levenshtein distance as used in pre-
vious work is sub-optimal, chrF++ is good but
overkill; use character bag-of-6-gram overlap
instead.)

• RQ3: what difference does it make if human
references are provided to the LLMs while
performing post-editing?
(Answer: in general the best method is to use
only the original sentence + system output,
but peculiarities in some datasets affect this
outcome.)

• RQ4: how does LLM-based post-editing com-
pare to human post-editing for GEC system
evaluation?
(Answer: they generally agree very well, but
LLMs make somewhat more changes and
have a considerably lower proportion of com-
pletely unchanged sentences.)

2 Related Work

Grammatical error correction has a long history as
an area of research (Bryant et al., 2023). It has also
featured in various shared tasks over the years (e.g.,
Ng et al., 2014; Bryant et al., 2019; Masciolini
et al., 2025). Since statistical approaches to GEC
were widely adopted, the best-performing systems
involve supervised models trained on annotated
corpora: usually involving sequence-to-sequence
models (e.g., Rothe et al., 2021) or pipeline sys-
tems based on sequence tagging (e.g., Omelianchuk
et al., 2020).

According to recent research, LLMs do not out-
perform these supervised GEC systems on every
benchmark, at least for English (Loem et al., 2023;
Davis et al., 2024). Instead, it has been shown
that they can potentially improve the recall of GEC
models in an ensemble setting (Omelianchuk et al.,
2024). Moreover, given the increasing use of LLMs

as judges, in this work we investigate to what ex-
tent LLMs can be used for GEC evaluation which,
along with the availability of high quality annotated
data, is a bottleneck to progress in GEC (Kobayashi
et al., 2024).

Current metrics are either reference-based or
reference-free, meaning that they do or do not, re-
spectively, depend upon ‘ground truth’ corrections.
The most widely-used reference-based metrics are
precision, recall and F0.5 – most often obtained
from the M2 scorer (Dahlmeier and Ng, 2012) or
with ERRANT (Bryant et al., 2017) – along with
GLEU, derived from the BLEU score commonly
used in machine translation (Napoles et al., 2015).
However, there is often more than one possible
way to correct a grammatical error, and even with
multiple annotations it is difficult to cover all pos-
sibilities in reference-based approaches.

Examples of reference-free metrics include the
Scribendi Score (Islam and Magnani, 2021) and
IMPARA (Maeda et al., 2022). The former may
involve any LLM, in principle, whilst the latter was
implemented using BERT (Devlin et al., 2019).
However, the reliance on language models for
reference-free metrics means that they tend to be
biased towards fluency corrections over minimal
edits which stay closer to the original text formu-
lation but may not be recognized as improvements
by the language models. Fluent corrections are usu-
ally preferable from a readability and naturalness
perspective, but it is arguable from a pedagogical
standpoint that it is better to in fact offer minimal
edits as feedback to human learners rather than er-
ror avoidance strategies (Sakaguchi et al., 2016;
Caines et al., 2023; Mita et al., 2024).

Nevertheless, the reliance on ground truth ref-
erences remains a limiting factor in evaluation of
GEC systems on new data. If it can be shown
that LLMs can be reliably put to use as GEC post-
editors, for the purpose of evaluation, correlating
well with human judgements, it would release the
pressure on the GEC bottleneck somewhat. Östling
et al. (2024) examine the feasibility of post-editing
based evaluation with Swedish GEC data and per-
form direct scoring as well as post-editing of the
outputs of three different GEC systems and two
fluency-edited references. They find that post-
editing distance correlates strongly with the scores
assigned by the annotator, but the small sample of
GEC systems limits the range of conclusions that
they are able to draw. Additionally, their annotation
procedure is fully manual and would be difficult to
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scale up.

3 Data

Kobayashi et al. (2024) performed a meta-
evaluation of 12 recent English GEC systems, and
published the SEEDA dataset of GEC system out-
puts and human rankings of sentences from these
outputs. We use this dataset because it contains
a sufficient number of GEC systems to compute
reasonably reliable correlations between a given
GEC evaluation metric and the human assessments.
In addition to system outputs of 12 modern GEC
systems, it also includes the original uncorrected
sentences (INPUT) and two human-created refer-
ence, one with minimal edits (REF-M) and one
edited for fluency (REF-F).

Östling et al. (2024) published human annota-
tions with post-edited versions of 3 Swedish GEC
systems as well as the original uncorrected sen-
tences (INPUT) and three human-created references,
one with minimal edits (REF-M) and two edited
for fluency. The GEC system outputs and the
fluency-edited references are annotated with scores
for grammaticality, fluency and meaning preser-
vation, and post-edits to achieve perfect scores in
these three assessment dimensions. We include
the Swedish data for two main purposes: to allow
direct comparisons between human and LLM post-
edits, and to verify that the proposed method can
be applied to languages other than English given a
suitable LLM.

4 Method

We have several different recent LLMs perform
post-editing of GEC system outputs from the
datasets of Kobayashi et al. (2024) in English,
and Östling et al. (2024) in Swedish.1 We use
Gemma 2 in several sizes (2 billion parameters,
9B, 27B) (Gemma Team et al., 2024), Gemma 3
27B (Gemma Team et al., 2025), Llama 3.1 8B
(Grattafiori et al., 2024), Mistral Small 24B (Jiang
et al., 2023), Qwen 2.5 32B (Bai et al., 2023), and
Command A-111B (Cohere, 2025).

For each LLM, we try each combination of the
following two parameters:

• Semantic grounding. In order to ensure that
the post-editing does not diverge from the se-
mantics of the original text, we include four

1Prompts are given in Appendix A.

(English) or three (Swedish) types of seman-
tic grounding. In all cases the GEC system
output is provided in the prompt.

– None. Only the system output is pro-
vided in the prompt.

– INPUT. The GEC system input (original
text) is included.

– REF-M. A human minimal edits refer-
ence is included.

– REF-F. A human fluency edited refer-
ence is included (English data only).

• Similarity metric. Following Östling et al.
(2024) we use Normalized Levenshtein dis-
tance as one metric, and add two n-gram-
similarity-based metrics.

– Normalized Levenshtein Similarity,
which is identical to Normalized Leven-
shtein Distance apart from the direction
(higher is better):

S(a, b) = 1− L(a, b)/max(|a|, |b|)

– chrF++ (Popović, 2017), which in our
setting computes the mean F2 score over
word bigram and character 6-gram preci-
sion and recall. Unlike the other metrics,
this is asymmetric and we treat the post-
edited text as the reference.

– Character 6-gram bag-of-n-grams over-
lap, a symmetric measure of similarity:

S(a, b) = |N6
a ∩N6

b |/|N6
a ∪N6

b |

where N6
s is the set of character 6-grams

(including spaces) for string s.

Because it is difficult to justify a full parame-
ter search using the very largest model (GPT-4o2),
we obtain post-edits only for the setting where the
original sentence is used as semantic grounding
(INPUT), since this was the most promising configu-
ration in preliminary experiments. For the Swedish
part we also restrict the set of LLMs used to some
of the models that obtained the most promising
results on the English data, due to time and data
licensing constraints.3

2The actual number of parameters has not been published
for it or its smaller version GPT-4o-mini, but we see a limited
value in exploring the full set of parameters for these models.

3The current license of the Swedish data does not permit
the use of OpenAI API.
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Post-editor r ρ

Gemma 2-2B 0.69 0.77
Gemma 2-9B 0.95 0.92
Gemma 2-27B 0.79 0.56
Gemma 3-27B 0.82 0.67
Llama 3.1-8B 0.90 0.83
Mistral Small 24B 0.95 0.91
Qwen 2.5-32B 0.81 0.68
Command A-111B 0.95 0.89

Table 1: System-level correlations between post-edit
distance and human ratings, averaged over all similarity
metrics, semantic grounding options, and human ratings.
Here and below boldface is used as a visual aid to iden-
tify the highest values.

Similarity metric r ρ

Levenshtein 0.74 0.63
6-gram overlap 0.92 0.85
chrF++ 0.91 0.85

Table 2: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, semantic grounding options, and human
ratings.

For English, we follow Kobayashi et al. (2024)
and compute correlations (Pearson r and Spear-
man ρ) to human annotations on the system level.4

These are derived in two different types of anno-
tation (edit-based or sentence-based comparisons),
using two different methods (TrueSkill and Ex-
pected Wins) of summarizing the rankings into
numeric scores, resulting in four different system-
level references. To avoid making arbitrary deci-
sions on which of these to prefer, and to increase
the reliability of the results, we consistently use
means over all of these four except in Table 4 where
we investigate the effect of the human system-level
score type and find that it is relatively small. For
the sentence level evaluations we use Kendall τ , as
computed by the software published by Kobayashi
et al. (2024), for comparing to human sentence-
level rankings.

For the Swedish data the available annotations
are different, compared to English. Instead of rank-
ings of system outputs, each system output has
been annotated for grammaticality, fluency and
meaning preservation. If any of these are anno-
tated with less than a perfect score (4 on a scale

4Sentence 22 of the REF-M file in the SEEDA dataset is
empty. We handle this by arbitrarily giving this sentence a
score of 0 for all similarity metrics.

Semantic grounding r ρ

None 0.83 0.66
INPUT 0.88 0.87
REF-M 0.83 0.76
REF-F 0.88 0.82

Table 3: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, similarity metrics, and human ratings.

Human rating r ρ

EW/edit 0.84 0.77
EW/sentence 0.85 0.79
TS/edit 0.87 0.77
TS/sentence 0.87 0.79

Table 4: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, similarity metrics, and semantic grounding
options. The four human rating references are com-
puted using Expected Wins (EW) or TrueSkill (TS)
from sentence-level rankings that are either edit-based
or sentence-based.

1–4), there is also a post-edited version of the sys-
tem output with the goal of performing minimal
editing to achieve full scores on all three properties.
Since there are only three GEC system outputs and
two human references included in the data, we do
not consider it meaningful to perform a system-
level evaluation as in the English data. Instead, we
use Spearman’s ρ to compare the post-edit score
between the human annotator and each LLM. We
also compare the LLM post-edit scores to the mean
of the human annotator’s grammaticality, fluency
and meaning preservation scores, which we use as
a general measure of the quality of that particular
correction.

5 Results and Discussion

5.1 Overall agreement with human rankings

In order to see whether LLM-based post-editing
provides a scoring of GEC systems that aligns with
human preferences (RQ1), we begin by applying
the meta-evaluation framework of Kobayashi et al.
(2024). Because our proposed evaluation setup
has several hyperparameters and only 15 system
outputs5 to measure correlations with, we search

5Whenever the semantic grounding uses one of the human
references (REF-M or REF-F), that reference is excluded from
computing the correlation and only the remaining 14 system
outputs are used. Note that unless stated otherwise, we use
the term “system output” to also include the human-created
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Spearman ρ Pearson r
LLM Base None INPUT REF-M REF-F Base None INPUT REF-M REF-F

Gemma 2-2B -0.28 0.94 0.61 0.74 0.93 -0.64 0.97 0.58 0.72 0.96
Gemma 2-9B 0.35 0.91 0.95 0.94 0.94 -0.18 0.96 0.97 0.97 0.96
Gemma 2-27B 0.55 0.68 0.92 0.83 0.60 0.05 0.87 0.97 0.90 0.83
Gemma 3-27B 0.46 0.42 0.94 0.83 0.89 -0.15 0.76 0.97 0.91 0.93
Llama 3.1-8B 0.14 0.95 0.93 0.92 0.92 -0.41 0.97 0.95 0.98 0.98
Mistral Small 24B 0.29 0.91 0.96 0.94 0.95 -0.27 0.97 0.98 0.98 0.95
Qwen 2.5-32B 0.56 0.44 0.94 0.89 0.83 -0.00 0.75 0.96 0.89 0.92
Command A-111B 0.48 0.87 0.95 0.93 0.93 -0.06 0.95 0.98 0.98 0.94
GPT-4o – – 0.96 – – – – 0.98 – –
GPT-4o-mini – – 0.96 – – – – 0.97 – –

Table 5: Mean system-level correlations between post-edit distance and human ratings, per LLM and semantic
grounding option, always using 6-gram overlap and averaging over human ratings.

Sentence-based Edit-based
LLM Base None INPUT REF-M REF-F Base None INPUT REF-M REF-F

Gemma 2-2B -0.21 0.32 0.18 0.23 0.32 -0.13 0.35 0.21 0.27 0.33
Gemma 2-9B 0.10 0.36 0.54 0.41 0.38 0.15 0.35 0.52 0.41 0.39
Gemma 2-27B 0.21 0.18 0.42 0.25 0.15 0.26 0.18 0.41 0.25 0.20
Gemma 3-27B 0.11 0.14 0.47 0.28 0.29 0.20 0.11 0.45 0.27 0.24
Llama 3.1-8B -0.01 0.33 0.36 0.30 0.31 0.06 0.35 0.39 0.34 0.34
Mistral Small 24B 0.08 0.35 0.48 0.38 0.39 0.18 0.33 0.50 0.38 0.33
Qwen 2.5-32B 0.21 0.14 0.45 0.23 0.26 0.24 0.16 0.45 0.22 0.23
Command A-111B 0.19 0.38 0.46 0.37 0.38 0.22 0.37 0.47 0.37 0.39
GPT-4o – – 0.54 – – – – 0.55 – –
GPT-4o-mini – – 0.46 – – – – 0.46 – –

Table 6: Mean sentence-level Kendall τ between post-edit distance and human ratings, per LLM and semantic
grounding option, always using 6-gram overlap.

217



through each parameter independently taking the
averages over all other parameters in order to avoid
overfitting. Averaged system-level correlations are
presented in Table 1 (per LLM), Table 2 (per simi-
larity metric), and Table 3 (per semantic grounding
option). Additionally, we also present the averaged
correlations per human rating setup (Table 4) and
see that these are in general agreement with each
other. In all other system-level evaluation results,
we present averages over all four human rating set-
ups to obtain more reliable estimates.

5.2 Effect of text similarity metric

Next, we turn to the question of how the text
similarity metric used to compare the system out-
put with its post-edited version affects the results
(RQ2). Östling et al. (2024) used Normalized Lev-
enshtein Distance with manual post-edits. We com-
pute the its negated version (Normalized Leven-
shtein Similarity) along with two other options.
The results are shown in Table 2, averaged over all
other parameters. It is clear that Normalized Lev-
enshtein Similarity is in fact sub-optimal, and that
both of the other two metrics obtain correlations
with human ratings that are considerably higher. In
the following analysis we use 6-gram overlap, as it
is simple and efficient to compute.

5.3 Effect of semantic grounding

To investigate whether the type of semantic ground-
ing affects post-editing based evaluation (RQ3), we
compute the correlations separately for the differ-
ent types of semantic grounding (Table 5). There
are pronounced differences between the various
LLMs with respect to which type works best, but
the overall trend is that adding human-written ref-
erences typically does not improve the outcomes,
and in most cases results in lower correlation with
human ratings.

We have included a baseline (Base) consisting
of a reference generated by the same LLM with-
out access to the system output, using the LLM
as a GEC system with access to the original text
only.6 This is done to exclude the possibility that
the LLMs generate high-quality references and that
post-editing is an unnecessary complication. How-
ever, the low correlation values for the baseline
indicate that including the system output and per-
forming post-editing is essential to the success of

references.
6Prompts are given in Appendix A.

LLM S.G. HP HS
Gemma 2-9B None 0.39 0.39
Gemma 2-9B INPUT 0.28 0.26
Gemma 2-9B REF-M 0.55 0.51
Mistral Small 24B None 0.40 0.38
Mistral Small 24B INPUT 0.30 0.30
Mistral Small 24B REF-M 0.55 0.51
Qwen 2.5-32B None 0.35 0.34
Qwen 2.5-32B INPUT 0.34 0.34
Qwen 2.5-32B REF-M 0.49 0.45
Command A-111B None 0.49 0.46
Command A-111B INPUT 0.40 0.39
Command A-111B REF-M 0.58 0.53

Table 7: Spearman ρ between LLM post-edit score, and
each of human post-edit (HP) and human score (HS,
mean of grammaticality, fluency and meaning preserva-
tion scores). Scores from post-edits are defined as the
6-gram similarity to their respective system output. The
correlation between HP and HS is 0.81. S.G. = semantic
grounding.

our method. Manual inspection indicates that REF-
F and GPT-3.5, both of which contain a consider-
able amount of fluency edits, are generally rated
poorly by the baseline.

It is also noteworthy that some of the highest
system-level correlations are obtained by letting
the smallest of the evaluated LLMs (Gemma 2-2B)
post-edit the system output with only the system
output and no semantic grounding, thus ignoring
any possible semantic errors. In line with previous
work (Yoshimura et al., 2020) which found that
meaning preservation is not an important factor
when trying to achieve high correlation to human
ratings, this indicates that having even a modest-
sized LLM perform conservative correction of the
system output brings us to close agreement with
human system-level ratings.

5.4 Sentence-level evaluation

We now turn from system-level to sentence-level
evaluations. Following Kobayashi et al. (2024), we
present the sentence-level agreement with human
rating as Kendall τ values in Table 6. At this finer
level of granularity, the differences between differ-
ent metric parameters become apparent. Adding
the original sentence as semantic grounding consis-
tently improves the correlation with human assess-
ments, while adding a human reference (REF-M

or REF-F) shows no such tendency. Again, the
baseline consistently has very low correlations.
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Figure 1: Scatter plot of character 6-gram overlap scores derived from human (x-axis) and LLM (y-axis) post-edits,
in both cases using REF-M for semantic grounding. A score of 1 indicates that no changes were made during
post-editing. The points are one-third transparent to avoid over-plotting.

5.5 Human vs. LLM post-edits

In order to investigate the relationship between
post-edits made by humans and LLMs (RQ4), we
use the Swedish data from Östling et al. (2024),
where three GEC system outputs and two human
references have been post-edited as well as rated
for grammaticality, fluency and meaning preserva-
tion. We used a subset of the most promising LLMs
to replicate the post-editing and allow direct com-
parisons between LLM and human post-edits. Ta-
ble 7 presents correlations between LLM post-edit
scores (using character 6-gram overlap) and human
post-edit scores (also using character 6-gram over-
lap) as well as to the mean of the grammaticality,
fluency and meaning preservation scores. The lat-
ter is used to approximate a direct assessment by
the human annotator of the GEC system’s output
of that particular sentence.

In the human post-editing of Östling et al. (2024),
a minimal edits reference (REF-M) was used for se-
mantic grounding. As expected, we find that using
this reference in the LLM prompt leads to higher
correlation to both the human post-edit distance
and the human annotated scores. Unlike for the En-
glish SEEDA data, using only the original sentence
for semantic grounding (INPUT) leads to consid-

erably lower correlations. We believe this to be
due to the fact that the Swedish data consists of
individual sentences in random order, and that only
the creator of the REF-M reference has access to
a wider context, while both the human and LLM
post-editors lack any such context.

Figure 1 shows the 6-gram overlap scores as-
signed to each sentence from both the human post-
editing and LLM post-editing. The LLM used was
the one with the highest correlation to human post-
editing scores (Cohere Command A-111B). We
see that there is generally high agreement, as the
ρ = 0.58 correlation indicates, but that there are
some clear differences. The human post-editor
frequently (46%) leaves the sentence unchanged,
whereas the LLM does this less often (27%). The
same tendency of the human post-editor being more
reluctant to change is reflected in the mean overlap
scores: 0.81 (SD 0.22) for the human, compared
to 0.74 (SD 0.22) for the LLM, meaning that on
the whole the human annotators post-edited less
of the system output than the LLMs did. A sig-
nificant part of this difference is due to the cases
where humans leave sentences unchanged, which is
demonstrated by considering only sentences where
both the human and the LLM actually perform
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some edits. In this case, the correlation between
the 6-gram overlap scores increases to ρ = 0.67
for the same model.

5.6 LLMs as GEC systems and post-editors

An important question7 is whether LLMs can be
expected to post-edit the output of LLM-based sys-
tems, and if it would not be better to simply use the
LLMs as GEC systems to begin with.

Our method is based on the assumption that an
LLM is capable enough to post-edit the output of
even the best GEC systems under evaluation. We
have found this to be the case in our evaluation
where even the best LLM-based systems undergo
significant post-editing during evaluation. Further-
more, we argue that the availability of an LLM
with sufficiently high capability is a realistic as-
sumption in a practical setting, since considerably
more computation can be spent on GEC evaluation
(which will be run once or a few times) than on
actual deployed GEC systems.

It is also important to note that GEC evalua-
tions will also be needed for non-LLM based sys-
tems. Kobayashi et al. (2024) worked with 12 sys-
tems to carry out English GEC for the SEEDA
dataset. Östling et al. (2024) worked with 3 sys-
tems for Swedish GEC of essays in the SweLL
dataset (Volodina et al., 2019). In both cases the
systems include both supervised and unsupervised
approaches, for instance involving machine transla-
tion, sequence tagging and few-shot prompting of
LLMs. That is, we do evaluate both non-LLM and
LLM systems for GEC in this work.

6 Conclusions

We find that LLMs can be used as very effective
evaluation tools for GEC systems, by asking them
to post-edit system outputs and using a simple
string similarity metric (character 6-gram overlap)
to measure the amount of editing needed to go from
the GEC system’s output to a version considered by
the LLM to be fully grammatical and fluent, while
completely preserving the meaning expressed in
the original. Even relatively small LLMs (such as
Gemma 2-2B) can perform this task well enough
to achieve nearly perfect correlation with human
ratings at the system level. However, the picture is
different when the GEC system output is assessed
on the level of individual sentences, with consid-
erable variation between LLMs in the ability to

7Raised by one of the anonymous reviewers.

predict the human assessment of that sentence.
While we use the most recent publicly avail-

abe GEC meta-evaluation dataset (Kobayashi et al.,
2024), LLM-based GEC systems improve rapidly
and an important question is to what extent LLM-
based post editing is able to evaluate the output
of the most capable LLMs. Answering this would
require additional annotations that go beyond the
scope of this work.

To summarize, we see several advantages of eval-
uation based on post-editing GEC system outputs
by LLMs:

• High correlations with human direct assess-
ment of GEC system quality, both at the sys-
tem level and sentence (or document) level.

• Analyzing the post-edits provides an inter-
pretable indication of the weaknesses of a par-
ticular GEC system, and this can be partly
automated by tools such as ERRANT (Bryant
et al., 2017). This contrasts with ranking-
based evaluations like that recently proposed
by Goto et al. (2025).

• Given a multilingual LLM, post-editing can
handle multiple languages without requiring
any additional language-specific resources or
training.

• Unlike metrics that depend on having a large
number of data points to average over (e.g.,
Islam and Magnani, 2021; Goto et al., 2025),
post-editing distance can be estimated even
on a single document without a sentence-
aligned system output. It is thus suitable for
document-level evaluations, as in Masciolini
et al. (2025).

Fully exploring document-level multilingual
evaluation would be an interesting direction of fu-
ture work (Piotrowska, 2025). Note that in this
work we have only worked at the sentence level,
as has been conventional in GEC for the most part.
However, in recent years there has been growing
interest in document-level GEC, as well as evi-
dence that the additional context can aid system
performance on certain error types which relate to
linguistic features above the sentence level (Yuan
and Bryant, 2021; Mita et al., 2024; Masciolini
et al., 2025).
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Limitations

This paper on GEC is limited in the sense that we
work with only 2 languages (English and Swedish)
and findings for other languages may vary from
those reported here. Annotated data for GEC are
costly to build and therefore hard to come by: the
datasets we work with in this paper are relatively
small, compared to some corpora used in other
areas of NLP. In addition the correction of gram-
matical errors is to some extent subjective, and an
estimation without full access to the authors’ origi-
nal intentions. However, this limitation is a factor
for all working on GEC.

LLMs have proven to be highly effective for
a number of NLP tasks. In this paper we show
that they are not necessarily state-of-the-art at the
GEC task itself, but may be sufficiently accurate on
the GEC post-editing task. This finding is limited
by the continued availability of high quality open-
weights LLMs, sufficient computing resources for
those conducting research to be able to use the
LLMs for inference, and the fact that we have
only evaluated their performance on two languages.
However, in principle, many LLMs have highly
multilingual capabilities, and we expect that the
outcomes reported here will hold for many other
languages.
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A Prompts

In this appendix, we present the prompts used
across different experiments. We use a total of
three prompt templates: one for the baseline results
where LLMs are applied to GEC tasks, and two
for the post-editing experiments—one without a
semantic grounding sentence and one with. The
same prompt structure is used for all three types of
semantic grounding.

Prompt for GEC baseline

Reply with a corrected version of the input sen-
tence with all grammatical and spelling errors
fixed. If there are no errors, reply with a copy of
the original sentence.

Instructions:

1. Return ONLY the corrected sentence.
2. Wrap the corrected sentence in

<corrected> and </corrected>
tags.

3. Do NOT include any explanations, extra
text, or formatting.

Example:

<corrected>This is your corrected
sentence.</corrected>

Input sentence: {sentence}
Output:

Prompt for post-editing without semantic
grounding

Please make minimal modifications to the given
sentence to achieve all of the properties below:

• Perfect grammaticality: The sentence is
native-sounding. It has no grammatical er-
rors, but may contain very minor typograph-
ical and/or collocation errors.

• Perfect fluency: The sentence sounds ex-
tremely natural and native-like.

• Same language: The sentence must remain
in the same language as the original (do not
translate or change language).

Instructions:

1. Return ONLY the corrected sentence.
2. Wrap the corrected sentence in

<corrected> and </corrected>
tags.

3. If the original sentence is already perfect, re-
turn it AS IS inside the <corrected> tags.

4. Do NOT include any explanations, extra
text, or formatting.

Example output format:

<corrected>Your corrected sentence
here.</corrected>

Sentence: {sentence}
Output:

Prompt for post-editing with semantic ground-
ing

Please make minimal modifications to the given
sentence to achieve all of the properties below:

• Perfect grammaticality: The sentence is
native-sounding. It has no grammatical er-
rors, but may contain very minor typograph-
ical and/or collocation errors.

• Perfect fluency: The sentence sounds ex-
tremely natural and native-like.

Instructions:

1. Return ONLY the corrected sentence.
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2. Wrap the corrected sentence in
<corrected> and </corrected>
tags.

3. Ensure that the corrected sentence pre-
serves the meaning of the reference sen-
tence provided below. The reference may
contain grammatical errors — it is for se-
mantic grounding only.

4. If the original sentence is already perfect, re-
turn it AS IS inside the <corrected> tags.

5. Do NOT include any explanations, extra
text, or formatting.

Example output format:

<corrected>Your corrected sentence
here.</corrected>

Sentence: {sentence}
Reference (for meaning preservation only): {ref-
erence sentence}
Output:
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Abstract

In this paper, we address generic essay scoring,
i.e., the use of training data from one writing
task to score data from a different task. We ap-
proach this by generalizing a similarity-based
essay scoring method (Xie et al., 2022) to learn-
ing from texts that are written in response to
a mixture of different prompts. In our experi-
ments, we compare within-prompt and cross-
prompt performance on two large datasets
(ASAP and PERSUADE). We combine differ-
ent amounts of prompts in the training data and
show that our generalized method substantially
improves cross-prompt performance, especially
when an increasing number of prompts is used
to form the training data. In the most extreme
case, this leads to more than double the perfor-
mance, increasing QWK from .26 to .55.

1 Introduction

In automated scoring, one desideratum is often to
train a generic classifier that does not rely on the
availability of training material for a certain writing
task, i.e., prompt, but can transfer from training
material for one or several prompts to data from
new writing tasks.

This holds both for content scoring, also known
as short-answer scoring, and essay scoring. In con-
tent scoring, texts of up to a few sentences in length
are scored for conceptual correctness. Essay scor-
ing deals with scoring longer texts that are rated
both on content and language use.

Generic scoring has a high practical relevance
in the classroom, as teachers often do not have the
resources to annotate training data for each new
prompt. However, the generalizability of classifiers
is often low (see, e.g., Phandi et al. (2015)). Es-
pecially in a hard domain transfer scenario when
classifiers are trained on a single or a few prompts
only, they might pick up on lexical material specific
to that particular writing task.

For instance, as shown on the left side of Fig-
ure 1, two essays from the prompt ‘The Face on
Mars’ in the PERSUADE dataset may lead a scor-
ing classifier trained solely on this prompt to treat
words such as ‘aliens’ and ‘Mars’ as significant
features. These words, however, are not found in
essays from other prompts, such as the two essays
from the ‘Facial Action Coding System’ prompt
shown on the right side. Despite the differences
in content, essays from different prompts with the
same score share general similarities. For instance,
low-scoring essays from different prompts (top part
of Figure 1) often share weaknesses such as lim-
ited vocabulary, repetition of phrases, and overuse
of simple words. In contrast, high-scoring essays
(bottom part of Figure 1) display features that con-
tribute to higher scores, such as a logical progres-
sion with the underlined transitional phrases. These
lexical patterns should be prioritized when training
a generic scoring model, as they contribute signifi-
cantly to the overall quality of an essay, regardless
of the specific prompt. However, it should be noted
that we are not claiming that these elements are
the only relevant aspects in scoring the data, but
rather that they are important enough to make them
exploitable for cross-prompt scoring.

While generic scoring has been more extensively
explored for some content scoring datasets (Bailey
and Meurers, 2008; Mohler and Mihalcea, 2009;
Meurers et al., 2011; Dzikovska et al., 2013), cross-
prompt approaches to essay scoring have only re-
ceived more interest in recent years (Phandi et al.,
2015; Jin et al., 2018; Li et al., 2020; Chen and Li,
2023).

In our study, we approach generic essay scoring
by training classifiers that are discouraged from
paying attention to prompt-specific material in the
essays. In both flavors of educational free-text scor-
ing, content and essay scoring, similarity-based
scoring has recently emerged as a viable alterna-
tive to the default of instance-based scoring (Bexte
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Figure 1: Example essays taken from two different prompts in the PERSUADE dataset that share the same low
(top) or high (bottom) score. Words in bold are prompt-specific, which may be picked up by a classifier trained on a
single prompt. The underlined transitional phrases show an example of lexical patterns that contribute to higher
scores, which can be used when training a generic scoring model.1

et al., 2022; Xie et al., 2022). While instance-based
scoring learns the association between individual
learner texts and their scores, the input in similarity-
based scoring are pairs of texts. In such a pair, an
essay of interest is compared to a reference essay
with a known score.

We adapt the similarity-based essay scoring ap-
proach of Xie et al. (2022), which exhibits state-of-
the-art performance on the commonly used ASAP
essay scoring dataset. While Xie et al. (2022) only
demonstrated good within-prompt performance,
we augment their approach for cross-prompt scor-
ing. Our crucial step in avoiding overfitting to
prompt-specific information is to only use pairs of
learner essays that answer different writing prompts
during training. In doing this, we force the similar-
ity metric to pay attention to structural rather than
purely lexical similarity between texts.

We hypothesize that the problem of prompt-
specific similarity metrics is more severe in cases
where training material only covers a single or
a few prompts, as paying attention to a prompt-
specific feature makes an impact on a larger portion
of the dataset in these cases. To test this assump-
tion, we vary the number of prompts that is mixed
in the training data in our experiments.

Overall, our paper makes the following contribu-
tions:

• We extend the method of Xie et al. (2022) to
facilitate cross-prompt scoring.

• We compare two strategies to pair up training
data in similarity-based cross-prompt scoring.

• We demonstrate the benefits of our strategy
for increasing cross-prompt performance on
two publicly available datasets (PERSUADE
and ASAP), finding that the benefits of our
method increase when an increasing number
of prompts is mixed in the training data.

Our code and data split is available on GitHub2.

2 Related Work

For many years, the main interest in automated es-
say scoring has been in prompt-specific classifiers,
where one specific model was trained for each new

2https://github.com/mariebexte/
generalizing-similarity

2In this example, we use the first two prompts from the
dataset, which happen to include the words ‘face’ and ‘fa-
cial’. While these shared terms might influence a general
classifier trained specifically on these prompts, this is merely
a coincidence and not the intended focus of our analysis.
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writing prompt (e.g., Taghipour and Ng (2016);
Dong et al. (2017); Dasgupta et al. (2018); Uto
et al. (2020)). This focus has shifted to generic or
cross-prompt scoring, where a classifier is trained
on one or more prompts. The classifier is then ap-
plied to essays that answer prompts which were not
seen during training.

2.1 Cross-Prompt Essay Scoring

The problem of cross-prompt essay scoring has
been approached in various ways. Phandi et al.
(2015) use Bayesian Linear Ridge Regression to
score essays using features selected to be predic-
tive of either the source or the target domain. Jin
et al. (2018) propose a two-stage neural network
(TDNN) approach, in which they use a generic
model to automatically create pseudo-training data
for the target domain. Li et al. (2020) also propose
a two-stage method that aims to extract the shared
knowledge between the source and target domain,
first creating pseudo-training data, which is then
used in a Siamese network. The PMAES system
(Chen and Li, 2023) uses a prompt-mapping con-
trastive learning method to learn more consistent
representations of source and target prompts. By
doing this, unlabeled data from the target prompt
is used to adapt the model. Thus, adaptation to fu-
ture target prompts would require additional train-
ing. Similarly, Zhang et al. (2025) and Wang et al.
(2025) also include information derived from unla-
beled target data in their training.

2.2 Similarity-Based Essay Scoring

Orthogonal to cross-prompt scoring, recent years
have also seen more and more approaches that rely
on the similarity between text pairs for scoring
instead of training a classifier on features extracted
from individual texts (see also Horbach and Zesch
(2019)).

The purported advantage that similarity-based
approaches might work better in a cross-domain
scenario has been refuted, at least for content scor-
ing (Bexte et al., 2023). However, little work
so far has explored the potential of cross-prompt
similarity-based essay scoring.

3 Method

In a similarity-based scoring setup, the predicted
score is derived from a comparison with reference
essays. We follow the prompt-specific approach of
Xie et al. (2022), which essentially predicts how

much better or worse than a reference essay an es-
say of interest is. Figure 2 shows an overview of
the network structure of this approach. In practice,
training essays are used as reference essays, i.e.,
training is performed on pairs of training essays,
and at inference, validation or test essays are com-
pared to training essays. While Xie et al. (2022)
use a BERT (Devlin et al., 2019) model at the core
of their model, we use a Longformer (Beltagy et al.,
2020) instead. This is done to accommodate the
longer text length typically encountered in essay
scoring. We use the longformer_base_4096 model
as provided on Hugging Face3. Both the answer
of interest and a reference answer are embedded
using the same Longformer model. The difference
between the two embeddings is subsequently fed
into a linear layer, which performs a regression.
The aim is to predict the difference in the score of
the essay of interest and the reference essay. While
the approach is a regression at its core, scores are
scaled back to their target ranges upon prediction.

For example, if a zero-point essay was compared
to a two-point reference essay, the model should
output a score difference of minus two. While the
original authors only compare test essays to refer-
ence essays that do not share the same score, we
refrain from doing this, as we feel it is inappropri-
ate to incorporate knowledge of the true scores of
test instances into the pairing strategy.

Xie et al. (2022) demonstrate that their model
has good within-prompt performance, i.e., when
training a dedicated model for each prompt. We
build on this and expand the approach to also allow
for cross-prompt scoring. With this augmentation,
one can even combine prompts that do not share
the same label range. To achieve this, we carefully
scale labels and model outputs. An overview of
this scaling is given in Figure 5 in the Appendix.

During training, the true labels Y of individual
essays are transformed to scaled labels Ys, so that
each ys ∈ Ys is in the range of [0, 1]. Note that this
scaling takes the prompt an essay belongs to into
account, which means that each y ∈ Y is scaled
according to the label range of the prompt the essay
belongs to. When pairing up essays to form training
pairs, their target label is the score difference of the
essays, i.e., their scores are subtracted. Thus, the
score difference dp of a pair will be in the range
of [−1, 1], because dp = yi − yj for yi, yj ∈ Ys.

3https://huggingface.co/allenai/
longformer-base-4096
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Figure 2: Overview of the model architecture, derived from Xie et al. (2022).

For optimal suitability to the regression model, we
again scale the score differences to the range [0, 1].

At inference, validation/test essays are paired up
with training, i.e., reference essays. For each test
essay t and a reference essay r, the score sr of r is
first scaled to the score range St = [smin, smax] of
t for compatibility. In processing the pair of t and
r, the model outputs the predicted score deviation
d̂, which lies in the range [0, 1]. This now has to be
mapped to the label range of t. However, because
d̂ is a deviation, it has to be scaled to the range
[smin − smax, smax − smin], which represents the
minimal and maximal deviation that is possible
within St. The result d̂t can then be used to obtain
the predicted score ŝt of t by adding the predicted
score deviation to the true score sr of r, i.e. ŝt =
sr + d̂t.

To investigate whether we can nudge the model
towards learning less prompt-dependent represen-
tations, we contrast two ways of pairing essays
during training: In the standard setting, we only
pair essays from the same prompt. In our gener-
alize setting, we only pair essays from different
prompts.

Note that our main motivation is to evaluate
the effect of building cross-prompt training pairs,
rather than to achieve the best possible perfor-
mance. In the interest of saving energy and time,
we thus set our hyperparameters somewhat lower
than Xie et al. (2022) did. We always train for five
(as opposed to 80) epochs, taking the model with
the best performance on the validation data. At
inference, we limit ourselves to comparing each
validation (testing) essay to 15 (25) training essays
(as opposed to 50). The average predicted score
is then taken as the final prediction of the model.
Although our switch to a Longformer instead of
the smaller BERT model increases runtime, we do
not make use of the full length of 4,096 tokens.
Instead, we truncate inputs to a length of 1,024, as

PERSUADE ASAP

# integrated prompts 7 4
# independent prompts 8 4

avg. # essays per prompt 1,733 1,622
avg. essay length in tokens 410.96 222.74

score range 1-6 prompt
-dependent

Table 1: Key statistics of the two datasets used in our
study.

the majority of essays fits in this length4. Just like
Xie et al. (2022), we use a batch size of 6, and a
learning rate of 1e-4.

4 Data

We work on two different data sets, PERSUADE
and ASAP-aes (Automated Student Assessment
Prize - Automatic Essay Scoring), which we refer
to as ASAP. The core statistics for each dataset
can be found in Table 1. Although PERSUADE is
best-suited for our analysis due to the large number
of prompts, we additionally run our experiments
on ASAP, as this is a commonly used essay scoring
dataset.

4.1 PERSUADE

The PERSUADE dataset (Crossley et al., 2024)
comprises seven integrated prompts, with a total of
12,875 essays written by students from the 6th to
the 10th grade, and eight independent prompts with
a total of 13,121 essays sampled from writers from
the the 8th to the 12th grade. While integrated
prompts refer to some source material, indepen-
dent prompts do not. Each essay was annotated
with a holistic score by two raters. Scores range
from 1.0 to 6.0 in increments of 1.0. The raters
were trained on a standardized SAT holistic essay

43% of PERSUADE essays and 2.7% of ASAP essays are
truncated due to this.

228



scoring rubric for the independent essays5 and its
modified version for the integrated essays6. The
main difference between the two rubrics is that the
one for the integrated prompts mentions having to
include evidence from the reading text7. Due to this
explicit inclusion of the source text in the rubric,
we expect the cross-prompt transfer to be more suc-
cessful for the independent prompts. Overall, raters
showed a strong agreement (weighted κ = .74) in
annotating the essays.

4.2 ASAP

The ASAP dataset8 is one of the benchmark
datasets for automated essay scoring. It con-
tains four integrated and four independent (persua-
sive/narrative/expository) tasks, spanning a total of
12,978 essays. The essays were written by students
from the 7th to the 10th grade. ASAP prompts have
also been scored holistically but using a wide va-
riety of different scales. Each essay was evaluated
by two raters, with an inter-annotator agreement
of κ = .55. After adjudication, the resulting score
ranges can span as little as four or up to 61 different
labels, as can be seen in Table 5 in the Appendix.
This label incompatibility between prompts further
complicates cross-prompt scoring.

5 Experimental Study

In the following, we first describe the overall setup
and then present the results of our similarity-based
cross-prompt scoring on the two datasets. Our ex-
periments ran on Nvidia Quadro RTX 6000, A40,
and A6000 GPUs for around 550 hours.

5.1 Experimental Setup

Our overall goal is to train an essay-scoring classi-
fier that focuses on general indicators of a good es-
say as opposed to overly relying on prompt-specific
features. In our similarity-based method, we facili-
tate this through the selection of training pairs. We
contrast the performance of models trained using
pairs that consist of two answers to the same vs.
different prompts.

Data Split For each of our datasets, we sam-
ple the same number of answers for each prompt,

5https://github.com/scrosseye/persuade_corpus_
2.0/blob/main/sat_rubric_only_indy.pdf

6https://github.com/scrosseye/persuade_corpus_
2.0/blob/main/sat_rubric_only_source_based.pdf

7The reading texts were not published, which is why we
are unable to include them in our analyses.

8https://www.kaggle.com/c/asap-aes

downsampling to the number of answers of the
prompt with the lowest answer count. In doing this,
we randomly sample a subset of 1,000 essays for
each of the 15 prompts in the PERSUADE dataset.
800 of these are used for training and 100 for valida-
tion and testing each. For each of the eight prompts
in the ASAP dataset, we randomly sample a subset
of 700 essays. 560 of these are used for training
and 70 for validation and testing each.

In similarity-based scoring, the training data
pool is used to build pairs of instances. We de-
rive our strategy to build these pairs from Xie et al.
(2022) but relax it to allow data from multiple
prompts to be paired. Their strategy includes drop-
ping training pairs of essays with the same score,
which we in preliminary experiments found to be
a reasonable step, as it cut training time at a minor
performance loss.9 However, we have to ensure
that each run, i.e., all combinations of different
prompts we use in our experiments, uses the same
number of training pairs. Otherwise, runs with
more pairs may have a performance advantage. We
thus pre-calculate the maximum number of pairs
we can build in each of our runs: We determine
how many pairs we would end up with if we paired
up all essays in the training data that do not share
the same score. We then take the minimum of this
as the number of training pairs we build in our ex-
periments. This results in 1,495 training pairs for
PERSUADE and 920 training pairs for ASAP.

As mentioned earlier, we limit the number of
pairs during validation (testing) to 15 (25) pairs per
essay. The pairing strategy for the validation data
reflects the training setting: If training is done on
pairs of essays from the same prompt, validation
instances are also paired with training essays from
the same prompt. If training is done on pairs of es-
says from different prompts, we also pair validation
essays with training essays from a different prompt.
The pairing strategy during testing is ‘greedy’ in
the sense that we check whether essays from the
same prompt appeared in the training data. If this
is the case, we use 25 of these as reference answers,
otherwise, we randomly take 25 essays from the
training pool as reference answers.

Single-Prompt Baseline As a starting point for
our experiments regarding the impact of training

9Note that this only applies to the training process. As we
remark in Section 3, we do not look at scores when building
pairs for test instances, since we feel that this incorporation of
knowledge about scores would be inappropriate.
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on combinations of data from multiple prompts, we
train models on single prompts.

To compare the performance of the similarity-
based approach, we also train an instance-based
classifier. For this instance-based classification, we
use the same longformer_base_4096 model that is
also at the heart of the similarity-based approach
and attach a classification head. In both instance-
based and similarity-based training, we use the
same data splits, but for the instance-based classi-
fication we adapt the labels of the ASAP dataset
to allow for cross-prompt evaluation. To unify the
differing label ranges of the ASAP prompts, scores
are scaled into a range from 0 to 3, which corre-
sponds to the smallest label range present in the
dataset10. Models are trained for 10 epochs with a
maximum input length of 1,024 tokens, a learning
rate of 1e-5, and a batch size of 2.

Mixed-Prompt Scoring Setup We compare
models trained on answer pairs from the same
prompt to models that were trained with pairs of
answers to different prompts.

We vary how many prompts are combined in the
training data and hypothesize that combining more
prompts leads to a better generalizability of the
classifier, i.e., a better cross-prompt performance.
To ensure comparability, we keep the overall num-
ber of training instances constant for all combina-
tions. The validation data is composed of the same
prompts that appear in the training data to make
the transfer to the prompts in the test data a hard
one. Just as for the training data, the amount of
validation data is also downsampled to keep it at
the same overall number of instances as when data
from a single prompt is used.

For PERSUADE, we report individual results for
the seven integrated and eight independent prompts,
and for combinations of all 15 prompts. As ASAP
only comprises a total of eight prompts (4 inte-
grated, 4 independent), we do not perform a sep-
aration into integrated and independent prompts
for this dataset and only report results for the grad-
ual combination of all eight prompts. Whenever
there are more than ten possible combinations of
prompts (e.g., there are 70 ways of picking four out
of the eight independent PERSUADE prompts), we
randomly sample ten combinations to cut training
time, making sure that each prompt was selected in

10Note that this is not necessary for the similarity-based
scoring, as this method comes with the capability to internally
scale prompts with different label ranges into compatibility.

at least one combination.

Evaluation We always evaluate in two different
conditions: within-prompt, which comprises the
test data splits for all prompts that also appear in the
training data for that run, and cross-prompt, which
comprises the test data splits of all other prompts.
We expect an increasing number of prompts mixed
in the training data to have different effects for the
two training and evaluation conditions. Overall,
within-prompt evaluation should perform better
than cross-prompt evaluation. For cross-prompt
evaluation, we expect the generalized training to
outperform the standard training. When evaluat-
ing in the within-prompt condition, the expectation
would be for the models obtained with standard
training to outperform those resulting from gener-
alized training, as the former are more attuned to
prompt-specific information.

The metric we use to evaluate model perfor-
mance is quadratically weighted kappa (QWK; Co-
hen (1968)). Whenever we average QWK results,
we perform Fisher Z-transformation to stabilize the
variance.

5.2 Results: Single-Prompt Training

Before reporting the results of training on com-
binations of prompts, we first establish the per-
formance level achieved by training on a single
prompt. These results are shown in Table 2.

It is expected that a model will perform best
when trained exclusively on data from the same
prompt it is later evaluated on. This could thus
be seen as somewhat of an upper bound. Table 2
also contains cross-prompt performance, first on
all cross-prompt test data and then separated into
integrated and independent prompts. We observe
that for both PERSUADE and ASAP alike, there
is a clear drop in the performance of cross-prompt
compared to within-prompt evaluation.

In the case of PERSUADE, models trained on in-
tegrated prompts fare similarly in the cross-prompt
evaluation, irrespective of whether the test prompts
are integrated or independent. However, for models
trained on independent prompts, cross-prompt eval-
uation within the same group (i.e., on another inde-
pendent prompt) shows an average improvement of
0.16 QWK compared to evaluation on an integrated
prompt. This pattern differs for ASAP, perhaps due
to the widely varying scoring ranges. Here, the
performance of evaluating on integrated vs. inde-
pendent prompts is similar for models trained on
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Train Within- Cross-Prompt
Prompt All

PERSUADE
0 .76 .62 .56 .66
1 .85 .66 .64 .67
2 .66 .41 .40 .41
3 .75 .60 .64 .56
4 .72 .53 .61 .46
5 .69 .63 .61 .64
6 .71 .53 .58 .48
7 .80 .60 .52 .67
8 .81 .65 .57 .73
9 .82 .62 .52 .70

10 .67 .59 .52 .65
11 .74 .66 .61 .71
12 .73 .55 .47 .63
13 .83 .69 .60 .75
14 .68 .56 .45 .64

Avg. .74 .57 .58 .56
Avg. .77 .62 .53 .69
Avg. .75 .60 .56 .63

ASAP
3 .70 .37 .36 .38
4 .80 .39 .42 .36
5 .79 .53 .49 .56
6 .81 .53 .71 .36
1 .79 .40 .40 .39
2 .70 .48 .48 .47
7 .81 .49 .53 .45
8 .75 .30 .18 .44

Avg. .78 .46 .51 .42
Avg. .76 .42 .40 .44
Avg. .77 .44 .46 .43

Table 2: QWK performance of models trained on single
prompts. Results distinguish integrated and independent
prompts. The mapping of prompt numbers to names in
PERSUADE is listed in Table 4 in the Appendix.

an independent prompt, but we see a benefit when
models trained on an integrated prompt are evalu-
ated on a different integrated prompt.

Comparison to Instance-Based Scoring We fur-
ther examine the validity of the similarity-based ap-
proach by comparing it to a standard instance-based
setting. Table 3 compares the average performance
of the similarity-based (taken from Table 2) and
the instance-based approach. The two setups per-
form on par on PERSUADE, and similarity-based
scoring even outperforms the instance-based classi-
fication on ASAP.

5.3 Results: Training on Multiple Prompts

Figure 3 shows the results for training on a mix
of different prompts. The number of prompts in
the training data gradually increases from left to
right. Note that curves start with the results from

the previous experiment, where we only trained
on a single prompt. A constant benefit of building
cross-prompt as opposed to within-prompt training
pairs can be observed: The performance of mod-
els trained using within-prompt training pairs (dot-
ted lines) tends to drop off, while models trained
on cross-prompt training pairs (solid lines) tend
to remain more stable or even increase in perfor-
mance. Contrary to our hypothesis, training on
cross-prompt pairs even consistently leads to better
performance than standard training for the within-
prompt evaluation, thus showing that this train-
ing setup does no harm but instead benefits perfor-
mance across the board.

Strikingly, from a mixture of five prompts on-
ward, our generalization-focused models perform
better in cross-prompt evaluation (solid line with
crosses) than the standard (i.e., within-prompt-
trained) models on within-prompt data (dotted lines
with dots) on the ASAP data. We see the same
result from a mix of six prompts onward for the
longer PERSUADE curves. With the shorter PER-
SUADE curves, the two conditions again meet at
the mark of combining five prompts but remain on
a similar performance level from there on. Thus,
when five or more prompts are combined, the gen-
eralized training strategy pushes cross-prompt per-
formance above standard within-prompt training
and evaluation.

6 Embedding Space Analysis

To gain an understanding of how the embedding
space is affected by either training exclusively on
within-prompt or cross-prompt training pairs, Fig-
ure 4 shows embedding space visualizations. To
produce these visualizations, we embed the respec-
tive test data using the Longformer model that is at
the core of the model pipeline. We then use t-SNE
to bring the embeddings into 2D space. For t-SNE,
we use the sklearn (Pedregosa et al., 2011) imple-
mentation at its default values. From the distribu-
tions of essay embeddings, one can gather that the
models trained using cross-prompt training pairs
produce embeddings that are less separated into in-
dividual prompts, indicating that they truly learned
a more generic representation of the essays.

7 Conclusion and Outlook

Our baseline results confirm the overall solid per-
formance of the model, in line with what Xie et al.
(2022) found. In addition, our results demonstrate
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PERSUADE ASAP

Instance-based Similarity-based (ours) Instance-based Similarity-based (ours)

Within- Cross-Prompt Within- Cross-Prompt Within- Cross-Prompt Within- Cross-Prompt
Prompt All Prompt All Prompt All Prompt All

Avg. .76 .57 .59 .55 .74 .57 .58 .56 .80 .40 .56 .26 .78 .46 .51 .42
Avg. .77 .62 .55 .69 .77 .62 .53 .69 .60 .27 .23 .33 .76 .42 .40 .44
Avg. .76 .60 .57 .64 .75 .60 .56 .63 .71 .33 .41 .29 .77 .44 .46 .43

Table 3: Comparison of instance-based and similarity-based scoring, split into the two datasets and their integrated
and independent prompts. Both methods perform on par, except for similarity-based scoring outperforming instance-
based scoring on the independent ASAP prompts.
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Figure 3: Learning curves depicting how mixing an increasing number of prompts in the training data affects
performance. For cross-prompt evaluation, we always use test data from all (i.e., both integrated and independent)
prompts that are not in the training data. Our generalized training strategy (solid lines) consistently benefits
performance compared to standard training (dotted lines).

the suitability of the model to perform cross-prompt
scoring - even in the difficult case of the ASAP
dataset with its diverse set of score ranges across
different prompts. Our strategy of pairing train-
ing essays either within-prompt or cross-prompt
proved helpful not only in the cross-prompt sce-
nario but also for within-prompt evaluation. Thus,
it is advisable to build training pairs cross-prompt
whenever a mixture of multiple prompts is present
in the training data.

Limitations and Ethical Considerations

In our setup, we only investigate variants of a hard
domain transfer, where data from several source
domains is used to train a classifier that is then
applied to a target domain. One obvious next step
we have not yet taken would be to inject small
amounts of target-domain data. Another avenue
we do not incorporate is to use the source text of
a prompt as a means of facilitating cross-prompt
transfer.

Similarly, we do not evaluate cross-prompt per-
formance between datasets. In this study, we re-

strict ourselves to cross-prompt evaluations within
ASAP or PERSUADE (as in almost all related
work), i.e., we evaluate on new prompts that are
somewhat similar to the source prompts and whose
data comes from a similar learner population. The
question of the extent to which essay scoring can
ever be fully generic remains open and thus re-
quires further research.

As always in automated scoring, fairness and
bias are important issues that should be taken into
account to make sure that scoring algorithms do not
disadvantage certain user groups (see, e.g., Loukina
et al. (2019) and Schaller et al. (2024)). These top-
ics also need further investigation for our generic
scoring scenario. At the same time, one might ar-
gue that a generic classifier is less likely to fall for
spurious correlations between scores and unneces-
sary features than a prompt-specific classifier might
be.

Finally, as our experimental setup requires over
1,000 training runs, we make some design choices
in the interest of keeping the overall runtime at
a reasonable level. Our preliminary results indi-
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Figure 4: Visualization of embeddings from models trained in the standard (top) and generalize (bottom) conditions,
transformed using t-SNE. There is less separation into prompts for models trained with the generalize strategy,
indicating that these models do in fact learn a more generalized representation of the essays.

cate that one could achieve better performance than
what we report here by training for more than just
five epochs, building more training pairs and tak-
ing advantage of the full input length of the Long-
former model - albeit at the cost of a greater de-
mand on computing resources.
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A Appendix

This appendix contains supplementary information
to increase the transparency and reproducibility of
our experiments. Table 4 gives information on the
mapping between prompt numbers and names in
PERSUADE. For ASAP, Table 5 gives information
on the label ranges of the different prompts. To
better grasp the generalization of the model for
cross-prompt scoring, Figure 5 presents a graphic
overview of how labels are scaled during training
and inference.

# Prompt Name

0 The Face on Mars
1 Facial action coding system
2 A Cowboy Who Rode the Waves
3 Does the electoral college work?
4 Car-free cities
5 Driverless cars
6 Exploring Venus
7 Summer projects
8 Mandatory extracurricular activities
9 Cell phones at school

10 Grades for extracurricular activities
11 Seeking multiple opinions
12 Phones and driving
13 Distance learning
14 Community service

Table 4: Prompt mapping in the PERSUADE dataset.

Prompt Label Range
From To

Integrated Prompts
3 0 3
4 0 3
5 0 4
6 0 4

Independent Prompts
1 2 12
2 1 6
7 0 30
8 0 60

Table 5: Label ranges in the ASAP dataset.
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Figure 5: Overview of how labels are scaled to achieve compatibility between score ranges when training on a mix
of answers to different prompts.
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Abstract

We present an approach to the automated scor-
ing of a German Written Elicited Imitation Test,
designed to assess literacy-dependent procedu-
ral knowledge in German as a foreign language.
In this test, sentences are briefly displayed on
a screen and, after a short pause, test-takers
are asked to reproduce the sentence in writing
as accurately as possible. Responses are rated
on a 5-point ordinal scale, with grammatical
errors typically penalized more heavily than
lexical deviations. We compare a rule-based
model that implements the categories of the
scoring rubric through hand-crafted rules, and
a deep learning model trained on pairs of stim-
ulus sentences and written responses. Both
models achieve promising performance with
quadratically weighted kappa (QWK) values
around .87. However, their strengths differ –
the rule-based model performs better on pre-
viously unseen stimulus sentences and at the
extremes of the rating scale, while the deep
learning model shows advantages in scoring
mid-range responses, for which explicit rules
are harder to define.

1 Introduction

The Written Elicited Imitation Test (WEIT) is a
computer-based test designed to measure procedu-
ral linguistic knowledge in writing. In this test,
learners briefly view sentences in the target lan-
guage and, after a short pause, reproduce them
from memory by typing. Responses are then rated
on an ordinal scale based on how closely they re-
semble the original sentences.

Like any assessment that relies on scoring by hu-
man raters, the WEIT can benefit greatly from au-
tomation. An automated scoring system would sig-
nificantly improve efficiency by enabling the rapid
evaluation of large numbers of responses without
the time and effort required by human raters. This
would, in turn, allow for immediate feedback, an

advantage in both instructional and research con-
texts. Automation also ensures greater consistency
and objectivity by applying scoring criteria uni-
formly and eliminating potential rater bias. In addi-
tion, automated systems can provide fine-grained
data on error patterns and processing behavior, of-
fering deeper insight into learners’ procedural lan-
guage skills.

In this paper, we investigate the automated scor-
ing of a German WEIT. The responses in our
dataset are scored using a rubric that assigns a score
between 0 and 4, based on deviations in spelling,
grammar, and vocabulary (see Section 3.2). There
are two main approaches to automating this pro-
cess: a rule-based approach, in which categories
from the scoring rubric are implemented explicitly,
and a deep learning approach, in which a model
learns implicitly which scores to apply based on
training pairs of stimulus and response sentences.

In educational settings, transparency and explain-
ability are important considerations. From this per-
spective, rule-based models are preferable as they
allow for a clearer justification of scoring decisions
and can offer more detailed feedback to learners
by pinpointing specific types of deviations. How-
ever, rule-based systems can be limited in flexibil-
ity, particularly when dealing with edge cases or
language exceptions. In contrast, deep learning
models may be better suited to capturing subtle
patterns in learner responses (e.g. to what extent
a word substitution affects the overall meaning of
the sentence), but often lack transparency and may
struggle to generalize to previously unseen stimu-
lus sentences.

This paper presents a rule-based scoring model
for the WEIT, built on general principles derived
from the scoring rubric, and compares it to a deep
learning model trained on stimulus-response pairs.
We hypothesize that (a) the deep learning model
will outperform the rule-based model on cases
where differences between descriptors in the scor-
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ing rubric are rather subtle and hard to capture as
explicit rules, and (b) the rule-based scoring model
will generalize better to new, previously unseen
stimulus sentences.

The main contributions of this paper are twofold.
First, we explore the feasibility of automating the
scoring of a German WEIT using a detailed ordi-
nal rating scale. Second, we provide a concrete
case study for comparing the strengths and limita-
tions of deep learning and rule-based methods in
an educational assessment context.

Our code and data are available at:
https://gitlab.ruhr-uni-bochum.de/
vamos-cl/german-weit-automated-scoring.

2 Background and Related Work

In the following, we provide background on the use
of elicited imitation tests and summarize previous
research on their automated scoring.

2.1 Elicited Imitation Tests (EIT): Construct
and Use

Elicited imitation tests (EIT) have been widely used
and researched in the field of Second Language Ac-
quisition as measures of two key constructs: global
proficiency in a second or foreign language (Drack-
ert, 2016; Kostromitina and Plonsky, 2022) and im-
plicit language learning (Nikouee and Ranta, 2023).
EITs exist in many languages and have been primar-
ily employed in the oral mode (oral EIT, or OEIT)
in which language learners listen to a number of
sentences and then orally repeat them as accurately
as possible after a short pause.

Recently, written elicited imitation tests (WEIT)
have started to gain attention in language testing
as a research tool (e.g. Sun et al., 2025) or as a
measure of literacy-dependent procedural language
knowledge (Timukova et al., submitted).

In the format that was used by Timukova et al.
(submitted) in a large language testing research
project, the sentences are briefly presented on a
screen, and, after a pause, learners have to repro-
duce as much of the sentence as they can by typing
their response into a text box. The pause is in-
tended to reduce the influence of working memory
and to promote active reconstruction of the stim-
ulus rather than rote repetition. The construct of
literacy-dependent procedural language knowledge
measured by WEIT can be defined as automatized
knowledge and skills required for the real-time re-
ception and production of written language.

Inspired by and closely related to the well-
established oral elicited imitation format (Ortega
et al., 2002), the written test — despite being pre-
sented and completed in a different modality and
incorporating a distinct scoring system to better
capture the construct (see Section 3.2) — yields re-
sults of comparable difficulty and reliability.1 How-
ever, it is considerably easier to develop, adminis-
ter, and score, as no audio equipment is required at
any stage. Scoring short written responses is also
likely more practical and less time-consuming than
scoring spoken responses when done by human
raters.

2.2 Automated Scoring of EITs

While EITs, in principle, lend themselves well
to automated scoring since the target response is
known (i.e. exact repetition of the stimulus sen-
tence), the difficulty of the automated scoring task
largely depends on the scale or rubric used for rat-
ing responses that deviate from the target.

For the oral EIT, numerous studies have ex-
plored automated scoring of the test using auto-
matic speech recognition (ASR), primarily employ-
ing a binary scale that codes whether the response
matches the stimulus or not (e.g. Millard, 2011),
or an interval scale, where, for example, one point
is subtracted for each deviation in the response
sentence (Graham et al., 2008; Lonsdale and Chris-
tensen, 2011). Once the learner utterances are ac-
curately transcribed, automated scoring based on
these scales is straightforward.

Besides binary and interval scales, ordinal scales
exist where scores are determined qualitatively. In
their meta-analysis, Yan et al. (2016) found that for
the OEIT, ordinal rating scales were more effec-
tive at distinguishing speakers across proficiency
levels than other scales. An established ordinal
rating scheme for the OEIT is that of Ortega et al.
(2002), where the score depends on how much of
the stimulus sentence a learner was able to repeat:

• 0 points for minimal (one word), unintelligible
responses or no repetition

• 1 point when half or less of the stimulus was
repeated

• 2 points for changes to the original sentence
in content or form that affected the meaning

1The tests used in the project showed difficulty indices
of 0.41 (WEIT) and 0.49 (OEIT), and reliability coefficients
(Cronbach’s α) of .97 for both (N = 195).
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• 3 points for accurate content repetition with
some (un)grammatical changes

• 4 points for exact repetition with formal accu-
racy

Recent studies have investigated how automati-
cally obtained scores based on objectively quantifi-
able features correlate with scores based on Or-
tega’s ordinal scale. McGuire and Larson-Hall
(2025) found high correlations with word error rate
(WER), especially when looking at a participant’s
mean score across a whole test (r = −0.969). The
correlation of WER and Ortega’s scores across
items, however, was lower (r = −0.817). Isbell
et al. (2023) took further metrics such as Leven-
shtein distance into account and also mapped a
combination of Percent Word Correct (PWC, ex-
act matches) and Percent Meaning Correct (PMC,
matching lemmata) to Ortega’s 5-point scale (e.g.
PWC < 100% and PMC ≥ 70% = Score 3). They
also found high correlations with Ortega’s scores
assigned by human raters (around r = 0.9 when
aggregated across all items and around Spearman’s
ρ = 0.8 at the item level, depending on the metric
and ASR service used).

In the present study, our aim is to implement an
automated scoring procedure for a German WEIT,
using an ordinal scale similar to that of Ortega et
al. The scoring rubric will be presented in more
detail in Section 3.2. It was specifically developed
for the German WEIT, as no comparable schemes
had yet existed. As the purpose of the WEIT is to
test literacy-dependent procedural language knowl-
edge, the rubric differs in some essential ways from
that of Ortega et al. Our goal is to build a rule-
based scoring model that implements the various
categories from the rubric, rather than relying on
purely quantitative measures such as WER. This
scoring method is comparable to human raters’ as-
sessments in that it could provide learners with
feedback about the scores they received based on
the deviations in their responses. For comparison,
we investigate how successful modern deep learn-
ing approaches are at approximating human ratings
by implicitly learning to apply the scoring rubric.

3 Data

3.1 Data Collection
The data for our study was collected within a larger
research project where the WEIT was used as a
measure of literacy-dependent procedural knowl-
edge (see Section 2.1). The 20 items included in the

WEIT range from 6 to 16 words, or 8 to 24 sylla-
bles (see Appendix A for the full list of items). The
test was completed by 195 university students who
were learners of German (58.1% female, 41.9%
male) between the ages of 18 and 40 (M = 25.46,
SD = 3.92). The participants represented 47 dif-
ferent native languages, with Russian (n = 30),
Turkish (n = 23), English and Spanish (n = 14
each) being the most frequent. Most participants
self-assessed their language skills to be somewhere
between A2 and C1.

3.2 Scoring Rubric

An ordinal scoring rubric for the German WEIT
was developed for the purposes of the project. It
follows the rubric of Ortega et al. (2002) in that
responses are scored based on how closely they re-
semble the stimulus sentences. A key difference be-
tween the WEIT rubric and the OEIT rubric already
addressed in Section 2.2 is the altered role of mean-
ing and grammar. Since rule-governed morpho-
logical and syntactic sequences are central to the
construct of procedural knowledge measured by the
WEIT, grammatical deviations carry more weight.
Hence, the rubric distinguishes between lexical and
grammatical deviations from the original, assign-
ing a higher score (Score 3) for responses with
lexical deviations (e.g., lexical omissions or substi-
tutions) and a lower score (Score 2) for responses
with grammatical errors (e.g., structural omissions
or incorrect prepositions).

In the following, we present a summary of the
scoring rubric. Its use is exemplified for item #2 in
Table 1. The complete scoring rubric can be found
in the Supplementary Material to this paper.

Score 4 The response matches the stimulus sen-
tence exactly or 1–2 typos are present.2

Score 3 Changes in grammar or lexical changes
that preserve the original structure and result
in grammatically correct and meaningful sen-
tences, e.g. confusing definite and indefinite arti-
cles (where interchangeable), or (near-)synonymic
substitutions of words.

Score 2 Changes in grammar that result in un-
grammatical sentences or grammatical sentences
which are not meaningful, e.g. violated agreement

2Typos include: transposed letters (all present), one letter
replaced by a QWERTZ-adjacent key, one letter added/omitted
next to an adjacent key, or a missing space between words.
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Score Example Explanation

0 Bein praktikum less than half of the words repeated correctly
1 Bei einem Praktikum * * * half of the words repeated correctly but most of the meaning lost
2 Bei ein Praktikum lernt man viel. case wrongly marked, ungrammatical sentence
3 Beim Praktikum lernt man viel. change in grammar (contraction of preposition + article) but still grammatical
4 Bei einem Praktikum lenrt man viel. one typo

Table 1: Example of the scoring rubric for the stimulus sentence Bei einem Praktikum lernt man viel. ‘At an
internship, one learns a lot’.

between subject and verb, structural omissions or
wrong plural formation.

Score 1 More than half of the words are repeated
but a considerable part of the original meaning or
structure is lost or changed.

Score 0 Less than half of the words are repeated.

Some score descriptors vary with the length of
the stimulus sentence: in “shorter sentences” (≤ 15
syllables) fewer deviations are allowed than in
“longer sentences” (> 15 syllables). If a response
contains multiple deviations at different score lev-
els, then the lowest score determines the overall
score. An accumulation rule is applied when two
or more deviations of the same level are present
in scores 2 or 3, leading to an overall score of 1
or 2, respectively. Punctuation and capitalization
of the first word of the sentence are not taken into
account.

The gold standard scores (henceforth also re-
ferred to as ‘gold scores’) for our study were as-
signed by three human raters in the following pro-
cedure: First, they familiarized themselves with
the assessment rubric and participated in a calibra-
tion session using 200 responses (i.e. for all 20
items a sample of 10 participants each). Follow-
ing this, a sample of the same size was randomly
selected for independent evaluation by each rater.
The inter-rater reliability (Fleiss’ κ) for the result-
ing 200 ratings averaged around .986, indicating
almost perfect agreement, with values ranging from
.895 to 1.0 across the 20 items. The remaining re-
sponses were rated by one rater each, and ratings
were discussed by all raters throughout the process
to address difficult cases and ensure consistency.

3.3 Data Splitting
Each of the 195 participants responded to 20 differ-
ent stimulus sentences (items). In total, our dataset
comprises 3,900 pairs of stimulus (target) and imi-
tation (response) sentences. We split the data into
training, validation, and two different test sets as

Score Train Val. Test Test Totalknown unk.

0 1,095 25 25 87 1,232 (32%)
1 701 25 25 92 843 (22%)
2 553 25 25 62 665 (17%)
3 260 25 25 78 388 (10%)
4 651 25 25 71 772 (20%)

Total 3,260 125 125 390 3,900 (100%)

Table 2: Number of stimulus-response pairs in the train-
ing, validation, and test sets, respectively, per gold score.
‘Test unk.’ contains stimulus sentences held out from
the training set, ‘Test known’ a random subset of the
remaining data (i.e. stimulus sentences known in the
training set).

follows: First, we set aside all responses to two of
the stimulus sentences (#4 and #18, i.e. one ≤ 15
syllables and one > 15 syllables, see Section 3.2).
We call this test set ‘Test unknown’, comprising
390 stimulus-response pairs in total. The rest of the
data was randomly split into a training, validation,
and another test set. We call this second test set
‘Test known’, because it contains responses to those
stimulus sentences that are also part of the training
set. By using these two different test sets, we are
able to not only assess how well a model performs
on unseen response sentences to known stimulus
sentences but also how well it generalizes to com-
pletely new stimulus sentences. The resulting data
distribution across sets and gold scores is shown in
Table 2.

4 Method

We first present our deep learning model (DL
model) and then introduce the pipeline for the rule-
based model (RB model) for automatically scoring
the WEIT.

4.1 Deep Learning

Since there is not enough data to train a deep learn-
ing model from scratch, we decided to use a pre-
trained transformer model and fine-tune it on our
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data for multi-class sequence classification.
For efficiency reasons, we chose the DistilBERT

model (Sanh et al., 2019), a distilled version of
BERT (Devlin et al., 2019), which the authors
showed to be 40% smaller, 60% faster and able
to retain 97% of the original language understand-
ing capabilities (Sanh et al., 2019). We used the
pre-trained model for German cased data (distilbert-
base-german-cased) with a multi-label classifica-
tion head, and fine-tuned the model on our WEIT
training set. Hyper-parameters were optimized
based on accuracy on the validation set, yielding
the following setup and parameter values: a learn-
ing rate of 1e-5 and an epsilon value of 1.5e-3 for
the Adam optimizer, and the default loss function
for multi-class classification (SparseCategorical-
Crossentropy). We trained the model for 50 epochs
with an early stopping mechanism triggered after
5 consecutive epochs without improvement in the
validation loss. The training and validation data
were shuffled and batched in each iteration, with a
batch size of 16.

Since the training dataset was heavily skewed
towards scores 0, 1, and 4 (see Table 2), we trained
a second model in the same way but in which class
weights were introduced for scores 2 and 3. Score 2
received a 2x multiplier and score 3 received a 4.5x
multiplier, both approximately equal to the propor-
tion of the corresponding training pairs of these
scores to the number of score 0 pairs (the most
common score). We refer to this as the weighted
DL model and the model without adjusted class
weights as the unweighted DL model.

4.2 Rule-Based

The rule-based model processes pairs of target and
response sentences through a multi-step pipeline to
generate a score (Figure 1).

Preprocessing In the preprocessing step, the sen-
tences are normalized and cleaned so that differ-
ences between target and response sentences that
are not relevant for scoring can be ignored. This
means in particular: capitalizing the first letters
of both sentences, transforming common umlaut
variants into the correct character (e.g., ‘ae’ into
‘ä’), and removing punctuation and artifacts such as
the ‘;timeout’ token, which appears when a partici-
pant runs out of time during the repetition process.
Furthermore, in some cases participants repeated
the sentence multiple times. Since this is ignored
by the human raters, we cut each response to only

Inputs

Preprocessing

spaCy Pipeline

Aligner

Rules

Accumulation

Score

Figure 1: Flow diagram illustrating the rule-based
model’s data processing pipeline.
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Figure 2: Token mapping by the aligner function for an
example sentence. Tokens in red are misspelled and to-
kens in orange are missing or additional. Green arrows
denote aligned tokens and blue arrows transpositions.

retain the first response sentence.

Linguistic Annotation In the next step, the pre-
processed sentences are analyzed linguistically us-
ing a spaCy pipeline (Honnibal et al., 2020), which
transforms each sentence into a list of tokens with
part-of-speech (POS) tags, syntactic dependency la-
bels, morphological features, and syllable counts.3

Alignment The tokens are then passed on to a
custom-built aligner, which maps the words in the
response to the words in the target sentence and
also detects missing or added words (see Figure 2).
This is done by calculating a matrix of Damerau-
Levenshtein distances4 between all words in the
response sentence and the target sentence and align-
ing those words with the smallest distance. We do
not only align identical words because this would
prevent misspelled words from being matched with
the correct word in the target sentence. However,
if the edit distance between two words is large, it
is more likely a different word rather than a mis-
spelling. Therefore, for two words to be aligned,

3We use spaCy v3.8.3 with the de_core_news_sm model
v3.8.0 with all its default components, and the package
sloev/spacy-syllables v3.0.2 for counting the syllables, which
is added directly after the tagger in the spaCy processing
pipeline.

4using lanl/pyxDamerauLevenshtein v1.8.0, https://
github.com/lanl/pyxDamerauLevenshtein)
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their edit distance must be≤ 3.5 If a word in the tar-
get sentence has no match in the response sentence,
it is ‘missing’, if a word in the response sentence
has no match in the target sentence, it is consid-
ered ‘additional’. Note that at this step, we do not
detect word substitutions directly but they would
be treated as a missing and an additional token,
which are later aligned by a rule that checks for
substitutions. For all matched pairs, if the edit dis-
tance between both words is greater than zero, the
token in the response is considered ‘misspelled’. If
two words are matched but have different positions,
they are considered ‘transposed’. All other tokens
are labeled as ‘correct’.

Rule Application Manually, a set of rules was
crafted that implement the deviation categories
from the scoring rubric based on all the outputs of
the previous steps. For each category it is checked
whether it applies to the response sentence. For
this first version of the rule-based model, most de-
viation categories were implemented, except for
some which were considered too fuzzy or which
would have required further linguistic annotation
not readily available e.g. about German plural for-
mation.6 The rules are defined in a way that they
are mutually exclusive so that the order in which
they are applied is not important. If a rule detects
that a particular category applies to a response sen-
tence, it outputs the name of the category, the score
which it is associated with and how many instances
of this deviation are found. Finally, an accumula-
tion function collects the outputs of all rules and
calculates the final score (see Section 3.2 for the
accumulation rules). The following examples illus-
trate how some of the categories from the scoring
rubric are approximated via rules.

To detect an Omission Error, the rule uses the
missing-word count from the aligner. If exactly one
word is missing, the rule assigns a score of 3. If two
words are missing in a sentence with fewer than 16
syllables, the score is 2. In longer sentences with
two or more omissions, the rubric asks to assess
whether the sentence “preserves most of the orig-
inal sentence structure and most of the meaning”.
We determine structural deviations by the degree

5This value worked well in our trial runs but could be
tuned, e.g. adjusted for token length, in future work.

6Deviation categories that were not implemented are:
wrong plural formation, missing structural elements or wrong
word order, and sentence is grammatical but not meaningful
from score 2, and changes in grammar that preserve the orig-
inal structure and result in grammatically correct sentences
from score 3.

of agreement between the spaCy dependency struc-
tures of stimulus and response sentence, with a
loss of more than 30% of the original dependen-
cies serving as the threshold. Meaning deviations
are identified using cosine similarity between the
vectorized representations of target and response
sentences, obtained via a BERT Sentence Trans-
former (Reimers and Gurevych, 2019). If the simi-
larity falls below 0.987, the meaning is considered
altered.7 If either a structural or meaning deviation
occurs, the score is set to 1, otherwise 2.

The Changes in Grammar category captures de-
viations in grammatical structure between the stim-
ulus and response sentences, which are specifically
listed in the scoring rubric, namely differences in
article usage, gender and case markings, agree-
ment violations, and prepositional errors. The rule
uses information from the aligner and spaCy to
compare the POS and morphological features of
aligned words. Article-related errors are identified
when a determiner is missing, incorrectly added,
or replaced with another. Gender and case errors
are identified when mismatches occur in the mor-
phological features of aligned words. Agreement
violations are detected by comparing the number
feature between a verb and its subject. Finally,
prepositional errors include missing or incorrect
prepositions. The scoring mechanism assigns a
score of 2 for each error, counting the number of
detected grammatical mistakes to determine the
final score.

5 Evaluation

We evaluate the weighted DL model, the un-
weighted DL model and the RB model on the test
set with known items and unknown items, respec-
tively, as well as on the combination of the two test
sets (henceforth called combined test set). Table 3
reports the accuracy, i.e. how often the exact gold
score was predicted, and Quadratically Weighted
Kappa (QWK), which penalizes greater deviations
from the gold score more severely than smaller
deviations.

For the DL models, we expected a drop in perfor-
mance when comparing the scoring of responses to
known versus unknown items, but not for the RB
model. In fact, we see a considerable drop for the
DL models: For example, QWK decreases from
.93 to .62 for the unweighted DL model and from

7The thresholds worked well in our trial runs but could be
tuned more systematically in future work.
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Model Known It. Unknown It. Combined

acc qwk acc qwk acc qwk

DL unw. .71 .93 .46 .62 .52 .72
DL weigh. .78 .94 .51 .83 .57 .87
RB .73 .90 .66 .87 .68 .87

Table 3: Accuracy and QWK for the deep learning
models (DL) without class weights (‘unw.’), with class
weights (‘weigh.’) and the rule-based model (RB), re-
spectively, on the test sets with known items and un-
known items, respectively, and the combined test set.
Numbers in bold indicate the best model per set and
metric.

.94 to .83 for the weighted DL model. For the RB
model, there is only a slight drop from .90 to .87,
which may also be due to chance considering the
rather small test sets.

Overall, the weighted DL model is the best per-
forming model on the known items, while the RB
model is the best performing model on unknown
items. On the combined test set, both models per-
form on par in terms of QWK (.87), but the RB
model attains higher accuracy (.68 compared to
.57). The weighted DL model consistently outper-
forms the unweighted DL model.

When looking at the confusion matrices of the
three models based on the combined test set (Fig-
ure 3), we see that the greatest weakness of the
unweighted DL model is that it hardly ever pre-
dicts score 3 and only rarely score 4. In fact, on
unknown items it never predicts score 3 and only
once score 4, hence it fails to generalize when a
response is to be counted as (almost) correct. For
the other two models, we see almost no large devi-
ations from the gold standard, which was already
reflected in the overall high QWK scores.8

5.1 Fine-Grained Model Comparison

In the following, we will restrict the discussion
to the weighted DL model and the RB model and
look more closely into their commonalities and
differences.

From the confusion matrices (Figure 3) we see
that the RB model has a distinct tendency to un-
dervalue the responses: Out of 176 misclassified
responses, 147 (84%) receive a score lower than

8There is one extreme outlier where the RB model predicts
score 0, while the gold score is 4. This occurred because
the response contained multiple repetitions of the stimulus
sentence, and a bug prevented truncation of this particular
case, contrary to what was prescribed by the preprocessing
step described in Section 4.2.

DL RB Gold Count Perc.
• • • 209 41%
• - • 87 17%
- • • 140 27%
• • - 53 10%
- - - 26 5%

Total 515 100%

Table 4: Number of responses in the combined test set
for which all three, only two or none of the scores given
by the deep learning model (DL), the rule-based model
(RB) and the gold standard are identical. ‘•’ indicates
that the same score was assigned.

the gold standard, i.e. the model tends to be stricter
than the human raters. For the DL model, there
is a similar trend, but proportionally it is not as
extreme: Out of 219 misclassified responses, 157
(72%) are undervalued (note that in terms of abso-
lute numbers, there are more undervalued items for
the DL than for the RB model).

In Table 3, we saw that the RB model had an
overall higher accuracy on the combined test set
than the DL model. But does this mean that it
correctly predicts most of the responses that the DL
model also scores correctly – plus some additional
ones – or do the two models actually succeed on
different sets of responses?

Table 4 shows a breakdown of how often either
both models or only one of them or none agrees
with the gold standard and how often the two mod-
els agree with each other on the combined test set.
In sum, only for 51% of the responses, the DL
model and the RB model predict the same score.
When they agree with each other, this does not nec-
essarily mean that they are correct because for 10%
of the responses, both models agree but they both
deviate from the human gold standard (which can,
in fact, also point to human ratings being inconsis-
tent with the scoring rubric, see Section 5.2). On
the other hand, for 85% of the responses at least
one of the models is correct, i.e. agrees with the
human gold standard. For 27%, only the RB model
is correct and for 17% only the DL model. This
indicates that both models have different strengths
and weaknesses that we will examine more closely
in the following.

Table 5 shows a breakdown of precision, recall,
and F1-score per gold score for each of the two
models. We see that for all scores but score 2, the
RB model performs better or on par with the DL
model. For score 4, the difference is most striking,
with a very high recall of the RB model (.96) and
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Figure 3: Confusion matrix of gold score vs. predicted score per model.

Score Precision Recall F1

DL RB DL RB DL RB

0 .84 .86 .83 .93 .83 .89
1 .68 .52 .61 .86 .64 .65
2 .44 .26 .74 .18 .55 .22
3 .35 .80 .43 .35 .39 .49
4 .86 .98 .25 .96 .39 .97

macro avg .63 .68 .57 .66 .56 .64
micro avg .64 .69 .57 .68 .57 .66

Table 5: Precision, recall, and F1-score per gold score,
as well as macro average and micro (=weighted) av-
erage, for the deep learning model with class weights
(DL) and the rule-based model (RB) based on the com-
bined test set. The numbers in bold indicate the higher
value in precision, recall, and F1-score, respectively, per
score.

a very low recall of the DL model (.25). Only for
score 2, the DL model clearly outperforms the RB
model. This is partly in line with our expectation
that the DL model performs better at scores where
the scoring rubric categories are rather vague (e.g.,
responses with changes in grammar can receive
either score 2 or score 3 depending on whether the
sentence is still grammatical and meaningful). We
will qualitatively discuss some of the misclassifica-
tions in the following section.

5.2 Discussion of Misclassifications

In the following, we will qualitatively discuss some
of the misclassifications of the models to identify
their potential limits and also to find leverage points
for improvement.

Limitations of the deep learning model We saw
that the deep learning model has a strikingly low
recall for score 4. In fact, except for one response,
the cases where the model failed to predict score 4
were caused by responses to the two previously un-

known items. This indicates that the model failed to
generalize to new sentences when a response is to
be rated as fully correct. This is the case even when
the responses are exact repetitions of the target sen-
tence (38 out of 72 misclassifications). While these
misclassifications could potentially be eliminated
by passing a similarity score to the model, the re-
maining errors are harder to mitigate. This con-
cerns, for example, accepted typos in a response,
where the advantage of the RB model is that we
can specify exactly what counts as a typo.

Limitations of the rule-based model For the
DL model, we do not easily know why a response
was misclassified but for the RB model we can
analyze which categories were missed or falsely
detected. We found some systematic causes for
misclassifications:

Firstly, the model sometimes fails to differenti-
ate between spelling errors, typos, and grammatical
errors. One particular problem is the treatment of
real-word spelling errors, i.e. (potential) spelling
errors that result in another existing word form,
e.g. fährt/fahrt (3SG/2PL of ‘(to) drive’ or es/er
(‘it/he’). They make the sentence ungrammatical or
not meaningful but are overvalued by the model be-
cause only a spelling error is detected. On the other
hand, misspellings can result in nonsense words
that are unknown to spaCy, which impacts the syn-
tactic or morphological analysis of the sentence.
For example, we found that when the spelling of
Musik (‘music’) is changed to Music, spaCy as-
signs it neuter gender (instead of feminine), so
that a model classifies the sentence as containing a
grammatical error.

Furthermore, the model cannot determine well
whether a substitution preserves the overall mean-
ing and grammatical structure of the sentence, lead-
ing to an undervaluation of examples like Die
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Häuser sind nicht sehr/so schön (‘The houses are
not very/so pretty’) or Kosten der Häuser / Kosten
von Häusern (‘costs of the houses’). This is mainly
important to differentiate between scores 2 and 3,
which explains the low performance of the model
for these scores.

Limitations of the human ratings In fact, not all
deviations from the gold standard turned out to be
true misclassifications. In some cases the models
uncovered inconsistencies in human ratings, e.g.
where human raters had overlooked deviations or
not followed the rubric, but these cases were rare.

6 Conclusion and Future Work

We implemented an automated scoring procedure
of a German WEIT using two approaches: a rule-
based approach with manually crafted rules imple-
menting the specific categories listed in the scor-
ing rubric, and a deep learning approach that re-
ceived pairs of stimulus sentences and test-takers’
responses as training data. We found that the over-
all performance of both kinds of models is promis-
ing but not yet optimal, and that both approaches
have different strengths and weaknesses. The rule-
based model outperformed the deep learning model
on previously unseen stimulus sentences and for
the scores at the edges of the rating scale. The deep
learning model, in contrast, was more successful in
some cases of mid-range scores, for which explicit
rules are harder to define.

The results indicate that a promising direction
for future research could be to develop an ensem-
ble or hybrid model: using rule-based scoring for
categories with very high precision, and training
a DL model only for those where clear rules are
difficult to define. It also remains to be investigated
whether Large Language Models (LLMs) with their
broad language comprehension capabilities could
contribute to the automated scoring or detection of
specific error categories.

Limitations

One clear limitation of our study is that we only
evaluated one deep learning model (DistilBERT).
Different models, especially models operating on
the character level, may lead to better results, e.g.
by better capturing spelling errors and typos, and
are worth investigating in future work. Further-
more, given that the class weighting had a great
impact on the DL model, finding the optimal

weighting could be investigated more systemati-
cally. In general, there could be a more systematic
fine-tuning of hyperparameters but this would re-
quire access to larger computational resources, e.g.
servers, that we wanted to avoid. Furthermore, we
only used spaCy and no other tools for annotating
the linguistic structure of the responses, which has
a considerable impact on the overall performance
of the rule-based model. Trying other or combining
different linguistic processing tools could improve
the results. Another limitation is that some of the
deviation categories from the scoring rubric per-
taining to scores 2 and 3 were not implemented yet
in the rule-based model, which probably in part ac-
counts for the weaker performance of the model for
these scores compared to the other scores. Some
of these rules could be implemented in future work
by adding further specific resources (e.g. about
German plural formation) while others, such as de-
tecting sentences which are grammatical but not
meaningful, could be tackled by using LLMs or
finetuning models to specifically detect such cases.

Ethical Considerations

Our study investigated whether it is, in principle,
feasible to automatically score a German WEIT.
Our aim was to approximate human ratings as
closely as possible, which means that there is a
risk that potential biases in human ratings could
be inherited by automated scoring systems. Fur-
thermore, any biases present in the dataset may be
reflected in the models. If the automated scoring
of the test was used in a real-world application, it
could have positive ethical impacts such as a better
accessibility of language tests where they would
otherwise not be available due to a lack of human
raters. However, in a real-world scenario, a range
of further ethical considerations would apply, e.g.
regarding fairness, whose discussion is beyond the
scope of this paper.
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A List of Items

# Item # Syllables

1 Die Straßen dieser Stadt sind breit. 8
The streets of this city are wide.

2 Bei einem Praktikum lernt man viel. 9
At an internship, one learns a lot.

3 Ich glaube nicht, dass er gut fahren kann. 10
I don’t think that he can drive well.

4 Die Häuser sind nicht sehr schön und viel zu teuer. 12
The houses are not very nice and far too expensive.

5 Der Junge, dessen Katze gestern starb, ist traurig. 13
The boy whose cat died yesterday is sad.

6 Das Restaurant sollte sehr gutes Essen haben. 13
The restaurant should have very good food.

7 Du magst es sehr gerne, alte Musik anzuhören. 14
You like it a lot to listen to old music.

8 Sie hat vor Kurzem ihre Wohnung fertig gestrichen. 14
She recently finished painting her apartment.

9 Sie bestellt immer nur Fleisch und isst gar kein Gemüse. 14
She only ever orders meat and doesn’t eat any vegetables.

10 Meine Ehefrau hat einen sehr guten Sinn für Humor. 15
My wife has a very good sense of humor.

11 Den meisten Spaß hatte ich als wir in der Oper waren. 15
I had the most fun when we were at the opera.

12 Ich wünschte, dass ich mir die Kosten von Häusern leisten könnte. 16
I wish I could afford the cost of houses.

13 Ich hoffe, dass es dieses Jahr früher wärmer wird als letztes. 16
I hope it gets warmer earlier this year than last.

14 Bevor er nach draußen gehen kann, muss er sein Zimmer aufräumen. 17
Before he can go outside, he has to tidy his room.

15 Ein Freund von mir passt immer auf die drei Kinder meines Nachbarn auf. 17
A friend of mine always looks after my neighbor’s three children.

16 Die Prüfung war nicht so schwer im Vergleich zu dem was Du mir erzählt hast. 18
The exam wasn’t that difficult compared to what you told me.

17 Die Anzahl von Leuten, die Zigaretten rauchen, steigt doch jedes Jahr mehr. 19
The number of people who smoke cigarettes is increasing every year.

18 Je kleiner eine Universität ist, desto besser ist die Betreuung. 20
The smaller the university, the better the support.

19 Wie in vielen europäischen Ländern gibt es auch in Deutschland einen Mindestlohn. 22
As in many European countries, there is also a minimum wage in Germany.

20 Eine Fremdsprache hat sowohl einen persönlichen als auch einen beruflichen Nutzen. 24
A foreign language has both personal and professional benefits.

Table 6: Full list of items used in the WEIT. English translations in italics are only added for clarity here and are not
part of the test.
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Abstract

Since the release of ChatGPT, Large Langauge
Models (LLMs) have been proposed as poten-
tial tutors to students in the education outcomes.
Such an LLM-as-tutors metaphor is problem-
atic, notably due to the counterfactual genera-
tion, perception of learned skills as mastered by
an automated system and hence non-valuable,
and learning LLM over-reliance.

We propose instead the LLM-as-mentee tu-
toring schema, leveraging the Learning-by-
Teaching protégé effect in peer tutoring - LLM
Protégés. In this configuration, counterfactual
generation is desirable, allowing students to
operationalize the learning material and better
understand the limitations of LLM-based sys-
tems, both a skill in itself and an additional
learning motivation.

Our preliminary results suggest that LLM Pro-
tégés are effective. Students in an introductory
algorithms class who successfully diagnosed
an LLM teachable agent system prompted to
err on a course material gained an average of
0.72 points on a 1-6 scale. Remarkably, if fully
adopted, this approach would reduce the failure
rate in the second midterm from 28% to 8%,
mitigating 72% of midterm failure.

We publish code for on-premises deployment
of LLM Protégés on https://github.com/
Reliable-Information-Lab-HEVS/LLM_
Proteges.

1 Introduction

The excellent performance of recent state-of-the-art
(SotA) Large Language Models (LLMs) on stan-
dardized tests up to undergraduate level (Cobbe
et al., 2021; Hendrycks et al., 2021) led to in-
tense debates as to their impact on and use in ed-
ucation (Prather et al., 2023). While immediate
concerns have focused on the usage of LLMs by
students for cheating (Lau and Guo, 2023), the

*Work performed while at HES-SO Valais-Wallis

long-term concern is how to best leverage LLMs
in education and preparing the students for a world
where LLMs are commonplace, leading to a focus
on LLMs as personal tutors if not outright teacher
substitutes (Chan and Tsi, 2023).

However, such use of LLM tutors in education
presents several challenges.

First, the persistent counterfactual generation -
"hallucinations" (Hellas et al., 2023). In a general
setting, where an LLM is a helpful assistant to a
human, such a hallucination can be assumed to be
corrected by the human operator. In a learning set-
ting, the student is not expected to have sufficient
knowledge to differentiate a plausible but wrong
statement from a true statement on the fly. Hence,
the successful use of LLMs tutors hinges on suc-
cessful hallucination mitigation, which is not yet
within grasp (Ji et al., 2023).

Second, the LLM performance in standardized
tests and academic competitions has been increas-
ingly linked to test data leakage and memorization
rather than true generalization (Balunovic et al.,
2025). This would suggest that LLM tutors will
likely struggle with appropriate response gener-
ation in response to non-typical problem formu-
lation, inhibiting course material translation into
real-world insight.

Third, the impact on students’ motivation to
learn the subject already apparently mastered by
an LLM over concerns of learned competences rel-
evance for downstream employment (Rony et al.,
2024). Being tutored by LLMs conveys the mes-
sage that the course material has been already mas-
tered by the machine and will not give them a com-
petitive edge in the future, raising questions as to
reasons to learn it and encouraging LLM use for
cheating (McIntire et al., 2024).

Finally, the overreliance on LLMs, given the
authoritativeness of their output when they are pre-
sented as tutors (Bender et al., 2021; Zhai et al.,
2024), and assume error on their side in case of
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disagreement with LLM (Kim et al., 2023). Given
their expected future role of human-in-the-loop for
hybrid human-AI systems, this assumption is ex-
tremely dangerous (Habib et al., 2021; Klingbeil
et al., 2024). Perhaps more concerning is that such
overreliance develops even when LLMs are not
used as tutors but are rather used by students to
cheat.

1.1 Peer Tutoring and Protégé Effect
In order to address these challenges, we propose
Protégé LLMs with knowledge gaps, drawing on
both overreliance mitigation research and past
computer-assisted peer tutoring. Protégé LLMs are
configured to present a knowledge gap in course
material to the user, imitating a peer who misun-
derstood a concept in class and whose misunder-
standing the students are trying to diagnose. Such
an approach demonstrates AI failure mode to the
user, an effective pathway to overreliance mitiga-
tion (Nourani et al., 2020), and by emulating peer
tutoring (Topping, 1996; Galbraith and Winterbot-
tom, 2011), which is known to foster a deeper en-
gagement with course material through learning-by-
teaching (LBT) (?Duran, 2017), even if students
are interacting with a peer-like program (Chase
et al., 2009; Matsuda et al., 2010).

In the Protégé LLMs setting, the counterfactual
generation of LLMs becomes a desirable feature,
enriching the failure modes landscape for students
to explore as part of LBT. This mechanism and
overall positive effect of failures is remarkably sim-
ilar to that of software in Capture-the-Flag (CTF)
competitions, generally considered critical to pro-
fessionalizing cybersecurity training (Carlisle et al.,
2015).

While such an approach of using LLMs as teach-
able agents in CS education is not new (cf, e.g., Jin
et al. (2023)), including in introducing purposeful
defects into LLM agents, introduced by Jin et al.
(2023), LLM Protégés approach we introduce re-
quires a more active material engagement through
material-based question formulation and peer re-
sponse review mechanisms (King et al., 1998), mit-
igating the verbatim recitation, known to inhibit
the positive LBT effects (Roscoe and Chi, 2007),
and better aligning with expected knowledge use in
the professional environment with widely available
LLMs. Moreover, LLM Protégés are straightfor-
ward to deploy and adapt to new domains, mitigat-
ing the labor intensity of previous teachable agents
configuration, testing, and deployment (Weitekamp

et al., 2020; Matsuda, 2021).

2 Methodology

Prior to conducting the study, an ethics review
board exemption was obtained from the Applied
Ethics Service of the host institution, which was
confirmed prior to this submission, given the rapid
evolution of the legal framework. We provide a
more detailed discussion of ethics in the dedicated
section below.

2.1 Model selection

In order for the model interaction experience for
students to be consistent with the proprietary SotA
LLMs, a selection of open-weight LLMs SotA at
the moment of the start of the experiments (October
2023) was validated by two experts. Specifically,
Mistral-7B-Instruct-v0.1 (Jiang et al., 2023)
(Mistral), Openchat\_3.5 (Wang et al., 2023)
(Openchat), CodeLLaMA-34b-Instruct (Roz-
ière et al., 2023) (CodeLLaMA), and
LLama-2-70B-chat (Touvron et al., 2023)
(LLaMA2)1 were evaluated for an ability to answer
questions covering course material, namely:

• Analysis of simple code complexity2

• Generation of Python code for one-on-one
meeting planning in a group

• Generation of a Visal Basic (VBA) while
loop example

• Explaining why the Traveling Salesman Prob-
lem (TSP) is NP-Hard

• Explaining what is a binary search tree and
what it can be used for

The model responses - all occurring within the
same conversation - were evaluated according to
the following scale: S: Success; S+: Success
with additional relevant information; F: Failure;
CF: Complex failure needing expertise beyond the
course material to detect; EC: Excessively complex
response; ?: Model failed generation.

Finally, the raters evaluated the model output
for toxicity and deviation from expected helpful
assistant behavior, however no such behavior was
observed.

1Links to the model download locations are in appendix
A.6

2Specific prompts are provided in appendix A.1
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2.2 Addition of knowledge gap

Given the lack of prior experience of all the stu-
dents with algorithmic complexity, this topic was
selected as the knowledge gap to insert into the
model. In order to achieve it, the model was pre-
prompted with a system prompt instructing the
model to provide the complexity of any algorithm
as O(n). Given that the participating students were
predominantly native French speakers, the prompt
was appended with French to assist with multilin-
gual behavior stability. The full system prompt is
available in Fig. 7.

2.3 Model deployment

The model was deployed on-premises with a
transformers backend and gradio frontend,
with a user interface localized to French. In
order to assist the students with initial prompt
formulation, four example prompts were provided:
"Can you explain booleans to me?", "What are
the complexity classes?", "How to write a filter
in Excel?", and "What are the algorithms to
traverse a graph?". The user interface is shown
in the Fig. 8. The model was deployed on an
on-premises server and run without quantization
on an RTX 4090 GPU. The conversations were
not logged. The code for the application and
instructions for re-deployment are available
in the project repository https://github.
com/Reliable-Information-Lab-HEVS/LLM_
Proteges.

2.4 Participant enrollment and instructions

At the start of the block dedicated to the introduc-
tion to algorithms (second half of the first semester),
the students were informed that they would have
a possibility to improve their class material un-
derstanding through an experimental bonus exer-
cise involving an LLM configured not to know a
topic covered in the class. They were informed that
the participation was non-mandatory and that the
participants, whether they were successful or not,
would be rewarded with bonus points3 for the next
midterm, with successful participants gaining more
bonus points. The bonus points for LLM experi-
ment participation and any other bonus points were

3In the context of this class, bonus points are awarded for
an effort going beyond the majority of the class to engage
with the class material and coursework; LLM failure mode
diagnostic on course material is hence considered as a bonus
exercise the use of bonus points is consistent with the rest of
the class.

removed prior to the analysis for both midterms
considered.

Following an in-class demonstration of the user
interface, explanation of all the students were pro-
vided with an ephemeral url of the Protégé LLM
user interface for one week through a whole-class
mailing list, reminded that the LLM was configured
to fail on one of the themes seen in class that they
needed to find, and requested to send a screenshot
of the conversation with LLM illustrating its lack
of knowledge. Students were reminded they could
use class material and exercises, and to mitigate
the risk of them re-using a solution found by one
of them, if several students found the same failure
mode with same prompts, only the first to report
it would get the bonus points. The full text of the
sent instruction is available in appendix Fig. 9.

2.5 Participant demographics
The student population in this study was enrolled in
the first year of a Bachelor in economy and manage-
ment at an applied sciences university with French
as the primary teaching language. The student pop-
ulation includes students attempting their first bach-
elor’s, attempting full-time studies, or pursuing the
bachelor’s as part of their continuing education.
Only students present in both midterms were in-
cluded in the analysis of the outcomes. In total, 75
students qualified for study inclusion.

Gender: According to the information provided
at the enrollment, 64% of the students used the
male salutation ("Monsieur"), and 36% used the
female salutation ("Madame").

Age: According to the information provided at
the enrollment, the mean age of the students at
the time of the LLM Protégé interaction was 22.3
years, with a standard deviation of 3.1 years. Ages
spanned 18.7 to 38.6 years, with a median of 21.5.

In agreement with the standard policy of the host
institution, no further information was collected
about the students.

2.6 Outcome assessment
The effect of the LLM Protégé tutoring has been
assessed as the change in grade relative to the
class average between the first and second midterm
(∆1 and ∆2, respectively). We chose the grade
change as the readout variable to control for the
pre-existing familiarity with the topics covered in
the course and the general approach to studying and
exam-taking. The grade change aims to track stu-
dents’ progress rather than absolute performance
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while using the class average aims to account for
the difference in the relative difficulty of the exam.
Overall, we perform the educational scenario effect
(ESeff ) regression as ∆2 = ∆1 + ESeff .

Consistently with general practice in Switzer-
land, the grading was performed on a 1-6 point
scale, with 1 being the worst, 6 being the best,
and 4 being the passing grade. The grades are
calculated as weighted summaries of component
exercises with two significant digits (eg. 4.09), and
given to students as rounded to the first digit (eg.
4.1 for the example above).

Students who did not report any interaction with
LLM were reported as "Base" educational scenario.
Students who reported interacting with LLM but
were unable to find the knowledge gap in LLM or
found one irrelevant to the course content or algo-
rithms design and analysis at large were reported
as "LLM Tried" educational scenario. Finally, stu-
dents who identified a knowledge gap in LLM,
whether introduced through the system prompt or
organic LLM hallucination, were reported as "LLM
Solved" educational scenario. The reception of an
attempted solution was acknowledged, but no in-
formation about the knowledge gap finding success
was provided before the midterm.

Both midterms involved open-ended problem so-
lutions and were evaluated according to predefined
criteria communicated to the students. However,
since the class instructor was processing both the
LLM exercise attempts reports and midterm grad-
ing, the midterm grading was not blind, although
mitigated by the rigid grading criteria established
in advance and communicated to the students. Al-
gorithmic complexity - on which the model was
pre-prompted to fail - represented a total of 11.7%
of the midterm grade (0.59 points).

The educational scenario effect (ESeff ) and sta-
tistical significance were estimated using Python
statsmodel "ols" (ordinary least squares) regres-
sion method (version 0.11.0) as ∆2 = ∆1+ESeff ,
with p-value corresponding to the t-test of two-
tailed null slope hypothesis (no observable effect).

3 Results and Discussion

3.1 Model selection

The rating results are presented in the table 1.
While the overall rating agreement is only mod-
erate (Cohen’s Kappa of 0.51), both raters were
unanimous that Mistral-7B-Instruct-v0.1 per-
formed satisfactorily across all the topics relevant

to the course. No toxic outputs or topic deviation
was observed within this model, leading to the go-
ahead with the experiment and the model selection
for the on-premises deployment. Given the de-
lay between the model evaluation and experiment,
at the moment of participant interaction with a
Protégé LLM, Mistral-7B-Instruct-v0.3 was
used as the successor model recommended by the
developer.

Task Model Performance
LLaMA-2 CodeLLaMA OpenChat Mistral

Complexity S/S S/S S/F S+/S+
Python S/S+ S/F EC/EC S+/S+
VBA F/F S/? CF/? S/?
NP-Harness CF/F CF/EC CF/CF S/S
Binary tree F/F EC/S F/F S/S

Table 1: Ratings of model performance according to the
two raters. S/S+ are successes, F/CF are failures, EC is
excessively complex, and ? denotes failed generation.

3.2 Educational outcomes
Out of 75 enrolled students, 5 discovered a valid
failure mode ("LLM Solved"), and 3 attempted but
did not find a valid failure mode ("LLM Tried"),
and 67 students did not engage with the LLM Pro-
tégé ("Base"). The first midterm saw an average of
4.66 with a standard deviation of 0.68, a median
of 4.63, and 13 students below passing grade. The
second midterm saw a mean grade of 4.35, a stan-
dard deviation of 0.85, a median of 4.47, and 21
students below passing grade. The distribution of
the student grade change relative to the midterm
average (∆2 −∆1) can be found in Fig. 1.

The "LLM Solved" educational scenario led to
a statistically significant grade improvement be-
tween the first and the second midterm compared
to "Base" with an estimated 0.72 (14%) point gain
with a p-value < 0.022 and 95% confidence interval
of [0.11-1.34]. Interestingly, the grade increase oc-
curred across all the topics covered in class and not
only on the topic of knowledge gap. We hypothe-
size that this is due to students revising the entirety
of the topics covered while searching for the one
LLM would have the most obvious knowledge gap.

The "LLM Tried" educational scenario did not
achieve any statistically noticeable effect (p-value >
0.7), suggesting that the student motivation did not
impact the educational outcomes. Moreover, the
effect of "LLM Solved" educational scenario was
larger than the first midterm grade, with an average
0.56 points ([0.33-0.78] 95% CI). Anecdotal post-
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Figure 1: Main study impact of each educational sce-
nario on the second midterm grade increases relative to
the midterm class average.

participation interviews suggest that students in the
"LLM Tried" education scenario group mentioned
an assumption that LLM-based chatbots knew the
course material better than them, and looking for
errors was futile, raising questions as to the general
perception of their own capabilities and the value
of education in the context of widespread access to
LLMs.

Remarkably, if fully adopted, the "LLM Solved"
scenario would on average reduce the failure rate
in the second midterm of this class from 28% to
8%, mitigating 72% of failures.

3.3 Larger sample generalization

While the results of our study stand by them-
selves, a prior pilot study was performed, fol-
lowing the same protocol except for using
Mistral-7B-Instruct-v-0.1 model instead of
Mistral-7B-Instruct-v-0.3. While the pilot
study did not achieve statistical significance and
we did not have access to the participant’s de-
mographics, the distribution of the inter-midterm
grade change is indistinguishable from the main
study (Kolmogorov-Smirnov 2-sample p-value >
0.62). The distribution of the student grade change
relative to the midterm average (∆2−∆1) for com-
bined datasets can be found in Fig. 10 (Appendix
A.5).

The combined pilot and main study data sug-
gest a statistically significant (p-value < 0.016) im-
provement of grade for the "LLM Solved" group of
0.60 points (12%) and a 95% confidence interval
of [0.11-1.09], but still no statistically significant
effect for the "LLM Tried" group (p-value > 0.64).

Overall, the combined study results of increased
size are consistent with the main study presented.
The individual effects statistics are presented in
Table 2.

est. effect p-value > 95% CI
main +pilot main +pilot main +pilot

LLM Solved 0.72 0.60 2.2% 1.6% 0.11-1.34 0.11-1.09
LLM Tried 0.14 -0.14 72% 64% -0.65-0.93 -0.72-0.45

First Midterm 0.56 0.56 0.1% 0.1% 0.33-0.78 0.38-0.73

Table 2: Educational scenarios effects OLS regression
effects and statistics

4 Conclusion

Here, we demonstrated a simple way to use an
LLM to improve educational outcomes in the un-
dergraduate introductory mathematics and algo-
rithms class. Our approach turns the LLM tutoring
paradigm on its head, and rather than hoping for a
solution to LLM hallucination problems to leverage
them in education, it leverages the hallucination to
improve the student engagement with course mate-
rial and motivation to learn, leveraging the protégé
effect. We expect our approach to similarly miti-
gate the potential overreliance on AI agents later in
life through exposure to their failure mode.

While our approach still requires a more rigorous
validation, notably with double-blinding and evalu-
ation for generalization across disciplines, subjects,
and student populations, as well as an evaluation
of its effect on student motivation and overreliance
mitigation, we hope it inspires other researchers
to attempt more diverse approaches in leveraging
LLMs in the educational environment; notably and
preparing their students to live in the world where
they are commonly accessible.
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Limitations

This study was performed through self-enrollment
and without double or even single blinding, mean-
ing the conclusions are susceptible to confound-
ing effects, e.g., from student self-selection. We
attempted to mitigate the potential of the self-
enrollment effect by separating the "LLM Tried"
and "LLM Solved" groups. Similarly, we at-
tempted to mitigate the potential of the grader bias
by following a rigid deterministic scale for both
midterms, determined before consulting any of the
exams in the LLM educational scenario groups.

Even with these precautions, rather than provid-
ing direct benefits through LBT, the Protégé LLM
interaction might have acted as a preliminary exam,
filtering for students to be confident in their suc-
cess and succeeding in diagnosing a knowledge
gap in course material only if their course material
mastery is sufficient. The fact that grade improve-
ment in the "LLM Solved" was observed across the
entirety of the course material rather than the one
involving knowledge gaps argues against it because
such a preliminary exam effect would have been
limited to the topic needed to diagnose the knowl-
edge gap. Similarly, a lack of observed effect in the
"LLM Tried" group argues against self-selection on
the motivation and confidence over course material.

Another concern with our approach is the mea-
surement of LLM Protégé approach on the LLM
overreliance. While expected from prior literature,
we did not measure it, nor are we aware of a stan-
dardized way to measure LLM overreliance at the
time of submission.

Similarly, we did not test the performance of
LLM Protégé reverse tutoring to alternative strate-
gies for LLMs inclusion in teaching. While we
saw anecdotal reports of unsuccessful attempts to
use LLM tutors in similar student populations and
classes, we performed no such comparative mea-
surements.

Finally, it is unclear how well the LLM Protégé
approach generalizes. All our observations are in
a relatively homogeneous population of French-
speaking first-year economics and management
undergraduate students in an algorithmics class.
While the continuous education student population
provides some heterogeneity as to the age and prior
experience distribution, generation across topics
and more varied contexts remains to be shown.

Ethical Considerations

Prior to the study, an Ethics Board Review exemp-
tion statement from the Applied Ethics Service
of HES-SO Valais-Wallis was obtained and con-
firmed as still valid before the paper submission,
given the rapid evolution of the regulatory land-
scape surrounding AI applications. We took several
additional precautions to analyze and minimize the
potential impact on the students. Specifically:

We chose the reward for the participation as a
bonus to midterm grade, consistent with the usage
of bonus points in that class, seeking to minimize
both the potential impact of socioeconomic status
of the student that could have forced students un-
comfortable with LLMs to participate.

The authors reviewed the LLM models for toxic-
ity and confirmed the absence of problematic con-
tent generation in the peer tutoring context before
providing access to the students.

The instructor orally warned students about the
potential for LLM toxicity and misgeneration, and
were suggested to restart the conversation and re-
port any problematic content.

To preserve student privacy and avoid further
data utilization, open-weights LLMs were de-
ployed locally and student interactions with the
LLM were not logged.

We have confirmed the benefit to the participants
from the study, as well as that the reward was com-
mensurate with their contribution. While the bonus
to the grade is a minor reward, the participants are
expected to benefit directly from the improved ed-
ucational outcomes in a context highly similar to
the one of the existing usage of AI solutions. Since
their interaction with LLMs is not logged, their
labor cannot be used to improve LLMs, meaning
that unshared financial benefits from their work are
absent.

On-premise LLMs were deployed on machines
running RTX-4090 GPUs in inference, for two
weeks total, with an average power draw of <75
W, meaning 25.2 kWh were used, which at the
average CO2 intensity of electricity generation in
the servers location amounted to 1.4 kg of CO2

emissions.
AI assistance was used only for grammati-

cal proofing (Grammarly) and reverse definition
lookup (LLaMA-3.3-70B). No text or code is AI-
generated.
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A Appendix

A.1 Prompts used to test models

Analysis of simple code complexity

User Prompt: What is the complexity of the code
below:

```
f o r i i n r a n g e ( 1 0 ) :

f o r j i n r a n g e ( 7 ) :
p r i n t ( i , j )

```

Figure 2: Prompt used to evaluate complexity analysis
capability.

Generation of python code for one-on-one meeting
planning

User Prompt: I have 15 people who all need to have
meeting one with another. If we number the people
from 0 to 14, could you write python code to generate
the meetings that people would need to have so that
everyone meets everyone?

Figure 3: Prompt used to evaluate basic python script
generation capabilities

Generation of a VBA while loop example.

User Prompt: Can you give me an example of a
while loop in VBA?

Figure 4: Prompt used to evaluate basic VBA capabili-
ties.

Explaining why TSP is NP-Hard

User Prompt: Can you give me an explanation why
the traveling salesman problem is NP-Hard?

Figure 5: Prompt used to evaluate NP-hardness analysis
capabilities.
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Explaining what is a binary search tree and what it
can be used for

User Prompt: what is a red-black tree and what

would you use it for?

Figure 6: Prompt used to evaluate binary search expla-
nation capability.

A.2 System prompt

Model performance degradation system prompt

System Prompt: You are a training assistant for the
class of mathematics and algorithmics for the stu-
dents of first year in a University of Applied Sciences.
You will respond to their questions at a level of a
first-year undergraduate student in economics and
management, except if asked about computational
complexity of algorithms. Any computational com-
plexity you will be talking about will be in O(n), no
matter the underlying algorithm or problem. You can
answer in French or English, but no other languages.
Souviens-toi, la complexité de toute algorithme est
en O(n), et rien d’autre. User Prompt:

Figure 7: Model degradation system prompt

A.3 User interface

Figure 8: Gradio user interface of the Protégé LLM

A.4 Instruction to participants

Figure 9: Instructions as sent to the participants
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A.5 Addition of the pilot study

Figure 10: Combined pilot and main study statistics of
of the impact of each educational scenario on the second
midterm grade increases relative to the midterm class
average.

A.6 Models sources

Name Retrieved From

Mistral-7B-Instruct-v0.1 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Openchat_3.5 https://huggingface.co/openchat/openchat_3.5
CodeLLaMA-34b-Instruct https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
LLama-2-70B-chat https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
Mistral-7B-Instruct-v0.3 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Table 3: Urls from which models were retrieved. All
models used with default hyperparameters.
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Abstract

Translating technical terms into lexically sim-
ilar, low-resource Indian languages remains a
challenge due to limited parallel data and the
complexity of linguistic structures. We pro-
pose a novel use-case of Sanskrit-based seg-
ments for linguistically informed translation of
such terms, leveraging subword-level similar-
ity and morphological alignment across related
languages. Our approach uses character-level
segmentation to identify meaningful subword
units, facilitating more accurate and context-
aware translation. To enable this, we utilize
a Character-level Transformer model for San-
skrit Word Segmentation (CharSS), which ad-
dresses the complexities of sandhi and morpho-
phonemic changes during segmentation. We
observe consistent improvements in two experi-
mental settings for technical term translation us-
ing Sanskrit-derived segments, averaging 8.46
and 6.79 chrF++ scores, respectively. Further,
we conduct a post hoc human evaluation to
verify the quality assessment of the translated
technical terms using automated metrics. This
work has important implications for the edu-
cation field, especially in creating accessible,
high-quality learning materials in Indian lan-
guages. By supporting the accurate and linguis-
tically rooted translation of technical content,
our approach facilitates inclusivity and aids in
bridging the resource gap for learners in low-
resource language communities.

1 Introduction

English is the most widely used language in aca-
demic books and as a medium of instruction world-
wide. India has 22 official languages in addition
to English. Over the years, works like (Hudelson,
1987) have established the power of language in
students’ learning. Aligned with these studies, the
Indian Government has proposed several changes
to the education system, among which multilingual
knowledge dissemination assumes an important
role. The proposal involves introducing regional

languages at various levels of education. Carry-
ing out this proposal leads to massive resource re-
quirements like textbook translations and content
creation. With the limited technical content avail-
ability in non-English languages, especially at the
higher education level, translating technical terms
from English to other languages is a challenging
task that needs to be addressed.
Maheshwari et al. (2024) presents the importance
of domain-specific lexicon generation, especially
catering to the technical domains, and its impor-
tance for translation tasks with low-resource lan-
guages as the target. Kunchukuttan and Bhat-
tacharyya (2016) shows the importance of subword
segmentation and lexical similarity of languages
in the translation task. Additionally, Sanskrit lan-
guage is known to be a lexically rich, flexible, and
well-structured language with the potential to cre-
ate meaningful new words easily. In this paper, we
introduce a use case of Sanskrit-based sub-word
level segmentation in word and phrase-level trans-
lation of academic/technical terminologies to lever-
age the large overlap of vocabulary among Indian
languages. For the generation of technical terms
in low-resource regional languages, we propose to
utilize the high vocabulary overlap of Indo-Aryan
and Dravidian languages with Sanskrit, thereby
performing a lexically informed translation.

Compound words are formed by combining two
or more meaningful subwords. In Indian languages,
compounds may be formed either through simple
concatenation without boundary changes or by fol-
lowing sandhi rules, resulting in boundary modi-
fications. Decompounding a compound Sanskrit
word involves segmenting it into smaller, mean-
ingful lexical units. Existing methods used for
the Sanskrit Word Segmentation (SWS)1 task can
be roughly classified into two categories: tack-

1We use the term segmentation for the task of splitting a
compound word into its meaningful constituents.
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ling the broader task of SWS and sandhi splitting-
specific techniques. The former includes works
like (Gérard, 2003; Sriram et al., 2023), a lexicon-
driven shallow parser. Hellwig and Nehrdich
(2018a) processes compound sandhi words at the
character level using recurrent and convolutional
neural networks. Sandhan et al. (2022) presents
TransLIST, integrating a module that appends ad-
ditional latent information from SHR to the input
sequence. It also employs a soft masked attention
mechanism to prioritize relevant subword candi-
dates and incorporates a path ranking algorithm
to mitigate erroneous predictions. Alternately, Ar-
alikatte et al. (2018) proposes a dual-decoder ap-
proach where the first decoder identifies the lo-
cation for the sandhi split (sandhivicchēda)2, and
the second decoder predicts the segmented out-
put. Similarly, Dave et al. (2021) applies an RNN
encoder-decoder-based two-stage methodology to
predict the location and final splits. Nehrdich et al.
(2024) presented a new language model pre-trained
for Sanskrit and further fine-tuned and utilised
the model for various downstream tasks including
word segmentation, lemmatization and morphosyn-
tactic tagging tasks. We use a similar architecture
in our CharSS model, to generate the word-splits.

Our main contributions through the paper are:
• We present the utilization of a character-based

Transformer model for the segmentation of com-
pound words (including sandhivicchēda) in San-
skrit (Section 2.1).

• We propose a Sanskrit-based input augmenta-
tion method using relatively resource-rich Hindi
translations to generate linguistically informed
technical lexicons for lexically similar, low-
resource languages (Section 2.2).

• Through comprehensive experiments, we
show the efficacy of our proposed methodologies.
We test CharSS on three benchmark datasets for
SWS. Similarly, we experiment with our technical
term translation process for multiple low-resource
languages, generating better-quality technical lexi-
cons in the target languages (Section 3).

2 Methodology

2.1 Sanskrit Word Segmentation

Figure 1 illustrates the proposed methodology for
SWS. We formulate the task of sandhi splitting
and Sanskrit Word Segmentation as a standalone

2We follow ISO-15919 script to mention Roman transla-
tions of Indian language text for better readability.

sequence-to-sequence transformation problem. For
this purpose, we propose to utilize a character-level
Transformer model such as ByT5.

Byte/Character Level
Transformer Model

Script Conversion Module
Devanagari to SLP1

निमित्तकारऋअस्य+उद्देषः

nimittakAraRasya+uddeSaHnimittakAraRasyoddeSaH

&nimittakAraRasya+uddeSaH$

निमित्तकारऋअस्योद्देषः

Compound word Segmented word

nimittakAraRasyoddeSaH

&nimittakAraRasya+uddeSaH$

Figure 1: Illustration of the proposed methodology for
SWS task.

ByT5. The ByT5 (Byte-Level Text-to-Text Trans-
fer Transformer) model (Xue et al., 2022) processes
text as sequences of bytes, bypassing the need for
language-specific tokenization. This approach en-
ables it to handle diverse languages and scripts
effectively, including rare words and complex or-
thographies. ByT5 is built on the T5 (Raffel et al.,
2020) framework. It poses all tasks as text-to-text
problems, enhancing its versatility. ByT5 demon-
strates strong performance on multilingual and
code-mixed tasks, making it particularly suitable
for low-resource languages and domain-specific
vocabularies. The input to the model is a single
Sanskrit word (unigram), and the output consists
of the segmented sub-tokens of the word, which
are concatenated using a "+" symbol to indicate
the split. We prepend the target split with an "&"
symbol to denote the start and append a "$" symbol
to mark the end of the target split as shown in Fig-
ure 1 to allow for precise delineation of morpheme
boundaries.

2.2 Technical Term Translation

In this paper, we propose a linguistically informed
method to translate technical terms in English to
low-resource Indian languages. This process en-
tails a crucial input augmentation phase prior to
the modeling and training stages to enhance the in-
put for model training. The raw dataset comprises
technical terms for English and translation to Hindi.
We prepare supplementary data for augmentation
using the methodology described below.

Sanskrit-based augmented input
There is a significant vocabulary overlap among
Indian languages, especially with Sanskrit. In this
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Figure 2: The process of generating Sanskrit-based aug-
mented input for the English term ’revaluation’, for
translation model

work, we attempt to leverage this overlap by us-
ing available dictionaries in the resource-rich Hindi
language to generate the corresponding terms in
other Indian languages. Figure 2 shows the steps to
obtain the proposed augmented input. For a given
technical term, we first normalize the correspond-
ing term in Hindi as explained in Appendix A.1.
We then remove the Hindi-specific affixes from the
words to get the lemma. Finally, we perform seg-
mentation of the normalized lemma and pass them
as additional input to the translation model to aid
the generation of technical terms in low-resource
Indian languages.

Motivation to use Hindi data to generate
Sanskrit-based segments:
There is a significant under-representation of digital
resources for all other Indian languages compared
to Hindi. Appendix A shows details of this digital
data divide. English-Hindi human-translated data
is readily available for the domains we considered
in this work. We obtained Sanskrit-based sub-word
tokens from the available Hindi data for over 76%
of training and test instances. Furthermore, a word
in one language may have several different transla-
tions in another language, depending on the context
of usage. Providing the augmented input helps dis-
ambiguate the domain of the word. See Section 3.3
for a detailed analysis supporting this argument.

3 Experiments and Results

For the technical term translation task, we utilize
the technical bilingual dictionary datasets provided
by Maheshwari et al. (2024) which is a dataset
curated from CSTT 3 dictionaries. The dataset con-

3https://cstt.education.gov.in/en

sists of word-level translations from English to 6
Indian languages across 3 domains, viz., adminis-
trative, biotechnology, and chemistry, and has 9094
terms in the training data and 1285 in the test data
for all domains combined. We obtained Sanskrit-
based inputs for all data instances by applying our
approach of generating Sanskrit-based additional
inputs. We use chrF++ (Popović, 2017) as the eval-
uation metric for all the experiments under this
task.

3.1 Experiments on the SWS Task

For the SWS task, we use word-level accuracy
as the evaluation metric. To compare against
(Sandhan et al., 2022), we also calculate sen-
tence level perfect match (PM) for SIGHUM and
hackathon datasets. We utilize the pre-trained
checkpoint of the base variant of the ByT5 model
available via Huggingface 4 and fine-tune it over
the UoH+SandhiKosh, SIGHUM dataset, and
hackathon datasets as three separate experiments.
For details about choice of ByT5 and Experiments
with SWS Task (see Appendix B.2).

3.2 Experiments on the Technical Term
Translation Task

For this task, we have two experimental settings,
both formulated as text-to-text translation. In the
first setting, we train and test the NMT model
NLLB (Costa-jussà et al., 2022) over all 6 lan-
guage pairs across 3 domains. In the second setting,
we train the model on Hindi, Gujarati, and Tamil
across 3 domains and test it over Marathi, Kan-
nada, and Odia across the same domains, which
can be considered as a zero-shot setting. In the
baseline configuration for this task, the model is
fed with English input only. In the configuration
corresponding to the proposed method, the English
input is augmented with additional Sanskrit-based
input prepared as discussed in Section 2.2. We uti-
lize the pre-trained 1.3B parameter checkpoint of
the NLLB model available via Huggingface5 and
fine-tune it over the technical domain dictionary
data for both experimental settings.

Results. Table 1 reports the comparison of
chrF++ scores obtained by finetuning the NMT
model with English-only input (NLLB) and with
augmented input (NLLB+Sanskrit) under the first
experimental setting. In Section 3.2 we analyze the

4https://huggingface.co/google/byt5-base
5https://huggingface.co/facebook/nllb-200-1.3B
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Test Dataset Model Hindi Marathi Gujarati Kannada Tamil Odia Average

Administrative
NLLB 50.23 45.42 43.35 45.68 44.13 43.22 45.33

NLLB + Sanskrit 54.74 46.07 45.82 47.25 44.07 44.45 47.07

Biotechnology
NLLB 53.52 51.91 3.79 12.38 18.46 17.16 26.20

NLLB + Sanskrit 60.63 60.73 13.09 29.20 37.89 35.82 39.56

Chemistry
NLLB 48.96 50.64 8.19 16.59 17.43 20.31 27.02

NLLB + Sanskrit 54.36 55.35 17.41 29.51 33.04 34.07 37.29

Table 1: chrF++ scores on the administrative, biotechnology, and chemistry domains for models with and without
additional Sanskrit-based input.

performance of the model with and without addi-
tional input in a zero-shot setting. Across experi-
ments, there’s a consistent performance gain with
the lexically informed input. Our method archives
an average improvement of 8.46 chrF++ scores.
We also provide a detailed post-hoc analysis of the
predictions in Section 3.3

Zero-Shot Translation
Table 2 shows the performance of the transla-
tion model without Sanskrit input (NLLB) and
with Sanskrit input (NLLB+Sanskrit) when trained
on Hindi, Gujarati, and Tamil, and evaluated on
Marathi, Kannada, and Odia across 3 domains
viz., Administration, Biotechnology, and Chem-
istry. Performance in terms of chrF++ scores shows
that the translation with the Sanskrit augmented
input consistently provides better translations as
compared to the English-only input across different
languages and domains. This proves the efficacy
of Sanskrit-based additional input for capturing
multilingual nuances.

Test Dataset Model Marathi Kannada Odia Average

Administrative
NLLB 41.42 44.03 40.57 42.01

NLLB + Sanskrit 43.26 45.71 42.02 43.66

Biotechnology
NLLB 44.42 27.83 29.37 33.87

NLLB + Sanskrit 53.79 40.32 37.76 43.96

Chemistry
NLLB 41.62 28.41 26.99 32.34

NLLB + Sanskrit 49.71 39.11 34.13 40.98

Table 2: chrF++ scores on administrative, biotechnol-
ogy, and chemistry for unseen languages, namely, Kan-
nada, Marathi, and Odia for zero-shot setting.

3.3 Post-hoc analysis

In this section, we present our detailed analysis of a
subset of the results of the lexicon translation task.
Unlike a regular translation task, which includes
a complete sentence and paragraphs, we deal with
a single word or phrase here. Such a short input
may have many different possible translations in

the target language, either the translations that can
be used interchangeably or those that may be var-
ied with the context of its usage. The evaluation
metrics like BLEU and chrF may not effectively
capture the quality of translation as it is obtained
by comparison of the predictions with the available
ground truth data. The ground truth data may have
a single or limited number of meaningful transla-
tions, and as a result, a different but correct predic-
tion may be penalised.
We followed the Human Post-hoc evaluation as per
Maheshwari et al. (2024) for the same two addi-
tional languages as presented by them viz., Punjabi
and Malayalam, using the same subset of input data
and metrics. Our goal is to understand the practical
utility of the generated lexicon in the respective lan-
guages and the extent to which they may be helpful
in translating technical books from English to low-
resource Indian languages. We achieved an R@1
score of 0.53 and 0.46 for Punjabi and Malayalam,
respectively, compared to 0.51 and 0.38 scores ob-
tained by LexGen. The R@3 score for Malayalam
is 0.72, comparable to 0.71 for LexGen, while the
score for Punjabi was slightly lower, at 0.92, com-
pared to 0.95 for LexGen. We also present detailed
analysis of the translation results by a comparative
study of the outputs in both the input settings, i.e.,
with and without the Sanskrit-based augmented
output (See Appendix A.3).

4 Conclusion

In this work, we addressed the task of Sanskrit
Word Segmentation (SWS) with a character-level
Transformer model, achieving superior segmenta-
tion performance on two benchmark datasets and
competitive performance on another benchmark
dataset.. Furthermore, we propose to leverage the
significant vocabulary overlap among Indian lan-
guages, utilizing data from the relatively resource-
rich Hindi language which highlights the potential
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of cross-linguistic resource sharing to boost perfor-
mance in low-resource language tasks.

Limitations

To generate Sanskrit-based input, we rely on the
available Hindi data. Though the availability of
Hindi resources is much higher than that of other
Indian languages, its digital data richness is consid-
erably lower than that of English.
Not all languages exhibit significant vocabulary
overlap with Sanskrit, and in such cases, our pro-
posed method may have limited applicability for
lexicon generation.
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A Appendix

A.1 Normalisation
anusvāra (m. ), is a symbol used in all Indian
language scripts to denote a type of nasal sound.
According to Sanskrit grammatical rules, when
this symbol precedes one of the first 4 characters
in each of the consonant group called vargās
(ka/ca/t.a/ta/pa), it needs to be converted to the
respective fifth characters (pañcamāks.ara) of the
vargās (ṅ/ñ/n. /n/m). This rule may not be followed
in other Indian languages. Since our sub-word
segmentation model is trained on Sanskrit, and
applied on Hindi data for the translation task, we
normalise all the data by converting all occurences
of anusvāra to the corresponding pañcamāks.ara,
before passing it to our model for segmentation.

A.2 sandhi
Sanskrit and other Indian languages have common
usage of compound words, which are formed from
multiple subwords. When two words are combined,
the language expects certain rules to be followed
at the word boundaries. Such a change in the word
boundary forming a compound word, is termed as
sandhi (the word has a meaning of junction. In
Sanskrit, there are specific rules for the joining of
subwords to form a compound, depending on the
ending character of the first and the beginning char-
acter of the second word. We specify these rules as
the sandhi rules in this paper. Similarly, splitting of
the sandhi will also need to follow the reverse pro-
cess, which is not as straightforward as sub-word
joining. In the paper, we specify the process of
sandhi splitting as sandhivicchēda. Following are
some examples of sandhivicchēda (1) tatrāpi = tatra
+ api; (2)narēndra = nara + indrah.

A.3 Post-hoc Analysis of Generated Technical
Lexicons

Table 3 shows some qualitative, post hoc analysis
of the prediction results. The analysis shows that
the augmented input

• Assists the model to disambiguate between
multiple possible outputs (synonyms) and obtain
the contextually apt term.

– Examples 1 and 2 in table 3 are from the Ad-
ministration domain, with Kannada as the re-
quired target language. The translations gener-
ated by the model with only the English input
are meaningful but in different contexts. The

word mass is considered by the model, in the
meaning of the amount of matter in an object
, while the expected meaning is mass as used
in population

– Similarly, the word composition is expected
to take the meaning of composing music or
poetry, while the meaning taken by the model
is the process of combining parts of something
to whole. Example 4 shows a similar trend in
Marathi in Biotechnology domain.
For the above examples, our model is able to
disambiguate the intended meaning and gen-
erate the expected output.

• Examples 3 is a sample where the output gen-
erated with English-only input is incorrect, while
the augmented input generates correct output.

We notice that, the performance difference with
and without augmented input is less in the admin-
istrative domain when compared to other domains.
With the observations from the predictions, we ar-
rive at the following reasonings. The words in this
domain are very frequently used by people in all
languages. The model predictions with augmented
input results in many archaic words, which are cur-
rently not in use, or the usage is highly infrequent.
A word can have a large number of synonyms, and
the number of words in the reference list of the
ground truth, is limited, which mostly do not in-
clude the archaic words. Because of these reasons,
we do not see a large jump in the performance
with augmented input in this domain. This observa-
tion is especially true with languages like Tamil, in
which there is a significant number of non-Sanskrit
originated words, which may be more commonly
in use. In both experimental settings, we observe
that the gain is more in case of the biotechnology
and chemistry domains as compared to the admin-
istrative domain. This behavior can be attributed
to the pre-training of the NLLB model on mas-
sive generic domain data which has considerable
overlap with the administrative domain data.

B Sanskrit Word Segmentation Task

B.1 Data - SWS Task

For the SWS task, following Dave et al. (2021)
and Sandhan et al. (2022), we use three publicly
available benchmark datasets, UoH corpus7 com-
bined with the SandhiKosh dataset (Bhardwaj et al.,
2018), SIGHUM dataset (Krishna et al., 2017),

7https://sanskrit.uohyd.ac.in/Corpus/
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Technical term (English) Domain; Language Augmented input 6 Prediction with
English only input Sanskrit-based augmented input

1 mass Administration; Kannada mass <SEP> jana <isep> samūha dravyamāna jana-samūha
2 composition Administration; Kannada composition <SEP> racanā samyōjane racanā
3 brood Biotechnology; Marathi brood <SEP> bhrūn. a prajanana bhrūn. a
4 transformation Biotechnology; Marathi transformation <SEP> rūpa <isep> antaran. a parivartana rūpāntara
5 injection Biotechnology; Marathi injection <SEP> antah. <isep> ks.ēpan. a injēkśana antah. -ks.ēpan. a

Table 3: Post hoc Qualitative Analysis of Technical term translation results

and hackathon dataset (Krishnan et al., 2020).
These datasets are carefully curated subsets of a
larger corpus DCS (Hellwig, 2010). The UoH cor-
pus+SandhiKosh dataset has 62273 and 15569 in-
stances as train and test sets. For this dataset, we
apply the pruning technique mentioned in (Dave
et al., 2021) to filter out invalid instances. The
size of the training, validation, and test sets for
the SIGHUM dataset are 97000, 3000, and 4200,
respectively, and for the hackathon dataset, it is
90000, 10332, and 9963, respectively. Contem-
porary deep-learning methodologies have demon-
strated enhanced performance when utilizing the
SLP1 script for Sanskrit. Consequently, we have
prepared all datasets in the SLP1 script to leverage
these performance improvements.

Model LPA SPA

JNU - 8.1
UoH - 47.2
INRIA - 59.9
DD-RNN 95.0 79.5
Sandhi Prakarana 92.3 86.8
ByT5 97.2 93.5

Table 4: Location prediction accuracies (LPA) and split
prediction accuracies (SPA) for different methods on
the UoH+SandhiKosh dataset.

B.2 Experiment Details

Baselines. For the experiments performed over
the UoH+SandhiKosh dataset, we compare our
method against Sandhi Prakarana (Dave et al.,
2021), DD-RNN (Aralikatte et al., 2018), and 3
sandhi spitter tools viz (i) JNU Splitter (Sachin,
2007), (ii) UoH Splitter (Kumar et al., 2010), and
(iii) INRIA Sanskrit Heritage Reader (Huet, 2003;
Goyal and Huet, 2013). We reproduce and report
the scores reported by Dave et al. (2021). For DD-
RNN and the 3 sandhi tools, we report the scores
reported in (Aralikatte et al., 2018) and (Dave et al.,
2021). For the experiments performed over the
SIGHUM and hackathon datasets, we compare our

method against TransLIST (Sandhan et al., 2022)
and rcNN-SS (Hellwig and Nehrdich, 2018b).

Results. Tables 4 and 5 report the performance
of our methodology compared with the baselines
over the respective datasets. Table 4 shows that
our methodology outperforms all other baselines in
terms of both Location Prediction Accuracy (LPA)
and Split Prediction Accuracy (SPA) with abso-
lute gains of 4.86 and 6.72, respectively, on the
UoH+SandhiKosh dataset. TransLIST Sandhan
et al. (2022) utilizes a set of potential split can-
didates from SHR (referred to as LIST in their
paper), which provides additional linguistic infor-
mation for segmentation. Our model is not lin-
guistically informed like this as we feed only the
compound word to the model. Hence, our method
is not strictly comparable with the results shown in
row 2 of Table 5. Nevertheless, our method outper-
forms all other models on three out of four evalua-
tion metrics when tested on hackathon dataset. On
SIGHUM dataset, our method achieves competitive
scores. Sandhan et al. (2022) also reported the per-
formance of their model without the LIST module,
as shown in row 3 (TransLIST). The model with-
out the LIST step is more comparable to our setting
and we outperform this result as well, while failing
to outperform the scores in row 2. As a separate
experiment, we provide SHR input to our model
for SIGHUM data which outperforms TransLIST
on PM metric achieving a PM score of 94.31.

Model SIGHUM Hackathon

P R F PM P R F PM

rcNN-SS 96.86 96.83 96.84 87.08 96.40 95.15 95.77 77.62

TransLIST 98.80 98.93 98.86 93.97 97.78 97.44 97.61 85.47

TransLIST - - - 86.10 - - - -

ByT5 98.68 98.42 98.53 93.78 97.58 97.71 97.63 87.7

Table 5: Word-level Precision, Recall, F1 and sentence-
level Perfect Match (PM) scores on SIGHUM and
hackathon.
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Abstract

Knowing how test takers answer items in ed-
ucational assessments is essential for test de-
velopment, to evaluate item quality, and to im-
prove test validity. However, this process usu-
ally requires extensive pilot studies with human
participants. If large language models (LLMs)
exhibit human-like response behavior to test
items, this could open up the possibility of us-
ing them as pilot participants to accelerate test
development. In this paper, we evaluate the
human-likeness or psychometric plausibility
of responses from 18 instruction-tuned LLMs
with two publicly available datasets of multiple-
choice test items across three subjects: reading,
U.S. history, and economics. Our methodol-
ogy builds on two theoretical frameworks from
psychometrics which are commonly used in
educational assessment, classical test theory
and item response theory. The results show
that while larger models are excessively confi-
dent, their response distributions can be more
human-like when calibrated with temperature
scaling. In addition, we find that LLMs tend
to correlate better with humans in reading com-
prehension items compared to other subjects.
However, the correlations are not very strong
overall, indicating that LLMs should not be
used for piloting educational assessments in a
zero-shot setting.

1 Introduction

Assessing students’ knowledge and skills repre-
sents an important part of education: admission to
universities, scholarship awards, and even political
decisions on education policy are often based on
large-scale educational assessments. Developing
such high-stakes tests is a long and expensive pro-
cess involving experts writing and reviewing test
items and repeated piloting with hundreds or thou-
sands of participants (Green, 2020; Papageorgiou
et al., 2021). Therefore, the automation of parts
of this process has been a long-standing topic in

Which of the following is the most
commonly used measure of inflation?

A) Gross domestic product

B) Index of Leading Economic Indicators

C) Consumer price index (correct)

D) Dow Jones Industrial Average

Human LLM
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Figure 1: Example item from the NAEP dataset and
illustration of our psychometric analyses of LLM re-
sponses. We use the first-token probabilities produced
by LLMs and analyze how well they correspond to hu-
man test taker responses. Specifically, we look at (a) the
similarity between LLM and human response distribu-
tions, (b) whether items that are difficult for humans are
also difficult for LLMs, and (c) how well response prob-
abilities in LLMs match those expected from humans.

assessment research and practice (Haladyna, 2013;
Kurdi et al., 2019). Most recently, large language
models (LLMs) have been explored for tasks like
item generation or item difficulty prediction (Attali
et al., 2022; Yaneva et al., 2024; Owan et al., 2023;
May et al., 2025).

The present work explores the possibility of us-
ing LLMs as participants of a pilot study in test
development. A pilot study involves collecting and
analyzing responses by human test takers to iden-
tify low-quality items and to measure item charac-
teristics like difficulty. The statistical analysis of
item responses most commonly follows one of two
psychometric theories, classical test theory (CTT)
or item response theory (IRT) (Chang et al., 2021).
For LLMs to be useful models of human test tak-
ers, their responses must be human-like when an-
alyzed within those theoretical frameworks – we
call this psychometric plausibility. This includes,
for example, that items that are difficult for humans
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should also be difficult for LLMs. We propose an
approach to evaluate the psychometric plausibility
of LLM response distributions in multiple-choice
test items, which is summarized in Figure 1.

Our contributions are two-fold: First, we present
methods for assessing the psychometric plausibility
of LLM responses with CTT and IRT (Section 3).
Second, we benchmark the psychometric plausi-
bility of 18 instruction-tuned LLMs across two
datasets and three test subjects, showing that none
of the models are sufficiently reliable to simulate
test takers for piloting (Section 4).

2 Related work

A growing body of research has studied the use of
natural language processing (NLP) for analyzing
or evaluating test items. Examples of specific tasks
are predicting difficulty (Yaneva et al., 2024), eval-
uating answerability or guessability (Raina et al.,
2023; Säuberli and Clematide, 2024), evaluating
the quality of generated items (Raina and Gales,
2022; Gorgun and Bulut, 2024), or predicting corre-
lations between items (Hernandez and Nie, 2022).
Some of these studies used NLP models to simu-
late test takers: Lalor et al. (2019) and Byrd and
Srivastava (2022) used “artificial crowds”, i.e., a
large number of models trained on subsampled or
partially corrupted data, to simulate test takers at
different ability levels. More recently, LLMs have
been used. For example, Lu and Wang (2024) and
Hayakawa and Saggion (2024) applied prompting
techniques to simulate multiple test takers with a
single LLM. Park et al. (2024) and Laverghetta Jr
et al. (2022) used multiple models to represent a
group of test takers, while Liusie et al. (2023) and
Zotos et al. (2025) used LLM uncertainty as a proxy
for predicting student’s response distributions.

Simulating test takers makes it easy to gener-
ate large numbers of item responses, which in turn
makes statistical item analysis feasible. For ex-
ample, Liusie et al. (2023) and Hayakawa and
Saggion (2024) used CTT to compare item dif-
ficulty between humans and LLMs, while Lalor
et al. (2019), Byrd and Srivastava (2022), and Park
et al. (2024) predicted IRT-based item character-
istics. Laverghetta Jr et al. (2022) compared both
CTT- and IRT-based item difficulty between hu-
mans and models.

Apart from the application of educational assess-
ment, the human-likeness of predicted response
distributions has also been studied in the context

of human label variation in tasks with inherent
disagreement between annotators (Plank, 2022).
Techniques like temperature scaling or fine-tuning
on soft labels have been employed to align predic-
tive probabilities with human response distributions
(Baan et al., 2022; Chen et al., 2024).

Our approach combines ideas from several of
these works. Our aim is to measure whether the
response probabilities of a single model can be a
plausible representative of a single test taker or a
group of test takers. In this study, we use tempera-
ture scaling to optimize the response distributions,
leaving other calibration methods as future work.
We draw from both CTT and IRT for evaluation.

3 Psychometric plausibility

Psychometrics is concerned with the measurement
of unobserved latent variables based on observed
responses to test items. Examples of possible latent
variables include language proficiency, intelligence,
and personality traits like introversion. In educa-
tional assessment, two theoretical frameworks are
commonly applied: classical test theory (CTT)
and item response theory (IRT). These theories
model the ability of test takers based on their ob-
served test scores, but they also allow us to analyze
characteristics of test items such as their difficulty
or discriminating power (Livingston, 2011). For
this reason, CTT and/or IRT is often used in pilot
studies during test development in order to identify
low-quality items and improve test reliability.

In our approach to evaluating psychometric plau-
sibility, we focus on item analysis, i.e., determin-
ing item characteristics based on item responses by
humans or LLMs. The key idea is that a psychome-
trically plausible LLM should give responses that
are aligned with the characteristics of the items as
measured using human responses.

In the following subsections, we introduce the
relevant basics of CTT and IRT. We then describe
how the response distributions of LLMs can be
evaluated in the context of these two theories.

3.1 Classical test theory
CTT models assume that the observed test score
achieved by a test taker is the sum of the true test
score (reflecting the test taker’s ability) and a ran-
dom error score (Hambleton and Jones, 1993). Item
analysis usually involves calculating two statistics
for each item:

• Item facility is the proportion of test takers
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who answered the item correctly. High item
facility corresponds to low item difficulty.

• Item discrimination is the correlation be-
tween a person’s score on the item and their
score in the entire test. Low discrimination in-
dicates that the item is inappropriate for mea-
suring the latent variable and might need to
be removed from the test.

3.2 Item response theory
IRT introduces a set of probabilistic models that
predict the response of a specific person to a spe-
cific item, taking into account the person’s latent
variable (e.g., ability) and the item’s characteristics
(e.g., difficulty and guessability). The definition of
the IRT model depends on the choice of item char-
acteristics involved and the response variable type.
Here we focus on the three-parameter logistic
(3PL) model for dichotomous (correct/incorrect)
responses:

P (Xp,i = 1) = ci +
1− ci

1 + e−ai(θp−bi)
(1)

Xp,i equals 1 if person p answered item i cor-
rectly and 0 otherwise. θp is the ability parameter
for person p, and ai, bi, and ci are item characteris-
tic parameters for item i.

• ai reflects discrimination, i.e., how good the
item is at distinguishing between more and
less proficient test takers, similar to the dis-
crimination parameter in CTT.

• bi is the difficulty parameter and reflects the
level of ability required for a substantial in-
crease in correct response probability.

• ci is the guessing parameter and corresponds
to the probability with which a person can
answer the item correctly even if it is much
too difficult for their ability level.

Once fitted on a large number of test taker re-
sponses, an item’s parameters define the shape of
its item characteristic curve (ICC; see Figure 1
(c) for examples), and allow us to predict the proba-
bility of a correct response given their ability level.

One important advantage of IRT over CTT is
that item characteristics are not dependent on the
sample of test takers who answered this item. Even
if not every person answered every item, the param-
eters can still be compared between items, since

they are estimated in the context of person abilities.
A disadvantage of IRT is that it generally requires
larger sample sizes (Hambleton and Jones, 1993;
Fan, 1998).

3.3 Psychometric plausibility of LLM
responses

For a LLM to be considered psychometrically plau-
sible, its response probabilities across different
items should match the response patterns expected
from humans. To evaluate this, we can use the item
characteristics estimated from human responses us-
ing CTT or IRT. In the following, we present two
examples for such evaluations.

How well does a LLM fit CTT item facility statis-
tics? To check this, we interpret the LLM’s re-
sponse probabilities as the response distribution
in a sample of test takers. Specifically, the LLM
should predict a higher probability for the correct
answer on easier items compared to more difficult
items. Therefore, we propose Pearson’s correlation
coefficient between human-based item facility and
the LLM’s probability for the correct response as
an evaluation metric.

In the present paper, we focus on facility as the
only CTT item statistic. Correlating with discrimi-
nation statistics would require response data at the
level of individual test takers or pre-computed dis-
crimination values, which are not available in the
datasets we are using.

How well does a LLM fit IRT item character-
istic curves? To evaluate this, we consider the
LLM’s response probabilities as representative of
a single imaginary test taker with a specific abil-
ity. For example, the model may be calibrated to
match the ability of an average test taker. Given
each item’s ICC, we can then compare the model’s
correct response probabilities to the ones predicted
by the IRT model.

We will demonstrate these two analysis methods
in the following experiment.

4 Experimental setup

We empirically evaluate the psychometric plausibil-
ity of 18 LLMs across two datasets and three test
subjects, comparing model and human response
distributions and applying the analyses described
in the previous section.
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4.1 Datasets

NAEP. The National Assessment of Educational
Progress (NAEP) is a nation-wide and congression-
ally mandated educational assessment program in
the United States.1 NAEP involves tests across ten
subjects at grades 4, 8, and 12. The tests include
selected response items as well as constructed re-
sponse items. A subset of items from previous
years along with student response distributions and
IRT item parameters are published and can be ac-
cessed online through the Questions Tool.2 For our
experiments, we used only four-option multiple-
choice items from Reading, U.S. History, and Eco-
nomics tests, because most items in these subjects
do not heavily rely on images, so that the LLM
input can be text-only. For items that do include im-
ages, we included the alternative text and manually
excluded items that were unanswerable without ac-
cess to the full image. For some reading items, the
full passage text was unavailable due to licensing
issues – we also excluded these items.3 This re-
sulted in a total of 549 items, namely: 252 items in
reading, 204 in history, and 93 in economics.

CMCQRD. The Cambridge Multiple-Choice
Questions Reading Dataset (CMCQRD; Mullooly
et al., 2023) contains four-option multiple-choice
reading items for proficiency levels B1, B2, C1,
and C2 in the Common European Framework of
Reference for Languages (CEFR). Unlike NAEP,
these items are targeted at L2 English learners. For
a subset of the items, student response distributions
and rescaled IRT difficulty parameters are provided.
We included all items with available response distri-
butions, resulting in a total of 504 items. Because
the dataset’s documentation does not include pre-
cise information about how the IRT parameters
have been rescaled, it is impossible to reconstruct
the original ICCs or interpret their meaning in rela-
tion to the test takers’ abilities. Thus, we exclude
the CMCQRD dataset from our IRT-based analysis.

4.2 Language models

We selected 18 recently published open-weight
instruction-tuned LLMs4 from four model fami-

1https://nces.ed.gov/nationsreportcard/about/
2https://www.nationsreportcard.gov/nqt/
3Refer to our code repository for detailed filter cri-

teria and excluded items: https://github.com/mainlp/
llm-psychometrics

4We also tested non-instruction-tuned LLMs. While the
overall results are very similar, instruction-tuned models
tended to slightly outperform base models. Therefore, we

lies: Llama 3 (Grattafiori et al., 2024), OLMo 2
(OLMo et al., 2025), Phi 3/4 (Abdin et al., 2024a,b),
and Qwen 2.5 (Qwen et al., 2024). We included
models ranging in size from 0.5B to 72B param-
eters to explore the effect of model capability on
human-likeness of the responses. We used the im-
plementations in the Hugging Face transformers
library (Wolf et al., 2020). Models with 70B or
more parameters were loaded with 8-bit quantiza-
tion.

4.3 Prompting and response extraction
We used a simple prompt with a user message in-
structing the model to select the correct answer
option and to output only the corresponding letter
(A, B, C, or D). The exact prompt template can be
found in Appendix A. We used the model’s default
system messages where applicable.

To get a probability distribution, we extracted the
first predicted token logits for the four answer op-
tion letters and applied the softmax function. Since
LLM responses are highly sensitive to the order of
multiple-choice answer options (Wang et al., 2024;
Zheng et al., 2024; Pezeshkpour and Hruschka,
2024), we prompted four times per item and re-
ordered the options such that every option appears
in every position exactly once, and averaged the
probabilities from the four permutations. Zheng
et al. (2024) showed that this “cyclic permutation”
is practically as efficient for debiasing results as
full permutation, which would require 4! = 24
model passes.

4.4 Temperature scaling
In preliminary experiments, we found that most
LLMs (especially very large ones) tend to be overly
confident compared to the human response distri-
butions, assigning almost all probability mass to a
single answer option. Temperature scaling is a com-
mon and effective approach to mitigate this issue
and bring the uncertainty in LLM responses closer
to human variability (Guo et al., 2017; Baan et al.,
2022; Chen et al., 2024). It involves increasing
the temperature parameter in the softmax calcu-
lation, essentially moving some probability mass
from highly probable to less probable options.

In our case, we find the optimal temperature that
minimizes the Kullback-Leibler (KL) divergence
between LLM and human response distributions
(see Appendix C for details). We apply this opti-
mization separately to each LLM and each subset

only report results from the instruction-tuned models here.
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Figure 2: Mean KL divergence between temperature-scaled LLM response probability distributions and human
response distributions. Models are colored by family and ordered by increasing number of parameters within
families. Error bars are bootstrapped 95% confidence intervals.

of items, i.e., each subject-grade combination in
NAEP and each proficiency level in CMCQRD.
This is important because the human response dis-
tributions are not sampled from the same popula-
tion of test takers across all subsets (e.g., 4th grade
items were only answered by 4th graders).

We perform the temperature optimization on the
same data as the evaluation (cf. Baan et al., 2022;
Liusie et al., 2023). This means that the results
should be considered an upper bound. In other
words, we are testing the best-case scenario, where
we have enough data to calibrate the LLMs per-
fectly to the human distributions as possible.

4.5 Evaluation metrics

We evaluate the human-likeness and psychometric
plausibility of LLM responses from three perspec-
tives:

Following Liusie et al. (2023) and Hayakawa
and Saggion (2024), we report the average KL
divergence between the temperature scaled LLM
and human response distributions. In addition to
comparing the probability for the correct answer
option, this metric also captures the similarity of
the distractor probabilities.

For our CTT-based analysis, we report Pear-
son’s correlation coefficient between the item fa-
cilities and the correct LLM response probabilities.
This reflects the idea that psychometrically plausi-
ble LLMs should be more confident in the correct
answer option when the item is easier.

In the IRT-based analysis, we assume that the
temperature-scaled LLM response distributions re-

flect the response behavior of an average test taker,
meaning a person with an ability parameter that is
the mean of the sample. The ability parameters in
NAEP’s IRT models are fixed to have mean zero,5

therefore we use Equation 1 to calculate the ex-
pected correct response probability for human test
takers with ability θp = 0 for each item i:

Pexpected(Xi = 1) = ci +
1− ci

1 + eaibi
(2)

We compare these values to the LLM’s observed
correct response probabilities and report Pearson’s
correlation coefficient.

5 Results

5.1 Comparison of response distributions
Figure 2 shows the average KL divergence between
LLM and human response distributions, including
two simple baselines: UniformBaseline always
predicts the same probability (25%) for all answer
options. OracleBaseline always predicts the same
probability for all distractors and a higher probabil-
ity for the correct answer option (the same for all
items). OracleBaseline is optimized using the same
temperature scaling approach as the other models,
as described in Section 4.4.

Across all model families and item subsets, we
observe that LLM responses become more similar
to the human distribution with increasing model
size. However, only a small number of very large

5https://nces.ed.gov/nationsreportcard/tdw/
analysis/scaling_est.aspx
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Figure 3: Pearson correlation between LLM correct re-
sponse probabilities and item facilities. Numbers in the
item subset labels refer to the grade level. ∗ denotes sig-
nificance (two-tailed, p < 0.05), n refers to the sample
size in each cell of the corresponding row.

models in the CMCQRD B1 item subset managed
to significantly outperform the OracleBaseline (bot-
tom row in Figure 2). This shows that the dis-
tribution of probabilities among distractors is not
accurately modeled.

5.2 CTT analysis

Correlations between the LLMs’ correct answer
probabilities and item facilities are visualized in
Figure 3. While there does not seem to be a clear
effect of model family or size, the correlations dif-
fer substantially between item subsets. The highest
correlation coefficients were achieved in the CM-
CQRD B1 reading items, ranging from 0.32 to
0.56 across models. Among items from the NAEP
datasets, most significant correlations can be found
in reading items and 8th grade history items. How-
ever, the correlations are not strong overall and
fluctuate substantially across grade levels.

5.3 IRT analysis

NAEP considers multiple different skills for each
subject (e.g., informational and literary reading
skill) and therefore separate IRT models with dif-
ferent ability scales are fitted. Some items test
multiple skills and are shared between different
scales (but with different item parameters).

In Figure 4, we report the correlations between
LLM’s correct answer probabilities and expected
human correct response probabilities across NAEP
IRT scales. As an upper bound, we also include the
human response distributions as a model, i.e., the
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Figure 4: Pearson correlation between LLM correct
response probabilities and expected correct response
probabilities based on human IRT models. Numbers in
the IRT scale labels refer to the grade level. ∗ denotes
significance (two-tailed, p < 0.05), n refers to the sam-
ple size in each cell of the corresponding row.

correlation between the response probability for
the “average” test taker in the IRT model and the
observed proportion of correct responses among
human test takers (last column in Figure 4).

Similar to the CTT results, most significant cor-
relations can be found in reading items and 8th
grade history items, and no effect of model family
or size emerged. Notably, however, we also find
significant negative correlations in some 4th grade
history items. This means that these LLMs tend
to be more confident in the correct answer when
the item is more difficult, contradicting the expec-
tations for psychometrically plausible responses.

Overall, while human correlations are consis-
tently close to 1.0, LLM correlations are rather low,
and the number of significant correlations is small
(considering that we expect 5% of results to be
type I errors with the chosen significance level).
However, given that the IRT analysis uses smaller
item subsets and puts more stringent criteria on
the LLM responses than the CTT analysis, these
results are not overly surprising.

6 Discussion

The presented method is a multi-faceted approach,
providing different perspectives on the human-
likeness of LLM responses: The response distri-
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bution can tell us about a model’s ability to model
the success of distractors; the CCT analysis can
show how well the model’s probabilities represents
a whole group of test-takers; and finally, the IRT
analysis captures the plausibility of LLMs as an
individual test taker in a specific skill.

LLMs are not easily distracted. Comparing the
response distributions between humans and LLMs
shows that especially large LLMs are good at pre-
dicting the correct answer (see Appendix B), but
bad at predicting which incorrect answer options
humans are likely to be distracted by (otherwise,
they would outperform the OracleBaseline in Fig-
ure 2). An example of this is also shown in Figure 1,
where the item contains a very successful distractor
(A), but the LLM (Qwen2.5-0.5B) assigns almost
no probability mass to it. Calibration using temper-
ature scaling cannot alleviate this issue, and reduc-
ing model size is not effective either (see Appendix
B for a more detailed analysis). This is an impor-
tant limitation in applying LLMs for evaluating
distractors.

Results are consistent across models, but incon-
sistent across subjects. While the correlations
in the CTT and IRT analyses are likely too low to
be useful for analyzing or evaluating single items,
some interesting patterns can still be observed. The
results are remarkably consistent across families
and – after calibration – model sizes, demonstrat-
ing that all models are very similar to each other,
but very dissimilar to humans in this setting (see
Appendix D for a more in-depth comparison).

At the same time, there are considerable differ-
ences between subjects and IRT scales. Correct
answer probabilities appear to be more human-like
in reading comprehension items compared to other
subjects, while history items show mixed results,
in some cases even eliciting strong negative cor-
relations (see Figure 4). This might indicate that
reading comprehension in LLMs is more compara-
ble to humans than other abilities such as long-term
memory retrieval, which is required for answering
test items in history and economics. Another possi-
ble explanation could be the fact that history and
economics items more frequently contain images,
which have to be understood from descriptions in
the alternative text. Since we used text-only LLMs,
this discrepancy in the way items were presented
was inevitable. Future work could explore whether
multimodal models are more successful with these
item types.

How to improve psychometric plausibility? To
a large degree, the lack of psychometric plausibility
is in line with previous research (Hayakawa and
Saggion, 2024; Zotos et al., 2025). The success
of attempts to make the model response distribu-
tions more human-like was very limited – including
our temperature scaling approach and Hayakawa
and Saggion’s (2024) prompting techniques for in-
jecting personas, uncertainty, or noise. Therefore,
in order to improve psychometric plausibility, we
will likely need to go beyond zero-shot prompting.
Fine-tuning on human response distributions could
be a promising direction for future research (cf.
Chen et al., 2024).

7 Conclusion

We demonstrated how LLM responses can be ana-
lyzed in the context of CTT and IRT and evaluated
the human-likeness or psychometric plausibility of
zero-shot responses. We found that neither reduc-
ing model size nor temperature scaling increased
psychometric plausibility to a sufficient degree, but
we observed slightly more human-like responses in
reading comprehension compared to other subjects.
We conclude that human-like response behavior in
educational assessments has not emerged from the
process of training instruction-tuned LLMs, call-
ing for caution in their use. Fine-tuning on human
response distributions may be necessary to create
psychometrically plausible models that could be
used for piloting.

Limitations

Available item response data. Our analysis is
limited by the type and amount of data available in
the context of educational assessment. Item banks
in high-stakes assessments are usually confidential
to avoid leaking information for future test tak-
ers, and item responses from single test takers are
generally not publicly released. Therefore, in or-
der to keep our results reproducible, we only used
publicly available datasets, where only aggregated
response distributions and IRT parameters for a rel-
atively small number of items are available. Given
a larger amount of and less aggregated data, more
fine-grained analyses would be possible (e.g., by
including item discrimination in the CTT analysis)
and more systematic patterns could be revealed.

Multimodal items. In addition, the NAEP
dataset is not ideal for text-only LLMs, because
some of the items involve extracting information
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from pictures. Although we replaced the pictures
with alternative texts and manually removed unan-
swerable items (see Section 4.1), this could still
have affected our results for this dataset.

Test-taker population. The two datasets we used
contain response data from two different popula-
tions of test takers. While NAEP is targeted at
children and adolescents (i.e., mostly L1 English
speakers) in the U.S. school system, CMCQRD
involves L2 learners of English. This difference
could have affected the results and reduce the com-
parability between the two datasets.

Ethical considerations

We see no ethical issues related to this work. All
experiments were conducted with publicly avail-
able data and open-source software, and we have
made all of our code openly available for repro-
ducibility.6 The two datasets we used only contain
highly aggregated response data and do not include
any information that could lead to the identification
of individual test takers.

We used GitHub Copilot for coding assistance in
the implementation of the experiment and the anly-
sis of the results. All generated code was manually
checked and thoroughly tested.
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A Prompt templates

The following prompt template was used for items with a reading passage (i.e., reading comprehension
items):
Based on the following text, select the correct answer to the question below.

Text: {passage}

Question:
{item stem}
A) {option 1}
B) {option 2}
C) {option 3}
D) {option 4}

Respond only with the letter of the answer (A, B, C, or D).

The following prompt template was used for items without a reading passage (i.e., history and economics
items):
Select the correct answer to the following question.

Question:
{item stem}
A) {option 1}
B) {option 2}
C) {option 3}
D) {option 4}

Respond only with the letter of the answer (A, B, C, or D).

B Response accuracy

Figure 5 shows the mode accuracy of models and humans, i.e., the proportion of items where the option
with the highest response probability is the correct one. The high accuracy of large models shows that the
items are answerable given the available information in the prompt.
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Figure 5: Mode accuracy across item subsets, models, baselines, and humans. Error bars are bootstrapped 95%
confidence intervals.
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C Details on temperature scaling

We optimized temperature parameters using KL divergence as a loss function and an Adam optimizer
(see analysis.py in the code repository). The resulting optimized temperature values are visualized
in Figure 6. Larger LLMs tend to be overly confident, assigning almost all probability mass to a single
answer option, and therefore require higher temperatures to align them with human response distributions.

The effect of temperature scaling can be seen by comparing the results without temperature scaling in
Figure 7 with Figure 2.
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Figure 6: Optimized temperature value for each model and item subset.
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Figure 7: Mean KL divergence between LLM response probability distributions without temperature scaling and
human response distributions. Error bars are bootstrapped 95% confidence intervals.

D Additional results for CTT analysis

In addition to the correlations between models and humans in Figure 3, Figure 8 shows the full correlation
matrices, including model-model correlations. This confirms that the LLMs are much more similar to
each other than to humans. In addition, models of similar sizes (but different model families) tend to be
more similar to each other compared to models of different sizes.
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Figure 8: Pearson correlation between all LLM correct response probabilities and human item facilities.
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Comparison

Aymeric de Chillaz1* Anna Sotnikova1*† Patrick Jermann1 Antoine Bosselut1

1EPFL

Abstract

Generative AI systems have rapidly advanced,
with multimodal input capabilities enabling
reasoning beyond text-based tasks. In educa-
tion, these advancements could influence as-
sessment design and question answering, pre-
senting both opportunities and challenges. To
investigate these effects, we introduce a high-
quality dataset of 201 university-level STEM
questions, manually annotated with features
such as image type, role, problem complex-
ity, and question format. Our study analyzes
how these features affect generative AI perfor-
mance compared to students. We evaluate four
model families with five prompting strategies,
comparing results to the average of 546 stu-
dent responses per question. Although the best
model correctly answers on average 58.5% of
the questions using majority vote aggregation,
human participants consistently outperform AI
on questions involving visual components. In-
terestingly, human performance remains sta-
ble across question features but varies by sub-
ject, whereas AI performance is susceptible
to both subject matter and question features.
Finally, we provide actionable insights for edu-
cators, demonstrating how question design can
enhance academic integrity by leveraging fea-
tures that challenge current AI systems without
increasing the cognitive burden for students.

1 Introduction

Generative AI has been widely tested in educa-
tional applications, including its ability to answer
exam-level questions (Sallam, 2023; Lan et al.,
2024; Wang et al., 2024a). There are two key chal-
lenges: AI can be misused in ways that undermine
fair assessment, and its mistakes often appear con-
vincing, potentially misleading students (Borges
et al., 2024; Wang et al., 2023; Zhong et al., 2023;
Arora et al., 2023). To better understand these risks,

*Both authors contributed equally to this research.
†Corresponding author: aasotniko@gmail.com

Problem: Complex, Crucial image, MCQ, Diagram

L12 = N1N2Rm,σ
Rm,1Rm,2 + Rm,1Rm,σ + 2Rm,2Rm,σ + R2

m,σ + R2
m,2

L12 = N1N2Rm,σ
Rm,1Rm,2 + Rm,1Rm,σ + Rm,2Rm,σ

A.

B.

C. L12 = N1N2(Rm,σ + Rm,2)
Rm,1Rm,2 + Rm,2Rm,σ + R2

m,2

L12 = N1N2Rm,2
Rm,1Rm,2 + R2

m,1 + Rm,2Rm,σ
D.

Problem: Simple, Supplemental image, MCQ, Diagram

A.   True

B.   False

Model:  0 
Students: 38.5%

Model:  0 
Students: 51.5%

Task: The following equivalent magnetic circuit is given. 
What is the mutual inductance between the two coils?

Task: We decide to measure angles from a vector  
originating from . On a circle centred at , each angle  
defines a point .  The question is: Does the given point  

on the circle determine the value of the angle ?

⃗e x
O O α

P P
α

Figure 1: Example of STEM problems with average
model performance (majority vote) compared to average
student performance.

benchmarks were introduced to assess AI perfor-
mance (Wang et al., 2024b). Recent advances in
multimodal large language models (LLMs) have
led to extensive efforts in developing image-based
exam datasets, particularly in STEM. Anand et al.
(2024) introduced a multimodal physics dataset,
expanding from 300 manually created questions to
4,500 using LLMs; Liang et al. (2024) developed
SceMQA, a dataset of 1,000+ scientific reason-
ing problems for students transitioning to college;
Zhang et al. (2023) and Das et al. (2024) created
multilingual, multimodal benchmarks across vari-
ous subjects and difficulty levels.

While these benchmarks provide insight into AI
capabilities, they primarily evaluate models in iso-
lation, without comparing their performance to hu-
mans. As a result, it is unclear whether a model’s
low performance stems from its limitations or if
the problems themselves are inherently difficult for
humans too. Understanding what makes a problem
easier or harder for AI compared to humans would
help warn students about potential risks and guide
the design of fairer image-based assessments.

We compile 201 university-level STEM exam
questions with images from Bachelor’s and Mas-
ter’s programs across 11 subjects of varying com-
plexity. To analyze model performance, each ques-
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Figure 2: Average model and student accuracy per sub-
ject, with model results aggregated using the majority
vote strategy.

tion is manually annotated with its image type, role,
question type, and problem type. In addition, we
collect student performance data, each question re-
ceiving at least five responses and an average of 546
respondents across the dataset. To evaluate AI per-
formance, we implement five prompting strategies
and test two models from GPT-family —GPT-4o
and o1-mini (OpenAI, 2023) as performant mod-
els freely available to students, and Qwen 2.5 72B
VL (Bai et al., 2025), DeepSeek r1 (DeepSeek-AI
et al., 2025), and Claude 3.7 Sonnet, 2025 as
performant models with visual capabilities.

Our results indicate that while LLMs perform
well in text-based university assessments (Borges
et al., 2024), they struggle with questions involving
visual components. On average, models perform
slightly worse than students. Student performance
varies by subject, while model performance de-
pends on question and image features. Based on the
analysis, we provide recommendations for design-
ing take-home assignments that maintain academic
integrity by challenging models without increas-
ing difficulty for students. These principles can
also inform the development of more challenging
benchmarks as models continue to improve.

2 Data Set Description

We manually collected 201 questions with images
from exams and quizzes in 11 subjects from Bach-
elor’s and Master’s programs. Each question is
paired with a gold answer provided by the educator
who authored it. Questions were manually labeled
with the following attributes1:

1The dataset is available on GitHub

Image Type: diagram, line plot, algorithm, and
picture.
Image Purpose: An image is “supplemental” if
all necessary information is in the text and can be
inferred without it. It is “crucial” if required to
solve the problem.
Question Type: multiple choice questions (MCQ),
multiple choice questions multiple answers (MCQ-
MA), and compound questions containing multiple
sub-MCQ questions connected by the same ques-
tion topic and having some related information in
each other.
Complexity of Problem Conditions: “Complex”
questions involve multiple subject concepts, while
“Simple” ones require only one or two closely re-
lated concepts. This distinction does not indicate
difficulty—a question may have one hard concept
or multiple simple ones. Categorizing questions
this way helped assess whether models struggled
with interdependent conditions, as simple questions
have fewer variables, while complex ones require
integrating more information.

Student performance data was collected from
historical course records as aggregated statistics,
with 5 to 5,686 respondents per question (average:
546). Student performance also served as an indi-
cator of problem difficulty. Our dataset includes
43 problems where fewer than 40% of the students
answered correctly, 79 where 40–70% succeeded,
and 79 where more than 70% solved the question.

For detailed dataset statistics and student perfor-
mance, see Appendices A.1 and A.3.

3 Experiments

Our experiments assess model performance across
five prompting strategies and compare it with hu-
man performance. Details on prompting strategies
are provided in Appendix B. For multiple-choice
(MCQ, MCQ-MA) and compound questions, we
use exact match with the gold answer without par-
tial credit. Model scores are aggregated using two
methods: majority vote (assigning the most com-
mon score across strategies) and max (taking the
highest achieved score). The max approach pro-
vides an upper bound estimate, highlighting if at
least one strategy yields the correct answer. Model
implementation details are in Appendix C.

4 Analysis

This section presents the experimental results, com-
paring the model and student performance across
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Figure 3: (a) Effect of image properties on model performance aggregated by the majority vote strategy compared
to average student performance. (b) Effect of image type on model performance aggregated by the majority vote
strategy compared to average student performance.

various dimensions.

4.1 General performance on questions with
images

Unless stated otherwise, we use majority vote ag-
gregation. GPT-4o outperforms other models, and
we focus on its results throughout. Detailed model
comparisons are provided in Appendix D.1. As
shown in Figure 9, all prompting strategies perform
similarly and roughly match the average human stu-
dent’s performance on the task.

We analyze model and student accuracy on
image-based questions across subjects (Figure 2).
Both exhibit subject-specific strengths and weak-
nesses, but student accuracy varies less (0.52–0.73)
than the model’s (0.35–0.87). The model performs
exceptionally well in Astronomy, Computer Sci-
ence (CS), and Microfabrication, likely due to the
structured nature of these questions and the model’s
ability to apply general concepts. Prior studies have
shown that LLMs excel at CS-related tasks (Krüger
and Gref, 2023; Song et al., 2024; Borges et al.,
2024). In contrast, the model struggles with Quan-
tum Physics, Chemistry, Neuroscience, and Elec-
tromagnetism, where complex, content-rich images
may pose additional challenges.

4.2 Effect of image features
We examine the role of images in problem-solving,
specifically whether they provide essential infor-
mation absent from the text or if the problem can
be solved without them. Figure 3a compares per-
formance based on image necessity. As expected,
student accuracy remains similar regardless of im-
age importance, whereas models perform better
on questions where images are non-essential. Our

ablation study confirms this trend: removing sup-
plemental images slightly improves model perfor-
mance, though the effect is minimal (see Appendix
D.2 for details).

Next, we analyze performance across image
types (Figure 3b). Students perform similarly
across line plots, diagrams, and pictures, and strug-
gle the most with algorithm questions. Although
the model has no difficulties in processing algo-
rithms, it struggles the most with diagrams and line
plots.

4.3 Effect of question features

We observe that students perform similarly across
all three question formats. Both students and the
model get the best performance on MCQ questions.
The model performs slightly better than students
on compound questions, a subset of MCQs that
are linked to represent steps of a larger problem.
However, it struggles the most with MCQMA, of-
ten selecting some correct choices but failing to
identify all (Figure 4a).

Figure 4b illustrates how the concept count in-
fluences performance. Although students perform
consistently regardless of the number of concepts
in a question, the model struggles when more than
two concepts are involved.

We report statistical significance for the model’s
and students’ results in Tables 5 and 6.

4.4 Error analysis

To assess the model’s strengths and weaknesses,
we analyzed 59 questions split into two sets: ones
where the model outperformed students and ones
where it underperformed.
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Figure 4: (a) Effect of question type on model performance aggregated by the majority vote strategy compared to
average student performance. (b) Effect of problem type on model performance aggregated by the majority vote
strategy compared to average student performance.

Questions easy for students, hard for the model
We examined 31 questions where the model scored
0 using the max strategy—failing to produce a
correct answer across five prompts—while stu-
dents achieved over 40% accuracy. We find
that humans more easily integrate common sense,
domain-specific intuition, and experiential learning,
whereas the model struggles to infer conditions or
iterations that are not explicitly stated.

One notable category where students outperform
the model involves physics-based reasoning and
real-world conventions. These problems require
understanding implicit relationships, precise nu-
merical or symbolic extraction, and intuition-driven
problem-solving. For instance, students effectively
interpret diagrams, such as photonic crystal de-
fects or force distributions in mechanical systems,
while the model struggles with directional trends
and recognizing constraints in visual data. Further-
more, the model has difficulty selecting the correct
schema or plot from multiple options, a task that
poses less challenge for humans.

Questions hard for students, easy for the model
We analyze 28 questions where students’ perfor-
mance is below 40% while the model scores above
65%.

A key category where the model outperforms
students includes problems requiring structured
reasoning, precise pattern recognition, and large-
scale knowledge retrieval. These problems follow
well-defined rules, abstract mathematical princi-
ples, and algorithmic logic. The model’s ability to
detect structural patterns allows it to efficiently ana-
lyze periodicity in trigonometry, solve algorithmic
network problems, and interpret simple electrical

schematics with high accuracy. Unlike intuition-
driven tasks, these problems follow clear logical
steps. Students often struggle with multi-step rea-
soning due to cognitive load, whereas the model
processes extended contexts effortlessly. As shown
in Figure 10, student accuracy declines as ques-
tion length increases, while the model maintains
strong performance. Additionally, models excel
in problems requiring abstraction and conceptual
knowledge.

5 Conclusion

We show that questions requiring crucial images
and multiple concepts, while remaining concise,
pose a greater challenge for models without in-
creasing difficulty for students. Additionally, mod-
els struggle more than humans in applying domain-
specific intuition to problem-solving. However, our
analysis reveals that models retain knowledge of
the correct answer in 75.5% of questions across at
least one prompting strategy but fail to retrieve it
consistently. With a majority vote strategy, models
achieve 58.5% accuracy, slightly below the human
average of 62.7%. While overall performance ap-
pears similar, a closer analysis highlights the sig-
nificant impact of the problem and image features
on these results.

Finally, it is important to balance fair accessi-
bility with preventing model misuse, as restrictive
measures may inadvertently disadvantage students
with vision impairments. For these students, prob-
lems with supplemental images are easier to under-
stand through full-text descriptions, similar to how
models rely on textual input over visual data.
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Limitations

Our study explores how humans and models solve
questions involving both images and text. However,
it has several limitations.

First, our dataset is relatively small (201 exam-
ples). While we ensured high-quality data through
manual collection and annotation and confirmed
statistical significance, a larger dataset would im-
prove reliability. We opted against automated data
augmentation to maintain quality control. To fa-
cilitate further research, we publicly release our
dataset with annotations.

Second, our grading method does not assign
partial credit for multiple-choice multiple-answer
(MCQMA) questions, leading to a stricter evalua-
tion of model performance. Additionally, unlike
humans, models do not employ elimination rea-
soning, as we do not adjust prompts for MCQMA
responses, potentially disadvantaging them.

Third, when comparing course performance, we
do not account for instructor influence, which may
affect problem difficulty. This factor can introduce
bias also for humans, as different instructors may
present varying challenges for students within the
same subject.
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A Data Set Details

Here we present the data set statistics, and exam-
ples of questions for every data feature.

A.1 Data Format

Image Type: diagram, line plot, algorithm, and
picture.
Image Purpose: supplemental, when the image
is non-essential and all information about the
problem is stated in the problem text or crucial,
when the image is required to solve the problem.
One can determine that the question in Figure 5
has a supplemental image since it could be inferred
from the text.

Question Type: multiple choice questions (MCQ),
multiple choice questions multiple answers (MCQ-
MA), and compound questions containing multiple
sub-MCQ questions connected by the same ques-
tion topic and having some related information in
each other.
Complexity of Problem Conditions: “Complex”
means that the question involves multiple concepts
of the subject, while “Simple” would require only
one or two closely related concepts to solve the
problem. This condition does not directly reflect
problem difficulty; a question may involve a single
difficult concept or multiple simple ones. Distin-
guishing between simple and complex questions
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Figure 5: Example of a complex question with supple-
mental image.

allowed us to evaluate whether models struggled
with interdependent conditions. Simple questions
involve fewer variables, while complex ones re-
quire integrating multiple pieces of information.

One can determine that the question in Figure
5 is “Complex” and the image is “Supplemental”.
The question is complex because it involves the
Hodgkin-Huxley model, differential equations gov-
erning potassium channel dynamics, and voltage-
dependent parameters, requiring knowledge of elec-
trophysiology and mathematical modeling. The
image is supplemental because it provides graph-
ical representations of n∞(u) and τn(u), but all
necessary equations and definitions are clearly de-
scribed in the text, making the image helpful but
not essential.

A.1.1 Description of Labels
1. Course_name:

• Description: The name or identifier of
the course associated with the question.

• Example: "Calculus I", "Physics
101"

2. Exercise_name:

• Description: The unique exercise id.

3. Question:

• Description: The text of the ques-
tion, may include LaTeX formatting and
placeholders for images.

4. Gold_answer:

• Description: The correct answer to the
question.

5. Question_type:

• Description: The format or type of the
question.

• Possible Labels:
– "MCQ" (Multiple Choice Question)
– "MCQMA" (MCQ Multiple Answers)
– "Compound" (a non-open-ended

question with multiple objectives)

6. Image_type:

• Description: The type of images in-
cluded in the question.

• Possible Labels (Others may be added as
we manually label):

– "line plot"

– "bar plot"

– "scatter plot"

– "histogram"

– "pie chart"

– "table"

– "image"

– "diagram"

7. Image_purpose:

• Description: The role of the image in the
context of the question.

• Possible Labels:
– "Crucial" (Essential for solving the

question)
– "Supplemental" (Doesn’t provide

additional context)

8. Problem_conditions:

• Description: The complexity of the con-
ditions within the problem.

• "Complex" doesn’t necessarily mean
that the problem is difficult. It simply
means that many conditions are in play.

• Possible Labels:
– "Simple" (Conditions are straight-

forward and not interacting)
– "Complex" (Multiple conditions in-

teract to find the answer)

9. Question_images:

• Description: A list of filenames or identi-
fiers for images included in the question.
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10. Question_length_characters:

• Description: The length of the question
text is measured in characters.

11. Num_objectives:

• Description: The number of sub-
questions within the question.

• Example: 1, 2

12. Language:

• Description: The language in which the
question is written.

• Always in "English" because we trans-
lated the French ones.

13. Original_language:

• Description: The original language of
the question before translation.

• Example: "French"

14. Was_translated:

• Description: Indicates whether the ques-
tion was translated from another lan-
guage.

• Possible Values: true or false

15. Image_file_type:

• Description: The file format of the im-
ages used.

• Example: "PNG", "JPEG"

16. Answer_format:

• Description: The expected format of the
answer.

• Possible Labels:
– "Only MCQ Letter" (previously

called MCQ)
– "Only Numeric Answer"

– "Derivation"

– "Text"

– "Code"

– "Calculation"

17. Solution_type:

• Description: Indicates whether the ques-
tion has a unique correct answer or mul-
tiple correct answers.

• Possible Labels:
– "Unique answer"

– "Multiple answers"

18. Type_of_text:

• Description: The formatting or typeset-
ting used in the question text.

• Example: "LaTeX", "Plain text",
"XML"

19. Objective_dependency:

• Description: Indicates whether the objec-
tives in the question are independent or
dependent on previous ones.

• Possible Labels:

– "All Independent" (Objectives
can be solved separately)

– "Dependent" (Some objectives rely
on answers from previous parts)

A.2 Data Set Statistics

Data set statistic is presented in Table 1.

Feature Options Count

Question
Type

MCQ 80
Compound 59
MCQMA 46

Numeric and Formula 16

Image
Type

Diagram 109
Line Plot 45
Picture 33

Algorithm 8
Other 6

Image
Purpose

Crucial 162
Supplemental 39

Problem
Conditions

Simple 169
Complex 32

Course
Category

Astronomy 32
Electrical Engineering 28

Computer Science 20
Math 19

Electromagnetism 17
Quantum Physics 26

Mechanical Physics 16
Neuroscience 15

Microfabrication 10
Chemistry 10
Biology 8

Table 1: Data Statistics
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Figure 6: Student accuracy distribution.

A.3 Student Performance

Dataset difficulty illustrated by student perfor-
mance is presented in Figure 6.

The distribution of students attempting a ques-
tion is presented in Table 2.

Respondents Questions
5-20 27
21-50 34

51-100 29
101-500 51
501-1000 33

1001-2000 21
2001-7000 6

Table 2: Distribution of questions by the number of
respondents.

B Prompting strategies

B.1 Helper Functions

B.1.1 question_type_prompt

The question_type_prompt function creates a tai-
lored instruction based on the type of question be-
ing posed. It supports several question types, each
associated with a specific directive:

• MCQ: Instructs the model to select the correct
option by returning only its letter.

• MCQMA: Similar to MCQ but expects mul-
tiple correct options, concatenated as a single
string (e.g., AB rather than A, B).

• Numeric Question: Requests that the model
output only the numerical answer.

• Formula Question: Expects the answer to be
provided as a formula.

• Open Ended: Directs the model to compre-
hensively address all parts of the question.

For questions labeled as Compound, the func-
tion combines the individual instructions corre-
sponding to each subquestion type. It first deter-
mines the number of subquestions and then ap-
pends the respective prompt text for each, ulti-
mately guiding the model to return its answers as a
JSON-formatted list.

B.1.2 generate_format_instruction

The generate_format_instruction function
provides context-specific formatting advice based
on the text’s format:

• XML: The instruction reminds the model to
interpret XML symbols correctly, ensuring
that any formula or question components for-
matted in XML are properly understood.

• LaTeX: Advises careful interpretation of La-
TeX expressions, especially for mathematical
content.

• Other: When the text does not fall into the
above categories, no extra formatting instruc-
tion is provided.

B.2 Prompting strategies

To generate question-answer pairs, we first con-
ducted an experiment evaluating 12 different
prompting strategies. Based on performance re-
sults, we selected five strategies for further analysis.
Two of these serve as baselines: direct zero-shot,
the model receives only the question and image
without additional instructions or contextual infor-
mation. zero-shot chain-of-thought (CoT) (Wei
et al., 2023), the model is asked to produce inter-
mediate reasoning steps before arriving to the final
answer. Beyond the baselines, we investigated how
the order of multimodal input affects performance.
Specifically, we compared cases where the model
processes the image at the beginning versus at the
end of the text input. Our results indicate that pre-
senting the image first, followed by the problem
text, leads to better performance. Finally, for mod-
els with strong reasoning capabilities but lacking
the multimodal component, we implemented a two-
stage prompting strategy. We first use GPT-4o to
generate a textual description of the image. This
description is then passed, along with the problem
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text, to o1-mini and o1-preview models. The qual-
ity of the generated descriptions were manually
verified.

B.2.1 Direct zero-shot

A straightforward prompt that presents the question
to the model.

Direct zero-shot

You are an expert in STEM courses.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Your Answer:

B.2.2 Chain-of-Thought Prompt

This prompt encourages a step-by-step analytical
approach, asking the model to think through the
problem before answering.

Chain-of-Thought Prompt

You are an expert in STEM courses tasked with an-
swering questions with step-by-step analysis.
Examine both the image(s) and question text before
answering.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Your Answer: Let’s think step by step.

B.2.3 Image First Prompt

This prompt prioritizes image analysis by instruct-
ing the model to examine the image details before
considering the text, and then synthesize a detailed
answer.

Image-First Prompt

You are an expert in STEM courses tasked with
answering questions. But, first, you must analyze
the image(s), which you will follow with the textual
analysis.

You will follow the next steps before providing an
answer.
Step 1: Analyze the Image(s) First
- Describe elements, patterns, and relationships in the
image(s).
Step 2: Use Observations to Analyze the Text
- Use the image understanding to find relevant textual
information in the question.
Step 3: Provide a Detailed Answer
- Synthesize observations into a complete answer.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Make sure to tackle every step mentioned above, be-
fore you answer.
Your Answer:

B.2.4 Two Stage Prompt
Image Description Prompt
This prompt requests a detailed description of the
provided image, linking its elements to the ques-
tion context for use by another model. It does not
answer the question but aims to provide details that
will enable another to answer it.

Image Description Prompt

I am going to provide you with a question with
an image. I need you to describe this image in as
many details as possible and link those details to the
question and its context.

I will then share this description of the image with
an LLM which doesn’t have vision capabilities, but
better reasoning skills than you. In other words, you
will be the eyes for that second model. As such, it is
primordial that you don’t leave out any details!

Note that some details that you think might be
useless, may not be, as such make sure that you focus
on every aspect.

Here is the Image: <image_names >

Here is the question: <question text >

You may now provide your detailed description.
Make sure to follow the instructions that were given
to you.

Answer With Image Description Prompt
This prompt asks the model to answer a question
based solely on an image description, with a ref-
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erence to the detailed image description provided
earlier.

Answer With Image Description Prompt

You are an expert in STEM courses and will answer
a question that includes an image description..

Here is the description of the image:
<detailed image description >

[Refer to generate_format_instruction]
Here is the question that you need to answer:
<question text >

[Refer to question_type_prompt]
Please, explain the solution and answer in the follow-
ing format:

{
"reasoning": "Your explanation.",

"answer": "Your answer and nothing more."
}

Your Reasoning and Answer:

B.3 Selecting prompting strategies

Initially, we tested 12 prompting strategies on 10
questions to select the most effective ones for the
subsequent experiments. Figure 7 shows a compari-
son across all strategies. We selected the two-stage
strategy as the most effective, followed by two
baseline strategies, and finally the best strategy for
presenting a model with both text and image.

In the basic prompting category, the question
was presented along with the image, allowing the
models to interpret the visual data without addi-
tional instructions. In the second category, prompts
directed the models to explicitly consider both the
image and text, either together or sequentially, with
varying emphasis on fine-grained versus coarse-
grained details. Finally, in the third category, mod-
els lacking vision capabilities were provided with
detailed descriptions of the image instead.

B.3.1 Simultaneous Prompt

This prompt asks the LLM to examine both im-
age and text simultaneously, integrating insights
from both modalities before answering. It empha-
sizes a holistic analysis that considers all available
information concurrently.

Simultaneous Prompt

You are an expert in STEM courses tasked with
answering questions. Examine both the image(s) and
question text before answering.

You will follow the next steps before providing an
answer.
Step 1: Analyze the Image(s) and Text Together
- Describe key elements, patterns, and relationships,
integrating both sources.
Step 2: Provide a Detailed Answer
- Synthesize observations into a complete answer.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Make sure to tackle every step mentioned above, be-
fore you answer.
Your Answer:

B.3.2 Text First Prompt

This prompt directs the LLM to analyze the ques-
tion text initially and then examine the associated
image, using the textual understanding to guide the
image analysis. It ultimately expects the model to
merge both insights into a coherent, well-informed
answer.

Text First Prompt

You are an expert in STEM courses tasked with
answering questions. But, first, you must analyze the
text, which you will follow with the image analysis.

You will follow the next steps before providing an
answer.
Step 1: Analyze the Question Text First
- Understand the question context.
Step 2: Use Observations to Analyze the Image
- Use textual understanding to find relevant visual
information (elements, patterns, relationships, etc.)
Step 3: Provide a Detailed Answer
- Synthesize observations into a complete answer.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Make sure to tackle every step mentioned above, be-
fore you answer.
Your Answer:

B.3.3 Dual Phase Prompt

This prompt divides the analysis into two distinct
phases; first analyzing the image(s) and then the
text, before synthesizing the information into a
final answer. It ensures that each component is
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evaluated independently before being combined
for a comprehensive response.

Dual Phase Prompt

You are an expert in STEM courses tasked with
answering questions with a dual-phase approach.

You will follow the next steps before providing an
answer.
Step 1: Analyze the Image(s) First
- Describe elements, patterns, and relationships in the
image(s).
Step 2: Interpret the Question Text Separately
- Identify question context independently of your
image findings.
Step 3: Synthesize Textual and Visual Information
- Combine insights from both phases.
Step 4: Provide a Detailed Answer
- Synthesize observations into a complete answer.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Make sure to tackle every step mentioned above, be-
fore you answer.
Your Answer:

B.3.4 Recursive Prompt

This prompt directs the LLM to iteratively alter-
nate between image and text analysis, refining its
understanding with each pass until a complete pic-
ture is achieved. It is designed to produce a well-
considered final answer by progressively integrat-
ing and re-evaluating both modalities.
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Figure 7: Model performance on the initial set of
prompting strategies.

Recursive Prompt

You are an expert in STEM courses tasked with
answering questions with recursive analysis.

You will follow the next steps before providing an
answer.
Step 1: Analyze the Image(s) First
- Describe elements, patterns, and relationships in the
image(s).
Step 2: Use Observations to Analyze the Text
- Use the image understanding to find relevant textual
information in the question.
Step 3: Refine Analysis
- Alternate between image and text analysis, refining
observations with each pass until a comprehensive
understanding of the text and image is reached.
Step 4: Provide a Detailed Answer
- Synthesize observations into a complete answer.

Images: <image_names >

[Refer to generate_format_instruction]
Question: <question text >

[Refer to question_type_prompt]
Make sure to tackle every step mentioned above, be-
fore you answer.
Your Answer:

C Model Configuration

To evaluate performance, three OpenAI models
were employed: GPT-4o with temperature 0.1,
o1-mini-2024-09-12, and o1-preview-2024-09-12.
GPT-4o was chosen as the baseline due to its strong
vision capabilities. The o1-mini and o1-preview
models, in contrast, lack native vision capabilities
but exhibit strong reasoning abilities in text-based
tasks. While GPT-4o allowed temperature adjust-
ments, the o1 models did not support this feature.
The primary focus was on GPT-family models as
the ones that students can easily access models to
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Figure 8: Model performance with and without supple-
mental image included.

run questions themselves while preparing a take-
home assignment. We are trying to provide also
some recommendations for educators on how to
make such assignments less vulnerable to gener-
ative AI use. To explore the effect on different
model families, we also test Qwen 2.5 72B VL, r1
Deepseek, and Claude 3.7 Sonnet, 2025.

We used pandas,2 json,3, numpy,4 and
scikit-learn5 to process our results, compute ac-
curacy scores, and compute statistical significance.

D Additional Experimental Results

D.1 Model performance comparison
We observe that the GPT model is the most perfor-
mant one and that, in general, the models follow
our findings. The results in various characteristics
are presented in Table 4.

Looking at the performance per course in Table
3, we see that our findings hold. Also, sometimes,
there are cases when Claude 3.7 or R1 outperform
GPT model: in a subject like biology and mechani-
cal physics.

D.2 Removing supplemental image
We tested the same prompts with and without sup-
plemental images. For the two stage prompts we
removed mentions of the image and didn’t pass the
descriptions. Figure 8 shows that the presence or
absence of the image doesn’t affect model perfor-
mance.

D.3 Model performance vs student
performance

In Figure 9, we compare model performance across
five prompting strategies and two aggregation
strategies with average student performance.

2https://pandas.pydata.org/docs/index.html
3https://docs.python.org/3/library/json.html
4https://numpy.org/doc/stable/index.html
5https://scikit-learn.org/stable/
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Figure 9: Average GPT-family models performance
across five prompting strategies, aggregated results with
the majority vote and maximum strategy and student
performance.
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Figure 10: Comparison of student vs model accuracy
depending on the question length in characters.

D.4 Student vs model accuracy depending on
the question length

Figure 10 shows the comparison of the student and
model accuracy (average majority vote) depending
on the length of the question in characters.

D.5 Model performance across question and
image features

Model and student performance per question and
image features with 95% confidence intervals are
presented in Tables 5 and 6.
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Course Category GPT-4o Claude 3.7 R1 Qwen 2.5-72B
Astronomy 0.78 0.55 0.58 0.63

Biology 0.50 0.75 0.63 0.50
Chemistry 0.47 0.47 0.37 0.30

Computer Science 0.78 0.68 0.74 0.72
Electrical Engineering 0.58 0.48 0.37 0.43

Electromagnetism 0.49 0.45 0.45 0.45
Math 0.56 0.57 0.47 0.56

Mechanical Physics 0.56 0.56 0.63 0.56
Microfabrication 0.87 0.60 0.64 0.52
Neuro Science 0.49 0.31 0.29 0.36

Quantum Physics 0.35 0.29 0.18 0.24

Table 3: Average model performance across different course categories.

Category Label GPT-4o Claude 3.7 R1 Qwen 2.5-72 B

Question feature

Simple 0.613 0.517 0.469 0.481
Complex 0.503 0.454 0.459 0.502

MCQ 0.663 0.563 0.538 0.575
MCQMA 0.457 0.370 0.304 0.283

Compound 0.650 0.566 0.533 0.538

Image feature Crucial 0.561 0.473 0.426 0.448
Supplemental 0.740 0.652 0.641 0.635

Table 4: Average model performance across different question and image features.

Category Label
Model Accuracy and 95 % CI

Accuracy Mean Lower Bound Upper Bound

Question feature

Simple 0.613 0.54 0.68
Complex 0.503 0.35 0.65

MCQ 0.663 0.59 0.77
MCQMA 0.457 0.68 0.84

Compound 0.650 0.55 0.74

Image feature

Crucial 0.561 0.49 0.63
Supplemental 0.74 0.60 0.86

Algorithm 0.875 0.63 1.00
Diagram 0.566 0.48 0.65
Picture 0.687 0.54 0.84

Line Plot 0.556 0.43 0.69

Table 5: Model accuracy means and 95% Confidence Intervals. CI is computed with non-parametric bootstrap using
1000 resamples.
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Category Label
Student Accuracy and 95 % CI

Accuracy Mean Lower Bound Upper Bound

Question feature

Simple 0.628 0.59 0.66
Complex 0.622 0.54 0.70

MCQ 0.689 0.64 0.74
MCQMA 0.599 0.54 0.67

Compound 0.579 0.52 0.64

Image feature

Crucial 0.637 0.60 0.67
Supplemental 0.588 0.51 0.67

Algorithm 0.534 0.40 0.66
Diagram 0.613 0.57 0.66
Picture 0.648 0.57 0.71

Line Plot 0.645 0.58 0.71

Table 6: Student accuracy means and 95% Confidence Intervals for different image types. CI is computed with the
non-parametric bootstrap using 1000 resamples
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Abstract

Large language models (LLMs) are increas-
ingly used to generate distractors for multiple-
choice questions (MCQs), especially in do-
mains like math education. However, existing
approaches are limited in ensuring that the gen-
erated distractors are consistent with common
student errors. We propose LOOKALIKE 3 ,
a method that improves error–distractor con-
sistency via preference optimization. Our two
main innovations are: (a) mining synthetic pref-
erence pairs from model inconsistencies, and
(b) alternating supervised fine-tuning (SFT)
with Direct Preference Optimization (DPO) to
stabilize training. Unlike prior work that re-
lies on heuristics or manually annotated prefer-
ence data, LOOKALIKE uses its own generation
inconsistencies as dispreferred samples, thus
enabling scalable and stable training. Evalu-
ated on a real-world dataset of 1,400+ math
MCQs, LOOKALIKE achieves 51.6% accuracy
in distractor generation and 57.2% in error gen-
eration under LLM-as-a-judge evaluation, out-
performing an existing state-of-the-art method
(45.6% / 47.7%). These improvements high-
light the effectiveness of preference-based reg-
ularization and inconsistency mining for gener-
ating consistent math MCQ distractors at scale.

1 Introduction

Multiple-choice questions (MCQs) are used in edu-
cational assessments (Nitko, 1996; Airasian, 2001;
Kubiszyn and Borich, 2016) to evaluate student
understanding across various subjects and grades
(Thomas et al., 2025). An MCQ consists of a ques-
tion stem and a set of options, including a correct
answer and multiple incorrect alternatives, referred
to as distractors (Fernandez et al., 2024; Feng et al.,
2024). Distractors are incorrect answers that stu-
dents reach by making an error while answering the
question. It can be rooted in many ways, e.g., the

*Equal Contribution.
3Code: https://github.com/umass-ml4ed/LookAlike

student overgeneralizing to a new context, exhibit-
ing an ingrained misconception, or simply slipping
and being careless. Designing effective distractors
can be crucial to the assessment and pedagogical as-
pects of MCQs (Simkin and Kuechler, 2005), since
they help us identify student errors and prepare
ways to mitigate them.

Hand-crafting high-quality distractors requires
extensive human effort by content designers and
teachers since it requires them to anticipate com-
mon student errors, which can be difficult in sub-
jects like math. Therefore, recent works have
leveraged artificial intelligence, especially large
language models (LLMs), to automate this pro-
cess. Previous works on distractor generation for
MCQs have attempted to prompt LLMs to gener-
ate distractors (Feng et al., 2024), as well as fine-
tune LLMs to generate possible student errors and
then distractors caused by such errors, as shown
in DiVERT (Fernandez et al., 2024). As noted in
these works, the bottleneck in distractor generation
performance is consistency: LLMs are often capa-
ble of identifying mathematically feasible errors,
but struggle at following such erroneous instruc-
tions to arrive at the corresponding distractor (a
similar finding was also made in (Sonkar et al.,
2024a)). As shown in Table 1, both fine-tuned
LLMs and the LLMs in DiVERT sometimes fail
to follow the input error explanation to arrive at a
consistent distractor. In the second example, the
fine-tuned LLM fails to follow the error, “finds
13% of an amount rather than the percentage being
asked”, arriving at an inconsistent distractor (12)
rather than the consistent distractor (5.2).

To address this limitation, one natural solution
is to regularize an LLM-based distractor generator,
which takes the question stem and an error as input,
to enforce that the generated distractor matches
the input error. To this end, we resort to prefer-
ence optimization, specifically direct preference
optimization (DPO) (Rafailov et al., 2023). DPO
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Question stem: Calculate: 130% of 40 = □
Error Distractor

Plausible error, plausible and consistent distractor.

Added the values together instead of finding
the percentage.

170

Plausible error, plausible but inconsistent distractor.

Finds 13% of an amount rather than the per-
centage being asked.

12

Implausible error, plausible but inconsistent distractor.

When solving a problem that requires an in-
verse operation (e.g. missing number prob-
lems), does the original operation.

90

Implausible error, implausible and inconsistent distractor.

Does not understand that 100% is the whole
amount.

20

Table 1: Examples of inconsistent error-distractor pairs
generated by SFT (second and fourth pairs), and a state-
of-the-art method, DiVERT (Fernandez et al., 2024)
(third pair). LOOKALIKE mines generation inconsisten-
cies for scalable preference optimization.

training requires preference pairs among outputs,
i.e., a distractor that matches the input error and a
distractor that does not. However, we empirically
find two main challenges in using DPO to promote
error-distractor consistency:

• Acquiring high-quality preference data typ-
ically requires costly manual annotation or
unreliable synthetic heuristics (Li et al., 2023;
Tan et al., 2024), which is difficult due to the
nature of the distractor generation task.

• Models trained with DPO may deteriorate in
quality after a few epochs (Pal et al., 2024;
Liu et al., 2024b; Yan et al., 2025; Xu et al.,
2024), showing training instability.

Contributions
In this paper, we introduce LOOKALIKE, propos-
ing two methods to tackle these challenges and im-
prove error-distractor consistency in math MCQs
For the first challenge, we create preference pairs
by generating synthetic negative samples: we evalu-
ate LLM-generated errors, in addition to distractors,
and use inconsistently generated errors and distrac-
tors as informative negative samples. This method
creates meaningful signals that, when used in con-
junction with consistent errors and distractors in
DPO training, improve the consistency of LLMs
in distractor generation. For the second challenge,
we employ a regularization method in DPO train-
ing, which performs supervised finetuning (SFT)

and DPO alternatively in consecutive training it-
erations, which performs better than combining
them both into a single objective, as done in recent
works (Liu et al., 2024b; Pal et al., 2024).

We conduct extensive experiments on a real-
world dataset containing math MCQs used by hun-
dreds of thousands of students, with human-written
error descriptions behind each distractor. Results
show that LOOKALIKE, compared to state-of-the-
art baselines, improves distractor generation perfor-
mance by up to 6%. We also show that LOOKA-
LIKE improves error generation by up to 10%, us-
ing an LLM-as-a-Judge evaluation. We also pro-
vide qualitative examples and an error analysis
highlighting the improved consistency of generated
errors and distractors.

2 Background

In this section we formally introduce the tasks of
error and distractor generation in math MCQs. We
also detail a baseline for preference pair creation
and a baseline for DPO regularization, combining
preference alignment with supervised learning.

2.1 Task Definition
We consider an MCQ Q defined by its textual com-
ponents: a question stem s, (optionally) its cor-
rect answer or key k, (optionally) an explanation
of the key f , (optionally) question topic/concept
tags t, and a set of incorrect answer options called
ground truth distractors D. Each di ∈ D is (option-
ally) associated with a corresponding ground truth
human-written error explanation or error ei ∈ E.
All textual components above are represented as
sequences of words and math symbols. We aim to
model the space of plausible student errors E and
their corresponding distractors D. We define two
primary tasks:

1. Error Generation: Learn an LLM parameter-
ized model, LLM err(s, k, f, t, di) → êi, that
outputs an error description êi consistent with
the given input distractor di and MCQ.

2. Distractor Generation: Learn an LLM param-
eterized model, LLMdis(s, k, f, t, ei) → d̂i,
that outputs a distractor d̂i consistent with the
given error description ei and MCQ.

2.2 Baseline: Preference Pairs from
Ground-truth Error-Distractor Pairs

As a natural starting point, following a similar
method from (Scarlatos et al., 2024b), one can
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construct preference pairs for DPO as follows:
For each question, there are multiple distractors
(D = d1, d2, . . . , dn) and their corresponding er-
rors (E = e1, e2, . . . , en). As a baseline, for the
error behind the ith distractor, ei, we can use di
itself as the preferred response, and use the remain-
ing distractors (dj ∈ D \ {di}) as dispreferred
responses. We use a similar procedure for the er-
rors. We dub this method for preference pair con-
struction as DPO-GT (ground truth). However,
the number of dispreferred responses is limited by
the number of human-written error-distractor pairs
for the question. LOOKALIKE, on the other hand,
creates preference pairs by generating synthetic
negative samples, allowing for an arbitrary number
of dispreferred responses for scalable preference
optimization, resulting in improved consistency in
both error and distractor generation (Section 3.1).

2.3 Baseline: DPO Regularization

Models trained with DPO have been shown to
deteriorate in quality after a few epochs due to
training instability (Pal et al., 2024; Liu et al.,
2024b; Yan et al., 2025; Xu et al., 2024). Ex-
isting regularization techniques to improve DPO
training stability include Regularized Preference
Optimization (RPO) (Liu et al., 2024b), and DPO-
Positive (DPOP) (Pal et al., 2024). RPO optimizes
both the DPO loss and the SFT loss jointly, i.e.,
LRPO = LDPO + λβLSFT . The SFT loss uses
the preferred response as the ground-truth com-
pletion. RPO suffers from conflicting gradient di-
rections (Shi et al., 2023; Liu et al., 2024a), es-
pecially when the preference-based signal (DPO)
incentivizes ranking decisions that are misaligned
with the next-token prediction signal (SFT). DPOP
uses the SFT objective as a penalty but their im-
provement is limited to preference pairs with high
edit distances between them. LOOKALIKE, on the
other hand, proposes an alternating optimization
approach to stabilize DPO training, interleaving
SFT and DPO training either at the per-batch or
per-epoch level, resulting in improved consistency
in both error and distractor generation compared to
RPO and DPOP (Section 3.2).

3 Methodology

We now detail our framework, LOOKALIKE, which
a) creates preference pairs by generating synthetic
negative samples, and b) employs a DPO regular-
ization technique of alternating optimization be-

tween SFT and DPO for better training stability,
leading to improved error and distractor generation
consistency.

3.1 Mining Preference Pairs via
Inconsistencies for DPO

Prior work (Fernandez et al., 2024) has highlighted
a significant issue of consistency in distractor gen-
eration performance, with LLMs struggling to fol-
low error descriptions to arrive at corresponding
distractors, examples of which are shown in Ta-
ble 1. LOOKALIKE mines these generation incon-
sistencies as synthetic negative samples to create
preference pairs for DPO training.

We visualize our preference pair creation in
LOOKALIKE in Figure 1. For distractor generation,
LLMdis overgenerates a set of distractors for an
input question stem and a ground-truth error. Each
generated distractor is then compared against the
ground-truth distractor. In our preference dataset,
generated distractors that match the ground-truth
distractor exactly are preferred responses, while
those that do not exactly match the ground-truth
distractor are dispreferred responses. A similar pro-
cess is applied to create preference pairs for error
generation, with exact string match4 used to com-
pare generated errors against the ground-truth error
to form preference pairs.

Formally, given an MCQ dataset with samples,
(s, e, d), where s is the question stem, e is the er-
ror description, and d is the corresponding distrac-
tor, we first train a distractor generation model,
LLMdis, to output the corresponding distractor
through SFT. To create preference pairs, we then
overgenerate multiple distractors d̂ ∈ D̂ from the
fine-tuned LLMdis for each (s, e) pair. For each
generated distractor d̂, we check if d̂ matches the
ground-truth distractor d exactly. If yes, we add
d̂ as a preferred response, and if no, we add d̂ as
a dispreferred response in our distractor genera-
tion preference dataset. Having constructed the
preference dataset, we further train our fine-tuned
LLMdis through DPO (Rafailov et al., 2023). A
similar process is applied to form our error gen-
eration preference dataset which is then applied
for DPO training of LLM err. Creating preference
pairs from the static ground-truth dataset is limited
by the number of human-written annotations (Sec-
tion 2.2). LOOKALIKE, on the other hand, uses
generations from the currently fine-tuned LLM to

4LLM-as-a-Judge using GPT-4o-mini as a similarity mea-
sure led to lower performance.
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Distractor Generator

Question
Q GT Error GT Distractor Preferred Distractor Dispreferred Distractor

+ Error

Preference Dataset for DPO

Matches
Ground Truth
Distractor?

Yes No

What is 72? Confuses squaring
with doubling

Output:
{9,14}

(14) (9)(14)

Figure 1: LOOKALIKE creates preference pairs by overgenerating a set of distractors for a question and error, and
preferring those that match the ground-truth distractor exactly. An analogous process for error generation.

Error Generator 
(to generate 
explanations)

Dispreferred 
Error

Ground-truth 
Error

Ground-truth 
Error

Training 
with SFT

Training 
with DPO

Inputs:   Question    Distractor

Target
Outputs: <

Target
Output:

Inputs:   Question    Distractor

Repeat

Figure 2: LOOKALIKE employs an alternating opti-
mization strategy, switching between SFT and DPO
objectives to regularize DPO training.

create an arbitrary number of dynamic preference
pairs, with negative preference signals being more
aligned with the inconsistency failure modes of the
fine-tuned LLM.

3.2 DPO Regularization Through Alternating
Optimization

We empirically observe that models trained with
DPO deteriorate in quality after a few epochs due to
training instability. We show examples of degrada-
tion in error generation quality over three training
epochs in Table 2. We observe errors become more
verbose with an increase in length and are out-of-
distribution from the human-written errors as the
number of DPO training epochs increases, as also
shown in prior work (Park et al., 2024).

To mitigate this issue, we introduce a regu-

larization strategy that trains the error/distractor-
generation LLM by alternating optimization, i.e.,
by switching between SFT and DPO objectives dur-
ing training, as shown in Figure 2. This alternating
optimization allows the LLM to periodically re-
calibrate to the ground-truth distribution (via SFT)
while remaining faithful to learning ranking pref-
erences of consistent generations (via DPO). After
each SFT optimization, the preference dataset is
recomputed (Section 3.1) for the subsequent DPO
optimization, using the currently trained LLM for
better alignment, allowing for dynamic and scal-
able preference pair creation. We experiment with
alternating between SFT and DPO optimization
at two different levels: per-batch and per-epoch,
picking the one giving better performance empir-
ically. For both levels, the preference dataset is
recomputed after every epoch.

Alternating Optimization Per-Batch. At each
training step t, the LLM parameters θ are updated
using a learning rate of η following:

θt+1 = θt − η∇L(θt), (1)

where the loss function L alternates based on a
batch-level schedule:

L(θt) =

{
LSFT (θt), if batch t is even
LDPO(θt), otherwise

(2)

Alternating Optimization Per-Epoch. As a
coarser alternative, the loss function L alternates
based on an epoch-level schedule:

L(θt) =

{
LSFT (θt), if epoch t is even
LDPO(θt), otherwise

(3)
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Question 3
7

of a group of students are boys. What would be a possible ratio of boys to girls?

Key 3 : 4

Ground-truth Distractor 3 : 10

Ground-truth Error Uses the denominator when converting from fractions to ratio, rather than numerator.

Generated Error (Epoch 1) Includes the denominator when converting a fraction to a ratio.

Generated Error (Epoch 2) When converting a fraction to a ratio, puts the other side of the ratio as the denominator.

Generated Error (Epoch 3)
When converting a fraction to a ratio, thinks you just use the numerator and denominator
as the numbers in the ratio. Additionally, thinks you can use the denominator on its own
as the total number of parts in a ratio.

Table 2: Error generation quality deteriorates over DPO training epochs without using regularization.

4 Experimental Evaluation

In this section, we detail our experiments on a real-
world math MCQ dataset, evaluating the efficacy
of LOOKALIKE in comparison with state-of-the-art
baselines for both distractor generation and error
generation.

4.1 Dataset
We conduct our experiments on a real-world math
MCQ dataset from a large learning platform used
by hundreds of thousands of students. The dataset
consists of 1, 434 math MCQs, each containing
a question stem, key, explanation of the key,
topic/concept tags, and 3 distractors along with
their respective teacher-written error descriptions
explaining why a student might select that distrac-
tor. The MCQs are designed for students aged
between 10 to 13 and span 41 distinct mathemati-
cal subtopics, including Arithmetic, Fractions, and
Solving Equations. We split the dataset into train-
ing, validation, and test by questions to ensure no
overlap across splits using a 72%-16%-12% pro-
portion. See Appendix E for math MCQ examples.

4.2 Baselines
We compare LOOKALIKE with 3 baselines. The
SFT baseline, used as a baseline in (Fernandez
et al., 2024), fine-tunes an LLM to generate the
corresponding distractor (or error) given the ques-
tion and the error (or distractor) as input. The
DiVERT (Fernandez et al., 2024) baseline employs
a variational approach to learn an interpretable
error space behind distractors. Post variational
training, we use the error generation and distrac-
tor generation LLMs from DiVERT as baselines.
We also compare against forming preference pairs
from the ground-truth error-distractor pairs; we
continue training the SFT baseline on this prefer-
ence dataset using DPO and refer to the resulting

model as DPO-GT (Section 2.2). For fairness, we
regularize DPO training for DPO-GT by exploring
all techniques (RPO, DPOP, our alternating per-
batch optimization, and our alternating per-epoch
optimization), and choose the regularization (per-
epoch) that results in the best performance.

4.3 Metrics
Distractor Evaluation. Following prior work on
distractor generation (Fernandez et al., 2024; Feng
et al., 2024), we use Exact match as our eval-
uation metric to measure alignment between the
generated distractor and the ground-truth distractor
corresponding to a question and error.

Error Evaluation. Automated text similarity
metrics like exact string match, ROUGE-L F1 (Lin,
2004), or BERTScore F1 (Zhang et al., 2020)
are unsuitable for error evaluation given the open-
ended and mathematical nature of errors. We there-
fore adopt an LLM-as-Judge (Liu et al., 2023;
Zheng et al., 2023) evaluation, prompting GPT-4o-
mini to evaluate if the generated error is mathemat-
ically equivalent to the ground-truth error given the
question and corresponding distractor. We show
our prompt in Appendix B.

4.4 Implementation Details
Following prior work (Fernandez et al., 2024),
all methods use MetaMath-Mistral 7B (Yu et al.,
2024b) as their base LLM, as we found it provides a
suitable prior within the 7B parameter size models
for mathematical reasoning. At test time, we use
standard beam search with 10 beams for distractor
generation, and diverse beam search (Vijayakumar
et al., 2018) with 10 beams for error generation.
Detailed hyperparameter settings for all methods
are provided in Appendix A.

To ensure fair comparison, we limit LOOKA-
LIKE ’s synthetic generation to 3 distractors and 3
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Distractor Gen
(Exact Match ↑)

Error Gen
(LLM-as-Judge ↑)

SFT 44.76 46.68
DiVERT 45.64 47.72
DPO-GT 51.44 57.02
LOOKALIKE 51.56 57.18

Table 3: Cross-validation performance on distractor
generation and error generation for all methods across 5
folds. LOOKALIKE outperforms SFT and the prior state-
of-the-art method DiVERT (Fernandez et al., 2024), and
is comparable to DPO-GT.

errors per training sample per epoch, resulting in
a similar order of magnitude of training samples
as DPO-GT. We also use the same training budget
and regularization for both methods. All fine-tuned
models, including SFT and DPO-based variants,
were trained with LoRA to ensure parameter effi-
ciency and consistency in comparison.

5 Results, Analysis and Discussion

In this section, we detail our experimental results.
We quantitatively evaluate the quality of gener-
ated errors and distractors, qualitatively evaluate
the consistency of generated errors through human
evaluation, conduct an ablation study on DPO regu-
larization techniques, and perform an error analysis
on failed cases of error generation.

5.1 Quantitative Evaluation

Table 3 shows the average performance on dis-
tractor generation and error generation, across 5
cross-validation folds, for all methods. DPO-based
methods, DPO-GT and LOOKALIKE, are trained
using our alternating optimization technique for
DPO regularization, choosing the alternating level
(per-batch or per-epoch) that works best for down-
stream task performance. DPO-GT works best with
per-epoch for both tasks, while LOOKALIKE works
best with per-epoch for distractor generation, and
per-batch for error generation.

Preference optimization using inconsistent
error-distractor pairs improves consistency.
LOOKALIKE outperforms SFT and the previ-
ous state-of-the-art baseline DiVERT (Fernandez
et al., 2024), by a wide margin of 6.8% and
5.92% on distractor generation, and 10.5% and
9.46% on error generation performance, respec-
tively. The improvement is statistically significant
with p-values < 0.05 measured using a one-sample
Wilcoxon signed-rank test (Rey and Neuhäuser,

Dis Gen
(Exact M. ↑)

Error Gen
(LLM-as-Judge ↑)

DPO-GT w/o Reg. 47.68 53.96
+ DPOP 47.80 52.74
+ RPO 49.14 52.44
+ Per-batch 49.66 55.74
+ Per-epoch 51.44 57.02

LOOKALIKE w/o Reg. 47.98 49.34
+ DPOP 49.38 49.44
+ RPO 49.60 49.66
+ Per-batch 50.84 57.18
+ Per-epoch 51.56 56.64

Table 4: Ablation study of various DPO regularization
techniques. Our alternating (per-batch/epoch) optimiza-
tion performs best for both DPO-GT and LOOKALIKE.

2011). This result validates our idea of mining
error-distractor inconsistencies as preference pairs
for DPO training to improve both error and distrac-
tor generation consistency. Further, LOOKALIKE,
although using synthetic negative samples drawn
from its own inconsistent generations as preference
pairs, is comparable in performance to DPO-GT,
which uses human-written annotations as prefer-
ence pairs, demonstrating the potential and flexibil-
ity of LOOKALIKE for scalable, domain-agnostic
preference optimization.

Although the performance difference between
LOOKALIKE and DPO-GT appears small (0.12%
and 0.16% on distractor and error generation re-
spectively), it is important to note that LOOKA-
LIKE achieves this using automatically mined pref-
erence pairs from inconsistent generations, without
relying on ground-truth labels, highlighting its scal-
ability. Moreover, the improvement over DiVERT
(5.9-10.5%) is substantial and statistically signifi-
cant.

Alternating optimization is an effective DPO
regularization. Table 4 shows an ablation study
comparing different DPO regularization techniques
to combat deterioration in generation quality (Pal
et al., 2024) during DPO training. Existing ap-
proaches like DPOP (Pal et al., 2024) and RPO (Liu
et al., 2024b) provide marginal gains up to 1.62%
for distractor generation and 0.32% for error gen-
eration. Our alternation optimization, switching
between SFT and DPO objective, at either the per-
batch or per-epoch level, leads to the best perfor-
mance for both, DPO-GT and LOOKALIKE, with
performance gains up to 1.96% on the distractor
generation task and 7.52% on the error generation
task. These results show that alternating optimiza-
tion effectively guides the LLM to periodically re-
calibrate to the ground-truth distribution (via SFT)
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while remaining faithful to learning ranking prefer-
ences of consistent generations (via DPO).

5.2 Qualitative Case Studies

LOOKALIKE generates more consistent errors.
Table 5 shows errors from LOOKALIKE compared
to errors generated from SFT on two math ques-
tions. For the question on finding factors, SFT
generates an overly generalized error applicable to
many potential distractors, “Does not understand
the term factor”. On the other hand, LOOKALIKE

generates a more specific error, “When asked for
factors of an algebraic expression, thinks any part
of a term will be a factor”, consistent with the dis-
tractor. Similarly, for the question on simplifying
algebraic terms, SFT generates an abstract error
applicable to many distractors, “Tries to add or sub-
tract unlike terms”. On the other hand, LOOKA-
LIKE generates a more specific and consistent error
leading to the input distractor, “When collecting
like terms, treats subtractions as if they are addi-
tions.” We see similar patterns across other topics,
with errors generated by LOOKALIKE being more
specific and consistent with the input question and
distractor. We also show qualitative examples of
generated errors across all methods in Appendix D.

Error Analysis of LOOKALIKE. While
LOOKALIKE outperforms SFT in generating more
consistent errors and distractors, we observe some
examples of generated errors that are inconsistent
with the input question-distractor pair. One failure
pattern observed is of template overfitting, where
LOOKALIKE generates an error by overfitting to
the error-distractor template of a similar question
seen during training, generating errors that are
consistent with other distractors from similar
questions but not the input distractor. Table 8
in the Appendix shows two examples. We see
that the generated error, “Has multiplied by
the root power”, is inconsistent with the input
distractor 64, but upon inspection, is present as
a ground-truth error and consistent with another
question-distractor pair on the same topic.

5.3 Human Evaluation

Setup. We conduct a human evaluation on the
quality and consistency of generated errors. We in-
struct two independent annotators with teaching ex-
perience to evaluate whether an error is consistent
with a given input math question and correspond-
ing distractor, choosing between a) yes, b) partially,

and c) no. Our instructions to human annotators
are provided in Appendix F.

We randomly select 40 math questions from our
test set spanning a diverse range of topics. For
each question, we include its ground-truth human-
written error, the error generated by SFT, and the
error generated by LOOKALIKE, for human evalua-
tion. This process results in 120 errors, along with
their corresponding questions and distractors, for
human evaluation. We shuffle the 120 samples to
avoid annotator bias.

Results. Table 6 shows the average of annota-
tors’ ordinal ratings on error explanations from
the ground truth, SFT, and LOOKALIKE models.
Ground truth errors scored the highest (mean =
0.812), followed by LOOKALIKE (0.587), and
SFT (0.400). While LOOKALIKE does not match
the human-authored ground truth, it significantly
outperforms SFT on average, suggesting that
preference-based regularization leads to more ped-
agogically consistent explanations.

We also measured agreement between annota-
tors using quadratic-weighted Cohen’s kappa, and
found that error labels generated by LOOKALIKE

led to the highest agreement (0.740), surpassing
both SFT (0.659) and even the inter-annotator
agreement on ground truth labels (0.415). This re-
sult suggests that errors generated by LOOKALIKE

are easier for humans to interpret consistently, even
if they are not always as plausible as ground truth
explanations. We see a lower agreement on ground
truth errors because their pedagogical nuance and
potential generality made consistency judgments
more subjective for annotators compared to the
often more literal AI-generated errors.

Finally, we compared agreement between evalu-
ations from human annotators to evaluations from
GPT-4o-mini-based LLM-as-Judge, our reference
metric for error generation. Agreement varied be-
tween annotators, with the first annotator showing
moderate agreement (linear Kappa) with GPT-4o-
mini (0.556 for LOOKALIKE-generated errors and
0.505 for SFT-generated errors), and the second an-
notator showing low agreement (0.314 for LOOKA-
LIKE-generated errors and 0.409 for SFT-generated
errors).

6 Related Work

Error-Distractor Generation for Math MCQs.
Automated generation of math MCQs, and par-
ticularly their distractors, has progressed from
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Topic Finding factors Simplifying terms

Question Stem Which of the following is a factor of: 6n2 − 9? Simplify the following expression by col-
lecting like terms: 6x− 2y − x+ 3y.

Key 3 5x+ y

Ground-truth Distractor 9 7x+ 5y

Ground-truth Error When asked for factors of an algebraic expres-
sion, thinks a term will be a factor.

When collecting like terms, treats subtrac-
tions as if they are additions.

SFT-Generated Error Does not understand the term factor. Tries to add or subtract unlike terms.

LOOKALIKE-Generated
Error

When asked for factors of an algebraic expres-
sion, thinks any part of a term will be a factor.

When collecting like terms, treats subtrac-
tions as if they are additions.

Table 5: Examples showing errors generated from LOOKALIKE are more consistent than errors generated by SFT.

Human SFT LOOKALIKE

Avg. Rating 0.812 0.400 0.587

Table 6: Average error consistency rating by human
evaluators. LOOKALIKE generates more consistent er-
rors than SFT.

template-based (rule-based and constraint-based)
methods (Shin et al., 2019; Liang et al., 2018; Luo
et al., 2024) to Large Language Model (LLM) ap-
proaches (Fernandez et al., 2024; Feng et al., 2024;
Scarlatos et al., 2024a; Bitew et al., 2023; Chung
et al., 2020). A critical challenge, however, remains
the generation of high-quality distractors that accu-
rately reflect common student errors and miscon-
ceptions (Alhazmi et al., 2024; Stasaski and Hearst,
2017). Current methods advance error representa-
tion using variational techniques (Fernandez et al.,
2024), RAG-based methods (Yu et al., 2024a), and
knowledge-bases (Ren and Q. Zhu, 2021).

Preference Optimization in Education. Prefer-
ence learning techniques, including Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) and its more stable, computationally
efficient alternative Direct Preference Optimization
(DPO) (Rafailov et al., 2023), are vital for align-
ing AI outputs with human judgments in education
(Fahad Mon et al., 2023). Many recent approaches
have used DPO (Lee et al., 2025; Sonkar et al.,
2024b; Team et al., 2024; Ashok Kumar and Lan,
2024; Scarlatos et al., 2024b, 2025) but they do not
handle some known failure modes of DPO related
to inconsistent or out-of-distribution generation
which the synthetic data generation of LOOKA-
LIKE utilizes and the regularization of LOOKA-
LIKE addresses. Other works mitigate these is-
sues by providing regularization by using entropy

(Shekhar et al., 2024), length-based rewards (Park
et al., 2024), or the SFT objective (Liu et al., 2024b;
Pal et al., 2024), LOOKALIKE improved on these
by providing a simpler SFT-based regularization
approach which requires less hyperparameter tun-
ing and is easier to apply.

Challenges in Erroneous Instruction Following.
Generating distractors from error descriptions, is an
instance of the broader challenge of AI instruction
following(Lou et al., 2024). AI systems, including
LLMs, struggle with complex reasoning (Heo et al.,
2024; Son et al., 2024), multi-step tasks (Chen
et al., 2024; Wang and Lu, 2023; Fujisawa et al.,
2024), and adhering to multiple constraints simul-
taneously (Wen et al., 2024), sometimes exhibiting
a "curse of instructions" where performance de-
grades as complexity increases (Jang et al., 2022;
Son et al., 2024). Generalization also poses a
significant hurdle; models often fail to apply in-
structions to new tasks or in novel combinations
(compositional generalization) (Cohen et al., 2025;
Dan et al., 2021). These challenges can lead to in-
consistencies where the generated output does not
faithfully reflect the nuances of the input instruc-
tion (Jang et al., 2022; Son et al., 2024; Heo et al.,
2024), a problem LOOKALIKE aims to mitigate in
the context of error-distractor generation through
targeted preference optimization.

7 Conclusion

In this paper, we introduced LOOKALIKE, a
method that improves error-distractor consis-
tency in math MCQs via preference optimization.
LOOKALIKE uses two main innovations: a) min-
ing synthetic preference pairs from model genera-
tion inconsistencies and b) alternating optimization
by switching between SFT and DPO objectives to
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stabilize training. Through extensive experiments
on a real-world math MCQ dataset, we showed
that LOOKALIKE outperforms the previous state-
of-the-art method by a wide margin on both error
generation and distractor generation. These im-
provements highlighted the potential of inconsis-
tency mining and preference-based regularization
for generating consistent math MCQ distractors
at scale. We identify several limitations and av-
enues for future work. First, while LOOKALIKE

improves error and distractor generation consis-
tency, examples of inconsistent generations remain.
Ideas for creating preference pairs using error gen-
eration and distractor generation models together
could be a promising direction. Second, testing
the generalizability of LOOKALIKE to math MCQs
from unseen topics remains unexplored.
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Limitations

While LOOKALIKE demonstrates improvements
in generating consistent error-distractor pairs, it
currently operates within the domain of middle-
school mathematics. Extending the approach to
other subjects like science or language arts may
require minor modifications to the error and dis-
tractor representations.

Additionally, the current preference mining
strategy relies on model-generated inconsisten-
cies, which assumes the base model is sufficiently
trained to surface pedagogically meaningful con-
trastive samples. In practice, we find that models
pretrained on math data (e.g., MetaMath) meet this
assumption, suggesting this is a broadly applicable
approach rather than a bottleneck.

Our use of exact match to label non-matching
outputs as dispreferred is conservative and inten-
tionally strict; it helps emphasize high-confidence
inconsistencies. Nonetheless, exploring softer
similarity-based criteria or human judgments to
refine preference mining is a valuable future direc-
tion.

Ethical Considerations

Our goal is to reduce educator workload by au-
tomating the generation of plausible distractors and
their associated misconceptions, ultimately sup-
porting teachers in providing more personalized
feedback. However, we acknowledge a potential
concern around over-reliance on AI-generated con-
tent in educational settings. While our system is
designed to assist, not replace, educators, thought-
ful deployment practices and educator-in-the-loop
designs are encouraged.

The use of large language models (LLMs) intro-
duces the standard risks of inherited biases or arti-
facts from pretraining data. In our case, these risks
are minimal, as the domain of application (mathe-
matical misconceptions) is highly constrained and
less prone to sociolinguistic biases. Nevertheless,
we encourage ongoing validation and periodic au-
dits as best practices when deploying AI systems
in learning environments.
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A Baselines and their Hyperparameters

We describe LOOKALIKE’s baselines, as well as
the hyperparameters used by LOOKALIKE and its
baselines. We use MetaMath-Mistral 7B (Yu et al.,
2024b) as our base LLM backbone for error and
distractor generation across methods. For memory
efficiency, we quantize the model weights into 8-bit
integer representation and enable gradient check-
pointing throughout training. Our implementation
utilize the HuggingFace ecosystem, specifically the
transformers (Wolf et al., 2020), peft, and trl
libraries for finetuning. We perform training on
NVIDIA L40 GPUs.

SFT. For the supervised finetuning (SFT) base-
line we train the base model with Low-Rank Adap-
tation (LoRA) modules (Hu et al., 2022). LoRA is
configured with a rank r = 128, α = 256, and a
dropout rate of 0.05. We perform SFT training for
5 epochs, with early stopping based on validation
loss. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 2e-5. We
use a batch size of 6.

DPO-based Baselines. For all DPO training, we
set the hyperparameter β = 0.5 and the learning
rate as 5e-6. We use a batch size of 6.

DPO-GT. As specified in 2.2 we have multiple
errors and distractors associated with all questions,
to create preference pairs for each pair of error and
distractor, we place all the non-associated sample
of either in the dispreferred pair while placing the
specified samples in the preferred pairs.

RPO. For RPO (Section 2.3), we use λ = 0.005
as reported by them. We use the default implemen-
tations of RPO as provided in the trl library.

DPOP DPO-Positive (DPOP) (Pal et al., 2024)
enhances DPO by preventing the model from
merely reducing the likelihood of rejected exam-
ples where the edit distance in all pairs is large by
using the SFT objective as a penalty. It introduces
a constraint term to balance learning:

LDPOP = LDPO − λ ·max(0, log
πref (yw|x)
πθ(yw|x)

).

(4)
Here, we use λ = 0.1.

LOOKALIKE (Synthetic Data Generation).
For the LOOKALIKE prefrence pairs (in Section
3.1) we generate 3 errors and distractors for each
epoch of training to create negative preference sam-
ples, while considering the ground truth errors and
distractors as the positive preference samples. We
consider the top-k completions returned by beam
search to get a set of êi which augments the set
of dispreferred responses further. We note that for
all DPO training we use the SFT trained model as
a warm start as with previous literature (Rafailov
et al., 2023).

LOOKALIKE (Per-epoch and Per-batch Regu-
larization). With the per-epoch and per-batch
modes of LOOKALIKE (Section 3.2), we use the
learning rate of 5e-6 for both DPO and SFT. For the
per-epoch setting we perform one entire epoch of
SFT after one epoch of DPO. Whereas for the per-
batch setting if we run out of SFT batches while
DPO training hasn’t finished we rollback to the
beginning of the SFT training data.

B LLM-as-a-judge

To assess whether two error explanations ex-
press the same underlying misconception, we use
GPT-4o-mini as an automated judge. The model
is provided with the question, distractor, and two
error explanations, and asked to determine whether
they are mathematically equivalent (Table 7), that
is, whether they arise from the same conceptual

306

https://openreview.net/forum?id=9Hxdixed7p


misunderstanding, regardless of wording. Below,
we present an example of the prompt used in this
evaluation.

This template was used for all pairwise compar-
isons of error explanations in the LLM-as-a-Judge
evaluation.

C Error Analysis

While LOOKALIKE generally produces more spe-
cific and grounded error explanations, Table 8 also
reveals some notable limitations. In the cube root
example, the explanation “Has multiplied by the
root power” reflects a plausible arithmetic confu-
sion but doesn’t clearly connect to the distractor
value of 64, which results from cubing rather than
misunderstanding cube roots. Similarly, in the num-
ber ordering case, the generated error implies digit-
level misordering but lacks clarity on how this leads
specifically to choosing “Only Katie.” These exam-
ples suggest that while LOOKALIKE often captures
fine-grained misconceptions, it can occasionally
overgeneralize or introduce speculative reasoning
not fully aligned with the distractor. This under-
scores the need for further refinement to ensure
tighter alignment between the error explanation
and the underlying choice.

D Comparing Errors across LOOKALIKE
and its Baselines

Table 9 illustrates how different training meth-
ods produce qualitatively distinct reasoning errors
across representative math questions. We observe
a clear progression in the nature of these errors, re-
flecting the underlying supervision strategies. Mod-
els trained with SFT often generate surface-level
mistakes indicative of limited conceptual under-
standing. In contrast, DiVERT tends to produce
more structured but still incorrect procedural rea-
soning. Errors from DPO-GT reveal partial appli-
cation of mathematical heuristics, suggesting more
sophisticated—though still flawed—mental mod-
els. Finally, LOOKALIKE models (both per batch
and per epoch) consistently produce errors that re-
semble common student misconceptions, such as
overgeneralizing valid procedures or subtly misap-
plying familiar rules. This progression supports our
claim that LOOKALIKE encourages more pedagog-
ically meaningful error patterns, aligning closely
with authentic human reasoning.

E Example MCQs from Real-world Math
MCQ Dataset

We show example MCQs from the dataset in Ta-
ble 10.

F Human Analysis Instructions

To evaluate the consistency of error explanations
with corresponding distractor choices in multiple-
choice math questions, we provided annotators
with detailed guidelines, shown in Table 11. An-
notators were instructed to examine each question
item, which included a correct answer, a step-by-
step solution, a distractor (incorrect answer), and
an explanation for why a student might choose that
distractor.

Annotators were asked to judge whether the ex-
planation was:

• Yes: Clearly consistent with the distractor and
plausibly explains the student error.

• Partially: Somewhat consistent, but vague,
generic, or only loosely related to the distrac-
tor.

• No: Inconsistent or misleading; does not plau-
sibly explain the choice of the distractor.

The instructions included concrete examples for
each category to help calibrate judgment and en-
sure consistent annotation. These annotations were
later used to analyze the quality of generated error
explanations.
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System Prompt.
You are a math education expert.
Given a question and a distractor (an incorrect student answer), determine whether two error
descriptions are mathematically equivalent.

Definitions.

• An incorrect answer or distractor is a plausible but incorrect answer choice to the specified
question.

• An error explanation or error is the misconception a student might make that leads them to
choosing the specified distractor.

• Two error explanations are mathematically equivalent if they stem from the same core misun-
derstanding, regardless of wording.

Your response should include a brief justification (1–2 sentences) for whether the errors reflect the
same or different misconceptions.
Always conclude with: “Answer: Equivalent or Answer: Not Equivalent”.

Question and Metadata.
The question is: <Question>
The question topic is: <Topic>
The question concept is: <Concept>
The solution is: <Solution from question to Correct Answer>
The correct answer is: <Correct Answer>

Distractor (incorrect answer): <Ground Truth Distractor>

Error explanation 1: <Ground Truth Error>
Error explanation 2: <Generated Error>

Table 7: System prompt used to evaluate the mathematical equivalence of error explanations for a given distractor.
The prompt positions the model as a math education expert tasked with identifying whether two misconceptions
arise from the same underlying error.
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Field Cube Root Indices, Powers and Roots

Question 3
√
8 =? 3.52 + 2.75 =

Distractor 64 5.27
Correct Answer 2 6.27
SFT Error Explanation Divides by the order of the root. Does not understand place value

within a number.
LOOKALIKE Error Explanation Has multiplied by the root power. When adding decimals with a dif-

ferent number of decimal places,
lines up the digits incorrectly.

Table 8: Comparison of error explanations for two different math topics. Examples show that LOOKALIKE also has
some failure modes, discussed in greater depth in Section 5.2.

Improper Fraction Conversion Gradient of a Line

Question Convert this into an improper fraction: 4 2
3 What is the gradient of this line? 5x + 3y = 15

Correct Answer 14
3 − 5

3

Ground-truth Distractor 12
3

5
3

Ground-truth Error Forgetting to add the numerator to the whole part. Applying the same operation instead of the inverse when solv-
ing.

SFT Does not add the whole to the numerator when converting a
mixed number to an improper fraction.

Believes a downward line has a positive gradient.

DiVERT Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When solving an equation, uses the same operation rather than
the inverse.

DPO-GT + Per batch Does not include the whole amount when converting a mixed
number to an improper fraction.

Believes the gradient of a line is given by the coefficient of x,
even when the equation is not in the form y = mx + c.

LOOKALIKE + Per batch Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When solving an equation, uses the same operation rather than
the inverse.

DPO-GT + Per epoch Thinks you can ignore the whole amount when converting a
mixed number to an improper fraction.

When finding the gradient from the equation of a line in the
form ax + by = c, believes b/a is the gradient.

LOOKALIKE + Per epoch Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When finding the gradient from the equation of a line in the
form ax + by = c, believes b/a is the gradient.

Table 9: Comparison of typical errors generated by each method for two representative math questions.
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Question stem Add brackets to this calculation to make the answer 7. 16− 6 + 4÷ 2

Topic BIDMAS
Concept Insert brackets to make a calculation correct
Solution Inside the bracket we work left to right, so we get 14÷ 2 which is 7.
Correct answer (16− 6 + 4)÷ 2

Distractor 1 16− (6 + 4)÷ 2

Error 1 With order of operations brackets are done first, then division is done before subtrac-
tion. This would give us 16− 10÷ 2 = 16− 5 = 11 NOT 7.

Distractor 2 (16− 6) + 4
2

Error 2 With order of operations brackets are done first, then division is done before subtrac-
tion. This would give us 10 + 4÷ 2 = 10 + 2 = 12 NOT 7.

Distractor 3 16− 6 + (42)

Error 3 With order of operations brackets are done first, then division is done before
subtraction. Putting the brackets around the division, will not change the order.
16− 6 + (4÷ 2) = 16− 6 + 2 = 12 NOT 7.

Question stem Which of the following answers gives the correct solutions to the quadratic expression
below? (x+ 2)(x− 7) = 0

Topic Algebra
Concept Solve quadratic equations using factorisation in the form (x + a)(x + b)
Solution Setting each bracket equal to 0 we have x + 2 = 0 and x - 7 = 0. This tells us that x =

-2 and x = 7.
Correct answer x = −2, x = 7

Distractor 1 x = 2, x = −7
Error 1 Believes the solutions of a quadratic equation are the constants in the factorised form

Distractor 2 x = 2, x = 7

Error 2 Believes the solutions of a quadratic equation are the absolute values of the constants
in the factorised form

Distractor 3 x = −2, x = −7
Error 3 Believes the solutions of a quadratic equation are the negative of the absolute values

of the constants in the factorised form

Table 10: Example MCQs from the real-world math MCQ dataset.
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In this task, you’ll evaluate error explanations for student errors in math multiple-choice questions.
For each item, you’ll see:

1. The question

2. The correct answer choice

3. A solution which shows how a student can reach the correct answer choice

4. A distractor (an incorrect answer choice)

5. An error explanation describing why a student might choose the distractor

Your Task
Annotate if each error explanation is consistent with the distractor (mark Yes), is generic, vague, or
partially consistent (mark Partially) or has nothing to do with the distractor, or is misleading (mark
No).
Use your best judgment when assigning ratings. Some examples are:

Example 1 (Marking Yes):
Question: Add brackets to this calculation to make the answer 7. 16− 6 + 4÷ 2

Correct Answer:(16− 6 + 4)÷ 2

Solution: Inside the bracket we work left to right, so we get 14 ÷ 2 which is 7.
Distractor: 16− (6 + 4)÷ 2

Error: Carries out operations from left to right regardless of priority order.
Mark Yes

Example 2 (Marking Partially):
Question: 3

7 of a group of students are boys. What would be a possible ratio of boys to girls?

Correct Answer: 3 : 4

Solution: For every 7 students, 3 are boys and 4 are girls. The ratio is then 3:4.
Distractor: 3 : 7

Error: Uses the denominator when converting from fractions to ratio, rather than numerator.
Mark Partially

Example 3 (Marking No):
Question:When h = 5 h2 =

Correct Answer: 25
Solution: If h = 5, h2 = h× h = 5× 5 = 25.
Distractor: 7
Error: Multiplies by the index.
Mark No

Table 11: Instructions provided to human annotators used to evaluate the consistency of error explanations for a
given distractor.
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Abstract

Designing vocabulary learning activities for for-
eign/second language (L2) learners highly de-
pends on the successful identification of diffi-
cult words. In this paper, we present a novel
personalised word difficulty classifier for L2
Spanish, using the LexComSpaL2 corpus as
training data and a BiLSTM model as the ar-
chitecture. We train a base version (using the
original LexComSpaL2 data) and a word fam-
ily version of the classifier (adding word fam-
ily knowledge as an extra feature). The base
version obtains reasonably good performance
(F1 = 0.53) and shows weak positive predictive
power (ϕ = 0.32), underlining the potential of
automated methods in determining vocabulary
difficulty for individual L2 learners. The “word
family classifier” is able to further push perfor-
mance (F1 = 0.62 and ϕ = 0.45), highlighting
the value of well-chosen linguistic features in
developing word difficulty classifiers.

1 Introduction

In the rapidly evolving digital era of the 21st cen-
tury, language and technology are growing closer
together than ever. Language technology tools –
especially those driven by large language models
(LLMs) – have become very adept at performing
a wide range of tasks, ranging from summaris-
ing documents to translating texts from one lan-
guage into another. In some cases, their output has
even shown to be virtually indistinguishable from
human-written materials (Else, 2023).

At the same time, despite the wealth of tech-
nological assistance, being able to understand and
speak a foreign/second language (L2) can be said to
remain an indispensable skill for anyone who wants
to fully engage in foreign cultures, as building sus-
tainable intercultural relationships involves tasks
that are much more difficult to achieve by means of
technological tools alone, such as interpreting hu-
mour and facial expressions (Godwin-Jones, 2019).

What language technology tools do possess, how-
ever, is the ability to play the role of a valuable
assistant in the L2 learning process.

This interface between second language acquisi-
tion (SLA) and computer assistance has commonly
been referred to as Computer-Assisted Language
Learning or CALL. Recently, the field of CALL
has witnessed a growing interest in the specific sub-
domain of Intelligent CALL (ICALL). With tech-
niques coming from the field of Artificial Intelli-
gence (AI) and its subdomain of Natural Language
Processing (NLP) as their source of “intelligence”,
ICALL environments aim to — among other goals
— facilitate and/or (partially) automate the creation
of language learning materials. Although the ori-
gins of ICALL can be traced back as far as to the
1980s (Nyns, 1989), it was not until the advent
of static (Mikolov et al., 2013) and contextualised
word embeddings (Devlin et al., 2019) followed by
full-fledged generative LLMs that a true paradigm
shift from CALL towards ICALL has started to
take shape.

ICALL platforms can foster virtually any lan-
guage skill, but in this paper we will specifically
focus on ICALL for vocabulary learning purposes.
With a large body of studies showing that text
comprehension and vocabulary knowledge are pos-
itively correlated (e.g., Laufer and Ravenhorst-
Kalovski, 2010; Schmitt et al., 2011), we know that
a wide vocabulary is a fundamental requisite to be
able to function in a language. Or, in the words
of Wilkins (1972, p. 111): “without grammar very
little can be conveyed, without vocabulary nothing
can be conveyed”. To help learners expand their
L2 vocabulary, a combination of implicit and ex-
plicit learning activities is to be recommended (Na-
tion, 2019; Schmitt, 2010a). Explicit vocabulary
learning activities (e.g., fill-in-the-blanks exercises)
require paying deliberate attention to vocabulary
items, while in implicit activities the increase in
vocabulary knowledge is achieved as a by-product,
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because the main goal of the activity is the suc-
cessful completion of an authentic task such as
understanding the plot of a book.

In both of these strands, knowing which words
might be difficult for target learners to understand
or produce is a valuable source of information. In
the case of the implicit approach, one of the key
notions is that learners acquire vocabulary when
they are exposed to input that is comprehensible but
slightly beyond their current knowledge (Lichtman
and VanPatten, 2021), implying that it should be
known which parts of the input are comprehensible
and which are not. For explicit learning, on the
other hand, informed decisions need to be made on
which words to in- and exclude from the activities,
a task that becomes considerably easier if we know
which words are (un)known by the learners.

In other words, identifying difficult words (or
word uses) plays a pivotal role during the devel-
opment of vocabulary learning materials. As an
alternative to the labour-intensive process of identi-
fying these words by hand, research within the field
of ICALL has explored NLP-driven approaches to
perform this task. Methods exploiting computer-
readable resources in which words are linked to dif-
ficulty levels (or frequency bands, since frequency
correlates with difficulty1; Schmitt, 2010b) consti-
tute a first option, as they can automatically assign
words in digital texts to their corresponding diffi-
culty/frequency label (Finlayson et al., 2023).

However, apart from having limited coverage
(only words included in the resources will be as-
signed a label), this approach does not take into
account individual differences among learners. To
overcome these limitations, machine learning sys-
tems can be designed, which offer more flexibility:
in theory, they can classify any text, sentence or
word into any set of difficulty levels, and tailor pre-
dictions to individual learner profiles (Tack, 2021).

In this paper, we present a first-of-its-kind indi-
vidualised word difficulty classifier for L2 Span-
ish. As our training data, we make use of Lex-
ComSpaL2 (Lexical Complexity for Spanish L2;
Degraeuwe and Goethals, 2024), a publicly avail-
able dataset2 containing 2,240 in-context target

1It should be noted that this difficulty - frequency correla-
tion does not mean that word difficulty equals word frequency.
As shown in previous research (Pintard and François, 2020),
word difficulty cannot be predicted by frequency values alone.

2The dataset is made available through a GitHub repository
and was released under the ODC-By license, which grants the
right to freely use and adapt the data as long as any use of the
dataset is adequately attributed.

words with the corresponding difficulty judgements
of 26 L2 Spanish students. We compare the re-
sults of training two different versions of the clas-
sifier: a base version (only using the original Lex-
ComSpaL2 data) and a word family version (adding
word family knowledge as an extra feature).

2 Related Research

This literature overview discusses lexical diffi-
culty/complexity as defined in the field of linguis-
tics in Section 2.1, the technique of lexical com-
plexity prediction (i.e. the approach adopted to
build LexComSpaL2) in Section 2.2, individualised
learning in Section 2.3, and a detailed account of
word families (used to create a “linguistically en-
riched” version of LexComSpaL2) in Section 2.4.

2.1 Difficulty and Complexity in SLA
In linguistics, the concept of “word diffi-
culty/complexity” is usually subdivided into sev-
eral dimensions, often dichotomous in nature. One
of the most prominent distinctions is the one be-
tween absolute (or objective) and relative (or agent-
related) complexity (Kortmann and Szmrecsanyi,
2012). In the former type, complexity is understood
in terms of the linguistic properties of words, rang-
ing from their length over the number of vowels and
diphthongs they contain to their homonymic and/or
polysemous character (i.e. the number of different
meanings/senses they have). Especially the last
feature plays an important role in an SLA setting,
as lexically ambiguous items have shown to be
more challenging to process and learn than single-
meaning words (Bensoussan and Laufer, 1984).

Relative complexity (also denominated “diffi-
culty”; Bulté et al., 2025), on the other hand, corre-
sponds to the complexity as perceived by a particu-
lar language learner, meaning that psycholinguistic
factors and world knowledge can come into play
(North et al., 2023; Kortmann and Szmrecsanyi,
2012). In an L2 setting, an additional crucial fac-
tor in determining agent-related complexity is L1
influence, which can manifest itself through false
friends (e.g., ES listo [‘ready’] - NL list [‘ruse,
trick’]) or cognates (e.g., ES individuo - NL indi-
vidu - EN individual).

2.2 Lexical Complexity Prediction
Computational approaches to identifying diffi-
cult/complex words focus on “operationalising” the
abovementioned linguistic concepts. A crucial as-
pect of this operationalisation is the presence of
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some kind of “inventory” in which words are linked
to discrete difficulty/complexity labels. One pos-
sible way to build such inventories is exploiting
computer-readable versions of graded vocabulary
lists (Dang et al., 2017), frequency lists (Davies and
Hayward Davies, 2018), or graded coursebooks (in
which case words are assigned to the level at which
they first occur; Alfter, 2021). Another approach
is to collect human annotations, either through on-
line (crowdsourcing) platforms (Shardlow et al.,
2021) or by means of dedicated research experi-
ments (Tack, 2021).

The dataset used in this study, LexComSpaL2,
falls in the last category (for more details on the
corpus, see Section 3.1.1). The LexComSpaL2
annotations were gathered according to the prin-
ciples of lexical complexity prediction (LCP; see
Table 1 for an example), a relatively new strand
within the field of NLP that provides an alternative
to the binary complex word identification (CWI)
approach (which labels words as either complex or
non-complex; Yimam et al., 2018).

By using a five-point scale going from “very
easy” to “very difficult” (for the full descriptors,
see Section 3.1.1), LCP not only yields more fine-
grained judgements than the binary CWI labels, it

Sentence

They do hold elections, but candidates have
to be endorsed by the conservative clergy, so
dissenters are by definition excluded.

Target word LCP Label

do 1

hold 2

elections 3

candidates 1

have 1

be 1

endorsed 4

conservative 2

clergy 5

dissenters 5

definition 1

excluded 2

Table 1: Fictitious example of LCP annotations. The
target sentence is taken from the CompLex dataset, the
first LCP corpus ever created (Shardlow et al., 2020). In
line with the LexComSpaL2 corpus, only nouns, verbs,
and adjectives are considered in the example.

also enables making predictions based on “compar-
ative complexity” (i.e. whether a word is more or
less complex than another target word; North et al.,
2023). Importantly, the term “complexity” as used
in the field of LCP represents an amalgam of the
concepts of complexity and difficulty described in
Section 2.1, as it refers to the difficulty an individ-
ual may experience in understanding a given word
as a result of both their personal knowledge and a
word’s linguistic properties (North et al., 2023). In
this paper we adopt the same comprehensive defini-
tion but will give preference to the term “difficulty”
instead of “complexity”, since the individualisation
of the predictions puts slightly more emphasis on
the (personal knowledge of the) learner than on the
linguistic properties of the target words.

To the best of our knowledge, LexComSpaL2
is the only available LCP dataset that (1) specifi-
cally targets L2 learners and (2) enables training
personalised word difficulty classifiers. Other LCP
datasets are mostly constructed for the purpose of
training models that can be integrated in a lexi-
cal simplification pipeline (Paetzold and Specia,
2017). A comprehensive overview of existing LCP
datasets can be found in Shardlow et al. (2024).

Regarding the features used in LCP classifiers,
recent research has revealed that a hybrid approach
combining linguistic features (see Section 2.1) and
LLM embeddings (e.g., BERT embeddings; De-
vlin et al., 2019) results in the highest performance
(Ortiz-Zambrano et al., 2025). Earlier research,
however, showed that also with static word em-
beddings good performance levels can be achieved
(Tack, 2021). In this paper, we build on this line
of research by combining static word embeddings
with linguistic information on word families. By
focusing on word families we aim to gain new in-
sights into the value of linguistic features in auto-
mated word difficulty prediction, as previous re-
search has mainly paid attention to lexical features
related to the word itself (e.g., word length and
number of syllables) and semantic features taken
from resources such as WordNet (Fellbaum, 1998;
e.g., number of synonyms, hypernyms, and/or hy-
ponyms of a given target word).

2.3 Individualised Learning

As already touched upon above, another core and
unique aspect of our word difficulty classifier is that
it outputs personalised predictions. This way, we
aim to integrate findings from the literature on indi-
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vidual differences in SLA3. In brief, research in this
domain has demonstrated that a variety of factors
related to the individual can impact the learning
process and learning outcomes. As mentioned in
Section 2.1, a first crucial dimension of individ-
ual differences is the linguistic background of the
learner, particularly (proficiency in) their L1 and
experience with (learning) other languages (Degani
and Goldberg, 2019). Other individual differences
that have a considerable impact on the vocabulary
learning process of L2 learners include cognitive
factors such as memory capacity (Martin and Ellis,
2012) and the degree of out-of-school exposure to
the L2 (De Wilde et al., 2022).

The domains of ICALL and NLP started to de-
vote increasingly more attention to individualising
system outputs. The most comprehensive approach
to personalising the L2 learning process can be
found in Intelligent Language Tutoring/Teaching
Systems (ILTSs), which tailor learning materials to
the specific needs of individual users on a macro
(selecting and sequencing activities) and/or mi-
cro level (providing scaffolded feedback) (Meurers
et al., 2019; Ruiz et al., 2023). Regarding word
difficulty prediction, both in the domain of CWI
(Gooding and Tragut, 2022; Tack, 2021) and LCP
(Degraeuwe and Goethals, 2024; North et al., 2023)
efforts have been undertaken to adopt a learner-
centred and personalised perspective. In the present
study, we aim to continue this line of research.

2.4 Word Families
Finally, we briefly discuss the concept of word fam-
ilies (Bauer and Nation, 1993), based on which we
expanded the LexComSpaL2 dataset and trained
a separate version of the classifier. As defined by
Webb (2021, p. 941), “[w]ord families are made
up of a headword, its inflections, and derivations”.
For the headword address, for example, this means
that the word family consists of both the nomi-
nal (addresses) and verbal inflections (addresses,
addressed, addressing), as well as derivations of
the two (e.g., addressee, readdress, unaddressed)
plus their inflected forms (e.g., addressees, read-
dresses, readdressed). Supported by empirical ev-
idence from cognitive linguistics (Zhang and Lin,
2021), one of the main arguments in favour of using
word family information in an L2 learning setting is
that, once learners have acquired knowledge of the
form-meaning connection of a given family mem-

3For extensive overviews of this domain, we refer to
Dörnyei (2014) or Skehan (1991).

ber (e.g., legal), they can use their knowledge of
the morphological system to infer the meaning of
other members of the family (e.g., legally, illegal)
(Nation and Webb, 2011; Nation, 2016).

3 Methodology

The methodology consists of two main steps: (1)
the preparation of the dataset on which the dif-
ferent versions of the classifier should be trained
(Section 3.1) and (2) the actual development and
training of the classifier (Section 3.2).

3.1 Dataset Preparation
3.1.1 Original LexComSpaL2 Dataset
To train the base version of the personalised word
difficulty classifier, we used the LexComSpaL2
dataset in its original format (Degraeuwe and
Goethals, 2024; see Table 2 for a dataset sample).
LexComSpaL2 includes 2,240 target words dis-
tributed over 200 sentences coming from four dif-
ferent domains (economics, health, law, and migra-
tion). The sentences were selected from L1 news-
paper corpora using a dedicated method specifi-
cally designed to extract pedagogically suitable
sentences from corpus data (Pilán et al., 2016). Re-
garding the annotations, 26 L2 Spanish learners
(from different proficiency levels but all L1 Dutch)
were asked to rate the (in-context) difficulty of all
nouns, verbs, and adjectives in the 200 sentences
according to the five-point LCP scale. Importantly,
Degraeuwe and Goethals (2024) tailored the orig-
inal LCP descriptors to L2 learners as the target
audience by projecting the LCP labels onto the vo-
cabulary knowledge continuum (Schmitt, 2019),
which conceptualises vocabulary knowledge as a
construct that gradually moves from “no knowl-
edge” over “receptive mastery” to “productive mas-
tery” (see Table 3 for the adapted scale).

In summary, the 58,240 self-perceived judge-
ments of word difficulty included in LexComSpaL2
constitute relevant and representative data to train
personalised word difficulty classifiers for L2 learn-
ers, as the annotations were (1) provided by actual
L2 learners and (2) taken from pedagogically suit-
able sentences that were selected in an attempt to
mimic the often thematic organisation of real-life
vocabulary learning courses and materials.

3.1.2 Word Family-Enriched Dataset
To enrich the original LexComSpaL2 dataset with
word family information, we considered the fol-
lowing three word family levels: the word’s token
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Sentence ID Sentence text Target word Individual judgements

1_1

El directivo, que ha celebrado un almuerzo de
Navidad con la prensa, ha asegurado que [. . . ]

(‘The manager, who has held a Christmas lunch
with the press, has assured that [. . . ]’)

directivo {P1: 3, P2: 2, P3: 2, [...],
P24: 3, P25: 1, P26: 1}

celebrado {P1: 2, P2: 1, P3: 1, [...],
P24: 2, P25: 1, P26: 1}

...

...

4_50

Las investigaciones sobre atención primaria,
neurología, oncología médica y microbiología
van después, [. . . ] (‘Research into primary care,
neurology, medical oncology and microbiology

comes after, [. . . ]’)

investigaciones {P1: 1, P2: 1, P3: 1, [...],
P24: 1, P25: 1, P26: 1}

atención {P1: 2, P2: 1, P3: 1, [...],
P24: 1, P25: 1, P26: 1}

...

Table 2: Sample from the LexComSpaL2 corpus that was also presented in Degraeuwe and Goethals (2024).
Aggregated judgements (per proficiency level and overall) were omitted from the sample, since we only used the
individual judgements to train the classifier. Target words are underlined and “P” stands for participant.

Rating Original LCP description Adapted description

1 Very easy: this word is very
familiar to me

I know this word and its meaning, and I also use it actively in speaking/writing.

2 Easy: I am aware of the mean-
ing of this word

I know this word and its meaning, but I might not be able to use it on the top
of my head in an oral/written conversation. When I have some time to think,
however, I do think I would use it naturally.

3 Neutral: this word is neither
difficult nor easy

I have heard/seen this word before and given the context I think that I more or
less know what it means, but I do not see myself using this word actively.

4 Difficult: the meaning of this
word is unclear to me, but I
may be able to infer it from
the sentence

This word sounds vaguely familiar and based on the context I could make an
educated guess about its meaning, but I would still need a dictionary to be able
to understand its exact meaning.

5 Very difficult: I have never
seen this word before / this
word is very unclear to me

This word does not sound familiar at all to me, and even based on the context I
do not know what it means, so I would definitely need a dictionary to get to
know its meaning.

Table 3: Original LCP descriptions compared to adapted descriptions proposed by Degraeuwe and Goethals (2024).
The adapted descriptions are based on the vocabulary knowledge continuum (Schmitt, 2019).

form (also called the “type”), the word’s lemma,
and the source from which the word’s lemma is
derived (i.e. the “parent” of the lemma in the “fam-
ily tree”)4. As an illustration, let us consider the
word desaparecido (‘disappeared’): the token level
consists of all occurrences of this exact word form
in the LexComSpaL2 dataset; the lemma level cor-
responds to the lemma of desaparecido (i.e. the
infinitive desaparecer - ‘to disappear’) and includes
all of its other conjugated forms (e.g., desaparezco,
desaparecieron); the source level corresponds to
the “parent” of desaparecer (i.e. aparecer - ‘to
appear’) and encompasses all inflected forms of
this parent (e.g., aparezco, aparecía).

4The token and lemma levels correspond to, respectively,
Level 1 and Level 2 of the Bauer and Nation (1993) taxonomy.
The source level is specific to this study.

Next, we applied the following procedure to ev-
ery target word in the LexComSpaL2 dataset:

1. Check if the exact token of the target word oc-
curs more than once in the corpus. If so, we (1)
calculate if there is a statistically significant
difference (p ≤ 0.05) between the annotations
and (2) gather, for all participants individually,
the lowest and highest annotated LCP value
for the token in question.

2. Check if the lemma of the target word occurs
more than once in the corpus. If so, we repeat
the process described in the first step, but in
this case for the target word’s lemma.

3. Check if the source of the target word’s
lemma occurs more than once in the corpus. If
so, we repeat the process described in the first
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step for the source lemma. If the target word’s
lemma is a headword, this step is skipped.

All words were disambiguated for part of speech
using Stanza5, meaning that words such as humano
(‘human’), which can both be a noun and adjec-
tive, constitute two different tokens. To compute
statistical significance, we used the non-parametric
Kruskall-Wallis H-test (Kruskal and Wallis, 1952),
which can be applied to two or more samples and
does not assume normally distributed data. To look
up the source lemma of a given target word, we
used the publicly available word family resource6

developed within the Spanish Corpus Annotation
Project (Goethals, 2018).

We added the data to the original LexComSpaL2
corpus by creating three new versions of the corpus
(one per word family level), in which we added
four extra columns: one indicating if the target
word occurs multiple times (True or False as value),
one indicating if the annotations differ significantly
(True, False, or N/A if the target word only occurs
once), and two columns including the lowest and
highest annotation per participant (or again N/A).
This “word family-enriched” version of the dataset
are made available as a part of the original Lex-
ComSpaL2 GitHub repository7.

The descriptive statistics of the word family en-
richment are presented in Table 4. For the token
and lemma levels, #candidates refers to the num-
ber of, respectively, unique tokens and lemmas that
occur more than once in the corpus. For the source
level, #candidates refers to the number of unique
tokens whose source lemma also occurs in the cor-
pus. The #statSignDiff column indicates for how
many of those candidates the learners’ annotations
differed significantly. Although these numbers are
a by-product of the research and should also be
interpreted as such, it does seem opportune to high-
light that they seem to confirm as well as contra-
dict the assumption that knowledge of one word
family member means that learners also know the
meaning of other family members (Section 2.4).
At the token and lemma levels, the low number of
statistically significant differences reveals that the
annotations (and therefore also the degree of word
knowledge) were consistent across the different oc-
currences. For the lemma level, this means that if
learners acquired a certain degree of knowledge for

5https://stanfordnlp.github.io/stanza/
6https://scap.ugent.be/overview-resources/
7https://github.com/JasperD-UGent/LexComSpaL2

Level #candidates #statSignDiff #enriched
Token 159 2 355 / 2,240

Lemma 273 6 632 / 2,240
Source 248 106 297 / 2,240

Table 4: Descriptive statistics of word family enrich-
ment of LexComSpaL2. The #enriched column con-
tains the number of target words for which information
other than N/A was added.

one inflected form, they are highly likely to have
the same degree of knowledge for other inflected
forms. At the source level, however, we see that
this conclusion does not hold, as in 106 of the 248
cases there was a statistically significant difference
in the learners’ difficulty judgements. The results
clearly indicate that knowledge acquired at the to-
ken level is not necessarily transferred to the source
level in the family tree (or vice versa). Returning
to the example above, this means that if learners
know desaparecido it does not necessarily imply
that they also know aparecer (or vice versa).

3.2 Classifier Training

3.2.1 Base Classifier
As the architecture for the base classifier, we used a
Bidirectional Long Short-Term Memory (BiLSTM)
model that follows a similar design as the CWI clas-
sifier presented in Tack (2021), who found that this
type of neural network is able to personalise dif-
ficulty predictions. For each observation (i.e. a
word linked to a learner’s LCP annotation), the
base model takes the following features as input: a
character embedding8, the word’s fastText embed-
ding (Cañete, 2019), and the participant informa-
tion (unique identifier, proficiency level, years of
experience, and L19). Based on a softmax activa-
tion function, the output layer yields a probability
distribution for the different classes, with the class
for which the highest probability is obtained be-
ing selected as the predicted difficulty level for the
word in question. A simplified visualisation of the
model’s architecture is presented in Figure 1 (for
a full visualisation, see Appendix A) and the un-
derlying code is made available in a GitHub reposi-
tory10.

8Randomly initialised and trained with a convolutional
neural network (De Hertog and Tack, 2018).

9It should be noted that, since all annotators in the Lex-
ComSpaL2 corpus have Dutch as their L1, this feature will
not contribute to personalising the predictions.

10https://github.com/JasperD-UGent/
personalised-word-difficulty-classifier
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Figure 1: Simplified representation of BiLSTM word
difficulty classifier.

To evaluate the model, a tenfold cross-validation
setup was adopted. As our dataset split, we used the
split added by Degraeuwe and Goethals (2024) to
the LexComSpaL2 repository in anticipation of the
corpus being used to train future machine learning
models. This sentence-level dataset split includes
ten different “folds” of the LexComSpaL2 data into
a training (160 sentences or 80%), validation, and
test set (20 sentences or 10% each). The complete
overview of the number of training instances per
fold is included in Appendix B.

Regarding training parameters, we set the num-
ber of epochs to 50, the batch size to 64, and the
loss strategy to sparse_categorical_crossentropy.
Adam was used as the optimiser and an early stop-
ping monitor on the validation loss (with a patience
of 10) was added to the training process. In each
cross-validation run, the weights for the training
samples were calculated (Appendix C) and used
for weighting the loss function. A mask was set to
all “non-target words” (i.e. all tokens which are not
a noun, verb, or adjective and thus did not receive
a label during the data collection) and their input
vectors and sample weight were set to 0. This way,
the sentence context was still correctly represented

but the masked tokens were ignored during training.
Finally, zero-padding (to the maximum sentence
length of 35) was applied to all inputs and outputs.

3.2.2 Word Family-Enriched Classifier
The word family version of the classifier was built
based on the exact same architecture as the base
version. The only difference is that one additional
feature was added to the word vector, containing
the content of the four columns that were added
to the dataset (Section 3.1.2). A simplified visuali-
sation of this updated word vector is presented in
Figure 2. To gain insights into the impact of each
word family level, we trained the classifier based
on (1) only the token level information as extra
data, (2) only the lemma level data, (3) only the
source level data, and (4) all three levels combined
(combi). The word vector for combi was obtained
by concatenating the “word family feature” from
the three individual levels (i.e. the light-coloured
part on the right-hand side of the vector visualisa-
tion in Figure 2) and appending these values to the
“base features” (i.e. the dark-coloured part on the
left-hand side of the vector in Figure 2).

4 Results and Analysis

The performance scores are presented in Table 5.
We compare the results against a naïve most fre-
quent label (MFL) baseline, which always predicts
the most frequent difficulty label in the dataset (i.e.
label 1). For evaluation, we first calculate two
measures that are insensitive towards changes in
class distribution: (1) the D′ coefficient, which
determines the degree of certainty in the predic-
tions (Smith et al., 2021), and (2) the Matthews
correlation coefficient (abbreviated as MCC and
denoted as ϕ), which determines the quality of
the predictions by estimating the strength of as-
sociation between the true and predicted classes
(Matthews, 1975). Changes in the values of these

Figure 2: Simplified representation of word vector en-
riched with word family information. Word family val-
ues are different for each of the three possible word
family levels (token, lemma, and source). Highest and
lowest annotated value are provided per participant.
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Classifier type D′ ↑ MCC ↑ F1 ↑ MSE ↓ RMSE ↓ Accuracy ↑

MFL baseline 0 0 0.32 2.61 1.62 0.49

Base 0.18 (± 0.01) 0.32 (± 0.02) 0.53 (± 0.02) 1.32 (± 0.1) 1.15 (± 0.04) 0.56 (± 0.02)

Word family (token) 0.23 (± 0.01) 0.37 (± 0.02) 0.56 (± 0.01) 1.25 (± 0.07) 1.12 (± 0.03) 0.59 (± 0.02)

Word family (lemma) 0.26 (± 0.01) 0.4 (± 0.02) 0.59 (± 0.02) 1.18 (± 0.08) 1.09 (± 0.04) 0.61 (± 0.02)

Word family (source) 0.23 (± 0.01) 0.38 (± 0.02) 0.57 (± 0.02) 1.24 (± 0.11) 1.11 (± 0.05) 0.59 (± 0.02)

Word family (combi) 0.32 (± 0.01) 0.45 (± 0.02) 0.62 (± 0.02) 1.11 (± 0.1) 1.05 (± 0.05) 0.63 (± 0.02)

Table 5: Performance of the different personalised word difficulty classifiers. We report the mean score across the
ten cross-validation runs for each of the six performance metrics. Standard deviation values are included between
parentheses and the top score per metric is presented in bold.

metrics can be fully attributed to changes in the
model, and not to aspects inherent to the data such
as class imbalance (Tack, 2021). MCC values can
go from −1 (inverse prediction) over 0 (average
random prediction) to 1 (perfect prediction), while
the D′ coefficient ranges between 0 (no discrimi-
native power) and 1 (full discriminative power).

In addition, we also report three commonly used
metrics in machine learning: weighted F1 (i.e.
the harmonic mean of precision and recall), mean
squared error or MSE (i.e. the average squared dif-
ference between the true and predicted values), and
root mean squared error or RMSE (which converts
MSE values to the same units as the dependent
variable, in our case the 1-5 LCP scale). Finally,
we also include the intuitive accuracy metric (i.e.
the number of correct predictions divided by the
total number of predictions).

Since, to the best of our knowledge, this is the
first study which specifically analyses the poten-
tial of including word family information as an
input feature, our research provides valuable new
insights into the added value of linguistic features
in LCP-based classifiers. The results in Table 5 un-
equivocally show that word family information has
a noticeable positive impact on model performance,
with the top-performing combi classifier achieving
a large increase on all metrics in comparison to
both the MFL baseline (+0.32 for D′; +0.45 for
MCC; −0.57 for RMSE) and the base classifier
(+0.14 for D′; +0.13 for MCC; −0.1 for RMSE).

When breaking down the results per type of clas-
sifier, a first finding to be highlighted is that, though
leaving ample room for improvement, the base
classifier already achieves reasonably good perfor-
mance. The mean D′ and MCC values (0.18 and
0.32, respectively) suggest that the model has ac-

quired weak positive discriminatory and predictive
power, while the RMSE score reveals that – on
average and including penalisation – the model’s
prediction is only 1.15 away from the true label.
Importantly, the base model also outperforms the
MFL baseline by a large margin (e.g., MCC of 0
compared to 0.32, weighted F1 of 0.53 compared
to 0.32, and RMSE of 1.15 compared to 1.62).

When comparing the base to the word family-
enriched classifier, the results clearly show that
any type of word family information is helpful for
the model, as all subtypes outperform the base ver-
sion on every metric. The increase in performance
is most notable at the lemma level (+0.08 for MCC;
−0.06 for RMSE), suggesting that the model suc-
cessfully leveraged information on the knowledge
a given learner has acquired for one inflected form
of a lemma to predict the label of other inflected
forms of that lemma. However, it should be noted
that the lemma level is also the level at which most
instances in the dataset were enriched (Table 4),
which may have played an important role in this
particular subtype obtaining the largest increase.
Regarding the results for the source subtype, it
should be highlighted that – next to the lower num-
ber of enriched instances – the 106 statistically
significant differences in annotations between the
target word and its source (see Section 3.1.2) might
be a second reason for the smaller increase at the
source level compared to the lemma level.

In summary, the findings of our study provide
strong evidence in favour of integrating word fam-
ily features (and well-chosen linguistic features in
general) into personalised word difficulty classi-
fiers. Particularly, with the combi classifier obtain-
ing the highest scores, the take-home message is
that the more relevant data on word family knowl-
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edge are added, the better the classifier’s predic-
tions of word difficulty become.

5 Conclusion

In this paper, we presented a personalised word
difficulty classifier for L2 Spanish, trained on the
LexComSpaL2 dataset (Degraeuwe and Goethals,
2024). Based on a straightforward BiLSTM archi-
tecture with a softmax activation function, the clas-
sifier can take any Spanish target sentence as input
and will predict a difficulty label ranging from 1 to
5 for every content word in the sentence. Moreover,
thanks to the inclusion of learner-specific features
in the training process (e.g., proficiency level and
years of experience), the model attempts to tailor
its output to the unique profile of every learner indi-
vidually. In doing so, the classifier goes beyond the
generic, one-size-fits-all difficulty levels often used
in L2 vocabulary learning resources (e.g., based on
the Common European Framework of Reference
for Languages [CEFR]).

By comparing a base classifier to a “word family-
enriched” one, we highlighted the notable added
value of feeding information on word families –
and of adding linguistic features in general – to
word difficulty classifiers. With the top-performing
model obtaining an MCC value of 0.45, an F1 score
of 0.62, and an RMSE score of 1.05, our classifier
shows great potential to be included in real-life
ICALL scenarios, for instance as a “difficult word
detector” in a personalised reading assistant.

In future studies, we aim to test other machine
learning architectures (e.g., using LLMs) and com-
pare them against the BiLSTM classifier presented
in this study. Other directions for future research in-
clude (1) studying the effect of replacing the static
fastText embeddings as an input feature by con-
textualised word embeddings, (2) analysing the
addition of more linguistic features next to word
family information, and (3) collecting – in a GDPR-
compliant fashion – more information about the
participants in order to expand the “learner pro-
file” input feature. Possible additional types of
participant information include personal interests
(e.g., hobbies), reading behaviour (in L1 or L2),
and mastery of other languages than Dutch as L1
and Spanish as L2.

Limitations

A first important observation to be made concerns
the real-life applicability of the classifier. Despite

the promising results, it could be argued that the
predicted values of the model – even for the best-
performing classifier – are not yet close enough to
the expected values for the model to be integrated
as is in real-life settings. As shown by the (R)MSE
scores11 of 1.11 and 1.05 for combi, there is still a
considerable difference between what the classifier
should predict and what it actually predicts. Espe-
cially in a pedagogical setting it is crucial to obtain
relatively high accuracy and precision rates (which
is why the F1 and accuracy metrics were included
in the analysis), because it should be avoided at all
cost that learners lose precious time over errors in
their learning materials. For example, if the classi-
fier were used to identify vocabulary items that are
known passively but not actively by a given learner
(i.e. label 3) and ended up selecting words which
are known (very) well by the learner, the exercise
would lose most of its pedagogical value.

As obtaining promising but not (yet) pedagogi-
cally usable results is a recurrent finding in research
on automated word difficulty prediction – Pintard
and François (2020), for example, report a top accu-
racy score of 0.54 for their French CEFR classifier
–, one might be left to wonder if the concept of
word difficulty (especially for individual learners)
is too sophisticated for machine learning classi-
fiers to fully capture. In fact, despite the existence
of clear patterns (e.g., high-frequency words tend
to be easier than low-frequency words and long
words tend to be more difficult than short words),
there is also a wide range of factors that may af-
fect perceived word difficulty but that are much
harder to model using computational techniques
(e.g., a word’s degree of abstractness/concreteness,
a learner’s world knowledge, or a learner’s ability
to deduce meaning based on morphological knowl-
edge or contextual clues). Yet, using (generative)
LLMs as classifiers and/or expanding the number
of features related to the learner (see also Section 5)
are two research avenues which have the potential
of providing the domain of automated word diffi-
culty prediction with a new élan and leading to a
considerable increase in performance. Addition-
ally, the integration of features indicating how spe-
cialised words are for a given domain – for instance
using “keyness” (Gabrielatos, 2018) or “termhood”
(Rigouts Terryn et al., 2021) metrics – could also
be a direction worth pursuing.

11These metrics penalise predictions that are far from the
true label more severely than near-correct predictions (e.g., a
predicted value of 1 while the true label is 5).
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Secondly, in the current setup, every learner who
wants to get personalised predictions from the clas-
sifier first needs to annotate all 200 sentences in
the LexComSpaL2 corpus, as this information is
used to build the “learner profile” input feature.
As suggested by Degraeuwe and Goethals (2024),
to facilitate the implementation in a real-life set-
ting, an item analysis could be performed on the
dataset to identify the most “informative sentences”
and have new learners annotate this “concentrated”
set of sentences instead. Another limitation of the
dataset is that, currently, only annotations from L1
Dutch speakers are included. To assess the true
personalisation potential of the classifier, the Lex-
ComSpaL2 dataset would need to be expanded with
annotations coming from L2 Spanish who do not
have Dutch as their L1.

Finally, regarding the analyses conducted, the
present paper did not provide an in-depth evalua-
tion of the personalisation potential of the classifier.
In future research, we aim to isolate this aspect
of the model, for example by performing a com-
parative analysis of the results per learner in order
to identify potential differences and look for fac-
tors that might explain these differences (e.g., by
studying if they correlate with the learners’ profi-
ciency level). Additionally, the study did not ad-
dress if and how the sentence context impacts the
perceived difficulty of a word (perspective of the
learner) and how this relates to the predicted dif-
ficulty of that word (perspective of the computer).
Finally, it should be noted that we did not apply
any word sense disambiguation (WSD) method to
the data. As a result, homonymic and polysemous
words (e.g., banco as a bench and as a financial
institution) were not considered as two separate
tokens or lemmas.
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A Full Visualisation Classifier
Architecture

The full visualisation of the architecture of the Bi-
LSTM classifier is presented in Figure 3.

B Overview of Observations per
Cross-Validation Fold

The overview of the observations per cross-
validation fold (overall and per LCP label) is pro-
vided in Table 7.

C Class Weights for Cross-Validation

The class weights used by the BiLSTM classifier
are presented in Table 6.
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Fold 1 2 3 4 5

1 0.41 0.9812 1.2587 2.2369 3.333

2 0.4137 0.9859 1.2493 2.1925 3.2078

3 0.4126 0.9924 1.2446 2.1808 3.2616

4 0.4068 0.9899 1.2553 2.2354 3.4804

5 0.4094 0.9847 1.2505 2.2173 3.4355

6 0.4129 0.9877 1.2444 2.2119 3.2232

7 0.4116 0.9984 1.2529 2.1998 3.161

8 0.411 0.9974 1.2524 2.1979 3.2137

9 0.4059 0.9845 1.2613 2.2673 3.4856

10 0.405 0.9801 1.267 2.2647 3.5718

Table 6: Class weights of BiLSTM word difficulty classifier per cross-validation fold.

Figure 3: Full representation of BiLSTM word difficulty classifier.
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Fold
#observations

(target words | annotations) #observations per label

TR VA TE 1 2 3 4 5

1 1,796 | 46,696 216 | 5,616 228 | 5,928
TR: 22,781
VA: 2,747
TE: 2,889

TR: 9,518
VA: 1,146
TE: 1,123

TR: 7,420
VA: 924
TE: 948

TR: 4,175
VA: 516
TE: 556

TR: 2,802
VA: 283
TE: 412

2 1,797 | 46,722 227 | 5,902 216 | 5,616
TR: 22,589
VA: 3,081
TE: 2,747

TR: 9,478
VA: 1,163
TE: 1,146

TR: 7,480
VA: 888
TE: 924

TR: 4,262
VA: 469
TE: 516

TR: 2,913
VA: 301
TE: 283

3 1,787 | 46,462 226 | 5,876 227 | 5,902
TR: 22,522
VA: 2,814
TE: 3,081

TR: 9,364
VA: 1,260
TE: 1,163

TR: 7,466
VA: 938
TE: 888

TR: 4,261
VA: 517
TE: 469

TR: 2,849
VA: 347
TE: 301

4 1,775 | 46,150 226 | 5,876 226 | 5,876
TR: 22,692
VA: 2,911
TE: 2,814

TR: 9,324
VA: 1,203
TE: 1,260

TR: 7,353
VA: 1,001
TE: 938

TR: 4,129
VA: 601
TE: 517

TR: 2,652
VA: 498
TE: 347

5 1,799 | 46,774 202 | 5,252 239 | 6,214
TR: 22,851
VA: 2,655
TE: 2,911

TR: 9,500
VA: 1,084
TE: 1,203

TR: 7,481
VA: 810
TE: 1,001

TR: 4,219
VA: 427
TE: 601

TR: 2,723
VA: 276
TE: 498

6 1,818 | 47,268 220 | 5,720 202 | 5,252
TR: 22,893
VA: 2,869
TE: 2,655

TR: 9,571
VA: 1,132
TE: 1,084

TR: 7,597
VA: 885
TE: 810

TR: 4,274
VA: 546
TE: 427

TR: 2,933
VA: 288
TE: 276

7 1,803 | 46,878 217 | 5,642 220 | 5,720
TR: 22,776
VA: 2,772
TE: 2,869

TR: 9,391
VA: 1,264
TE: 1,132

TR: 7,483
VA: 924
TE: 885

TR: 4,262
VA: 439
TE: 546

TR: 2,966
VA: 243
TE: 288

8 1,804 | 46,904 219 | 5,694 217 | 5,642
TR: 22,822
VA: 2,823
TE: 2,772

TR: 9,405
VA: 1,118
TE: 1,264

TR: 7,490
VA: 878
TE: 924

TR: 4,268
VA: 540
TE: 439

TR: 2,919
VA: 335
TE: 243

9 1,775 | 46,150 246 | 6,396 219 | 5,694
TR: 22,738
VA: 2,856
TE: 2,823

TR: 9,375
VA: 1,294
TE: 1,118

TR: 7,318
VA: 1,096
TE: 878

TR: 4,071
VA: 636
TE: 540

TR: 2,648
VA: 514
TE: 335

10 1,766 | 45,916 228 | 5,928 246 | 6,396
TR: 22,672
VA: 2,889
TE: 2,856

TR: 9,370
VA: 1,123
TE: 1,294

TR: 7,248
VA: 948
TE: 1,096

TR: 4,055
VA: 556
TE: 636

TR: 2,571
VA: 412
TE: 514

Table 7: Overview of observations per cross-validation fold for training (“TR”), validation (“VA”), and test (“TE”)
sets. The training set always contains 160 sentences, the validation and test sets always contain 20. The sets always
contain an equal number of sentences per domain (economics, health, law, and migration).
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Abstract

Recent trends in NLP have shifted towards
modeling lexical complexity as a continuous
value, but practical implementations often re-
main binary. This opinion piece argues for the
importance of truly graded lexical complexity
prediction, particularly in language learning.
We examine the evolution of lexical complexity
modeling, highlighting the “data bottleneck” as
a key obstacle. Overcoming this challenge can
lead to significant benefits, such as enhanced
personalization in language learning and im-
proved text simplification. We call for a con-
certed effort from the research community to
create high-quality, graded complexity datasets
and to develop methods that fully leverage con-
tinuous complexity modeling, while addressing
ethical considerations. By fully embracing the
continuous nature of lexical complexity, we can
develop more effective, inclusive, and person-
alized language technologies.

1 Introduction

Lexical complexity prediction (LCP) is the task of
assigning a complexity score to a word or phrase,
indicating how difficult it is to understand for a
given target population, such as language learners
or readers with disabilities (Shardlow et al., 2022).
In recent years, the field of Natural Language Pro-
cessing (NLP) has witnessed a shift in approach
to lexical complexity prediction. There has been
a growing recognition that lexical complexity is
not a binary concept, but rather exists on a contin-
uum (Shardlow et al., 2020). This acknowledgment
has led to efforts to model lexical complexity as
a continuous value, promising more nuanced and
accurate representations of word difficulty across
various contexts and for different readers.

However, despite this conceptual advancement,
the practical implementation of truly graded lex-
ical complexity prediction remains limited. This
discrepancy between theoretical understanding and

applied research is evident in recent shared tasks
and datasets in the field. While the 2021 SemEval
shared task on LCP (Shardlow et al., 2021) made
strides by including multiple contexts for about
half of its training instances, subsequent initiatives
have not fully embraced this approach. Notably,
the 2024 MLSP (Multilingual Lexical Simplifica-
tion and Prediction) task (Shardlow et al., 2024)
included only a single word with two contexts, ef-
fectively reverting to a predominantly one-to-one
mapping of words and complexities.1

This persistent focus on one-to-one complexity
mapping not only fails to capture the full spectrum
of lexical difficulty but also hinders progress in ar-
eas where truly graded predictions are crucial. One
such domain is language learning, where learners
progress through various levels of proficiency and
require finely-tuned assessments of word difficulty
(Crossley et al., 2017; Gooding et al., 2021). In
this context, binary classifications of “simple” or
“complex” are insufficient to guide effective vocab-
ulary acquisition strategies or to develop adaptive
learning materials. Further, polysemous words gen-
erally show a spread of word senses over different
levels, and not all meanings are learned or known
at each level (Alfter et al., 2022).

This opinion piece argues that the field of NLP
must move beyond its current limited implemen-
tation of continuous lexical complexity modeling.
We contend that embracing truly graded predic-
tions is not just a matter of theoretical correctness,
but a necessity for advancing practical applications
in areas such as language learning, text simplifi-
cation, and readability assessment. By doing so,
we can develop more sophisticated and useful tools
that accurately reflect the nuanced nature of lexical
complexity across diverse contexts and user needs.

Consider the word “crane”. In the context of
1The test set (n = 5123), which may be used as additional

training data after the completion of the task, contains 4% of
sentences for a word with more than one context.
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construction, “crane” refers to a machine used for
lifting and moving heavy objects, which might be
a familiar concept to most adult readers. However,
in the context of ornithology, “crane” refers to a
family of large, long-legged birds, which might be
less familiar to readers without a background in
bird watching or biology. A genuinely graded lexi-
cal complexity prediction system should be able to
assign different complexity scores to “crane” based
on its context, reflecting the varying levels of diffi-
culty for different readers.

A crucial dimension currently underrepresented
in lexical complexity research is an explicit the-
oretical analysis of the construct itself. Lexical
complexity is inherently multidimensional, encom-
passing orthographic difficulty (Just and Carpenter,
1987; Perfetti et al., 2005; Alfter, 2021), concep-
tual complexity (Nation and Nation, 2001), atypi-
cal contextual usage (Erk and Padó, 2008; Peters
et al., 2019), and figurative or metaphorical mean-
ings (Steen et al., 2010; Thibodeau and Boroditsky,
2011). These distinct aspects significantly impact
different user groups in varied ways; for example,
native children encountering conceptual complex-
ity differ from adult second-language learners strug-
gling primarily with orthographic unfamiliarity or
contextual atypicality (Akamatsu, 2005; Crossley
and McNamara, 2012).

2 Current State of the Field

The field of lexical complexity prediction and
simplification has evolved significantly over the
past decade, with researchers exploring various ap-
proaches to model and predict word difficulty. This
section provides an overview of key developments
and current trends in the field.

2.1 The Divide Between Two Worlds

In this section, we highlight two related yet dis-
connected main fields active in lexical complexity
prediction: lexical complexity prediction for lexical
simplification, and lexical complexity prediction
for language learning applications.

Lexical simplification can have a broad range
of applications, most aiming at making texts eas-
ier to read for certain audiences such as children
(De Belder et al., 2010), language learners (Pe-
tersen and Ostendorf, 2007; Rets and Rogaten,
2021), people with reading disabilities (Devlin,
1998; Chung et al., 2013), simplifying medical
texts (Deléger and Zweigenbaum, 2009) or judicial

texts (LoPucki, 2014), to name but a few. In this
line of research, an important first step is to identify
complex words (Specia et al., 2012). This line of
research in lexical complexity prediction started as
complex word identification (Shardlow, 2013), a
binary classification tasks of words into simple and
complex words. Shardlow (2013) presented one of
the first comprehensive studies on automatic lexi-
cal simplification, focusing on identifying complex
words and suggesting simpler alternatives. This
binary approach was further developed in subse-
quent studies, such as Paetzold and Specia (2016b),
who introduced a feature-based machine learning
approach to complex word identification.

At around the same time, another line of re-
search emerged: graded lexical complexity pre-
diction (Gala et al., 2013, 2014). The main differ-
ence to complex word identification is that the aim
is to predict a grade for each word, correspond-
ing to different school levels for native language
learners, and later second language learner profi-
ciency levels (Tack et al., 2016; Alfter et al., 2016;
Alfter and Volodina, 2018b; Tack et al., 2018; Pin-
tard and François, 2020). This line of research is
tightly connected to (second) language acquisition,
with applications such as adaptive learning con-
tent (Burstein et al., 2017; Alfter and Graën, 2019)
and personalized models for vocabulary learning
(Avdiu et al., 2019; Ehara et al., 2018; Yancey and
Lepage, 2018).

Over time, the two fields moved closer together,
with complex word identification becoming lexical
complexity prediction, with the aim of predicting
a continuous complexity value instead of binary
labels. Despite this, it remains that LCP for lexi-
cal simplification is concerned with finding words
that should be simplified, while LCP for language
learning purposes is concerned with finding words
that are suitable for learners of a given proficiency
level.

2.2 Shared Tasks and Datasets

Shared tasks have played a crucial role in advanc-
ing the field. In 2016, the first Shared Task on
Complex Word Identification (Paetzold and Spe-
cia, 2016a) was organized, followed by the 2018
CWI Shared Task on Complex Word Identifica-
tion (Yimam et al., 2018). In 2016, the data tar-
geted only English, while in 2018, the task intro-
duced multilingual and cross-lingual complex word
identification, but still treating the problem as bi-
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nary.2 A significant shift occurred with the 2021
SemEval shared task on Lexical Complexity Pre-
diction (Shardlow et al., 2021), which introduced
a dataset with continuous complexity scores de-
rived from Likert scale annotations and multiple
contexts for many words. This task represented
a major step towards more nuanced modeling of
lexical complexity.

Despite the progress towards continuous mod-
eling, recent work still shows a tendency to sim-
plify the problem. The 2024 MLSP task (Shard-
low et al., 2024), while advancing the multilingual
aspect, largely reverted to a one-to-one mapping
with limited contextual variation. The training data
(n = 300) contains a single word with exactly
two different contexts and almost identical com-
plexity values. We argue that this is egregiously
insufficient to learn different complexities for the
same word in different contexts. This setup effec-
tively reduced the task to a one-to-one mapping of
words and complexities, disregarding the context-
dependent nature of lexical complexity that was
captured in the CompLex dataset. In opposition,
the 2021 shared task training data (n = 3487) con-
tains 1701 words with multiple contexts and differ-
ent complexity values.

2.3 The Problem

Ideally, one would want to capture context-specific
complexity and train systems to automatically pre-
dict such complexity. In order to train a system
to recognize context-specific complexity, or truly
graded complexity, the training data would have to
include multiple contexts per word with varying
complexity values. Even though complex word
identification moved towards continuous modeling
of complexity, it still often only gives one context
per word, effectively mapping one word to one
complexity value.

Recent research shows that out-of-the-box large
language models are not capable of efficiently grad-
ing vocabulary (Alfter, 2024; Kelious et al., 2024).
This at least to some degree precludes the use of
large language models for synthetic data creation.
If one were to for example build a system to auto-
matically generate proficiency-adapted definitions,
one would need to fine-tune a model with truly
graded data (Yuan et al., 2022).

2The task consisted of two subtasks, binary and continuous
prediction. However, the continuous labels were obtained by
averaging the binary labels over all annotations. We thus
regard this task as mainly binary.

3 Data Bottleneck

While theoretical advancements in lexical com-
plexity prediction have pushed towards more nu-
anced, continuous modeling, a significant obsta-
cle impedes practical implementation: the data
bottleneck. This section explores the challenges
in obtaining and creating the rich, context-aware
datasets necessary for truly graded lexical complex-
ity prediction.

3.1 Data Scarcity

The shift from binary to continuous lexical com-
plexity modeling demands datasets that capture
fine-grained distinctions in word difficulty. How-
ever, such resources are rarely available at the scale
required for robust model training. As noted by
Shardlow et al. (2022), creating datasets with con-
tinuous complexity ratings is significantly more
resource-intensive than binary labeling tasks. Their
study found that annotators spent an average of
21.61 seconds per annotation for graded complex-
ity ratings.

The CompLex dataset (Shardlow et al., 2020)
represented a step forward by providing continu-
ous complexity scores, but even this resource was
limited in size and scope compared to larger binary
datasets. CompLex contained 10,800 instances
across three genres, which, while substantial, pales
in comparison to binary datasets like the one used
in the 2018 CWI Shared Task, which contained
over 65,000 instances (Yimam et al., 2018).

3.2 Challenges in Dataset Creation

Several factors contribute to the difficulty in con-
ceiving and creating appropriate datasets for graded
lexical complexity prediction. One significant chal-
lenge lies in the subjective nature of assigning pre-
cise, continuous complexity scores to words in con-
text. This task demands skilled annotators yet of-
ten leads to low inter-annotator agreement (North
et al., 2023), although attempts a mitigating this
issue have been made using comparative judgments
(Gooding et al., 2019; Alfter et al., 2021, 2022).

Another obstacle is the contextual variation in-
herent in language. Capturing the full spectrum of
contextual variations for each word exponentially
increases the annotation effort. The 2024 MLSP
task’s inclusion of only one word with two con-
texts illustrates the practical challenges in scaling
contextual annotations.

Furthermore, considerations regarding annotator
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characteristics such as linguistic background and
language proficiency further complicate dataset cre-
ation. Differences between native speakers, teach-
ers, and language learners with varying language
proficiency levels can lead to significant varia-
tions in perceived lexical complexity, thus limiting
the comparability and interpretability of the data.
Therefore, a clear definition and control of annota-
tor demographics is essential to ensure the validity
and usefulness of complexity-annotated corpora.

In addition, lexical complexity can vary signifi-
cantly across domains, genres and tasks (e.g., read-
ing aloud, reading for comprehension). Creating
datasets that adequately represent this diversity
while maintaining consistent annotation quality is
a formidable task.

Moreover, complexities introduced by figurative
language, including metaphors and metonymies,
pose challenges, as such uses often deviate substan-
tially from literal meanings, complicating complex-
ity assessment. Similarly, multi-word expressions
(MWEs) introduce unique difficulties because their
complexity cannot be straightforwardly derived
from the complexity of their constituent words
(Alfter and Volodina, 2018a).

Finally, extending graded complexity predic-
tion to multiple languages compounds the resource
scarcity. Multilingual datasets like the one used
in the 2018 CWI Shared Task are rare and often
revert to simpler, binary annotations to maintain
feasibility across languages.

3.3 Impact on Model Development and
Evaluation

The data bottleneck has cascading effects on the
field. Without access to large-scale, graded com-
plexity datasets, researchers often default to sim-
pler binary models or resort to synthetic data gen-
eration, potentially limiting model sophistication
and real-world applicability. Large-scale exten-
sive annotated datasets allow for more comprehen-
sive coverage of phenomena such as ambiguous
words, figurative language use, and multi-part ex-
pressions that may be inadequately represented in
smaller datasets. Furthermore, larger datasets in-
crease model sensitivity to subtle contextual varia-
tions, reduce bias, and improve prediction accuracy
in diverse linguistic contexts.

The scarcity of diverse, graded datasets also
makes it difficult to comprehensively evaluate mod-
els’ performance across different contexts, do-
mains, and languages. This can lead to overfit-

ting to specific datasets and poor generalization.
Additionally, the relative abundance of binary com-
plexity datasets inadvertently reinforces the con-
tinued use of binary approaches, creating a cycle
that slows the adoption of truly graded prediction
methods.

4 Addressing the Data Bottleneck

To move towards truly graded lexical complexity
prediction, it is crucial to develop strategies for
creating large-scale, diverse datasets that capture
the context-dependent nature of word complexity.
In this section, we propose several approaches that
could help overcome the data bottleneck.

4.1 Collaborative Annotation Efforts

One approach to creating larger, more diverse
datasets is to foster collaborative annotation efforts
within the research community. By pooling re-
sources and expertise, one can develop shared anno-
tation guidelines and distribute the workload across
multiple institutions. This collaborative approach
has been successful in other NLP tasks, such as the
creation of the Universal Dependencies treebanks
(Nivre et al., 2016). Establishing a similar initia-
tive for lexical complexity annotation could help
accelerate the development of high-quality datasets.
Further shared tasks on the subject may also help.

4.2 Crowdsourcing and Human Computation

Crowdsourcing platforms, such as Amazon Me-
chanical Turk, have been used extensively in NLP
for data collection and annotation (Snow et al.,
2008). By leveraging the power of human com-
putation, one can gather lexical complexity annota-
tions from a diverse pool of participants, potentially
covering a wider range of contexts and reader back-
grounds. This approach has been successfully used
to annotate the CompLex data (Shardlow et al.,
2022), to gather comparative judgments on lexical
difficulty (Alfter et al., 2021, 2022), and to col-
lect age-of-acquisition data (Kuperman et al., 2012;
Green et al., 2025). However, quality control mech-
anisms must be put in place to ensure the reliability
of crowdsourced annotations (Sheng et al., 2008).

4.3 Mining Graded Textbook Corpora for
Lexical Complexity

Graded textbook corpora, which consist of text-
books designed for language learners at different
proficiency levels, offer a promising resource for
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creating lexical complexity datasets. These text-
books are carefully crafted to introduce vocabu-
lary and grammatical structures in a gradual, level-
appropriate manner, making them a valuable source
of information about word complexity in context.

Graded textbook corpora can be leveraged to
derive lexical complexity scores by aligning the
vocabulary in each level with language proficiency
frameworks like CEFR (Council of Europe, 2001).
The relative difficulty of words can be determined
by analyzing their distribution across proficiency
levels. Words frequently appearing in beginner-
level textbooks but rarely in advanced ones would
receive lower complexity scores compared to those
introduced at higher levels. This approach has been
explored in the English Vocabulary Profile (Capel,
2010) and the CEFRLex project3, which created
CEFR-aligned vocabulary lists from graded text-
book corpora.

To extend this approach to lexical complexity
prediction, one could leverage techniques from nat-
ural language processing, such as word embedding
models (Mikolov and Dean, 2013) and contextual
language models (Devlin et al., 2018), to capture
the semantic and syntactic properties of words in
context. By combining these models with the com-
plexity information derived from graded textbook
corpora, it may be possible to develop more accu-
rate and context-aware lexical complexity predic-
tion systems.

4.4 Leveraging Large Language Models

Recent advances in large language models offer
an attractive avenue for addressing the shortage of
richly annotated lexical complexity data. By lever-
aging large language models (LLMs), researchers
can systematically generate diverse contexts for vo-
cabulary items, varying key factors such as linguis-
tic complexity, domain specificity, or target profi-
ciency levels (Alfter, 2024; Kelious et al., 2024).
Such synthetic data creation methods could trans-
form even simple, context-free word lists into ex-
tensive datasets (Yuan et al., 2022; Green et al.,
2025). However, the reliability of LLM-generated
complexity annotations would require careful val-
idation, as the generated contexts and associated
complexity levels may not align accurately with
intended proficiency targets, necessitating subse-
quent human verification or iterative refinement
processes.

3https://cental.uclouvain.be/cefrlex/

5 Conclusion

As we have explored throughout this opinion piece,
the field of lexical complexity prediction stands
at a critical juncture. While recent trends have
acknowledged the continuous nature of word dif-
ficulty, practical implementations largely remain
tethered to binary and one-to-one paradigms. This
disconnect between theoretical understanding and
applied research impedes progress in areas where
truly graded predictions are not just beneficial, but
essential.

The persistence of binary and one-to-one map-
ping methods is not due to a lack of theoretical
understanding, but rather stems from a critical data
bottleneck. Creating rich, context-aware datasets
with continuous complexity ratings is a formidable
challenge, requiring significant resources and ex-
pertise. This scarcity of nuanced data has cascading
effects, limiting model sophistication and evalua-
tion, and inadvertently reinforcing simpler binary
paradigms.

Careful consideration of potential user groups
is essential to effectively guide the creation and
evaluation of lexical complexity datasets. While
our discussion primarily focused on second lan-
guage learners, graded lexical complexity is also
suitable for native speakers and various user con-
texts, such as readability assessments, literacy sup-
port, text accessibility, and the development of ed-
ucational resources. Each user group may require
different complexity scales (e.g., continuous nu-
merical scales suitable for NLP systems to discrete
scales aligned with educational frameworks such
as CEFR proficiency levels or school grades). Fu-
ture research should explicitly explore these diverse
user needs, considering practical implications such
as scale granularity and annotation methods to en-
sure that lexical complexity annotations are both
practically relevant and broadly applicable.

In conclusion, the future of lexical complexity
prediction lies in not only fully embracing its con-
tinuous nature but also in creating resources that
reflect various complexity values per word, allow-
ing for the training of truly graded lexical complex-
ity prediction systems. By moving beyond binary
simplifications and overcoming the data bottleneck,
we can develop tools and applications that more
accurately reflect the nuanced reality of language
complexity.
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Limitations

As this is an opinion piece, our focus has been
on identifying theoretical limitations and potential
avenues for future research within the field of com-
putational lexical complexity modeling. We have
not conducted empirical experiments or proposed
specific algorithms or datasets. Instead, we have
highlighted general shortcomings in existing data
and methods and suggested potential directions for
advancement.

For the sake of conciseness, we focus on two
areas only, namely lexical simplification and lan-
guage learning. We acknowledge that the implica-
tions may reach further than just these two fields.

Ethical Concerns

While the potential benefits are significant, imple-
menting truly graded lexical complexity prediction
also presents challenges and ethical considerations.
Complexity predictions must account for cultural
and linguistic diversity to avoid perpetuating bi-
ases. What is considered complex in one cultural
or linguistic context may not be in another.

The detailed learner data required for person-
alized systems raises privacy concerns. Ethical
guidelines for data collection and use in educa-
tional technology must be carefully considered.
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Abstract

This paper introduces IPPOLIS Write, an open
source, web-based tool designed to provide au-
tomated feedback on the formal aspects of sci-
entific documents. Aimed at addressing the
variability in writing and language skills among
scientists and the challenges faced by supervi-
sors in providing consistent feedback on stu-
dent theses, IPPOLIS Write integrates several
open source tools and custom implementations
to analyze documents for a range of formal is-
sues, including grammatical errors, consistent
introduction of acronyms, comparison of litera-
ture entries with several databases, referential
integrity of figures and tables, and consistent
link access dates.

IPPOLIS Write generates reports with statisti-
cal summaries and annotated documents that
highlight specific issues and suggest improve-
ments while also providing additional back-
ground information where appropriate. To eval-
uate its effectiveness, a qualitative assessment
is conducted using a small but diverse dataset
of bachelor’s and master’s theses sourced from
arXiv. Our findings demonstrate the tool’s po-
tential to enhance the quality of scientific doc-
uments by providing targeted and consistent
feedback, thereby aiding both students and pro-
fessionals in refining their document prepara-
tion skills.

1 Introduction

Feedback on scientific documents, for example
within a peer-review process, usually and under-
standably focuses on the discipline-specific content
first and foremost. Writing, language, and other
formal aspects are a secondary focus and often only
commented upon when glaring or repeating issues
are present. And while every scientist is expected
to have a good grasp of their discipline-specific
content, experiences and skills in the areas of writ-
ing and language vary greatly among the scientific
community, making such feedback less consistent

and more subjective (Shashok, 2008; Wei and Liu,
2024).

For students writing their first scientific docu-
ments, such feedback on formal issues is especially
useful. These students often make similar mistakes,
and supervisors are faced with the task of repeat-
edly providing feedback about the same issues or
focusing feedback on the more important areas,
which are usually related to the discipline-specific
content and not so much to writing, language, and
other formal aspects. This is especially problem-
atic in study courses where writing is not the main
way to communicate results or solve tasks.

Existing tools for automated scientific document
analysis either focus on analyzing the contents of
the documents with regard to their accuracy and ve-
racity, work only for certain document formats, or
provide feedback or corrections for specific aspects
only. In addition, most of the tools are commercial
and closed source. Some of the existing tools are
introduced in Section 2.

In this paper, we introduce a web-based open
source software1, which aims to combine a num-
ber of existing open source tools and libraries with
custom implementations into a single application
for analyzing scientific documents under formal
aspects pertaining to document structure, readabil-
ity, literature, referential integrity, tables, and fig-
ures. Based on a number of independent document
analyzers, it generates reports with statistics and
annotated documents with feedback.

2 Related Work

Various tools provide feedback on scientific
manuscripts, each with a distinct focus or supported
input formats. A detailed review on automated pa-
per review systems (Lin et al., 2023) explained the
underlying concepts, recent tools, and challenges.

1https://gitlab.com/ippolis_wp3/write, Accessed:
2025-06-05
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In (Lu and Liu, 2014), a tool was presented
which validates the formal compliance of disserta-
tions submitted as DOCX documents with given
templates. The tool checks line spacing, font, font
size, alignment style, and other formal aspects
of DOCX documents. As a pre-processing step,
the documents were converted to the eXtensible
Markup Language (XML) format. An experiment
on 50 dissertations compared automated annota-
tions with manual ones, yielding a 94.5 % detection
rate and a 3.7 % false detection rate.

The IEEE PDF eXpress R⃝2 was developed to val-
idate the consistency of IEEE-related conference
and journal submissions in the Portable Document
Format (PDF) with respective guidelines. Among
other aspects, the proprietary tool checks page mar-
gins and the copyright footer.

The ACL pubcheck tool3 performs similar
checks for ACL venues. It detects common for-
matting issues related to the ACL template in PDF
documents. These issues include font inconsisten-
cies, improper author formatting, margin violations,
and outdated citations.

TeXtidote4 is a tool that detects formal issues
in LaTeX and Markdown. It checks the style
(e.g., proper title formatting, reference capitaliza-
tion, caption punctuation), citations and references
(e.g., consistent citation commands, reference sum-
maries), figures (e.g., presence of captions and ref-
erences), document structure (e.g., singular sub-
sections, valid section order, stacked headings, and
short sections), and hard-coding (e.g., relative paths
for figures, hard-coded section/figure/table refer-
ences, manual line and page breaks). Spelling,
grammar, and punctuation errors were detected
using the LanguageTool (Naber, 2003), an open
source proofreading software based on rule-based
correction algorithms and Machine Learning (Bren-
neis, 2018).

Penelope AI5 is a proprietary Artificial Intelli-
gence (AI)-based tool that checks whether DOCX
manuscripts meet configurable journal require-
ments. The tool performs validations, including
the availability, position, and title of the ethical ap-
proval statement, along with the necessary declara-
tions. It checks the formatting and completeness of

2https://www.ieee.org/conferences/publishing/
pdfexpress.html, Accessed: 2025-06-05

3https://github.com/acl-org/aclpubcheck, Ac-
cessed: 2025-06-05

4https://github.com/sylvainhalle/textidote, Ac-
cessed: 2025-06-05

5https://www.penelope.ai/, Accessed: 2025-06-05

the title page and abstract, as well as the presence of
pre-defined sections. Figures and tables are verified
for correct integration, proper positioning, logical
order, and accurate referencing. The manuscripts
are evaluated for accurate referencing styles, proper
citation order, and completeness of reference lists.
Compliance with journal-specific limits on words,
references, tables, and figures is checked. Endnote
citations, metadata completeness, page numbers,
and line spacing are annotated.

The proprietary YesNoError tool6 focuses more
on content-related errors than formal feedback. It
was designed to process PDF, DOCX, and LaTeX
files and validates the methodological process, sta-
tistical correctness, and interpretational comprehen-
sibility using OpenAI’s o1 model. The analyzers
detect issues including mathematical (e.g., arith-
metic operations, bracket mismatches), method-
ological (e.g., study design, sample sizes, statis-
tical tests), literature (e.g., citation and reference
consistency), and logical errors (e.g., consistency
of statements, conclusions, and argument flow).

Unlike these tools, our tool is open source, sup-
ports various file formats, is configurable for differ-
ent formatting requirements in different disciplines,
and emphasizes a broad range of comprehensive
formal feedback.

3 Methods and Materials

IPPOLIS Write is a web-based tool that analyzes
documents provided by its users based on the con-
figured analysis profile and generates feedback and
statistics as annotations directly in the original doc-
ument and as a report which can be viewed in the
web interface. An overview of the general work-
flow is shown in Figure 1 and is described in more
detail in the following sections.

3.1 Cloud Share Link

The documents to be analyzed, analysis progress
information and analysis results are stored in a
cloud share. Many popular cloud providers are
supported through the Web-based Distributed Au-
thoring and Versioning (WebDAV) (Whitehead and
Goland, 1999) protocol. Users can utilize their
own cloud provider by generating a cloud share
link with full read and write permission, allowing
the tool to not only read the documents to be ana-
lyzed but also save analysis progress information

6https://yesnoerror.com/whitepaper, Accessed:
2025-06-05
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Figure 1: Overview of the document analysis pipeline. Users share a document with the tool through a cloud share
link, the document is converted and analyzed on the server, and the annotated document and report are saved in the
user’s cloud share and can be viewed on the tool’s website.

and analysis results which can later be displayed
on the website. That way, all data is always in
the hands of the users. For convenience, a direct
upload of documents is planned.

3.2 Analysis Profile
The analysis profile allows configuring, as well as
disabling and enabling analysis options. Its goal
is to make the tool useful for different disciplines,
study courses, formal requirements, and phases in
the writing process.

3.3 Pre-processing
After a document in one of the supported formats
(PDF, DOCX, LaTeX, BibTeX, RIS, or ZIP) has
been submitted, different pre-processing steps are
performed to prepare it for analysis. The follow-
ing sections outline this process for different input
formats.

3.3.1 PDF
Although metadata such as the structure can be
included in PDFs using PDF tags, this feature is
rarely used (Schmitt-Koopmann et al., 2022) mak-
ing the documents inaccessible to computer sys-
tems. IPPOLIS Write combines Poppler7 to ex-
tract the content, positions, and fonts of texts with
document layout detection to determine the func-
tional role of each element. Document layout de-
tection based on You Only Look Once version 8
(YOLOv8) (Jocher et al., 2023) were trained on the
DocLayNet (Pfitzmann et al., 2022) and ArxivFor-
mula8 datasets. GeneRation Of BIbliographic Data
(GROBID) v0.8.19 is used to identify citations and

7https://poppler.freedesktop.org/, Accessed:
2025-06-05

8https://github.com/microsoft/ArxivFormula, Ac-
cessed: 2025-06-05

9https://github.com/kermitt2/grobid, Accessed:
2025-06-05

references and to convert bibliographic information
into the BibTeX format.

3.3.2 DOCX
Apache Poor Obfuscation Implementation (POI)
v5.2.510 is used to extract the content, structure,
and formatting from DOCX documents.

3.3.3 LaTeX/ZIP
TeXtidote is used for pre-processing LaTeX files,
where the text and a mapping to the original La-
TeX file is extracted from the document. ZIP
archives are supported to allow users to upload
LaTeX projects, which usually consist of at least
a BibTeX file in addition to one or more LaTeX
source files. The archives are extracted and both
LaTeX and BibTeX files are analyzed separately.

3.3.4 BibTeX
For literature analysis, the tool focuses on the Bib-
TeX format. The tool uses pybtex v0.24.011, and
jbibtex v1.0.2012 to extract literature information
and identify invalid entries and fields. Bibtool
v2.68+ds-113 is used to identify literature entries
cited in a LaTeX document, and bibutils v7.2-
114 converts Research Information System Format
(RIS) files to BibTeX.

3.4 Document Analysis

The actual analysis is performed by dozens of in-
dependent analyzers based on the configuration in

10https://poi.apache.org/, Accessed: 2025-06-05
11https://pybtex.org/, Accessed: 2025-06-05
12https://github.com/jbibtex/jbibtex, Accessed:

2025-06-05
13https://github.com/ge-ne/bibtool, Accessed:

2025-06-05
14https://ctan.org/pkg/bibutils, Accessed: 2025-

06-05
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the analysis profile and the artifacts produced dur-
ing pre-processing. The analyzers are summarized
in nine categories. These are general/formal, doc-
ument structure, language, readability, literature,
reproducibility, referential integrity, images, and
tables. The analyzers refer to different input for-
mats and provide analysis results, such as report
statistics and annotations. More information on
analyzers, their implementations, advantages and
disadvantages is described in Section 4. A com-
plete list of implemented and planned analyzers can
be found in the Git repository15. All analyzers can
be enabled or disabled for individual requirements
via the analysis profile. During analysis, users are
informed about the current analysis progress in the
web interface. This is entirely asynchronous, and
the analysis is not canceled if the user closes the
website.

3.5 Report and Annotated Document

The results, statistics and annotations produced
by the analyzers are converted into a report and,
for some document types, an annotated document
which is saved in the user-provided cloud share.
For DOCX documents, annotations are embed-
ded as comments, implemented using Apache
POI. PDF documents were annotated using iText7
v8.0.316. Optional Content Group (OCG) layers
are utilized to conveniently enable or disable an-
notations directly within the PDF document. The
report contains statistics and gamification elements,
such as comparisons to analysis results of earlier
versions of the document.

3.6 Dataset

To present and evaluate the analyzers, experiments
were performed on a dataset containing bachelor
and master theses in PDF format. The dataset was
extracted from the arXiv (Ginsparg, 1994, 2011)
preprint server, which was searched for the terms
“master thesis” and “bachelor thesis” in the field of
computer science (arXiv category: CS.*) on 2025-
03-11. This query leads to 492 master theses and
91 bachelor theses. One master thesis cannot be
downloaded, and one bachelor thesis is an invalid
PDF document. Documents with fewer than 20
pages were excluded, as theses are typically longer,
leading to 451 master theses and 79 bachelor theses.
It was decided to concentrate on more recent theses,

15https://gitlab.com/ippolis_wp3/write, Accessed:
2025-06-05

16www.itextpdf.com, Accessed: 2025-06-05

Dataset # documents Avg. # pages
Bachelor train 19 66.63
Bachelor test 19 61.84
Master train 53 73.64
Master test 53 76.83∑

144 72.33

Table 1: Distribution of the primary arXiv categories
across the training and test set.

which were submitted in arXiv after the 2023-01-
01, leading to 110 master’s and 39 bachelor’s the-
ses. One bachelor thesis and four master theses not
written in English or German, the languages cur-
rently supported by the tool, were excluded. The
four master theses were written in Persian, French,
partially in Greek, and partially in Japanese. The
bachelor thesis was written in Indonesian. The re-
sulting 106 master’s and 38 bachelor’s theses are
randomly split into a 50 % training, and a 50 % test
set. The most frequently arXiv primary category
was cs.LG (Machine Learning; 14.58 %) followed
by cs.CL (Computation and Language; 11.81 %).
An overview of the dataset is given in Table 1 and
a list containing the arXiv IDs as well as a script to
download the PDF documents is published in a git
repository17. The dataset includes documents cre-
ated in LaTeX and Word, featuring a wide variety
of templates.

4 Results

The tool was evaluated on the test set. None of
the theses were used to develop or optimize the
tool prior to evaluation. All documents in the test
set were processed without problems during the
analysis. In the following sections, an overview of
the currently implemented PDF analyzers is given,
along with examples from the test set, showing
which annotations are generated most frequently,
in which areas the tool works well, and for which
aspects incorrect annotations are generated most
often. In addition, common reasons for formatting
violations are explained.

Figure 2 presents boxplots depicting the average
number of annotations per page for each annotation
category in the test set. The overall number of an-
notations per page differs between 2.17 and 16.08.
Master’s theses exhibit a slightly lower number of

17https://gitlab.com/ippolis_wp3/
bea-2025-ippolis-write-dataset. Accessed: 2025-
06-05

337

https://gitlab.com/ippolis_wp3/write
www.itextpdf.com
https://gitlab.com/ippolis_wp3/bea-2025-ippolis-write-dataset
https://gitlab.com/ippolis_wp3/bea-2025-ippolis-write-dataset


0 2 4 6 8 10 12 14 16
Number of annotations per page

Overall

General/Formal

Document structure

Language

Reproducibility

Referential integrity

Images

Ca
te

go
ry

Dataset
Bachelor (n = 19)
Master (n = 53)
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Figure 3: Boxplots showing annotation distribution by category across page positions in the test set.

annotations per page. This indicates that master
students have more experience writing scientific
theses. The most frequent annotations were lan-
guage annotations that differed between 0.38 and
14.92 annotations per page. The remaining cate-
gories are detected less frequently with a maximum
of 3.18 annotations per page, which was reached
for a master thesis and the referential integrity cat-
egory.

Figure 3 illustrates the distribution of annotation
frequencies across document pages for each cate-
gory. The plots show raw annotations that have
not been validated. In the document structure,
images, and language categories, annotations are
more frequent in the middle sections of the docu-
ments. One possible explanation is that the middle
of the document contains the main body of text
along with most of the figures. General/formal and
reproducibility annotations exhibit similar patterns,
although general/formal annotations tend to accu-
mulate slightly more in the later sections, while re-

producibility annotations are more frequent in the
earlier sections. Referential integrity annotations
accumulate at the end of the documents, indicating
a large number of annotations in the reference sec-
tions, and thus references that were not recognized
in the text.

A collage of several screenshots showing indi-
vidual annotations for the master’s thesis (Singh,
2024) is visualized in Figure 4.

4.1 General/Formal

The analyzers that provide general and formal feed-
back ensure a well-organized presentation, includ-
ing the identification of changing fonts, line spac-
ing, and text alignments, as well as texts that ex-
ceed page margins. In addition, incorrect decimal
and thousands separators are recognized, as well as
missing punctuation marks at the end of captions.

The test set did not reveal any issues related to
font changes. One reason for this might be that the
documents are submitted theses, which are often
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Figure 4: Collage of several screenshots showing individual annotations for the master’s thesis (Singh, 2024) from
the test set. The OCG layers are shown on the right-hand side, which can be used to deactivate individual annotators.

revised multiple times. Occasional page margin vi-
olations are reliably identified, especially in LaTeX-
generated PDFs. These violations often result from
incorrect hyphenation settings, improperly format-
ted equations, or misaligned tables. When such
issues are detected, IPPOLIS Write offers feed-
back, outlines common causes, and suggests ways
to prevent them. At the moment, it does not detect
figures that exceed page margins, which also oc-
curs in LaTeX-based PDF documents but a future
extension is planned for this feature.

In addition, many documents had missing punc-
tuation marks in the captions. For this analyzer, it
was observed that the layout detection described in
Section 3.3.1 occasionally fails to detect captions
correctly, depending on the template used.

4.2 Document Structure

All analyzers in this category are designed to
maintain the structural integrity of the manuscript.
These include analyses on heading structure (e.g.,
inconsistent heading numbers and orders, lower-
case headings, missing heading layer), page num-
bers (e.g., missing and inconsistent page numbers),
section content (e.g., empty sections), as well as
table and figure captions (e.g., availability, length,
and consistent positions).

Problems most often and reliably detected in the
dataset are empty sections (i.e., a section heading
is immediately followed by a subsection heading),
and sections without another section at the same
level. Due to the difficulty of extracting the docu-
ment layout from the PDF, captions are sometimes
not identified correctly. For unusual formatting
(e.g., small caps), section headings are sometimes

not identified correctly. Tables and equations in-
cluded as images are currently identified and ana-
lyzed as images.

4.3 Language

The language-based analyses include the investi-
gation of the spelling, grammar, and punctuation
(implemented using the LanguageTool18) as well
as the vocabulary (occurring nouns, verbs, and n-
grams). In addition, the detection of filler words
and judgmental words (both adapted from the Read-
ability Analysis Tool (Holdorf, 2016) and the angry-
reviewer tool19), hype terms (Millar et al., 2023),
and ChatGPT phrases20 are implemented. First-
person pronouns are detected as they may diminish
the objectivity and neutrality of texts, particularly
in specific languages and research fields. Dupli-
cated sentences are annotated to prevent redundan-
cies that could reduce the reader’s attention.

Language problems most often detected in the
analyzed theses are grammar errors, frequent use
of first-person pronouns, and the use of judgmental
words. Most incorrect language annotations are
generated because of a lack of context awareness,
e.g., inside mathematical expressions, or when a
word has several meanings (e.g. “clearly”).

4.4 Readability

The readability analysis focuses on identifying long
sentence and reporting several readability scores

18https://languagetool.org/, Accessed: 2025-06-05
19https://github.com/anufrievroman/

Angry-Reviewer, Accessed: 2025-06-05
20https://www.twixify.com/post/

most-overused-words-by-chatgpt, Accessed: 2025-
06-05
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Figure 5: Flesch-reading-ease for document (Lachner, 2021) from the test set.

(e.g., the Coleman-Liau index (Coleman and Liau,
1975), or the Flesch-reading-ease (Flesch, 1948)).
The readability scores are implemented to identify
changes in language quality across the document.
It was anticipated that more theoretical sections,
mostly at the beginning of a thesis such as the intro-
duction, related work, or methods sections, would
have higher complexity compared to sections fo-
cusing on applied content (e.g., implementations
or evaluations). A similar pattern was found for
the Flesch-reading-ease across one test bachelor
thesis (Lachner, 2021) which is visualized in Fig-
ure 5. The Flesch-reading-ease considers the aver-
age length of sentences and the average number of
syllables per word. Higher values indicate easier
text comprehension. The example exhibits lower
values and thus more difficult text comprehension
in the introduction, related work, background, and
concept sections, followed by higher values in the
implementation and results sections. The discus-
sion section shows mixed scores, while the further
experiments and conclusion sections display mod-
erate values. Additional readability scores can be
added in future versions of the tool.

4.5 Literature

Literature annotations are generated for citations
with incomplete information, incorrect citation
types, and published arXiv preprints. Informa-
tion is retrieved from SemanticScholar (Ammar
et al., 2018; Kinney et al., 2023; Lo et al., 2020),
DBLP (Ley, 2002), OpenAlex (Priem et al., 2022),
and CrossRef (Rachael, 2014).

The extraction of citations and reference lists
from PDF documents using GROBID and addi-
tional extraction using regular expressions shows
acceptable results. However, some citations remain

incorrectly identified, independent of the citation
style used. In addition, some false-positive de-
tections occur within equations or references to
figures or captions. One reason for the incorrect
detection is that GROBID was mainly trained on
scientific articles, and the formatting differs from
theses. The detection accuracy of published arXiv
preprints was investigated in more detail in previ-
ous work (Bloch et al., 2023).

4.6 Reproducibility

Reproducibility-based analyses include verifying
the availability and consistency of hyperlink access
dates, detecting URLs that are not properly linked,
and identifying acronyms that are used without
being introduced.

During the evaluation, it was observed that many
documents lack access dates when mentioning
URLs. These are often detected reliably, with some
exceptions for date formats that omit the day. Miss-
ing hyperlinks, i.e. links that are not clickable, are
reliably detected.

Almost all documents in the test set contain
acronyms that are not introduced properly when
first mentioned or employ inconsistent patterns to
introduce them (e.g., Long Form (LF) vs. LF (Long
Form)). Currently, the tool sometimes mistakenly
identifies certain names, such as those mentioned
in references (e.g., LeCun), as well as parts of equa-
tions (e.g., A − B), as acronyms, resulting in in-
correct annotations. These issues can be addressed
by improving reference detection and recognizing
mathematical equations more accurately. The tool
currently does not check the availability of acronym
indexes, which could serve as an alternative to in-
troducing acronyms upon first use.
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4.7 Referential Integrity

The referential integrity of a document is important
for the clarity and comprehensibility of scientific
texts. IPPOLIS Write ensures updated table of con-
tents, as well as complete and consistent references
for tables, figures, sections and references.

In the test set, some PDF documents produced
with DOCX and LaTeX suffer from outdated tables
of content. For LaTeX documents, the page num-
ber of the bibliography section is often incorrect.
DOCX documents are affected by inconsistent page
numbers and section numbers, often due to man-
ually created or outdated tables of contents. The
tool identifies such problems reliably, with some
issues when identifying page numbers.

Few figures and tables in the test set have miss-
ing captions, which were reliably identified. In con-
trast, many figures or tables are never or distantly
mentioned in the text. In addition, inconsistent
reference types were sometimes identified. Simi-
larly to previous observations, occasionally incor-
rect annotations were produced, resulting mostly
from incorrect layout detection, line breaks, or page
breaks.

Citations are cross-checked with the literature
index based on the previously mentioned GROBID
software. The identification and mapping of ci-
tations show some issues especially for multiple
consecutive references, as well as references in ta-
bles. One reason is that the formatting of theses
differs from the documents, which were used to
train and optimize GROBID.

4.8 Images

The tool examines whether the resolution of figures
is sufficient for print publications and ensures they
are not distorted during document creation. Fur-
thermore, experiments were conducted to validate
the images in more detail. These analyses include
the detection of missing axis labels, tick marks,
the number of colors, and image artifacts and
were implemented using Vision-Language Mod-
els (VLMs) (Rückert et al., 2025). These features
will be integrated into the tool in the future.

One issue present in almost every analyzed the-
sis is the inclusion of images with low quality (less
than 300 DPI), with some of these including im-
ages of clearly poor quality with less than 100 DPI.
During the implementation and test of the image
analysis features, it became apparent that this is
not always due to the quality of the original image,

but often unintentional image compression during
document compilation or conversion can lead to
poor image quality in the final PDF.

4.9 Tables

At the moment, tables are only checked for valid
decimal and thousands separators by the tool. Ana-
lyzers regarding the validation of the table structure
and the availability of units in table columns are
planned. Table captions are analyzed as described
in Section 4.2.

5 Discussion

The IPPOLIS Write tool is a web-based open
source tool that provides automated feedback on
formal aspects of scientific theses and papers to
help students, but also researchers fulfill formal
aspects of research theses and scientific papers.
In comparison to previously developed tools, it
is able to process a large number of document for-
mats (PDF, DOCX, LaTeX, BibTeX, RIS, ZIP)
and imposes no restriction on used templates. In
addition, feedback is provided on a wide variety
of formal aspects which are consolidated into nine
categories (formal/general, document structure, lan-
guage, readability, literature, reproducibility, refer-
ential integrity, images, and tables). Data privacy is
maintained by temporarily sharing documents with
the software through a cloud share, while all anal-
ysis results are directly stored in the cloud share.
This solution enables the implementation of a gam-
ification element, which can motivate users with-
out having to create a user account. The analysis
pipeline includes pre-processing of the documents
to convert them into machine-readable data and
document analyzers, which can be manually con-
figured via the analysis profile. This profile makes
it possible to customize the tool to individual re-
quirements, for example, in different departments.
The analysis results are converted into a report, and,
for some document types, an annotated document
was generated. The annotated document makes it
easier for the user to quickly understand the anno-
tations and correct the document.

The tool was validated using a PDF dataset from
the arXiv preprint server containing bachelor’s and
master’s theses with diverse formatting. The quali-
tative evaluation investigates which formal issues
are identified most frequently, in which areas the
tool works well, and for which aspects incorrect
annotations are generated. The tool successfully
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processes all theses and identified various issues in
the test set. These include violations of the page
margins, especially in LaTeX-based PDFs, empty
sections, and sections without sibling sections at
the same hierarchical level. Furthermore, various
grammatical errors, missing access dates for URLs,
and acronyms with missing or inconsistently intro-
duced long forms were correctly identified. Some
documents had outdated tables of content and fig-
ures or tables that were never mentioned in the text.
Many documents suffered from low image qual-
ity, in part with resolutions smaller than 100 DPI.
The high frequency of annotations found for theses
published on arXiv illustrates the value of the tool.

The most incorrect annotations were identified
as being caused by inaccurate layout detection,
among other things leading to the detection of
non-introduced acronyms or grammatical errors in
mathematical equations or citations. This problem
will be addressed in future releases by using im-
proved layout analysis. As document layout anal-
ysis remains an active area of research (Gemelli
et al., 2024), with demonstrated potential to en-
hance the robustness of Large Language Mod-
els (LLMs) for document understanding (Scius-
Bertrand et al., 2024; Lamott et al., 2024), further
advancements in this domain are anticipated in the
near future. Additional problems, which will be ad-
dressed in future developments, will be improved
context awareness during the detection of judgmen-
tal words, as well as improved detection accuracy
for citations and references using LLMs.

Overall, the results demonstrate that IPPOLIS
Write can identify various issues in academic the-
ses, offering valuable formal feedback to assist stu-
dents and researchers in revising their theses and
papers.

6 Conclusion

In summary, this paper introduces IPPOLIS Write,
a web-based tool that automatically provides feed-
back on the formal aspects of scientific theses and
papers, assisting both students and researchers in
meeting these requirements. IPPOLIS Write covers
the most common document formats and a wide
variety of formal aspects. In addition, it can be
customized to meet the requirements of various dis-
ciplines. Data privacy is maintained by temporarily
sharing documents through a cloud share. The tool
was qualitatively evaluated on a diverse test set con-
taining bachelor and master theses. The validation

shows that IPPOLIS Write detects a wide variety
of issues in these documents. Incorrect annotations
are mostly caused by inaccurate document layout
detection, which is related to the high number of
templates used in the dataset.

Limitations

IPPOLIS Write is not a finished product and in
some areas lacks in robustness and consistency.
Most issues stem from the difficulty of extract-
ing information systematically from documents.
Handling subtle differences introduced by diverse
document creation tools, layouts, fonts, and format-
ting has consumed more development time than
anticipated, and new documents still sometimes
reveal new problems. Better pipelines based on
new technologies may alleviate this issue in the
future. Another limitation is the lack of a system-
atic quantitative evaluation of the generated annota-
tions including a manual analysis of false positives
and false negatives, as well as a user study, all
of which would be useful to provide stronger evi-
dence of the tool’s impact. The evaluation dataset
is currently limited to student theses from the com-
puter science field. A more varied dataset could
help expand and generalize the evaluation results.
The tool is meant as a learning resource and does
not provide immediate corrections but only sug-
gestions which have to be manually applied, this
limitation is an intentional design decision. Lim-
itations that could be addressed in future devel-
opment iterations of the tool include annotations
available directly in the browser (currently only the
Adobe PDF viewer fully supports the annotations),
marking suggestions as solved/irrelevant for future
document analyses, Optical Character Recognition
(OCR) pipelines for images, better extraction of
bibliography information from PDF, and support
for additional languages beyond English and Ger-
man.
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Abstract
Students’ argumentative writing benefits from
receiving automated feedback, particularly
throughout the writing process. Argument Min-
ing (AM) technology shows promise for de-
livering automated feedback on argumentative
structures; however, existing systems are fre-
quently trained on completed essays. Although
they provide rich context information, concerns
have been raised about their usefulness for of-
fering writing support on incomplete texts dur-
ing the writing process. This study evaluates
the robustness of AM algorithms on artificially
fragmented learner texts from two large-scale
corpora of secondary school essays: the Ger-
man DARIUS corpus and the English PER-
SUADE corpus. Our analysis reveales that
token-level sequence-tagging methods, while
highly effective on complete essays, suffer sig-
nificantly when the context is limited or mis-
leading. Conversely, sentence-level classifiers
maintain relative stability under such condi-
tions. We show that deliberately training AM
models on fragmented input substantially mit-
igates these context-related weaknesses, en-
abling AM systems to better support dynamic
educational writing scenarios.

1 Introduction

Providing in-process and constructive feedback is
integral to fostering argumentative writing skills
in educational settings. (Argument Mining) AM
has emerged as a promising approach for analyzing
and evaluating the structure and quality of argu-
mentative learner essays. However, the majority of
AM systems operate on complete texts and their
applicability in dynamic writing scenarios with in-
complete drafts is unknown. A conclusion, for ex-
ample, might only be recognized as such because
it appears at the end of an essay and might not be
recognized if the learner starts with the concluding
statement and requests feedback early on.

To assess the severity of this problem, we inves-
tigate the robustness of existing AM algorithms

when applied to incomplete essay texts. We do so
by emulating work-in-progress texts by applying
artificial changes and perturbations to two datasets
used previously for educational AM: the German
DARIUS (Digital Argumentation Instruction for
Science) dataset (Schaller et al., 2024b), contain-
ing about 4,500 texts on socio-scientific issues, and
the English PERSUADE dataset (Crossley et al.,
2024), with over 25,000 essays written by US sec-
ondary school students on various topics.

These benchmark datasets are probed with two
kinds of AM classifiers: a sequence tagger that as-
signs a label to each token within an essay and a
sentence classification approach that labels individ-
ual sentences without context. Although sequence
tagging exploits contextual information and thus
seems suitable for complete essays, sentence clas-
sification might have an advantage when only little
or misleading context is available. To pave the
way for feedback algorithms that can already pro-
vide support during the writing process, we explore
ways to train a more robust classifier by applying
similar perturbations to the training data.

Our paper makes the following contributions:

• We provide benchmark datasets of essays that
we corrupted in several more or less realistic
ways, which we obtained from the existing
PERSUADE and DARIUS datasets to foster
the development of robust AM methods.

• We conduct experiments on these datasets to
highlight the detrimental effect of incomplete
input in educational AM (up to 22 percentage
points in the F1 score compared to full texts).

• We train baseline classifiers on similarly cor-
rupted data that can reduce this performance
drop to less than half.

All data is made available: https://github.com/
darius-ipn/dontscoretooearly
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2 Related Work

We review related work regarding three aspects.
First, we discuss existing datasets for educational
AM and select those suitable for our experiments.
We then examine machine learning approaches in
AM, focusing on the distinction between sequence
tagging and sentence classification methods. Fi-
nally, we discuss other studies using perturbed es-
say texts in automated scoring scenarios.

2.1 Educational Argument Mining Datasets

We review datasets according to their suitability for
our experiments considering their size, language,
and the argumentative units annotated in the data.

Stab and Gurevych (2017) developed an argu-
ment detection system for English persuasive es-
says, achieving substantial inter-annotator agree-
ment (Krippendorff’s αU of 0.77). Their data con-
sist of 402 English essays annotated for major
claim, claim, and premise, as well as their argu-
mentative relationships (support/attack).

Wambsganss et al. (2020) built a feedback sys-
tem for the argumentation structure of German stu-
dents’ essays. For that purpose, they collected
1,000 peer-reviews from a business innovation
course in which students evaluated each other’s
business models. The corpus was annotated by
three native German-speakers for argumentative
components (claim and premise) and their relation-
ships.

The PERSUADE dataset of Crossley et al.
(2022) consists of over 25,000 argumentative es-
says written by secondary school students in the
US. Each essay was annotated for seven distinct
argumentative components. The dataset was ex-
panded (Crossley et al., 2024) with effectiveness
scores per unit and holistic scores for the overall
essay quality. In our previous work (Schaller
et al., 2024b) we compiled the DARIUS corpus of
4,589 argumentative essays written by secondary
school students in Germany. The corpus consists
of two writing prompts on socio-scientific topics.
The corpus features detailed annotations of argu-
mentative elements, including content zone, major
claim, position, and warrant.

Stahl et al. (2024) presented a German corpus
of 1,320 school student essays annotated for argu-
mentative structure and quality. Their four-level
annotation scheme achieved high agreement (α =
0.74-0.89). Their analysis revealed significant cor-
relations between structural elements and essay

quality. The corpus provides another reference
point alongside DARIUS for student writing in
German secondary schools.

Velentzas et al. (2024) presented KUPA-KEYS,
a dataset of keystroke logs from 1,006 participants’
English essays, including both L1 and L2 writers.
Each essay was evaluated on the CEFR scale by
three human assessors and an automated system.
The dataset captures detailed keystroke patterns,
pauses, and revisions during writing tasks, with the
analysis showing moderate correlations between
keystroke patterns and writing proficiency.

While keystroke logging would be ideal for
studying incomplete texts as it captures the authen-
tic writing process, existing keystroke datasets such
as KUPA-KEYS lack the specific argumentative an-
notations needed for our work.

We decided to use the DARIUS and PERSUADE
datasets for our experiments because they offer
several key advantages: First, they cover different
languages (German and English), allowing us to
verify whether our findings hold across languages.
Second, they are very similar in their annotation
schemes, allowing us to focus on sequences instead
of whole documents. Third, with over 4,500 and
25,000 essays respectively, they provide sufficient
data to train robust machine learning models and
conduct comprehensive robustness evaluations

2.2 Machine Learning in Argumentation
Mining

AM consists of two subtasks: the detection of argu-
ment units and their classification as a certain type
of argument, e.g., a claim or a conclusion.

Approaches to Argument Unit Detection There
are two main strategies for detecting argumentative
units, although variations are possible: Some use
sentence classification, treating entire sentences
as argumentative units. Alternatively, sequence
tagging works at the token level to identify more
flexible argument boundaries. We further review
both approaches and hybrid methods.

Sentence Classification Approaches An easy
(but not necessarily optimal) method for the selec-
tion of units is sentence classification, thus omitting
explicit argument detection and classifying individ-
ual sentences in a text as belonging to a certain
type of argument (or as being non-argumentative).
Wambsganss et al. (2020) built a feedback system
for the argumentation structure of students’ Ger-
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man texts based on a sentence-level multiclass clas-
sification task. They developed an SVM-based
system for claim/premise identification (65.4% ac-
curacy) and relationship classification (72.1% accu-
racy). Their later ArgueTutor system (Wambsganß
et al., 2021) improved performance using BERT
(F1 = .73). Similarly, in their fairness investiga-
tion, Schaller et al. (2024a) employed sentence
classification approaches among others, compar-
ing a supervised SVM, a BERT-based classifier,
and zero-shot GPT-4 on the DARIUS corpus of
students’ German essays.

Sequence Tagging Approaches At the other end
of the spectrum, many researchers have employed
sequence tagging on tokens to allow for more flexi-
ble argument boundaries. This approach has gained
significant attention in the field, particularly with
the rise of transformer-based models. In our fair-
ness study, (Schaller et al., 2024a) we additionally
employed sequence tagging approaches, finding
that a task-specific fine-tuned BERT model con-
sistently outperformed other approaches, includ-
ing more powerful decoder-based language models
such as GPT-4 when used in a zero-shot setting.

Stahl et al. (2024) trained sequence labeling
models based on mDeBERTaV3-adapter, which
achieved a F1 scores up to .68 for discourse func-
tions.

We previously investigated AM using the En-
glish PERSUADE and MEWS and the German
DARIUS datasets (Ding et al., 2024) . Our se-
quence tagging used a Longformer-based model,
achieving an F1 score of .66 on English essays
and providing important baseline performances on
complete essays. The analysis revealed that edu-
cational context differences impacted performance
more than language differences did.

Comparative and Hybrid Approaches Several
researchers have compared these approaches or
examined the advantages of hybrid approaches.

Trautmann et al. (2020) explicitly examined
sentence versus token classification for argument
recognition on annotated Common Crawl data
(IAA αunom = .61). Their experiments with var-
ious BERT and FLAIR models showed that a
BERT_LARGE sentence classifier was only out-
performed by the BERT_LARGE token classifier
when combined with a CRF model, demonstrating
that sentence classification can achieve comparable
results to token classification approaches.

Stab and Gurevych (2017) showed the advan-
tages of combining both sequence labeling and
classification for AM. They first used a CRF for se-
quence labeling to identify argument boundaries in
the text and then used SVM classification to deter-
mine each argument’s type and relationships. This
combined approach significantly outperformed us-
ing either method alone, achieving an F1 score of
.86 compared to .79 for individual classification
and .64 for baseline approaches. These studies
highlight that the optimal approach for complete
texts may depend on specific tasks, domains, and
available data, and that one approach may not al-
ways be superior.

2.3 Influence of Rearranged Sequences
As our work investigates the robustness of AM
on incomplete texts, we review previous work on
educational scoring that examined model behavior
with incomplete texts or nonstandard text order.

Farag et al. (2018) tested AES robustness against
shuffled sentences. Their LSTM model performed
well on regular essays but declined with shuffled
texts. They addressed this by combining models
trained on both regular and permuted essays, main-
taining scoring performance while detecting shuf-
fled texts. This highlights neural models’ reliance
on expected sequence orders, informing our work
on incomplete texts.

In a previous paper (Ding et al., 2023), we used
sequence tagging with fine-tuned RoBERTa to iden-
tify EFL email segments. When tested with scram-
bled segments, performance dropped strongly (F1
= .89 to F1 = .60), but the model was able to adapt
when trained on scrambled data (F1 =.85). On the
basis of this work, we anticipate that sentence clas-
sification models will outperform sequence tagging
models due to lower dependence on position and
context.

3 Data

This section presents the two datasets used in our
evaluations, DARIUS and PERSUADE, and dis-
cusses our decision regarding which annotations
to include. Table 1 gives an overview of the key
statistics of the datasets.

DARIUS The DARIUS corpus (Schaller et al.,
2024b) contains 4,589 argumentative texts by 1,839
secondary school students in 33 German schools.
The task consists of two writing prompts on socio-
scientific topics: energy and automotive (gener-
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DARIUS PERSUADE

Language German English
Essay genre argumentative argumentative

Writing prompts 2 15
Grade 9-13 6-12

# Essays 4,675 25,996
avg. Word count 150 399

Table 1: Key statistics for DARIUS and PERSUADE

ating 2,307 and 2,282 essays, respectively), with
students completing both a draft and a revision for
one prompt and a single essay for the other. The
corpus features detailed annotations of argumenta-
tive elements, including content zone, major claim,
position, and of argumentative units. The average
essay has 150 words.

For our experiments, we focused on content zone
annotations. Content zone describes the macro
structure of an essay: introduction, main part, and
conclusion (see Fig. 1). Not all essays contain
all three sequences, as students may have returned
unfinished texts or skipped introductions, etc. Each
sequence consists of one or more complete sen-
tences and must end with a sentence-final punc-
tuation mark. In contrast to the other annotations
in DARIUS, their sequences are not based on sen-
tences but on spans of multiple sentences, similar
to the annotations of PERSUADE.

PERSUADE The PERSUADE dataset (Crossley
et al., 2022) consists of over 25,000 argumentative
essays written by secondary school students from
grades six through twelve in the US. The essays are
based on 15 prompts, eight independent and seven
source-based. Each essay was annotated for seven
distinct argumentative components: (see Fig. 2
and Fig. A.6 in Appendix A) lead, position, claim,
counterclaim, rebuttal, evidence, and concluding
statement. The inter-rater agreement achieved an
F1 score of .73. The dataset was expanded (Cross-
ley et al., 2024) to include effectiveness scores for
individual discourse elements and holistic essay
quality scores. The average essay has 399 words.
Sequences can span any length from a single phrase
to multiple sentences and do not always align with
sentence boundaries.

4 Benchmark Datasets

In order to gauge classifier performance on incom-
plete essay data, we simulate essays in the process

CO2 emissions and greenhouse gas emissions are to be
drastically reduced as they have had a major impact on
our climate change in recent years. But how can we do
this work as efficiently as possible to meet the energy
demand in this district? There are three options to
choose from. The construction of a wind energy park,
a solar plant, or a hydroelectric power plant. Which of
these three projects should be supported?
If one considers the first criterion, i.e., efficiency, the
hydropower plant is clearly in the lead with 70–90%.
The solar park is the weakest here. The second crite-
rion, annual yield, is close because both the wind farm
and the hydropower plant have good annual yields.
And so it goes on with the other criteria so that one
can say that the construction of a hydropower plant is
the most efficient in relation to the construction of an
energy converter. The only major drawback is the price
of the project, which brings us back to the wind farm
because the price difference alone is a whopping 55
million euros. And the criteria are not so bad that you
can’t compensate for the deficits over the years.
In conclusion, it can be said that due to the enormous
price, a wind farm is the best way to produce electricity
for a region that is not so large.

Figure 1: Example essay from the DARIUS dataset
(translation by the authors). From top to bottom: intro-
duction, main part, conclusion.

Driverless cars have been a big topic lately. In some
ways driverless cars sound cool but they also seem a
little scary.
I think that diverless cars shouldn’t be allowed on pub-
lic roads because they are not safe.
Some think being able to have your car drive itself
sounds nice. You could just sit in your car and listen
to music while you wait to arrive to your desination.
Driverless cars would allow you to sit in your seat,
hands on the wheel, but not acually driving.
This idea does sound nice but as all other technology
such as computers and phones, technology is not al-
ways reliable.
A driverless car could cause a marjor or even fatal
crash.
While most driverless cars require you to have hands
on the wheel this does not mean you will be paying
attention if somthing is about to happen. All it would
take is for somthing in the car to mess up and people
could be very seriously hurt.
I think that people driverless cars are not safe and they
should not be allowed on public roads.

Figure 2: Essay 65 from the PERSUADE corpus. From
top to bottom: Lead, Position, Claim, Counterclaim,
Rebuttal, Evidence, Concluding Statement.

of being written by making different changes and
perturbations to the original essay data.

Across all benchmark variants, we retain the
original gold-standard labels from the uncorrupted
texts, i.e., we assume that the label of a unit does
not change depending on the context or lack thereof.
In doing so, we want to simulate a process where
students write what they intend to write but not
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necessarily in the right order, and the justification
for a label is that the unit has a certain function in
the complete text even if that is not yet obvious to a
teacher or annotator in the partial essay during the
writing process. While this may lead to cases where
labels are not recoverable from the modified input
alone (e.g., conclusions appearing mid-essay in
Shuffled texts), our goal is to test model robustness
in incomplete or misleading contexts, reflecting
educational scenarios where students submit partial
drafts.

We include the following variants:

Full text: The original essays are used as a base-
line.

First_X: This simulates an incremental, top-
down writing process where a learner receives feed-
back after having completed at least 25%, 50%, or
75% of the whole text. We clip DARIUS essays af-
ter 25% of sentences and PERSUADE essays after
25% of sequences, as DARIUS annotations span at
least one sentence, while PERSUADE annotations
can be phrase-level annotations.

Last_X: Similar to the former scenario, this sim-
ulates the (admittedly less likely) process where
only the last 25%, 50%, or 75% of a text is scored.

Sentence: Every single sentence from the test
data as its own document, i.e., sentences are labeled
completely without context.

Shuffled: For this condition, sequences within an
essay are randomly shuffled to appear in misleading
contexts, with DARIUS shuffling at the sentence
and PERSUADE at the sequence level.

Table A.7 in Appendix A provides examples for
all variants of an essay. Note that we do not ex-
pect all of these variants to occur (frequently) in
real-life data. We rather aimed to cover the whole
spectrum to also assess worst-case scenarios. We
kept the datasets comparable whenever possible,
i.e., full text, sentence, and shuffle contain exactly
the same material, just in a different order or differ-
ent document size, while first_X and last_X, for
obvious reasons, contain less material. Similarly,
also the label distribution changes for these bench-
marks, e.g., essays with the last part missing, tend
to contain less conclusion material. Table A.5 in
Appendix A shows an overview of the dataset sizes
per benchmark.

5 Experiments

This section evaluates how AM approaches per-
form on incomplete texts that simulate intermediate
products within the writing process.

We compare sequence tagging and sentence clas-
sification. The models are tested on both com-
plete essays and simulated incomplete drafts to as-
sess their ability to provide feedback on unfinished
texts.

5.1 Experiment 1: Baseline Performance on
Benchmark Datasets

Data splits The DARIUS corpus consists of
4,581 essays, which we divided into 3,672 essays
for training and 909 essays for testing, following
the setup from Schaller et al. (2024a). From the
training set, we reserved 20% as a development set
to determine the optimal number of training epochs,
while using the remaining 80% for model training.

The training set of the PERSUADE (1.0) corpus
contains 15,594 essays, which were released in a
Kaggle competition1. We use them all for training.
For testing, we use 1,560 random essays from the
PERSUADE (2.0) test set2.

Classifiers For the comparison of sequence tag-
ging and sentence classification, we use trans-
former models with different classification heads
while keeping the base architecture consistent
within each language. For DARIUS, we use
a BERT (Devlin et al., 2019) model, bert-base-
german-cased, both for the sequence tagging and
the sentence classification model. It has a sequence
length of 512 tokens, which is adequate for the
average DARIUS essay. Longer texts were trun-
cated to 512 tokens. The model was fine-tuned
using the default hyperparameters from the Hug-
ging Face Transformers library. We trained for four
epochs, which proved sufficient for convergence
on our validation set.

As almost one-third of the English essays in
PERSUADE contain more than 512 tokens, we
use a pretrained Longformer model (Beltagy et al.,
2020) for token classification, with a maximal train-
ing length of 1,024 tokens, to train a sequence tag-
ging pipeline (Ding et al., 2022) for the prediction
of different argumentative elements in the PER-
SUADE essays. For sentence classification, we use

1https://www.kaggle.com/competitions/
feedback-prize-2021

2https://github.com/scrosseye/persuade_corpus_
2.0
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the pretrained BERT model (Devlin et al., 2019)
for sequence classification.

Evaluation Measures We use F1 scores to eval-
uate and compare sequence tagging and sentence
classification approaches across different bench-
mark datasets. For both datasets, we treat each ar-
gumentative element type (e.g., introduction, main,
and conclusion in DARIUS; lead, position, claim,
etc. in PERSUADE) as a separate class in a multi-
class classification setting.

For sequence tagging, we compute F1 scores di-
rectly on the token-level predictions, where each
token receives one label. When comparing this to
sentence classification approaches, we also derive
sentence-level metrics from our token classifiers
through majority voting (assigning the most fre-
quent token label as the sentence label).

5.2 Experimental Results

Results for DARIUS Table 2 shows the perfor-
mance of the token and sentence classifier for the
various benchmark datasets.

On complete essays, the token classifier demon-
strated high performance, with an overall F1 score
of .93 on the sentence test set and .92 on the to-
ken test set, showing particular strength in identi-
fying the introduction (.91/.88) and main sections
(.96/.95), although it performs weakly on the con-
clusion (.73/.71). This will be the baseline for the
other benchmark datasets. As the results for both
datasets are very similar, we will further discuss
only the sentence test set.

With regard to the decontextualized datasets, it
can be seen that the performance decreases. When
tested on the first 25%/50%/75% of sentences, rel-
atively stable F1 scores are observed: overall (.93-
.96), introduction (.91-.92), and main (.94-.97).
The drastic drop in conclusion performance (.0-
.56) stems directly from the near-complete absence
of conclusion sentences in these portions. In the
first 50% of essays, there are virtually no conclu-
sion sentences (30 instances compared to 13,679
for the full texts), explaining the .0 F1 score. Most
conclusion sentences appear only in the last 25% of
essays, as confirmed by the higher support numbers
in the Last_25 and Last_50 datasets.

Testing on the Last_75 reveals the reversed sit-
uation, reflecting the lack of introductions while
maintaining the same number of conclusions as
in the full essays. The F1 scores for the overall,
main, and conclusion remained stable, although

the introduction F1 score decreased substantially
to .76.

The analysis of the Last_25 demonstrated a sub-
stantial drop in the overall F1 score (.72) and the
conclusion (.32) - a seemingly unexpected result
given that all conclusion samples remain present
in this set. This decline occurs because conclu-
sion sections now appear at the beginning of these
truncated texts. The model struggles to recognize
conclusions when they are artificially repositioned,
indicating that it relies on positional context.

An even worse picture emerges from the analy-
sis of the Sentence and Shuffled benchmark data.
Both include all samples of each annotation but an
extreme drop can be seen in the conclusion. The
token classifier, in particular, is not able to predict
the conclusion, if given only a sentence example of
it (.0). The introduction also drops to an F1 score
of .70. In the shuffled condition, the introduction
performance declines further to .31.

These results suggest that, although the model
learns the typical structure of complete essays, it
struggles to apply this knowledge to incomplete
texts.

To further investigate this assumption, we also
trained a model for sentence classification, see Ta-
ble 2. Compared to the token classifier, this model
has a slightly lower overall F1 score of .91, .86
for the introduction and a slightly higher F1 score
of .96 for main when tested on the Full text. It
also performs lower on the conclusion, with a score
of .60. But compared to the performance of the
token classifier on sentences (.0), a much better
performance was observed here, especially on the
conclusion. This might indicate that the token clas-
sifier heavily relies on the context of each class,
whereas the sentence classifier inherently learns
the structure of each class without further context.

Results for PERSUADE Table 3 shows the per-
formance of both token and sentence classifiers for
PERSUADE. Similar to DARIUS, we observe sub-
stantial performance variations across the bench-
mark datasets. On complete essays, the token clas-
sifier achieves an overall F1 score of .57, with
stronger performance on lead (.78) and concluding
statement (.77), probably due to their fixed posi-
tions.

For partial texts, the First_X benchmarks show
a moderate decline in the overall performance (.52-
.46). Lead detection decreases (.67 to .57), while
evidence detection improves (.44 to .78), suggest-
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ing that positional cues become less reliable, while
content-based identification improves with more
context. Concluding statement detection remains
near zero except for the First_75, with a score of
.14. This is, similar to DARIUS, due to the lack of
concluding statements in the first part of the texts.
The Last_X benchmarks reveal significant perfor-
mance degradation. Overall, the F1 scores (.11-.25)
are much lower than for the Full text or First_X.
Similar to the findings for DARIUS, the conclusion
shows a sharp decrease (.77 to .39), suggesting
that the positional context is also critical for PER-
SUADE. The weakest performance appears in the
lead (.21) and claim (.00) detection in the Last_25,
where claims are absent or near-absent.

In the decontextualized Sentence and Shuffled
conditions, the token classifier performs poorly
(.20 and .30 overall), while the sentence classifier
achieves better results (.43 overall), particularly for
position (.51) and evidence (.48).

These results confirm our DARIUS findings:
AM models trained on complete essays have diffi-
culty with partial or nonsequential inputs. The
more complex argumentation schema in PER-
SUADE (seven classes versus three in DARIUS)
appears to enhance this issue.

5.3 Experiment 2: Training on Incomplete
Texts

Our previous experiment demonstrated that AM
models trained on complete texts showed a de-
crease in performance when confronted with in-
complete or out-of-context texts in the case of
DARIUS, especially for the conclusion. To fur-
ther investigate this issue, we explored whether
training on deliberately split texts could enhance
the models’ robustness on the benchmark datasets.

Experimental Setup We developed two addi-
tional training strategies for the DARIUS dataset.
Both used the same amount of training data but
differently divided:

The Split model was trained on randomly
split versions of the training texts, similar to the
First_X/Last_X benchmark. Each essay was di-
vided into complementary portions (25%/75%,
50%/50%, or 75%/25%).

The Hybrid model was trained on a combined
dataset consisting of both complete essays (as in
our original token classifier) and their split versions
(as in the Split model).

Both models used the same BERT architecture

as our original token classifier and only differed in
the training data composition. We then evaluated
these models on the same benchmark test sets as
those used in our previous experiments.

Results and Analysis Table 4 presents the perfor-
mance differences between our new models (Split
and Hybrid) and the original token classifier across
all test conditions. The values represent changes
in F1 scores relative to the original model. Several
key patterns emerge from these results:

1. Performance on complete essays: Both the
Split and the Hybrid models showed slight perfor-
mance decreases (F1 scores of -.04 and -.02 overall,
respectively) when tested on complete essays, with
the most substantial drop observed for conclusion
detection (-.17 and -.10). This suggests that, when
testing on complete essays, models benefit from
training on well-formed, complete training essays,
as these contain valuable signals for the task.

2. First_X: For essays containing only begin-
ning portions, both models performed similarly to
the original classifier, with minor decreases in per-
formance (F1 scores of -.01 to -.03 overall). This
indicates that detecting introductions and main con-
tent remains relatively robust across training strate-
gies.

3. Last_X: The most substantial improvements
appeared in the Last_25 condition, where the Split
model achieved a +.12 increase in the overall F1
score, with an enormous +.40 improvement in con-
clusion detection. The Hybrid model showed more
moderate but still positive gains (+.06 overall, +.22
for conclusions). This pattern of improvement con-
tinued in the Last_50 condition but diminished in
the Last_75 as texts become more complete.

4. Decontextualized conditions: For com-
pletely decontextualized sentences, both new mod-
els substantially improved conclusion detection per-
formance (+.49 for Split, +.39 for Hybrid), while
maintaining or slightly improving overall perfor-
mance. For shuffled texts, the improvements were
small but still positive for conclusion detection.

5.4 Discussion

Our findings indicate trade-offs in training ap-
proaches for AM in educational settings. The origi-
nal token classifier performs well on complete es-
says but has limitations when identifying argumen-
tative elements, particularly the conclusion, when
these appear in unexpected positions or without
sufficient context.
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Token Classifier on Token Testset Token Classifier on Sentence Testset

Variant F1 overall F1 Intro F1 Main F1 Conc F1 overall F1 Intro F1 Main F1 Conc

Full text .92 .88 .95 .71 .93 .91 .96 .73
Sentence .82 .70 .93 .00 .82 .71 .93 .00
Shuffled .75 .31 .88 .18 .74 .31 .87 .17

First_25 .92 .90 .94 .00 .93 .92 .94 .00
First_50 .95 .90 .97 .04 .96 .92 .97 .09
First_75 .95 .88 .97 .54 .96 .91 .97 .56

Last_25 .70 .05 .86 .30 .72 .07 .87 .32
Last_50 .86 .25 .93 .57 .88 .30 .94 .60
Last_75 .92 .70 .95 .68 .92 .76 .96 .70

Sentence Classifier on Sentence Testset

Sentence .91 .86 .95 .60

Table 2: DARIUS F1 score. Highest and lowest score per column are bold.

Token Classifier on Token Testset

Variant Overall Lead Position Claim Counterclaim Rebuttal Evidence Conclusion

Full text .57 .78 .58 .43 .48 .42 .64 .77
Sentence .20 .41 .19 .06 .09 .00 .23 .12
Shuffled .30 .46 .29 .20 .37 .12 .13 .22

First_25 .52 .67 .61 .39 .39 .16 .44 .00
First_50 .51 .60 .61 .38 .42 .35 .76 .00
First_75 .46 .57 .56 .31 .34 .32 .78 .14

Last_25 .11 .21 .39 .00 .50 .21 .41 .39
Last_50 .12 .33 .47 .01 .56 .36 .61 .48
Last_75 .25 .35 .46 .05 .60 .36 .71 .49

Token Classifier on Sentence Testset

Variant Overall Lead Position Claim Counterclaim Rebuttal Evidence Conclusion

Sentence Classifier on Sentence Testset

Sentence .43 .39 .51 .39 .47 .26 .48 .30

Table 3: PERSUADE F1 score. Highest and lowest score per column are bold.

Overall F1 Conclusion F1
Variant Orig. Split Hybrid Orig. Split Hybrid

Full text .92 .88 (-.04) .90 (-.02) .71 .54 (-.17) .61 (-.10)
First_25 .92 .90 (-.02) .91 (-.01) .00 .00 (.00) .00 (.00)
First_50 .95 .93 (-.02) .94 (-.01) .04 .00 (-.04) .02 (-.02)
First_75 .95 .93 (-.02) .94 (-.01) .54 .40 (-.14) .43 (-.11)
Last_25 .70 .82 (+.12) .76 (+.06) .30 .70 (+.40) .52 (+.22)
Last_50 .86 .87 (+.01) .87 (+.01) .57 .68 (+.11) .62 (+.05)
Last_75 .92 .89 (-.03) .90 (-.02) .68 .62 (-.06) .63 (-.05)

Sentence .82 .86 (+.04) .86 (+.04) .00 .49 (+.49) .39 (+.39)
Shuffled .75 .71 (-.04) .74 (-.01) .18 .22 (+.04) .19 (+.01)

Table 4: Comparison of training strategies on DARIUS dataset. Parentheses show differences from the original
classifier. Positive values indicate improvement. Bold values are substantial improvements.

The Split model shows that training on incom-
plete texts improves the handling of such condi-
tions, although this affects the performance on com-
plete essays. The Hybrid model offers a trade-off,
making modest improvements for incomplete texts
while largely maintaining the performance level on

complete essays.

The most notable improvements in both new
models relate to conclusion detection in partial
texts; this is consistent with our observation that
conclusions tend to be context-dependent. Train-
ing models with conclusions in various contexts
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reduces their reliance on position and directs atten-
tion more to the linguistic features of conclusive
statements.

6 Conclusions and Future Work

The results suggest that providing feedback during
the writing process is feasible, particularly when
students write linearly from beginning to end, but
struggles with incomplete or out-of-sequence texts.
Context plays a crucial role in accurate classifi-
cation. While sentence-level classification shows
promise for handling incomplete texts, conclusion
detection remains challenging as it appears most
context-dependent. Our Hybrid training approach
offers a practical compromise, showing modest
improvements for incomplete texts while largely
maintaining performance on complete essays. This
suggests that educational feedback systems could
provide reasonably accurate feedback throughout
the writing process while maintaining acceptable
performance on complete essays. However, a chal-
lenge remains in determining which model to use
in real time. As we cannot know a priori whether
a student will submit a complete or partial text or
whether they have written it sequentially, selecting
the optimal model becomes difficult.

Future work could explore methods for detect-
ing completion stages of student texts, enabling
dynamic model selection. Additionally, we plan
to use process data such as key logs to better un-
derstand the writing process and when to provide
appropriate feedback. Large language models
could be used to create realistic examples of incom-
plete student essays for training, opposed to only
truncated texts.

Limitations

We presented a preliminary study that aims to em-
ulate learner texts in the progress of being written.
We were not able to verify how learners actually
write in key-logging data; this will be one of our
next steps. Thus, our experiments assess possi-
ble worst-case scenarios of what incomplete texts
might look like, where exactly learners are on this
spectrum, is yet to be determined.

Our experiments focus on BERT-based models,
chosen for their established performance in Ger-
man educational contexts and bidirectional atten-
tion capabilities. Another option could be to use
decoder-based models like DeBERTa. However,
such models only look at the left context and thus

might not be optimal in scenarios like our where
potentially the first part of an essay is still missing

Another limitation of our study is its restrictions
to German and English data from Germany and
the United States, limiting our finding to two well-
resourced languages and only two education sys-
tems. More research targeting other languages and
datasets would increase the transferability of our
results.

Ethics Statement

Our datasets do not contain any new material for
which we have to ensure data protection and the
handling of personally identifiable information. We
selected datasets that, to the best of our knowledge,
handled such issues with care.
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A Appendix

Variant #Token #Intro #Main #Conc.

Full text 155,502 18,346 123,477 13,679
Sentence 155,502 18,346 123,477 13,679
Shuffled 155,502 18,346 123,477 13,679

First_25 45,600 16,258 29,342 0
First_50 81,753 17,792 63,931 30
First_75 122,472 18,164 102,088 2,220

Last_25 47,203 351 34,203 12,649
Last_50 83,452 834 68,939 13,679
Last_75 124,225 4,082 106,464 13,679

Variant #Sent. #Intro #Main #Conc.

Full text 8,296 1,150 6,464 682
Sentence 8,296 1,150 6,464 682
Shuffled 8,296 1,150 6,464 682

First_25 2,411 1,013 1,398 0
First_50 4,377 1,121 3,254 2
First_75 6,575 1,142 5,333 100

Last_25 2,411 16 1,758 637
Last_50 4,377 48 3,647 682
Last_75 6,575 264 5,629 682

Table A.5: Count of tokens and sentences for Intro-
duction, Main Part and Conclusion in DARIUS Bench-
marks.

• lead: Opening hook that guides to thesis
• position: Core argument on the topic
• claim: Supporting point for position
• counterclaim: Opposing viewpoint
• rebuttal: Defense against counterclaim
• evidence: Support for any argument
• concluding statement: Summarizing paragraph

Table A.6: The argumentative components of Crossley
et al. (2022)
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Variant Example

full text CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a major
impact on our climate change in recent years. But how can we do this work as efficiently as possible to
meet the energy demand in this district? There are three options to choose from. The construction of a
wind energy park , a solar plant or a hydroelectric power plant . Which of these three projects should
be supported ? if one considers the first criterion, i.e. efficiency, the hydropower plant is clearly in the
lead with 70 - 90% . The solar park is the weakest here . The second criterion, annual yield, is close
because both the wind farm and the hydropower plant have good annual yields . And so it goes on with
the other criteria so that one can say that the construction of a hydropower plant is the most efficient
in relation to the construction of an energy converter . The only major drawback is the price of the
project, which brings us back to the wind farm because the price difference alone is a whopping 55
million euros . And the criteria are not so bad that you can’t compensate for the deficits over the years.
In conclusion, it can be said that due to the enormous price, a wind farm is the best way to produce
electricity for a region that is not so large .

sentence CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a major
impact on our climate change in recent years.

shuffled Which of these three projects should be supported ? There are three options to choose from. The
construction of a wind energy park , a solar plant or a hydroelectric power plant . And the criteria are
not so bad that you can’t compensate for the deficits over the years. But how can we do this work as
efficiently as possible to meet the energy demand in this district? In conclusion, it can be said that due
to the enormous price, a wind farm is the best way to produce electricity for a region that is not so
large . The second criterion, annual yield, is close because both the wind farm and the hydropower
plant have good annual yields . And so it goes on with the other criteria so that one can say that the
construction of a hydropower plant is the most efficient in relation to the construction of an energy
converter . The only major drawback is the price of the project, which brings us back to the wind farm
because the price difference alone is a whopping 55 million euros . If one considers the first criterion,
i.e. efficiency, the hydropower plant is clearly in the lead with 70 - 90%. The solar park is the weakest
here . CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a
major impact on our climate change in recent years.

first_25 CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a major
impact on our climate change in recent years. But how can we do this work as efficiently as possible to
meet the energy demand in this district?

first_50 CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a major
impact on our climate change in recent years. But how can we do this work as efficiently as possible to
meet the energy demand in this district? There are three options to choose from. The construction of a
wind energy park , a solar plant or a hydroelectric power plant .

first_75 CO2 emissions and greenhouse gas emissions are to be drastically reduced as they have had a major
impact on our climate change in recent years. But how can we do this work as efficiently as possible to
meet the energy demand in this district? There are three options to choose from. The construction of a
wind energy park , a solar plant or a hydroelectric power plant . Which of these three projects should
be supported ? if one considers the first criterion, i.e. efficiency, the hydropower plant is clearly in the
lead with 70 - 90% . The solar park is the weakest here .

last_25 And the criteria are not so bad that you can’t compensate for the deficits over the years. In conclusion,
it can be said that due to the enormous price, a wind farm is the best way to produce electricity for a
region that is not so large .

last_50 The second criterion, annual yield, is close because both the wind farm and the hydropower plant have
good annual yields . And so it goes on with the other criteria so that one can say that the construction
of a hydropower plant is the most efficient in relation to the construction of an energy converter . The
only major drawback is the price of the project, which brings us back to the wind farm because the
price difference alone is a whopping 55 million euros . And the criteria are not so bad that you can’t
compensate for the deficits over the years. In conclusion, it can be said that due to the enormous price,
a wind farm is the best way to produce electricity for a region that is not so large

last_75 Which of these three projects should be supported ? if one considers the first criterion, i.e. efficiency,
the hydropower plant is clearly in the lead with 70 - 90% . The solar park is the weakest here . The
second criterion, annual yield, is close because both the wind farm and the hydropower plant have good
annual yields . And so it goes on with the other criteria so that one can say that the construction of
a hydropower plant is the most efficient in relation to the construction of an energy converter . The
only major drawback is the price of the project, which brings us back to the wind farm because the
price difference alone is a whopping 55 million euros . And the criteria are not so bad that you can’t
compensate for the deficits over the years. In conclusion, it can be said that due to the enormous price,
a wind farm is the best way to produce electricity for a region that is not so large .

Table A.7: Examples for each category in our benchmark dataset based on essay 943_n3 in the DARIUS dataset
(English translation provided by the authors)
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Abstract

The rapid development of Large Language
Models (LLMs) opens up the possibility of us-
ing them as personal tutors. This has led to
the development of several intelligent tutoring
systems and learning assistants that use LLMs
as back-ends with various degrees of engineer-
ing. In this study, we seek to compare human
tutors with LLM tutors in terms of engagement,
empathy, scaffolding, and conciseness. We ask
human tutors to annotate and compare the per-
formance of an LLM tutor with that of a hu-
man tutor in teaching grade-school math word
problems on these qualities. We find that anno-
tators with teaching experience perceive LLMs
as showing higher performance than human tu-
tors in all 4 metrics. The biggest advantage is
in empathy, where 80% of our annotators pre-
fer the LLM tutor more often than the human
tutors. Our study paints a positive picture of
LLMs as tutors and indicates that these mod-
els can be used to reduce the load on human
teachers in the future.

1 Introduction

Recent improvements in Large Language Models
(LLMs) have opened up the possibility of using
them in multiple new domains, including as per-
sonal tutors. This possibility has led to the de-
velopment of several Intelligent Tutoring Systems
(ITSs) and learning assistants (Schmucker et al.,
2023; Liffiton et al., 2023; Lieb and Goel, 2024;
Vanzo et al., 2024) that use LLMs as backends
with various degrees of engineering. Surveys by
Intelligent.com (Int, 2023) and DEC Singapore
(DEC, 2024) indicate that a large number of stu-
dents are already using LLMs like ChatGPT in
educational roles such as tutoring.

Despite their popularity, a clear understanding of
the pedagogical effectiveness of educational chat-
bots, especially compared to humans, is lacking.

*For queries contact spalchowd@ethz.ch

The common way of using LLMs as tutor is to
interact with them via a chat interface, where the
LLM roleplays a tutor. It is known that the full
benefit of a human tutor goes well beyond ver-
bal or textual communication (Bambaeeroo and
Shokrpour, 2017), giving human tutors an advan-
tage over LLM-based tutors. However, it remains
unclear how LLM-based tutors compare with their
human counterparts, in this chat setting. A good tu-
tor keeps students engaged, empathises with their
struggles, scaffolds them to correct answers, all
while keeping the conversation to the point and
concise. Is an LLM-based tutor capable of doing
the same?

In this study, we compare human tutors with
LLM-based tutors, through the dialogs generated
via chat interfaces. Our main research question is:

How do LLM-based tutors compare to
human tutors in terms of engagement,
empathy, scaffolding, and conciseness?

Although there have been some recent attempts
to compare learning gains from LLM-based tutors
and human tutors (see Sec 2), these studies focus
on the observable outcomes of learning gains. Our
study seeks to complement these studies by instead
focusing only on the latent factors (we will provide
a more detailed definition and justification in Sec.
3.2), and run comparisons on these directly. We
believe that knowing how LLMs stand on these
would allow researchers to better focus on what to
improve in these models.

Our contributions are:

1. We create a setup to ask human annotators to
compare tutoring dialog snippets in a blind
pairwise preference selection setting.

2. We use this setup to have teachers compare a
human tutor with an LLM tutor on a dataset
of MWPs to identify how they compare the 4
latent factors involved in student learning.
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3. We publicly release the annotation data con-
sisting of 210 annotated dialog pairs to help
future research better align LLM outputs to
human judgments.

Our experiments find that annotators with teach-
ing experience perceive the LLM tutor to be more
engaging and empathetic while also being con-
cise and better at scaffolding the student. This
also aligns with LLMs self-judgments, though fine-
grained tendencies are quite different.

2 Related Work

2.1 Designing and Evaluating LLM Based
Tutors

With the recent progress in LLMs, there have
been several efforts to develop and evaluate LLM-
based tutors. A large number of these have fo-
cused on computer science and programming ed-
ucation (Yang et al., 2024; Qi et al., 2024; Lif-
fiton et al., 2023; Kazemitabaar et al., 2024; Ja-
cobs and Jaschke, 2024; Liu et al., 2024; Lyu
et al., 2024; Li et al., 2024; Choudhuri et al., 2023;
Pankiewicz and Baker, 2024), but there have also
been developments in domains like mathematics
(Chowdhury et al., 2024; Butgereit et al., 2023; Par-
dos and Bhandari, 2024), language learning (Po-
lakova and Klimova, 2024; Park et al., 2024; Vanzo
et al., 2024), health sciences (Kavadella et al., 2024;
Chheang et al., 2024; Wang et al., 2024) and other
domains (Thway et al., 2024; Chen and Chang,
2024). However, most of these works focus on the
engineering behind developing the tutor, and if any
evaluation is done, it is either in terms of learning
gains, or in the terms of student self-reports of ef-
ficacy and motivation. Moreover, the comparison
in these studies is always between having an LLM-
based tutor and not having anything, and not with
human tutors. Finally, we also lack an understand-
ing of the factors contributing to a good quality
tutor.

2.2 Comparing AI Tutors with Human Tutors
Tutoring was established as one of the best ways
to improve learning outcomes by Bloom in 1984
(Bloom, 1984), and matching the learning gains
of a human tutor has been one of the main tar-
gets of computer-based tutors ever since (Slee-
man and Brown, 1982). Several studies have com-
pared the learning gains from different types of
computer-based tutors with humans (Kulik and Ku-
lik, 1991; Anderson et al., 1995; VanLehn, 2011)

and with the development of LLM-based tutors, the
same has also been extended to LLM based tutors
(Schmucker et al., 2023; Zhang et al., 2024). How-
ever, these works focus only on the final learning
gain, not on the latent qualities that could cause it.

Since several computer-based tutors communi-
cate in natural language, another line of work fol-
lows from Alan Turing’s Imitation Game (Turing,
1950), which was later adapted into the ‘Bystander
Turing Test’ (Person and Graesser, 2002). While
our work is similar to this in terms of the text-only
setup and blind selection, we differ in that instead
of asking the annotator to determine which party
is human, we ask them to determine which one is
better on a set of metrics.

3 Method

3.1 Datasets

To compare human and LLM tutors, we need paral-
lel data sets of student-tutor text interactions, both
for human and LLM tutors. Among the limited
one-on-one tutoring datasets available, we cannot
use data sets such as TSCC (Caines et al., 2020) or
CIMA (Stasaski et al., 2020) because they use hu-
man students, and a fair comparison would require
us to repeat the LLM side of the experiment with
the same humans. To avoid doing this, we draw
our conversations from MathDial (Macina et al.,
2023) for the human side because the students in
this dataset are simulated by AI.

MathDial consists of about 3000 tutor-student
conversations fixing student errors on MWPs. The
MWPs were sampled from the GSM8K dataset
(Cobbe et al., 2021), while the misconceptions were
generated using InstructGPT. The authors hired an-
notators with teaching experience on Prolific to
converse with an InstructGPT instance pretending
to be a student having the particular misconception,
a setup we can easily replicate at little cost. The
annotators were prescribed some pedagogical sug-
gestions urging them to avoid giving out answers
directly but were otherwise encouraged to behave
as they would when tutoring a real student.

Moving on to the LLM side, we could simply
use a modern LLM like GPT to repeat the con-
versations from MathDial with identical settings.
However, this only works if we can ensure that the
GPT model would never give incorrect feedback,
for example stating that a student’s answer is right
when it is not. If a tutor has a chance of giving out
wrong information, comparing its softer qualities
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is moot. Unfortunately, previous work has found
that GPT4-turbo does make such mistakes (Chowd-
hury et al., 2024) and we found in our explorations
that this is still the case for GPT4o, with 6 out of
the 30 problems investigated having some issue
(1 case where the teacher gave a wrong answer, 5
cases of teacher telling the right answer but not
verifying if the student agreed, including 2 where
the final teacher utterance included nonsensical
phrases). Therefore, we instead use conversations
from MWPTutor (Chowdhury et al., 2024), a tu-
tor based on LLMs which ensures correctness by
imposing guardrails on top of GPT.

MWPTutor uses a finite state transducer to
prompt an LLM to generate the best teacher ut-
terances and uses the same InstructGPT student
model as MathDial. The paper proposes multiple
versions of their system, but in this work, we make
use of MWPTutorlive

GPT4 as it is the best according to
their own metrics. Although MathDial consists of
about 3000 conversations, many of them repeat the
same MWPs and incorrect solutions. Since MW-
PTutor only makes use of these two components,
we restrict our study to one conversation per MWP.
As such, we choose 210 MWPs including all 45
coming from the GSM8K test set. For MathDial,
we pick the first conversation when sorted by times-
tamp. For MWPTutor, we use the conversations
published by the authors for the test set MWPs,
while for the remaining, we generate conversations
using their publicly available code.

Note that despite the accuracy issue, we did per-
form a smaller study with GPT4o instead of MW-
PTutor, and found that the trends were not much
different (See Appendix B for details).

3.2 Metrics
Tutoring is a rather complex task, and thus it is
hard to list desirable tutoring qualities that can be
considered universally applicable. The primary
desiderata for our study are that we need a small
set of metrics (so as to be able to evaluate them in a
reasonable budget), which can be judged from text
and are subjective enough to facilitate the compari-
son of two conversations. To obtain such a set of
metrics, we drew inspiration from 3 main works.

Ross, in his book (MacDonald, 2000) identifies 6
goals for tutors, although this includes more admin-
istrative duties such as “provide student perspec-
tive on school success”. Walker (Walker, 2008)
surveyed several teachers in training, and identified
12 desirable characteristics of teachers. Although

too numerous and often requiring actions beyond
a text-only setting, they serve as a good starting
point for us. Maurya et al (Maurya et al., 2024)
unified several recent works to identify 8 metrics
relevant to AI tutors. However, these metrics are
often too precise, making it difficult to rank two
conversations based on them.

Inspired by these and other works mentioned in
the definitions, we decided on four metrics to eval-
uate, which we discuss below. An important thing
to point out here is that though these metrics have
scientific grounding, they are all quite subjective,
which means in certain cases choosing the better
of a pair of conversations might become a matter
of personal preference. Although we did not eval-
uate the original metrics in the above work with
humans, we did run them through GPT, and the
results are provided in the Appendix (see Section
C). We also provide a full mapping between the
metrics in the three aforementioned papers and our
metrics in Section D
Engagement: Student engagement can be defined
as ‘how involved or interested students appear to be
in their learning’ (Axelson and Flick, 2010). All of
Walker, Ross and Maurya (see table 6) use metrics
that map to engagement. High student engagement
is positively correlated with student learning out-
comes (Lei et al., 2018), and this effect has also
been observed in recent studies on LLM tutors (Al-
tememy et al., 2023; Vanzo et al., 2024).
Empathy: Empathy is the ability of a tutor to un-
derstand the hardships a student is facing and to
react in a way that keeps up their motivation. Empa-
thy is seen as important in a teacher by most educa-
tors (Stojiljković et al., 2012; Makoelle, 2019), and
practical studies show that teachers’ empathy is cor-
related with positive learning outcomes for at least
some groups of students (Bostic, 2014; D’Mello
and Graesser, 2013). Walker identifies multiple
dimensions of empathy as essential, while Maurya
and Ross also consider it important (see table 6).
One important thing to note here is that empathy in
general is a rather broad term, and is often split into
subcategories of emotional and cognitive empathy
(Smith, 2006). In this work, ‘Empathy’ primarily
refers to Emotional Empathy, whereas Cognitive
Empathy is somewhat subsumed by Engagement.
Scaffolding: Scaffolding is the idea that a tutor
should help a student succeed in a problem, not by
directly revealing the answer, but by controlling
elements of the problem solving process to enable
the student to achieve the solution by themselves
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(Wood et al., 1976). Doing so helps students to not
just understand the solution of the problem at hand
but also learn the concepts behind the solution, en-
abling them to solve similar problems thereafter.
The first five metrics from Maurya all reflect forms
of scaffolding, while Ross covers it with ‘promote
independent learning’ and ‘facilitate tutee insights
into learning’. Scaffolding is also a primary goal
in both MathDial (called ‘Equitable Tutoring’ in
the paper possibly due to conflicting terminologies)
and MWPTutor.
Conciseness: While not considered an important
metric by the three works we repeatedly refer to,
we note that to achieve the previously mentioned
metrics, one may end up with extremely long con-
versations. However, a good tutor should always
try to make progress with a question. Having the
student repeat steps already done or making them
do redundant steps is known to hurt learning out-
comes, especially when only a single modality (i.e.,
text) is available (Kalyuga and Sweller, 2014; Al-
bers et al., 2023). Failure to make progress in a
problem often leads to frustration (Goldin, 2000),
which in turn can hurt learning (Chitrakar and P.M.,
2023). Finally, longer conversations can lead to
students going beyond their optimal attention span
(Philip and Bennett, 2021) leading to bad outcomes.
Therefore, we include conciseness as a fourth met-
ric.

3.3 Setup
MathDial conversations are about 10 turns on av-
erage, while that of MWPTutor can go from 5 to
60 turns. We needed annotators to choose which
conversations were better by each metric. Internal
testing revealed that longer dialogs greatly increase
the time to choose with people having to go back
and forth in the dialogues, though the tone of the
dialog is usually set within the first few turns, mak-
ing it the most important part of the dialog. Thus,
we decided to truncate all dialogs to 5 turns, the
lower limit of the average human working memory
(Miller, 1956). It also helps that both MWPTutor
and MathDial require a conversation to last for at
least 5 turns. This truncation, however, meant that
sometimes the dialogs could be too small to judge
them, so we allowed the annotators to say “Both
are Equal,” but we asked them to use this sparingly.
Note that this also increases the epistemic noise of
the task.

Our survey was hosted on FillOut1. The 210

1fillout.com

problems were divided into 7 batches of 30 conver-
sation pairs each, which would take 45-60 minutes
each of annotator time. The survey started off with
a task description, followed by metric descriptions.
Thereafter, it we had 150 slides, 5 per conversation
pair. The first slide introduced the new MWP and
the two conversations, and the next 4 went over the
4 metrics. These slides showed the MWP, the two
conversations side-by-side, and a short description
of the current metric, and asked the user to pick
one of “Left is Better”, “Right is Better”, and,
“Both are Equal” (see Section G for details).
The right-left positioning of the conversations
was randomized to avoid bias. Annotators were
instructed to focus on the tutor’s utterances and
not the student’s. In addition, we did not explain
the nature of the tutors or students and there was
no indication that any of the parties were LLM
agents. We also had three LLMs, namely GPT4
(gpt-4o-2024-08-06, (OpenAI et al., 2024)),
Qwen (Qwen/Qwen2.5-72B-Instruct-Turbo
from together.ai, (Qwen et al., 2025)), LLama
(meta-llama/Meta-Llama-3.1-405B-Instruct
-Turbo from together.ai, (Touvron et al.,
2023)) compare the conversations on our metrics.
For this, the prompts included the same metric
definitions, and the two conversation snippets were
presented as ‘System 1’ and ‘System 2’. Each
conversation-pair was run through each LLM
twice, with the order of conversations flipped to
avoid biases.

3.4 Participants

Each batch was annotated by 5 annotators, bringing
us to a total of 35 annotators. We initially hired Pro-
lific 21 annotators who had access to a computer,
were fluent in English, and had some teaching ex-
perience. These requirements are identical to those
set in MathDial. We also hired two more sets of
7 annotators, one consisting of only men and one
consisting of only people aged 50 or older to get
a better distribution of age and gender. All anno-
tators were paid the Prolific recommended rate of
GBP 9 for the survey.

Demographics Of the 35 Prolific-hired annotators,
14 identified as male while the rest identified as
female. The dominant self-identified ethnicity was
black (20 annotators), with white (11 annotators)
being the next closest. Their ages range from 20 to
74, with median age being 34.
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Figure 1: Fractions of conversation pairs which received particular scores for each metric from LLMs. Scores increase left
to right, with the brightest red indicating minimum possible score of −3, the dullest red indicating −1, grey indicating 0, the
dullest green indicating +1 and the brightest green indicating the maximum possible score of +3

4 Results and Analysis
We mentioned earlier that our metrics involve
some scope for personal choice. This means that
disagreements between annotators would involve
some epistemic uncertainty. To account for this,
instead of dealing with the point measures given
by majority voting, we look at the full set of votes
through the notion of score.

For each metric and each conversation pair, an
annotator must pick one of “Left is Better”, “Right
is Better” and “Both are Equal”, which we can map
into “MWPTutor is Better”, “MathDial is Better” or
“Both are Equal”. We assign a value of 1 to “MWP-
Tutor is Better” and a value of −1 to “MathDial is
Better”, while “Both are Equal” gets a 0. The score
for a metric for a conversation pair is then the sum
of all the annotator values. Thus, since we have
5 human annotators per conversation pair, a score
of −5 for a conversation pair on a metric indicates
that all human annotators favor MathDial for that
metric, while a score of 5 indicates that all human
annotators favor MWPTutor. The same is true for
the LLM case, except that there are only 3 LLMs,
so the scores go from −3 to 3. Note that this score
is only introduced for analysis in this paper, and
was not used in the actual surveys.

4.1 LLM ratings

Figure 1 shows the distribution of the ratings given
by the 3 LLMs for our 210 instances. All responses
were queried in December 2024. While no LLM
picked the ‘Both are Equal’ option, we had multi-
ple cases where changing the order of the conversa-
tions changed the LLM’s answer, so we considered
these cases to be ‘Both are Equal’. We see that the
LLMs overwhelmingly favor MWPTutor on all 4
metrics. The individual behavior of the LLMs does

not seem very different from each other (see Table
3 in the Appendix for details). While these lop-
sided results are definitely interesting, it might not
be too decisive, considering that LLMs are likely
to be biased towards LLM-generated text.

4.2 Human Ratings

Figure 2 shows the outcome of the human ratings
while Table 1 shows the agreement between annota-
tors and significance statistics. Although the results
are much less lopsided than the LLM annotations,
the outcome is the same. MWPTutor performs
better on all metrics, with the difference being sig-
nificant2 for all metrics except Engagement. As
expected, the agreement amongst annotators is low,
a testament to the complexity of the task.

4.3 Alignment Between LLMs and Humans
Another interesting thing to note here is the differ-
ence between human annotations and LLM annota-
tions. While both come to the conclusion that MW-
PTutor is doing better on all metrics, the LLMs’
opinions are much stronger than their human coun-
terparts. Figure 3 shows the correlation between the
average scores for all 4 metrics, annotated by hu-
mans and LLMs. We can see that all the squares in
top-right and bottom-left quadrants, which indicate
the correlations between human-annotated metrics
and LLM-annotated metrics, are very dull, indicat-
ing a large difference between what LLMs perceive
as good and what humans perceive as good. Also
of note is the fact that the off-diagonal elements
in the top-left and bottom-right quadrant are quite
bright, which means that the metrics are not all
disentangled, either by definition or by perception

2here and in the rest of the paper we treat anything with a
p-value of 0.01 or lower as significant
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tated by humans and LLMs

or a combination of both.

4.4 Analysis

We now go over each of our 4 metrics and look at
how the ratings they received sit in context of other
quantitative metrics.

Conciseness: In terms of t-score, the metric
where MWPTutor dominates the most is Concise-
ness. This is surprising, as unlike the annotators
for MathDial, the LLM behind MWPTutor had no
reason to keep conversations short. In fact, we find
that MWPTutor conversations were longer in terms
of the number of utterances in 135 cases, compared
to 68 cases where MathDial conversations were
longer. Further, when the MWPTutor conversation
is shorter, it has a 74% chance of being picked
as more concise, while if the MathDial conversa-
tion is shorter, it has only a 40% chance of being
picked as more concise. In other words, while true
conversation length is correlated with perceived

conciseness, it isn’t a very strong predictor.

Empathy: Human empathy can often take non-
verbal modes, so judging it from a small conversa-
tion snippet can be a bit noisy. This is expressed as
the high standard deviation in the Empathy scores.
Nevertheless, annotators perceived MWPTutor to
be more empathetic. On running sentiment analy-
sis by huggingface pipelines3 we found a positive
correlation between higher empathy scores and joy
(R = 0.36, p = 5E−8) and a negative correlation
with anger (R = −0.32, p = 3E − 6)4 which is
consistent with what we would expect. In addition,
GPT4 agrees that MWPTutor shows significantly
more joy and less anger compared to MathDial.

Engagement: Engagement is the only metric
where the LLM’s advantage is not significant.
Looking at the code for MWPTutor5 we find that
there are two ways6 it can start a conversation. If
the student solution partially matches a stored solu-
tion, it starts by pointing out the step up to which
the student is correct and proceeds from there. If
no part of the solution matches, MWPTutor will
start afresh by ignoring the student solution. Let us
call these two scenarios Continue and Fresh respec-
tively. In the 45.5% conversations in the Continue
scenario, the average Engagement score is 1.42, so
MWPTutor is significantly better than MathDial

3Sentiment scores were calculated by averag-
ing the score for each tutor utterance in a conver-
sation snippet, and then subtracting the MathDial
Score from the MWPTutor score. We used the
bhadresh-savani/distilbert-base-uncased-emotion.

4Taking max score across all tutor utterances also gives the
same outcome, albeit the exact numbers are a bit different

5in particular, the LiveTutor.start_conversation()
method in models/Tutor.py

6there’s a 3rd to deal with correct solutions, but that was
never triggered (by design)
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Metric Fleiss
Kappa

Mean
Score

Standard
Deviation

Effect
Size t-score p-value

(1-sided)
Conciseness 0.11 0.55 2.19 0.25 3.65 <0.001
Engagement 0.22 0.25 2.72 0.09 1.32 0.09

Empathy 0.25 0.65 2.81 0.23 3.36 <0.001
Scaffolding 0.17 0.55 2.51 0.22 3.16 <0.001

Table 1: Statistics of the Human Ratings. Fleiss Kappa is
calculated assuming each annotator to be a combination of
two annotators, who vote opposite to each other if the actual
vote is ‘Both Are Equal’

Average ScoreNo. of Scaffolding
Utterances

Sample
Size Conciseness Engagement Empathy Scaffolding

0 7 1.00 1.00 1.00 1.86
1 51 0.16 0.27 0.04 0.18
2 116 0.47 -0.03 0.67 0.41
3 36 1.28 0.97 1.39 1.28

Table 2: Human Annotation Scores by scaffolding utterances
in MathDial snippet

in this case (d = 0.68, p < 1e − 8). However,
in the 55.5% conversations in the Fresh scenario,
the average Engagement score falls to −0.84, so
MathDial comes out on top (d = 0.30, p = 0.001).
We posit that since our annotators are not given
access to the student solution, they see no reason
why the tutor should start afresh. Therefore, when
they see the Fresh scenario, they perceive it as the
tutor failing to engage with the student’s solution,
thereby penalizing it.

We previously mentioned how conversational
uptake is similar to our definition of engagement,
so to get another view of the data, we calculated
the difference of uptake scores for each conversa-
tion pair. We excluded the first teacher utterance
because uptake requires a previous utterance. The
difference in uptake scores had only a mild correla-
tion of 0.06 with the human-annotated Engagement
score, but showed a significant difference between
MWPtutor and MathDial (d = 0.20, p = 0.004)
with MWPTutor coming out on top.

Scaffolding: As stated above, scaffolding is a pri-
mary focus for both MathDial and MWPTutor. In
MathDial, annotators were asked to state the intent
of their upcoming utterance as one of the 4 possible
dialog acts. Two of these acts, namely, ‘focus’ and
‘probing’ are types of scaffolding, and in the subset
of utterances we used for our annotations, these two
acts combined make up about 62% of all teacher
utterances. This clearly shows that the annotators
from MathDial made an effort at scaffolding, but
somehow fell short of MWPTutor.

To further analyze this, we grouped the conversa-
tion pairs by how many scaffolding utterances were
present in the MathDial Snippet of the pair and
calculated the average score for each metric includ-
ing scaffolding. The results are shown in Table 2.
Excluding the first row, which contains only 7 sam-

ples, the average score for scaffolding surprisingly
increases (i.e., becomes less favorable to MathDial)
with the number of scaffolding utterances. In other
words, a higher number of scaffolding utterances
makes it worse at scaffolding as perceived by our
annotators. Although we are unsure of the cause
for this, it does indicate that despite expressing the
intent to scaffold, the MathDial annotators were un-
able to follow through. Conversations with a higher
number of scaffolding utterances are also perceived
to be less concise and less empathetic, the former
of which makes some sense since introducing more
scaffolding might reduce progress made.

5 Discussion

5.1 Human Tutors Appear Less Concise,
Despite Being More

Since the annotators had access to only small parts
of the conversation, the guidelines instructed them
to focus on the amount of progress made in the
given part of the dialog. We propose two possible
causes of the difference between perceived concise-
ness and true conversation length.

First, it is possible that human tutors tend to
start slow and then make faster progress in the
part of the conversation not shown to the anno-
tators. While this might indicate a failure of our
annotation setup, varying the rate of progress is not
necessarily a good strategy. Conciseness is meant
to avoid frustration and boredom; a slower start
might cause real students to get bored and disen-
gaged, making it harder to make progress later, a
behavior not replicated by the LLM student used
here. Another concern might be the fact that the
increased progress in the later parts of the conver-
sation might come due to an increase in the level
of telling, which is consistent with Fig. 4 in the
Mathdial paper (Macina et al., 2023). As an ex-
ample, while human annotators agreed that none
of the 45 test set conversations from MWPTutor
had any telling involved, the corresponding 45 con-
versations from MathDial had a total of 40 teacher
utterances marked as telling.
Also, perhaps MWPTutor frames its responses
in a way that makes it look like it is making
progress despite that not really being the case.
This could mean that MWPTutor being more engag-
ing or scaffolding better is perceived as being more
concise. Given that the agreement of the same an-
notator annotating different metrics is consistently
higher than the agreement of different annotators
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annotating the same metric7 this is not unlikely.

5.2 Being a Good Teacher is Exhausting, but
not Rewarding Enough

A possible reason why human teachers might not
be able to show empathy could be the fact that em-
pathy comes at a cognitive cost (Cameron et al.,
2019) and thereby must be used selectively. A hu-
man tutor who would potentially be dealing with
hundreds of students during their teaching career
could develop compassion fatigue (Yu et al., 2022)
as well as other forms of burnout (Jacobson, 2016)
causing them to lack empathy for students. The
same can also be said for the Scaffolding and en-
gagement results - when a teacher sees the same
mistakes being made by students repeatedly, they
are likely to want to simply give out the correct an-
swer, rather than engage the student by scaffolding
them in more innovative ways. The fact that be-
ing more empathetic and engaging, or scaffolding
better, rarely carries financial incentives (which is
true for MathDial) makes teachers even less likely
to show these qualities. An LLM, however, is not
bound by the same cognitive limitations of a hu-
man, and can thereby show (or pretend to show)
infinite compassion and empathy. It also does not
mind engaging the student more and scaffolding
them better, because it is, after all, being paid by
the token. Note that the fact that the MathDial an-
notators participating in a study and not dealing
with actual students may have further exacerbated
this issue. Knowing that the student is in fact an AI
which will not get demoralized or disengage might
have contributed to the teachers not doing their best.
Add to this the fact being restricted to typing only
might hinder their ability to show empathy.

5.3 Bad Spelling or Grammar Might Look
Less Engaging

Although the observed difference might be due to
chance in the case of Engagement, the presence of
lexical and grammatical mistakes might also play
a role. Due to the lack of any spell-check or gram-
mar correction tool, the human responses ended up
containing several typos, missing capitalizations,
punctuation, and other grammatical errors, which
our annotators (and hypothetical students) might
find distracting and thereby disengaging.

7This is calculated by flipping the annotator and metric
axes while calculating Fleiss κ. This is done for illustrative
purposes only, and not the proper way to use Fleiss κ

5.4 So, What Are The Takeaways?

This study shows that LLMs are capable of per-
forming certain tutoring roles well, perhaps as well
as humans. However, we need to think what this
really means for the stakeholders. We believe that
there are two major takeaways – one for educators
and one for learning scientists.

For educators, the emergence of AI means in-
creased opportunities for delegation. It is a well
known fact that a teacher’s duty extends well be-
yond teaching, with them often having to act as
mentors and guardians of students (Tea, 2024;
Tabassum and Alam, 2024; Kutsyuruba and God-
den, 2019). Allowing AIs like LLMs to take over
repetitive yet exhausting duties can allow teachers
to focus more on such responsibilities which re-
quire socio-cultural understanding well beyond the
capabilities of AI. It also can bring a sense of ful-
fillment to educators, potentially mitigating some
teacher fatigue (Zang and Chen, 2022).

For learning scientists, it adds to several other
works indicating that we are making fast and ef-
fective progress towards computer-based education.
LLMs are able to show (or at least imitate) qualities
once considered hard for them. Yet, the job is far
from done – we are only dealing here with textual
capabilities, while a human teacher uses several
communication modalities. Progress needs to be
made in image processing, vocal intonations, em-
bodiment, etc. to fully replicate the more mundane
roles of educators.

6 Conclusion

In this study, we asked educators to compare parts
of human-generated tutoring conversations with
LLM generated ones in a blind setting. We found
that in the limited setting of text-only tutoring, most
educators perceived that the LLM was not only
matching humans, but also outperforming them in
several quasi-metrics for teaching quality. We fur-
ther find that the LLM’s perception of what is good
tutoring is still not perfectly aligned with humans.
This shows that there is still scope to improve self-
judgment abilities of LLMs, which could further
improve the quality of LLM tutoring. Thus, overall,
our study paints a positive picture – with further
research, it could be possible for teachers to dele-
gate more tiring tasks in tutoring to AI, and focus
on their more complex tasks, thereby improving
experiences of both teachers and students.
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Limitations

Despite our best efforts to make the study as com-
prehensive as possible, we are left with several
limitations which we were unable to rectify. Some
of these are:

• Limited Setting: We restricted ourselves to
a text-only setting, while some of the metrics
used, especially empathy and engagement, in-
volve other aspects of embodied interaction
like body language, expression, voice modu-
lation, etc. The primary reason behind this is
that most LLMs currently being restricted to
this setting only

• Limited Domain: Even within the text-only
domain, we restricted ourselves to one type of
question (MWPs) and one LLM tutor (MWP-
Tutor), which may not be ideal since results
might be different for different subjects, and
also for differently designed tutors. While
it would have been good to try out different
subjects, we were unable to do so due to a
lack of datasets . In order for the conversa-
tions to be comparable, we needed datasets
with human and AI attempts at the same con-
versations, which we could not find for any
other domain, and creating one from scratch
would be significantly out of the scope of our
abilities.

• Unverified Qualifications: We hired our an-
notators on Prolific, and filtered for those who
had teaching experience. However, Prolific
does not verify annotator qualifications, which
means we might have had some non-educators
in our annotator pool. Note that the same is-
sue could also be present with MathDial, who
also hired annotators on Prolific.

• Qualitative Analysis: Despite drawing from
the literature, our analysis of annotator judg-
ments is mostly intelligent guessing, as we do
not know why annotators did what they did.
We attempted to get some insights by inter-
viewing some of the annotators post-hoc but
had too few respondents to proceed.

In general we acknowledge that there might be sev-
eral factors affecting the ecological validity of the
results. While the results are statistically significant
and theoretically feasible, they aren’t infallible, and
thereby, should not be trusted blindly if deciding

on a high-stakes scenario. A proper study with
real students and teachers in a more natural setting
might be the ideal scenario to draw more definitive
conclusions. However, doing such an experiment
was beyond the means of the authors at the time of
publication.
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A Ratings from Individual LLMs

Number of Questions
Model Rating Conciseness Engagement Empathy Scaffolding

MathDial Better 56 28 19 9
Both Equal 29 35 37 48GPT4o

MWPTutor Better 125 147 154 153
MathDial Better 32 20 14 19

Both Equal 38 41 38 27Qwen72B
MWPTutor Better 140 149 158 164
MathDial Better 60 49 30 18

Both Equal 26 53 25 41Llama405B
MWPTutor Better 124 108 155 151

Fleiss Kappa 0.63 0.34 0.47 0.36

Table 3: LLM based comparison of MathDial and MWPTutor
on our metrics. Fleiss κ is calculated considering the two
annotations by each LLM to be separate instances

See table 3

B MathDial vs GPT4

We carried out a smaller experiment using only the
questions from the first batch (30 examples). The
setup is identical to what we described in Section
3.3. The results are shown in figure 4. Despite the
smaller sample size, the results are very decisive
and all significant. However, in order to achieve
this, GPT4o sacrifices correctness. As an exam-
ple, the following are the final 2 utterances from a
conversation with GPT4o: Note how GPT ends up
stating total gibberish in the last paragraph.

Student: Oh, I see now. So from the
$195 he earned, he spent $160 on the
video games and had $5 left. That means
he spent $195 - $160 = $35 on lego sets.
And since each set is $15, he must have
sold $35/$15 = 2 sets. So he still has 13 -
2 = 11 sets left.
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Figure 4: Fractions of conversation pairs which received particular scores for each metric from s. Scores increase
left to right,dullest red indicating −1, grey indicating 0, the dullest green indicating +1 and the brightest green
indicating the maximum possible score of +5 The reds follow a to same pattern as fig 2, but not all colors are visible
here

Tutor:I appreciate your diligence! Let’s
make sure to clarify what we’re finding
one last time.

John earned $195 from selling lego sets.
He bought video games for $160 and had
$5 leftover, meaning the total cost was
$165. That tells us:

$195 (earned total) - $165 (total used,
including $5 leftover) = $30

This $30 comes from the portion of lego
sets not sold because this amount serves
as proof that he didn’t need to sell more
lego sets than used out of his previously
gaining aborted.

Since each lego set is $15, the residual:
$30 / $15 = 2 sets were left unsold.

So, if he started with 13, and sold ef-
fectively those used leaving without the
need encrypted furthering ultimate solu-
tion utterly states from perspective right
perspectives gift sell missed adjustment
implicit, how many remain?

Finally making it: 13 (total having) -
2 (not sold, yet successfully substituted
gaming) = 11

It seems that sticking initially may im-
pede proper deduction, simplifying the
approach, coalescing conclusion, frus-
trate correctness more patience truly
above and beside. If solid understanding
confirmed careful allowance approach fo-

cal awareness adapt addressed to bene-
fit learning exchange long-term celebrat-
ing! Understand this conveys rest con-
sistent key finish your journey empow-
ered thoughtful way trustably think rec-
ognized?

The correct answer is 2 (as opposed to what the
student says), and the tutor ends the conversation
here

C GPT4 judgement on other metrics

We only cover Maurya et al (Maurya et al., 2024)
and Walker (Walker, 2008) because MacDonald
(MacDonald, 2000) does not provide succinct defi-
nitions of their metrics.

C.1 Maurya et al (Maurya et al., 2024)

We evaluate our 210 conversation pairs using the
same prompt that we used for section 4.1. For
metric definitions, we used the exact texts from
Section 4.1 in Maurya et. al. The results are shown
in table 4. Unlike in section 4.1, we did have some
examples of “Both Equal"; thus, the score goes
from −2 to 2.

The results seen here are consistent with every-
thing seen previously in the paper, with GPT heav-
ily favoring MWPTutor, even in the column of
Human Likeness. Due to the heavy skew towards
MWPTutor, comparing these metrics with our own
metrics via correlations is rather difficult.
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Score
Mistake

Identification
Mistake
location

Revealing of
the answer

Providing
guidance

Actionability Coherence
Tutor
tone

Human
Likeness

-2(MathDial Better) 57 55 10 13 23 27 12 26
-1 4 0 0 0 0 1 1 0

0(Both Equal) 42 49 41 20 29 32 31 47
1 5 0 2 0 0 1 0 0

2(MWPTutor Better) 102 106 157 177 158 149 166 137

Table 4: GPT Evaluation of metrics from Maurya et al.

C.2 Walker (Walker, 2008)

For Walker et al. Metric definitions are picked from
the ‘Findings’ section of the paper. The setup is the
same as in Section 4.1 and the results are shown
in Table 5. Once again, GPT heavily favours
MWPTutor, with the possible exception of ‘Have a
Sense of Humour’. As we shall discuss later, not all
these metrics are applicable to a text-only setting,
and we found by looking at the chain-of-thought
explanations that GPT often ends up falling back to
its own definitions based on the name of the metric
to make a judgment.

D Mapping Between Metrics

Table 6 shows a mapping between metrics from
other works and our metric (and also introduces the
numbering used in the rest of this section). Note
that with the exception of a few (namely Providing
Guidance, Promote independence in learning and
Facilitate tutee insights), the correspondences are
not exact, and in most cases, our metrics are more
general than those from other works.

The metrics from Maurya et al (Maurya et al.,
2024) are specifically designed for text-only AI tu-
toring, and as such, all of them are applicable to our
setting. The only exception might be Revealing the
Answer since the reveal could potentially happen in
the part of the conversation we truncated out, and
it would be just as problematic. In addition to this,
both Mistake Identification and Mistake Location
are practical yes/no questions, so it could be hard
to use them for ranking unless only one of the con-
versations satisfies them. Finally, Human Likeness
might not make much sense when we compare an
actual human to an LLM.

Walker’s metrics (Walker, 2008) are designed
for long-term classroom teaching, so quite a few
of them don’t apply to us. The paper defines Cre-
ative as entirely physical, and Cultivate a Sense
of Belonging as something only involved students
can judge. Further, Hold High Expectations and
Admit Mistakes are long term goals, not applicable

to the short time scale we are dealing with. Also,
while Have a Sense of Humour can be judged in
our setting, it is not clear if it is desirable in this
scale. Other metrics like Forgiving, Respect Stu-
dents, Display a Personal Touch and Fair all map to
Empathy but only for part of their definition, while
other parts are either true by default ( eg ‘Speak to
students in private concerning grades or conduct’
for Respect Students) or do not apply (eg ‘Visit the
students’ world’ for Display a Personal Touch.

Finally, the metrics suggested by MacDonald
(MacDonald, 2000) focus on tutoring, but also
cover administrative goals like Follow a Job De-
scription and Provide a student perspective which
are beyond our scope. Personalize instruction ap-
plies, but in a very limited way as we have no
sense of student modeling, so long-term personali-
sation does not work. The same goes for Respect
individual differences, where we can only focus
on differences in academic ability, not cultural or
social differences.

E Prompts

E.1 GPT Evaluation of a Metric

Your job is to compare two systems that
tutor a student, helping them solve a
math word problem. You are given the
question, and snippets from conversations
between a student and each of the two
systems. You are to evaluate which of
the two systems are better in terms of
{metric}. We define {metric} as follows:

{definition}

Remember you are to compare only
the tutor systems, not the student. Do
you think system 1 or system 2 is better
in terms of {metric}? Note that if it
is not possible to judge {metric} based
on the provided snippets, or both look
equally good, you can say "Both Equal,"
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Score Prepared Positive
Hold High

Expectations
Creative Fair

Display a
Personal Touch

Cultivate a Sense
of Belonging

Compassionate
Have a Sense
of Humour

Respect
Students

Forgiving
Admit

Mistakes
-2(MathDial Better) 27 13 11 23 8 63 21 19 27 5 4 30

-1 1 0 0 9 0 8 0 0 31 5 4 21
0(Both Equal) 30 25 37 36 33 38 30 39 79 40 32 47

1 0 0 0 24 11 19 0 0 49 14 19 29
2(MWPTutor Better) 152 172 162 118 158 82 159 152 24 146 151 83

Table 5: GPT Evaluations of metrics from Walker

Source Index Metric
Applicable to
Our Setting

Corresponding Metric

1.1 Mistake Identification Yes Engagement
1.2 Mistake Location Yes Engagement
1.3 Revealing The Answer Partially Scaffolding
1.4 Providing Guidance Yes Scaffolding
1.5 Actionability Yes Engagement
1.6 Coherence Yes Engagement
1.7 Tutor tone Yes Empathy

Maurya et al.(Maurya et al., 2024)

1.8 Human Likeness Yes Empathy
2.1 Prepared Partially Engagement
2.2 Positive Yes Empathy
2.3 Hold High Expectations No N/A
2.4 Creative No N/A
2.5 Fair Partially Empathy
2.6 Display a Personal Touch Partially Empathy
2.7 Cultivate a Sense of Belonging No N/A
2.8 Compassionate Yes Empathy
2.9 Have a Sense of Humour Yes N/A
2.10 Respect Students Yes Empathy
2.11 Forgiving Partially Empathy

Walker(Walker, 2008)

2.12 Admit Mistakes No N/A
3.1 Promote independence in learning Yes Scaffolding
3.2 Personalize instruction Partially Engagement

3.3
Facilitate tutee insights into

learning and learning processes
Yes Scaffolding

3.4
Provide a student perspective on

learning and school success
No N/A

3.5 Respect individual differences Partially Empathy

MacDonald(MacDonald, 2000)

3.6 Follow a Job Description No N/A

Table 6: List of Metrics defined by related work and their mapping to corresponding metrics used by us. We refer
interested readers to the original works for full definitions of the metrics. We number the metrics to make it easier
for us to refer to them in text.
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but this should only be done as a last
resort. Please explain your choice.

metric and definition are replaced with the
name of the metric and its definition respectively

F Annotator-wise Results

Table 7 lists the choices picked by each of our
35 annotators. The "80%" we mentioned in our
abstract comes from here.

G Interface Setup

Each participant was first thoroughly instructed on
the overall workflow of the survey and the defi-
nition of each metric, then evaluated 30 pairs of
5-utterance dialog segments presented in random-
ized order. Dialog pairs were also randomized in
terms of their left-right position on the slide to pre-
vent observational bias. Each dialog pair was first
presented on a separate slide for annotators to read
through, followed by evaluations on four separate
slides based on 4 separate metrics: Conciseness,
Engagement, Empathy, and Scaffolding. Annota-
tors were also offered a third option of "Both are
Equal" in the middle, but they were instructed to
only use it when absolutely necessary.
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Conciseness Engagement Empathy ScaffoldingAnn.
No.

Questions
Annotated LLM

Better
Both

Equal
LLM
Better

Both
Equal

LLM
Better

Both
Equal

LLM
Better

Both
Equal

1 1-30 12 0 19 0 15 0 27 0
2 1-30 16 1 18 0 17 1 19 1
3 1-30 10 2 13 0 15 0 15 0
4 1-30 13 0 11 0 17 0 12 0
5 1-30 16 0 18 0 15 0 16 0
6 31-60 14 1 14 1 16 2 14 1
7 31-60 16 1 17 0 14 0 17 0
8 31-60 23 0 23 2 24 2 21 2
9 31-60 13 1 14 5 20 5 16 4
10 31-60 18 7 16 0 16 5 16 2
11 61-90 17 1 14 2 16 4 11 4
12 61-90 15 0 8 0 12 0 13 0
13 61-90 21 1 24 0 24 0 24 0
14 61-90 10 11 13 11 11 11 9 10
15 61-90 20 4 20 2 16 5 18 2
16 91-120 20 1 20 0 22 0 20 1
17 91-120 15 1 12 2 14 2 15 1
18 91-120 13 2 11 0 14 3 21 0
19 91-120 15 0 17 0 12 0 14 0
20 91-120 12 3 12 0 15 1 12 2
21 121-150 11 14 6 21 12 15 15 8
22 121-150 14 3 11 6 13 6 13 2
23 121-150 15 5 15 2 13 9 11 7
24 121-150 12 11 12 9 12 12 13 9
25 121-150 17 0 11 0 15 0 13 1
26 151-180 27 0 16 0 22 0 21 0
27 151-180 17 0 13 1 6 9 9 10
28 151-180 12 1 20 0 17 0 15 0
29 151-180 17 2 16 1 14 1 14 3
30 151-180 21 1 21 1 23 1 22 1
31 181-210 17 0 12 0 16 1 16 0
32 181-210 13 1 11 1 9 4 12 2
33 181-210 16 0 14 0 14 3 14 0
34 181-210 11 1 10 0 9 6 10 1
35 181-210 12 8 5 21 12 15 7 21

% Not Favouring
Humans 71% 60% 80% 60%

Table 7: Annotator-wise choice summary. Entries where annotator leans in favour of human (ie LLMBet-
ter+0.5*Bothequal<15) are in bold.
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(a) Instruction for Metric Conciseness (b) Instruction for Metric Engagement

(c) Instruction for Metric Empathy (d) Instruction for Metric Scaffolding

Figure 5: Instructions for Evaluation Metrics
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(a) Intro Slide for Dialog Pair

(b) Sample Slide for Evaluation

Figure 6: Combined View of Intro Slide and Metric Evaluation Slide
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Abstract

Real-word spelling errors (RWSEs) pose spe-
cial challenges for detection methods, as they
‘hide’ in the form of another existing word
and in many cases even fit in syntactically.
We present a modern Transformer-based im-
plementation of earlier probabilistic methods
based on confusion sets and show that RWSEs
can be detected with a good balance between
missing errors and raising too many false
alarms. The confusion sets are dynamically
configurable, allowing teachers to easily adjust
which errors trigger feedback.

1 Introduction

Real-word spelling errors (RWSE) are specific
spelling mistakes, where the resulting misspelling
is another existing word:

Time flies like an error [arrow].1

This is in contrast to non-word spelling errors,
where the resulting string is out-of-vocabulary:

Time flies like an arro [arrow].

The distinction is grounded in lexical inclusion
criteria for a given language, a problem that is itself
non-trivial. In this paper, we consider the lexicon of
a language to be provided as a fixed list containing
not only lemmas, but also inflected forms. The list
does not contain open classes like complex named
entities or other noun compounds.

Of special interest are RWSEs where the sen-
tence with the error is syntactically well-formed,
so that they can only be detected when taking se-
mantic information into account. Compare the fol-
lowing two examples:

1. The name comes from the Greek work [word] for sun.

2. These plants are more tolerance [tolerant] to drought.

1When giving examples, we always put the error first and
the [correction] in square brackets. When referencing a confu-
sion set outside of an example, we use {token1, token2}.

In the first example, the RWSE is not readily de-
tectable via syntactic analysis, whereas in the sec-
ond example syntax alone provides some evidence
for a possible error.

RWSEs are quite common in English, but also
happen in other languages e.g. in German:

Er ist eine Konifere [Koryphäe] auf seinem Ge-
biet.
(He is a conifer [coryphaeus] in his area.)

This specific example is sometimes deliberately
inserted for comical effect as the contrast of ‘big
expert’ with ‘small tree’ can be considered funny.
However, there are other, less pretentious examples,
like replacing art or part with fart that can be quite
embarrassing if unintentional.2

While there is a long tail of idiosyncratic RWSEs,
some are also quite common and can be consid-
ered confusion sets (Golding and Schabes, 1996),
i.e. fixed sets of words that are often confused
with each other – especially by language learners.
Examples include {dessert,desert}, {peace,piece},
{sight,site}, {than,then}, or {their,there}. Note that
the sets are not ordered, so that e.g. sight could be
inserted for site or vice versa.

The ability to detect RWSEs reliably is essential
for enabling automated feedback on this class of
errors. In this paper, we review the related work
and find that a modern implementation for finding
RWSEs is missing. We thus propose a Transformer-
based approach with configurable confusion sets,
which will give teachers the ability to select which
words are currently in focus, so that targeted feed-
back can be provided. Figure 1 gives an example.

We make the RWSE-checker available as an
open-source implementation together with a demo

2The subset of similar sounding RWSEs that are often used
for comical effect is also called malapropism. An unexpect-
edly fitting or creative malapropism is also called eggcorn
(itself an eggcorn of ‘acorn’). Eggcorns are often coined by
language learners trying to make sense of an unfamiliar word
or phrase that they have not yet seen in writing. A famous
example is ‘old-timers’ disease’ for ‘Alzheimer’s disease’.
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Figure 1: Example for highlighting RWSEs as part of
writing feedback.

application and all our experimental code.3

2 Related Work

Early approaches to RWSE correction either relied
on measuring the local contextual fitness of words
through semantic-relatedness measures (Budanit-
sky and Hirst, 2006) or n-gram language models
(Mays et al., 1991; Wilcox-O’Hearn et al., 2008),
where after detecting a word with low contextual
fitness a neighborhood space of candidate replace-
ments was searched for a better fitting one. While
such approaches are flexible and can find all kinds
of RWSEs, they are computationally costly (as they
have to test for each word in a sentence a poten-
tially large number of candidates), and yield a lot
of false alarms as they often detect ‘errors’ that are
e.g. synonyms of the original word.

As a way around those challenges, other early
approaches relied on the already introduced con-
fusion sets, i.e. they limited the search to known
target words and a very small set of candidates.4

At the same time, before the availability of large
language models, it was much faster to train a su-
pervised classifier for each confusion set (Golding
and Schabes, 1996; Carlson et al., 2001).

Another related field is Grammatical Error Cor-
rection (GEC), i.e. the process of detecting and cor-
recting grammatical errors in text (Ng et al., 2013;
Yuan and Briscoe, 2016). Most recent approaches
use a seq2seq design where the text with errors is
transformed into an error-free version. In doing
so, a GEC system might also fix RWSEs along the
way, but as it targets all kinds of errors, we might
not know where a RWSE occurred which limits
the kind of feedback we can give. Error types are
only considered post-hoc and common schemes do
not distinguish between non-word and real-word
spelling errors (Bryant et al., 2017).

So our approach combines ideas from earlier
3https://github.com/zesch/

rwse-experiments
4Some approaches allow the empty word in confusion sets

to cover also insertions or deletions, but most papers (and we
in our study) limit confusion sets to replacements.

work: (i) we rely on confusion sets, but without the
supervised classifiers, making the sets dynamically
configurable); we find RWSEs with the help of lan-
guage models, but using masked language models
and limiting the candidate space through confusion
sets.

Confusion sets have also been used in unsuper-
vised GEC approaches to generate candidate sen-
tences that are then scored by a Transformer-based
model (Bryant and Briscoe, 2018; Alikaniotis and
Raheja, 2019). Our approach can be seen as a spe-
cial case, where we only use RWSE confusion sets.

Technically, finding RWSEs in such a way is
similar to lexical substitution (Zhou et al., 2019),
with the crucial difference that an RWSE is an
implausible word that is substituted with a more
plausible one, while in lexical substitutions both
words need to be plausible in the given context.

3 Method

Our implementation is based on the fill-mask task5

of the Transformer library. Given a sentence like

People with lots of honey usually live in big
houses.

a word is replaced with a mask token and the library
returns the most likely fillers and their probabilities.
So for the resulting masked sentence

People with lots of [MASK] usually live in big
houses.

we get the following results:

money: 0.522
wealth: 0.053

children: 0.022
income: 0.016
family: 0.014

The original token honey is not even in the top-5
and money is one order of magnitude more likely
than the next candidate.

However, as we do not know where to look for
errors (remember that RWSEs are in-vocabulary
and thus hard to detect), we would have to test
every token in a sentence which would be quite
costly. Also, even if we are ready to invest the
compute, blindly following this approach could
introduce new errors. For example,

People with lots of money usually live in big
[MASK].

5https://huggingface.co/tasks/
fill-mask
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returns cities with a probability of 0.74 and would
thus result in a false alarm. We thus combine this
approach with confusion sets. In our example, we
would only test for {money, honey} and get the
following result:

money: 0.52241
honey: 0.00004

Note that our example is for illustrative purposes,
but that in a real setting with pedagogically relevant
confusions {money, honey} would probably not be
a target confusion set.

Threshold Factor While in the {money, honey}
example above, the correct choice was several or-
ders of magnitude more likely than the mistake, this
might not always be the case. Especially words
with a high prior probability might lead to false
alarms. We thus introduce the magnitude param-
eter µ indicating how many times more likely a
candidate needs to be in order to be considered as
a replacement. We initially set µ = 10 so that a
RWSE candidate needs to be an order of magnitude
more likely, but will later more formally analyze
the impact of this parameter, similar to the analysis
in Carlson et al. (2001).

4 Experimental Setup

There are currently more than 14,000 models on
Hugging Face that are compatible with the fill-
mask task. As we are mainly conducting ex-
periments with English text and are interested
in production-grade performance, we stick with
the basic google/bert-base-cased Transformer
model.6

4.1 Confusion Sets

We compiled a list of pedagogically relevant con-
fusion sets by scanning prior work (Golding and
Schabes, 1996; Carlson et al., 2001), but also con-
sulting with domain experts. As a limitation of
the fill-mask task is that it cannot directly return
probabilities for words that are not in the model vo-
cabulary, we discard confusion sets where at least
one element of the set is out-of-vocabulary. An-
other limitation of the fill-mask task is that it only
works with single tokens. So we also discard the
few cases where multi-word tokens are involved,
e.g. {a life, alive}. We also discard confusion sets

6https://huggingface.co/google-bert/
bert-base-cased

with apostrophes like {its, it’s}. Our final list con-
tains 52 confusion sets. Table 1 gives an overview.

As capitalization can be an important source of
information, we work with a cased BERT model
and differentiate between lower case and upper
case variants of each token. Thus, while Table 1
only lists lower-case forms for better readability, a
confusion set also usually contains the upper-case
variants. We mark this with an underlined first
letter. A missing underline indicates that the upper-
case form was not in the vocabulary and was thus
discarded (as it could not be predicted anyway and
would raise an error message).7

4.2 Data
As datasets of naturally occurring RWSEs are ex-
tremely rare, we mainly focus on synthetic datasets.

We use a news sentence base, as we expect to
find very few naturally-occurring RWSEs (which
would distort our experiments) in the professionally
edited news texts. We select from the Leipzig Cor-
pora Collection (Goldhahn et al., 2012) the NEWS

dataset with 10,000 English sentences from 2023.
If a token in a sentence matches an entry in one of
our confusion sets, the sentence is retained. Out of
10,000 sentences 7,344 contain at least one of our
confusion sets. Many sentences trigger more than
one. Table 1 shows how often each confusion set
was found overall.

While evaluating on this dataset will provide a re-
alistic impression of the expected performance, we
cannot analyze which confusion sets are most chal-
lenging as many appear too infrequently. We thus
create another dataset (called NEWS-BALANCED)
by randomly iterating over a the largest download
from the Leipzig Corpora Collection with 1 million
sentences. Whenever a confusion set is triggered,
we keep the sentence up to a maximum of 100 in-
stances. However, even within 1 million sentences,
some confusion sets do not appear 100 times, e.g.
only 11 sentences were found for ‘Provence’. In-
stead of sampling from an even larger sentence
base, we accept the slight imprecision. Results
obtained that way are still valid and interpretable,
only a bit less reliable. In the balanced dataset, the
extracted sentences were used with the intended
confusion set only, so as not to trigger multiple
RWSEs which would distort results (e.g. the confu-
sion set {to, too, two} would be triggered in almost
all sentences in addition to the actually sampled

7To give an example: begin / being should be interpreted
as ‘begin’ can be confused with either ‘being’ or ‘Being’.
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{to, too, two} 6,034
{their, there, they} 1,860
{width, with} 1,556
{you, your} 998
{form, from} 919
{were, where} 650
{or, ore} 454
{than, then} 446
{which, witch} 443
{them, theme} 261
{begin, being} 231
{three, tree} 184
{word, world} 167

{life, live} 166
{mad, made} 157
{country, county} 145
{weak, week} 131
{found, fund} 129
{few, view} 109
{lead, led} 97
{passed, past} 81
{things, thinks} 70
{weather, whether} 66
{safe, save} 53
{capital, Capitol} 52
{quiet, quite} 39

{forth, fourth} 37
{raise, rise} 36
{hole, whole} 34
{trail, trial} 34
{ease, easy} 32
{affect, effect} 32
{peace, piece} 32
{sight, site} 30
{affects, effects} 23
{feat, feet} 22
{accept, except} 21
{advice, advise} 21
{loose, lose} 20

{extend, extent} 16
{principal, principle} 13
{plain, plane} 12
{Provence, province} 10
{spit, split} 9
{desert, dessert} 7
{brakes, breaks} 7
{bitch, pitch} 7
{forms, forums} 3
{crab, crap} 2
{weed, wheat} 1

Table 1: List of confusion sets and their frequency in the NEWS dataset

set). With these two sentences bases, we now intro-
duce synthetic errors by replacing the token from
the confusion set found in the sentence with each
of the other words in the set.

As synthetic datasets are probably underestimat-
ing the difficulty of the task, we are using one of
the few available datasets of naturally occurring
RWSEs from Zesch (2012) which was created by
mining the Wikipedia revision history. The dataset
is quite small and some of their confusion sets do
not match our RWSE definition (e.g. containing sin-
gular/plural of the same noun). We decided to also
use the German version of the dataset in addition
to the English one. We manually cleaned both ver-
sions and arrive at 49 English sentences (WIKI-EN)
and 30 German sentences (WIKI-DE).8 Finally, we
are using as EDUCATIONAL texts the 1,244 exam
scripts from the CLC-FCE corpus (Yannakoudakis
et al., 2011) from which we extract 18,984 sen-
tences.

4.3 Evaluation Metrics

Model performance was evaluated based on two
different classification metrics: false-alarm rate (or
false positive rate) and miss rate (or false negative
rate).

False-alarm rate is computed as the ratio of false-
alarms to all ground truth negatives which are equal
to all detection instances assuming that the dataset
is error-free. In the NEWS datasets, we just take the
original sentences, which we consider to be almost
RWSE-free. In the WIKI datasets, we know all
RWSE instances and create the corrected versions.
In the EDUCATIONAL dataset, we have no way
of knowing a-priori where to find RWSEs, so we
manually evaluate all triggered detection instances

8For German language texts, we used the multilingual vari-
ant google/bert-base-multilingual-cased and
the confusion sets defined by Zesch (2012).

to determine real false alarms.
Regarding missed RWSE detections, we take the

synthetic part of the NEWS dataset, i.e. the NEWS

sentences where we introduced mistakes, and com-
pute the miss rate as the number of instances where
the original word is not selected divided by the to-
tal number of all synthetic instances. In the WIKI

dataset, we do the same with the naturally occur-
ring errors. In the EDUCATIONAL dataset, we can-
not easily compute miss rate as this would require
a full normalization.

5 Results & Discussion

Table 2 provides an overview of the high-level re-
sults. We generally see very low false-alarm and
miss rates on the NEWS datasets. False alarms and
misses increase by one order of magnitude on the
datasets of documented RWSEs from WIKIpedia.
Also on the EDUCATIONAL dataset, the false-alarm
rate increases about 100-fold compared to the
NEWS dataset (from .001 to .107). However, we
still consider such false alarm rates acceptable as
about 90% of RWSEs are correctly identified, for
which we then can provide feedback.

It is hard to compare our results with previous
results, as the originally used synthetic datasets are
not available, different confusion sets were used,
and results depend much on parameter choice (es-
pecially our magnitude parameter µ). Carlson et al.
(2001) report results on synthetic data for different
prediction thresholds that serve a similar purpose
as our parameter µ. They report a ‘performance’
(which we interpret as accuracy) of .981 for 19
highly frequent confusion sets, and .973 for a larger
set of 265 confusion sets. Converting our metrics
into accuracy, we obtain on the NEWS dataset an
accuracy of .965 (for our 52 confusion sets and
µ = 10), which is in the same ballpark but as dis-
cussed above not directly comparable.
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# false #
no alarm actual miss

Dataset RWSE rate RWSEs rate

NEWS 15,960 .001 60,632 .005
NEWS-BALANCED 15,454 .011 40,400 .044
WIKI 49 .082 49 .163
WIKI-DE 30 .000 30 .100
EDUCATIONAL - .105 - -

Table 2: Overall RWSE detection results with µ = 10.

5.1 Qualitative Analysis on NEWS

The 10,000 sentences trigger 15,960 confusion sets
(see Table 1 for the distribution) in the NEWS

dataset. Our RWSE detection method produces
only 13 false alarms which we further analyze here.
Out of the 13 false alarms, we only consider three
to be clear-cut mistakes. Six false alarms can be
attributed to contextual ambiguity that allows for
both, the original and suggested token, to be ap-
plicable. The remaining mistakes can be blamed
on incomplete sentences or actual errors in the sen-
tences.

{country,county} This confusion set produces
3 related false alarms, e.g. An Officer of the OBE is

awarded for distinguished regional or [county]-wide role in

any field, through achievement or service to the community.

In those cases both words of the confusion set ap-
pear plausible without knowing the broader con-
text.

{form,from} Crowds were entertained by the Broke

FMX Motocross Stunt Team, as well as a crowd pleasing

display [form] the Pony club Games.

This is probably a RWSE in the original sentence
and should not count as false alarm.

{hole,whole} That’s the [whole] in the end: A single

guess provides you with information that you then need to use

to narrow down the list of subsequent guesses.

This sentence seems incomplete. Adding ‘story’
after the token could resolve this and ‘whole’ would
be correct.

{life,live} In 2014 they moved to Mauriceville TX.

where they built a beautiful home and [life] together.

Without a wider context, ‘live’ would also be plau-
sible.

{their,there,they} [They] were suspected bodies of

soldiers killed in a then recent attack on the Melete barracks.

Within the wider context of this sentence9 ‘They’
9
https://www.thecable.ng/

does-shiroro-fallen-soldiers-blood-matter/

seems appropriate, so we do not count this as a
clear error.

Many open from 8 or 9am but you can refer to [their] to

confirm if your local restaurant is open during the Christmas

period and what times they are trading.

The model suggests ‘there’, which seems equally
wrong as the original token. So we do not treat this
a clear false-alarm.

But [they] are two distinct and separate occurrences.

The model suggests ‘there’, but without wider con-
text both versions are acceptable. So we do not
treat this as a clear false-alarm.

{theme,them} Now we get to the timeliness — and

Novey’s knack for being on [theme] without ever being too on

the nose.

This is an actual false alarm.

{to,too,two} She also helped lead the girls basketball

and softball teams [two] section championships.

The model predicts to with high score of 0.97,
which is not clearly better. Another likely solution
would haven been ‘to two section championships’
instead.

{you,your} Next thing [your] going to post is that chop-

ping the foreskin of babies isn’t a symbol of virtuous enlight-

enment.

This should likely have been you’re, but the cur-
rent implementation does not support contractions.
As this would lead to wrong feedback, we count
this as a false alarm.

Probably not a real good look for [you] trade demand that

you’re posting a pic excited with OBJ being a Raven.

This is clearly a true false alarm.

5.2 Confusion set difficulty

Next, we use our NEWS-BALANCED dataset con-
taining 15,454 instances to analyze differences in
correction difficulty between confusion sets. As we
have already seen in the qualitative analysis above,
it is likely that confusion sets like {county,country}
are rather difficult, while we might be able to give
near perfect feedback for others. Note that when
going from unbalanced to the balanced dataset, the
false-alarm rate increased an order of magnitude
from .001 to .011 indicating that the less common
confusion sets are more difficult on average.

In Figure 2, we show false-alarm rate and miss
rate for all confusion sets. Results for specific
confusion sets may deviate from the average quite
a bit. For example, there are confusion sets with
no false alarms like {begin, being}, but also {word,
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Figure 2: Comparison between false-alarm rate and miss rate on NEWS-BALANCED for all confusion sets. Addi-
tional vertical lines show the averages over all confusion sets. Grey bars show values below the average, blue/red
bars show above average values.
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Figure 3: Trade-off between false-alarm rate (lower
curve) vs. miss rate (upper curve) based on the threshold
parameter µ on the NEWS-BALANCED dataset. The
intersections of the plot lines with the vertical, gray
line indicate the results of the RWSE detection on the
NEWS-BALANCED dataset as presented in Table 2.

world} with a rate three-times the average. We
see a similar picture for miss rates: {weed, wheat}
stands out with over 20% missed instances.

5.3 Threshold Factor

When designing our detection method, we have
somewhat arbitrarily selected a factor of 10 (one
order of magnitude) for the µ threshold. Remember
that it controls how much more likely a word from
the confusion set must be to be considered as a
replacement for the original word. We now analyze
this choice by computing false-alarm rate and miss
rate for different values of µ on all instances of
the NEWS-BALANCED dataset. Figure 3 shows
the resulting trade-off. Interestingly, our intuitive
choice of 10 is already a sensible one striking a
good balance between missing out on detection
and producing too many false alarms. The chart
also shows that e.g. with a value of 100, we could
almost entirely eliminate false alarms and only miss
about 8% of RWSEs.

5.4 Results on EDUCATIONAL Data

The 18,984 sentences extracted from the CLC-FCE
dataset triggered 364 alarms, which we manually
annotate. We discard 31 ambiguous instances,
where we either would need more context (es-
pecially {county,country} cases), the learner lan-
guage allows for multiple interpretations, or an-
other word outside of the confusion set is more
likely. The latter category includes several cases of

“your [yours] sincerely”, as well as “Than [Thank]
you ” and “witch [with] NP”. Here, it is important
to remember that our confusion sets are dynam-
ically configurable, which means that a teacher

can, when seeing a mistake like this, augment the
{which, witch} confusion set into {which, witch,
with} depending on whether they consider this con-
fusion to be pedagogically relevant at this point.

Of the remaining 323 instances, 34 are wrong
which results in a false-alarm rate of .105. Look-
ing into specific confusion sets, we find that all
14 {quiet,quite} instances are correctly identi-
fied which is in line with the rates determined
on the NEWS-BALANCED dataset (cf. Figure 2).
The same is true for {than,then}, {things,thinks},
{whether,weather}, and {weak,week}. So even if
the NEWS dataset underestimate the absolute error
rates, it seems to be a good estimate of relative con-
fusion set difficulty. However they are also counter-
examples.10 {their,there,they} is an easy confusion
set in the NEWS datasets, but in the EDUCATIONAL

instances it is quite hard.

6 Conclusion

In this paper, we tackle the problem of detecting
real-word spelling errors in learner text. For that
purpose, we present a modern Transformer-based
implementation with dynamically configurable con-
fusion sets. We show that our implementation is at
least as accurate as earlier approaches when evalu-
ated on news data and when applied on synthetic
error data. Our experiments also reveal that learner
data is more challenging, but that with our configu-
ration 89% of alarms correctly identify an RWSE.
Our analysis also shows that performance varies a
lot between confusion sets, but that this could be
counter-balanced by adjusting the detection thresh-
old for each confusion set or taking a wider context
window into account. We discuss more ideas for
future work in the next section together with limi-
tations.

Limitations

The bulk of our experiments is carried out only for
English, but as we show by applying it on a small
German dataset, the method technically also works
for other languages and can be easily adapted.

In our study, we limit the context window to sin-
gle sentences. Our qualitative analyses have shown
that in some cases (few in the NEWS dataset, but
quite a few in the EDUCATIONAL data) a wider
context would be necessary to resolve the ambigu-
ity. It remains to be empirically tested whether this

10This sentence contains a deliberate RWSE. ‘they’ should
be ‘there’. Did you spot it while reading?
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really would result in fewer such cases.
Another limitation is that we only cover single

word errors excluding confusion sets with multi-
word tokens, like {a life, alive}, or with apostro-
phes, like {its, it’s}. We are also limited by the
BERT vocabulary, so that some rarer words are not
covered. While this is probably not a major prob-
lem in educational texts, as learners are unlikely
to produce very infrequent words, multiwords and
apostrophes are in the core curriculum. It remains
to be investigated on the implementation or config-
uration level how to treat these cases.

From our analysis, a problem is when a con-
fusion set is triggered, but the correct solution is
not in the confusion set. An example was [Than]
you for reading. We propose to solve this issue,
by adding a post-check to our method, where the
fill-mask task is run without the confusion set fil-
ter, and whenever there is another solution to the
masked gap that is overwhelmingly more likely (ex-
act magnitude to be determined empirically), we
do not raise an alarm.
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Abstract

Weakly supervised learning (WSL) is a ma-
chine learning approach used when labeled data
is scarce or expensive to obtain. In such scenar-
ios, models are trained using weaker supervi-
sion sources instead of human-annotated data.
However, these sources are often noisy and
may introduce unquantified biases during train-
ing. This issue is particularly pronounced in
automated scoring (AS) of second language
(L2) learner output, where high variability and
limited generalizability pose significant chal-
lenges. In this paper, we investigate the ana-
lytical scoring of L2 learner responses under
weak and semi-supervised learning conditions,
leveraging Prediction-Powered Inference (PPI)
to provide statistical guarantees on score valid-
ity. We compare two approaches: (1) synthetic
scoring using large language models (LLMs),
and (2) a semi-supervised setting in which a
machine learning model, trained on a small
gold-standard set, generates predictions for a
larger unlabeled corpus. In both cases, PPI
is applied to construct valid confidence inter-
vals for assessing the reliability of the predicted
scores. Our analysis, based on a dataset of L2
learner conversations with an AI agent, shows
that PPI is highly informative for evaluating the
quality of weakly annotated data. Moreover,
we demonstrate that PPI can increase the effec-
tive sample size by over 150% relative to the
original human-scored subset, enabling more
robust inference in educational assessment set-
tings where labeled data is scarce.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have enabled the development of intelligent
conversational agents for language learning and
teaching that are capable of producing human-like
language. In the context of computer-assisted lan-
guage learning (CALL), research-driven, dialogue-
based systems, such as task-specific conversational
agents designed to support second language (L2)

acquisition, have shown promising results in fos-
tering vocabulary and grammatical development,
while also promoting self-directed learning through
repeated, skills-focused practice (Bibauw et al.,
2019; Tyen et al., 2022; Glandorf et al., 2025).

These technological developments have signif-
icantly enhanced the ability of dialogue-based
CALL systems to guide and sustain human-like
conversational interactions, aligning them with es-
tablished proficiency guidelines and pedagogical
principles. As a result, they offer structured, reli-
able, and personalized L2 practice beyond the class-
room. This shift underscores the need for scalable,
efficient, and statistically valid assessment methods
capable of supporting such learning environments.

Automated scoring (AS) of language output,
such as written essays (Shermis and Burstein,
2013), short texts (Burrows et al., 2015), spoken
dialogues (Litman et al., 2018), and text-based
conversations (Ramanarayanan et al., 2019; Yu-
wono et al., 2019), is a mature field of research
that emerged during the 1960’s (Page, 1968) and
has accelerated its development over the past two
decades (Shermis and Burstein, 2003; Xi, 2010;
Ke and Ng, 2019) as NLP methods have evolved
significantly. However, AS methods rely on large
quantities of high-quality manually annotated data
to train models, which requires significant human
resources and time.

To overcome the difficulties and challenges of
data annotation in NLP, Weakly-supervised learn-
ing (WSL) emerged as an alternative framework
(Huang et al., 2014), leveraging weaker sources
and methods to obtain synthetic labels from tex-
tual data. Many of the strengths of WSL depend
on the availability of high-quality validation data
(Zhu et al., 2023), which in L2 assessment, is not
always possible. Assessing L2 output for learning
requires not only knowledge of the target language
but also the ability to evaluate a learner’s interlan-
guage based on established proficiency guidelines,
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making it an even more time-consuming task.
With the development of large language models

(LLMs) and their advanced language understand-
ing capabilities, researchers have begun to utilize
them in data annotation tasks (Goel et al., 2023;
Tan et al., 2024b). In L2 assessment in particular,
GPT-4 has shown to produce holistic scores that
are highly correlated to human evaluation in writ-
ten essays and have moderate to high inter-rater
reliability (Tate et al., 2024). Furthermore, experi-
ments showed that GPT-4 is capable of performing
analytic scoring of L2 texts given holistic scores
(Banno et al., 2024), however, no ground truth set
was available in this study. While state-of-the-art
LLMs such as GPT-4 have shown human-like lan-
guage capabilities that allow them to produce anno-
tations that are highly correlated with expert ones,
it is unclear how biased those annotations are. In
addition, no statistical guarantees on the validity of
the synthetic data are used in the literature.

In this paper, we investigate whether state-of-
the-art large language models (LLMs) can be used
to generate high-quality synthetic scores of lexical
complexity and grammatical accuracy from stu-
dents’ text-based conversational responses based
on the Common European Framework of Refer-
ence (CEFR) framework (Council of Europe, 2001).
These synthetic scores, along with a small set of
human-annotated gold-standard data, are used to
train machine learning models under two different
settings: a weakly supervised learning (WSL) ap-
proach that relies on LLM-generated labels, and a
semi-supervised method in which a model trained
on the gold-standard set produces predictions for a
larger unlabeled corpus. In both settings, our goal
is to increase the effective sample size and enable
valid inference. To this end, we apply Prediction-
Powered Inference (PPI) to provide statistical guar-
antees on the resulting predictions, ensuring that
the use of synthetic scores does not compromise
the validity of the conclusions.

Experimental results indicate that the proposed
method increases the effective sample size by over
150% and yields a relative gain in accuracy, both
compared to using only the gold-standard human-
annotated data in a semi-supervised setting. In
contrast, treating LLM-generated scores as if they
were human-annotated can lead to inaccurate esti-
mates and yield more modest improvements under
a WSL framework. The proposed approach helps
mitigate some of the limitations associated with
weaker supervision sources in NLP, particularly in

scenarios where predictions inform decisions with
significant consequences, such as in educational
assessment.

We also address challenges associated with using
LLMs as data annotators in NLP tasks, especially
the uncertainty inherent in their outputs. Our find-
ings show that applying a statistically valid method
such as PPI can not only improve reliability and
provide bias corrected estimates, but also quantify
the uncertainty of predictions on unlabeled data,
thereby offering a more trustworthy framework for
leveraging synthetic annotations and scores.

The main contributions of this paper are:

• We integrate Prediction-Powered Inference
into a new framework for semi-supervised and
weakly supervised learning, providing statisti-
cal guarantees for predictions on datasets with
small labeled and large unlabeled subsets.

• Unlike standard semi- and weakly supervised
learning paradigms, the proposed framework
samples and selects synthetic data based on
valid statistical conditions, imposing a data
quality requirement relative to a gold standard
set.

• This approach, in the semi-supervised setting,
produces a relative sample size gain of up to
157%, resulting in an accuracy increase of
23.2%.

2 Background

2.1 Automated L2 scoring methods
Over the past decades, computer-aided automatic
text analysis has become increasingly prevalent
in measuring L2 lexical and speaking proficiency
(Crossley et al., 2011, 2014). More recently, deep
learning approaches have achieved performance
close to that of human raters in holistic scoring
tasks (Alikaniotis et al., 2016), and Transformer-
based models have even surpassed human inter-
annotator agreement levels (Rodriguez et al., 2019).
Large language models (LLMs) such as GPT-3
have also shown promise in supporting automatic
scoring, as demonstrated by their application to
12,100 essays from the ETS Corpus of Non-Native
Written English (Mizumoto and Eguchi, 2023).

Further advancements have been observed with
GPT-4. Studies indicate that, when provided with
calibration examples, GPT-4 can reliably rate short
essay responses (Yancey et al., 2023), assess dis-
course coherence at a level comparable to expert
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raters (Naismith et al., 2023), and generate ana-
lytical scores aligned with the CEFR proficiency
framework (Banno et al., 2024).

While NLP-based automated methods have his-
torically demonstrated the ability to assess specific
linguistic features and functions, human raters tend
to outperform them in evaluating higher-level dis-
course elements such as ideas, content, and orga-
nization (Enright and Quinlan, 2010). This diver-
gence suggests that language models may exhibit
a different type of bias compared to human raters,
particularly in tasks requiring inferential judgment.

2.2 Weaker sources of supervision
Weakly-supervised learning (WSL) has become a
practical machine learning paradigm to address the
issue of label scarcity in NLP. The major bottle-
neck for deploying machine learning models has
been the lack of access to large, high-quality train-
ing datasets. Producing manual annotations of text
data is a labor-intensive and time-consuming task.
To reduce such efforts, WSL approaches have been
proposed to offer a larger pool of weaker supervi-
sion sources to label and annotate data (Ren et al.,
2020; Zhang et al., 2021). Such sources often rely
on heuristics, knowledge bases, crowd sourcing,
labeling functions, or pre-trained models instead
of expert manual annotations (Ratner et al., 2017).
However, WSL methods also present challenges
due to the degree of noise that the generated labels
contain (Zhu et al., 2023).

More recently, a prompting-based method was
proposed to integrate LLMs into weak supervision
frameworks (Smith et al., 2024), yielding accuracy
gains on the general-purpose WRENCH weak su-
pervision benchmark. However, the effectiveness
of this approach in more specialized domains, such
as the analytical scoring of student responses, re-
mains uncertain. Moreover, the study does not
address potential biases present in the training data,
nor does it evaluate how such biases may affect
the resulting estimates. It also remains unclear
how a semi-supervised method (Søgaard, 2022)
would perform in comparison to this weakly super-
vised approach, particularly in settings where bias
is limited to the human annotations and model pre-
dictions, without introducing additional external
sources of error.

To address this gap, our study compares both
approaches, LLM-driven weak supervision and
a semi-supervised method using a small gold-
standard dataset, to investigate their effectiveness

in analytical scoring tasks. We leverage PPI in
both cases to provide statistical guarantees on the
resulting predictions and to evaluate the reliabil-
ity and calibration of the scores derived from each
approach.

3 Method

We are interested in developing a framework that
can be used to train machine learning models when
only a small labeled dataset and a large corpus of
unlabeled data are available. To leverage the un-
labeled data, synthetic scores are obtained using
a machine learning model, but instead of treating
those scores as gold standard, a provably valid sta-
tistical method is used to assess the biases con-
tained in the scores, so that estimates can be recti-
fied.

The proposed framework is evaluated in two set-
tings. In the weakly supervised learning (WSL)
scenario, a state-of-the-art LLM is used to gener-
ate synthetic scores from text-based inputs, which
are then used to train a traditional machine learn-
ing model. In the semi-supervised setting, the ML
model is trained on a small set of gold-standard
annotations and used to predict scores for a larger
unlabeled set. In both cases, a debiasing proto-
col based on Prediction-Powered Inference (PPI)
(Angelopoulos et al., 2023) is applied to estimate
prediction errors and provide statistical confidence
measures for the resulting scores.

Although LLMs have shown strong zero-shot
generative and reasoning capabilities (Kojima et al.,
2022), they still produce hallucinations (Gunjal
et al., 2024), unreliable outputs (Sclar et al., 2023),
and exhibit demographic biases (Chiang and Lee,
2023), making them unreliable for providing im-
mediate scores to students. For those reasons we
use machine learning models that can be trained
on a set of textual features and a combination of
human and weaker scoring sources to estimate a
proficiency score with a given confidence (see de-
tails on models and features in subsection 4.2).

While NLP tasks, particularly those in the so-
cial sciences, have used less reliable LLM annota-
tions in downstream tasks that require inferences
to be statistically valid to draw reliable conclusions
(Gligorić et al., 2024), the approach presented in
this paper leverages such statistical validity to de-
termine the reliability of weaker data sources to
train machine learning models.
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Figure 1: Outline of the process for scoring L2 conversation responses in a WSL setting using PPI. X and Y are
the features and human-annotated scores, and X ′

c are a subset of the textual features sampled from the unlabelled
dataset X ′ to be scored by an LLM, obtaining Ŷ ′

c scores and θ′ verbalized confidence on the scores. If the width of
CPP remains within W X ′

c will be added to the training process to further optimize the training of the ML model.

3.1 Statistical guarantees:
Prediction-powered inference

Prediction-Powered Inference (PPI) is a statisti-
cal protocol that combines predictions made on
less reliable unlabeled data with those made on a
gold-standard dataset to obtain a confidence inter-
val (CI) that is provably valid (Angelopoulos et al.,
2023). Instead of using machine learning models
to determine the validity of an unlabeled dataset
on a case-by-case basis, PPI provides model-free
estimates that are statistically valid, leveraging the
information contained in the predictions.

The goal of PPI is to estimate a quantity of in-
terest θ∗, such as the population mean. To estimate
θ∗ we have access to a set of gold-standard data
with human-annotated responses Y and features
X such that (X,Y ) = (X1, Y1), ..., (Xn, Yn), and
a much larger set of unlabeled data (X ′, Y ′) =
(X ′

1, Y
′
1), ..., (X

′
N , Y ′

N ) where Y ′ is not directly ob-
servable, and N ≫ n. For both datasets predic-
tions are obtained using a machine learning model
f(·), represented by f(X) and f(X ′). In PPI, the
predictions made on the unlabeled data are not
treated as gold-standard such as in the imputation
case. Instead, PPI uses the gold-standard set to
quantify and correct for the errors made by the
model on the unlabeled set.

The three-step process that constitutes PPI can
be summarized as follows:

1. Select the quantity of interest θ∗, such as the
mean outcome E(Yi).

2. Compute the estimate θ′ and a rectifier ∆θ,
where θ′ is computed on the unlabeled data

(X ′, Ŷ ′) such that θ′ = 1
N

∑N
i=1 f(X

′
i), and

∆θ = 1
n

∑n
i=1(f(Xi) − Yi). If f(Xi) per-

fectly matches Y , then ∆θ = 0.

3. Construct a confidence interval CPP for θ∗.

To construct CPP we need to obtain the
prediction-powered estimate θ̂PP that corrects for
the bias on θ′ due to prediction errors:

θ̂PP =
1

N

N∑

i=1

f(X ′
i)−

1

n

n∑

i=1

(f(Xi)− Yi) (1)

and then the prediction-powered confidence set
is obtained such that

CPP = (θ̂PP ± w(α)) (2)

where w(α) is a constant that depends on the
confidence level α (derivations could be found in
Angelopoulos et al. (2023)).

PPI has been used for the pairwise ranking of
models (Boyeau et al., 2024), for comparing the
performance of LLMs (Chatzi et al., 2024), for
evaluating retrieval augmented generation (RAG)
systems (Saad-Falcon et al., 2024), and some of
its variants for producing confident conclusions
from LLMs annotations (Gligorić et al., 2024). The
approach presented in this article differs from the
previous ones. In the general PPI setting, a trained
model is used to produce predictions on both sets,
and PPI is used to debias the predictions made on
the unlabeled data. In the proposed framework,
we do not have access to a trained model, and the
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training is done iteratively and sequentially using
PPI as a guarantee of statistical validity, making
decisions on what unlabeled data to include in the
training process based on a statistical measure.

3.2 Using LLMs in weak supervision with
statistical guarantees

From a dataset of conversational responses X , we
divide it into |X| responses to be scored by hu-
man annotators and |X ′| responses to be scored by
an LLM, obtaining Y and Y ′ scores respectively;
where |X| = n and |X ′| = N , and N ≫ n. We
assume that there are biases in Ŷ ′ associated with
the scoring errors made by the LLM, and use PPI
to debiase them, resulting in biased-corrected esti-
mates.

To obtain Y and Y ′, the same rubric was used for
human and LLM scorers, in an attempt to maintain
as much parity as possible between the two scoring
sources and to avoid additional biases.

The rubric used two dimensions of language
proficiency as expressed in the CEFR framework
(Council of Europe, 2001), namely vocabulary
range and grammatical accuracy for B1 and B2 lev-
els. Scores ranged from 1-3 for vocabulary range
and 1-4 for grammatical accuracy. For human scor-
ing, two annotators with extensive experience in
L2 proficiency scoring were recruited. To obtain
a single score, annotations were conducted col-
laboratively, and if consensus was not reached a
third annotator was used to resolve the disagree-
ment (Fort, 2016) (see Appendix A for details on
the rubric). GPT-4o and GPT-4o-mini were the
models of choice to produce synthetic scores Y ′

given X ′ and the rubric. A zero-shot prompting
approach was used (see Appendix C for details
on the prompts) and additionally, the models were
prompted to provide a measure of verbalized confi-
dence in the form of a probability value to assess
the correctness of the score, as presented in Tian
et al. (2023).

The following steps describe the WSL approach
with an LLM as a weak scorer and with PPI guaran-
tees: 1) taking as input the entire set of high-quality
human-labeled scores, a machine learning model
f(·) is trained such that, after training on the gold-
standard set X is completed, we obtain θ̂PP and
CPP using the verbalized confidence of the LLM
θ′ on a small sample of size c X ′

c and the predic-
tions made by the ML model Ŷ ; 2) the width of
CPP is computed in an evaluation step, such that
CPP
upper − CPP

lower ≤W and W is a width threshold

chosen beforehand; 3) if the width is not greater
than W and the prediction-powered corrected mean
accuracy is not less than the one computed with
the gold-standard set, the sample X ′

c is added to
the training process and the model is trained on
X ⊕ X ′

c until either the CPP condition on W is
no longer met or the accuracy decreases. Figure 1
outlines the process in a block diagram.

3.3 Leveraging PPI in semi-supervised
learning

Similar to the WSL approach described in Subsec-
tion 3.2, the proposed semi-supervised method uses
PPI to establish statistical guarantees on predictions
made for the unlabeled data X ′. However, instead
of relying on an LLM as a scorer, this method em-
ploys a machine learning model to generate predic-
tions, which are then reused for fine-tuning under
the same width and accuracy gain conditions de-
fined in the WSL setting.

The method works as follows. First, the ML
model is trained only on the human-scored set, the
ground-truth data X . In an evaluation step, a sam-
ple of size c is randomly drawn from the entire
unlabeled set X ′ to compute Ŷ ′

c = f(X ′
c) and ob-

tain θ̂PP and CPP . If the width of CPP does not
exceed a threshold W , i.e., CPP

upper − CPP
lower ≤W ,

and θ̂PP is greater than the mean accuracy of the
predictions made using the human-scored data,
then a new sample is drawn and training continues
until this condition is no longer satisfied (Figure 2
summarizes the steps involved in this process).

As we can see, PPI is used to estimate the va-
lidity of the inferences made on the unlabeled set
through an iterative process that draws samples of
size c to test whether the predictions on X ′ main-
tain the width of CPP within the threshold W . A
wider width would denote greater uncertainty, indi-
cating that the predictions made on the unlabeled
data are less reliable and potentially more biased.
In contrast, a narrower width suggests higher preci-
sion and lower variance.

In this sense, CPP serves as a valid estimate for
assessing the quality of an unlabeled dataset given a
high-quality labeled one. It also provides a basis for
estimating the effective sample size needed to ob-
tain reliable predictions when leveraging unlabeled
data, especially when considering the associated
accuracy gain.
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Figure 2: Differently from the process outlined in Figure 1, in the semi-supervised setting both the scores Ŷ ′
c and

the probability value θ′ are obtained directly from the ML model. No external scoring source is used.

4 Experiments

We conduct several experiments to evaluate the
effectiveness of our approach. The goal is to
assess the overall methodology in both weakly
and semi-supervised learning settings, aiming to
measure the quality of synthetically generated
scores derived from a smaller set of high-quality,
human-annotated data. Given the constraints of
this study, namely the limited availability of high-
quality human-labeled samples, we use machine
learning models that are well-suited to this low-
resource setting and that have shown to perform
effectively on features that can be represented as
tabular data (Shwartz-Ziv and Armon, 2022). We
make code available 1.

4.1 Data

Data was collected from text-based conversation
practice sessions completed by intermediate level
(B1-B2 levels in CEFR) English language learn-
ers (ELLs) and an AI agent (Fincham and Alvarez,
2024) over a 3-month period. A total 121 students
from 3 sessions of an undergraduate course focused
on English speaking participated in the project and
generated 1721 practice sessions. The average num-
ber of turns per session produced by students was
8.9.

To train the models, 590 sessions were manu-
ally scored following a rubric based on the CEFR
framework (Council of Europe, 2001) on vocabu-
lary range and grammatical accuracy (see section
3.2). Out of the 590 sessions, 445 were used for
training and 145 for evaluation. The remaining

1https://github.com/aitor-alvarez/Automated-L2-
Proficiency-Scoring

1131 sessions were either scored by an LLM or
by the model of choice in the semi-supervised ex-
periment. Inter-annotator agreement between hu-
man and LLM raters reached moderate levels, with
κ = 0.45 for vocabulary range and κ = 0.4 for
grammatical accuracy.

4.2 Models and features
From the students’ conversations, 9 lexical and
syntactical features were automatically extracted,
many of which have shown to be highly correlated
with linguistic proficiency descriptors based on the
CEFR framework (Banno et al., 2024). Those are:
lexical density, unique noun chunks, number of
unique words, number of unique difficult words,
Flesch Kincaid readability score (Thomas et al.,
1975), sentence length mean and standard devia-
tion, and dependency distance mean and standard
deviation.

Two tree-based boosting models, XGBoost
(Chen and Guestrin, 2016) and LightGBM (Ke
et al., 2017) were used in the weak and semi-
supervised training regimes and used as predictor
ML models. Results were compared to the base-
line scores obtained directly from the two LLMs,
GPT-4o and GPT-4o-mini.

4.3 Evaluation
The quantity of interest chosen for this study was
the mean accuracy. As described in subsections 3.2
and 3.3, width and accuracy gain are the measures
that determine the stopping condition during train-
ing and evaluation, and overall, to determine the
quality of the inference on the unlabeled data. In
addition, coverage is used to evaluate how many
times the true value θ∗ falls within the estimated
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interval with a given confidence level. The confi-
dence level for this study was set to 0.9 for α = 0.1,
which is the same level that PPI guarantees asymp-
totically (Angelopoulos et al., 2023). If coverage
does not meet the established α−level, this would
indicate that predictions are extremely biased, not
normally distributed, or that the proportion or qual-
ity of the labeled/unlabeled data is not balanced and
therefore the variance estimate may be unstable.

We estimate the effective sample size by calcu-
lating the maximum number of synthetic scores
used in relation to the labeled set for the following
inequality to hold CPP

upper − CPP
lower ≤ W and for

the mean accuracy to improve when comparing it
to the results obtained with the gold-standard set
alone. The width threshold was set at W = 0.2
and tested in the two experimental learning settings
(weakly and semi-supervised) for each of the mod-
els. This width threshold indicates that we are will-
ing to accept a CI with a maximum of 20% range
in the mean accuracy estimate CPP . Samples of
size 100 were added at each iteration to determine
the width, coverage, and effective sample size for
both conditions.

5 Results

Table 1 presents the experimental results. The semi-
supervised approach yields the highest accuracy
gains by using PPI to combine human-annotated
data with model-generated scores, selecting only
samples within the PPI confidence interval that im-
prove baseline accuracy. For vocabulary range, the
increase reaches 23.2% and for grammatical accu-
racy 21.5%, with a total effective sample size of
700. Width sizes remain relatively low, 0.13 for
vocabulary range and at around 0.148 for grammat-
ical accuracy. Coverage in this setting reaches 97%,
demonstrating the validity of this approach.

The weakly supervised learning (WSL) proto-
col, on the other hand, yields more modest accu-
racy gains when combining gold-standard data with
weakly scored data. In this setting, accuracy im-
provements range from 8.1% to 8.4% in vocabu-
lary range and reach 7.5% in grammatical accuracy,
using either boosting model with GPT-4o as the an-
notator source and an effective sample size of 200.
When GPT-4o-mini is used as the annotator model,
accuracy gain decreases to 4.2–3.4% in vocabulary
range and 3.1% in grammatical accuracy, with an
effective sample size of 100. Overall, the WSL set-
ting shows a coverage slightly above 90% (91%),

indicating an acceptable validity of this approach
when using LLMs as weak scorers (see Appendix
B for the accuracy on the gold-standard set only).

The LLM-only approach yields modest accuracy
gains, with GPT-4o achieving improvements of
1.8% in vocabulary range and 1.5% in grammat-
ical accuracy. GPT-4o-mini shows smaller gains
of 0.6% and 0.4%, respectively, under the same
setting, with an effective sample size of 100 in both
cases. However, despite these gains, the coverage
remains below 90%, failing to meet the required va-
lidity threshold. Further analysis reveals that both
LLMs exhibit overconfidence in their probability
estimates. On average, GPT-4o assigns 80% confi-
dence to incorrect predictions in vocabulary range
and 75% in grammatical accuracy. GPT-4o-mini
shows similar patterns, with 78% confidence in vo-
cabulary range and 71% in grammatical accuracy
for its incorrect predictions.

In summary, the results indicate that the method
presented in this study, when applied in a semi-
supervised setting, results in a dataset that is 157%
larger than the original. In contrast, the sample size
gain is significantly reduced, down to 22%, when
the method is used in a WSL setting with LLMs as
scorers. Moreover, the naive approach of directly
using LLM responses as gold-standard predictions
fails to produce valid results.

6 Discussion

In this study, we have presented an approach to
integrate Prediction-Powered Inference (PPI) in
semi- and weakly-supervised settings when gold-
standard data is scarce or difficult to obtain. By
using PPI, we have shown that gold-standard with
less reliable data can be combined to obtain in-
creases in predictive accuracy while maintaining
the validity of the results. This is particularly im-
portant in the context of this study, where student-
produced output, namely conversational responses
obtained from student interactions with an AI tutor,
requires assessment at scale that can provide valid
feedback to learners.

As previous studies have demonstrated (Tate
et al., 2024; Tan et al., 2024b,a), LLM outputs
show moderate to strong agreement with human
judgments. In our study, we observe a moderate
level of agreement between human raters and LLM-
based scores, as previously reported. However, this
level of agreement is insufficient for treating LLM
scores as gold-standard, as it does not yield valid
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Setting Task Model Sample Size Width Coverage Acc. Gain
Semi Vocab. range XGBoost 700 0.13 97% 23.2%
Semi Gram. accur. XGBoost 700 0.145 97% 21.5%
Semi Vocab. range LightGBM 700 0.133 97% 22.1%
Semi Gram. accur. LightGBM 700 0.148 97% 19.7%
WSL Vocab. range XGBoost + 4o 200 0.136 91 % 8.4%
WSL Gram. accur. XGBoost + 4o 200 0.144 91 % 7.5%
WSL Vocab. range XGBoost + 4o-mini 100 0.16 91 % 4.2%
WSL Gram. accur. XGBoost + 4o-mini 100 0.171 91 % 3%
WSL Vocab. range LightGBM+ 4o 200 0.14 91 % 8.1%
WSL Gram. accur. LightGBM+ 4o 200 0.145 91 % 7.5%
WSL Vocab. range LightGBM+ 4o-mini 100 0.177 91 % 3.4%
WSL Gram. accur. LightGBM+ 4o-mini 100 0.179 91 % 3.1%
LLM only Vocab. range GPT-4o 100 0.152 77% 1.8%
LLM only Gram. accur. GPT-4o 100 0.156 77% 1.5%
LLM only Vocab. range GPT-4o-mini 100 0.181 68% 0.6%
LLM only Gram. accur. GPT-4o-mini 100 0.184 68% 0.4%

Table 1: Performance metrics by setting, task, and model employed to obtain predictions and to generate synthetic
scores. Sample size indicates the maximum number of unlabeled samples used to reach the highest accuracy and
within the maximum width allowed. Acc. Gain is the maximum gain in accuracy compared to the gold-standard
(human annotated only) approach (see Appendix B for the accuracy on the gold-standard set only).

statistical conclusions.
When LLM outputs are instead used within a

weak supervision framework, acknowledged as bi-
ased but corrected through prediction-powered in-
ference (PPI), they lead to slight improvements
compared to relying solely on gold-standard data.
Nonetheless, LLMs exhibit overconfidence in their
incorrect assessments, indicating a poor under-
standing of uncertainty, a concern also noted in
a recent work (Pawitan and Holmes, 2025).

In contrast, we find that a well-calibrated ma-
chine learning model, when used in a semi-
supervised setting alongside PPI, can substantially
increase the sample size by over 157% relative to
using only human-annotated data, which results
in a dataset larger than the original and improves
training and accuracy. This suggests that simpler
models, when well-calibrated and properly inte-
grated into such frameworks, can support broader,
validity-guaranteed conclusions in educational as-
sessment settings.

The results obtained in this paper have broad im-
plications for large-scale and AI-mediated learning
environments, where many learners require assess-
ment and guidance, and human feedback is imprac-
tical (Swiecki et al., 2022). In such contexts, a
small, well-annotated dataset can be used to make
valid predictions on larger unlabeled data, reduc-
ing training requirements, improving prediction

quality, and enabling large-scale assessments with
validity guarantees.

7 Limitations

This study aimed to explore the potential of
Prediction-Powered Inference (PPI) to extend a
small set of high-quality, human-scored conversa-
tional responses using less reliable data generated
by large language models (LLMs) and simpler ma-
chine learning models. While PPI offers a statis-
tically grounded framework for leveraging such
predictions, it assumes that the labeled data are in-
dependently and identically distributed (i.i.d.) from
a normal distribution. Although our labeled sample
size (n = 445) may appear limited, each session
includes, on average, over eight student turns, pro-
viding a richer source of information per data point.
Nonetheless, larger samples of gold-standard data
should be examined in future work to validate and
generalize the findings presented here. Expanding
the dataset to include a broader range of learner pro-
ficiencies could also provide further insights into
the robustness and adaptability of the proposed ap-
proach.

8 Ethical considerations

In this study, we caution against the use of LLM-
generated outputs as ground-truth data in educa-
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tional settings, emphasizing the risks associated
with treating such predictions as authoritative. Nev-
ertheless, we acknowledge the potential of LLMs
in low-stakes educational scenarios, particularly for
generating synthetic data or instructional materials
that can support learning.

It is important to note that this work assumes
human annotations as the gold standard. However,
this assumption should be approached with cau-
tion, as human judgments are subject to both cogni-
tive (Gautam and Srinath, 2024) and socio-cultural
biases (Huang and Yang, 2023), which are often
context-dependent and may impact the reliability
of reference scores.
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A Rubric

A.1 Vocabulary Range (B1-B2)

Score Description of the proficiency level
1 Has a good range of vocabulary related to familiar topics and everyday situations.

Has sufficient vocabulary to express themselves with some circumlocutions on
most topics pertinent to their everyday life such as family, hobbies and interests,
work, travel and current events.

2 Has a good range of vocabulary for matters connected to their field and most
general topics. Can vary formulation to avoid frequent repetition, but lexical
gaps can still cause hesitation and circumlocution. Can produce appropriate
collocations of many words/signs in most contexts fairly systematically. Can
understand and use much of the specialist vocabulary of their field but has
problems with specialist terminology outside it.

3 Can understand and use the main technical terminology of their field, when
discussing their area of specialisation with other specialists.

Table 2: Vocabulary Range Rubric (B1-B2)

A.2 Grammatical Accuracy (B1-B2)

Score Description of the proficiency level
1 Uses reasonably accurately a repertoire of frequently used routines and patterns

associated with more predictable situations.
2 Communicates with reasonable accuracy in familiar contexts; generally good

control, though with noticeable mother-tongue influence. Errors occur, but it is
clear what they are trying to express.

3 Has a good command of simple language structures and some complex gram-
matical forms, although they tend to use complex structures rigidly with some
inaccuracy.

4 Good grammatical control; occasional slips or non-systematic errors and minor
flaws in sentence structure may still occur, but they are rare and can often be
corrected in retrospect.

Table 3: Grammatical Accuracy Rubric (B1-B2)

B Accuracy for gold standard set

Model Proficiency level Accuracy
XGBoost Vocabulary Range 74.1
XGBoost Grammatical accuracy 71.3
LightGBM Vocabulary Range 73.6
LightGBM Grammatical accuracy 71
GPT-4o Vocabulary Range 62.5
GPT-4o Grammatical accuracy 61.2
GPT-4o-mini Vocabulary Range 60.3
GPT-4o-mini Grammatical accuracy 58.9

Table 4: Accuracy values for each of the models used tested on the gold standard set only.
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C Prompts

Score the following text from a conversation of an intermediate English language
student (B1-B2 on CEFR).
Provide the score as an integer and the probability as a float associated with
the options in the ’ScoringTexts’ function.
Text: text

class ScoringTexts(BaseModel):
#CEFR vocabulary range.
vocabulary_range: int = Field(description="Select the option that best describes

the text."
"Option 1. Has a good range of vocabulary

related to familiar topics and
everyday situations."

"Has sufficient vocabulary to express
themselves with some circumlocutions
on most topics "

"pertinent to their everyday life such
as family , hobbies and interests ,
work , travel and current events."

"Option 2. Has a good range of
vocabulary for matters connected to
their field and most general topics.
"

"Can vary formulation to avoid frequent
repetition , but lexical gaps can
still cause hesitation"

" and circumlocution."
"Can produce appropriate collocations of

many words/signs in most contexts
fairly systematically."

"Can understand and use much of the
specialist vocabulary of their field
but has problems with "

"specialist terminology outside it."
"Option 3. Can understand and use

technical terminology when
discussing "

"areas of specialization. Have access to
specialized vocabulary in relation

to the topic.")

vocabulary_range_proba: float = Field(description="Express in the form of a
probability the confidence on the vocabulary range score given.")

#measures of grammatical accuracy as per CEFR
grammatical_accuracy: int = Field(description="Select the option that best

describes the text."
"Option 1. Uses reasonably accurately

a repertoire of frequently used
routines and patterns "

"associated with more predictable
situations. "

"Option 2. Communicates with
reasonable accuracy in familiar
contexts; generally good control ,
"

"though with noticeable mother -
tongue influence."

"Errors occur , but it is clear what
they are trying to express."

"Option 3. Has a good command of
simple language structures and
some complex grammatical forms , "

"although they tend to use complex
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structures rigidly with some
inaccuracy."

"option 4. Good grammatical control;
occasional slips or non -systematic
errors and minor flaws "

"in sentence structure may still
occur , "

"but they are rare and can often be
corrected in retrospect.")

grammatical_accuracy_proba: float = Field(description="Express in the form of a
probability the confidence on the grammatical accuracy score given.")
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Abstract

Inference making is an essential but complex
skill in reading comprehension (RC). Some
inferences require resolving references across
sentences, and some rely on using prior knowl-
edge to fill in the detail that is not explicitly
written in the text. Diagnostic RC questions can
help educators provide more effective and tar-
geted reading instruction and interventions for
school-age students. We introduce a taxonomy
of inference types for RC and use it to analyze
the distribution of items within a diagnostic
RC item bank. Next, we present experiments
using GPT-4o to generate bridging-inference
RC items for given reading passages via few-
shot prompting, comparing conditions with and
without chain-of-thought prompts. Generated
items were evaluated on three aspects: over-
all item quality, appropriate inference type,
and LLM reasoning, achieving high inter-rater
agreements above 0.90. Our results show that
GPT-4o produced 93.8% good-quality ques-
tions suitable for operational use in grade 3-12
contexts; however, only 42.6% of the gener-
ated questions accurately matched the targeted
inference type. We conclude that combining
automatic item generation with human judg-
ment offers a promising path toward scalable,
high-quality diagnostic RC assessments.

1 Introduction

Inference-making is an essential yet cognitively
demanding skill in reading comprehension (RC)
(O’Brien et al., 2015; Kintsch, 1998). Inferences
are necessary for establishing both local and global
coherence within the mental representation of a text
(Graesser et al., 1994). Local inferences connect in-
formation across sentences using cohesive devices
such as anaphors or category exemplars—for ex-
ample, in "Bette gulped down the drink. The cold
water was very refreshing," the reader infers that
the drink refers to cold water (Cain, 2022, p. 307).

*Work done while at ETS Research Institute

Global inferences, on the other hand, rely on the
reader’s prior knowledge to fill in missing details
required to make sense of the text —for example, in
"The campfire started to burn uncontrollably. Tom
grabbed a bucket of water" (Bowyer-Crane and
Snowling, 2005, p. 192), the reader infers that Tom
intended to put out the fire, based on the knowl-
edge that water extinguishes fire. While skilled
readers often generate inferences automatically as
they engage with text (Thurlow and van den Broek,
1997), children who struggle with comprehension
frequently have difficulty constructing these infer-
ences (Cain et al., 2001).

Providing diagnostic information about specific
types of inference-making deficits that hinder com-
prehension can empower educators to provide more
effective and targeted reading instruction and inter-
vention (Bowyer-Crane and Snowling, 2005; Bayat
and Çetinkaya, 2020). To achieve this, we need
RC assessments that specifically target inference-
making types. At the same time, we want to de-
velop scalable item generation methods to enable
multi-time testing, monitoring reading develop-
ment over time. Previous work has demonstrated
the ability of large language models (LLMs) to
generate effective RC questions (Uto et al., 2023;
Säuberli and Clematide, 2024). However, whether
LLMs can reliably produce questions that target
specific inference types remains unclear.

Our research is grounded in a real-world diag-
nostic assessment of reading skills for students in
grades 3 through 12 (Sabatini et al., 2019). The
assessment was originally developed at ETS and
recently commercialized as ReadBasix. It lever-
ages the science of reading to assess foundational
reading skills, such as word recognition and de-
coding, as well as more complex ones such as RC.
In the RC subtest, a student will usually read 4
expository passages and answer multiple-choice
questions associated with the passages. The sub-
test takes about 30 minutes to complete. Like any
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                    Automatic Item Generation                                                Human Evaluation

   Few-shot Prompting                                                        New Passages                           

Example 
passage

Example
Questions

Example
Reasoning

Standard

CoT
  Standard      CoT

Is the reasoning 
adequate?

Does the question 
have the correct 
inference type?

Is the question 
good to use?

Define [Inference Type] as …
Step 1: Find a concept …
Step 2: Generate a multiple-choice …
Step 3: Follow additional rules …
…

Text Hint: …
Reasoning: …

Stem: What’s …
Options: 1/2/3/4
Key: …

Figure 1: Overview of automatic item generation and human evaluation. We use GPT-4o to generate bridging-
inference RC items for given reading passages via few-shot prompting, comparing conditions with and without
chain-of-thought prompts. We prompt each inference type separately: pronominal bridging, text-connecting, and
gap-filling inferences. Human evaluation focuses on general item quality, inference type appropriateness, and LLM
rationales.

large-scale reading assessment, there is an ongoing
need for more items. To address this demand, we
aim to leverage automatic item generation to create
new items based on curated passages, and evaluate
the quality of these items before collecting student
performance data to make them operational.

For the purpose of automatic item generation, as
illustrated in Figure 1, we first conducted a liter-
ature review on inference-making in the reading
comprehension and natural language processing
(NLP) text comprehension literature. We devel-
oped a taxonomy of inference-making questions,
with a focus on bridging inference. We validated
this taxonomy by annotating an operational item
bank of expert-written RC questions, confirming
bridging inference as an important and widely cov-
ered sub-construct. Next, we curated six expository
passages and manually wrote multiple-choice RC
questions for each inference type based on our tax-
onomy. These examples were then used to prompt
GPT-4o (Hurst et al., 2024) via few-shot prompting
to generate bridging-inference questions for new
reading passages, comparing conditions with and
without chain-of-thought (CoT) prompting (Wei
et al., 2022). Finally, three human experts evalu-
ated the quality of the generated questions along
three dimensions: overall item quality 1, appropri-
ate inference type, and whether GPT-4o provided

1The evaluation of overall item quality does not include
whether an item is of the required inference type, which is an
extra-evaluation. See Table 2 for more details.

satisfactory reasoning for generating the question.
Our results show that LLMs can produce 93.8%
good-quality questions suitable for operational use
in grade 3-12 contexts; however, only 42.6% of the
generated questions accurately match the targeted
inference type. Nevertheless, the overall coverage
of inference types closely mirrors what we observe
in our operational item bank. We conclude that
combining automatic item generation with human
judgment offers a promising path toward scalable,
high-quality diagnostic RC assessments.

In summary, we make the following contribu-
tions in this paper:

1. We develop and validate a taxonomy for
inference-making questions used in multiple-
choice RC assessments, and demonstrate its
its value for future item development.

2. We introduce a novel NLP task where lan-
guage models generate RC questions targeting
specific inference types, providing a new way
to assess their reasoning abilities. The training
item bank will be released for replication and
benchmarking.

3. We demonstrate GPT-4o’s potential in gener-
ating RC questions for operational use and its
limitations in accurately generating specific
types of inference questions.
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2 Related Work

2.1 Question generation for reading
comprehension assessments

Automatic question generation is a well-established
task in NLP, especially within educational appli-
cations, to reduce the high costs of manual ques-
tion authoring and to ensure a steady supply of
new, high-quality items (Kurdi et al., 2020). Early
approaches rely on rule-based or template-based
methods (Araki et al., 2016; Flor and Riordan,
2018), as well as the use of discourse connectives
to generate questions (Agarwal et al., 2011). Later
approaches extensively used neural systems for
question generation (Mulla and Gharpure, 2023).
More recent work demonstrates that LLMs hold
promise in generating high-quality RC questions,
using techniques such as fine-tuning (Uto et al.,
2023; Perkoff et al., 2023; Ghanem et al., 2022;
Ashok Kumar et al., 2023; Rathod et al., 2022;
Stasaski et al., 2021), zero-shot or few-shot prompt-
ing (Säuberli and Clematide, 2024; Attali et al.,
2022), and Chain-of-Thought prompting (Kul-
shreshtha and Rumshisky, 2022). Some of these
studies have also explored the generation of more
complex, "deeper" questions—those that target un-
derlying reasoning processes (Ghanem et al., 2022;
Poon et al., 2024) or hinge on specific inference
steps for accurate responses (Araki et al., 2016).
Within the domain of automated Question Answer-
ing, the notion of multi-hop questions has gained
attention, as questions relating different parts of a
document require multi-step reasoning (Mavi et al.,
2024).

We note that prior studies have largely treated
reading comprehension as a single, undifferentiated
construct even though comprehension requires dif-
ferent types of inferences. Recent work has begun
to develop taxonomies of RC and annotate ques-
tion types to enable more controllable generation
(Xu et al., 2022; Li and Zhang, 2024; Hwang et al.,
2024). However, to our knowledge, no existing
work has systematically addressed question gener-
ation based on specific types of inference. We be-
lieve that the capability to generate different types
of inference questions will provide more diagnos-
tic insights for educators. Our work is a first step
toward filling this gap.

2.2 Bridging inference as an NLP task

The NLP community has long tackled text com-
prehension challenges, including bridging infer-

ence. Prior work has focused on corpus-based
bridging anaphora recognition and resolution using
annotated resources such as ISNotes and BASHI
(Rösiger, 2018; Hou et al., 2018; Hou, 2020). Neu-
ral models have been developed to jointly learn
mention representations and bridging relations
(Pandit and Hou, 2021; Kobayashi et al., 2022). In
the recently developed IdentifyMe benchmark for
resolving nominal and pronominal mentions across
long contexts (Manikantan et al., 2024), GPT-4o
outperforms other LLMs, achieving 81.9% accu-
racy and demonstrating strong referential capabili-
ties. With the rise of LLMs, research increasingly
shifts toward evaluating LLMs’ general reason-
ing capabilities (Brown et al., 2020; Wei et al.,
2022). In our education application, we investi-
gate whether LLMs truly possess the reasoning
ability required for bridging inference, particularly
through the lens of a question generation task.

3 Taxonomy of Inference Questions

3.1 Development of Taxonomy

Inferences can be categorized into bridging infer-
ences, elaborative inferences, predictive inference,
emotional inference, etc (Graesser et al., 1994;
Schmalhofer et al., 2002; Singer and Remillard,
2004; van den Broek et al., 2015). To manage
the scope of our interest, we focus on bridging
inference which connects information in a text.
Bridging inferences contribute to text coherence
by allowing the reader to identify the connections
among concepts and ideas in the text (Singer et al.,
1992; Singer and Remillard, 2004) or bridges (Hav-
iland and Clark, 1974) among the propositions un-
derlying the discourse. A bridging inference is
needed when the reader cannot retrieve a referent
for the given information of the current sentence
from either working memory or long-term memory.

Table 1 shows the taxonomy of inference mak-
ing questions for diagnostic RC assessments, along
with the examples. The first type is pronominal,
and it has two variants. Simple pronominal asks
for a direct pronoun resolution, such as "In the sen-
tence, whom does ‘he’ refer to?" This is different
from the second subtype: pronominal bridging,
which requires the reader to use the pronoun as a
hint to bridge sentences and answer the question.
The third type text-connecting requires test takers
to connect two explicitly stated components in a
text, and usually the bridge are noun phrases. The
last type is gap-filling, which requires readers to
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Types Definitions Examples

Pronominal Direct pronoun resolution. Like "To whom ‘he’ refers?", "What does ‘this’ represent?"

Pronominal
Bridging

Use pronoun as a hint to
bridge sentences.

Text snippet: Ships have carried passengers since prehistoric times.
That is the first kind of public transportation.
Question: What was the first kind of public transportation in his-
tory?
Answer: ships
Reasoning: The pronoun "That" refers to "ships" in the previous
sentence.

Text-
Connecting

Connecting two explicitly
stated components in a
text, typically through a
noun phrase.

Text snippet: Public transportation is good for the environment.
When many people use the same vehicle, fewer cars are on the road.
Fewer cars make less pollution.
Question: Why is public transportation good for the environment?
Answer: Because it causes less pollution
Reasoning: "Fewer cars" links to "public transportation" from the
previous sentence in a causal relationship.

Gap-
Filling

"Incorporating informa-
tion outside of the text,
i.e., general knowledge,
with information in the
text to fill in missing de-
tails." (Cain and Oakhill,
1999, p.490)

Text snippet: White pizza uses no tomato sauce, often substituting
pesto or dairy products such as sour cream. Most commonly, its
toppings consist only of mozzarella and ricotta cheese drizzled with
olive oil and basil and garlic.
Question: What is a possible reason "White pizza" gets its name?
Answer: It doesn’t have tomato sauce
Reasoning: Readers need to use common sense to fill in the gap that
"no tomato sauce" means the color of the pizza is not red.

Table 1: Taxonomy of inferences for Reading Comprehension questions.

incorporate information from outside of the text
with information in the text to fill in some missing
details. More examples based on the taxonomy are
included in Appendix A.

3.2 Validation of Taxonomy
With the newly developed taxonomy, we anno-
tated the RC items in an in-house item-bank. The
item-bank has 192 expert-written multiple-choice
RC questions for 24 expository reading passages.
These passages vary in difficulty from Grade 3 to
Grade 12. Our primary focus was to classify the
types of bridging inferences, but we also annotated
questions that are not in our main scope of inter-
est. For example, there are some factual/literal
questions, for which a test taker can directly find
information from the text without involving infer-
ence; vocabulary questions that directly assess the
vocabulary knowledge, and other comprehension
questions that do not require bridging inferences.

Two of the co-authors classified items indepen-
dently, following the annotation guideline (see
Appendix B). The two coders provided the same
coding of the type of inference on 86% of the
items, with kappa = 0.83, indicating high agree-

34%

9%
9%

8%

24%

10%
6%

Question type
gap-filling

text-connecting

pronominal bridging

pronominal

factual/literal

other

vocab

Figure 2: Distribution of different inference types in an
operational reading comprehension item bank.

ment. Based on our annotation results shown in
Figure 2, we find that bridging inference ques-
tions account for 51% of the RC items in the item
bank, suggesting bridging inference is an important
sub-construct in this RC assessment. Among the
bridging inference questions, pronominal bridging
(24%) is the most dominant type, followed by text-
connecting (10%), gap-filling (9%), and pronom-
inal questions (8%). The high level of agreement
supports the validity of the newly developed taxon-
omy, which we see as an important contribution—
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providing a road-map for both item development
and future research.

4 Automatic Item Generation and Human
Evaluation

Figure 1 presents the overview of our automatic
item generation pipeline.

4.1 Training Questions
Due to test security considerations we can not use
texts and items from our operational item bank as
examples to prompt LLMs. Thus, we created our
example item bank which is publicly available for
replication efforts 2. We adapted 6 new expository
passages from Simple English Wikipedia 3 (pas-
sage length ranges from 342 to 508 words, average
438) and for each passage we manually created
2-4 items for each type of inference. Each ques-
tion contains a stem, four options, and an answer
key indicating which option is correct. We also in-
cluded our thought process in the item generation:
text hint includes the relevant text from the pas-
sage where required inference will be made, and
reasoning is a short explanation why this question
belongs to the requested type. In total, we wrote
19 pronominal bridging, 23 gap-filling, and 16 text-
connecting questions.

4.2 Few-shot Prompting
We used the GPT-4o model (2024-04-01-preview)
to generate multiple-choice RC questions based on
passages we supplied to the model. To prioritize
accuracy and reproducibility in item generation, we
set the temperature parameter to 0. We explored the
frequency penalty parameter from 0 to 0.3, with 0.2
proving optimal as it could consistently generate
three diverse RC items without compromising their
quality.

Few-shot prompting techniques were used and
the prompts were iteratively refined over six rounds.
Most adjustments focused on improving the con-
creteness of the question-writing steps to better
guide the model. In this paper, we only report the
final iteration of item generation in which we exper-
imented with four different prompting conditions:
standard prompting with 4 (or 6) passages and ex-
amples, and chain-of-thought prompting with 4 (or
6) passages and examples with text hint and rea-
soning. With this set-up, we investigated whether

2https://github.com/maafiah/
InferenceQuestionsAQG

3https://simple.wikiedia.org

 
Task: Given a passage, you are 
going to generate pronominal bridging 
inference questions. 

Follow these steps to answer the user queries.

Step 1 - find a pronoun (it, they, she, he, which, that, etc) in 
the passage that is connecting AT LEAST 2 or 3 sentences. 
The pronoun should be crucial to bridge meaningful 
information from the passage such as a fact, a cause, a 
result, or a feature. 

Step 2 - based on the pronoun and its reference, generate a 
multiple-choice question with three distractors. The 
question should use the pronoun and its reference as hints 
to connect information between sentences. 

Step 3 - follow additional rules when writing the questions: 
1) do not ask a question that requires background 
knowledge to answer.  2) do not ask a question that directly 
asking "what does XX refer to". 3) lightly paraphrase the 
question and option without introducing new inference.  4) 
do not write correct answer longer than the distractors. 

Step 4 - iterate this process for 2 times to get 3 different 
questions. 

Step 5 - Output by following the exact format as examples 
so that it can be directly converted to csv format (do not 
have any title like (**questions**). Include all the sentences 
required in the 'Text Hint' and output your thought process in 
the 'Reasoning'. 
 

Here are some example passages and example questions:

***Given passage:*** 
 A greenhouse is a building where plants such 
as flowers and vegetables are grown. It usually 
has a glass …

 ***Examples:*** 
PassageName\Inference Type
\Text Hint\Reasoning
\Stem\Option 1\Option 2\Option 3\Option 4\Key

Greenhouse\pronominal bridging
\A greenhouse is a building where plants such as 
flowers and vegetables are grown. It usually has a 
glass or translucent plastic roof.\"the pronoun ""it"" 
refers to ""greenhouse"" in the previous sentence."
\According to the passage, what can have translucent 
plastic roofs?\backyards\living spaces\greenhouses
\botanic gardens\3
…

***New Passage:***
Parallax is the perceived change in position of an object seen 
from two different places …

Figure 3: Few-shot prompt for generating pronomi-
nal bridging inference questions. The system prompt
(beige background) defines the inference type and out-
lines expert-inspired steps. Training examples (provided
in the prompt) follow. In the standard condition, only
the question and answer key (green) are shown; in the
CoT condition, text hints and reasoning (blue) are also
included. A new passage is provided in the user prompt
(orange background) to generate new questions.

increasing the training examples or using the CoT
strategy would improve the quality of generation.
Moreover, we further evaluated if the output rea-
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Criterion Annotation Guidelines

General item quality 1: If the generated item satisfies all of the following:
(a) The correct answer is fully correct;
(b) Distractors are not confusing and are clearly incorrect;
(c) The question is developmentally appropriate and safe for Grades 3–12.
0: If any requirement is not met. Provide an explanation in the "Note" field.

Inference-type accuracy 1: If the generated item matches the requested inference type.
0: If not.
Output inference type, one of:
gap-filling / pronominal bridging / text-connecting / factual or literal.

Reasoning quality 1: If the generated thought process fulfills both of the following:
(a) The "Reasoning" is adequate and relevant to the requested inference type;
(b) The "Text Hint" includes all the sentences required to answer the item correctly.
0: If either condition is not satisfied.

Table 2: Annotation guidelines for evaluating the generated items.

soning process was adequate for this specific task.

Figure 3 shows an example prompt for gener-
ating reading comprehension questions targeting
pronominal bridging inference (see Appendix C
for more details). In the system prompt, we first
instructed GPT-4o to identify pronominal bridging
relationships, then directed it to generate a multiple-
choice question, guided by additional rules to en-
sure item quality. We included several training
examples in the prompt —either 4 or 6 passages
with corresponding questions, depending on the
generation condition. For the Standard condition,
no text hints or reasoning were provided in the
training examples. In the CoT condition, both text
hints and reasoning were provided, prompting the
model to generate them in the output. In the user
prompt, we provided a new passage for GTP-4o to
generate items from.

We curated a total of 10 new passages adapted
from Simple Wikipedia, which were comparable
in length and format to the example passages. For
each passage and inference type (pronominal bridg-
ing, text-connecting, and gap-filling), we indepen-
dently applied the prompting procedure, instruct-
ing GPT-4o to generate three unique questions
per combination. For text-connecting and gap-
filling—where question construction can be more
challenging—we included an additional rule: "Do
not force additional questions if no suitable loca-
tions can be found." Across the four prompting
conditions, we generated a total of 357 questions,
180 of which were produced under the CoT condi-
tion and therefore included text hints and reasoning
in the output.

4.3 Human Evaluation
To evaluate the quality of the generated RC items,
we developed an evaluation rubric (see Table 2).
Three authors used items from prior iterations of
the generation process and complete several prac-
tice rounds and discussion before finalizing the
rubric. The rubric is designed to directly address
our core research questions:

RQ1: Can LLMs generate high-quality RC items
with appropriate distractors suitable for inclu-
sion in an operational item bank?

RQ2: Do the generated RC items align with the
requested bridging inference type?

RQ3: How well can LLMs reason about their gen-
eration process?

In the evaluation phase, the three authors, who
are experts in reading assessment questions, in-
dependently annotated all 357 generated items.
The agreement was high for general item qual-
ity (RQ1), with percent agreement ranging from
87–90%. However, reaching consensus on the
inference type (RQ2; 69–70%) and reasoning
quality (RQ3; 65–71%) proved more challeng-
ing—consistent with prior findings that reasoning-
related judgments are inherently difficult to rate
(Stasaski et al., 2021).

To address this, we conducted a second round of
annotation. In this phase, each rater independently
reviewed only the items where their initial rating
differed from the other two and decided whether
to adjust the rater’s original score. Following this
adjustment, inter-rater agreement improved sub-
stantially. The final results of percentage agree-
ment and Fleiss’ kappa are shown in Table 3. Our
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Requested Type: Text-Connecting
 
Text Hint: Doughnuts are often eaten in the morning, along with a cup of hot 
coffee. They are sold at doughnut shops, bakeries, or grocery stores.

Reasoning: "doughnuts" and "doughnut shops" are linked thematically."

Question: Where can people buy doughnuts?

Options: At a coffee shop/ At a doughnut shop/ At a restaurant/ At a candy 
store

Key: 2

Requested Type: Gap-filling

Text Hint: The main way carbon gets taken out of the atmosphere is by 
photosynthesis by living organisms.

Reasoning: requires common sense to know that photosynthesis is 
performed by plants.

Question: Which organisms play a crucial role in removing CO2 from the 
atmosphere?

Options: animals/ bacteria/ plants/ fossil fuels

Key: 3

Rating: high quality, correct inference type, and correct reasoning. Rating: low quality because multiple keys can be correct. The question has 
incorrect inference and reasoning. The question can be categorized as 
pronominal bridging, as “they” refers to “doughnuts,” or as factual/literal, 
since “doughnut shops” directly refers to places where doughnuts are sold.
 

Figure 4: Examples of LLM-generated RC items via Chain-of-Thought prompting with 6 training passages. Left:
high-quality; right: low-quality. Each output includes a text hint, a rationale, a multiple-choice question with four
options, and an answer key. Human annotations are shown against a beige background.

Criterion Agreement (%) Fleiss’ κ

General item quality 90–97 0.57

Inference-type accuracy 85–94 0.77

Reasoning quality 90–95 0.83

Table 3: Inter-rater agreement and Fleiss’ κ for each
evaluation criterion. Agreement is reported as a range
based on three pairwise comparisons by three graders.

evaluation in the Results section were based on the
majority votes for each item. For example, an item
was treated as acceptable when at least two of the
three raters rated it as good quality.

5 Results

Based on the proportion of accepted items by gener-
ation method (Table 4), we observe improved gen-
eration performance when increasing the number
of training examples from four to six example pas-
sages in the prompt. However, our experiment does
not show any clear advantage of Chain-of-Thought
prompting over standard few-shot prompting. Fur-
thermore, our results indicate no statistically signif-
icant differences in generation performance across
the various prompting conditions. We summarize
our key findings below.

LLMs can produce high-quality questions suit-
able for operational use. Based on the evalua-
tion of general item quality, 87 out of 90 questions
(96.7% in the CoT_6 condition) had good quality
and were suitable for operational use in the Grade
3-12 educational context. The performance is com-

Generation

Method

Num

Items

General

Item Quality

Inference

Accuracy

Reasoning

Quality

standard_4 88 0.932 0.409

standard_6 89 0.955 0.461

CoT_4 90 0.900 0.411 0.356

CoT_6 90 0.967 0.422 0.389

Total 357 0.938 0.426 0.372

Table 4: Proportion of accepted items by genera-
tion method—standard vs. chain-of-thought prompt-
ing (with text hints and reasoning), using 4 or 6 pas-
sages (12–18 examples). Highest scores per criterion
are bolded; criteria are defined in Table 2.

parable to, if not better than, those reported in prior
research evaluating overall item quality for RC as-
sessments, which ranged from 75% to 90% (Kul-
shreshtha and Rumshisky, 2022; Uto et al., 2023;
Säuberli and Clematide, 2024). Because of the
differences between these studies, for a more infor-
mative comparison, we encourage future research
to replicate our findings under similar conditions.
Figure 4 presents one high-quality example and
one low-quality example of the generated ques-
tions. We find that problems of unacceptable ques-
tions included multiple keys, introduction of new
vocabulary, confusing wording of the question, etc.

Generating RC questions by specific inference
type is a challenging NLP task. Although LLMs
can generate high-quality RC items, their ability to
produce questions targeting specific inference types
remains limited. In the generation method yield-
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corresponding to each requested inference type. The generation questions are obtained from the standard few-shot
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age between the operational item bank and the LLM-
generated item bank.

ing the best performance (standard_6), only 46.1%
of the generated questions matched the requested
inference type. As shown in Figure 5, gap-filling
questions were the easiest to generate (60% match),
followed by pronominal-bridging questions (53.3%
match). In contrast, generating text-connecting
questions proved particularly difficult, with an ac-
curacy of only 24.1%. This pattern of generation
difficulty aligns with the challenges faced by hu-
man experts (co-authors) when writing the training
examples. We also find that 34.8% of the generated
questions were factual or literal, requiring little
inference. Moreover, GPT-4o provided adequate
reasoning for only 38.9% of the items. This finding
may explain the lack of performance gains when
moving from standard prompting to CoT prompt-
ing. While prior work has shown that adding struc-
tured rationales can improve the accuracy of multi-

hop question generation (Säuberli and Clematide,
2024), we believe our task poses a more challeng-
ing test of an LLM’s reasoning ability.

Automatic item generation with human evalua-
tion ensures the quality of diagnostic RC items.
From an application standpoint, we also exam-
ined how closely the distribution of inference types
in the generated items resembled that of human-
written items from our operational RC item bank.
Interestingly, our analysis, shown in Figure 6, re-
veals that the overall distribution of inference types
in the LLM-generated items closely matches that of
our operational RC item bank. This means whereas
GPT-4o failed to consistently produce individual
items targeting specific inference types, the collect
of items it generated somehow resembles the distri-
bution of item types in our existing item pool. With
some expert review, most of these items are suitable
to use. Understanding the strengths and limitations
of current LLM performance is important, partic-
ularly if we aim to rely on human evaluation to
ensure quality and safety. The generation process
is considerably more scalable than relying on hu-
man experts to write items manually. Despite cur-
rent limitations, LLM-based item generation with
our newly developed taxonomy offers a promising
approach for educational applications.

6 Conclusion

This paper demonstrates our effort in leveraging a
large language model to generate inference-making
questions for a reading comprehension assessment.
We developed a taxonomy of bridging inference
questions based on existing literature and validated
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it with empirical data from an operational test. The
taxonomy focuses on three types of inferences:
pronominal bridging, text connecting, and gap-
filling. The taxonomy guided our manual creation
of example comprehension questions, which were
then used as training materials for GPT-4o to gener-
ate new items for the new passages. Our evaluation
indicates that although GPT-4o can produce accept-
able RC questions, its ability to generate questions
aligned with specific inference types was limited.
This limitation might stem from its limited capa-
bility in providing valid reasoning for the types
of inferences. These results highlight the critical
role of human evaluation when using LLMs for RC
question creation. We propose that combining auto-
matic item generation with human judgment offers
a promising path toward scalable, high-quality di-
agnostic RC assessments.

Limitations

We provide preliminary evidence for the potential
of GPT-4o in creating inference making reading
comprehension questions. The following limita-
tions should be addressed by future research.

We have a limited evaluation set. Our evaluation
relies on 10 expository passages (based on Sim-
ple Wikipedia), restricting the generalizability of
our findings to broader reading contexts or varied
educational materials. Future research should in-
corporate more passages and of different genres,
such as narratives.

We exclusively use GPT-4o. This study employed
only one LLM, GPT-4o, which may limit insights
into the potential effectiveness of other advanced
reasoning models. Given the challenge of this rea-
soning task, future research should explore addi-
tional models. Because more advanced models may
incur significantly higher costs, future research
should also consider the balance between perfor-
mance and affordability for an educational applica-
tion.

Unclear effectiveness of Chain-of-Thought
prompting. Our results show that generation qual-
ity improves with more example questions. How-
ever, our experiment does not show benefits from
CoT prompting. This unexpected finding may re-
sult from our limited number of training examples.
Future studies should expand the training data and
possibly utilize large datasets, such as SQuAD (Ra-
jpurkar et al., 2016) and FairytaleQA (Xu et al.,

2022). Future work should also explore more ef-
fective methods for integrating human-experts’ ra-
tionales into the question generation process and
explore how it affects the reasoning performance
of LLMs (Zelikman et al., 2022).

General item quality is a broad metric. Our main
goal is to generate RC items that target specific in-
ference types, so we grouped other aspects like
answer correctness and distractor plausibility un-
der a broad "General Item Quality" metric. Still,
there are important dimensions we didn’t separate
out—like item difficulty and whether it’s appropri-
ate for the target population. More specific metrics
could help pinpoint where generation errors happen
and how inference type and item difficulty might
interact.

Future work should focus on item evaluation in
real-world deployment. Our study did not include
pilot testing in real-world settings to evaluate how
the generated items perform with actual student
responses. Student response data would allow for
further examination of item bias, difficulty, and dis-
crimination—critical steps before using the items
for student scoring and making valid inferences
about their abilities (Yeatman et al., 2024). Us-
ing LLM-simulated student responses to evaluate
generated items is also an exciting direction that
could help reduce—but not replace—the need for
traditional item calibration (Zelikman et al., 2023;
Lu and Wang, 2024; Liu et al., 2025).

Ethics Statement

Our study goal is to leverage LLMs to develop scal-
able and effective RC assessments to align with
educational practice. We introduce a novel and
meaningful NLP task: generating RC questions
by inference type. While LLMs show promise for
item development, we emphasize the importance
of maintaining test security by avoiding training
models on operational test items, and by ensuring
the safety of content such as developmental appro-
priateness and the absence of problematic materi-
als. In addition to existing automatic benchmarks,
human evaluation by educational experts remains
essential for item quality. Though beyond our cur-
rent scope, we also highlight the need for ongoing
monitoring of the generated items to detect scoring
biases and ensure fairness in operational use.
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A Bridging Inference Examples

When we developed the taxonomy of bridging infer-
ence, we referred to a sample passage and a list of
example questions provided from Cain and Oakhill
(1999, p.495). Table 5 presents our analysis of the
given questions based on the taxonomy.

B Annotation Guidelines

To validate the newly developed taxonomy of bridg-
ing inference questions, we annotated an in-house
RC item bank. Annotation was done with regards
to the text and the questions including stem, key
and distractors (see details in Table 6).

C Prompts

We present examples of our few-shot prompting
design for pronominal bridging (Figure 3) text-
connecting (Figure 7) and gap-filling (Figure 8)
respectively. The rules are identical for both the
standard and CoT prompts; the only difference is
that CoT includes a text hint and reasoning in the
training examples (see blue highlight in the figure).
Accordingly, in the CoT condition, we expect the
output to include a text hint and reasoning along
with the generated questions.
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Reading Passage:

Debbie was going out for the afternoon with her friend Michael. By the time they got there they were
very thirsty. Michael got some drink out of his duffel bag and they shared that. The orange juice was
very refreshing. Debbie put on her swimming costume, but the water was too cold to paddle in, so
they made sandcastles instead.
They played all afternoon and didn’t notice how late it was. Then Debbie spotted the clock on the pier.
If she was late for dinner, her parents would be angry. They quickly packed up their things. Debbie
changed and wrapped her swimming costume in her towel. She put the bundle in her rucksack. Then
they set off for home, pedalling as fast as they could. Debbie was very tired when she got home, but
she was just in time for dinner.

Question Annotation

Literal information

Who did Debbie spend the af-
ternoon with?

The answer is in the first sentence. There is a partial paraphrase: "going
out for" vs. "spend".

Where was the clock? The answer is in the second sentence of the second paragraph.

Text-connecting inference

Where did Michael get the or-
ange juice from?

This requires bridging inference: drink = orange_juice. This is both a
referential and semantic link (hypernym: drink – hyponym: juice). Rec-
ognizing this link requires background knowledge and both components
are near each other in the text.

Where did Debbie put her
towel when she packed up her
things?

The answer is in sentences 5–6 of the second paragraph. This involves
recognizing a part-whole relationship (towel–bundle), which is an ad-
hoc, situational reference.

Gap-filling inference

Where did Debbie and
Michael spend the afternoon?

One component (afternoon) is in the text, but the location (the beach)
is not. It must be inferred as a plausible missing piece of the situation
model.

How did Debbie and Michael
travel home?

The text says "set off for home" (a paraphrase of "travel"). The mode of
travel is inferred from "pedalled", enriching the situation model.

Table 5: Analysis of a reading passage and associated reading comprehension questions with inference annotations.
The passage and questions are adapted from Cain and Oakhill (1999, p.495).

411



Dimension Options Note

Inference

Factual / Literal The answer is explicitly stated in the text, exactly matching
the question. No inference needed.

Pronominal Resolving pronouns (e.g., "Who does ‘he’ refer to?").

Pronominal
Bridging

Requires resolving a pronoun and using it as a cue to infer
the correct answer.

Text-
Connecting

Requires connecting two explicitly stated components,
typically using noun phrases.

Gap-Filling Involves filling in a missing but easily inferred piece of
information not directly stated in the text.

Vocabulary Tests the reader’s knowledge of word meanings.

Other Any other type, such as comparison or author intent.

Table 6: Annotation guidelines for the in-house item bank.
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Task: Given a passage, you are going to generate text-connecting inference questions. 

Follow these steps to answer the user queries.

Step 1 - find two concepts (primarily nouns or noun phrases) that are connecting AT LEAST 2 or 3 sentences, but their relationship is not 
explicitly stated. 
Please follow the rules:

a. The two concepts should not contain any same word. Incorrect example: "the Ocean" and "Pacific Ocean" share a word "Ocean". Correct 
example: "flowers" and "rose".
b. The two concepts should only exist in two different sentences. 
c. The second concept should not be a pronoun that explicitly refers to the first concept.
d. there are different possible subtypes of text-connecting you may find from the passage:

Subtype 1: Coreference without a pronoun nor repetition (share word): This refers to instances where two or three sentences are linked 
together by two noun phrases in the passage that refer to the same real-world entity.  Correct examples: “boys and girls” referring to 
“students” from the previous sentence, “manager” referring to the “CEO” from the previous sentence. Incorrect examples: “he” referring to 
“John” (as “he” is a pronoun), “the show” referring to “TV show” (because this is a repetition and they share the word “show”, unless there is 
more than one show described in the passage).

Subtype 2: Whole-to-part relation. For instance, “mom” refers to “parent”, “bride” can refer to the “wedding” from the previous sentence, 
and “walls” can refer to the “construction project” mentioned earlier.

Subtype 3:. implicit causal relation without a clue word

Subtype 4: events happen in the same time, etc. 

Step 2 - based on two concepts you have identified, generate a multiple-choice question with three distractors. The question should use 
the relationship between the two concepts as a hint to connect information between sentences. 

Step 3 - follow additional rules when writing the questions: 1) do not ask a question that requires extra background knowledge beyond this 
identified text-connecting relationship to answer.  2) do not ask a question that directly asking "what does XX refer to". 3) lightly paraphrase 
the question and option without introducing new inference.  4) do not write correct answer longer than the distractors. 

Step 4 - iterate this process for 2 times to get 3 different questions. Do not force to generate more questions if you cannot find more places. 

Step 5 - Output by following the exact format as examples so that it can be directly converted to csv format (do not have any title like 
(**questions**). 

Here are some example passages and example questions:

***Given passage:*** 
 A greenhouse is a building where plants such  as flowers and vegetables are grown. It usually  has a glass …

 ***Examples:*** 
PassageName\Inference Type
\Text Hint\Reasoning
\Stem\Option 1\Option 2\Option 3\Option 4\Key

Greenhouse\text-connecting bridging

\Many vegetables and flowers are grown in greenhouses in late winter and early spring, when it is still too cold to grow plants outside. 
Then these plants move into the soil outside as the weather warms up.

\"""these plants"" links to ""many vegetables and flowers"" as a part to whole relation in the previous sentence."
\When do greenhouse vegetables and flowers move into the soil outside?\when the weather warms up\when heating is not working\
in early spring\when there is no rain\1…

***New Passage:***
Parallax is the perceived change in position of an object seen from two different places …

Figure 7: Few-shot prompting using Chain-of-Thought for generating text-connecting inference.
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Task: Given a passage, you are going to generate gap filling inference questions. This question asks for a piece of information 
outside of the text, i.e. general knowledge, with information in the text to fill in missing details in the passage. 

Follow these steps to answer the user queries.

Step 1 -  Find a concept in the passage that you think general background knowledge will be required to comprehend the text. There are three possible 
subtypes:
Subtype 1: two or three sentences are connected without a pronoun but by a common sense that is not stated in the passage.
Subtype 2: infer the result from a given situation based on a stated causal relationship. for example :The passage implies that if ...., then _____. The result 
should not appear in the passage.
Subtype 3: to give an example based on the characteristics inferred from the text. for example: Which of the following could be an example of ____. Note 
that the example should not appear in the passage.

Step 2 - generate a multiple-choice question with three distractors. 

Step 3 - follow additional rules when writing the questions: 1) do not ask a question that can be directly answered from the passage. 2) do not ask a question 
that directly asking "what does XX refer to". 3) do not write correct answer longer than the distractors. 4) the distractors should be incorrect and should not 
be confusing. 

Step 4 - iterate this process for 2 times to get 3 different questions. Do not force to generate more questions if you cannot find more places. You don't need 
to generate each subtype. 

Step 5 - Output by following the exact format as examples so that it can be directly converted to csv format (do not have any title like (**questions**). 

Here are some example passages and example questions:

***Given passage:*** 
 A greenhouse is a building where plants such as flowers and vegetables are grown. It usually has a glass …

 ***Examples:*** 
PassageName\Inference Type
\Text Hint\Reasoning
\Stem\Option 1\Option 2\Option 3\Option 4\Key

Greenhouse\Gap-filling
\Also, greenhouses can get very hot from the sun's heat, so gardeners have to make sure that it does not get too hot for the plants. 
Greenhouses usually have vents that can be opened to let excess heat out. Some greenhouses have electric exhaust fans that automatically 
turn on if it gets too hot in the greenhouse. A greenhouse is the place for tender plants such as tomatoes, cucumbers, and aubergines. 
\Infer the result from a given situation based on a stated causal relationship  

\What is likely to happen if a greenhouse fails to control the heat in summer?\The greenhouse will grow more plants.\The greenhouse will 
become smaller.\Tender plants inside the greenhouse will not grow well.\Less gardeners will be needed to water the plants.\3

***New Passage:***
Parallax is the perceived change in position of an object seen from two different places …

Figure 8: Few-shot prompting using Chain-of-Thought for generating gap-filling inference.
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Abstract

Aligning Learning Objectives (LOs) in course
descriptions with educational frameworks such
as Bloom’s revised taxonomy is an important
step in maintaining educational quality, yet it
remains a challenging and often manual task.
With the growing availability of large language
models (LLMs), a natural question arises: can
these models meaningfully automate LO clas-
sification, or are non-LLM methods still suffi-
cient? In this work, we systematically compare
LLM- and non-LLM-based methods for map-
ping LOs to Bloom’s taxonomy levels, using
expert annotations as the gold standard. LLM-
based methods consistently outperform non-
LLM methods and offer more balanced dis-
tributions across taxonomy levels. Moreover,
contrary to common concerns, we do not ob-
serve significant biases (e.g. verbosity or po-
sitional) or notable sensitivity to prompt struc-
ture in LLM outputs. Our results suggest that
a more consistent and precise formulation of
LOs, along with improved methods, could sup-
port both automated and expert-driven efforts
to better align LOs with taxonomy levels.

1 Introduction and Motivation

Learning Objectives (LOs) define the knowledge
and competencies students are expected to acquire
through educational activities, for example: “By
the end of this course, students will be able to iden-
tify examples of symbolism in short stories and
incorporate symbolism in their writing” (from the
description of the course of literary studies). These
objectives provide a clear and measurable frame-
work for educators to evaluate student progress
and align course instruction with desired learning
outcomes (Mager and Peatt, 1962; Rodriguez and
Albano, 2017; Fink, 2003).

LOs are articulated in course descriptions, which
outline instructional activities, intended outcomes,
and assessment methods for the course. The devel-
opment of LOs follows the “Theory of Constructive

Alignment” (Biggs, 1996), ensuring that teaching
and assessment are directly aligned with the LOs.
This alignment allows educators to create a coher-
ent structure where every aspect of the course is
designed to support students in achieving the de-
sired outcomes (Wang et al., 2013b; Jaiswal, 2019).

Among various educational frameworks used for
constructive alignment, Benjamin Bloom’s taxon-
omy (Bloom et al., 1956), later revised by Ander-
son and Krathwohl (2001), is widely recognized
in higher education to guide the development and
assessment of LOs mentioned in the course descrip-
tion. The revised version defines six hierarchical
cognitive levels—Remember, Understand, Apply,
Analyze, Evaluate, and Create—which serve as a
guide for developing and assessing LOs. Bloom’s
taxonomy provides a structured approach to catego-
rizing LOs and ensures that they are appropriately
mapped to cognitive levels and aligned with the
intended educational goals (Arafeh, 2016; Dubicki,
2019). Furthermore, it facilitates the alignment
of classroom assignments and exams with the in-
tended cognitive levels (Sterz et al., 2019; Biggs
et al., 2022).

The mapping of LOs and Bloom’s taxonomy lev-
els is performed by educators, curriculum design-
ers, and assessment centers as part of quality assur-
ance processes, such as course accreditation (Rand-
hahn and Niedermeier, 2017; Kultusministerkon-
ferenz, 2017). However, manual LO mapping can
be time consuming, labor intensive, and error-prone
(Biggs, 1996; Reeves and Hedberg, 2003; Hussey
and Smith, 2008). Large language models (LLMs)
have shown promising capabilities in similar tasks,
such as data annotation and classification (see e.g.,
Tan et al., 2024b) that offer promising potential to
automate this process (Wang et al., 2024; Xu et al.,
2024). Yet, their reliability and robustness remain
open questions. In particular, they can be sensitive
to prompt formulation and other design choices,
and exhibit bias such as position bias, where out-
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puts are influenced by their placement in a list, and
verbosity bias, where longer responses are favored,
or a tendency to generate rationales that align with
previously provided labels, which may affect the
reliability of their outputs(Shen et al., 2023; Koo
et al., 2023; Wu and Aji, 2023; Stureborg et al.,
2024; Chen et al., 2024; Tan et al., 2024a; Choshen
et al., 2024). Moreover, it remains unclear whether
LLMs offer a substantial advantage over non-LLM
methods in this setting, or whether simpler, more
cost-effective methods may suffice.

This work investigates the effectiveness of both
LLM- and non-LLM-based techniques for automat-
ing LO-to-taxonomy mapping, and examines how
prompt and task design influence LLM behavior.
The key research questions are:

• RQ 1: How do LLM-based and non-LLM
methods compare in effectiveness when map-
ping LOs to Bloom’s taxonomy levels?

• RQ 2: To what extent do experiment design
choices influence the performance of LLM in
mapping LOs, and do these variations reflect
model bias or sensitivity to task framing?

2 Background and Related Work

2.1 Bloom’s Revised Taxonomy
Bloom’s cognitive process dimension defines six
ascending levels of complexity: (Anderson and
Krathwohl, 2001). Remembering involves recall-
ing or recognizing knowledge from memory, such
as definitions or facts. Understanding entails con-
structing meaning by interpreting, summarizing,
and explaining information. Applying involves
using learned material in new situations, often
through models or simulations. Analyzing requires
breaking concepts down into parts to understand
their relationships. Evaluating involves making
judgments based on criteria, exemplified by cri-
tiques or recommendations. Lastly, Creating is
about generating new ideas or products by reorga-
nizing elements in innovative ways, making it the
most complex cognitive process. Each taxonomy
level comes with a selection of verbs that define
the expected learning outcomes. Examples can be
found in Table 3 in the Appendix.

2.2 Pre-LLM Approaches to LO Mapping
Before LLMs, researchers explored methods such
as keyword dictionaries (Chang and Chung, 2009),
TF-IDF-based classifiers (Echeverría et al., 2013),

and supervised machine learning models (Waheed
et al., 2021; Mohammed and Omar, 2020). Most
of these efforts focused on short texts such as exam
or discussion questions, and while models showed
promise at lower cognitive levels like “Remember,”
performance dropped significantly for higher-order
categories. A notable large-scale study by Li et al.
(2022) introduced a dataset of over 21,000 manu-
ally labeled learning objectives and evaluated both
traditional and BERT-based classifiers, reporting
strong performance but relying on single-skill LOs.

2.3 LLMs for LO Mapping & Alignment in
the Educational Domain

LLMs are increasingly being integrated into ed-
ucational contexts. Research assessing GPT-4’s
mastery according to Bloom’s taxonomy in an-
swering psychosomatic medicine exam questions
demonstrated that while the model yielded an av-
erage score of 92 % in high-order cognitive lev-
els, it still encounters difficulties at low-order cog-
nitive levels such as “Remember” and “Under-
stand,” where it sometimes fails to recall specific
details or correctly interpret conceptual relation-
ships (Herrmann-Werner et al., 2024).

Al Ghazali et al. (2024) conducted a case study
examining ChatGPT’s effectiveness in teaching
chemistry to eleventh-grade students, employing
Bloom’s taxonomy to categorize LOs and evaluate
student performance in answering course-related
questions. They found that, although the model
performed well in knowledge recall and reason-
ing skills, it struggled with maintaining student
engagement and achieving comparable outcomes
to traditional teaching methods. Meanwhile, Maity
et al. (2024) evaluated the efficacy of GPT-4 Turbo
in generating educational questions aligned with
Bloom’s taxonomy, revealing that while the model
can generate questions for high-order thinking
skills, its effectiveness varies between different
cognitive levels, and the model demonstrates diffi-
culties in crafting high-quality questions at more
advanced taxonomy levels, such as “Create”.

Our task of mapping LOs to Bloom’s taxonomy
is a multi-label classification problem. However,
unlike standard classification tasks typically ad-
dressed with LLMs (see, e.g., Niraula et al., 2024;
Reddy et al., 2024; Li et al., 2024), our problem
poses unique challenges that go beyond standard
tasks. While classification tasks typically rely on
detecting surface-level features or patterns in the
text, Bloom’s taxonomy requires an in-depth se-
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mantic understanding of the cognitive processes
implied by the LO. For example, distinguishing
between “Understanding” and “Applying” involves
subtle differences in the LO’s intents, such as
whether the task involves interpreting information
versus using it in a new context. Furthermore, the
hierarchical nature of Bloom’s taxonomy adds an
additional layer of complexity, as higher-order cate-
gories (e.g., “Evaluating” or “Creating”) often over-
lap with or build upon lower-order processes. This
requires not only a fine-grained contextual analysis,
but also a deep understanding of the underlying
pedagogical framework.

3 Task and Evaluation

To create a gold standard dataset of LOs mapped to
the corresponding levels of Bloom taxonomy, we
collected LOs from university course descriptions.
Given an LO like “Students should be able to recite
the key principles of Newton’s laws of motion and
analyze a given set of data to determine how well
it demonstrates Newton’s laws in action” (from a
Physics course), experts in pedagogy might map
this LO to both “Remember” and “Analyze” lev-
els (the data collection is described in Section 4).
These expert mappings were used to create the gold
standard dataset, and we report Krippendorff’s α
(Krippendorff, 2004) to measure agreement.

We then evaluate the reliability of automatic
methods in producing similar LO mappings as the
experts, using both non-LLM (as baseline) and
LLM-based methods. We compare the results from
both LLM and non-LLM methods against the gold
standard annotations and report the weighted F1
score as well as the different frequency distribu-
tions for each taxonomy level produced by the dif-
ferent methods.

The evaluation of LLM-based methods was addi-
tionally aimed at testing their robustness. We there-
fore present the LLMs with different formulations
of the task to examine whether any biases manifest
during the LO mapping process. With this goal, we
compute agreement and correlations between the
answers provided by LLM-based methods, model
confidence (by analyzing the log probabilities re-
trieved from the model), and semantic similarity
measures between the models’ generated rationales
to assess their consistency.

Subject No. Courses

Introduction to Psychology 4
Gerontology 4
Ancient Greek History & Literature 2
Literary Theory 6
Climate Change 4
Microeconomics 4
Introduction to Linguistics 4
Introduction to Anthropology 2
Animal Behaviorism 1
Blockchain 2
Political Philosophy 2

Table 1: Overview of collected course descriptions
across various academic subjects. Each course descrip-
tion contains one learning objective section.

4 Data Acquisition

4.1 Data Collection and Preprocessing
We collected a total of 35 LOs from course descrip-
tions1 from the websites of German universities,
comprising 25 bachelor-level and 10 master-level
course descriptions. These descriptions present a
diverse range of academic subjects and degree lev-
els, as shown in Table 1. Even though the language
of instruction was English, some of the course de-
scriptions were only available in German.

We focus on the “learning objective” section of
the course descriptions, which also exist interna-
tionally under different names such as “learning
outcomes” or “course objectives”. We translated
the course objectives from German into English
using the DeepL API2 and asked a bilingual per-
son to revise them to ensure the correctness of the
translations. The pre-processing of the collected
data involved basic text-cleaning tasks to ensure
consistent formatting.

4.2 Expert Annotation
We recruited five experts in higher education ped-
agogy to annotate the LOs. Each expert was pro-
vided with a combination of course titles and the
corresponding LOs, along with the six levels of
Bloom’s taxonomy. Their task was to identify and
select all relevant taxonomy levels as shown in Fig-
ure 1 (full task instructions are reported in Figure 3
in the Appendix). We collected demographic infor-
mation to evaluate the participants’ expertise and
familiarity with Bloom’s taxonomy. All experts
reported a high level of familiarity, with one with

1The dataset including the 35 LOs and their annotations
will be publicly released to support further research in this
domain.

2https://www.deepl.com/
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1–3 years of experience, two having 3–6 years of
experience, and two having more than 6 years of
experience.

Figure 1: Sample task presented to expert annotators
from the questionnaire.

We report Krippendorff’s α as a measure of inter-
annotator agreement, calculated across all Bloom’s
taxonomy levels for the entire set of LOs. Given
one LO and a pair of annotators, we define as cases
of agreement for each level all cases where both
annotators either selected that level or did not select
it, and as cases of disagreement all cases where one
annotator did select that level but the other one did
not. We obtained an α of 0.76. While this reflects a
reasonably high level of agreement, one annotator
noted a challenge with certain LOs:

“Many LOs focus more on the learning
process itself (e.g., imparting founda-
tional knowledge) rather than describing
the competencies students should have
achieved by the end of the learning unit.
As a result, some of the commonly used
verbs were not applied, making it some-
what difficult for me to classify them
within the taxonomy levels. I was also
uncertain about how to categorize the
verb ‘reflect’.”

This issue is evident in the example, “Knowledge
of basic literary categories and methods of inter-
pretation along with a familiarity with fundamental
questions of Greek literary history to deal criti-
cally with scientific questions and present their own

scientific results.” (Greek Literature I). While all
annotators agreed on “Remember”, four selected
“Analyze” and “Create”, three selected “Evaluate”,
two selected “Understand” and “Apply”. For com-
parison, a literature-related LO from the dataset
introduced by Li et al. (2022) reads: “A basic under-
standing of the main periods, styles, genres, intel-
lectual preoccupations and socio-historical trends
in German literature from the late eighteenth cen-
tury to the early nineteenth century.” This was
labeled as “Understand”, highlighting a key distinc-
tion that; although small in quantity, our dataset
includes more abstract, multi-layered objectives
that often span multiple levels of Bloom’s taxon-
omy, even challenging experts to reach consensus.

Finally, to create the gold standard annotations,
we selected for each LO the taxonomy levels where
at least three annotators agreed on a taxonomy level.
The distribution of selected taxonomy levels in the
gold standard labels is shown in Figure 2.

5 Automatic Methods for Mapping LOs
to Bloom’s Taxonomy Levels

5.1 Non-LLM Mapping Methods

For non-LLM methods, we made use of regular
expressions (regex), fuzzy matching3, the SpaCy
library (Honnibal et al., 2020), and semantic sim-
ilarity. We used Bloom’s identified set of measur-
able verbs that are linked to each taxonomy level to
help the LO mapping process (Bloom et al., 1956;
Anderson and Krathwohl, 2001), as shown in Table
3 in Section A of the appendix.

Figure 2: Distribution of gold standard annotations
across taxonomy levels.

As an initial step, we applied regex and fuzzy
matching to perform simple string matching of
these verbs to their corresponding taxonomy lev-
els. Every subsequent step aimed to address the
limitations of the previous approach. Next, we
used spaCy’s Part-of-Speech (POS)4 tagging and

3https://pypi.org/project/fuzzywuzzy/
4https://spacy.io/usage/linguisticfeatures#pos-tagging
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dependency parsing5 capabilities. We began by
segmenting the LOs into smaller sentence frag-
ments using spaCy’s Sentencizer6, which produced
159 segments from the 35 collected LOs. These
segments were not only used for spaCy and se-
mantic similarity methods but also all LLM-based
approaches. POS tagging was applied to identify
verbs in each segment, while dependency parsing
provided additional grammatical context, improv-
ing the accuracy of verb identification by analyzing
sentence structures. Following this, we applied
regex to match the identified verbs against a pre-
defined list of Bloom’s Taxonomy verbs for LO
mapping.

Finally, we used semantic similarity tech-
niques, comparing LOs directly with detailed de-
scriptions of Bloom’s taxonomy levels, as outlined
in Anderson and Krathwohl (2001), instead of rely-
ing solely on verb lists. The Sentence-BERT model
(Reimers and Gurevych, 2019)7 was employed to
measure semantic similarity between LO segments
and the taxonomy-level descriptions. For each seg-
ment, the model calculated similarity scores to de-
termine the best match.

5.2 LLM Mapping Methods
We utilized OpenAI’s GPT-4 model8 (OpenAI,
2023) and treated the model as an annotator. To
prompt the model, we were inspired by tasks typi-
cally presented to human annotators, including mul-
tiple choice selection, pairwise comparison, best–
worst scaling, binary annotation, ranking, and rat-
ing (Wang et al., 2013a; Bragg et al., 2018; Huynh
et al., 2021). We presented a variety of tasks: multi-
ple choice selection with paraphrase prompting and
rationale generation (MCS), pair-wise comparison
(PWC), best-worst scaling analysis (BWS) (Cohen,
2003; Louviere et al., 2015), binary annotation us-
ing a yes/no check with confidence analysis (BCA),
and rating using point-wise relevance rating with
confidence analysis (RCA), which is described in
the subsequent paragraphs. Refer to Appendix Sec-
tion D for the prompts used for each method.

To perform MCS, we collected paraphrases
of Bloom’s taxonomy levels from educational re-
sources (see Appendix Section C), resulting in four

5https://spacy.io/usage/linguisticfeatures#dependency-
parse

6https://spacy.io/api/sentencizer
7https://www.sbert.net/docs/usage-

/semantic_textual_similarity.html
8The temperature was set to zero for all LLM-based meth-

ods.

paraphrased versions for each level in addition to
the original descriptions from Anderson and Krath-
wohl (2001). Paraphrases aimed at ensuring that
the model’s selection was guided by the conceptual
meaning of each taxonomy level, rather than the
specific phrasing of the taxonomy descriptions. We
applied MCS to the segmented LOs described in
Section 5.1, providing each segment along with the
course title and one paraphrased version of Bloom’s
taxonomy level descriptions for each level. The
model was prompted to select the relevant category
out of the six taxonomy levels, and their descrip-
tions were provided as choices. We also asked
the model to provide a rationale, with the specific
prompt sequence varying according to the condi-
tions outlined below:

• Condition A: isolates the task of rationale
generation and the multiple-choice selection
of the relevant taxonomy levels.

• Condition B: The model first generated a ra-
tionale and then selected the relevant taxon-
omy levels based on that rationale.

• Condition C: The model was prompted to
choose relevant taxonomy levels first and then
generate a rationale based on its choices.

We employed the same prompt for all condi-
tions but altered the task sequence in Conditions
B and C, and separated rationale generation from
multiple-choice selection in Condition A Then, we
collected and normalized responses for each condi-
tion, removing any non-relevant values. Segments
of each LO were aggregated back into the original
LO, compiling selected taxonomy levels into a list
with removed repetitions.

Moreover, we compared PWC and BWS results.
PWC involved prompting the model to choose
from two taxonomy levels —which could still be
influenced by position bias, despite our efforts to
mitigate it by varying the sequence. We generated
unique pairs of taxonomy levels combined with
segments from the LOs. With 6 taxonomy levels,
we created 30 unique pairs (15 [A,B] and 15 [B,A]
pairs) for all 159 segments, leading to 4770 pairs
for evaluation. For BWS, we created 3-tuples from
the 6 taxonomy levels, resulting in 20 unique 3-
tuples per segment and 3180 distinct 3-tuples in
total. We prompted the LLM to select the most
and least relevant taxonomy level from the tuple.
For both methods, scores were calculated based on
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Category Method F1 score

non-LLM

regex 0.52
fuzzy matching 0.54
spaCy 0.45
semantic similarity 0.50

LLM

MCS (condition A) 0.67
MCS (condition B) 0.68
MCS (condition C) 0.68
PWC 0.60
BWS 0.69
BCA 0.66
RCA (short) 0.66
RCA (long) 0.68

Table 2: Weighted F1 scores for non-LLM and LLM
methods.

the frequency of choices. We then identified the
highest-scoring taxonomy level as the most relevant
for each segment and aggregated across sentences
to determine the most relevant levels for each LO.

Finally, the BCA method involved a binary rele-
vance evaluation of each taxonomy level for the LO
segments, whereas the RCA method required the
model to rate the relevance of each taxonomy level
on a scale from 1 (least relevant) to 5 (most rele-
vant). Additionally for both methods, we estimated
the model’s confidence in its decision by collecting
log probabilities from the “logprobs” parameter of
OpenAI’s Chat Completions API9. By calculating
linear probabilities from these logprobs, we eval-
uated the model’s confidence levels, with higher
scores indicating greater confidence. For BCA, we
only collected the taxonomy levels where the linear
probability was over 90 % for “Yes” answers.

To investigate verbosity bias in the RCA task,
we calculated the number of tokens in the five para-
phrases using spaCy’s tokenizer10. We identified
the longest (1014 tokens) and shortest (775 tokens)
paraphrases and prompted the model to rate the
taxonomy levels. Logprobs were collected for both
rating rounds to assess the impact of paraphrase
length on ratings. For this analysis, we only con-
sidered taxonomy levels for which the model gave
a rating of “5 (most related)”.

6 Results

6.1 Comparison with Expert Annotations

Weighted F1 scores for non-LLM and LLM meth-
ods are presented in Table 2. An example of the
mapping result can be found in Figure 11 and Table

9https://cookbook.openai.com/examples/using_logprobs
10https://spacy.io/api/tokenizer

4 in the appendix.

Non-LLM Methods: As a first comparison with
the gold standard, we compared the frequency of
the selected taxonomy levels (Figure 12 in the Ap-
pendix). This frequency analysis shows a greater
consensus between the human annotation and the
other methods only for the “Evaluate” level, with
high variability in other categories. This could be
attributed to the fact that evaluation often involves
more objective criteria and well-defined standards,
such as assessing the validity of arguments or the
accuracy of conclusions, which are less prone to
interpretation compared to other taxonomy levels.
Across all methods, “Apply” is the most frequently
selected taxonomy level, while in general, the re-
sults show a large variance between the methods.

Regex and fuzzy matching achieved slightly
higher F1 scores (0.52 and 0.54) than spaCy (0.45)
due to their wider word capture, including nouns
and adjectives, which inflates word frequency and
taxonomy levels. spaCy, which focuses on verbs,
is more selective and thus may miss some verbs,
resulting in fewer mappings and lower F1 scores.
The semantic similarity method (F1 = 0.50) offers
flexible matching by emphasizing descriptions but
can be less precise, leading to skewed results com-
pared to human annotations.

LLM Methods: The F1 scores for LLM meth-
ods demonstrate better performance than non-LLM
methods with BWS achieving the highest F1 score
(0.69). The observed improvements highlight the
potential of LLM-based approaches but also em-
phasize the need for deeper investigation into their
consistency and reliability.

The frequency analysis (Figure 13 in the Ap-
pendix) reveals a more uniform distribution of tax-
onomy levels across the LLM methods when com-
pared to non-LLM methods. However, when com-
pared to the gold standard, LLM methods show a
higher frequency of taxonomy levels across most
categories. The exception is the “Remember” level,
where the gold standard annotations have a higher
value, though the difference is not substantial. Con-
versely, the “Create” level exhibits a significant
variation: the gold standard has a markedly lower
frequency (3) compared to LLM methods (Avg.
29). This indicates a notable discrepancy in how
“Create” is represented in the gold standard versus
the other methods.

The frequency distributions for the different
methods are reported in Figures 14 (MCS), 15
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(PWC), 16– 17 (BWS) in the Appendix.

6.2 Consistency (LLM-Methods only)

MCS For the MCS method, we were interested in
evaluating how consistent the rationales produced
by the model were across different conditions and
paraphrases of the taxonomy levels.

We used Sentence-BERT to calculate semantic
similarity scores for the rationales provided for
each learning objective, comparing across various
paraphrases. The overall similarity score across all
paraphrases was 0.92, with Condition A achieving
a score of 0.94, while Conditions B and C each
scored 0.92. These results indicate that the para-
phrased wording has minimal influence on the out-
comes, suggesting almost no bias for all conditions
and paraphrases. For more details, refer to Table 5
in the Appendix.

PWC For the PWC method, we wanted to eval-
uate if the model showed a preference for levels
in a specific position. We observed an intra-pair
consistency of 86.79 % between the two different
versions of the same item with a Cohen’s Kappa
(Cohen, 1960) of 0.84. The model’s choices were
categorized into three types:

• “Left”: The model selected the taxonomy
level presented first in the pair.

• “Right”: The model selected the taxonomy
level presented second in the pair.

• “None”: The model either did not provide a
clear selection or returned a taxonomy level
that did not match any of the expected options.

Among 159 segments, the distribution between
“Left” (153 instances) and “Right” (154 instances)
was nearly equal, excluding “None” responses and
those not corresponding to the taxonomy levels,
and a χ2-test (Pearson, 1900) yielded a p-value of
0.95, suggesting no statistically significant posi-
tional bias in the model’s choices, meaning that po-
sition does not significantly influence the model’s
decision.

BWS For the BWS method, we were interested
in evaluating how consistent the choices for the
best and worst items in the 3-tuple were. After
performing Cronbach’s α as a proxy for internal
agreement within item triplets, which we used to
estimate the internal consistency of the model’s
preference orderings (Cronbach, 1951). Results

showed that the taxonomy levels like “Analyze”
and “Understand” exhibit high consistency (0.84
and 0.69, respectively), indicating strong agree-
ment in their classification. See Tables 6and 7 for
further qualitative in the Appendix.

BWS–PWC agreement The rank correlation be-
tween the BWS and PWC results reveals a lack of
substantial agreement between the two approaches.
The Spearman rank correlation coefficient (Spear-
man, 1904) is 0.169 with a p-value of 0.749, indi-
cating a very weak and statistically insignificant
positive correlation. Similarly, Kendall’s τ corre-
lation coefficient (Kendall, 1938) is 0.086 with a
p-value of 0.822, further suggesting minimal and
non-significant agreement between the rankings
produced by the two methods. Thus, these results
suggest that the BWS and PWC methods do not
produce comparable results, which is not entirely
surprising, as the two methods differ in their ap-
proach to evaluating taxonomy levels.

BCA The BCA method yielded strong overall
confidence in the model’s decisions, with an aver-
age linear probability of 0.956. In the subset of
predictions where the model exhibited low confi-
dence (with linear probabilities between 50 % and
60 %), the model produced “Yes” responses 56
times and “No” responses 44 times. Interestingly,
most of these low-confidence predictions are associ-
ated with high-order taxonomy levels like “Create”
and “Analyze,” suggesting that the model is less
confident when handling more complex cognitive
tasks. Moreover, the analysis of average confidence
across taxonomy levels reveals that the model ex-
hibits the highest confidence in its predictions for
“Evaluate” (98.43 %) and “Create” (96.59 %). In
contrast, while still high, the confidence for “Un-
derstand” (93.28 %) is slightly lower, reflecting the
challenges in these areas. See Appendix Tables 8–
10 in Section H.

RCA Finally, for the RCA method, we calcu-
lated the average linear probability for the short
and long descriptions, which were 85.76 % and
83.03 % respectively, with minimum values of 37 %
and 43 %. This indicates almost no difference in
the model’s decisions between the short and long
descriptions, with the average probability for the
shorter description being slightly higher. Our re-
sults suggest no substantial verbosity bias, which
may be attributed to the minimal difference in token
length and the consistent use of associated verbs
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with the taxonomies in both the shortest and longest
paraphrases. See Figures 18– 19 in the Appendix
Section I.

7 Discussion

Non-LLM Methods: While prior research of-
ten assumes LLMs to outperform traditional NLP
approaches, we include non-LLM baselines not
merely for benchmarking but to reveal the types
of errors these simpler systems make—especially
regarding verb ambiguity and lack of contextual
awareness. This diagnostic perspective is critical
for understanding what specific challenges remain
unsolved even by LLMs. Regex and fuzzy match-
ing struggled with morphological and contextual
variability (e.g., “design” fitting multiple taxonomy
levels), while spaCy’s reliance on shallow parsing
made it error-prone for compound objectives or
those relying on deverbal nouns. Sentence-BERT,
although semantically flexible, failed to resolve in-
ferential tasks, such as distinguishing whether “crit-
ical thinking” corresponds to “Analyze” or “Eval-
uate.” These shortcomings underscore the limits
of surface-level pattern recognition and basic lexi-
cal and semantic-level similarity in tasks requiring
pedagogical reasoning.

LLM Methods: LLMs showed better ability
to parse complex and implicit learning objec-
tives, yet their strengths were uneven across tax-
onomy levels. Consistency analyses revealed high
agreement for levels like “Understand” and “An-
alyze”—potentially due to clearer linguistic cues.
However, lower agreement and confidence were
found in “Remember” and “Create,” suggesting dif-
ficulty in anchoring either very low-level recall or
high-level generative tasks. This could reflect both
model limitations and ambiguities in how LOs are
written by instructors.

The PWC and RCA methods further confirmed
the model’s capacity to make consistent selections
across different input formats, highlighting its relia-
bility in both comparative and scalar evaluation
tasks. In BCA, however, decreased confidence
in “Create” and “Analyze” responses aligns with
the annotation difficulties experts also expressed,
pointing to shared challenges between human and
machine reasoning in higher-order cognitive do-
mains. For the BCA method, the model generally
exhibited more difficulty with high-order taxonomy
levels such as “Create” and “Analyze”. The MCS
approach showed no significant differences in the

consistency of the rationale generated by the model
were observed across different conditions. Com-
pared to the gold standard, the observed discrep-
ancies in the representation of “Create” highlight
the need for more robust modeling and annotation
practices for both ends of the taxonomy spectrum.

Bias and Robustness: Despite concerns raised
in previous work regarding LLM susceptibility
to framing-related biases, our results suggest that
GPT-4 demonstrates a notable degree of robust-
ness—though the presence of bias in other LLMs
cannot be ruled out by this experiment alone.
Specifically, we found no significant positional bias
in pairwise comparisons (PWC). The nature of the
taxonomy levels used in our study may have mit-
igated positional bias due to the clear distinctions
between taxonomy descriptions. We also found
no meaningful evidence of verbosity bias when
comparing short and long taxonomy descriptions
(RCA), which may be attributed to the minimal
token length differences in the descriptions used.
The model’s decisions remained stable across para-
phrased prompts (MCS), further supporting its con-
sistency. While not immune to uncertainty, particu-
larly in assigning high-order categories like “Cre-
ate”, the model’s behavior appears more influenced
by the inherent complexity of certain taxonomy
levels than by superficial prompt features. This
contrasts with non-LLM methods, which exhibited
more deterministic errors stemming from lexical
surface features and lacked the inferential flexibil-
ity.

8 Conclusion

We analyzed various methods for mapping LOs to
Bloom’s taxonomy levels, focusing on expert anno-
tations compared to non-LLM and LLM techniques.
non-LLM methods struggled with verb matchings
and context-specific mappings. LLM methods gen-
erally demonstrated better performance and more
uniform results. However, further improvement is
necessary to address the challenges of LLM meth-
ods in automating the LO mapping process. Over-
all, we found that the LLM results from GPT-4
show minimal evidence of prompt-induced bias.
These findings suggest that LLMs hold consider-
able promise in streamlining curriculum alignment
tasks in educational settings, although careful de-
sign and validation remain essential to ensure ped-
agogical reliability.
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Limitations

Firstly, utilizing LLMs, particularly closed-source
models such as OpenAI’s GPT-4, can be costly
and lack transparency. Methods like BWS and
PWC require multiple generations per item, which
can become expensive at scale. Additionally,
LLMs are susceptible to biases, including posi-
tion bias, verbosity bias, and rationale-conditioning
bias—where generating a rationale after a label
may reinforce prior decisions. While our results
did not show strong effects from these biases, we
cannot entirely rule out their influence, especially
since our study only examined GPT-4.

This reliance on a single LLM is a key limitation.
GPT-4 was selected due to its strong performance
and availability, but our findings may not generalize
across other models. Future studies should repli-
cate this analysis using different LLMs to assess
robustness and uncover potential model-specific
biases.

We also observed substantial but imperfect inter-
annotator agreement among experts, reflecting the
inherent ambiguity and interpretive nature of map-
ping LOs to Bloom’s taxonomy. This suggests that
ambiguities may originate from how LOs are writ-
ten, and that more consistent instructional design
practices could help. Mapping should ideally be
integrated early in the curriculum development pro-
cess, with educators selecting or revising LOs in
alignment with desired cognitive levels.

Future work should also incorporate larger and
more diverse datasets to enable broader generaliza-
tion and better assessment of model behavior, and
extend the study to additional languages such as
German, whose linguistic structures may present
unique challenges for LO classification.

Finally, while our evaluation focused on quan-
titative measures, integrating qualitative assess-
ments—such as expert think-aloud protocols or
post-task interviews (Creswell, 2009)—could offer
deeper insights into both human and model rea-
soning. We encourage future research to explore
hybrid workflows where LLMs and human experts
collaborate to improve both mapping accuracy and
pedagogical relevance.

Ethics Statement

To conduct human evaluations, we recruited five
experts in higher education pedagogy, who were
employed by one of our institutions and did not
receive additional payment for the task. They took

part in the annotations voluntarily and could with-
draw at any time. We did not collect personal or pri-
vate information from the participants and ensured
the confidentiality and anonymity of the annotators’
responses.
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A Verbs Associated with Bloom’s Taxonomy Levels

Remember Understand Apply Analyze Evaluate Create

arrange
define
describe
duplicate
identify
label
list
match
memorize
name
order
outline
recognize
relate
recall
repeat
reproduce
select
state

explain
summarize
paraphrase
describe
illustrate
classify
convert
defend
describe
discuss
distinguish
estimate
explain
express
extend
generalized
give example(s)
identify
indicate
infer
locate
paraphrase
predict
Recognize
rewrite
review
select
summarize
translate

use
compute
solve
demonstrate
apply
construct
apply
change
choose
compute
demonstrate
discover
dramatize
employ
illustrate
interpret
manipulate
modify
operate
practice
predict
prepare
produce
relate
schedule
show
sketch
solve
use
write

analyze
categorize
compare
contrast
separate
apply
change
discover
choose
compute
demonstrate
dramatize
employ
illustrate
interpret
manipulate
modify
operate
practice
predict
prepare
produce
relate
schedule
show
sketch
solve
use
write

create
design
hypothesize
invent
develop
arrange
assemble
categorize
collect
combine
comply
compose
construct
create
design
develop
devise
explain
formulate
generate
plan
prepare
rearrange
reconstruct
relate
reorganize
revise
rewrite
set up
summarize
synthesize
tell
write

Judge
Recommend
Critique
Justify
Appraise
Argue
Assess
Attach
Choose
Compare
Conclude
Contrast
Defend
Describe
Discriminate
Estimate
Evaluate
Explain
Judge
Justify
Interpret
Relate
Predict
Rate
Select
Summarize
Support
Value

Table 3: Sample possible verbs associated with Bloom’s taxonomy levels from Anderson and Krathwohl (2001).
The six categories—Remember, Understand, Apply, Analyze, Evaluate, and Create—are ordered from lower- to
higher-order cognitive processes, with the first three considered lower-order and the last three higher-order thinking
skills.

B Expert Annotation Task and Results
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Figure 3: Annotation instruction presented to the experts. Example learning objectives are adapted from various
instructional design resources and author-generated.
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Figure 4: This figure shows the frequency of selection of the six categories in Bloom’s taxonomy by the five
annotators. Categories like “Remember” and “Understand” show more consistency across annotators, indicating
higher consensus in assigning these levels. However, categories like “Create” and “Apply” show notable differences,
suggesting interpretive variability in assigning LOs to these levels. The differences may reflect subjective biases or
varying interpretations of the taxonomy levels, especially for categories that require high-order thinking skills (e.g.,
“Create”). This variability could indicate areas where further discussion is needed among annotators to reach a more
uniform understanding.
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Figure 5: An example of high disagreement among expert annotators, driven by the complexity of the LO description
provided by the educator for the course.
The learning objective blends several cognitive processes across Bloom’s taxonomy levels, making it challenging to
determine the primary focus. “Acquisition of basic historical knowledge” aligns with Remembering, as it involves
recalling historical facts and foundational knowledge. “Working technique” suggests Applying, since students are
expected to practice and use specific methods in new contexts. “Analytical methodologies” leans toward Analyzing,
as it requires breaking down examples of Greek language and literature into components, such as themes and
structures, to better understand their function and meaning. Also, “focusing on the evolution of socio-political
contexts” could be interpreted as Understanding (interpreting historical changes) or Evaluating, as it necessitates
assessing the relationship between literature and its socio-political background.
Moreover, The connection between “historical knowledge” and “analytical methodologies” suggests a progression
from lower-order skills (e.g., Remembering and Understanding) to higher-order skills (e.g., Analyzing and
Evaluating. However, the LO does not specify which skill is prioritized, leading to annotators interpreting it
differently based on their perspective. Finally, the inclusion of historical knowledge, literary analysis, and socio-
political evolution adds a level of interdisciplinary complexity, as these dimensions often require varied cognitive
processes to address.

C Paraphrases of Bloom’s Revised Taxonomy

• Source: Anderson and Krathwohl (2001)

– Remember: Remembering involves locating knowledge in long-term memory that is consistent
with presented material and retrieving relevant knowledge from long-term memory.

– Understand: Understanding involves constructing meaning from instructional messages, in-
cluding oral, written, and graphic communication. This includes changing from one form of
representation to another, finding a specific example or illustration of a concept or principle,
determining that something belongs to a category, abstracting a general theme or major points,
drawing a logical conclusion from presented information, detecting correspondence between
two ideas, objects, and the like, and constructing a cause-and-effect model of a system.

– Apply: Applying involves carrying out or using a procedure in a given situation. This includes
applying a procedure to a familiar or unfamiliar task.

– Analyze: Analyzing involves breaking material into its constituent parts and determining
how the parts relate to one another and to an overall structure or purpose. This includes
distinguishing relevant from irrelevant parts or important from unimportant parts of presented
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material, determining how elements fit or function within a structure, and determining a point
of view, bias, values, or intent underlying presented material.

– Evaluate: Evaluating involves making judgments based on criteria and standards. This involves
detecting inconsistencies or fallacies within a process or product, determining whether a process
or product has internal consistency, and detecting the appropriateness or effectiveness of a
procedure for a given problem.

– Create: Creating involves putting elements together to form a coherent or functional whole,
reorganizing elements into a new pattern or structure, coming up with alternative hypotheses
based on criteria, devising a procedure for accomplishing some task, and inventing a product.

• Source: http://www.nwlink.com/~donclark/hrd/bloom.html

– Remember: Remembering means recalling or retrieving previously learned information.
– Understand: Understanding means comprehending the meaning, translation, interpolation, and

interpretation of instructions and problems. State a problem in one’s own words.
– Apply: Applying means using a concept in a new situation or unprompted use of an abstraction.

Applies what was learned in the classroom into novel situations in the workplace.
– Analyze: Analyzing means separating material or concepts into component parts so that its

organizational structure may be understood. Distinguishes between facts and inferences.
– Evaluate: Evaluating means making judgments about the value of ideas or materials.
– Create: Creating means building a structure or pattern from diverse elements. Put parts together

to form a whole, with emphasis on creating a new meaning or structure.

• Source: https://www.coloradocollege.edu/other/assessment/how-to-assess-learning/
learning-outcomes/blooms-revised-taxonomy.html

– Remember: Remembering is retrieving, recalling, or recognizing relevant knowledge from
long-term memory.

– Understand: Understanding is demonstrating comprehension through one or more forms of
explanation.

– Apply: Applying is using information or skill in a new situation.
– Analyze: Analyzing is breaking material into its constituent parts and determining how the

parts relate to one another and/or to an overall structure or purpose.
– Evaluate: Evaluating is making judgments based on criteria and standards.
– Create: Creating is putting elements together to form a new coherent or functional whole;

reorganizing elements into a new pattern or structure.

• Source: https://quincycollege.edu/wp-content/uploads/Anderson-and-Krathwohl_
Revised-Blooms-Taxonomy.pdf

– Remember: Remembering is recognizing or recalling knowledge from memory. Remembering
is when memory is used to produce or retrieve definitions, facts, or lists, or to recite previously
learned information.

– Understand: Understanding is constructing meaning from different types of functions be
they written or graphic messages or activities like interpreting, exemplifying, classifying,
summarizing, inferring, comparing, or explaining.

– Apply: Applying is carrying out or using a procedure through executing or implementing.
Applying relates to or refers to situations where learned material is used through products like
models, presentations, interviews, or simulations.

– Analyze: Analyzing is breaking materials or concepts into parts, determining how the parts
relate to one another or how they interrelate, or how the parts relate to an overall structure or
purpose. Mental actions included in this function are differentiating, organizing, and attributing,
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as well as being able to distinguish between the components or parts. When one is analyzing,
he/she can illustrate this mental function by creating spreadsheets, surveys, charts, or diagrams,
or graphic representations.

– Evaluate: Evaluating is making judgments based on criteria and standards through checking
and critiquing. Critiques, recommendations, and reports are some of the products that can be
created to demonstrate the processes of evaluation. In the newer taxonomy, evaluating comes
before creating as it is often a necessary part of the precursory behavior before one creates
something.

– Create: Creating is putting elements together to form a coherent or functional whole; reor-
ganizing elements into a new pattern or structure through generating, planning, or producing.
Creating requires users to put parts together in a new way, or synthesize parts into something
new and different creating a new form or product. This process is the most difficult mental
function in the new taxonomy.

• Source: https://www.allencountyesc.org/Downloads/BloomsVerbsAlphabetized.pdf

– Remember: Remember previously learned information.

– Understand: Demonstrate an understanding of the facts.

– Apply: Apply knowledge to actual situations.

– Analyze: Break down objects or ideas into simpler parts and find evidence to support general-
izations.

– Evaluate: Make and defend judgments based on internal evidence or external criteria.

– Create: Compile component ideas into a new whole or propose alternative solutions.
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D Custom Prompts for Different LLM Methods

1 prompt = f"""
2 Given the following learning objective: "{LO segments

appear here}",
3 compare it against the Bloom 's Taxonomy level

descriptions provided below.
4
5 {Bloom 's taxonomy descriptions and paraphrases appear

here}
6
7 ** Instructions :**
8 1. First , provide a very brief reasoning for the

identified level.
9 The reasoning should not exceed three sentences and

should only
10 be based on the content of the learning objective

provided.
11 2. Then , return the identified taxonomy levels as a list

of strings.
12 """

Figure 6: Prompt used in the MCS method for condition B for identifying the appropriate Bloom’s Taxonomy levels.
We employed the same prompt for all MCS conditions but altered the task sequence in Conditions B and C, and
separated rationale generation from multiple– choice selection in Condition A.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy options.
5 - Select the most relevant taxonomy level to the

sentence in each pair.
6 - Only choose one taxonomy level from the pair.
7 - If no taxonomy level matches the sentence given ,

return 'None ' but do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the
scientific method ."

11 - pairs: {{'Remember ': 'Recall facts and basic
concepts ', 'Understand ': 'Explain ideas or
concepts ', 'Evaluate ': 'Justify a decision or
course of action '}}

12 - Output: 'Remember '
13
14 ** Input :**
15
16 Learning Objective: "{LO segments appear here}"
17 Taxonomy Options: "{ Taxonomy level pairs will appear

here}"
18
19 Which one is the most relevant taxonomy level to the

learning objective?
20 Answer:
21 """

Figure 7: Prompt used in the PWC method for selecting the most relevant Bloom’s Taxonomy level.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy options.
5 - Select the taxonomy level that is the most related to

the sentence.
6 - Select the taxonomy level that is the least related to

the sentence.
7 - Do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the scientific
method ."

11 - Taxonomy Options: {{'remember ': 'Recall facts and
basic concepts ', 'understand ': 'Explain ideas or
concepts ', 'evaluate ': 'Justify a decision or course
of action '}}

12 - Output: {{'most ': 'remember ', 'least ': 'evaluate '}}
13
14 **Input :**
15
16 Sentence: "{LO segments appear here}"
17 Taxonomy Options: "{ Taxonomy level tuples appear here}"
18
19 What are the most and least related taxonomy levels to

the given sentence?
20 Answer:
21 """

Figure 8: Prompt used for selecting the most and least related Bloom’s Taxonomy levels in BWS method.
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1 prompt = f"""
2 **Task :**
3 For each learning objective:
4 - Compare the sentence against the taxonomy description

provided.
5 - Rate how relevant is the taxonomy description to the

learning objective on a scale of 1 to 5, where 1 is
the least relevant and 5 is the most relevant.

6 - Only use whole numbers from 1 to 5. Do not use
fractions or decimal values.

7 - Do not provide an explanation.
8
9 ** Example :**

10 - Learning Objective: "List the steps of the scientific
method ."

11 - Taxonomy level: {{'remember ': 'Recall facts and basic
concepts '}}

12 - Answer: 5
13
14 **Input :**
15
16 Learning Objective: "{LO segments appear here}"
17 Taxonomy level: "{ Taxonomy levels appear here}"
18
19 Rate the relevance of the taxonomy level to the given

learning objective (1 to 5):
20 Answer:
21 """

Figure 9: Prompt used in the RCA method for rating the relevance of taxonomy descriptions. The same prompt is
used for short and long descriptions of the taxonomy levels.
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1 prompt = f"""
2 **Task :**
3 Compare the sentence to the provided taxonomy

description. Determine if the taxonomy level and its
description accurately describe the sentence provided
.

4 Answer with "Yes" if the taxonomy level and description
accurately describe the sentence.

5 Answer with "No" if the taxonomy level and description
do not accurately describe the sentence.

6 Do not provide explanations , just the "Yes" or "No"
answer.

7
8 ** Example :**
9

10 Sentence: "The student can recall key terms and concepts
from the lesson ."

11 Taxonomy Level and description: "Remember: it refers to
recalling information ."

12 Is the description accurate for the sentence?
13 Answer: Yes
14
15 **Input :**
16
17 Learning Objective: "{LO segments appear here}"
18 Taxonomy level: "{ Taxonomy levels appear here}"
19
20 Is the description accurate for the sentence?
21 Answer:
22 """

Figure 10: Prompt used in the BCA method.
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E Results from non-LLM and LLM Methods Compared to Gold Standard Annotation

Figure 11: An example of expert annotations for a course LO description, mapped to Bloom’s revised taxonomy
levels by five expert annotators. The corresponding mappings by non-LLM and LLM-based methods are presented
in Table 4.
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Category Method Remember Understand Apply Analyze Evaluate Create
Non-LLM SpaCy ✓ ✓ ✓ ✓

Regex ✓ ✓ ✓ ✓
Fuzzy ✓ ✓ ✓ ✓ ✓
Semantic Similarity ✓ ✓ ✓ ✓

LLM BWS ✓ ✓ ✓ ✓
PWC ✓ ✓ ✓ ✓ ✓
Short Rating ✓ ✓ ✓
Long Rating ✓ ✓ ✓
Binary Combinations ✓ ✓ ✓ ✓ ✓ ✓
MCS: Condition A ✓ ✓ ✓ ✓ ✓
MCS: Condition B ✓ ✓ ✓ ✓
MCS: Condition C ✓ ✓ ✓ ✓

Table 4: Comparison of non-LLM and LLM-based methods in mapping the same course learning objective to
Bloom’s revised taxonomy levels. Check marks indicate the taxonomy levels identified by each method.
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F Results from Multiple Choice Selection with Paraphrase-Consistency Prompting and
Rationale Generation

Figure 14: Frequency count of taxonomy levels per conditions. The frequency counts reveal that “Understand” is
the most common taxonomy level across all conditions, while “Create” is the least frequent. There are notable
variations in the frequencies of other taxonomy levels: for instance, “Apply” is more frequent in Condition B, and
“Analyze” shows a higher frequency in Condition C.

Condition Full Agreement Ratio Partial Agreement Ratio

Condition A 0.23 0.92
Condition B 0.46 0.95
Condition C 0.76 0.98

Table 5: Agreement analysis for conditions A, B, and C. We present the model’s average alignment consistency
score, highlighting cases of full agreement (where the model’s choice of taxonomy levels is identical across all
paraphrases) and partial agreement (where the model’s choice is consistent in at least three of the five paraphrases)
as detailed here. The results indicate that the selection-reasoning bias—where rationales tend to align with an initial
label—is supported by the data. In Condition C, where the rationale is based on an initial selection, there is a higher
alignment in taxonomy levels across paraphrases. Conversely, Conditions A and B show lower full agreement
ratios, suggesting that without an initial selection to base the rationale on, the agreement among paraphrases is less
consistent.
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G Results from PWC vs. BWS Annotations

Figure 15: Frequency distribution of taxonomy levels in pair-wise analysis

Figure 16: Best-worst frequency counts across taxonomy levels.
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Figure 17: Best-Worst scaling scores: “Analyze” and “Understand” are the most preferred or relevant taxonomy
levels, as reflected by their high positive scores.

Taxonomy Level Consistency Score

Remember 0.21
Evaluate 0.54
Understand 0.69
Apply 0.62
Create 0.20
Analyze 0.84

Table 6: Cronbach α’s measure of internal consistency scores for taxonomy levels

Taxonomy Level Mean Rank

Remember 6.0000
Understand 2.0025
Apply 2.9975
Analyze 1.0000
Evaluate 4.0000
Create 5.0000

Table 7: Sensitivity Analysis (Mean Ranks): This analysis assesses the stability of rankings across various samples
or iterations. The mean ranks reflect the relative significance assigned to each taxonomy level by the model, where a
higher score indicates lower significance. “Analyze” and “Understand” are ranked as the most important, while
other levels show varying degrees of relevance.

H Results from Binary Annotations
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Threshold Yes_Count Total_Count Yes_Percentage

80 274 872 31.42 %
85 267 853 31.30 %
90 248 821 30.21 %
95 227 775 29.29 %

Table 8: Threshold Variation Analysis: The analysis demonstrates how varying confidence thresholds impact the
proportion of “Yes” responses. As the threshold increases from 80 to 95, the percentage of “Yes” responses slightly
declines from 31.42 % to 29.29 %. This suggests that higher thresholds may reduce the model’s overall affirmative
responses, potentially filtering out less confident predictions.

Taxonomy Average Correct Binary Rate

Analyze 0.459119
Apply 0.371069
Create 0.176101
Evaluate 0.232704
Remember 0.157233
Understand 0.572327

Table 9: Comparison with Multi-Class Classification for Bloom Taxonomy: The model’s performance varies
significantly across different Bloom’s taxonomy levels. For example, “Understand” has the highest average correct
binary rate at 57.23 %, while “Remember” and “Create” are much lower, at 15.72 % and 17.61 %, respectively. This
indicates that the model is better at aligning with high-order thinking skills such as “Understand” and “Analyze” but
struggles more with “Create” and “Remember.”

Taxonomy Level Average Confidence

Remember 96.07
Understand 93.28
Apply 94.20
Analyze 95.47
Evaluate 98.43
Create 96.59

Table 10: Comparison across D different taxonomy levels: The analysis of average confidence across taxonomy
levels reveals that the model exhibits the highest confidence in its predictions for “Evaluate” (98.43 %) and “Create”
(96.59 %). In contrast, while still high, the confidence for “Understand” (93.28 %) is slightly lower.

I Results from Rating Annotations
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Figure 18: The logprob values for the short descriptions are relatively consistent across ratings, without any clear
trend, suggesting that the model’s confidence in its rating wasn’t strongly influenced by its rating when using short
descriptions.

Figure 19: For the short descriptions, the most frequent ratings are at the extremes: 1 and 5. The high frequency of
1s indicates that many learning objectives were poorly aligned with the taxonomy level when only a short description
was provided. On the other hand, there is also a significant cluster at 5, suggesting that some objectives were still
rated highly despite the brevity of the descriptions. While for long descriptions there is still a notable peak at 1,
indicating poor alignment for some objectives, the second peak is at 4, and there is a considerable amount of ratings
at 5. The peak at 4, with a significant tail towards 5, indicates that the detailed descriptions helped many objectives
align better with the taxonomy level.
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Abstract

We present LangEye, a mobile application for
contextual vocabulary learning that combines
learner-curated content with generative NLP.
Learners use their smartphone camera to cap-
ture real-world objects and create personalized
“memories” enriched with definitions, exam-
ple sentences, and pronunciations generated
via object recognition, large language models,
and machine translation. LangEye features
a three-phase review system — progressing
from picture recognition to sentence comple-
tion and free recall. In a one-week exploratory
study with 20 French (L2) learners, the learner-
curated group reported higher engagement and
motivation than those using pre-curated mate-
rials. Participants valued the app’s personal-
ization and contextual relevance. This study
highlights the potential of integrating genera-
tive NLP with situated, learner-driven interac-
tion. We identify design opportunities for adap-
tive review difficulty, improved content gener-
ation, and better support for language-specific
features. LangEye points toward scalable, per-
sonalized vocabulary learning grounded in real-
world contexts.

1 Introduction

Creating contextual learning opportunities remains
a major challenge in second language (L2) ac-
quisition, particularly for learners situated in non-
native environments. Immersive experiences, such
as studying abroad or participating in language-
rich communities, are often inaccessible due to
financial, geographic, or logistical barriers (Gal-
loway and Ruegg, 2020). Mobile-Assisted Lan-
guage Learning (MALL) addresses this by lever-
aging the ubiquity and portability of smartphones
to support “anytime” micro-learning and situated
learning approaches (Arakawa et al., 2022; Byrne,
2019; Tran et al., 2023). Yet, many current MALL
systems provide limited flexibility in adapting dy-
namically to learners’ immediate context, personal

Text-to-speech

Take a new
picture

Object 
detection

Labels 

Learner content

Translations

Definition

Example sentence

Word information

Vision API

Figure 1: System diagram of LangEye, illustrating the
flow from learner image capture through API-based vo-
cabulary enrichment. The application integrates Google
Cloud Vision, Cloud Translation, and Text-to-Speech
APIs, along with OpenAI’s GPT model, to generate per-
sonalized vocabulary “memories” enriched with labels,
definitions, translations, and pronunciation.

interests, and cognitive availability, and often rely
exclusively on pre-curated, static content.

We introduce LangEye1, a mobile application
for vocabulary learning that turns real-world ob-
jects into interactive “memories” through a learner-
curated workflow. Using smartphone cameras and
NLP services — including computer vision, large
language models, and machine translation — Lang-
Eye generates personalized lexical entries with
definitions, example sentences, and pronunciation.
Learners engage with this content through a struc-
tured review system that supports progressive recall
and production in the target language. An overview
of the system architecture and API integration is
shown in Figure 1.

Designed specifically to empower self-directed
learners, LangEye supports short, personalized
learning interactions directly tied to learners’ physi-

1Public demo and repository to be made available at
https://vialab.ca/langeye.
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cal environments and motivations. Crucially, all re-
view sessions are initiated by learners and grounded
in their uniquely captured contexts, promoting
deeper personalization, engagement, and learner
autonomy. However, due to this highly personal-
ized and learner-curated design, traditional stan-
dardized assessments of vocabulary learning out-
comes — such as standardized pre- and post-tests
— are challenging, as vocabulary items vary greatly
across individuals.

To explore the feasibility, learner acceptance,
and design implications of LangEye, we conducted
an initial one-week exploratory study with 20
French L2 learners, comparing a camera group
(using LangEye to generate personalized vocabu-
lary entries) and a control group (using pre-curated
vocabulary). Preliminary findings highlight the mo-
tivational and engagement benefits of integrating
learner-curated AI-generated content, while also re-
vealing limitations associated with computer vision
accuracy and AI-generated contextual sentences.
These insights lay the groundwork for our planned
longitudinal evaluation, which will rigorously mea-
sure personalized vocabulary acquisition and re-
tention over extended use periods. Additionally,
future iterations of LangEye will incorporate ad-
vanced object detection methods (e.g., YOLO-E)
and more dynamic, interactive scenarios such as
gamified object treasure hunts, further enhancing
contextual vocabulary learning through data-driven
methods.

2 Background and Related Work

2.1 Learner-curated Vocabulary with MALL
Applications

Compared to Computer-Assisted Language Learn-
ing (CALL), MALL excels in accessibility and
context-driven learning, making it effective for vo-
cabulary acquisition (Alhuwaydi, 2022; Klimova,
2021). Micro-learning involves short, targeted ac-
tivities (e.g., 5–15 minutes) (Leong et al., 2020).
For instance, MiniHongo (Tran et al., 2023) inte-
grates location and activity data to deliver contex-
tual vocabulary lessons, demonstrating the efficacy
of location-relevant micro-learning. Similarly, Vo-
caBura (Hautasaari et al., 2019) utilizes audio and
location-based prompts to teach vocabulary during
real-world interactions.

VocabEncounter (Arakawa et al., 2022), a CALL
application, applies contextual and micro-learning
by integrating target vocabulary into web content

via natural language processing (NLP) and ma-
chine translation (MT) techniques. Comparable
techniques embed vocabulary into audiovisual con-
tent through automatic glossing and lexical sim-
plification (Alm, 2021; Fievez et al., 2023). Vo-
cabNomad (Tsourounis and Demmans Epp, 2016)
provides a highly personalized MALL experience
with progress tracking, contextual recommenda-
tions, and learner-curated entries. By allowing
users to add vocabulary, record pronunciations, and
browse visual collections, it fosters situated and
personalized learning.

These studies highlight the importance of inte-
grating relevant and contextual vocabulary learning
into daily life, leveraging micro-learning and per-
sonalized approaches. However, most rely on static
content or fixed corpora, with limited opportunities
for learners to drive content creation based on their
immediate environment.

2.2 AI-Enabled Context Personalization for
Vocabulary Learning

The advent of large language models (LLMs), be-
ginning with ChatGPT2, has enabled more dynamic
natural language generation, allowing for real-time
synthesis of definitions, example sentences, and
explanations. While generative AI presents chal-
lenges such as ethical concerns and content accu-
racy (Campolo and Crawford, 2020), it has opened
new possibilities in personalized educational appli-
cations, particularly in language learning.

Applications like Storyfier (Peng et al., 2023)
leverage generative AI to create vocabulary-rich
narratives based on learner input. Although they
showed limited learning gains, users appreciated
the contextualization and narrative integration.
Similarly, Leong et al. (2024) found that AI-
generated personalized prompts enhanced learner
motivation, despite modest measurable gains in
vocabulary retention.

Recent systems also incorporate generative
AI into mixed-reality environments. Word-
Sense (Vazquez et al., 2017) pioneered contex-
tual vocabulary learning through object recognition
linked to dynamically generated content. More
recently, FluencyAR (Hollingworth and Willett,
2023) integrated augmented reality (AR) with
generative feedback for self-talk, and Curiosi-
tyXR (Vaze et al., 2024) allowed educators to cre-
ate multi-modal, contextual mini-lessons. These

2https://openai.com/research/overview. Accessed April
2025

447



works emphasize engagement and curiosity, often
powered by NLP-driven interfaces.

LangEye extends MALL, integrating micro-,
situated-, and contextual-learning with modern
NLP technologies, including object recognition,
large language models for content generation, ma-
chine translation, and text-to-speech. Unlike prior
systems that personalize content using static cor-
pora or predefined curricula, LangEye allows learn-
ers to initiate the content pipeline through real-
world object interactions, enabling highly contex-
tualized and self-directed vocabulary acquisition.
This learner-driven approach aims to promote both
personalization and autonomy, but it also chal-
lenges traditional evaluation methods, as vocabu-
lary exposure varies widely across individuals. As
such, LangEye raises important questions around
how to evaluate open-ended, NLP-enhanced learn-
ing systems, where learner agency and environmen-
tal context shape the learning trajectory.

3 LangEye Design: Create and Review
Memories

LangEye’s core interaction is structured around
learner-generated memories — vocabulary entries
tied to real-world images captured by the learner.
These memories are enriched using NLP services
to provide multilingual definitions, contextual sen-
tences, and audio pronunciation, supporting both
vocabulary learning and retention. In this case,
the vocabulary items are associated with the pic-
tures taken by the learners. Figure 2 illustrates the
learner taking a picture of a cup (tasse in French)
and interacting with the generated memory’s word
definition and example sentence. Therefore, the
learned words are tied to a familiar object, which
is more effective when compared to unfamiliar or
no pictures for vocabulary learning (Hwang et al.,
2014; Kang, 1995; Saidbakhramovna et al., 2021).

The app creates situational learning opportuni-
ties by allowing the learner to interact with objects
around them in three ways: (1) take pictures of ob-
jects which they can interact with in-situ via editing
or exploring the picture (memory); (2) take pictures
of objects now, but choose to edit or explore the
picture (memory) later; and (3) start a Review Mem-
ories session with a desired length — 3 to N words
for up to 3 phases per session. Figure 2 (c, d, and e)
shows examples of review activities for each phase.

3.1 Creating Memories
In picture mode, the learner can aim their device’s
camera at an object they wish to interact with in
the target language (TL) and take a picture of it.
As shown in Figure 2, in response, the app returns
a list of five likely labels (names) for the object,
sorted by probability (most likely object name as
the top result). The learner can explore the defi-
nition and a sample sentence for each label, and
optionally select a different top label based on that
information. Alternatively, they can confirm the
default suggestion. On the same screen, learners
also have the option to listen to the pronunciation
of the object name. At this point, they may choose
to take another picture to explore more objects or
end their study session. The app saves all objects,
pictures, and names to the learner’s memories for
further review.

These definitions and sample sentences are dy-
namically generated using OpenAI’s GPT-3.5 API
and then translated into the TL via Google Trans-
late.

Prompt template. LangEye uses a standardized
prompt designed for beginner learners to gener-
ate consistent and level-appropriate definitions and
examples:

You are a language tutor for beginner French learn-
ers. Given the following word: <object-label>,
provide: (1) a clear, beginner-friendly English
definition of the object, and (2) a short exam-
ple sentence using the object in everyday context.
Make both responses simple and age-appropriate
for learners at A1–A2 level.

See Table 1 for an output example: cup→ tasse.

Table 1: Example of a vocabulary memory generated
for cup.

Label cup

Definition A cup is a small container used for drinking.
Sentence She drank tea from her favourite cup.

French Une tasse est un petit récipient utilisé pour boire.
Elle a bu du thé dans sa tasse préférée.

This structure supports flexible and learner-
driven study sessions, allowing learners to create
and engage with memories at their own pace, based
on what they encounter in their daily environments.
By combining visual, textual, and auditory modali-
ties, LangEye supports deeper encoding of vocab-
ulary through multiple channels of reinforcement.
This two-stage generation pipeline balances person-
alization and control: GPT-3.5 generates beginner-
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a b c d e

Real-world objects

Object Name Definition and Example Review Phase 1 Review Phase 2 Review Phase 3

Memory / Vocabulary

Figure 2: Memories are created from real-world objects. (a) A memory contains the name of the detected object
(cup: tasse in French) and its pronunciation. (b) Additional information, including a definition and a sample
sentence, can be displayed. This content is dynamically generated using OpenAI’s GPT-3.5 API and translated
into the learner’s target language (here, French) via machine translation. Learners can practice their vocabulary
through the Memory Review structure, which includes three progressively challenging phases: (c) Phase 1: Picture
Recognition prompts learners to identify the correct image; feedback is immediate, highlighting the chosen image
in green if correct or red if incorrect. (d) Phase 2: Sentence Completion requires selecting an image to fill in a
blank within a sentence presented in French. (e) Phase 3: Free Recall displays a sentence in French and prompts
learners to type the object’s name; small typos are accepted, and hints are available.

friendly English definitions and sentences, while
Google Translate handles multilingual output. This
modular design supports better quality control, sim-
plifies debugging, and ensures broader language
support, particularly for low-resource languages
where LLMs may struggle with robust translation
performance. At the time of system development,
GPT-3.5 was the most stable and accessible option
for generating consistent content.

Editing labels. To mitigate possible computer
vision and translation errors, learners can add their
own label to the picture using the add label button
— see Figure 2 (a, b). This allows learners to input
a text label they find more appropriate if the app’s
suggestions are insufficient. Learners type the label
in their source language, and the app provides the
TL translation — eliminating the need to know the
TL term. These custom labels appear alongside
their generated definition and sentence — see Fig-
ure 2 (b). If a label is deemed irrelevant, learners
may long-press it to delete it. In the example shown
in Figure 2 (a), the label “Bleu Électrique” (Elec-
tric Blue) refers to the colour of the cup; the learner
might find it unrelated and choose to remove it.

3.2 Languages Supported

LangEye currently supports the following source
or target languages: English, French, Spanish, and
Portuguese. The source language (SL) is the lan-

guage the learner is familiar with or learning from,
and the target language (TL) is the language to be
learned. The interface elements, such as the menu
and activity instructions, can be set to any of the
listed languages as the SLs. Likewise, the names
of objects and learning content (i.e., definitions and
example sentences) can be displayed in any listed
language as the TL. Learners can define their SL
and TL in the Settings menu option. This is enabled
using machine translation.

3.3 Reviewing Memories

This feature is a classic quiz-style review of the
collected memories (vocabulary words). The Mem-
ory Review has three phases or types of quiz ques-
tions, each increasing in difficulty and reducing
support. These phases are (1) Picture Recognition,
(2) Sentence Completion, and (3) Free Recall. The
system chooses N memories (words/objects) to re-
view during a Memory Review session. For each
phase, learners are tested on those same N words.
Learners must complete earlier phases to unlock
later ones, but they may choose to end the session
between phases. This progressive design aims to
gradually increase cognitive load and promote long-
term retention by reinforcing vocabulary through
multiple retrieval formats.

Phase 1: Picture Recognition prompts learners
to identify an object by selecting the correct picture
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from four gallery options (Figure 2 (c)). Feedback
is immediate, with correct choices highlighted in
green and incorrect in red. Learners have up to four
attempts per word, ensuring they review all three
target words before moving to the next phase.

In Phase 2: Sentence Completion, learners an-
swer “Fill in the blank” questions by selecting a
picture that completes an example sentence (Fig-
ure 2 (d)). The chosen picture’s word fills the blank,
allowing reflection before submission. Incorrect
answers reveal the correct choice, and sentences
are shown in the SL to support beginners. However,
this design may limit advanced learners who prefer
tasks entirely in the TL.

Phase 3: Free Recall introduces open-ended
vocabulary production. Learners type the names
of the three target words without visual cues (Fig-
ure 2 (e)). A Clue button provides definitions if
needed, and the system tolerates minor typos, while
still highlighting the correct spelling for feedback.
Sentences are now in the TL, catering to advanced
learners and promoting grammar understanding.

This phased approach bridges the gap between
beginner and advanced learners, enabling gradual
mastery of vocabulary and TL proficiency. See
Table 2 for a feature and language comparison of
all three phases.

3.4 Tracking Vocabulary Learning Progress

The Achievements feature in LangEye tracks learn-
ers’ Memory Review history and accuracy. For
Phase 1, it records the average number of guesses,
while for Phases 2 and 3, it calculates accuracy.
Learners can sort words by accuracy, with TL ini-
tials (e.g., “fr” for French) displayed for context.
While these metrics provide insight into learner
behaviour and memory usage, they do not directly
measure vocabulary acquisition or retention — a
challenge we revisit in our discussion of evaluation.

4 User Study

To explore LangEye’s potential as a personalized
vocabulary learning tool, we conducted a one-week
exploratory study with 20 French (L2) learners.
This formative evaluation investigated how learner-
curated content and NLP-driven interactions sup-
port engagement and vocabulary study in real-
world contexts. The study was reviewed and ap-
proved by our institution’s Research Ethics Board.

Participants were randomly assigned to two
groups:

Figure 3: Sample images taken by participants and their
AI-generated counterparts used in the study for the con-
trol group.

Control group (N = 10): used a version of the
app with pre-defined vocabulary and AI-generated
content based on pre-curated images; and Cam-
era group (N = 10): used the full app, including
features for taking and uploading images and dy-
namically generating content through integrated
NLP services.

Study Design. The study comprised two ses-
sions: Session 1: in-lab training, background sur-
vey, and post-session usability feedback. Session
2: online exit interview after using the app for at
least five days. Between Sessions: participants
were instructed to use the app daily for five days,
completing short usability surveys after each use.
Reminder emails were sent daily. Each 50-minute
session included surveys, session recordings, and
app usage data. Photos taken between study ses-
sions were also collected for the camera group. See
Appendix A for detailed information on the study
sessions and materials; the semi-structured inter-
view questions are included in the Supp. Material.
Figure 3 shows a sample of the generated images
used by the control group participants.

Recruitment. Participants were 20 French learn-
ers, evenly split into control and camera groups.
Participants received $10 CAD for Session 1 and
$20 CAD for Session 2, recruited through posters
in high-traffic campus areas.

Room Setup. The room held eight household
objects (an apple, cup, fork, paper, scissors, spoon,
sunglasses, and watch) for the camera group to
explore and photograph. The control group ex-
perienced the same room with objects, but they
interacted exclusively with pre-curated memories.

Control Group Memory Curation. Control group
memories were curated using data from the cam-
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Table 2: Feature and language support comparison across the three Memory Review phases: Phase 1: Picture
Recognition, Phase 2: Sentence Completion, and Phase 3: Free Recall. As learners progress through the phases,
visual support (e.g., images and multiple-choice options) is gradually reduced, while the use of the target language
(TL) increases. This design makes later phases more cognitively demanding. Learners can choose to save and exit
the review session at any point between phases.

Phase 1 Phase 2 Phase 3

Task type Identify picture — —
Fill in the blank —

Answer support

Picture —
Multiple choice —
Type/Spell — —
Clue — — Word definition

Answer and
corrective feedback

Instantaneous check — —
Submit and check —
Corrective feedback

Cognitive task Word recall Picture Picture Spell
Word collocation —

Language
Source: Source Language
TL: Target Language

UI elements Source Source Source
Vocabulary word TL TL TL
Sample sentences — Source TL
Word definition — — Source

era group to ensure comparability between groups.
Camera group participants collected an average of
11 pictures (Median = 9;min = 5;max = 19),
resulting in 24 unique objects.

To ensure uniformity and preserve privacy, we
generated realistic images of the objects using Ope-
nAI’s Dall-E 3 (full list in Supp. Material). The
curated vocabulary ensured consistency without
introducing additional biases or privacy concerns.
This initial study focused on usability, motivation,
and learner perceptions, rather than directly mea-
suring vocabulary acquisition, which is addressed
in planned longitudinal follow-ups.

4.1 Study Results: Engagement and Usability

This section presents the user study results, includ-
ing the pre-session, post-session, exit interview,
and software usage data. Qualitative data anal-
ysis. The questionnaire and the semi-structured
interview open-ended questions were coded into
categories following commonly mentioned themes
in the participants’ answers.

4.1.1 Pre-session background questionnaire
Participants Background. Participants (N=20) were
aged 18–24 (N=15) and 25–30 (N=5). All were
fluent in English, though only 6 identified it as
their first language. Most participants (N=15) self-
reported as beginners (A1/A2), with 9 in the cam-
era group. The control group included most ad-

vanced learners (B1/B2; N=4), who reported study-
ing French for over a year. See Appendix B for
details. Participants spoke diverse languages, in-
cluding Tamil (N=5), Hindi (N=4), and Urdu (N=3).
Additional languages learned alongside French in-
cluded Arabic (N=2), Spanish, and Italian, while
11 participants were not learning another language.

Technology for Language Learning. Duolingo
was the most commonly used app (N=12), followed
by platforms like Udemy and Memrise. Eight par-
ticipants, mostly in the control group (N=5), re-
ported not using any apps. Only one camera group
participant used apps daily, with most others en-
gaging less frequently (once or 3–6 times a week).
Mobile devices were the preferred learning plat-
form (N=14), followed by desktop (N=5) and a
single participant choosing “either.” Preferences
were evenly distributed across groups.

Language Learning Goals. The primary motiva-
tion for learning French was career-related (N=11;
7 camera, 4 control), followed by leisure (N=4) and
travel (N=3). Other reasons included academic and
family goals (each N=1).

4.1.2 Post-Session 1 Feedback and Exit
Interview Results

Usability. Ratings for Memories, Review Memo-
ries, Achievements, and Picture Mode were mea-
sured on a 10-point scale. Participants rated their
experience with LangEye after Session 1 (first im-
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Figure 4: Using a 10-point user experience scale
where (1) “Not user-friendly at all” and (10) “Very
user-friendly” participants provided ratings on each of
four LangEye features: Memories, Review Memories,
Achievements, and Picture Mode — for camera group
only. The chart on the left represents the camera groups
and the control group is shown on the right. Overall,
Session 1 had higher ratings than Session 2, and the
camera group had higher ratings than the control group.

pressions) and Session 2 (after five days of use).
Review Memories yielded an average of 8.7 for the
camera group and 8.6 for the control group. Ses-
sion 1 scores were higher for both groups compared
to Session 2. Overall, ratings dropped from Session
1 to 2 for all features/groups (Figure 4), with the
Memories (9.0 to 8.7 and 8.6 to 7.5) and Achieve-
ments (9.2 to 8 and 8.8 to 8.5) features showing
the most decline for the camera and control groups,
respectively. Picture Mode ratings, available only
for the camera group, averaged 8.7, with Session 1
scoring 9.2 and Session 2 scoring 8.2.

Comfort and Control. Participants expressed
comfort using LangEye for both vocabulary review
and learning, based on 5-point Likert scale ratings.
The camera group (4.3 and 4.2) reported similar
comfort levels for both activities, while the control
group showed lower comfort (4.0 and 4.2) when
learning new vocabulary, likely due to their pre-
curated and limited vocabulary set. Four control
group participants requested options to expand pre-
curated content. Self-efficacy ratings over learning
were consistent across groups, with both reporting
a mean score of 4.3 and a range of 3—5.

Most and Least Favourite Features. The cam-
era group’s most liked features were Picture Mode
(4), Review Memories (3), and Memories (3). Par-
ticipants appreciated the personalization offered
by Picture Mode: “[It] allows real-time learning
with objects around me” (P8, A2). The control
group preferred Review Memories (8), with Phase
1: Picture Recognition praised for its simplicity.
The least liked features for the camera group in-

cluded Phase 3: Free Recall (3), Phase 2: Sentence
Completion (2), and Achievements (2), with some
noting confusing sentences in Phases 2 and 3. The
control group disliked Achievements (4), citing low
interactivity.

Motivation. Self-reported motivation levels,
however, showed divergence. The camera group
maintained a steady mean of 4.3 across sessions,
while the control group’s mean dropped from 4.1
in Session 1 to 3.8 in Session 2. This decline may
reflect lower engagement with pre-curated content.
These findings underscore the benefits of learner-
curated content in enhancing comfort, control, and
sustained motivation. They also suggest that giving
learners agency to drive the content creation pro-
cess—supported by generative NLP — can foster
deeper engagement compared to static, pre-defined
content.

Learner Perceptions Compared to Other Tools.
Learning with Pictures. Participants valued Lang-
Eye’s use of pictures for vocabulary learning, citing
improved memorization and contextual association
compared to dictionaries: “Images make it eas-
ier to memorize and associate vocab with objects”
(P15, B1). Self-curated Memories. Camera group
participants praised the personalization and rele-
vance of self-curated content: “[LangEye] uses my
own pictures, making vocabulary more memorable”
(P3, A1). They suggested combining pre-populated
and user-generated content for flexibility. Multiple
Labels per Image. LangEye’s ability to associate
multiple concepts with a single image was seen as
helpful for intermediate learners but confusing for
beginners: “Pictures have more context and words,
good for intermediate learners” (P14, A1).

4.2 Thematic Learner Feedback
App reminders and gamification. While some
participants appreciated the absence of in-app re-
minders (P12), others requested daily notifications
to encourage engagement (P1, P2). Aesthetics im-
provements. Participants (9/20) recommended a
more colourful interface, sound effects for feed-
back, and larger buttons for easier interaction.

Content customization. Participants valued the
use of personalized images, citing improved mem-
ory and relevance. A camera group participant
noted, “This app adds personal attachment to the
picture, making it easier to remember” (P8).

AI-generated content and robustness. Partici-
pants reported object detection errors and overly
technical definitions. Cluttered backgrounds and
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multiple objects caused incorrect labels, while
some sentences had mismatched vocabulary con-
texts. For instance, “wood” (noun) was replaced
with “wooden” (adjective). Participants suggested
cropping tools and improved AI prompts to reduce
errors.

Review memories design. Beginners (A1) pre-
ferred Phase 1: Picture Recognition and Phase 2:
Sentence Completion but found Phase 3: Free Re-
call overwhelming, while advanced learners pre-
ferred Phase 3 in the target language (TL). Partici-
pants generally praised the multi-phase system for
its progressive difficulty. P9 said, “I like the three
phases, but the second phase in English was not
helpful due to gender issues.”

Language-specific considerations. Participants
highlighted issues with gendered nouns in French
during Phase 2: Sentence Completion. Gender in-
formation was lost in English translations, causing
confusion, especially for A2–B2 learners. Sugges-
tions included displaying gender indicators (e.g.,
P1, P8, P9).

4.3 Daily Usage and Technical Issues

Figure 5 visualizes the decline in daily feedback
form submissions across the five study days. The
control group maintained more stable participation,
while the camera group showed a sharper drop-off,
despite initially similar engagement levels. This
suggests that while learner-curated content may
drive early motivation, maintaining sustained en-
gagement over time remains a challenge. Overall
ratings for ease of use, engagement, and vocabu-
lary learning were mostly positive, leaning toward
“Strongly agree” or “Neutral.” However, control
group ratings for learning new words were lower,
likely due to limited pre-curated vocabulary. Tech-
nical Issues 26% of submissions reported technical
difficulties, including delays in label loading over
mobile networks and incorrect object labels. Sen-
tence quality was another concern, as participants
noted that some sentences were contextually incor-
rect or mismatched vocabulary. The detailed data
is available in B.1.

5 Discussion

This exploratory study demonstrates the promise
and challenges of combining learner-curated con-
tent with generative AI to support vocabulary learn-
ing in mobile contexts. While our goal was not
to directly measure vocabulary gains, the findings

Figure 5: Number of daily feedback form submissions
across the five-day study. While total submissions began
at 14 on Day 1, they declined to 7 by Day 5. The control
group’s submissions remained relatively stable (7 to 5),
whereas the camera group showed a sharper decline (7
to 2). Participant ratings per day are available in B.1.

offer formative insights into learner experience, sys-
tem usability, and the design trade-offs inherent to
NLP-enhanced educational tools. Below, we reflect
on key lessons learned and identify opportunities
for future improvement.

Evaluation and Research Implications. Fu-
ture work will incorporate longitudinal vocabu-
lary tracking and explore adaptive evaluation strate-
gies aligned with learner-curated content. Because
LangEye supports open-ended, learner-defined con-
tent creation, traditional pre- and post-testing are
difficult to apply consistently. Even usage-based
metrics, such as phase completions or accuracy
scores, are complicated by the variability in con-
tent difficulty and prior learner knowledge. These
challenges reflect broader tensions in evaluating
personalized, generative learning systems and call
for alternative strategies such as learner modelling
or adaptive diagnostics.

Balancing Pre- and Self-Curated Content.
Learner-curated vocabulary fosters autonomy and
engagement but also introduces variability in vo-
cabulary scope and difficulty. A hybrid ap-
proach—integrating structured, pre-curated content
alongside learner-generated memories—may better
support novice learners while preserving person-
alization for advanced users. This balance also
enhances scalability across languages without re-
quiring expert-authored corpora.

Tensions in AI-Generated Content. Although
generative AI enabled dynamic and personalized
vocabulary entries, participants frequently encoun-
tered issues such as overly technical definitions, in-
appropriate word senses, and context mismatches.
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For example, “wood” was rendered as “wooden”
(Table 3), and cluttered images led to irrelevant
labels. These issues reflect broader limitations of
prompt-based generation in educational contexts.
Future iterations will incorporate prompt tuning,
simpler output targets, and human-in-the-loop vali-
dation to improve robustness and learner alignment.

Table 3: Example of a vocabulary memory with a word
sense mismatch due to ambiguous object labelling.

Label wood

Definition Wooden means made of wood.
Sentence I sat on the wooden chair.

Issue Learner expected a noun definition for wood,
but GPT returned the adjective form wooden.

Language-Specific Considerations. LangEye
supports multiple target languages via machine
translation; however, users of gendered languages
(e.g., French) have noted grammatical issues, par-
ticularly in Phase 2, where translations often lack
gender agreement. This suggests the need for
grammar-aware translation strategies and visual
indicators for noun gender, especially in beginner-
focused review phases.

Our use of a hybrid generation pipeline, employ-
ing GPT-3.5 for English definitions and Google
Translate for multilingual output, was driven by a
need for modularity, consistency, and broad lan-
guage coverage. This approach provided control
over linguistic complexity in the initial prompt
while leveraging production-grade translation tools
for low-resource languages, where LLM perfor-
mance remains less benchmarked. This modular
architecture proved essential for supporting Lang-
Eye’s multilingual scope but also contributed to
mismatches and errors in translated content, un-
derscoring the importance of future refinement in
prompt tuning and translation alignment.

Learner Engagement and Personalization.
Learners consistently emphasized the motivational
value of interacting with vocabulary grounded
in their own environment. This supports sit-
uated learning theory and highlights how self-
curated images can improve recall by reinforc-
ing personal relevance. However, engagement
declined over time—particularly in the camera
group—suggesting a need for better pacing, re-
minders, or gamified retention mechanisms to sus-
tain interest.

Review System Calibration. Participants appre-

ciated the phased review design, but feedback sug-
gests the need for difficulty calibration. Phase 3:
Free Recall was overwhelming for beginners, while
some advanced learners desired more TL immer-
sion earlier. Dynamically adapting review com-
plexity based on learner level and behaviour (e.g.,
accuracy, completion history) may improve reten-
tion and reduce frustration.

Toward Context-Aware Learning Scenarios.
LangEye’s current design centers on object-driven
vocabulary. Future iterations could support
more dynamic interactions, such as context-aware
prompts, adaptive content sequencing, and gam-
ified activities (e.g., real-world “treasure hunts”).
These enhancements—combined with more accu-
rate object detection (e.g., YOLO-E)—could trans-
form LangEye into a broader platform for situated,
task-based language learning.

6 Conclusion

This paper presented LangEye, a mobile language
learning application that leverages generative NLP
and learner-curated content to support contextual
vocabulary acquisition. By combining object recog-
nition, machine translation, and dynamic content
generation, LangEye enables self-directed learn-
ers to engage in personalized, real-world language
practice. Findings from our exploratory study high-
light the system’s usability, motivational benefits,
and learner preference for personalized visual con-
tent.

While this formative evaluation did not assess vo-
cabulary acquisition directly, the results inform de-
sign implications for learner-driven, AI-enhanced
educational tools. Future work will include lon-
gitudinal studies to track learning outcomes, and
expand LangEye’s capabilities through adaptive re-
view difficulty and improved language-specific sup-
port. Additionally, we envision incorporating more
accurate computer vision models (e.g., YOLO-E)
to enable dynamic, context-aware interactions such
as real-world object “treasure hunts” or live situ-
ational vocabulary tasks, further bridging the gap
between everyday experiences and language learn-
ing.

Limitations

This work has several limitations that inform the
scope of its findings and highlight directions for
future research.

First, this was an exploratory and short-term
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study focused on learner engagement and usability.
While participants interacted with generative NLP
features and learner-curated content, we did not
directly assess vocabulary acquisition or retention
through pre- and post-testing. Future studies with
longer durations and individualized baseline assess-
ments are necessary to evaluate learning outcomes
rigorously.

Second, the evaluation was constrained by the
personalized nature of the learner-curated con-
tent. Since learners selected their own vocabu-
lary items, it was not feasible to apply a standard-
ized test or compare vocabulary gains across par-
ticipants. While this personalization is central to
LangEye’s design, it introduces challenges for con-
trolled, quantitative evaluation.

Third, the generative NLP components (e.g., def-
initions, sample sentences) sometimes produced
inconsistent or overly complex outputs. This was
especially problematic for beginner learners, who
occasionally found definitions too advanced or mis-
matched in word sense. Our system relies on
prompt-based content generation, which can be
brittle without careful tuning and contextual aware-
ness. While we did not run expert benchmarking of
the AI-generated content in this pilot, this remains
an important step for future work, especially for
language education applications.”

Finally, although LangEye supports multiple lan-
guages, our study only examined English–French
learners. Language-specific features—such as
grammatical gender—presented challenges in the
translation pipeline and feedback design, limiting
generalizability across linguistic contexts. Further
studies should explore broader language pairs and
adapt the system to handle grammar-sensitive fea-
tures more effectively.

Ethical Considerations

This study was reviewed and approved by our insti-
tution’s Research Ethics Board (REB). All partic-
ipants provided informed consent prior to partici-
pation and were compensated for their time. Data
collected during the study, including app usage logs
and participant feedback, was anonymized prior to
analysis.

To protect participant privacy, especially in the
camera group, no personally identifying photos
were stored or analyzed. For the control group,
object images were generated using OpenAI’s
DALL·E 3 to avoid the use of participant-provided

media.
LangEye integrates generative AI tools (e.g.,

GPT-3.5, Google Translate) to produce multilin-
gual learning content. While this automation en-
ables scalability, care was taken to limit content
generation to isolated vocabulary contexts, and the
system does not store user data beyond local app
sessions. Limitations of AI output— such as occa-
sional mismatches in word sense — were disclosed
to participants, and learners had full control over
which content to save and review.
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A Research Methods

A.1 Control Group Memory Curation

One of the main challenges in comparing the two
group of participants is to curate the control group’s
memories. As discussed in section 4, our approach
to this problem was to run both session of the study
with the camera group first. This allowed us to
use the collection of memories created by that cam-
era group as the control group’s memories. On
average, the camera group collected 11 pictures
(Median = 9;min = 5;max = 19). The aggre-
gation of duplicates of the camera group memories
resulted in a total of 24 objects (memories) listed
below:

apple floor lemon speaker
bag flooring paper spoon
cup food peripheral stapler
dishware fork scissors tableware
drinkware glasses serveware watch
eyewear hand slipper wood

Recalling that, to create uniformity in the images,
avoid bias toward the quality of images taken by
the camera group, and preserve the participants’
privacy, OpenAI’s Dall-E 3 was used to create the
images for each of these memories. The prompt
included the object name and instructions for the
illustration to be “realistic” to mimic a photo taken
of the object — sample shown in Figure 3. The
pairs of all AI-generated images and labels can be
found in Supplemental Materials. This approach
was used to present a similar curation of vocabulary
while not adding words that might not have been
added using a smartphone camera.

A.2 Detailed Study Sessions

A.2.1 Study Session 1: Introducing LangEye

Session 1 was conducted in a controlled lab envi-
ronment with separate setups for the camera and
control groups.

Room Setup. The room featured a collection
of eight household objects (see Figure 6) for the
camera group to explore and photograph. The con-
trol group experienced the same room setup but
interacted exclusively with pre-curated memories.

Pre-Session Questionnaire. Participants com-
pleted a brief background survey about their French
language learning experience and use of language
learning apps.

Figure 6: Top: Room setup with video recording. Bot-
tom: Objects available for the camera group to explore
and create memories.

Training Tasks. Participants were introduced to
the app’s features through a demonstration and a
printed tutorial. Both groups explored the app’s
main features, with the control group focusing on
editing pre-curated memories and the camera group
using the camera mode to create their own. Partic-
ipants could ask questions during the session and
were required to interact with each feature before
proceeding to the post-session survey.

Post-Session Questionnaire. Participants evalu-
ated LangEye’s usability and practicality, provid-
ing feedback on the app’s usefulness for language
learning.

A.2.2 Between Sessions
Participants were instructed to use LangEye daily
for five days between Sessions 1 and 2. Daily re-
minder emails prompted them to complete a short
feedback form covering usability, error reporting,
and general app impressions. The second session
was scheduled 5–10 days after the first.

A.2.3 Study Session 2: Exit Semi-Structured
Interview

In Session 2, participants reflected on their expe-
riences with LangEye, discussing usability, vo-
cabulary acquisition, and the accuracy of object
recognition and labeling. The camera group shared
insights on creating memories, while the control
group focused on pre-curated content. Interviews
were recorded using Google Meet, capturing video,
audio, and transcripts. Transcripts were reviewed
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Table 4: Summary of participants’ background informa-
tion per study group: camera and control.

Attribute

Age Camera Control Total

18–24 years old 6 9 15
25–30 years old 4 1 5

L1

Other 8 6 14
English 2 4 6

French level

A1 5 5 10
A2 4 1 5
B1 – 4 4
B2 1 – 1

for accuracy and used alongside structured ses-
sion notes for qualitative analysis of participant
responses.

B Results Data Visualizations

Visual representations of some of the results are
available in this section. Table 4 shows the tabu-
lated participants demographics information. Ta-
ble 5 shows the tabulated data on participants’
French lerning background.

B.1 Daily Feedback Submissions

Participants were asked to submit a daily feed-
back form after using the app in between sessions.
While the number of daily submissions (Figure 5)
remained somewhat stable for the control group
(from 7 to 5), the camera group had the most de-
cline (from 7 to 2). When aggregating both groups,
at Day 1 there were 14 submissions, which was re-
duced to 7 at Day 5. The charts in Figures 7 and 8
show the participants’ ratings (5-Point Likert scale
for agreement) per day. The difference in the vol-
ume of submissions makes it difficult to compare
across groups, but overall, the ratings lean toward
“Strongly agree” to “Neutral” throughout the study
days. Here are the statement items participants
were asked to rate:

• “Overall, this app is easy to use.”

• “I’m having fun using this app.”

• “I have learned new French words using this
app.”

Table 5: Table shows participants’ main method for
learning French and the duration of their studies. The
study was run in Canada, a bilingual country (English
and French are official languages). Thus, French im-
mersion schools are commonly available in Canadian
education. Courses for French (“Course at school”) as
a foreign language are also common in Anglophone
schools. And other “French course” or classes are eas-
ily accessible in language institutes. Participants who
indicated “None” were never enrolled in a course or
followed a specific method.

French Study

Duration Method Camera Control Total

1 week or less None 3 1 4

French immersion – 1 1
Online course or resource 1 – 1less than 6 months
None 1 – 1

Course at school – 1 1
1 year+

Online course or resource 1 1 2

Course at school 1 5 6
5 years+

French course 1 – 1

French course 1 – 1
10 years+

French immersion 1 1 2

• “I feel more in control of my French vocabu-
lary learning progress and content since using
this app.”
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Figure 7: Camera group participants’ ratings for the daily feedback form per day. The Figure 5 shows the number of
responses per day. While at Day 1 there were 7 submissions, that number declines along the days. This chart shows
the distribution of the respondents’ answers to the 5-Point Likert scale agreement statement items at each day, from
bottom (Day 1) to top (Day 5) at each item. Although there is a shift to “Strongly agree”/“Neutral” as days pass the
number of responses are reduced.

Figure 8: Control group participants’ ratings for the daily feedback form per day. The Figure 5 shows the number
of responses per day. While at days 1 and 2 there were 7 submissions, that number declines to 5 at Day 5; which
is higher than the camera group’s Day (N = 2). This chart shows the distribution of the respondents’ answers to
the 5-Point Likert scale agreement statement items at each day, from bottom (Day 1) to top (Day 5) at each item.
Although there is a shift to “Strongly agree”/“Neutral” as days pass the number of responses are reduced.
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Abstract

As generative AI tools become increasingly in-
tegrated into educational research workflows,
large language models (LLMs) have shown sub-
stantial promise in automating complex tasks
such as topic modeling. This paper presents
a user study that evaluates AI-enabled topic
modeling (AITM) within the domain of P-20
education research. We investigate the ben-
efits and trade-offs of integrating LLMs into
expert document analysis through a case study
of school improvement plans, comparing four
analytical conditions. Our analysis focuses on
three dimensions: (1) the marginal financial
and environmental costs of AITM, (2) the im-
pact of LLM assistance on annotation time, and
(3) the influence of AI suggestions on topic
identification. The results show that LLM in-
creases efficiency and decreases financial cost,
but potentially introduce anchoring bias that
awareness prompts alone fail to mitigate.1

1 Introduction

Educators are increasingly turning to artificial in-
telligence to streamline research and administra-
tive workflows, particularly within P-20 contexts,
which cover education from Pre-K through gradu-
ate levels and workforce training. It has sparked
considerable interest in the potential of generative
AI tools to tackle complex analytical tasks (Kasneci
et al., 2023; Xu et al., 2024). Among these appli-
cations, topic modeling (TM)—a method for un-
covering hidden themes in unstructured text—has
become a prominent technique in P-20 research
over the past decade (Brookes and McEnery, 2019;
Daenekindt and Huisman, 2020; Sun et al., 2019;
Wang et al., 2017). In contrast to conventional text

1Code available here. The data are not publicly available
due to privacy restrictions but can be requested through the
Network for Educator Effectiveness (NEE) at the University
of Missouri and the Missouri Department of Elementary and
Secondary Education (DESE).

data analysis (CTDA), which often requires sub-
stantial human input and can be constrained by its
labor-intensive nature, subjectivity, and potential
for inconsistency, Artificial Intelligence-enabled
Topic Modeling (AITM), driven by sophisticated
LLMs like GPT-4 (OpenAI et al., 2024), holds
the potential for significant improvements in ef-
ficiency and scalability by automating or assist-
ing with these demanding procedures (Dell’Acqua
et al., 2023; Grossmann et al., 2023).

Implementing AITM offers several key bene-
fits, notably a reduction in the time required for
analysis and the potential for more consistent and
thorough topic identification. These efficiencies
can significantly influence research productivity
and, importantly, may lead to qualitatively differ-
ent research findings compared to CTDA due to
variations in identified themes. Nonetheless, the
rapid adoption of AITM raises important concerns
about potential drawbacks, such as financial costs
and environmental impacts associated with substan-
tial computational resource utilization. At present,
there is a lack of empirical research that compares
these costs to those of traditional methods, espe-
cially within the field of K12 educational research.

Another critical but underexplored concern with
AITM is the psychological phenomenon known
as anchoring bias—the tendency for humans to
rely excessively on initially presented information
when making subsequent judgments or decisions
(Nagtegaal et al., 2020). In contexts where humans
interact with AI-generated insights, anchoring bias
may skew human analysts’ judgments, thus, affect-
ing the final research outcomes (Zhao et al., 2024;
Choi et al., 2024).

Given these critical gaps, we investigate the
financial, environmental, cognitive, and analyti-
cal trade-offs of integrating AITM into P-20 re-
search. Our case study focuses on principal-written
school improvement plans (henceforth "Plans")
from a formal field-based principal evaluation sys-
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tem in hundreds of K12 districts in the Midwest
USA. We systematically evaluate four analytic con-
ditions: AI-Only , Human-Only, AI-Human, and
AI-Human-Deanchoring. Through this compara-
tive analysis, we address three research questions:

• RQ1: What are the marginal financial and
environmental costs of implementing AITM
in P-20 research?

• RQ2: What are the causal effects of different
analytic approaches on analysis time?

• RQ3: What are the causal effects of these
analytic approaches on the topics identified?

Preliminary findings suggest that AI analysis
significantly reduces costs and analysis time per
document compared to human analysis, although
AI-assisted methods vary slightly in terms of speed.
Additionally, when humans and AI were provided
with pre-specified topic lists, only minor differ-
ences emerged in the topics identified. Through
a thorough evaluation of these aspects, we aim to
offer an empirical understanding of AITM’s value
proposition for P-20 educational research.

2 Related Work

The field of topic modeling has seen significant
advancements, moving from traditional probabilis-
tic methods to more contemporary AI-driven tech-
niques. Early models, such as Latent Dirichlet Allo-
cation (LDA; Blei et al., 2003), conceptualized doc-
uments as combinations of topics, with each topic
characterized by a distribution of words. While
widely adopted, LDA and similar approaches of-
ten required substantial manual interpretation, as
they yielded clusters of words without clear seman-
tic labels (Gao et al., 2024b). Subsequent neural
network-based models, like BERTopic (Grooten-
dorst, 2022), improved the coherence of topics by
leveraging transformer embeddings that capture
richer contextual meaning. More recently, frame-
works leveraging large language models (LLMs),
such as TopicGPT (Pham et al., 2024), have fur-
ther enhanced the accessibility and interpretability
of topic modeling by generating human-readable
topic labels and summaries (Overney et al., 2024;
Gao et al., 2024a).

Within educational research, topic modeling has
proven to be a powerful tool for analyzing large-
scale textual data, such as curricula, school im-
provement plans, and scholarly literature. Stud-
ies have applied topic modeling to uncover latent

themes in educational leadership, policy discourse,
and reform strategies (Wang et al., 2017; Sun et al.,
2019; Daenekindt and Huisman, 2020). These
methods claim to significantly reduce the labor as-
sociated with traditional qualitative coding, making
large-scale analysis more scalable and helping to
address a fundamental impediment to research use
by educators: the amount of time it takes to con-
duct research (Drahota et al., 2016; Asmussen and
Møller, 2019).

As AI tools, particularly LLMs, become more
prominent in education research and practice, they
are being increasingly adopted for tasks such as
writing content, analyzing student responses, or
synthesizing research findings (Liu and Wang,
2024; Cambon et al., 2023; Jaffe et al., 2024).
However, effective adoption in educational con-
texts requires addressing the environmental and
financial costs of model training and inference
(Strubell et al., 2019; Hershcovich et al., 2022),
challenges around the reliability and interpretabil-
ity of model outputs (Mittelstadt et al., 2016; Sahoo
et al., 2024), and cognitive pitfalls such as automa-
tion and anchoring bias that may skew human judg-
ment during analysis (Goddard et al., 2012; Koo
et al., 2024; Echterhoff et al., 2024). This is partic-
ularly concerning in high-stakes domains like edu-
cation, where premature reliance on AI-suggested
outputs can limit critical thinking, reduce analyti-
cal diversity, and ultimately affect the integrity of
findings (Al-Zahrani, 2024; Sallam, 2023).

Furthermore, bias mitigation remains a press-
ing challenge. LLMs have been shown to inherit
and sometimes amplify social and cultural biases
(Resnik, 2024). Interestingly, emerging research
suggests that strategies such as structured group
discussions and collaborative review can counter-
act some of these effects, promoting more balanced
and reflective decision making in AI-assisted work-
flows (Horst et al., 2019; Rachael A. Hernandez
and Teal, 2013; Michaelsen et al., 2002).

3 Data

We use a proprietary dataset from the Network for
Educator Effectiveness (NEE), an educator eval-
uation system widely implemented across K–12
school districts in Missouri. This dataset spans
the academic years 2005–2006 through 2022–2023
and comprises de-identified, text-based portfolios
authored by school principals. These documents,
formally known as Building Improvement Plans
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Figure 1: The two elements extracted from the Building
Improvement Plans (BIPs) used in our goal-based study.

(BIPs) or School Improvement Plans, are submitted
annually as part of a standardized evaluation pro-
cess and are structured around seven performance
criteria (referred to as elements) evaluated by prin-
cipal supervisors using a consistent rubric.

For our study, we randomly selected 23 BIPs and
focused on two specific elements from each plan:
(1) the major objectives stated for school improve-
ment, and (2) the data principals planned to use to
measure progress toward those objectives (Figure
1). These elements are highly relevant to evaluat-
ing strategic goal-setting and progress tracking in
educational leadership and K12 school improve-
ment. The documents are entirely text-based and
machine-readable, making them ideal for qualita-
tive analysis via topic modeling.

4 Experimental Design

To investigate the integration of LLMs into educa-
tional research, we have adapted our methodology
from the user study conducted by Choi et al. (2024),
which examined the efficiency and precision of
LLMs in specialized tasks through a structured user
study focused on human-LLM interactions. Their
findings showed that while LLMs significantly in-
creased task speed, they also led users to anchor on
AI-provided suggestions. Informed by their find-
ings on anchoring bias, we expand on their experi-
mental framework by adding a novel treatment con-
dition: AI-Human-Deanchoring. This condition is
designed to reduce the over-reliance on LLM by
making participants explicitly aware of potential
anchoring effects in LLM-generated suggestions
(see Figure 2).

Our study is structured in two stages:
• Stage 1: Topic Discovery, in which participants

identify and curate a list of topics from a shared
set of BIPs.

• Stage 2: Topic Assignment, in which partici-
pants apply those topics to a new set of docu-
ments under controlled conditions.

Document A1 A2 A3 A4 A5 A6

Stage 1

D1–D11 T2 T3 T4 T2 T3 T4

Stage 2

D12–D15 T2 T3 T4 T2 T3 T4
D16–D19 T3 T4 T2 T3 T4 T2
D20–D23 T4 T2 T3 T4 T2 T3

Table 1: Document assignments for Stages 1 and 2. In
Stage 1, each analyst analyzed the full set of 11 docu-
ments (D1–D11) under a single assigned condition; ex-
perimental conditions are defined as T2: Human-Only,
T3: AI-Human, and T4: AI-Human-Deanchoring. In
Stage 2, analysts analyzed documents D12–D23, as-
signed in a balanced design across all experimental con-
ditions to ensure multiple annotations per document.

We designed the following four treatment condi-
tions:
1. AI-Only: Tasks were performed solely by the

LLM without human intervention, providing a
benchmark for AI performance.

2. Human-Only: Participants performed tasks with-
out any AI assistance, serving as the baseline
for human performance.

3. AI-Human: Participants received suggestions
from an LLM before performing tasks, allowing
us to assess the influence of AI assistance.

4. AI-Human-Deanchoring: Participants were
presented with LLM-generated suggestions with
explicit instructions to be skeptical of them due
to potential anchoring bias. By encouraging
participants to thoughtfully evaluate and adjust
AI-generated recommendations, we aim to im-
prove the trustworthiness and credibility of AI-
generated results.
To assign treatment conditions in the 12 school

improvement plans (BIPs) in stage 2, we used a
Latin square design (Montgomery, 2017). Each
of the six human participants was assigned a spe-
cific sequence of treatment conditions across dif-
ferent plans, ensuring a balanced and system-
atic distribution of the Human-Only, AI-Human,
and AI-Human-Deanchoring settings (see Table 1).
Analysts proceeded in the order of conditions T2
→ T3 → T4 in stage 2. Participants in the AI-
assisted settings (T3, T4) were provided with LLM-
generated topic annotations, while those in the
Human-Only setting (T2) worked independently
without any AI input. Analysts were unaware of the
condition until they accessed the designated docu-
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Figure 2: Overview of our Topic Modeling workflow and experimental settings. Stage-1: Topic Discovery involves
discovering latent topics within documents. Team discussion occurred at the end of Stage-1 in order develop the
Final Topic List. Stage-2 involves assigning topics to a different set of documents in all treatment conditions.

ment in Label Studio (Tkachenko et al., 2020) that
we used to conduct our user study. Each analyst
was asked to indicate whether each topic t from the
Final Topic List appeared in each paragraph/field
f of the assigned BIPs.

4.1 Stage 1: Topic Discovery

We used the data from Stage 1 to examine how
topic lists were generated across different analytic
conditions. First, all six participants analyzed the
same set of 11 BIPs, working individually under
one of three assigned conditions: Human-Only,
AI-Human, or AI-Human-Deanchoring, with two
participants per condition.

Participants in the AI-Human and
AI-Human-Deanchoring conditions were pro-
vided with an LLM-generated topic list before
beginning their analysis, while only the latter were
explicitly warned about potential anchoring effects
(see Appendix A for the full instruction). Analysts
in the Human-Only condition received no AI input.

Each analyst independently reviewed all 11 BIPs
and recorded a preliminary list of topics. After this
individual phase, participants met in their respec-
tive condition groups for a 30-minute discussion
to consolidate their findings into a group-specific
topic list. Finally, all six analysts engaged in a
60-minute cross-condition discussion to synthesize
the Final Topic List, which was later used as the
reference framework in Stage 2. All individual and
group topic lists are included in Appendix B.

Results In Stage 1, we collected three topic lists:
from the Human-Only group, AI-Human group,
and AI-Human-Deanchoring group. The analysts
unanimously curated a final list of 13 topics after

reviewing all three.

Despite differences in conditions, we observed
moderate overlap: six of the 13 final top-
ics (46%) appeared in all three lists, though
not always as exact matches. For instance,
some themes were phrased differently across set-
tings, such as Educational Technology from the
AI-Human-Deanchoring list and Technology Inte-
gration from the Human-Only list which were con-
ceptually merged into a single topic, Technology
Use/Integration, in the final list. This highlights
how interpretive nuance plays a role in topic cura-
tion.

Comparing each user-generated list with the
AI-Only list revealed systematic differences. The
AI-Only list included 8 topics. The Human-Only
list had 15, with 4 overlapping (26.67%), while
AI-Human and AI-Human-Deanchoring lists iden-
tified 8 and 11 topics with 3 (37.5%) and
7 (63.64%) overlapping, respectively. The
Human-Only list had a more granular set of
topics tailored to the dataset, whereas the
AI-Only, AI-Human, and AI-Human-Deanchoring
lists tended to include broader, more generic
themes that echoed the LLM’s original suggestions.
This suggests that the presence of LLM suggestions
may have influenced annotators to propose fewer,
more AI-aligned topics. In contrast, the final topic
list—compiled after collaborative review—shared
only 4 of 13 topics (30.77%) with the AI-Only list.
This divergence suggests that discussion among an-
notators helped complement AI outputs by adding
nuanced topics that the model did not generate.
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Comparing Final Topic List and AI-Only
List

# of
Topics

Exact topic matches between Final Topic List &
AI-Only List

4

Topics Present (or Discovered) in the Final
Topic List, but not in the AI-Only List

5

Two or more topics from Final Topic List
subsumed under one broader AI-Only topics2

4

Topics completely discarded by the annotators
from AI-Only List

2

Total topics in Final Topic List 13

Table 2: The comparison of the AI-Only List with re-
spect to the Final Topic List shows that there are few
topics that the model has failed to cover in its overall
topic generation task.

However, 5 of the 13 topics in the final topic
list were not present in the AI-Only list at all (see
Table 2). These “missing” topics—such as Class-
room Environment and Attendence—often repre-
sented context-specific or nuanced areas that the
LLM failed to surface.

Additionally, annotators explicitly discarded two
LLM topics, Education and School Improvement
Planning, as overly broad. This further illustrates a
recurring pattern: while LLMs are helpful in iden-
tifying broad thematic content, they may struggle
with generating the fine-grained, action-relevant
topics that human experts prioritize in education
policy contexts. These findings are consistent with
prior work by Choi et al. (2024), which similarly
highlighted LLMs’ limitations in capturing nu-
anced, context-specific insights.

4.2 Stage 2: Topic Assignment
Participants used the Final Topic List to anno-
tate a new set of 12 BIPs, each segmented into
three paragraph-level fields. Participants were
randomly reassigned to one of the three human-
in-the-loop conditions. Those in AI-Human and
AI-Human-Deanchoring received LLM-generated
topic suggestions; those in Human-Only did not.
We recorded the time spent on each document to
facilitate an efficiency analysis.

Results Following Stage 2, we analyzed expert
annotations across three conditions: Human-Only,
AI-Human, and AI-Human-Deanchoring. Each
paragraph in the dataset was represented as a 14-
element vector—13 corresponding to topics from
the Final Topic List established in Stage 1, and

2Multiple Final Topic List entries (e.g., “Academic Assess-
ments” and “Academic Goals”) were grouped under a single
LLM topic (e.g., “Student Assessment and Achievement”)

Metric Human-
Only

AI-
Human

AI-Human-
Deanchoring

Avg Precision 0.68 0.84 0.83
Avg Recall 0.55 0.69 0.67
Avg Annotation
Speed (words/min)

73.75 71.15 89.91

Avg Annotator
Agreement with
AI-Only (%)

54.64 73.44 71.41

Avg
Inter-Annotator
Agreement (κ)

0.57 0.71 0.69

Table 3: Summary of Stage 2 results across the three
settings. Metrics include annotation speed (words per
minute), agreement with LLM outputs (%), and inter-
annotator agreement (Cohen’s κ). See Appendix C for
detailed results and metrics definitions.

one for “None”—indicating whether annotators as-
signed relevant topics. This structure allowed us to
assess the impact of LLM suggestions on annota-
tion behavior.

Participants used the Final Topic List to anno-
tate a new set of 12 school improvement plans
(BIPs), each segmented into three paragraph-level
fields. Each field was annotated independently by
five human analysts, resulting in 12 plans× 3 fields
× 5 analysts = 180 annotations. Additionally, each
field was annotated once under the AI-Only con-
dition, yielding 36 more entries, for a total of 216
topic-field-annotator combinations.

We evaluated the LLM’s ability to replicate ex-
pert topic assignments using precision and recall,
with the Human-Only condition treated as ground
truth3. The AI-Only treatment achieved an average
precision of 0.68 and recall of 0.55 when compared
to Human-Only annotations, suggesting that while
AI outputs are often accurate, they miss nearly half
of expert-identified topics.

Annotators were significantly faster in the
AI-Human-Deanchoring condition (89.91 words /
min) than in the Human-Only (73.75 words/min) or
AI-Human (71.15 words/min) conditions. This may
reflect a tendency to anchor on LLM-generated sug-
gestions, even when warned, leading to faster—but
potentially less critical—annotation behavior.

Annotator agreement with AI-Only treatment
was highest in the AI-Human condition (73.44%),
followed by AI-Human-Deanchoring (71.41%),
and lowest in Human-Only (54.64%). These find-
ings suggest that LLM suggestions strongly influ-

3We consider the Human-Only annotations as the ground
truth because, typically, experts work independently without
AI-assistance. This makes the annotations the closest repre-
sentation of real-life expert results in our study.
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Source Reported Cost in the paper Standardized Cost (per 100 tokens)

Walther (2024) $0.001 per 100 input, $0.003 per 100 output $0.004 roundtrip
DeepLearning.AI (2024) $4 per million tokens (GPT-4o); $2 per million tokens

(Batch API)
$0.0002–$0.0004

Chen et al. (2023) $0.20–$300 per 10M tokens (GPT-J to GPT-4 Turbo) $0.000002–$0.003
Irugalbandara et al. (2024) 5×–29× cost reduction over GPT-4 $0.00014–$0.0008

Samsi et al. (2023) 3–4 Joules per token (LLaMA-65B) 0.000083–0.000111 kWh
Husom et al. (2024) 0.000083–0.0023 kWh per query (2B–70B) 0.000083–0.0023 kWh
Calma (2023) >10× increase in energy per query Relative 10× increase (qualitative only)

Table 4: Reported and standardized LLM inference costs from recent sources. All values in the third column are
standardized to cost per 100 tokens—monetary in USD and environmental in kilowatt-hours (kWh).

ence annotator decisions, and simple warnings are
not sufficient to mitigate anchoring effects.

Pairwise agreement (Cohen’s κ; Cohen, 1960)
between annotators was highest when both had
access to LLM suggestions (AI-Human: 0.71,
AI-Human-Deanchoring: 0.69), and lowest in the
Human-Only condition (0.57), reflecting a possible
anchoring effect in which annotators align more
closely—not with each other independently—but
around the AI-provided suggestions.

5 RQ1: Estimating AI Inference Costs

Methodology To evaluate the marginal cost of us-
ing LLMs in our topic modeling workflow, we syn-
thesized pricing and energy consumption data from
peer-reviewed literature, arXiv preprints, and blog
sources. For environmental costs, we reviewed
the literature that estimates kilowatt-hour (kWh)
usage and dollar-converted emissions per LLM in-
ference. To enable comparison across studies with
differing units and assumptions, we standardized
all monetary costs to U.S. dollars per 100 tokens
and converted energy-related figures to kilowatt-
hours (kWh) per 100 tokens using a conversion
factor of 1, kWh = 3.6 × 106 joules. While we
do not report pretraining costs—since our study
involves only inference—we present a plausible
range of energy costs based on similar LLM use
cases.

Results We synthesized recent estimates of both
the monetary and environmental costs of LLM in-
ference by reviewing peer-reviewed publications,
technical reports, and industry analyses. Table 4
summarizes the most relevant findings.

Our analysis shows that LLM inference costs
range from $0.0002 to $0.004 per 100-token
roundtrip, depending on the model, pricing tier,
and batching strategy (Walther, 2024; DeepLearn-
ing.AI, 2024; Chen et al., 2023). Models like
GPT-4 Turbo average around $0.004 per inference,

while batching can further reduce costs to as low as
$0.0002. Open-source alternatives offer additional
savings, with some deployments reporting cost re-
ductions of up to 29× (Irugalbandara et al., 2024).
Although not directly reporting numeric costs, the-
oretical analyses from Aryan et al. (2023) further
support these findings by emphasizing significant
potential for cost optimization through efficient de-
ployment strategies.

Environmental costs also scale significantly with
model size and usage. For example, generating 100
tokens with LLaMA-65B consumes approximately
8.3× 10−5− 1.1× 10−4 kWh (Samsi et al., 2023),
while inference across commercial models rang-
ing from 2B to 70B parameters consumes between
8.3×10−5 and 2.3×10−3 kWh per 100 tokens (Hu-
som et al., 2024). Although these values may ap-
pear small in isolation, they accumulate rapidly at
scale. As Calma (2023) note, the widespread in-
tegration of LLMs, such as their integration into
search platforms, could increase the energy foot-
print per query by more than tenfold, underscoring
the need for energy-efficient deployment strategies.

To contextualize these findings, we also consider
the cost of human-led topic modeling, which is ap-
proximately $48 per document per analyst (Carrell
et al., 2016; Dernoncourt et al., 2017). Compared
to this baseline, LLMs offer dramatic reductions in
marginal financial cost per query. However, these
monetary savings come with trade-offs: unlike hu-
man labor, LLM usage incurs measurable environ-
mental impact that scales rapidly with deployment.

Moreover, since our analysis draws from a
diverse and evolving set of sources, both cost
and energy estimates should be viewed as ap-
proximate benchmarks rather than fixed val-
ues. These results underscore the importance of
balancing cost-efficiency with sustainability when
adopting AITM in educational research.
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Setting Coef.
(s)

Std
Err

z p-value

Intercept
(Human-Only)

383.7 94.8 4.1 <0.001

AI-Human -1.6 132.8 -0.01 0.99
AI-Human-
Deanchoring

-126.4 132.8 -0.95 0.34

AI-Only -382.7 156.7 -2.4 0.015

Random Effects (Annotator): Variance = 849.67

Table 5: Linear mixed-effects model predicting an-
notation time (in seconds) across LLM support con-
ditions with Human-Only as the reference category.
The AI-Only condition significantly reduced anno-
tation time, while partial AI support (AI-Human,
AI-Human-Deanchoring) showed no statistically sig-
nificant speed gains.

6 RQ2: Measuring Impact on Annotation
Time

Methodology We used the data from stage 1 of
the study to analyze annotation time.

For each human analyst, the total annotation time
is calculated as:

timea =
11∑

p=1

timeap + 90 minutes

Here, timeap denotes the time spent by analyst a on
Plan p, and the additional 90 minutes accounts for
two structured group discussions—one 30-minute
within-treatment session and one 60-minute cross-
treatment session.

In total, we collected 77 person-by-document
entries: 6 human analysts × 11 Plans = 66 human
entries, plus 11 entries from the AI-Only condition
(1 AI × 11 Plans). To estimate the impact of treat-
ment on time-on-task, we fit a linear mixed-effects
model:

timeap = Treatmentap + ϕa + εap

where, timeap is the annotation time recorded
by analyst a for Plan p, Treatmentap is a fixed
effect with four levels: Human-Only, AI-Only,
AI-Human, and AI-Human-Deanchoring, with
Human-Only as the reference category. ϕa is a ran-
dom intercept for each analyst (6 humans + 1 AI),
which accounts for analyst-specific baseline dif-
ferences and increases the precision of estimates,
helping us isolate the impact of the treatment more
reliably. εap is the residual error term.

Results Table 5 presents the results of this
analysis. The baseline annotation time in the

Human-Only condition was approximately 384 sec-
onds. The AI-Human condition showed virtu-
ally no difference in speed (Coef = -1.6 s, p =
0.99) relative to the Human-Only condition. The
AI-Human-Deanchoring condition was faster by
about 126 seconds relative to the Human-Only con-
dition, but this difference was not statistically sig-
nificant (p = 0.341). Notably, the AI-Only condi-
tion led to a statistically significant reduction of ap-
proximately 383 seconds (p = 0.015), representing
a 6.4-minute decrease relative to the Human-Only
condition. The random effect variance for annota-
tors was estimated at 849.67, suggesting meaning-
ful variability in baseline annotation speed between
individuals. Some annotators were consistently
faster or slower than others, regardless of treatment
condition.

The AI-Only condition significantly reduces
annotation time compared to Human-Only, sug-
gesting that full AI support accelerates expert
decision-making. However, partial AI support
(i.e., AI-Human or AI-Human-Deanchoring) does
not lead to statistically significant time savings.
This indicates that the participants may have spent
additional time reviewing and deliberating on the
suggestions generated by the LLM. Rather than
simply accepting AI outputs, Annotators have re-
portedly felt compelled to cross-check or validate
these suggestions against their own judgment, lead-
ing to more careful and possibly slower decision-
making. This extra layer of comparison may
have introduced hesitation or cognitive load, off-
setting any potential efficiency gains from hav-
ing AI support. In contrast, participants in the
Human-Only condition could rely solely on their
intuition and expertise, resulting in a more stream-
lined workflow. This indicates that annotators may
not gain measurable speed advantages unless they
fully offload the task to the AI.

7 RQ3: Measuring Impact on Topic
Identification

Methodology To evaluate how treatment condi-
tion influenced topic identification, we analyzed the
Stage 2 annotation dataset described in Section 4.
Each observation is a binary outcome indicating
whether topic t was assigned to field f of plan p by
annotator a. We fit the following multilevel linear
probability model:

Pr(topicfpat = 1) = treatment+ ηp + εfpa
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Outcome Human-
Only
(reference)
Coef (SE)

AI-Only
Coef (SE)

AI-Human
Coef (SE)

AI-
Human-
Deanchoring
Coef (SE)

Joint Test
of Treat-
ments
(p-value)

Plan RE
Variance
(SE)

Academic Assessments 0.1979
(0.0715)

-0.0313
(0.0770)

0.0114
(0.0673)

0.0615
(0.0673)

0.6496 0.0344
(0.0171)

Academic Goals 0.3541
(0.0776)

-0.0763
(0.0906)

-0.0519
(0.0793)

-0.0105
(0.0793)

0.8054 0.0349
(0.0185)

Attendance 0.3098
(0.0877)

-0.1153
(0.0769)

-0.0360
(0.0674)

-0.0266
(0.0674)

0.5063 0.0654
(0.0297)

Behavioral Goals 0.1824
(0.0668)

-0.0435
(0.0717)

-0.0148
(0.0628)

0.0176
(0.0628)

0.8538 0.0301
(0.0150)

Classroom Management 0.0326
(0.0159)

-0.0326
(0.0242)

-0.0337
(0.0210)

-0.0140
(0.0210)

0.3577 0.0004
(0.0005)

College and Career Readi-
ness

0.0505
(0.0394)

0.0051
(0.0408)

0.0078
(0.0357)

-0.0093
(0.0357)

0.9682 0.0110
(0.0054)

Curriculum 0.1067
(0.0556)

-0.0233
(0.0588)

-0.0090
(0.0515)

0.0390
(0.0515)

0.7016 0.0213
(0.0105)

Graduation 0.0167
(0.0159)

-0.0167
(0.0243)

-0.0009
(0.0212)

0.0009
(0.0212)

0.8886 0.0004
(0.0005)

Instruction 0.0674
(0.0335)

-0.0674
(0.0439)

-0.0246
(0.0383)

0.0056
(0.0383)

0.3472 0.0047
(0.0029)

Parent/Community En-
gagement

0.1982
(0.0699)

-0.0871
(0.0669)

-0.0418
(0.0585)

-0.0193
(0.0585)

0.6048 0.0383
(0.0179)

Professional Development 0.2266
(0.0786)

-0.0877
(0.0732)

-0.0348
(0.0641)

0.0550
(0.0641)

0.2369 0.0497
(0.0231)

Technology Use Integra-
tion

0.0756
(0.0636)

-0.0478
(0.0257)

-0.0223
(0.0226)

0.0122
(0.0226)

0.0935 0.0455
(0.0189)

Classroom Environment
or Culture

0.1059
(0.0463)

-0.0503
(0.0510)

-0.0185
(0.0446)

-0.0491
(0.0446)

0.6521 0.0139
(0.0070)

Table 6: Coefficients (with SEs) from multilevel linear probability models estimating the impact of treatment
on topic identification, relative to the Human-Only baseline. Joint tests assess whether all AI-based treatments
collectively differ from the baseline. No statistically significant differences were observed across any treatment,
indicating that topic identification remained stable despite varying levels of AI assistance.

Here, topicfpat is 1 if topic t was identified by
analyst a in field f of plan p, and 0 otherwise. The
model includes treatment as a fixed effect (with
Human-Only as the reference condition) and ηp as
a random intercept for each plan. This structure
captures the hierarchical nature of the data while ac-
counting for differences in topic prevalence across
plans. εfpa accounts for the residual error.

We tested several alternative model specifica-
tions, including crossed and nested analyst effects,
but these did not improve model fit or alter the re-
sults meaningfully. Thus, we retained the simpler
formulation, which allows us to isolate the effect of
treatment condition on topic identification behavior
across annotators.

Results The results of the regression is given
in Table 6. We used Human-Only as the refer-
ence condition and computed coefficients for each
AI-based treatment: AI-Only , AI-Human, and
AI-Human-Deanchoring. Each row in Table 6
presents the estimated probability of a topic being
identified under each treatment, along with stan-
dard errors and joint significance test results.

For the topic Academic Assessments, the base-
line Human-Only coefficient is 0.1979. Com-
pared to this, the AI-Only coefficient is about
3 percentage points lower, the AI-Human coef-
ficient is 1.1 percentage points higher, and the
AI-Human-Deanchoring coefficient is 6.2 percent-
age points higher, respectively.

When comparing the Human-Only and
AI-Human conditions reveals minimal differences
across topics, with coefficients typically within ±5
percentage points and no statistically significant
deviations. This suggests that introducing AI sup-
port does not substantially shift topic identification
patterns, and expert judgments remain largely
consistent with the Human-Only baseline.

Next, examining the AI-Only and AI-Human
conditions relative to the Human-Only baseline, we
find that human analysts working with AI sug-
gestions tend not to diverge far from the original
AI-Only outputs. Instead, the AI-Human estimates
tend to fall between the AI-Only and Human-Only
values, implying that humans may be partially influ-
enced— or anchored— by AI suggestions in their
decision-making.
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A similar pattern holds when comparing
AI-Human and AI-Human-Deanchoring, each rela-
tive to the Human-Only baseline. Despite the pres-
ence of explicit deanchoring warnings, the esti-
mates in these two conditions show minimal devia-
tion from each other when considered through their
differences from the baseline. In some cases, the
deanchoring estimates are numerically closer but
not statistically different to the AI-Human ones than
to the Human-Only baseline. This indicates that, in
this context, explicit instructions to critically evalu-
ate AI suggestions had limited observable effect.

However, the joint significance test (p = 0.6496)
does not indicate statistically significant differences
between the treatment groups. This pattern holds
across most topics. Joint significance tests across
all 13 outcomes yielded p-values greater than 0.05,
suggesting that the combination of effects from the
three AI-based treatments does not reflect a sys-
tematic deviation from the Human-Only condition.
In other words, there was no consistent pattern
across the three AI conditions that significantly
distinguished them from the Human-Only baseline.

The findings suggest that while human annota-
tors may incorporate AI input into their judg-
ments, they are not significantly over-relying
on it compared to the Human-Only condition.
Deanchoring prompts offered limited additional
benefit in mitigating potential anchoring effects.
Topic identification remained stable across all
treatment conditions, indicating that different
approaches to incorporating AI did not produce
meaningful divergence in these results.

8 Conclusion

This study examined how AI-enabled topic mod-
eling (AITM) can be integrated into educational
research workflows, focusing on its financial, en-
vironmental, cognitive, and analytical trade-offs.
Our findings show that while LLMs provide clear
efficiency benefits, especially by speeding up an-
notation and lowering costs, these gains come with
important risks. In both stages of human-in-the-
loop annotation, we found evidence of anchoring
bias: human analysts who saw LLM suggestions
were more likely to stick with them, even when
explicitly cautioned. However, when we looked
at topic-level outcomes, we did not find statisti-
cally significant differences in which topics were
identified across the treatment conditions. This
suggests that while anchoring may shape how an-

notators approach the task, for example, in how
quickly they work or how much they agree with AI,
it doesn’t necessarily change the final set of topics
they choose.

As institutions consider scaling up AI-based
analysis, the trade-off between speed and depth
becomes harder to ignore. AI can definitely help ef-
ficiency and cost reduction, but human judgment is
still crucial, especially for subtle, context-specific
details that models tend to miss. Relying only on
AI might make things more efficient, but it also
risks losing the kinds of insights that matter most
for real-world decisions. A balanced approach,
where AI helps with the heavy lifting, but humans
stay in the loop, seems like the best way to get both
speed and substance.

Limitations

While this study offers important insights into the
use of LLMs for topic modeling in educational re-
search, it is essential to acknowledge its limitations.
First, our analysis is based on a relatively small
sample of 23 school improvement plans from a sin-
gle state, which may limit the generalizability of
our findings to other contexts. Second, our study
focused on a specific type of text document. While
these documents are relevant to educational lead-
ership and policy, the findings may not be directly
transferable to other forms of educational text, such
as student essays, teacher evaluations, or policy
documents. Third, our investigation of anchoring
bias relied on a single de-anchoring intervention.
While this allowed us to isolate the effect of such
prompts, future research could explore the efficacy
of other de-biasing techniques, such as structured
protocols or collaborative decision-making strate-
gies. Finally, the rapidly evolving nature of LLM
pricing and energy consumption means that these
figures of our cost analysis should be interpreted as
indicative rather than definitive.
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A AI-Human-Deanchoring Warning

To address the anchoring bias minimally, we intro-
duced a new treatment AI-Human-Deanchoring.
Similar to the AI-Human setting, the
AI-Human-Deanchoring group also received
the results generated by AI (i.e., AI-Only list)
paired with the following prominently displayed
instructions:

This document has annotations suggested by
the LLMs. It will be your task to decide
whether these annotations are correct or
not. Delete or modify annotations as you
see fit. However, we have found evidence of
anchoring bias when annotators receive LLM
suggestions. Anchoring bias is a cognitive
bias where an individual relies too heavily
on an initial piece of information (the
“anchor”) when making decisions. This means
that the initial suggestions provided by
the LLM might disproportionately influence
the final labels you create, potentially
reducing the diversity and originality of
the Final Topic List. It is important for
you to be aware of this bias and make
conscious efforts to critically evaluate
and adjust your topics and suggestions to
ensure the annotations are accurate and
unbiased. We ask you to be extra critical
while annotating these documents.

Our intention was to observe how experts re-
act to the awareness of anchoring bias from LLM
suggestions and whether they adjust their behavior
accordingly. We also aimed to evaluate if merely
knowing about the bias was effective enough to
help annotators de-anchor.

471

https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://stephenwalther.com/how-much-does-it-cost-to-call-openai-apis
https://stephenwalther.com/how-much-does-it-cost-to-call-openai-apis
https://doi.org/10.18653/v1/2024.naacl-long.246
https://doi.org/10.18653/v1/2024.naacl-long.246
https://doi.org/10.18653/v1/2024.naacl-long.246
https://doi.org/10.18653/v1/2024.findings-acl.515
https://doi.org/10.18653/v1/2024.findings-acl.515


B Stage 1: All topic lists

B.1 AI-Only topic list

Topic Name Topic Definition

Education This topic encompasses various aspects of the educational process, including
instructional strategies, curriculum development, assessment methods, profes-
sional development for educators, student performance tracking, and educational
objectives and goals alignment with standards.

Student Assessment and Achievement This topic covers the processes and methodologies involved in evaluating stu-
dent performance, including standardized testing, reading assessments, and other
forms of academic evaluation. It also includes strategies for improving student
achievement levels in core subjects like math, ELA, and science.

Professional Development This topic involves the continuous education and skill development of teachers
and educational staff, including the implementation of best teaching practices,
collaboration among educators, and the use of technology and data to enhance
teaching effectiveness.

Curriculum and Instruction This topic focuses on the design, implementation, and evaluation of educational
curricula and instructional materials. It includes the alignment of curriculum with
educational standards, the development of instructional strategies to meet diverse
learning needs, and the integration of technology into the learning environment.

School Improvement Planning This topic covers the strategic planning processes schools undertake to improve
academic performance and operational efficiency. It includes setting and aligning
goals with educational standards, data-driven decision-making, and the implemen-
tation of interventions and supports to meet educational objectives.

Behavioral Interventions and Supports This topic addresses strategies and programs designed to improve student behavior
and create positive school environments. It includes the implementation of Positive
Behavior Interventions and Supports (PBIS), discipline management strategies,
and efforts to increase student engagement and accountability.

Parent and Community Engagement This topic involves strategies and practices for involving parents and the com-
munity in the educational process. It includes parent-teacher communication,
community partnerships to support student achievement, and stakeholder involve-
ment in school decision-making processes.

Educational Technology This topic covers the use of technology in educational settings, including the
implementation of digital tools and resources to support teaching and learning,
the use of assessment technologies, and the training of educators in effective
technology integration.

Table 7: AI-Only topic list for stage 1. We generated the list using GPT-4o-mini model using chatGPT API.
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B.2 Final topic list after stage 1

Topic Name Topic Definition

Academic Assessments This topic includes mandated annual state assessments like MAP and other district
and school level assessments to evaluate academic progress.

Academic Goals This topic covers the strategic planning processes schools undertake in aligning
goals with educational standards and the implementation of interventions and
supports to meet educational objectives in core subjects like math, ELA, and
science.

Behavioral Goals This topic addresses strategies and programs designed to improve student behavior
and create positive school environments. It includes the implementation of Positive
Behavior Interventions and Supports (PBIS), discipline management strategies,
and efforts to increase student engagement and accountability.

Classroom Management This topic covers how teachers develop and implement procedures to maximize
instructional time/space/transitions/activities for efficiency in the classroom.

Classroom Environment/Culture This topic covers how all members of the school community (administrators,
teachers, and students) develop and implement pro-social behaviors inside and
outside of academic instruction. This can include social-emotional learning (SEL)
and fostering of pro-social attitudes and behaviors.

Curriculum This topic covers what teachers do to plan, design, and develop materials to
promote learning. This can include collaboration through professional learning
communities (PLCs) as long as it is specifically around curriculum design.

Instruction This topic covers what teachers do to deliver instruction during active academic
time with students in the classroom. This includes instructional strategies and
also collaboration in professional learning communities (PLCs) as long as it is
specifically about how teachers engage with students in academics, instructional
strategies, academic press, critical thinking, or formative assessment.

Professional Development This topic involves the continuous education and skill development of teachers
and educational staff, including evaluation of teachers, classroom observation,
and collaboration around improving what teachers do to work with students.

Parent/Community Engagement This topic involves strategies and practices for involving parents and the com-
munity (including school boards) in the educational process. It includes parent-
teacher communication, community partnerships to support student achievement,
and stakeholder involvement in school decision-making processes.

Technology Use/Integration This topic covers the use and integration of technological tools, resources, and
materials.

College and Career Readiness (CCR) This topic covers college and career readiness (CCR) of students including Career
& Technical Education credit hours and employment, military, and college place-
ment.

Graduation This topic involves the matriculation between grades and completed secondary
state requirements. This is often expressed in the graduation rates of students.

Attendance This topic involves the attendance rates and percents of students.

Table 8: Stage 1 Final Topic List curated by the participants.
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B.3 All Group-Specific Topic List

Human-Only List AI-Human List AI-Human-
Deanchoring List

Final Topic List AI-Only List

State Assessment School Assessment
and Achievement

Student Assessment
and Achievement

Academic
Assessments Student Assessment

and Achievement
Localized Assessment

School Assessment
and Achievement

Student Assessment
and Achievement

Academic Goals

Data-Driven
Decisionmaking

Behavioral Goals/
Classroom
Management

Behavioral
Interventions and

Support

Behavioral
Interventions and

Supports

Behavioral Goals Behavioral
Interventions and

Supports

Student Support Data-Driven
Decisionmaking

Classroom
Management

Classroom
Management

Student/ Teacher
Relationships

Classroom Culture/
Environment

Classroom
Environment/ Culture

Localized Curriculum Curriculum and
Instruction Curriculum Curriculum

Curriculum and
InstructionCollaboration

Teaching Strategies Curriculum and
Instruction Instruction Instruction

Teacher Evaluation
Components

Collaboration

Professional
Development

Professional
Development

Professional
Development

Professional
Development

Professional
Development

Instructional Coach

Stakeholder
Engagement

Parent and
Community
Engagement

Parent and
Community
Engagement

Parent/Community
Engagement

Parent and
Community
Engagement

Technology
Integration

Educational
Technology

Technology
Use/Integration

Education
Technology

College, Career,
Readiness

College and Career
Readiness (CCR)

Graduation/
Matriculation Rate

Graduation

Attendance Attendance

District Alignment Education Education

School Improvement
Planning

School Improvement
Planning

Table 9: Comparison of topic lists generated across conditions in Stage 1. Entries are grouped to show thematic
overlap and consolidation across all lists. Struckthrough entries indicate topics that annotators collectively decided
to discard during the final discussion phase.
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C Stage-2 Detailed Results:

We provide computation details for the metrics re-
ported in Table 3. For the analysis, each paragraph-
level field was encoded as a 14-dimensional binary
vector: 13 dimensions correspond to the presence
or absence of each topic from the Final Topic List,
and the final slot indicates a “None” label (no topic
assigned). These vectors were used for computing
precision, recall, and agreement metrics.

Annotators precision recall

A1 0.57 0.5
A2 0.71 0.67
A3 0.77 0.47
A4 0.70 0.44
A5 0.65 0.65

Avg 0.68 0.55

Table 10: For each annotator in Stage 2, the precision
and recall percentages of the AI-Only annotations over
these documents when measured against the annota-
tions of experts acting under the Human-Only condition.
Also, the averages of these LLM precision and recall
percentages.

Average Precision and Recall To evaluate how
closely LLM-generated annotations align with
human judgment, we compute precision and re-
call by comparing the LLM-assigned topics to
those assigned by human annotators under each
treatment condition (Human-Only, AI-Human, and
AI-Human-Deanchoring).

Using the Human-Only condition as ground truth,
we found that the LLM achieved an average preci-
sion of 0.68 and a recall of 0.55. This means that
while 68% of LLM predictions aligned with expert
judgments, nearly half of the expert-identified top-
ics were not captured by the model. Thus, the LLM
shows reasonable accuracy, but limited coverage in
replicating full expert insight.

Human-
Only

AI-
Human

AI-Human-
Deanchoring

Average
Annotation Speed
(words/min)

73.75 71.15 89.91

Average Annotator
Agreement with AI
(%)

54.64 73.44 71.41

Table 11: Comparison of average annotation speed
(words per minute) and average Human-AI agreement
across the three conditions.

Average Annotation Speed To understand how
LLM support affects efficiency, we calculated an-
notation speed in words per minute (wpm). For
each document field, we divided the number of
words by the time each annotator took to com-
plete it, then averaged these speeds by condi-
tion. As shown in Table 11, annotators in the
Human-Only condition averaged 73.75 wpm. This
dipped slightly in the AI-Human condition to 71.15
wpm, but surprisingly jumped to 89.91 wpm in the
AI-Human-Deanchoring condition—even though
those annotators were explicitly warned about bias.
The results suggest that having AI suggestions,
even with cautionary prompts, may encourage an-
notators to move faster—possibly by relying on the
AI’s suggestions rather than thinking through every
decision from scratch.

Average Annotator Agreement with AI To as-
sess how closely human annotators aligned with
LLM-generated suggestions, we calculated the per-
centage of topic assignments that matched the
AI-Only output. For each annotator–field pair, we
compared the human-assigned topics to the AI’s
and computed the overlap. These agreement scores
were then averaged within each condition (see Ta-
ble 11).

Agreement varied by condition. In the
Human-Only setting—where annotators had no AI
support—the average agreement with the AI was
54.64%. This jumped to 73.44% in the AI-Human
condition, suggesting that access to AI suggestions
substantially influenced annotator decisions. In
the AI-Human-Deanchoring condition, agreement
remained similarly high at 71.41%, even though
annotators were explicitly warned about potential
bias. This suggests that simply cautioning annota-
tors may not be enough to counter the influence of
LLM outputs.

Inter-Annotator Agreement. To assess how
consistently annotators applied the topic labels,
we used Cohen’s κ(Cohen, 1960), a standard mea-
sure for inter-rater agreement on categorical deci-
sions. Because each document field was annotated
by a pair of analysts within the same condition
(see Table??), we were able to compute pairwise κ
scores for each condition and then average them.

The results (Table 12) show that annotators
aligned more closely when LLM suggestions were
available. Agreement was highest in the AI-Human
condition (κ = 0.71) and nearly as high in the
AI-Human-Deanchoring setting (κ = 0.69). In
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Agreement
between

Human-
Only

AI-
Human

AI-Human-
Deanchoring

Avg per
Annota-

tor

A1 and A4 0.48 0.72 0.79 0.66
A2 and A5 0.65 0.69 0.59 0.64

Avg per
Condition

0.57 0.71 0.69

Table 12: Agreement between annotator pairs across dif-
ferent treatment conditions. We report annotator agree-
ment Cohen’s κ for each pair per setting. The average
agreement per annotator pair is higher for the settings
with LLM suggestions, implying towards a potential
anchoring effect.

contrast, agreement dropped in the Human-Only
condition (κ = 0.57), where annotators worked in-
dependently. These findings suggest that LLM sup-
port—regardless of deanchoring prompts—tends
to guide annotators toward similar decisions, po-
tentially reflecting a convergence effect around AI-
generated suggestions.
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Abstract

With the rise and widespread adoption of Large
Language Models (LLMs) in recent years, ex-
tensive research has been conducted on their
applications across various domains. One such
domain is education, where a key area of in-
terest for researchers is investigating the imple-
mentation and reliability of LLMs in grading
student responses. This review paper examines
studies on the use of LLMs in grading across
six academic sub-fields: educational assess-
ment, essay grading, natural sciences and tech-
nology, social sciences and humanities, com-
puter science and engineering, and mathemat-
ics. It explores how different LLMs are ap-
plied in automated grading, the prompting tech-
niques employed, the effectiveness of LLM-
based grading for both structured and open-
ended responses, and the patterns observed in
grading performance. Additionally, this paper
discusses the challenges associated with LLM-
based grading systems, such as inconsistencies
and the need for human oversight. By synthe-
sizing existing research, this paper provides
insights into the current capabilities of LLMs
in academic assessment and serves as a founda-
tion for future exploration in this area.

1 Introduction

Grading has traditionally been a manual pro-
cess conducted by human teachers or graders,
which can be time-intensive, laborious, and sub-
ject to inconsistencies due to individual judgment
(Gnanaprakasam and Lourdusamy, 2024). To cir-
cumvent some of these issues, standardized exam-
inations and rubrics are designed. Nonetheless,
these may fail to detect variations in student ability
or in learning styles (Gnanaprakasam and Lour-
dusamy, 2024). Furthermore, traditional grading
methods fail to deliver tailored feedback at scale,
further decreasing the value of exams as opportu-
nities for personalized assessment (Haque et al.,
2022).

Manual grading has significant mental and phys-
ical implications both for educators and students
(Skaalvik and Skaalvik, 2017) and students (Hough,
2023). Due to its repetitive and time-consuming na-
ture, it leads to physical and mental fatigue for ed-
ucators. Previous research indicates that the stress
associated with manual grading can also hinder ed-
ucators’ ability to focus on other critical aspects
of teaching, such as lesson planning and student
engagement (Hakanen et al., 2006). For students,
the subjective nature of manual grading can intro-
duce biases, which may negatively impact students’
academic outcomes and their trust in the evaluation
process (Wigfall, 2020). Delayed feedback from
manual grading can leave students in prolonged un-
certainty, which may increase their anxiety levels
(England et al., 2019).

On the contrary, the rapid advancements in the
field of artificial intelligence (AI), and the introduc-
tion of LLMs, capable of understanding and gener-
ating human-like text, have shifted this paradigm.
LLM-based grading is any grading technique that
leverages powerful Large Language Models to au-
tomate the evaluation of student responses, offering
potential benefits in speed, consistency, and scala-
bility. This shift is particularly relevant in educa-
tional settings where large volumes of assessments,
such as essays and short answers, need efficient
processing. Research conducted by Grandel et al.
(2024) showed the ability of LLM-based grading
techniques to reduce grading time by 81.2%. AI-
automated grading could reduce the workload on
educators, allowing them to spend more time teach-
ing. Such systems could ensure consistency and
objectivity in evaluations, reducing human biases
and providing fair assessments for all students.

While individual studies have demonstrated
LLM applications in specific educational domains,
a comprehensive cross-disciplinary analysis is es-
sential to understand broader patterns, identify
transferable methodologies, and reveal domain-
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specific challenges. Educational assessment varies
significantly across disciplines—from objective
STEM problem-solving to subjective humanities
analysis—making it crucial to examine how LLMs
perform across this spectrum. A cross-disciplinary
perspective enables identification of universal best
practices, domain-specific adaptations, and system-
atic gaps that single-domain studies cannot reveal.
Moreover, such an approach allows for the syn-
thesis of methodological insights that can inform
both researchers and practitioners across diverse
educational contexts.

This review paper surveys the current landscape
of LLM-based assessment across six academic
domains—educational assessment, essay grading,
natural sciences and technology, social sciences
and humanities, computer science and engineer-
ing, and mathematics. It synthesizes findings from
30 recent studies, analyzing how LLMs are ap-
plied in different assessment formats, the prompt-
ing strategies used, their alignment with human
evaluators, and the contextual variables influencing
performance. In doing so, this paper provides a
cross-disciplinary framework for understanding the
capabilities and limitations of LLM-based grading
systems. It also highlights methodological trends,
emerging implementation strategies, and the evolv-
ing role of human-AI collaboration in educational
assessment. Overall, this paper provides a timely
cross-disciplinary survey that will serve as a use-
ful reference. It is well-scoped and captures key
themes in LLM-based grading. Moreover, it brings
to light current challenges and limitations in the
area, such as rubric drift and LLM transparency
issues.

2 Data Collection

We conducted a systematic literature review using
the PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) methodology
to identify relevant studies on the use of large lan-
guage models (LLMs) in educational assessment.
The search aimed to include published academic
research between January 1, 2022, through January
14, 2025. The selection focused on works that ad-
dressed LLM use in grading, feedback generation,
essay evaluation, short-answer marking, domain-
specific assessments, and pedagogical implications.

Our review focuses on six academic do-
mains—educational assessment, essay grading, nat-
ural sciences and technology, social sciences and

humanities, computer science and engineering, and
mathematics—selected to represent the breadth of
educational assessment contexts where LLMs are
being applied. These domains were chosen to span
the spectrum from highly structured (mathematics,
computer science) to open-ended assessments (hu-
manities), include both technical and non-technical
fields, and represent different cognitive complexity
levels as defined by Bloom’s taxonomy. This selec-
tion enables a comprehensive analysis of how LLM
performance varies across assessment types, con-
tent domains, and evaluation criteria while main-
taining sufficient depth within each domain.

Articles were gathered from multiple scholarly
databases and repositories as detailed in Table 1, in-
cluding Google Scholar, arXiv, IEEE Xplore, ACL
Anthology, and ERIC (Education Resources Infor-
mation Center). We also examined proceedings
from key conferences, including ACL, EMNLP,
EDM (Educational Data Mining), LAK (Learn-
ing Analytics and Knowledge), and AIED (Arti-
ficial Intelligence in Education). Keywords used
in the searches included combinations of: “large
language models,” “educational assessment,” “au-
tomated grading,” “essay scoring,” “student feed-
back,” “ChatGPT,” “GPT-4,” “short answer evalua-
tion,” and “AI in education.”

Studies were selected based on predefined inclu-
sion criteria: (1) empirical studies involving LLM
applications in educational assessment, (2) pub-
lished between 2022-2025, (3) sufficient detail on
methodology and results, and (4) focus on grad-
ing, feedback, or evaluation tasks. The PRISMA
flow diagram detailing the study selection process
is presented in Figure 1.

The initial search yielded 104 articles and re-
ports. After removing duplicates, irrelevant papers
(e.g., not focused on education or assessment, theo-
retical works without application), we filtered 48
full-text articles assessed for eligibility. We ex-
cluded the remaining articles for insufficient empir-
ical content, lack of focus on assessment, or being
out of scope (e.g., general education technology
without AI involvement). This rigorous selection
process yielded 30 articles for the final review. The
included studies comprised 19 peer-reviewed pub-
lications and 11 preprints, reflecting the rapidly
evolving nature of this research area.
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3 Variables of Study

To analyze LLM applications in educational as-
sessment, we define a set of key variables that
form the basis for comparing diverse implemen-
tations. These variables are grouped into four
main categories. First, the assessment types in-
clude Multiple-Choice Questions (MCQs), Short-
Answer Questions, Essay Assessments, Program-
ming Assignments, Mathematics Assessments, and
Handwritten Assessments. Second, the studies
span a broad range of education levels—from Early
and Primary education through Secondary, Un-
dergraduate, Graduate, to Professional Education.
Third, human annotators are classified into distinct
groups: Expert Evaluators, Experienced Educa-
tors, Novice Evaluators, Field Practitioners, and
Unspecified Graders, a categorization that is cru-
cial for understanding how LLM outputs compare
with human judgment. Finally, evaluation met-
rics employed across the studies include Cohen’s
Kappa, Quadratic Weighted Kappa, Krippendorff’s
Alpha, Pearson and Spearman Correlations, Accu-
racy, F1 Score, and Win Rate. Collectively, this
framework is essential for identifying patterns and
making meaningful cross-disciplinary comparisons
of LLM-assisted assessment. Detailed tables for
each variable category can be found in Tables 2, 3,
4, and 5 in the Appendix.

4 LLMs in Assessment

Large language models face significant challenges
in educational assessment contexts, particularly
when evaluating higher-order cognitive tasks and
providing nuanced feedback comparable to human
experts (Kasneci et al., 2023; Gnanaprakasam and
Lourdusamy, 2024). However, researchers have
developed innovative approaches to address these
limitations, demonstrating increasingly promising
results across diverse educational settings.

Early evaluations by Teckwani et al. (2024) in
the physiological education domain revealed that
LLMs, such as GPT-3.5, GPT-4o, and Gemini,
achieved only moderate alignment with human
graders (for example, Gemini reached 71% agree-
ment with r = 0.672), whereas experienced fac-
ulty demonstrated superior consistency (80% agree-
ment, r = 0.936). This divergence was especially
pronounced on higher-order cognitive tasks, which
has driven further research into methods for en-
hancing LLM assessment performance. To address
these challenges, several studies have focused on

structured rubrics and frameworks (see Appendix
A.4.2). For example, Morjaria et al. (2024) found
that when ChatGPT-4 was paired with question-
specific rubrics, score inflation was reduced and
the correlation with human reviewers improved
to between r = 0.6 and 0.7. In parallel, Yuan
and Hu (2024) observed that Llama-UKP models,
when provided with well-defined assessment cri-
teria (see Table 2), achieved high agreement with
human evaluators (Spearman ρ = 0.843). These
results underscore that explicit, rubric-based guid-
ance consistently leads to more interpretable and
reliable feedback in diverse educational contexts.

In addition to structured frameworks, advanced
prompting strategies have emerged as critical tools
for optimization (see Appendix A.1). The Reason-
Act-Evaluate" (RAE) prompt introduced by Li et al.
(2024) structures the assessment process into three
clearly defined stages: reasoning about criteria,
performing an assessment, and reviewing the out-
come (see Appendix A.4.3). When applied to
1,235 student-generated texts, the RAE method
achieved 76.5% accuracy and demonstrated strong
alignment in dimensions such as logical reasoning
(ρ = 0.824). This approach not only mirrors hu-
man grading practices but also significantly boosts
the overall reliability of LLM outputs without nec-
essarily relying on cutting-edge architectures.

Furthermore, the most promising results have
been observed when LLMs are integrated into hy-
brid human-AI systems. Tools such as EvalGen, de-
veloped by Shankar et al. (2024b), combine LLM-
generated assessments with human oversight to
mitigate challenges like criteria drift (refer to Ap-
pendix A.4). Similar hybrid approaches proposed
by Sinha et al. (2023), Khan et al. (2023), and the
“Assisted RAE” method by Li et al. (2024) rein-
force the idea that human-AI collaboration can en-
hance assessment consistency and integrity while
reducing individual grader workload.

Finally, comparative model insights reveal that
while newer LLMs often outperform older ones, the
overall effectiveness of an LLM-based assessment
system depends more on the quality of prompt-
ing and implementation strategy than simply on
model recency. Open-source models like Llama-
UKP, when used with robust methods, can per-
form comparably to proprietary systems (Yuan
and Hu, 2024). Complimenting this, Li’s find-
ing—that Assisted RAE achieved 76.5% accu-
racy—demonstrates that strategic prompt engineer-
ing can be just as influential as acquiring the latest
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model updates (Li et al., 2024).

4.1 Essay Grading
On the widely-used ASAP dataset (Automated Stu-
dent Assessment Prize, a collection of 17,043 stu-
dent essays across eight prompts with expert hu-
man scores). (The Hewlett Foundation, 2012), per-
formance varies significantly across model archi-
tectures and implementation approaches. See Ap-
pendix A.2 for a detailed description. Xiao et al.
(2024)’s dual-process framework using LLaMA3-
8B achieved Quadratic Weighted Kappa (QWK)
scores of approximately 0.7, approaching state-of-
the-art models (QWK = 0.79) while maintaining
over 80% score consistency. Similarly, Tang et al.
(2024) found that GPT-4 achieved moderate re-
liability (QWK=0.5677) with criteria-referenced
prompts, though still below human reliability
benchmarks (QWK=0.6573). In contrast, Kundu
and Barbosa (2024)’s evaluation of ChatGPT on the
same dataset showed weaker correlation with hu-
man scores (r=0.21–0.23), though Llama-3 models
demonstrated 130–173% improvement over base-
line metrics, highlighting the rapid evolution in
open-source model capabilities for educational as-
sessment.

Among the prompting methods, Jauhiainen
and Garagorry Guerra (2024)’s implementation of
verification-based chain-of-thought prompting (see
Appendix A.1) with the RAG framework achieved
remarkable consistency, with 68.7% of ChatGPT-4
grades remaining stable across multiple evaluations
and 72.2% aligning closely with human assess-
ments. This approach parallels Xiao et al. (2024)’s
dual-process framework, which distinguishes be-
tween a "Fast Module" for rapid predictions and
a "Slow Module" for detailed feedback when con-
fidence is low—a design inspired by Kahneman’s
dual-processing theory (Kahneman, 2011). Both
studies demonstrate how thoughtful prompt de-
sign can dramatically improve performance even
without requiring the most advanced models, with
Xiao’s open-source implementation achieving a
35% win rate (see Table 5) when compared to GPT-
4 explanations despite using the smaller LLaMA3-
8B model. Tang et al. (2024) further established
that lower temperature settings (0.0) consistently
produced better human alignment across models,
highlighting how parameter tuning complements
prompt engineering in optimizing assessment qual-
ity.

Supporting our observation that LLMs in hu-

man grading workflows show particular promise,
Xiao et al. (2024)’s human-AI experiments re-
vealed that novice graders improved from QWK
0.53 to 0.66 (approaching expert-level performance
of 0.71) when provided with LLM-generated feed-
back, while experts reached QWK 0.77 with AI
assistance. These findings align with Farrokhnia
et al. (2024)’s assertion that AI tools can effectively
reduce teacher workload while maintaining assess-
ment quality. The complementary relationship be-
tween human and AI evaluation extends beyond
efficiency gains, with Kundu and Barbosa (2024)
noting that humans and LLMs employ distinctly
different evaluation criteria—humans prioritizing
essay length (r=0.74) while LLMs focus more on
technical elements like grammar—suggesting that
hybrid approaches can provide more comprehen-
sive assessment than either alone.

Interactive assessment frameworks represent an
emerging frontier, moving beyond static grading to-
ward dynamic, dialogue-based evaluation systems.
Hong et al. (2024)’s CAELF (Contestable AI Evalu-
ation with Logic and Feedback; see Appendix A.4)
introduces a multi-agent framework that enables
students to challenge grades through structured de-
bate, with Teaching-Assistant Agents discussing es-
say quality while a Teacher Agent resolves conflicts
using principles from computational argumentation
(Dung, 1995). When tested on 500 critical thinking
essays (Hugging Face, 2023), this approach im-
proved interaction accuracy by 44.6% over GPT-4o
while maintaining correct evaluations in 80-90%
of cases. More importantly, the system admitted
mistakes 10-20% more frequently than baselines,
demonstrating improved metacognitive awareness.
Human evaluators particularly praised the clarity
and actionable nature of the feedback, aligning with
advances in LLM-driven formative assessment (Dai
et al., 2023).

4.2 Natural Sciences & Technology
In the natural sciences domain, Henkel et al.
(2024a) demonstrated that GPT-4 achieved near-
human performance on 1,710 K-12 short-answer
questions from the Carousel dataset (Cohen’s κ =
0.70 compared to human κ = 0.75), with metrics
of 85% accuracy, 0.87 precision, and 0.85 recall.
In contrast, GPT-3.5 only reached a κ of 0.45, high-
lighting rapid advancements between model gen-
erations. Similarly, Tobler (2024)’s GenAI-Based
Smart Grading system attained strong alignment
with human evaluators (Krippendorff’s α = 0.818,

480



95% CI [0.689, 0.926]) in university-level assess-
ments. Further comparisons by Latif and Zhai
(2024) revealed that a fine-tuned GPT-3.5-turbo out-
performed BERT across six scientific tasks, particu-
larly excelling in multi-class (10.6% improvement)
and unbalanced multi-label scenarios. Meanwhile,
Wu et al. (2024)’s work on the open-source Mixtral-
8x7B-instruct model showed moderate rubric align-
ment (F1=0.752) and a scoring accuracy of 54.58%.
Their "Full-shot + Holistic Rubrics" prompting
strategy outperformed both human-created rubrics
(50.41%) and non-rubric baselines (33.5%), un-
derscoring the impact of structured prompting on
assessment quality.

Notably, efficiency gains in science education
are compelling. GPT-4 completed evaluations of
1,710 short-answer questions in approximately 2
hours, compared to 11 hours for manual grading
(Henkel et al., 2024a), and Tobler (2024)’s sys-
tem also demonstrated significant time savings in
university-level assessments. Overall, these find-
ings indicate that carefully structured, rubric-based
prompts and advanced LLM architectures not only
enhance performance but also offer substantial effi-
ciency improvements in scientific assessments.

4.3 Social Sciences & Humanities
Lundgren (Lundgren, 2024) and Kostic (Kostic
et al., 2024) evaluated GPT-4 in advanced humani-
ties assessments using distinct approaches. Lund-
gren’s study of master-level political science es-
says showed that GPT-4’s mean scores (approxi-
mately 5.03–5.60) generally aligned with human
scores (around 4.95), although interrater reliability
was very low (Cohen’s κ ≤ 0.18, ≤ 35% agree-
ment). In contrast, Kostic’s assessment of German-
language business transfer assignments revealed
that GPT-4 produced markedly different scores
from human evaluators (e.g. 52/50/60 vs. an aver-
age human score of about 26). Furthermore, Kooli
and Yusuf (Kooli and Yusuf, 2024) reported moder-
ate positive correlations between LLM and human
grading (Pearson r = 0.46, Spearman r = 0.518,
p = 0.008) for open-ended exam responses, while
Pinto et al. (Pinto et al., 2023) observed strong
LLM performance on structured exam grading.
These results suggest that LLMs tend to evalu-
ate well-defined, bounded responses more reliably
than extended analytical writing, which requires
nuanced human interpretation.

In addition, GPT-4 appears to prioritize evalu-
ation criteria differently from human graders by

favoring middle-range grades and language quality
over the extremes preferred by human evaluators
who emphasize analytical depth. Kostic also noted
that human evaluators vary widely due to factors
such as fatigue and subjectivity, a variability not
observed in LLM scoring. Such complementary
characteristics indicate the potential for hybrid ap-
proaches that integrate human expertise with the
computational consistency of LLMs (Williamson
et al., 2012).

4.4 Computer Science

Xie et al. (2024) developed a framework that em-
ploys LLMs for rubric generation, initial grading,
and post-grading review. Their system iteratively
refines rubrics using sampled student responses
from the OS and Mohler datasets, and employs
group comparisons to enhance assessment con-
sistency. This approach parallels Grandel et al.
(2024)’s GreAIter system, which achieved a grad-
ing accuracy of 98.21% while reducing grading
time by 81.2% for programming assignments.

Performance evaluations across different LLM
architectures show that both proprietary and open-
source models can yield competitive outcomes.
Yousef et al. (2025)’s BeGrading system, based on
fine-tuned open-source LLMs, demonstrated only
a 19% absolute difference relative to the bench-
mark Codestral model when grading programming
assignments. Similarly, Koutcheme et al. (2024)
and Smolić et al. (2024) found that models such
as CodeLlama, Zephyr, GPT-3.5, and Gemini offer
useful insights and perform comparably in provid-
ing feedback on programming assignments.

Targeted prompt engineering, like all other do-
mains has also significantly impacted computer
science. Tian et al. (2024)’s systematic evaluation
of four prompting strategies revealed that few-shot-
rubric prompting consistently outperformed zero-
shot approaches, with strong agreement observed
for criteria such as Greet Intent (QWK = 0.698)
and Default Fallback Intent (QWK = 0.797). These
findings are supported by Duong and Meng (2024),
who demonstrated that combining GPT-4 with few-
shot prompting and Retrieval Augmented Gener-
ation (RAG)1 achieved the highest performance
(Pearson correlation of 0.844).

1See Appendix A.4 for details on RAG implementation.
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4.5 Mathematics

In Mathematics, multi-agent systems represent
a particularly promising direction, exemplified
by (Chu et al., 2024)’s GradeOpt framework,
which employs three specialized LLM-based
agents—Grader, Reflector, and Refiner—working
in concert to optimize mathematics assessment.
When evaluated on a dataset of 1,218 teacher re-
sponses to five mathematics questions, the GPT-
4o-powered system achieved impressive perfor-
mance metrics (0.85 accuracy and 0.73 Kappa).
Further testing on an expanded dataset of 6,541 re-
sponses demonstrated significant improvement on
specific questions, enhancing accuracy from 0.70
to 0.78 and Kappa scores from 0.52 to 0.64. We
also see prompting strategies significantly influ-
encing LLM performance in mathematics assess-
ment, with chain-of-thought approaches demon-
strating particularly strong results. Henkel et al.
(2024b)’s comprehensive evaluation using the AM-
MORE dataset (53,000 question-answer pairs from
African middle school students) compared six dif-
ferent grading methods ranging from simple string
matching to sophisticated chain-of-thought prompt-
ing with GPT-4. The results showed that chain-of-
thought prompting excelled particularly on chal-
lenging edge cases, achieving 92% accuracy where
other methods struggled and boosting overall ac-
curacy from 98.7% to 99.9%. This approach
yielded impressive precision (0.97), recall (0.98),
and F1 scores (0.98), demonstrating how well-
designed prompting strategies can substantially en-
hance mathematics assessment quality. When im-
plemented within a Bayesian Knowledge Tracing
framework (P (L0) = 0.4, P (T ) = 0.05, P (S) =
0.299, P (G) = 0.299), these improvements trans-
late to more accurate student mastery estimation,
highlighting the practical educational value of such
advancements. In mathematics assessment, GPT-4
in particular and its variants demonstrate particu-
larly strong performance across multiple studies
and assessment contexts, from GradeOpt’s 0.85 ac-
curacy on teacher responses to Henkel’s 99.9% ac-
curacy with chain-of-thought prompting on middle
school mathematics. These results consistently out-
perform traditional NLP approaches like SBERT
and RoBERTa as demonstrated in Chu’s compara-
tive evaluation. The performance advantage ap-
pears most pronounced when LLMs are imple-
mented with sophisticated prompting strategies or
multi-agent architectures, suggesting that contin-

ued advances in implementation methods may yield
further improvements even with existing model ar-
chitectures.

5 Discussion and Analysis

5.1 The Explainability Imperative

A critical consideration for the widespread adop-
tion of LLM-based assessment is the fundamental
need for explainable decisions in educational con-
texts. Unlike other AI applications, educational
assessment directly impacts student learning, pro-
gression, and opportunities, making transparency
not just desirable but essential. Students require
clear explanations of their grades to understand
learning gaps and improve performance, while edu-
cators need interpretable feedback to guide instruc-
tional decisions. The current "black box" nature
of leading LLMs presents a significant barrier to
educational adoption, as stakeholders cannot ade-
quately justify or contest assessment decisions.

5.2 Patterns in LLM Assessment Performance

The reviewed studies reveal substantial variations
in LLM assessment performance across academic
disciplines. Figure 2 shows that mathematics and
general education yield high human–LLM agree-
ment rates (0.74 and 0.72, respectively), whereas
humanities assessments exhibit notably lower align-
ment (0.46)—a pattern that mirrors our observation
that structured formats (see Table 2) offer clearer
evaluation criteria than open-ended tasks.

GPT-4 consistently outperforms earlier models
in well-structured contexts (Henkel et al., 2024a;
Chu et al., 2024; Henkel et al., 2024b), yet its re-
liability diminishes on complex, subjective tasks.
For example, in political science essays, Lundgren
(2024) observed that despite similar mean scores,
GPT-4 showed very low interrater reliability (Co-
hen’s κ ≤ 0.18, ≤ 35% agreement). Likewise,
Kostic et al. (2024) reported that GPT-4 produced
scores that differed dramatically from human eval-
uators in business administration assessments.

Human–LLM agreement studies consistently
report moderate alignment: Jauhiainen and
Garagorry Guerra (2024) found that 72.2% of GPT-
4 grades differ by at most one grade from human
scores, while Teckwani et al. (2024) noted 71%
agreement between LLMs and human graders com-
pared to 80% among humans. Tobler et al. (2024)
achieved strong alignment (Krippendorff’s α =
0.818), though with notable qualitative differences
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in rubric interpretation. Comparative evaluations
further reveal that, while GPT-4 attains high reli-
ability with criteria-referenced prompts (QWK =
0.5677; Tang et al. (2024)) it still falls slightly short
of human benchmarks (QWK = 0.6573). Similarly,
Xiao et al. (2024) demonstrated that LLaMA3-8B
achieved QWK scores near 0.7 with 80% score
consistency, and Morjaria et al. (2024) reported
moderate to good correlations (r = 0.6–0.7) in med-
ical education, despite discrepancies in 65–80% of
cases.

Figure 3 reveals that single LLM approaches
dominate current research (50%), while emerging
alternatives such as multi-agent frameworks (10%)
and chain-of-thought implementations (6.7%) show
superior performance. Overall, these findings sug-
gest that although the gap between human and
LLM assessment is narrowing in structured do-
mains, significant differences persist in evaluating
complex, open-ended tasks due to varying evalua-
tion approaches and priorities.

5.3 Methodological Approaches and Their
Effectiveness

The literature reveals an evolution in prompting
techniques, with more sophisticated approaches
consistently outperforming simpler implementa-
tions across diverse educational contexts. As
shown in Figure 4, semi-automated (0.90) and
chain-of-thought approaches (0.81) demonstrate
the highest human-LLM agreement rates, substan-
tially outperforming single LLM implementations
(0.53). These findings align with our categoriza-
tion of prompting strategies in A.1, where we
distinguish between simple zero-shot implementa-
tions and more advanced approaches like chain-of-
thought. Chain-of-thought and few-shot prompting
strategies have proven significantly more effective
than zero-shot implementations Wu et al. (2024);
Tian et al. (2024); Henkel et al. (2024b) across mul-
tiple disciplines as explained in Section 4. Multi-
agent frameworks Hong et al. (2024); Chu et al.
(2024); Xie et al. (2024) represent another promis-
ing methodological direction, allowing for more
sophisticated assessment processes that mimic hu-
man evaluation workflows, as described in A.4.

Similarly, context-aware approaches that incor-
porate domain-specific knowledge show partic-
ular promise for enhancing assessment quality.
Retrieval-augmented generation (RAG) Duong and
Meng (2024); Jauhiainen and Garagorry Guerra
(2024), as detailed in A.4 has emerged as an effec-

tive technique for contextualizing assessments with
relevant educational materials. While many people
have totally relied on AI to score, we also see many
Hybrid human-AI approaches. These approaches
yield optimal results in educational assessment by
leveraging the complementary strengths of both
human evaluators and LLMs. As noted by Xiao
et al. (2024), positioning LLMs as assistants rather
than replacements enhances overall evaluation qual-
ity and efficiency. Kundu and Barbosa (2024) ob-
served that humans and LLMs apply different eval-
uation criteria—humans prioritizing essay length
(with r = 0.74) while LLMs focus on technical el-
ements like grammar—suggesting that a combined
approach offers a more comprehensive assessment.
This complementarity is evident across disciplines;
for instance, Morjaria et al. (2024) reported that
GPT-4 showed moderate to good correlation with
human assessors (r = 0.6–0.7) in medical edu-
cation, yet discrepancies persisted, and Teckwani
et al. (2024) further reinforced the importance of
human oversight by finding that human graders
demonstrated 80% agreement compared to 71%
for LLMs, particularly on higher-order cognitive
tasks.

Figure 5 reveals important relationships be-
tween assessment types and frameworks, with cer-
tain combinations demonstrating particular preva-
lence. Single LLM approaches dominate es-
say (3 studies) and short-answer assessment (3
studies), while more specialized frameworks like
chain-of-thought appear primarily with mathemat-
ical problem solving. These patterns suggest
domain-specific optimization of LLM implementa-
tion strategies, aligned with our categorization of
assessment formats in 2.

6 Conclusion

This review shows that LLM applications in edu-
cational assessment are advancing rapidly across
various disciplines. Our analysis of 30 studies
suggests that these models can help reduce the
grading workload while still maintaining quality,
particularly in structured contexts—GPT-4, for in-
stance, is already nearing human-level performance
in mathematics and science assessments. Innova-
tions like chain-of-thought prompting, multi-agent
frameworks, and retrieval-augmented generation
are proving to be game changers for improving
assessment accuracy.

However, challenges remain. LLMs continue
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to struggle with nuanced, subjective evaluations in
the humanities and social sciences, and rubric ad-
herence is inconsistent. Technical hurdles, such
as processing handwritten responses and han-
dling complex programming tasks, further com-
plicate the picture. Overall, the evidence sup-
ports a hybrid human-AI approach: LLMs are
most effective when they serve as helpful assis-
tants—automating routine tasks and generating de-
tailed feedback—while human experts handle the
more complex evaluations.

While this review focuses specifically on educa-
tional assessment, the use of LLMs as evaluators
(“LLM as a judge”) is a rapidly growing area across
multiple domains including legal document review,
content moderation, and research evaluation. Our
findings regarding prompting strategies, human-AI
collaboration, and reliability challenges likely have
broader applicability beyond education, suggest-
ing opportunities for cross-domain learning and
methodological transfer.

Looking forward, future research should em-
phasize domain-specific fine-tuning, standardize
prompt engineering practices, and explore multi-
modal assessment strategies. Moreover, more
classroom-based validation studies are needed to
assess the long-term impact on learning outcomes.
Despite the rapid progress in LLM technology, it
is clear that human oversight remains essential for
achieving high-quality educational assessment.

7 Limitations

7.1 Methodological Limitations

This review, while comprehensive within its scope,
has several methodological limitations that should
be acknowledged. Our analysis is based on limited
sample size and generalizability concerns, as the
review includes 30 studies, which may limit the
generalizability of our findings, particularly regard-
ing framework performance comparisons shown
in Figure 3. Some framework categories are rep-
resented by only 1-2 studies, making it difficult to
draw robust conclusions about their relative effec-
tiveness. The small sample size is partly due to the
nascent nature of LLM applications in educational
assessment, with most research emerging only after
2022. Future reviews with larger sample sizes will
be needed to validate these preliminary patterns
and provide more statistically robust comparisons
across framework types.

A significant issue affecting our analysis is

methodological heterogeneity across the reviewed
studies. The studies exhibit significant methodolog-
ical diversity, using different datasets, evaluation
metrics, experimental protocols, and LLM config-
urations. This heterogeneity limits direct compa-
rability and complicates the generalization of find-
ings across studies. For instance, studies within the
same discipline often use different datasets (e.g.,
some essay grading studies use ASAP while oth-
ers use proprietary datasets), making it challenging
to attribute performance differences to framework
choices versus dataset characteristics. Additionally,
generative AI systems employ various decoding
strategies (beam search, temperature settings, top-p
sampling) that can significantly impact output qual-
ity and consistency, yet these technical parameters
are inconsistently reported across studies.

Our organizational approach presents an-
other methodological consideration. While our
discipline-based organization provides domain-
specific insights valuable for understanding how
LLMs perform across different educational con-
texts, an alternative methodological organization
(e.g., by prompting strategies, assessment types, or
hybrid architectures) might have enabled different
analytical perspectives and cross-cutting insights.
This organizational choice may limit the visibil-
ity of methodological patterns that transcend disci-
plinary boundaries. Future reviews could explore
cross-cutting methodological themes to comple-
ment the domain-specific patterns we identify.

The under-representation of K-12 studies in our
review likely reflects both limited published re-
search in this educational level and potential search
strategy limitations. K-12 educational technology
adoption often faces greater institutional barriers,
ethical considerations, and regulatory requirements
than higher education, potentially slowing research
publication in this area. Additionally, our keyword
strategy may have inadvertently favored higher ed-
ucation terminology, though we attempted to in-
clude broad terms like "educational assessment"
and "K-12." This limitation suggests that our find-
ings may be more applicable to higher education
contexts, with K-12 applications requiring addi-
tional targeted research.

Another concern affecting the quality of our anal-
ysis is publication quality variability. Over one-
third of the reviewed studies (11 out of 30, or 37%)
are preprints that have not undergone formal peer
review. While preprints provide valuable insights
into cutting-edge research and emerging trends in
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LLM-based educational assessment, their inclu-
sion introduces potential quality variability to our
analysis. Preprints may contain methodological
limitations, incomplete evaluations, or preliminary
findings that could change during the peer review
process. This limitation is particularly relevant
given the rapidly evolving nature of LLM technol-
ogy, where researchers often share findings quickly
through preprint servers to keep pace with techno-
logical advances.

7.2 Challenges from the Literature
Several recurring challenges emerge from the lit-
erature that must be addressed before widespread
educational adoption of LLM assessment systems
can occur. A prominent issue is Rubric adherence
problems. While Kostic et al. (2024) report poor
adherence to assessment criteria in business eval-
uations despite explicit rubrics, Tobler (2024) ob-
served that AI sometimes adheres more strictly to
rubrics than humans, indicating divergent interpre-
tations (see Appendix A.4.2).

Another critical limitation is the inadequate de-
scription of human grader characteristics. Approx-
imately 40% of studies classify human evaluators
as “Unspecified Graders” (see Table 4), making it
difficult to contextualize performance metrics and
understand the influence of grader expertise—as
exemplified by Xiao et al. (2024)’s finding that
novice graders scored significantly lower (QWK of
0.53) compared to experts (QWK of 0.71).

A further challenge is the persistence of grad-
ing inconsistencies across domains. For example,
Lundgren (2024) found that GPT-4 exhibits a cen-
tral tendency bias (favoring middle grades) in polit-
ical science essays, while Kooli and Yusuf (2024)
reported that ChatGPT is more conservative in so-
cial science assessments. Similarly, Smolić et al.
(2024) noted discrepancies between LLM-provided
numerical grades and human standards in program-
ming, highlighting challenges in aligning qualita-
tive feedback with quantitative accuracy.

Significant technical limitations also remain for
processing specialized content and complex assess-
ment scenarios. Liu et al. (2024) encountered OCR
issues in handwritten mathematics, with false posi-
tives averaging 27%, and model architecture contin-
ues to affect reliability—larger models like GPT-4
consistently outperform smaller ones, although im-
provements in open-source models and fine-tuning
are narrowing this gap. Another concern is the

“black box” nature of commercial LLMs, which

raises issues of transparency and explainability in
educational assessment. The proprietary models
(e.g., GPT-3.5/4) offer little insight into their inter-
nal decision-making processes, complicating the
justification of evaluation decisions. This also leads
to critical governance questions, as institutions risk
disruptions if vendor-controlled systems are modi-
fied or discontinued. While promising open-source
alternatives (Yousef et al., 2025; Koutcheme et al.,
2024) offer more transparent solutions, they re-
quire substantial technical capacity to implement
and maintain.

There is also a notable limitation in the scarcity
of real-world, classroom-based implementations,
especially in K-12 contexts. Most studies are con-
trolled experiments, raising concerns about ecolog-
ical validity and practical challenges. Moreover,
there is an imbalanced focus on educational lev-
els, with over 60% of studies focusing on higher
education while early childhood and primary edu-
cation remain underexplored. This is particularly
problematic given the distinct developmental, peda-
gogical, and ethical requirements for younger learn-
ers, where ethical and privacy considerations are
especially pronounced. Collectively, these chal-
lenges call for further research into standardized
methods, transparent AI, and real-world strategies
to bridge the gap between experimental promise
and practical assessment.

References
Carousel Learning. 2024. Carousel short answer dataset.

Carousel Learning Platform.

Yucheng Chu, Hang Li, Kaiqi Yang, Harry Shomer,
Hui Liu, Yasemin Copur-Gencturk, and Jiliang Tang.
2024. A llm-powered automatic grading framework
with human-level guidelines optimization. arXiv
preprint arXiv:2410.02165.

Wei Dai, Jionghao Lin, Hua Jin, Tongguang Li, Yi-
Shan Tsai, Dragan Gašević, and Guanliang Chen.
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terović, and Tomislav Jagušt. 2024. Llm generative ai
and students’ exam code evaluation: Qualitative and
quantitative analysis. In 2024 47th MIPRO ICT and
Electronics Convention (MIPRO), pages 1261–1266.
IEEE.

Xiaoyi Tang, Hongwei Chen, Daoyu Lin, and Kexin Li.
2024. Harnessing llms for multi-dimensional writing
assessment: Reliability and alignment with human
judgments. Heliyon, 10(14).

Swapna Haresh Teckwani, Amanda Huee-Ping Wong,
Nathasha Vihangi Luke, and Ivan Cherh Chiet Low.
2024. Accuracy and reliability of large language
models in assessing learning outcomes achievement
across cognitive domains. Advances in Physiology
Education, 48(4):904–914.

The Hewlett Foundation. 2012. Automated student as-
sessment prize (asap) dataset. Kaggle.

Xiaoyi Tian, Amogh Mannekote, Carly E Solomon,
Yukyeong Song, Christine Fry Wise, Tom Mcklin,
Joanne Barrett, Kristy Elizabeth Boyer, and Maya
Israel. 2024. Examining llm prompting strategies

for automatic evaluation of learner-created compu-
tational artifacts. In Proceedings of the 17th Inter-
national Conference on Educational Data Mining,
pages 698–706.

Samuel Tobler. 2024. Smart grading: A genera-
tive ai-based tool for knowledge-grounded answer
evaluation in educational assessments. MethodsX,
12:102531.

Catrin Wigfall. 2020. Grading standards do impact
student achievement. Accessed: 2025-03-16.

David M Williamson, Xiaoming Xi, and F Jay Breyer.
2012. A framework for evaluation and use of au-
tomated scoring. Educational measurement: issues
and practice, 31(1):2–13.

Xuansheng Wu, Padmaja Pravin Saraf, Gyeong-Geon
Lee, Ehsan Latif, Ninghao Liu, and Xiaoming Zhai.
2024. Unveiling scoring processes: Dissecting the
differences between llms and human graders in auto-
matic scoring. arXiv preprint arXiv:2407.18328.

Changrong Xiao, Wenxing Ma, Qingping Song,
Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and
Qi Fu. 2024. Human-ai collaborative essay scoring:
A dual-process framework with llms. arXiv preprint
arXiv:2401.06431.

Wenjing Xie, Juxin Niu, Chun Jason Xue, and Nan
Guan. 2024. Grade like a human: Rethinking auto-
mated assessment with large language models. arXiv
preprint arXiv:2405.19694.

Mina Yousef, Kareem Mohamed, Walaa Medhat, En-
saf Hussein Mohamed, Ghada Khoriba, and Tamer
Arafa. 2025. Begrading: large language models for
enhanced feedback in programming education. Neu-
ral Computing and Applications, 37(2):1027–1040.

Bo Yuan and Jiazi Hu. 2024. An exploration of higher
education course evaluation by large language mod-
els. arXiv preprint arXiv:2411.02455.

A Terminology and Definitions

This appendix provides comprehensive definitions
for key terms, methodologies, and frameworks ref-
erenced throughout this review, offering detailed
context beyond the condensed definitions in the
main text.

A.1 Prompting Strategies
A.1.1 Zero-shot prompting
Direct instruction to the LLM to perform an assess-
ment task without providing examples or demon-
strations. The model relies entirely on its pre-
training knowledge to understand the assessment
criteria and generate appropriate evaluations. Tang
et al. (2024) examined this approach for essay
evaluation, finding it achieved lower reliability
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(QWK=0.4321) compared to few-shot approaches.
Zero-shot prompting represents the simplest im-
plementation but typically under-performs more
sophisticated strategies, particularly for complex
or domain-specific assessments.

A.1.2 Few-shot prompting
Providing the LLM with a limited number (typi-
cally 3-6) of example question-answer pairs and
their corresponding evaluations before asking it to
assess new responses. This approach establishes
a pattern for the model to follow when generating
its own assessments. Tian et al. (2024) demon-
strated that few-shot-rubric prompting consistently
outperformed zero-shot approaches when assess-
ing chatbot projects, with particularly strong per-
formance in structured dimensions like Greet In-
tent (QWK=0.698) and Default Fallback Intent
(QWK=0.797). Duong and Meng (2024) found
that GPT-4 with 6 examples achieved a Pearson
correlation of 0.694 with human graders, substan-
tially outperforming simpler implementations.

A.1.3 Chain-of-thought prompting
Guiding the LLM to articulate step-by-step reason-
ing before providing a final assessment, mimicking
human cognitive processes in evaluation. This ap-
proach is particularly effective for mathematical
and logical evaluations requiring multi-step reason-
ing. Henkel et al. (2024b) used this method on the
AMMORE dataset of 53,000 question-answer pairs
from African middle school students, showing it
increased mathematics assessment accuracy from
98.7% to 99.9% and was especially effective for
complex edge cases (92% accuracy where other
methods struggled). While more computationally
intensive than simpler prompting methods, chain-
of-thought approaches consistently demonstrate su-
perior performance for complex assessment tasks
requiring logical reasoning.

A.1.4 Reason-Act-Evaluate (RAE) prompting
A structured three-stage process where the LLM
first reasons about assessment criteria (contemplat-
ing evaluation dimensions and standards), then per-
forms the actual assessment (applying these cri-
teria to the student response), and finally reviews
its own assessment for accuracy, consistency, and
adherence to rubrics. Li et al. (2024) developed
this approach for evaluating student-generated con-
tent, achieving 76.5% accuracy across 1,235 arti-
cles with particularly strong performance in struc-
tured dimensions like logical reasoning (ρ = 0.824).

This technique incorporates meta-cognitive aware-
ness into the assessment process, enabling self-
correction and improved reliability.

A.1.5 Rubric-guided prompting
Explicitly incorporating detailed assessment
rubrics into LLM prompts, providing structured
evaluation criteria that guide the model’s judgment.
This approach improves alignment with human
evaluation standards by making assessment criteria
explicit rather than implied. Morjaria et al. (2024)
found this approach significantly reduced score
inflation tendencies when using ChatGPT-4 to eval-
uate medical students’ short-answer assessments,
achieving moderate to good correlation (r=0.6-0.7)
with human assessors. Similarly, Yuan and Hu
(2024) demonstrated that rubric incorporation
enabled Llama-UKP models to achieve remarkable
correlation with human evaluators (Spearman:
0.843) when assessing higher education courses.

A.2 Dataset

A.2.1 ASAP dataset
The Automated Student Assessment Prize dataset,
released by the Hewlett Foundation in 2012 (The
Hewlett Foundation, 2012), containing 17,043 stu-
dent essays across eight distinct prompts with ex-
pert human scores. Each prompt represents a dif-
ferent essay type (e.g., persuasive, source-based,
narrative) and grade level (ranging from grade 7
to 10), with varying length requirements and scor-
ing scales. This comprehensive collection has be-
come the standard benchmark for automated essay
scoring systems, enabling direct comparison of dif-
ferent approaches. Studies by Xiao et al. (2024),
Tang et al. (2024), and Kundu and Barbosa (2024)
used this dataset to evaluate LLM essay assessment
capabilities, with Xiao et al. (2024)’s implementa-
tion achieving QWK scores of approximately 0.7,
approaching state-of-the-art performance (QWK
0.79).

A.2.2 ASAP++ dataset
An extension of the original ASAP dataset de-
veloped by Mathias and Bhattacharyya (2018)
that enriches the essays with additional attribute
scores beyond the holistic ratings in the original
dataset. These attributes include content, organiza-
tion, word choice, sentence fluency, conventions,
and prompt adherence. Kundu and Barbosa (2024)
used this enhanced dataset to evaluate LLM assess-
ment capabilities across multiple dimensions of
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writing quality, providing more nuanced analysis
of model performance on different aspects of essay
evaluation.

A.2.3 Carousel dataset
A collection of 1,710 K-12 short-answer ques-
tions from science and history subjects developed
by Carousel Learning (Carousel Learning, 2024).
The dataset includes multiple student responses
to each question along with expert human evalu-
ations based on detailed rubrics. Questions span
multiple grade levels and subject areas, providing
a diverse testbed for short-answer assessment ca-
pabilities. Henkel et al. (2024a) used this dataset
to evaluate GPT-4’s performance on K-12 short-
answer grading, finding near-human performance
(Cohen’s κ = 0.70 compared to human κ = 0.75
).

A.2.4 AMMORE dataset
The African Middle-school Math Open Response
Evaluation dataset contains 53,000 question-
answer pairs from African middle school students
across multiple mathematical topics. This compre-
hensive collection includes diverse response for-
mats and challenging edge cases that test the limits
of automated assessment capabilities, including
unconventional solution methods and partial un-
derstanding demonstrations. Henkel et al. (2024b)
used this dataset to evaluate various assessment ap-
proaches, finding that chain-of-thought prompting
achieved 99.9% overall accuracy and 92% accuracy
on challenging edge cases where simpler methods
struggled.

A.2.5 Mohler dataset
A computer science short-answer dataset contain-
ing 2,273 student responses to technical questions
with expert human grades. This dataset features
specialized computer science content requiring
domain-specific knowledge for accurate assess-
ment, including algorithm descriptions, theoretical
explanations, and applied problem-solving. Xie
et al. (2024) and Duong and Meng (2024) used
this dataset to evaluate LLM performance on com-
puter science assessment, with Duong and Meng
(2024) achieving a Pearson correlation of 0.694
using GPT-4 with few-shot prompting.

A.2.6 OS dataset
A dataset of operating systems concept questions
and student responses used by Xie et al. (2024)
to evaluate their multi-agent assessment system.

This specialized collection focuses on technical
computer science concepts and includes varied re-
sponse types requiring domain-specific knowledge
for accurate evaluation. The dataset exemplifies
the challenges of assessing technical subject mat-
ter where specialized terminology and conceptual
precision are essential for accurate evaluation.

A.3 Framework Definitions

• Mixed-initiative: Systems combining human
and AI decision-making with dynamic role
allocation

• OCR+LLM: Optical Character Recognition
integrated with Large Language Models for
handwritten content

• Semi-automated: Human-AI collaborative
systems where AI provides initial assessment
subject to human review

• Multi-agent: Multiple LLM instances with
specialized roles working collaboratively

A.4 Specialized Concepts

A.4.1 Criteria drift
The phenomenon is where evaluation standards
evolve or shift during the assessment process, po-
tentially compromising consistency and fairness.
This can occur with both human and LLM evalua-
tors and represents a significant challenge for main-
taining reliable assessment standards. Shankar et al.
(2024a) identified this as a fundamental challenge
in LLM assessment, where initial evaluation cri-
teria may be applied differently to later responses.
Criteria drift manifests in several forms:

• Standard inflation/deflation: Gradual shift-
ing of grading standards to become more le-
nient or strict over time.

• Criteria reinterpretation: Subtle changes in
how specific rubric elements are interpreted
across different responses.

• Priority shifting: Changes in the relative im-
portance assigned to different evaluation crite-
ria during the assessment process.

• Context effects: Earlier responses influenc-
ing the evaluation of later responses through
comparative judgment rather than fixed stan-
dards.

489



Addressing criteria drift requires explicit
metacognitive awareness and structured review pro-
cesses, which multi-agent LLM frameworks like
Chu et al. (2024)’s GradeOpt implement through
specialized roles such as the "Reflector" agent ded-
icated to consistency monitoring.

A.4.2 Rubric-based approach
Assessment methodologies that employ structured
evaluation frameworks with explicitly defined cri-
teria and performance levels to ensure consistent,
transparent evaluation. In LLM assessment, rubric-
based approaches involve providing models with
these structured frameworks to guide evaluation.
Key elements include:

• Dimension specification: Clearly identified
aspects of performance to be evaluated (e.g.,
content coverage, organizational structure,
technical accuracy, language use).

• Performance descriptors: Explicit descrip-
tions of what constitutes different quality lev-
els for each dimension, typically ranging from
excellent to unsatisfactory.

• Weighting schemes: Optional specifications
regarding the relative importance of different
dimensions in the overall assessment.

• Scoring mechanics: Clear instructions on
how to convert qualitative judgments into nu-
merical scores, ensuring consistent quantifica-
tion of performance.

Studies by Morjaria et al. (2024), Wu et al.
(2024), and Yuan and Hu (2024) demonstrated
that incorporating detailed rubrics significantly im-
proved LLM assessment alignment with human
evaluation, particularly for complex responses re-
quiring multi-dimensional evaluation. Morjaria
et al. (2024) specifically found that rubric incorpo-
ration reduced ChatGPT-4’s tendency toward score
inflation in medical education contexts.

A.4.3 Assisted RAE approach
An enhancement to the basic Reason-Act-Evaluate
framework developed by Li et al. (2024) that incor-
porates metadata analysis and additional contextual
information to improve assessment quality. This
approach augments the three-stage RAE process
(reasoning about criteria, performing assessment,
evaluating quality) with supplementary information

about the assessment context, student characteris-
tics, or relevant educational standards. The assisted
version achieved 76.5% accuracy when evaluat-
ing student-generated content across 1,235 articles,
with particularly strong performance in structured
dimensions like logical reasoning (ρ = 0.824).

A.4.4 CAELF framework
Contestable AI Evaluation with Logic and Feed-
back, a multi-agent framework developed by Hong
et al. (2024) that enables students to challenge AI-
generated grades through structured debate. The
system employs teaching assistant agents for ini-
tial evaluation and discussion of contested grades,
while a teacher agent resolves conflicts using prin-
ciples from computational argumentation theory
(Dung, 1995). When tested on 500 critical thinking
essays, this approach improved interaction accu-
racy by 44.6% over GPT-4o alone, maintained cor-
rect evaluations in 80-90% of cases, and admitted
mistakes 10-20% more frequently than baselines,
demonstrating improved metacognitive awareness.

A.4.5 Retrieval-Augmented Generation
(RAG)

Enhancing LLM evaluation by retrieving and incor-
porating relevant reference materials from external
sources to contextualize the assessment. This ap-
proach integrates domain-specific knowledge be-
yond the model’s training data, improving perfor-
mance on specialized subjects. Duong and Meng
(2024) applied this method to software engineering
course assessment, dramatically improving Pear-
son correlation from 0.694 to 0.844 by incorporat-
ing course materials into the evaluation process.
RAG implementations are particularly valuable
for domain-specific assessments where specialized
knowledge or context is essential for accurate eval-
uation.

A.4.6 Multi-agent frameworks
Using multiple specialized LLM instances that per-
form different aspects of the assessment process in
collaboration, mimicking human evaluation work-
flows with distinct roles. These frameworks typ-
ically include components like initial graders, re-
viewers, and arbitrators that communicate to pro-
duce a refined assessment. Hong et al. (2024)’s
CAELF framework exemplifies this approach, em-
ploying teaching assistant agents for initial evalu-
ation and a teacher agent to resolve conflicts, im-
proving interaction accuracy by 44.6% over single-
agent approaches. Similarly, Chu et al. (2024)’s
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GradeOpt employed three distinct agents—grader,
reflector, and refiner—working collaboratively to
achieve 0.85 accuracy and 0.73 Kappa in mathemat-
ics assessment. While more complex to implement,
multi-agent frameworks consistently demonstrate
superior performance, particularly for nuanced as-
sessment tasks requiring multiple perspectives.

A.4.7 Automated Short Answer Grading
(ASAG)

A field focused on using computational methods to
automatically evaluate student responses to short-
answer questions. ASAG systems typically analyze
the semantic content of responses against reference
answers or rubrics to determine correctness, com-
pleteness, and relevance. LLM-based ASAG frame-
works like GradeOpt (Chu et al., 2024) represent
advanced approaches that can evaluate nuanced
understanding beyond simple keyword matching.

Figure 1: PRISMA flow diagram showing the study
selection process.

Figure 2: Average LLM Performance by Academic
Discipline.

Figure 3: Distribution of LLM Framework Types in
Educational Assessment (see Appendix A.3).

Figure 4: Average Human-LLM Agreement by Frame-
work Type.
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Figure 5: Relationships Between Assessment Types and
Frameworks. Cell values represent the number of stud-
ies using each assessment type-framework combination
(0 = no studies, 1 = one study, 2 = two studies, etc.).

Figure 6: Network Visualization of Assessment Types
and Frameworks Relationships.
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Table 1: Search sources and terms used to extract peer-reviewed scientific literature on large language models in
educational assessment (January 1, 2022 – January 14, 2025).

Source Date of Search Search Terms
Google Scholar Jan 14, 2025 ("large language models" OR "educational assess-

ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

arXiv Jan 14, 2025 ("large language models" OR "educational assess-
ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

IEEE Xplore Jan 14, 2025 ("large language models" OR "educational assess-
ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

ACL Anthology Jan 14, 2025 ("large language models" OR "educational assess-
ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

ERIC (Education Re-
sources Info Center)

Jan 14, 2025 ("large language models" OR "educational assess-
ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

CEUR Jan 14, 2025 ("large language models" OR "educational assess-
ment" OR "automated grading" OR "essay scoring"
OR "student feedback" OR "ChatGPT" OR "GPT-4"
OR "short answer evaluation" OR "AI in education")

Table 2: Assessment Types in LLM Evaluation Studies.

Assessment Type Description Typical Evaluation Method
Multiple-Choice
Questions (MCQs)

Structured questions with predefined answer
options where students select from available
choices.

Binary correctness evaluation;
typically automated using answer
keys

Short-Answer
Questions

Brief text responses (typically 1-5 sentences)
addressing specific, bounded questions with
relatively constrained correct answers.

Rubric-based evaluation against
expected key concepts or knowl-
edge points

Essay Assessments Extended written responses (typically >300
words) requiring development of arguments,
analysis, or synthesis of information.

Multi-dimensional rubrics eval-
uating content quality, structure,
argumentation, and language use

Programming As-
signments

Code writing tasks requiring functional imple-
mentation of algorithms or solutions to com-
putational problems.

Evaluation of correctness, effi-
ciency, readability, and adher-
ence to programming standards

Mathematics As-
sessments

Problems requiring mathematical reasoning,
calculation, and demonstration of procedural
or conceptual understanding.

Step-by-step evaluation of solu-
tion process, correctness, and
mathematical reasoning

Handwritten As-
sessments

Written responses composed by hand rather
than digitally, requiring OCR processing be-
fore LLM evaluation.

Content evaluation following dig-
itization; may involve image pro-
cessing and character recognition
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Table 3: Education Levels in LLM Evaluation Studies.

Category Typical Age Range Description Examples in Stud-
ies

Early Education Ages 3-5 Pre-primary education including kinder-
garten and preparatory programs

Limited representa-
tion in current stud-
ies

Primary Education Ages 6-10 Elementary school (grades 1-5 in many
systems)

Wu et al. (2024),
Henkel et al.
(2024a)

Secondary Educa-
tion

Ages 11-18 Middle and high school (grades 6-12 in
many systems)

Henkel et al.
(2024a), Latif and
Zhai (2024)

Undergraduate Edu-
cation

Ages 18-22 Bachelor’s degree programs and equiva-
lent tertiary education

Yuan and Hu
(2024), Tobler
(2024), Kooli and
Yusuf (2024)

Graduate Education Ages 22+ Master’s and doctoral programs Lundgren (2024),
Morjaria et al.
(2024)

Professional Educa-
tion

Various (typically 18+) Specialized training for specific profes-
sions (medical, engineering, etc.)

Morjaria et al.
(2024), Sinha et al.
(2023)

Table 4: Human Annotator Categories in LLM Evaluation Studies.

Category Definition Typical Characteristics
Expert Evaluators Individuals with advanced qual-

ifications and substantial experi-
ence in the subject matter and as-
sessment context

PhD or equivalent qualification; 5+ years
teaching/evaluation experience; specialized
domain knowledge

Experienced Educa-
tors

Teachers or instructors with for-
mal teaching qualifications and
moderate experience

Master’s degree or equivalent; 2-5 years teach-
ing experience; formal pedagogical training

Novice Evaluators Individuals with basic subject
knowledge but limited assess-
ment experience

Bachelor’s degree or equivalent; <2 years as-
sessment experience; may include teaching
assistants or student peers

Field Practitioners Domain experts who may lack
formal education qualifications
but possess practical expertise

Industry experience; professional certifica-
tions; variable teaching experience

Unspecified
Graders

Studies where human grader
qualifications are not explicitly
described

Unknown qualifications and experience levels;
represents a methodological limitation in some
studies
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Table 5: Evaluation Metrics in LLM Assessment Studies.

Metric Description Typical Interpretation
Cohen’s Kappa (κ) Measures interrater reliability between two raters,

accounting for agreement occurring by chance. Scale
from -1 to 1, with 1 representing perfect agreement.

< 0.40: Poor agreement
0.40− 0.75: Fair to good
> 0.75: Excellent agree-
ment

Quadratic Weighted
Kappa (QWK)

Extension of Cohen’s Kappa that assigns different
weights to disagreements based on their severity.
Common in essay scoring evaluation.

Similar to Cohen’s Kappa,
but with increased sensitiv-
ity to disagreement magni-
tude

Krippendorff’s Al-
pha (α)

Reliability coefficient suitable for multiple raters and
various measurement levels. Ranges from 0 to 1.

< 0.67: Insufficient
0.67 − 0.80: Tentative >
0.80: Reliable

Pearson Correlation
(r)

Measures linear correlation between two variables.
Ranges from -1 to 1.

< 0.40: Weak correlation
0.40−0.70: Moderate cor-
relation > 0.70: Strong
correlation

Spearman Correla-
tion (ρ)

Measures monotonic relationships between ranked
variables. Useful for ordinal data like grades.

Similar to Pearson, but for
ranked data

Accuracy Percentage of correctly identified instances. Simple
measure for classification tasks.

Context-dependent;
higher is better

F1 Score Harmonic mean of precision and recall. Balances
false positives and false negatives.

0 to 1 scale; higher is bet-
ter

Win Rate Percentage of instances where the LLM’s assessment
is preferred over alternatives in comparative evalua-
tions.

Context-dependent; used
primarily in comparative
studies
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Table 6: Summary of LLM Educational Assessment Research.

Reference Discipline /
Subject

Data Data Availabil-
ity

Techniques Results

Teckwani et al.
(2024)

General Educa-
tion

117 assignments
aligned with
Bloom’s taxonomy

Not mentioned LLM evaluation
(GPT-3.5, GPT-4o,
Gemini)

LLMs: moderate consis-
tency (Gemini: 71%, r =
0.672); Human: supe-
rior reliability (80% agree-
ment, r = 0.936). It was
found that LLMs strug-
gled with higher-order
tasks; poor human align-
ment (≤44%)

Morjaria et al.
(2024)

Medical Educa-
tion

Medical students’
short-answer as-
sessments

Not mentioned ChatGPT-4 as grad-
ing assistant

Moderate to good corre-
lation with humans (r =
0.6–0.7); Score discrepan-
cies in 65–80% of cases.
Including rubrics reduced
ChatGPT’s score inflation
tendency

Yuan and Hu
(2024)

Higher Educa-
tion

100 Chinese univer-
sity courses

Not mentioned GPT-4o, Kimi, and
Llama models

Llama-UKP had strong
correlation with human
evaluations (Spearman:
0.843)

Li et al. (2024) Educational
Content

1,235 student arti-
cles

Not mentioned “Reason-Act-
Evaluate” prompt
with metadata
analysis

76.5% accuracy. Strong
correlation with expert
evaluations in structured
dimensions (logic: ρ =
0.824)

Shankar et al.
(2024b)

General (NLP) Medical transcripts
and product descrip-
tions

Not mentioned EvalGen tool with
GPT-4

Criteria drift identified.
Furthermore, revealed in-
terdependence of criteria
and outputs

Xiao et al.
(2024)

Essay Grading ASAP dataset and
private Chinese
dataset

ASAP: Publicly
available

Dual-process
framework with
LLaMA3-8B

QWK scores (∼0.7) close
to SOTA (QWK 0.79);
>80% score consistency.
Novices improved from
QWK 0.53 to 0.66 with AI
assistance

Hong et al.
(2024)

Essay Grading 500 critical think-
ing essays

Publicly avail-
able (Hugging
Face, 2023)

CAELF multi-
agent framework

Improved interaction accu-
racy by 44.6% over GPT-
4o. Maintained correct
evaluations in 80–90% of
cases

Kundu and Bar-
bosa (2024)

Essay Grading ASAP and ASAP++
datasets

Publicly avail-
able

ChatGPT and
Llama models

Weak correlation with hu-
man scores (ChatGPT:
r = 0.21–0.23). It was
found that LLMs excel in
error detection but priori-
tize different criteria than
humans

Jauhiainen
and Garagorry
Guerra (2024)

General Educa-
tion

54 student re-
sponses

Not mentioned ChatGPT-4 with
verification-based
chain-of-thought

68.7% grade consistency;
72.2% alignment with hu-
mans. Discrepancies in
the model are address-
able through prompt re-
finement

Tang et al.
(2024)

Essay Grading ASAP dataset
(1,730 essays)

Publicly avail-
able

GPT-3.5, GPT-4,
Claude 2

GPT-4: highest reliability
(QWK = 0.5677). Lower
temperature settings (0.0)
produced better human
alignment
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Table 6: Summary of LLM Educational Assessment Research (continued).

Reference Discipline/SubjectData Data Availabil-
ity

Techniques Results

Henkel et al.
(2024a)

K-12 Sci-
ence/History

1,710 short-answer
questions (Carousel
dataset)

Publicly avail-
able

GPT-4 and GPT-3.5 GPT-4: near-human per-
formance (Cohen’s κ =
0.70 vs. human κ = 0.75).
85% precision, 0.87 pre-
cision, 0.85 recall; auto-
mated grading required 2
hours vs. 11 hours manu-
ally

Wu et al. (2024) Physics (Middle
School)

12 physics science
assessment items

Not mentioned Mixtral-8x7B-
instruct with
few-shot prompting

Best configuration
achieved 54.58% scor-
ing accuracy. Strong
correlation between
human-aligned rubrics
and accurate grading

Tobler (2024) General Educa-
tion

29 university stu-
dents’ responses

Consent re-
quired

GenAI-Based
Smart Grading with
GPT-4

Strong alignment with hu-
man grading (α = 0.818).
Based on results from the
study, AI exhibited stricter
adherence to rubrics

Latif and Zhai
(2024)

Science Educa-
tion

2,600 middle/high
school responses

Not mentioned Fine-tuned GPT-
3.5-turbo vs. BERT

GPT-3.5: mean precision
of 0.915 vs. BERT: 0.838.
GPT-3.5 showed strength
in multi-class tasks (10.6%
improvement)

Lundgren
(2024)

Political Sci-
ence

60 master-level es-
says

Not mentioned GPT-4 with four
prompt types

Low interrater reliability
(Cohen’s κ ≤ 0.18). GPT-
4 favored middle grades;
detailed prompts didn’t
improve accuracy

Kostic et al.
(2024)

Business Ad-
ministration

German-language
business assign-
ments

Not mentioned GPT-4 with three
prompt variations

Unreliable grades (e.g.,
overscoring). This study
revealed that the auto-
mated system displayed
poor rubric adherence, and
is inadequate for nuanced
assessment

Kooli and Yusuf
(2024)

Social Science 25 open-ended
exam responses

Not mentioned ChatGPT vs. hu-
man grader

Moderate positive corre-
lation (Pearson r =
0.46). ChatGPT found to
be more conservative and
variable than humans

Xie et al. (2024) Computer Sci-
ence

OS and Mohler
datasets

Not mentioned Multi-agent system
for rubric genera-
tion

Improved grading consis-
tency. However, chal-
lenges in achieving com-
plete fairness and rubric
precision

Yousef et al.
(2025)

Programming
Education

Python and Java as-
signments

Not mentioned BeGrading system
with fine-tuned
LLMs

19% absolute difference
rate. Fine-tuning small
models improved perfor-
mance

Koutcheme et al.
(2024)

Programming
Education

Programming
assignments

Not mentioned CodeLlama and
Zephyr

Zephyr models performed
similarly to proprietary
models. Open-source
LLMs can offer meaning-
ful student feedback
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Table 6: Summary of LLM Educational Assessment Research (continued).

Reference Discipline /
Subject

Data Data Availabil-
ity

Techniques Results

Smolić et al.
(2024)

Programming
Education

Student code sub-
missions

Not mentioned GPT-3.5 and Gem-
ini

Useful insights for code
review; numerical grades
inconsistent with human
standards

Schneider et al.
(2023)

Computer Sci-
ence

Short-text answers
from university
courses

Not mentioned ChatGPT-3.5 Inconsistent grading;
struggled with contextual
understanding and course-
specific knowledge

Duong and
Meng (2024)

Software Engi-
neering

Mohler Dataset
(2,273 answers)
and SE Dataset
(421 answers)

Not mentioned Embedding-based
and completion-
based methods

GPT-4 with 6 examples:
Pearson correlation of
0.694. GPT-4 superior to
GPT-3.5 but at higher cost

Grandel et al.
(2024)

Programming
Education

Programming
assignments

Not mentioned GreAIter semi-
automated system
with ChatGPT-4

98.21% grading accuracy;
reduced grading time by
81.2%

Tian et al.
(2024)

AI Education 75 chatbot projects Not mentioned GPT-4 with four
prompting strate-
gies

Good performance
in some dimensions
(QWK=0.698). Few-
shot-rubric prompting
outperformed zero-shot

Pinto et al.
(2023)

Software Engi-
neering

Responses to open-
ended questions

Not mentioned ChatGPT Aligned with expert evalu-
ations; good at identifying
misunderstandings

Gao et al.
(2023)

Mechanical En-
gineering

Quiz dataset (70
students) and Activ-
ity dataset (85–95
students)

Not mentioned 7 NLP models
(BERT, T5, etc.)

PromCSE excelled in bi-
nary tasks. NLP mod-
els struggle with precision
and complex questions

Chu et al.
(2024)

Mathematics 1,218 teacher re-
sponses and 6,541
teacher responses

Not mentioned GradeOpt multi-
agent framework
with GPT-4o

0.85 accuracy and 0.73
Kappa. More effective
than traditional methods

Liu et al. (2024) University
Mathematics

Handwritten calcu-
lus exam (54 stu-
dents)

Consent re-
quired

GPT-4 with Math-
pix and GPT-4V for
OCR

Accuracy: 0.59 to 0.62.
Whole-page OCR outper-
formed answer-box meth-
ods

Henkel et al.
(2024b)

Middle School
Mathematics

AMMORE dataset
(53,000 question-
answer pairs)

Publicly avail-
able

Chain-of-thought
prompting and
LLMs

92% accuracy on edge
cases; 99.9% overall ac-
curacy. Chain-of-thought
prompting excelled but re-
quired more processing
time
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Abstract

We train a relative sentence readability estima-
tor from a corpus without absolute sentence
readability. Since sentence readability depends
on the reader’s knowledge, objective and ab-
solute readability assessments require costly
annotation by experts. Therefore, few corpora
have absolute sentence readability, while par-
allel corpora for text simplification with rela-
tive sentence readability between two sentences
are available for many languages. With mul-
tilingual applications in mind, we propose a
method to estimate relative sentence readabil-
ity based on parallel corpora for text simplifi-
cation. Experimental results on ranking a set
of English sentences by readability show that
our method outperforms existing unsupervised
methods and is comparable to supervised meth-
ods based on absolute sentence readability.

1 Introduction

Readability estimation of text, such as words, sen-
tences, and documents, is applied to assist in text
recommendation and simplification for a wide
range of readers, including children (Xu et al.,
2015), language learners (Xia et al., 2016), and peo-
ple with cognitive disabilities (Yaneva et al., 2017),
according to their language abilities. We work on
readability estimation for sentences, which are the
main units in the text simplification task (Alva-
Manchego et al., 2020).

Since sentence readability depends on the
reader’s knowledge, objective and absolute read-
ability assessments require costly annotation by
experts. Therefore, corpora annotated with ab-
solute readability are limited to a scale of 1k to

*Work done during an internship at The Asahi Shimbun
Company.

10k sentences even in English (Stajner et al., 2017;
Arase et al., 2022), and are rarely available in other
languages. This low-resource problem hinders re-
search and development of high-quality supervised
sentence readability estimation.

In this study, we train a relative sentence read-
ability estimator based on labeled corpora for rela-
tive sentence readability, which are more accessible
than those with absolute sentence readability labels.
Our proposed method estimates which of two given
sentences is more readable based on pairs of com-
plex sentences and simpler sentences in parallel
corpora for text simplification. The estimator is
then applied to pairwise comparisons of a given set
of sentences to rank them in terms of readability.

Experimental results on ranking a set of English
sentences by readability show that the proposed
method outperforms existing unsupervised meth-
ods. In addition, our proposed method achieved
performance comparable to supervised methods
that consider absolute sentence readability.

2 Related Work

For estimating text readability, supervised meth-
ods (Vajjala and Lučić, 2018; Deutsch et al., 2020)
have been proposed that consider readability in-
dices, linguistic features, and language model
scores. Since they are based on corpora annotated
with absolute sentence readability, they can not ap-
ply to languages without labeled corpora available.

Unsupervised methods such as FKGL (Kincaid
et al., 1975) and other readability metrics and rank-
ing methods based on relative readability estima-
tion (Tanaka-Ishii et al., 2010) have been proposed.
However, they are targeted at documents and are
not applicable to sentences.
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Figure 1: System overview

3 Method

We first train a relative sentence readability estima-
tor that estimates which of two given sentences is
more readable, based on parallel corpora for text
simplification. The estimator is then applied to
pairwise comparisons of a given set of sentences to
rank them in terms of readability. The overall sys-
tem process consists of estimating readability by
using the Readability Estimator and then ranking
them, as shown in the upper part of Figure 1.

3.1 Relative Sentence Readability Estimator

Our sentence readability estimator is based on fine-
tuning pre-trained masked language models (De-
vlin et al., 2019). From sentence pairs in parallel
corpora for text simplification, we create input se-
quences of “[CLS] complex sentence [SEP]
simple sentence” with special tokens indicating
the beginning and sentence boundaries. Note that
in 50% of the input sequences, the positions of
complex and simple sentences are swapped. We
train a binary classifier with this dataset to estimate
which of two given sentences is more readable.

3.2 Readability Ranking

We rank each sentence in a given set of shuffled
sentences by readability using a pairwise compari-
son method. In other words, the relative sentence
readability is estimated for all combinations of two
sentences in a given set of sentences, as shown in
the bottom right-hand corner of Figure 1. The read-
ability of a sentence is given as an integer, if there
is a tie, it depends on the order of input. Finally, we
obtain a ranking according to the probability that
each sentence is estimated to be more readable.

Train Valid Test

Newsela 385,270 42,323 43,171
CEFR-SP - - 17,676

Table 1: Corpus size

4 Experiments

In this section, we experiment with ranking a set
of English sentences by readability. Following
previous studies of document readability rankings,
we evaluated rankings according to four metrics:
normalized discounted cumulative gain (NDCG),
Spearman’s correlation (ρ), Kendall’s correlation
(τ ), and ranking accuracy (RA).

4.1 Experimental Setup

Datasets As shown in Table 1, a relative sentence
readability estimator was trained on a training set
of 385k sentence pairs and a validation set of 42k
sentence pairs from the parallel corpus for text sim-
plification, Newsela1 (Xu et al., 2015; Jiang et al.,
2020). A set of 43k sentence pairs for evaluation
was used to construct a set of sentences for readabil-
ity ranking.2 We also constructed a set of sentences
from the CEFR-SP3 (Arase et al., 2022), an English
corpus with absolute sentence readability. Note that
since the CEFR-SP is not a parallel corpus, it is a
set of non-synonymous sentences, unlike Newsela.
The CEFR-SP has six levels of readability labels
for each of the 17k sentences, and we randomly
selected one sentence at each level to obtain a set

1https://github.com/chaojiang06/wiki-auto
2Newsela is a parallel corpus consisting of English news

articles manually simplified into four levels. In this experi-
ment, sets of synonymous sentences consisting of different
simplifications for the same source sentences were ranked in
terms of their readability.

3https://github.com/yukiar/CEFR-SP
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of sentences. Finally, the set of sentences for evalu-
ation from Newsela totals 4, 478 pairs of five level
sentences and one from CEFR-SP totals 165 pairs
of six level sentences.

Model For our sentence readability estimator, we
employed BERT4 (Devlin et al., 2019) as a pre-
trained model. We used batch size of 128 sen-
tence pairs, AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 5 × 10−5. We
employed early stopping for fine-tuning with a pa-
tience of 3 epochs using a cross-entropy loss in the
validation set.

4.2 Baseline models

Baseline unsupervised models We employed
two comparative methods of unsupervised sentence
readability estimation: define RSRS (Martinc et al.,
2021) based on language model scores5 and meth-
ods based on in-context learning of large language
models (LLM). The overall system process follows
the upper part of Figure 1, as in our method. In
addition, RSRS and LLM estimate the readability
of each sentence in the set, as shown in the bottom
left-hand corner of Figure 1. In this case, RSRS is
a floating, and LLM is an integer.

For the LLM-based method, we used
LLaMA5 (Touvron et al., 2023) in two set-
tings, 0-shot and 10-shot. We used the prompts
in Figure 2 for experiment, which we modified
for sentence readability estimation from the
prompts used in a previous study (Wang et al.,
2024) working on document readability estimation.
0-shot, in which no examples are presented in
the prompt (the “example” portion of Figure 2),
and 10-shot, in which 10 examples are presented
at each readability level. These examples were
randomly selected from valid set from Newsela.

Baseline supervised models We employed two
types of baselines for supervised sentence read-
ability estimation: the Pointwise method, which
imputes sentences, and the Pairwise method, which
imputes sentence pairs. The overall system process
follows the upper part of Figure 1, as in our method.
These are sentence readability estimation models
based on masked language models as in the pro-
posed method, but they were trained using absolute

4https://huggingface.co/google-bert/
bert-base-uncased

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

� �
System Prompt:
Evaluate the readability of the text using the
following eleven levels (reading difficulty):
[score: 2]: Most Easy
[score: 12]: Most Difficult
Based on the provided text examples, assign a
readability score to new text and display it in
the following format: "[score: X]"
User Input:
Text: {example 1}
[score: 2]
...
Text: {example n}
[score: 12]
New text:
Text: "{}"� �

Figure 2: Prompt for LLM-based readability estimation.

sentence readability labels in the Newsela corpus,6

unlike the proposed method. The pointwise method
is a regression model that estimates the readability
of input sentences using masked language models
and obtains a readability ranking by the readability
of each sentence. This baseline estimates the read-
ability of each sentence in the set, as shown in the
bottom left-hand corner of Figure 1. In this case,
pointwise is a floating.

The pairwise method inputs two sentences as
in the proposed method, but unlike the proposed
method, it is a regression model that estimates the
difference in readability between two given sen-
tences. The pairwise method can provide a binary
classification of which sentence is more readable
according to whether the output score is positive or
negative, resulting in a readability ranking as in the
proposed method.

4.3 Results

Readability ranking on Newsela The left side
of Table 2 shows the experimental results of read-
ability ranking for a set of synonymous sentences
in Newsela7. Our method consistently achieved the

6There are only a few corpora with sentence readability.
So, following previous studies on text simplification (Scarton
and Specia, 2018; Nishihara et al., 2019; Yanamoto et al.,
2022), the readability of a sentence is defined as the readability
of a document containing that sentence. However, but we
understand that this is not the best approach.

7In this experiment, we use Newsela to enable evaluation,
but our method does not use readability labels.

501

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


Newsela (Parallel) CEFR-SP (Non-Parallel)

Supervised NDCG ρ τ RA NDCG ρ τ RA

RSRS - 0.913 0.402 0.341 0.081 0.851 0.082 0.060 0.000
LLM (0-shot) - 0.888 0.207 0.178 0.041 0.861 0.034 0.027 0.000
Ours - 0.985 0.865 0.799 0.421 0.958 0.749 0.619 0.048

Pointwise ✓ 0.980 0.841 0.769 0.369 0.949 0.661 0.529 0.012
Pairwise ✓ 0.986 0.874 0.811 0.438 0.961 0.755 0.621 0.048
LLM (10-shot) ∗ 0.953 0.644 0.550 0.130 0.967 0.764 0.636 0.073

Table 2: Experimental results of sentence readability estimation. For each setting, unsupervised and supervised, the
highest performance is highlighted in bold. ∗ is a few-shot in-context learning.

best performance among the unsupervised meth-
ods in the upper rows. The fact that the pair-
wise method performed better than the pointwise
method among the supervised methods suggests
that it is important to consider the relationship be-
tween sentences for relative readability estimation.
Although the supervised pairwise method showed
the best performance, our proposed method in an
unsupervised manner also achieved comparable
performance. Furthermore, the proposed method
outperforms the supervised pointwise method and
the LLM-based method in the few-shot setting, re-
vealing its effectiveness.

Readability ranking on CEFR-SP The right
side of Table 2 shows the experimental results of
readability ranking for a set of non-synonymous
sentences in CEFR-SP. Similar to the experimental
results on Newsela, the proposed method achieved
the best performance among the unsupervised
methods in the upper rows. However, experiments
with non-synonymous sentence sets showed sig-
nificantly lower RA overall. In comparison with
the supervised methods, the proposed method out-
performs the pointwise method and is comparable
to the pairwise method, again similar to the ex-
perimental results on Newsela. In CEFR-SP, the
LLM-based method with the few-shot setting out-
performed the other supervised methods, achieving
the best performance.

4.4 Analysis

We analyse in detail an experiment on readability
ranking for synonymous sentence sets in Newsela.

Is relative sentence readability estimation easier
the larger the difference in readability between
sentence pairs? → Yes. To clarify this, we ap-
pend experiments. Table 3 shows the accuracy

Difference in readability Accuracy

1 0.759
2 0.886
3 0.954
4 0.990

Table 3: Analysis of the impact of differences in read-
ability of sentence pairs on readability estimation.

results of the readability estimation by splitting the
sentence pairs in different levels of readability. The
results of this analysis show that as the difference
in readability increases (more levels of simplifica-
tion), the accuracy of relative readability estimation
improves. As expected, we can conclude that the
larger the difference in readability between sen-
tence pairs, the easier the relative readability esti-
mation is. In specific examples, sentence pairs with
small differences, such as “Sub-Saharan Africa
has benefited from high oil and other commodi-
ties prices, which have started to decline sharply.
→ Sub-Saharan Africa has benefited from high
prices for oil and other commodities, which have
started to decline sharply.”, which is a one-level
simplification, have a small difference in readabil-
ity, and it is difficult to determine the latter sentence
is simpler. On the other hand, sentence pairs with
large differences, such as “Any artifacts linked to an
emperor would bring tremendous pride to Mexico.
→ Finding remains of those leaders would make
Mexico proud.”, This is a four-level simplification,
has a large difference in readability, and it is easy
to determine the latter sentence is simpler. In fact,
our method failed to estimate the readability in the
top example and succeeded in the bottom one.
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Figure 3: Analysis of the impact of training data size on
readability estimation.

How many sentence pairs of parallel corpus for
training text simplification make the proposed
method effective? → 5k sentences pairs. To
clarify this, we append experiments. Figure 3
shows the results of evaluating the quality of the
readability ranking (NDCG) while reducing the
training data of 385k sentence pairs from 320k
to 1k sentence pairs. The results of this analysis
show that the text simplification parallel corpus for
training our method performs better than the unsu-
pervised sentence readability estimation of RSRS
and LLM, NDCG = 0.967 for 1k sentence pairs
only. As a text simplification parallel corpus of
this scale is available in several languages includ-
ing Japanese, so the method is promising for the
multilingual deployment of sentence readability
estimation. And if we can prepare a text simplifica-
tion parallel corpus consisting of 5k sentence pairs,
to reach comparable performance with supervised
sentence readability estimation.

5 Conclusion

In this study, we approach unsupervised sentence
readability estimation, which does not use absolute
sentence readability data. We train a relative sen-
tence readability estimator that predicts which of
two given sentences is more simple, using a text
simplification parallel corpus, in our method. Then,
we derived a readability ranking for the sentence
set by pairwise comparisons. Experimental results
in English show that our method outperforms pre-
vious unsupervised sentence readability estimation
for both synonymous and non-synonymous sen-
tence sets, and achieves performance comparable
to supervised methods trained with absolute sen-
tence readability.

Limitations

Although the proposed method was designed with
multilingual applications in mind, the experiments
in this paper are limited only to English. There is
no guarantee that performance consistent with this
experiment will be achieved in other languages. As
mentioned in Section 1, corpora annotated with sen-
tence readability are scarce, and annotating them is
very expensive, therefore, it is not easy to actually
experiment with non-English languages.
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Abstract

This study presents a teacher-centred evalu-
ation of an AI-powered reading comprehen-
sion tool, developed to support learners with
language-based difficulties for English and Ital-
ian. Drawing on the Social Acceptance of
Technology (SAT) framework, we investigate
technical usability and the pedagogical, ethical,
and contextual dimensions of AI integration in
classrooms. We explore how teachers perceive
the platform’s alignment with inclusive pedago-
gies, instructional workflows, and professional
values through a mixed-methods approach, in-
cluding questionnaires and focus groups with
educators. Findings revealed a shift from initial
curiosity to critical, practice-informed reflec-
tion, with trust, transparency, and adaptability
emerging as central concerns. The study con-
tributes a replicable evaluation framework and
highlights the importance of engaging teach-
ers as co-designers in developing educational
technologies.

1 Introduction

As Natural Language Processing (NLP) continues
to advance, its applications in education are ex-
panding rapidly—from intelligent tutoring systems
to automated writing feedback and reading sup-
port (Su et al., 2023; Özer, 2024; Zawacki-Richter
et al., 2019). These AI-powered tools promise to
transform instruction (Maity and Deroy, 2024), yet
a key question remains: How do they perform in
real classrooms with real teachers and students?
Do they align with the practical realities and peda-
gogical expectations of educators, ensuring both us-
ability and instructional relevance? (Cesaroni et al.,
2024) Many systems are developed in controlled
settings with limited educator input (Celik et al.,
2022; Cukurova and Luckin, 2018; Luckin and
Cukurova, 2019), often overlooking pedagogical
realities and learning science principles (Luckin
and Cukurova, 2019; Cesaroni et al., 2025).

Addressing this disconnect requires greater atten-
tion to the roles educators play, not just as passive
users, but as active contributors throughout the AI
development cycle. Indeed, teachers have already
played various roles in educational AI research (Ce-
lik et al., 2022). They served as models for AI train-
ing through classroom data (Su et al., 2014; Kelly
et al., 2018), shared professional development in-
formation to improve predictive systems (Alzahrani
and Alzahrani, 2025; Yoo and Rho, 2020), and pro-
vided student data to support AI-driven interven-
tions (Bonneton-Botté et al., 2020; Nikiforos et al.,
2020). They have also validated AI outputs by grad-
ing work and defining evaluation criteria (Huang
et al., 2010; Yuan et al., 2020), influenced peda-
gogical alignment through instructional material
selection (Dalvean and Enkhbayar, 2018; Fitzger-
ald et al., 2015), and in some cases, offered tech-
nical feedback on system design (Burstein et al.,
2004). Despite these contributions, their role as
evaluators who shape AI integration in classroom
contexts remains largely underexamined.

Building on this foundation, the paper presents
an evaluation framework of an AI-powered reading
comprehension interface using a framework that
places educators at the centre of AI integration. Al-
though applied to a single interface in this study,
the framework is generalizable to the evaluation
of AI technologies across diverse educational con-
texts. This framework draws on the SAT model
to examine the pedagogical, ethical, and practical
dimensions of AI adoption in education. Through a
mixed-methods approach involving questionnaires
and focus groups, we not only assess how teach-
ers perceive the system but also explore how their
insights can shape more effective, inclusive, and
ethically grounded AI implementation in real class-
room settings.

Our findings highlight the value of participatory
design, showing that teachers act as co-designers
and evaluators, not just users. Their acceptance of
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AI tools relies on alignment with pedagogical val-
ues, transparency, and autonomy. While they saw
promise in promoting inclusion and differentiated
instruction, they also pointed to needed improve-
ments in clarity, layout, and customisation. These
insights call for ethically grounded, teacher-centred
approaches and further research through long-term
classroom use, evaluation and broader educator in-
volvement.

2 Background

2.1 Existing Reading Comprehension
Interfaces

Reading comprehension interfaces aim to support
users in understanding and engaging with com-
plex textual material. Unlike general reading tools,
these systems are designed to go beyond passive
reading by incorporating interactive features such
as question answering, summarisation, sentence
simplification, and semantic annotations. Existing
tools focus on general users and surface-level com-
prehension, lacking therapeutic intent, multilingual
support, and personalisation.

One of the most notable efforts in this domain
is the Semantic Reader Project (Lo et al., 2023),
which augments scientific documents with context-
aware explanations, definitions, and citation-level
summaries to help readers quickly identify core
ideas. Similarly, systems like SciReader (Head
et al., 2021) employ semantic highlighting, defi-
nitions on hover, and automatic summarisation to
assist users, particularly researchers, in navigating
dense academic material. However, these tools are
not tailored to students with reading comprehen-
sion deficits or learning disorders.

Another promising direction involves gaze-
driven sentence simplification interfaces, such as
the work of Higasa et al. (2023), which are particu-
larly relevant for language learners or readers with
cognitive impairments. These systems use real-
time eye-tracking data to detect reading difficulty
and apply NLP techniques to simplify complex
sentences. However, while useful as assistive tech-
nologies, they do not provide structured activities
aimed at rehabilitating underlying comprehension
deficits.

Complementing these assistive tools are ed-
ucational systems like 3D Readers (3dR) and
CACSR (Kim et al., 2006), which take a more
interactive and instructional approach to enhanc-
ing reading comprehension. 3D Readers allow

users to engage with texts through either ver-
bal strategies (such as question generation) or vi-
sual strategies (like manipulating images), with
immediate feedback provided to support learn-
ing (Johnson-Glenberg, 2007). Similarly, CACSR
offers personalised instruction using techniques
like visual imagery, graphic organisers, mnemon-
ics, self-questioning, and summarization (Stetter
and Hughes, 2011), also incorporating real-time
feedback to support continuous assessment (Kim
et al., 2006). Despite their effectiveness in educa-
tional settings, these systems are not designed with
therapeutic goals in mind.

Moreover, existing systems are designed for
English-language users. There appears to be only
one known system available in Italian that supports
integrated telerehabilitation: RIDInet 1. The plat-
form offers activity modules like the Cloze Applica-
tion, which trains reading comprehension through
multiple-choice tasks. However, RIDInet does not
offer targeted exercises for developing word-level
literal understanding, nor does it support the inte-
gration of prior knowledge with new textual input.

2.2 Assessment of AI-Powered Educational
Technologies

Evaluating AI-powered educational tools poses
a methodological challenge due to the lack of
frameworks integrating pedagogical, psycholog-
ical, and social dimensions of technology adoption.
Existing models, such as the Technology Accep-
tance Model (TAM) (Davis, 1989) and the Uni-
fied Theory of Acceptance and Use of Technology
(UTAUT) (Venkatesh et al., 2003) offer robust
tools for analysing perceptions of usefulness, us-
ability, and behavioural intention. However, these
frameworks emphasise generic constructs (e.g., ef-
ficiency, ease of use), but often neglect education-
specific factors such as alignment with instructional
goals, teacher–student dynamics, and pedagogical
adaptability.

The Technological Pedagogical Content Knowl-
edge (TPACK) framework (Koehler and Mishra,
2009) addresses the integration of technology into
pedagogy, but primarily with a formative intent.
It delineates the competencies required to design
learning experiences that effectively combine tech-
nological tools with pedagogical strategies and dis-
ciplinary knowledge. However, it lacks evalua-
tive tools for real-world adoption, omitting con-

1https://www.anastasis.it/ridinet/
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cerns like ethical implications, institutional fit, and
teacher autonomy. For instance, a teacher may pos-
sess TPACK proficiency in using an NLP tool yet
refrain from adopting it due to ethical concerns
(e.g., algorithmic bias) or practical constraints (e.g.,
misalignment with classroom workflows) — fac-
tors that lie outside the scope of TPACK.

To address this gap, this study adopts a mixed-
methods approach guided by the SAT frame-
work (Occhipinti et al., 2023) to explore the use
of AI tools in educational settings. Unlike tradi-
tional models that primarily assess individual user
experience or usability, the SAT framework views
technology as part of a broader socio-technical sys-
tem. By focusing on four interrelated dimensions
(User Experience, Value Impact, and Trust), SAT
enables an assessment that extends beyond subjec-
tive usability to encompass ethical, cultural, and
contextual factors. In the context of schools, the
study uses SAT to design questionnaires and fo-
cus groups that examine how a software for the
teaching of reading comprehension aligns with ped-
agogical values, affects teacher relationships and
institutional structures, and impacts trust. Special
emphasis is placed on the Value Impact and Trust
dimensions, which help uncover educators’ per-
spectives on issues like inclusion, transparency, au-
tonomy, and coherence with teaching practices.

3 System Description

In this paper, we present a novel and enhanced
version of ARTIS (Galletti et al., 2023, 2024). AR-
TIS is a web-based educational tool designed to
support reading comprehension for primary school
students, with a particular focus on learners with
reading difficulties or language-based learning dis-
orders up to 11 years old (Galletti et al., 2023).
The system integrates a multimodal approach to
text comprehension by combining visual, auditory,
and interactive components. The interface supports
multilingual content (Italian and English), mak-
ing it adaptable for bilingual contexts or second-
language learners. While some of the assistive fea-
tures were previously introduced in Galletti et al.
(2024), this version introduces new rehabilitative
features, an enhanced administrative dashboard, as
well as updated design and graphics.

The design of the platform’s features is grounded
in the psycholinguistic model of reading compre-
hension proposed by Kintsch and van Dijk (Kintsch
and Van Dijk, 1978; Galletti et al., 2023). This

model outlines three levels of text comprehension.
First, there is surface representation, which in-
volves recognizing words and grammar (i.e. lexi-
cal and morphosyntactic understanding). Second,
there is propositional representation, where read-
ers connect ideas into meaningful sequences and
structures. Finally, there is the mental model con-
struction, where readers combine what the text says
with their background knowledge.

Following Kintsch and Van Dijk’s model, our
interface includes different modules and exercises
targeting different comprehension levels: lexical
understanding, propositional structuring, and men-
tal model integration, each progressively support-
ing deeper text processing. In the next subsection,
we describe each module and the algorithms behind
its core functionalities 2.

3.1 Assistive Features
Upon logging into the platform, students can access
a digital library interface that displays a collection
of illustrated literary and informational texts. Each
title is visually represented with a stylised image
and a short textual excerpt to support browsing and
engagement. Once a text is selected, the reading
interface presents the full passage along with as-
sistive features such as read-aloud audio, using the
Google text-to-speech API, synchronized text high-
lighting, and pace controls (e.g., play, pause, and
speed adjustment). These supports are designed to
aid comprehension while still requiring the child to
engage actively with the text.

Figure 1: Keywords like “bambini” (“children”) and
“sciarpa” (“scarf”) are highlighted and paired with pic-
tograms to support understanding.

In a subsequent step, the text is presented sen-
tence by sentence thanks to the spaCy Senten-
cizer 3 and key terms within the passage are vi-
sually highlighted and linked to pictograms that

2A recorded demonstration of our proof of concept is avail-
able at this link.

3https://spacy.io/api/sentencizer
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illustrate their meaning, as in Figure 1. Secondly,
keywords are extracted using a fine-tuned version
of Keybert (Grootendorst, 2020). To ensure accu-
racy and prevent misleading outputs, the extracted
keywords were manually reviewed by speech and
language therapists as described in Galletti et al.
(2023). Once the keywords were extracted from
the sentences, after lemmatisation, we used the
Arasaac API 4 to link them to pictograms.

In a third step, unfamiliar or specific terms are
also supported with definitions and example sen-
tences drawn directly from the source passage, as
in Figure 2. These terms are selected either man-
ually by the operator or automatically extracted
as detailed in Galletti et al. (2023). Users can
interact with the words to hear their definitions,
view pictograms illustrating their meanings, and
see them embedded in the text, supporting multi-
sensory learning and strengthening decoding skills.
For definitions, we used gpt-3.5-turbo-01255.

Figure 2: Vocabulary’s support a not common Italian
verb “pendere” (“to hang” or “to dangle”). The left
panel shows the pictogram associated with it, a defini-
tion, and audio playback buttons to support its compre-
hension.

3.2 Rehabilitative Features
A variety of comprehension and language-focused
exercises are included to deepen semantic process-
ing and support inference-making skills. These
activities comprise: (1) “Leggi e rispondi” (“Read
and Respond”), where students answer compre-
hension questions generated by gpt-3.5-turbo-0125
and manually validated by speech and language
therapists; and (2) “Trova le parole chiave” (“Find
the Keywords”), which engages learners in iden-
tifying key terms within the text. Keywords are
generated using a fine-tuned version of KeyBert, as

4https://arasaac.org/
5https://platform.openai.com/docs/models/

gpt-3-5-turbo

described in Galletti et al. (2023); and (3) “Trova
la rete semantica” (“Build the Semantic Network”),
which prompts students to connect words with se-
mantically related concepts, as illustrated in Fig-
ure 3. Both the related terms and distractors for this
task were generated using gpt-3.5-turbo-0125.
To generate related and unrelated words, we used
two prompts: one asked for a list of synonyms with
definitions, and the other for non-synonyms that
are semantically unrelated, both formatted as JSON
arrays with appropriate keys.

Figure 3: Example of a semantic network exercise. The
user starts from the word "TREE" and must choose
which of the two presented options is semantically re-
lated. If the correct option is selected, the network
expands and presents two new options.

3.3 Administrative Dashboard

Finally, the interface includes an administrative
dashboard that gives therapists full control over all
aspects of the content generated by the AI algo-
rithms. This dashboard allows for the management
of texts, such as editing existing content, inserting
new texts, or regenerating AI-related components,
as well as the organisation and customisation of
exercises. When a new text is added, the dashboard
displays a preview of each AI-generated compo-
nent—such as keywords, pictograms, sentences,
and questions—for validation. This enables the
educator to verify or adjust these associations be-
fore the material is presented to the learner. Addi-
tionally, the dashboard supports the enrollment of
students and the assignment of personalised texts,
avatars and exercises, helping to tailor the learning
experience to each user. It also collects the data and
makes it available for downloading to the therapist.
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Dimension Description

Pedagogical Appropriateness Evaluates alignment with inclusive and AAC (Augmentative and Alternative Communication)-based pedagogy, focusing on
scaffolding, shared meaning-making, and student autonomy.

Inclusive Potential Assesses support for diverse learners and compatibility with Universal Design for Learning (UDL) and cooperative learning
strategies.

Teacher Readiness Explores how hands-on experience influenced openness to AI, highlighting competence gaps and training needs.
Trust Investigates confidence in AI-driven features and the balance between automation and teacher control, including transparency

and ethical oversight.
Expectation Shift Compares pre- and post-use attitudes to identify shifts in teachers’ perceptions of AI in education.

Table 1: The five key dimensions which guided the focus group.

4 Methods

The evaluation framework is a two-phase approach:
a questionnaire which assessed teachers’ general
attitudes and readiness toward AI, followed by a
focus group conducted after hands-on interaction
with the platform. This structure allowed us to
compare abstract views of AI with teachers’ hands-
on experiences, highlighting how their perceptions
align with pedagogical values, ethical concerns,
and practical adoption barriers. This section out-
lines the questionnaire and focus group design; re-
sults are presented in Section 5 followed by their
discussion in Section 6.

4.1 Questionnaire’s Design

The questionnaire explored teachers’ knowledge,
perceptions, and attitudes toward digital and AI
technologies in education. Its structure follows the
four dimensions of the SAT framework: user expe-
rience, social disruptiveness, value alignment, and
trust. As part of our contribution, the questionnaire
is openly available to the community at this link,
while the detailed results are available here.

Following an initial section collecting teacher
details such as years of experience and subject area,
Section 2 explored teachers’ general approach to
technology use. It included items on comfort with
technology in personal and professional contexts,
habits for staying updated on tools, and frequency
of using digital resources for planning. Participants
also rated the importance of technology in teach-
ing and their interest in new tools. The section
ended with a multiple-choice item on perceived
barriers to tech integration, based on established
research (Ertmer et al., 2012).

Section 3 focused on teachers’ awareness and
use of digital tools designed to support reading
comprehension, drawing on research into the educa-
tional technology ecosystem (Tondeur et al., 2017).
Participants first have to identify any relevant soft-
ware or platforms they know, such as simplified
reading tools, text-to-speech apps, or concept map-

ping software. They then need to indicate which
they had used in teaching or planning, and report
any reading comprehension technologies available
at their schools.

Section 4 explores teachers’ perceptions of AI
in education, assessing their knowledge, expec-
tations, trust, ethical concerns, and professional
agency—defined as the capacity to shape one’s
practice within institutional and technological con-
straints (Biesta et al., 2015; Toom et al., 2015). A
mixed-format design with Likert-scale and open-
ended items enables a mixed-methods analysis,
aligning with best practices in educational technol-
ogy research (Ponce and Pagán-Maldonado, 2015).
This last section is divided into three subsection
focusing respectively on (A) Trust and Risk/Benefit
Perception - using items adapted from the Propen-
sity to Trust in AI scale (Mcknight et al., 2011),
(B) Ethical Awareness, drew on critical AI literacy
frameworks (Veldhuis et al., 2024) and (C) Teacher
Agency and Involvement, with items informed by
the TPACK framework (Mishra and Koehler, 2006)
and research on teacher agency (Leijen et al., 2024).
This subsection examines the perception of stu-
dents’ interest in AI, teachers’ views on the im-
portance of ethical and pedagogical training, and
expectations for future integration and involvement
in AI-related decisions.

4.2 Focus Group’s Design

The focus group was intentionally designed to cap-
ture authentic, practice-informed insights from ed-
ucators by combining experiential use of the plat-
form with structured group reflection. Following
the initial questionnaire, participating teachers en-
gaged in a one-hour, hands-on session with the AR-
TIS platform. To preserve the ecological validity of
the study, no prior exposure or formal training was
provided. Instead, participants received minimal
onboarding and quick-start instructions, allowing
for natural, intuitive engagement with the interface.

The exploratory session encouraged teachers to
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Figure 4: Summary of questionnaire responses from 19 teachers on AI in education, including teaching demograph-
ics, perceived benefits and risks, expected support, and preferred training formats.

freely navigate the platform, selecting from a va-
riety of texts. Participants were asked to engage
with materials spanning multiple educational levels
to ensure a range of instructional contexts were
represented. Additionally, a subset of four teachers
was invited to interact with English-language texts,
enabling the evaluation of bilingual and second-
language accessibility features.

Immediately after the interaction phase, a struc-
tured focus group gathered in-depth reflections on
five key dimensions of AI acceptance and pedagog-
ical fit : (I) Pedagogical Appropriateness, (II) Inclu-
sive Potential, (III) Teacher Readiness, (IV) Trust,
and (V) Reconfiguration of Expectations —based
on sociotechnical, ethical, and inclusive education
frameworks and guided the analysis of teacher re-
sponses. Precise details on this key dimension can
be found in Table 1.

5 Results

We recruited 19 teachers from the Istituto Com-
prensivo di Narni Scalo (Italy) to participate in
this study. The sample included 12 primary
school teachers, 5 lower secondary teachers, and
2 preschool educators. Although the ARTIS plat-
form is primarily designed for literacy development
and may have limited direct applicability in early
childhood education, preschool teachers were inten-
tionally included to examine how attitudes toward
AI integration vary across educational levels. This
inclusive approach captured diverse perspectives

and enabled comparison of teachers’ readiness for
AI across contexts.

5.1 Questionnaire Results

When asked about digital tools used to support
reading comprehension, teachers cited a mix of
general productivity platforms, such as Google
Workspace and Canva, alongside more specialized
tools like Genially, Popplet, and Arasaac for aug-
mentative and alternative communication. A few
teachers had explored newer AI-powered tools such
as NotebookLM and Napkin.AI. Participants were
optimistic about AI’s educational benefits, linking
it to inclusivity, student motivation, personalized
learning, diverse instructional formats, and instant
feedback. Teachers saw AI as useful for creat-
ing inclusive materials, supporting planning and
content design, reducing administrative tasks, and
improving the use of learning analytics to guide
instruction.

At the same time, teachers were mindful of the
risks associated with AI in education. Concerns
included the possibility of algorithmic bias, misin-
formation, and diminished teacher autonomy. Oth-
ers raised ethical issues such as the reduction of
student-teacher interaction, oversimplified forms
of assessment, and the potential misuse of student
data. In terms of professional development, par-
ticipants showed a clear preference for structured
training opportunities focused on the ethical and
social dimensions of AI. Webinars, journals, and
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other professional resources were also seen as help-
ful, though less commonly preferred. Overall, the
findings suggested a cautiously optimistic attitude
among teachers. While they see promise in the ped-
agogical affordances of AI, especially about inclu-
sion and personalization, they also emphasize the
need for thoughtful implementation, transparency,
and support through well-designed training. Ag-
gregated results are shown in Figure 4 and detailed
results are available here.

5.2 Focus group results

The following paragraphs present findings from the
focus group discussions, organized according to the
five evaluative dimensions illustrated in Table 1.

Pedagogical Appropriateness Participants
raised thoughtful concerns about the platform’s
alignment with inclusive pedagogical practices. A
key point of critique centered on the sequencing of
support features: currently, visual and linguistic
scaffolds, such as keywords and pictograms, are
presented before students actively engage with the
text through the extercise. While well-intentioned,
this design was perceived by many as potentially
limiting student autonomy and interpretive effort.
Several educators proposed reversing this order,
suggesting that scaffolds introduced during or after
initial engagement would better support active
meaning-making.

Inclusive Potential Teachers generally recog-
nized the platform’s value in supporting differ-
entiated instruction, especially for students with
language-based or cognitive challenges. However,
concerns were raised about the semantic preci-
sion and clarity of the pictograms, as well as the
overall visual layout, both of which were seen
as crucial to accessibility. Importantly, educators
emphasized that the platform should not replace
teacher-student interaction but instead enhance it,
particularly through collaborative practices like co-
selecting keywords and interpreting texts.

Teacher Readiness While initial questionnaire
responses reflected a generally positive orientation
toward AI in education, the post-use discussions
revealed more grounded, experience-based perspec-
tives. Teachers emphasized the importance of train-
ing that goes beyond technical operation to include
pedagogical integration. They acknowledged the
platform’s potential to support differentiated learn-
ing and streamline resources, but stressed that its

success would depend on its adaptability to real
classroom contexts and its alignment with estab-
lished instructional workflows.

Trust Trust in the platform emerged as closely
tied to the degree of teacher agency and system
transparency. However, this did not translate into
a blanket rejection of the technology. Rather, ed-
ucators identified specific areas for improvement,
calling for enhanced user control and clearer com-
munication about how AI-driven choices are made.

Expectations Shift Educators moved from ab-
stract curiosity and cautious optimism to a more
critical, practice-informed perspective. Their ex-
periences prompted a clear set of priorities for the
future development of AI in education: (1) Flexi-
bility over rigidity – AI tools must be adaptable to
diverse classroom contexts; (2) Transparency over
opacity – teachers need to understand and shape
how AI-driven decisions are made; (3) Support
over substitution – technology should amplify, not
replace, human interaction and pedagogical cre-
ativity. While initial enthusiasm was tempered by
practical limitations, participants remained confi-
dent in the potential of AI-supported learning en-
vironments—particularly when such tools are de-
signed to complement teacher expertise and foster
meaningful student engagement. Importantly, the
findings underscore the value of involving educa-
tors not merely as users, but as co-designers and
evaluators in the development process.

6 Discussion

This study contributes to a growing body of re-
search on the integration of AI in education by
offering a practice-informed, teacher-centered per-
spective grounded in the SAT framework (Occhip-
inti et al., 2023). Our findings show how teach-
ers’ acceptance of AI tools is not static nor solely
based on usability, but shaped dynamically through
hands-on engagement, educational values, and ped-
agogical alignment. Methodologically, this study
aligns with recent calls for participatory and itera-
tive approaches to AI design in education (Luckin
and Cukurova, 2019; Mouta et al., 2024).

Rather than viewing acceptance as a fixed vari-
able to be assessed retrospectively (Celik et al.,
2022), our approach positions teachers as formative
agents, whose experiences, critiques, and creativity
are integral to the ethical and effective develop-
ment of technology. In line with Zawacki-Richter
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et al. (2019), who underline the scarcity of quali-
tative studies that capture educators’ voices in AI
research, our work emphasizes the importance of
interpretive approaches that explore how teachers
make sense of AI tools in concrete pedagogical set-
tings. By combining questionnaires with in-depth
focus groups, we were able to reveal not only gen-
eral trends in acceptance but also the nuanced ways
in which teachers negotiated the role of AI in their
practice. Specifically, participants moved from gen-
eral skepticism to targeted suggestions, such as re-
versing scaffold sequencing or refining pictogram
clarity, demonstrating a shift from rejection to co-
design.

While 89% of teachers viewed AI as potentially
beneficial for inclusive education (questionnaire),
the focus group exposed significant caveats. Teach-
ers emphasized that inclusion cannot be achieved
through technical affordances alone but requires
alignment with pedagogical routines and accessibil-
ity standards. These findings echo critiques of UDL
frameworks when implemented in a top-down,
compliance-oriented manner (Edyburn, 2010). In-
stead, participants advocated for adaptive inter-
faces, customizable visuals, and collaborative prac-
tices, such as co-selection of keywords, that pre-
serve student-teacher interaction and interpretive
autonomy. This underscores the need to reconcep-
tualize inclusivity as a dynamic co-construction
rather than a static feature.

Our findings also nuance assumptions in the lit-
erature about AI adoption motives. Their insistence
on retaining control over scaffolding and keyword
selection reflects a broader commitment to main-
taining instructional intentionality. Similarly, the
shift from interest in formal AI training (74%) to a
focus on pedagogical and ethical guidance suggests
that professional development should go beyond
technical skills to include critical and ethical per-
spectives (Perrotta and Selwyn, 2020). By engag-
ing teachers not as end-users but as evaluators and
co-evaluators, this study contributes a replicable
model for socio-technical evaluation and advances
the debate on how educational technologies can
be made aligned with the realities of classroom
practice.

Finally, these insights are also shaped by the cul-
tural and institutional context. The participating
teachers, embedded within the Italian education
system, approached AI-mediated feedback through
pedagogical norms distinct from those observed
in studies conducted in other countries. For ex-

ample, while Anglo-American frameworks often
emphasize data-driven personalization and perfor-
mance metrics (Shum and Luckin, 2019; Selwyn,
2019), Italian educators tended to prioritize dia-
logic, relational approaches to learning and a strong
emphasis on formative assessment as a collective
rather than individualistic practice (Moretti et al.,
2015; Pastore, 2020). Teachers highlighted the im-
portance of maintaining pedagogical intentionality
and student-teacher interaction, reflecting a broader
educational tradition in Italy that values interpre-
tive autonomy and humanistic principles (Viteritti,
2009). These values shaped how teachers perceived
AI tools—not simply as assistive technologies, but
as agents that must harmonize with existing cur-
ricular structures, ethical responsibilities, and in-
stitutional logics. This cultural lens helps explain
why some technological affordances, such as auto-
mated scaffolding or visual simplifications, were
met with ambivalence unless they could be flexibly
adapted to local pedagogical aims. Cross-cultural
comparisons are thus essential to avoid universalist
assumptions in AI design and to ensure that inte-
gration strategies remain sensitive to educational
diversity (Zhang, 2025).

6.1 Actionable steps
The findings confirm that when engaged early in
the development process, teacher expertise plays a
pivotal role in surfacing abstract concerns and trans-
lating them into actionable design feedback (UN-
ESCO, 2021). Rather than perceiving resistance to
AI as rooted in negative attitudes, the study high-
lights the value of participatory engagement, where
teachers act as co-designers. In particular, initial
concerns centred around algorithmic opacity and
perceived lack of control (Mcknight et al., 2011),
mirroring broader critiques of AI as black-box
systems that conceal decision-making logic (Bur-
rell, 2016). Participants consistently called for in-
creased transparency, interpretability, and human
oversight—features that contribute to what is of-
ten termed “calibrated trust” (Zhang et al., 2020),
where users remain critically engaged while feel-
ing empowered to understand and shape system
outcomes.

The next phase of interface development started
to operationalize the teachers’ inputs into con-
crete design interventions. These included (I) co-
designed interface modifications with customiz-
able elements (e.g., reversible scaffold sequencing,
teacher-defined, configurable visual aids), (2) im-
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plementing adjustable transparency layers (e.g., ex-
plainable feedback rationales), (3) develop teacher-
facing toggles for AI assistance, allowing instruc-
tors to choose when and how AI contributes during
a session (e.g., real-time suggestion, post-activity
reflection), (4) include a cultural/contextual align-
ment layer in system design documentation: cap-
ture assumptions embedded in educational norms
(e.g., Italian vs. others), dsign localized variants
where necessary and plan for comparative studies
across national systems to test transferability.

7 Conclusions & Future Work

This study is among the first to systematically eval-
uate the ethical and pedagogical acceptability of
AI in real educational contexts using a framework
explicitly oriented toward sociotechnical reflection.
It highlights the importance of involving teachers
not just as end-users, but as active co-designers and
evaluators—positioning them as key contributors
in shaping how AI tools are developed and inte-
grated into educational settings. Rather than view-
ing acceptance as a fixed variable to be assessed
retrospectively (Celik et al., 2022), our approach
positions teachers as formative agents, whose expe-
riences, critiques, and creativity are integral to the
ethical and effective development of technology.

Using the SAT framework, we captured nuanced
perceptions of an AI-supported reading platform,
revealing that teachers’ acceptance depends on
more than functionality: it is conditional on align-
ment with pedagogical values, transparency, and
support for professional autonomy. In sum, the
question is not only whether AI works, but whether
it works with and for teachers, in alignment with
the values and practices that define education. The
shift from abstract optimism to context-sensitive
critique underscores the importance of participa-
tory, ethically grounded approaches to AI design.

Future work should also explore long-term class-
room use to track evolving practices, involve a
more diverse sample of educators, in a second
school, and examine how training and co-design
processes influence ethical and pedagogical align-
ment of AI technologies, further validating the SAT
model for educational settings. Moreover, insights
from the current evaluation framework will inform
the next development cycle of the ARTIS inter-
face, ensuring that future iterations are responsive
to teacher feedback.

Limitations

While the study offers valuable insights and con-
tributes meaningfully to the design of educational
AI tools, certain limitations also highlight impor-
tant avenues for future exploration. The teacher
sample, though rich in contextual relevance, was
relatively small and specific, which may affect the
broader applicability of the findings. However, this
focused scope allowed for in-depth engagement
and formative feedback that can directly inform
future iterations. Participants interacted with a
prototype version of ARTIS, and some of their
observations likely reflect temporary interface or
usability elements rather than underlying structural
challenges, providing useful direction for refine-
ment.

Moreover, the study’s temporal scope was lim-
ited to a single session, offering a snapshot of ini-
tial impressions rather than longitudinal insights.
Nonetheless, this approach effectively captured
early responses and surfaced key priorities for
longer-term implementation. Similarly, although
emerging needs for teacher training were identi-
fied during the focus group, the study did not in-
corporate formal training programs. This opens a
promising path for future research to investigate
how targeted support mechanisms influence adop-
tion and pedagogical integration over time.

An additional consideration relates to the use
of the SAT framework. While SAT served as a
valuable and critically-informed structure for guid-
ing the study, it remains a relatively new model,
especially in educational contexts. In this study,
we adapted a combination of existing scales and
custom-developed items to reflect the SAT’s four di-
mensions. While this tailoring ensured contextual
relevance, it may reduce replication and compa-
rability across studies. Advancing this work will
require the development and validation of standard-
ized SAT-based instruments to foster wider method-
ological consistency.

Despite these limitations, the study yields im-
portant design implications. Educational AI
tools should enable flexibility and personaliza-
tion, promote transparency to build trust, and sup-
port—rather than supplant—educators’ pedagogi-
cal creativity.
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Abstract

We show that fewshot Grammatical Error Cor-
rection might be improved by using an encoder-
based sequence labeling model, such as GEC-
TOR, to select similar examples. We demon-
strate this on three Russian GEC corpora and
English BEA corpus. The effect is the most
significant for the new LORuGEC corpus and
reaches up to 5-10% F0.5-score depending on
the model. The corpus is released in our paper
and contains 348 train and 612 test examples.
The corpus is designed for diagnostic purposes
and is also equipped with writing rules’ anno-
tations.

These annotations allow to further improve few-
shot error correction by contrastive tuning of
GECTOR-like encoder on rule classification
task. This holds for a broad class of large lan-
guage models. The best results are obtained
with 5-shot YandexGPT-5 Pro model, achiev-
ing F0.5-score of 83%.

1 Introduction

The task of Grammatical Error Correction (GEC)
may be defined in two ways, depending on whether
the main objective is to make the sentence gram-
matical, i.e. applying minimal edits until it is gram-
matically correct, or fluent, namely transforming a
sentence, likely substantially, so that it sounds nat-
ural yet saves the initial meaning (Coyne et al.,
2023). In the era of Large Language Models
(LLMs), researchers studied their ability in both set-
tings (see more in the Section 2.1) and concluded
that LLMs outperform mainstream GEC models
in the latter objective (Coyne et al., 2023), demon-
strating more freedom and creativity in sentence
modifications. However, this asset becomes a bur-
den in the former setting, where LLMs’ ‘generous’
edits are treated as overcorrections.

A reasonable thing to do to make LLMs predict
more reliable corrections as well as leverage their
fluency and language knowledge is to apply them

in few-shot settings which proved to be valuable in
many other NLP tasks, e.g. Machine Translation
and Question Answering (Brown et al., 2020). As
supported by Fang et al. (2023); Loem et al. (2023),
in-context examples indeed enhance the quality and
consistency of LLMs’ corrections. However, the
research of in-context learning in GEC pays little
attention to example selection, the rare exception
being Tang et al. (2024), using a syntactic structure
similarity metric to select in-context examples.

We argue that sentences containing the errors of
the same kind as the target ones may be much more
beneficial as in-context examples rather than ran-
domly selected ones. To prove this hypothesis, we
present a novel approach to Grammatical Error Cor-
rection which makes use of a task-specific sequence
labeling model (Omelianchuk et al., 2020) and
retrieval-based few-shot learning. The sequence
labeling model was trained to predict token-level
edits, required to transform the source text into the
grammatically correct one. We employ it to encode
tokens in a sentence and choose the embeddings
of the most likely edits as the representation of a
sentence. After that, we use the retriever to select
the closest sentence representations to the target
one. As a result, the sentences corresponding to the
selection are used as in-context demonstrations.

However, we assume that the notion of “errors
of the same kind” may require an extension, in-
volving the similarity of not only the edit but also
the general pattern behind it. Since the same edits
may occur in diverse contexts (e.g. comma inser-
tions may be required before certain conjunctions
or between subordinate clauses), the sentence with
the same edit may not be informative enough. The
model would not comprehend the utility of the
given demonstration because it is unclear what it
should pay attention to when sentences are com-
pletely distinct, apart from the edit.

That is why, we collect a new Linguistically Ori-
ented Rule-annotated GEC dataset for Russian –
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LORuGEC, which consists of sentences represent-
ing the rules of Russian grammar that are consid-
ered to be complicated both for L1 learners and
large language models. These errors are also under-
represented in the existing Russian GEC corpora,
so we expect that the effect of in-context demonstra-
tions would be the most prominent for this corpus.

We conduct experiments on Russian GEC
datasets in zero-shot and few-shot (1-shot and 5-
shot) settings. For the few-shot setting we study
random example selection and retrieval-based se-
lection with the GECTOR-like pretrained encoder.
We additionally tune the retriever to select sen-
tences related to the same rule. We choose several
LLMs for testing and also present the results of
their finetuned versions where possible.

Our main contribution is as follows:

• Novel GEC dataset for Russian, where sen-
tences are also annotated for rules which are
violated in them. The methodology of its col-
lection makes it a challenging benchmark for
LLMs, as it includes previously underrepre-
sented cases.

• We are the first to apply the GECTOR-
like(Omelianchuk et al., 2020) model for few-
shot examples retrieval in grammatical error
correction. The proposed approach yields con-
siderably higher scores on LORuGEC dataset
than random selection of examples for all
models, supporting the impact of demonstra-
tions’ quality and design on the performance
of LLMs.

• Contrastive tuning of the retriever on related
data additionally improves the quality of cor-
rections on LORuGEC.

• The proposed method may compete with
LLMs’ finetuning, especially if the training
data is not large in size.

We make our data1 and code2 freely available.

2 Related work

2.1 Using LLMs for Grammatical Error
Correction

Large Language Models gained prominence over
the recent years as helpful tools for most Natural
Language Processing tasks (Brown et al., 2020;

1https://github.com/ReginaNasyrova/LORuGEC
2https://github.com/AlexeySorokin/LORuGEC

DeepSeek-AI et al., 2025). Their abilities were
also tested on the Grammatical Error Correction
task. Wu et al. (2023); Fang et al. (2023) show
that ChatGPT3 performs worse, than commercial
and conventional GEC models for English, being
less prone to under-correction and mis-correction,
but generating more fluent corrections, hence over-
correcting, which is penalized severely by conven-
tional metrics designed to evaluate minimal edits.
Moreover, ChatGPT shows promising results for
Multilingual GEC (Fang et al., 2023).

A more detailed analysis with fine-grained
prompt and hyperparameter search was done in
Coyne et al. (2023). They found that low tem-
perature and suitable prompts increase the relia-
bility of corrections produced by GPT-3.5(Ouyang
et al., 2022) and GPT-4(OpenAI, 2023). Loem et al.
(2023) proceed to research prompt-based meth-
ods for GEC, discovering that GPT-3(Brown et al.,
2020) is much less prompt-sensitive and inconsis-
tent, when supported with in-context examples.

Fang et al. (2023); Loem et al. (2023) propose
that the investigation on the effect of example qual-
ity and design may be beneficial. An instance of it
is introduced in Tang et al. (2024), where sentences
with the same syntactically incorrect structure are
adopted as in-context examples, significantly out-
performing randomly selected ones. Advancing
the choice of in-context examples, Robatian et al.
(2025) propose Retrieval-Augmented Generation
within In-Context Learning approach to improve
Generative Error Correction in speech recognition
systems. Other works also consider LLMs’ instruc-
tion tuning and ensembling for GEC (Kaneko and
Okazaki, 2023; Omelianchuk et al., 2024).

2.2 In-context learning for LLMs

Our work is an example of the so-called retrieval-
based few-shot learning, where demonstration sam-
ples are selected according to some similarity mea-
sure between vectors. A review of retrieval-based
in-context learning is presented in Xu et al. (2024).
The early examples of this approach include Ru-
bin et al. (2022) where retrieval-based selection of
demonstrations was shown to improve performance
for three sequence-to-sequence learning tasks. The
authors also demonstrated that one may reach fur-
ther gains by training the retriever to select exam-
ples that maximize the correct output probability.
Margatina et al. (2023) verified the positive role

3https://openai.com/index/chatgpt/
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of similarity between test and in-context examples
on a diverse range of models and tasks including
classification and multiple choice datasets. Nori
et al. (2023) demonstrated that using KNN-based
few-shot example selection allows to adapt general
models to medical domain without special tuning.

2.3 GEC corpora for Russian

There are three available Russian GEC datasets:
RULEC-GEC(Rozovskaya and Roth, 2019),
RU-Lang8(Trinh and Rozovskaya, 2021) and
GERA(Sorokin and Nasyrova, 2025). The first
one represents a subset of the Russian Learner
Corpus of Academic Writing (RULEC)(Alsufieva
et al., 2012), containing essays of the US students
who were either learning Russian as a foreign
language or heritage speakers. The authors
comprised a list of 23 error type labels that cover
(morpho)syntactic, lexical and spelling errors.

The RU-Lang8 Dataset constitutes a subset of
the Lang-8 Corpus(Mizumoto et al., 2012) learner
corpus, based on the language learning website4.
Most texts in RU-Lang8 are much shorter, be-
ing small paragraphs or learners’ questions. Un-
like RULEC-GEC, RU-Lang8 has a more coarse-
grained annotation, with error type labels repre-
senting operations of token replacement, deletion,
insertion and change in word order.

As opposed to both datasets, GERA is based
on Russian school texts and was annotated in line
with a much more fine-grained label inventory, i.e.
grammatical error types cover a broader list of parts
of speech and grammatical categories, and there
are different types of lexical and spelling errors
depending on the erroneous construction.

2.4 Linguistically motivated data for GEC

Usually GEC corpora are based on real-world
learner data, not a predefined error taxonomy. A
partial example of error-driven approach was Volo-
dina et al. (2021), where the four principal error
types from existing data were selected to be in-
cluded in the dataset. Similarly to LORuGEC, most
examples in their corpus contain exactly one error.

More frequently, error taxonomies are used
for collecting linguistic acceptability data. The
most well-known example of such corpora are
COLA(Warstadt et al., 2019) and BLIMP(Warstadt
et al., 2020) for English. One may even convert a
BLIMP-like dataset of minimal pairs to GEC for-

4https://lang-8.com/

mat, by using the ungrammatical element of the
pair as the source and the grammatical one – as
the target, this approach was adopted in Volodina
et al. (2021) for Swedish and Jentoft and Samuel
(2023) for Norwegian. Concerning Russian lan-
guage, BLIMP-like datasets of minimal pairs were
introduced in the recent works of Graschenkov et al.
(2024) and Taktasheva et al. (2024).

3 LORuGEC: Corpus description

3.1 Motivation and data collection

Most existing GEC corpora consist of L2 learn-
ers’ data. Even corpora based on native learners’
data mostly reflect the real-world error distribu-
tion, underrepresenting complicated grammatical
rules. Concerning the Russian language, existing
corpora, such as RULEC-GEC(Rozovskaya and
Roth, 2019), RU-Lang8(Trinh and Rozovskaya,
2021) and GERA(Sorokin and Nasyrova, 2025),
contain very few examples of complex, “school-
book” rules, making these corpora suboptimal for
use in educational applications. Our primary goal
is to fill this gap and collect a corpus of complex
cases that represent the rules which are considered
difficult for Russian L1 learners. The second goal
of our project is to study, which rules present the
highest complexity for modern LLMs in the task
of Grammatical Error Correction.

Given our research goals, we organize the data
collection and annotation process as follows:

1. Firstly, one of the paper authors (a bachelor in
Linguistics) collected an initial set of about 10
rules that are known as difficult for Russian
high school students. These rules covered
various fields of writing, mostly punctuation,
grammar and spelling. The list of rules was
checked by another author of the paper and
verified using several Russian grammar books.

2. For each of the selected rules, the annota-
tors, which were students with linguistic back-
grounds and Russian native speakers, were
asked to collect up to 15 examples belonging
to these rules. Since the collected examples
were intended to be used for LLM benchmark-
ing, several precautions were taken, which
were expressed in the instruction (see more in
Appendix A), as follows:

• Preferably, choose sentences from differ-
ent sources.
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• Avoid using quotations from fiction.
• Refrain from selecting commonplace ex-

amples.

3. The collected examples were corrupted to sim-
ulate the common mistakes corresponding to
particular rules. For example, if the rule gov-
erns the use of comma between the conjuncts,
the comma was either deleted in the contexts
where it was required or inserted when it must
not be used. If there are multiple ways to intro-
duce errors, the examples should cover them
all. For instance, clauses with participles in
Russian should be surrounded by commas, so
possible corruptions included deletion of both
commas, only the preceding comma or only
the following one.

4. The collected examples were passed through
the YandexGPT3 Pro5 model. The goal of this
stage was to identify complex sentences and
make the dataset more challenging by includ-
ing analogous examples.

5. After successfully completing the data collec-
tion for the initial set of 10 rules, the anno-
tators were allowed to select the subsequent
rules themselves. They were instructed to con-
sult grammar reference books and cover all
fields of written language, such as punctua-
tion, spelling, grammar (in the narrow sense)
and lexis. The process was supervised by
the principal annotator (one of the authors)
who checked the selection of rules and exam-
ple cases, as well as their annotation. Since
the source sentences were created by targeted
manual corruption, the correct sentence was
known in advance, thus reducing the correc-
tion ambiguity. The principal annotator ad-
ditionally analyzed 100 random samples and
found no disagreement with the annotators.

3.2 Data sources
While selecting the rules, annotators and authors
used various resources, such as grammar reference
books, teacher manuals and educational websites
based on them, we refer to B for the full list of
data sources. The textbooks that were used comply
with Russian educational standards, some of them
are specially approved by the Russian Academy of
Sciences, for example, (Valgina et al., 2009).

5https://yandex.cloud/ru/docs/
foundation-models/concepts/yandexgpt/models

3.3 Rules Description and Statistics
We gathered 48 rules from 4 grammar sections.
The majority of them represent punctuation and
spelling. We present the comprehensive list of rules
in Appendix C.

We collected 960 pairs of sentences (an average
of 20 sentences per rule), which were split into
validation and test subsets so that for each rule at
least 9 sentences or approximately two thirds of
collected sentences would be allocated to the test
partition. Consequently, the size of the test subset
is twice as large as the size of the validation one
(see Table 1). Additionally, unlike the latter, only
the test subset includes initially correct sentences
(for hypercorrection considerations). See more on
the data format in Appendix D.

3.4 Comparison with other GEC corpora for
Russian

Comparing to existing Russian GEC corpora, such
as RULEC-GEC(Rozovskaya and Roth, 2019),
RU-Lang8(Trinh and Rozovskaya, 2021) and
GERA(Sorokin and Nasyrova, 2025), our data dif-
fers in several aspects:

• To the best of our knowledge, that is the only
Russian GEC corpus where all the errors are
matched with corresponding grammar rules
instead of error type.

• Our corpus is deliberately created for evalua-
tion and diagnostic purposes. Therefore, it has
no training subset and is much smaller than
other corpora (see Table 2). We do not want
LLMs to acquire new capabilities on the val-
idation set of our corpus, but rather to reveal
the knowledge they already have.

On the other hand, almost all sentences in our
corpus contain errors and are supposed to be
challenging in contrast to other GEC data.

• Since corpus examples were created via cor-
ruption, for the vast majority of mistakes there
is only one possible correction, increasing the
trustworthiness of evaluation scores.

• As shown in Table 3, LORuGEC has the high-
est fraction of pattern-based errors covered by
a rule-based generator. These errors include
punctuation errors, word form changes, dele-
tion, insertion or replacement of closed word
categories (prepositions, conjunctions and pro-
nouns), spelling errors, etc. Despite this, the
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Sample Sentences Correct source
sentences

Sentences for com-
plex rules (%)

Tokens

Validation 348 0 250 (71.84) 5,579
Test 612 31 419 (68.46) 10,131

Table 1: Statistics on the validation and test samples of LORuGEC.

Sample Sentences Tokens
RULEC-GEC 12,480 206,258
RU-Lang8 4,412 54,741
GERA 6,681 119,068
LORuGEC 960 15,710

Table 2: Quantitative comparison of GEC datasets for
Russian.

corpus P R F0.5 uncov., %
RULEC-GEC 50.4 32.6 45.5 42.0
RU-Lang8 60.8 37.9 54.2 48.8
GERA 74.3 47.0 66.6 33.7
LORuGEC 45.1 17.7 34.4 21.9

Table 3: Comparison of GEC model performance and
difficult fraction (uncov., %) for different Russian GEC
corpora. The model is Qwen2.5-7B finetuned on the
concatenation of Russian GEC data.

GEC model finetuned on the concatenation
of 3 Russian GEC corpora (see Section 5 for
details) has much lower scores on LORuGEC
than on other corpora. This implies that the
main problem on LORuGEC is not to gener-
ate the suggestion but to discriminate between
correct and incorrect variants.

4 Similar example retrieval

4.1 Approach description

We suppose that large language models may lack
knowledge about specific Russian grammar rules.
This information might be injected during infer-
ence via in-context example selection. A natural
solution might be to select examples that belong to
the same rule, i.e. resembling not only the required
correction, but also the grammatical reasoning be-
hind it. However, this restricts the method to a
predefined bounded set of rules that prevents the
model from real-world usage.

Our approach is to use an embedder to select
training examples similar to the given test sentence.
We want this embedder to reflect grammatical sim-

ilarity. That is not the case for standard sentence
embedders that assign similar vector representa-
tions to semantically similar sentences. To be used
for similar examples retrieval, the embedder should
be pretrained on a grammar-related task.

We decide to select the famous GECTOR model
offered by (Omelianchuk et al., 2020). Their ap-
proach does not treat GEC as a Machine Transla-
tion task but reduces it to sequence labeling, taking
into account the fact that most tokens in a sentence
remain unchanged after the correction. GECTOR
classifier, which is built upon a pretrained encoder6,
predicts the no-operation label KEEP for such to-
kens. In other cases, labels represent

• elementary edit operations, such as DELETE,
REPLACEWITH_<TOKEN> (e.g., replace the
current word with the word on) or IN-
SERT_<TOKEN>, where <TOKEN> may refer
to not only words, but also punctuation marks.

• grammatical transformations which mostly
have to do with inflection (e.g., GRAM$SING,
meaning ‘put the current word in the singular
form instead of plural’).

Although the latter labels, the so-called G-labels,
do not exactly correspond to rules of writing, mis-
takes from the same rule class often obtain the same
label. Since the hidden states of encoder models
reflect the similarity in their label space, this simi-
larity is also related to rule similarity.

4.2 Implementation details

Although the retrieval based on embedding similar-
ity is very common and is extensively used, e.g., in
Retrieval-Augmented Generation (RAG), the adap-
tation of GECTOR to retrieval has several details.
Firstly, as GECTOR operates on token level , it
does not assign meaningful representation to the
[CLS] token usually used for retrieval. We repre-
sent the sentence with the hidden states from the
final encoder layer and select up to 3 hidden states

6https://huggingface.co/ai-forever/
ruRoberta-large in our case.
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corresponding to the most probable error positions.
The probability of an error is predicted by the GEC-
TOR model itself, using 1− p(KEEP), where KEEP

is the no-edit label of the GECTOR model.
Since the original GECTOR model uses obso-

lete Python libraries and the sets of G-labels dif-
fer significantly between English and Russian, we
reimplement the model by ourselves using Hug-
gingFace Transformers7 library. The details of its
training are available in Appendix F.

4.3 Retriever finetuning

We suppose that pretraining on external data em-
powers the model with the basic information about
grammatical error patterns, but the model might
not have enough knowledge about rare or dataset-
specific rules. Therefore, we propose to finetune
the retriever on the task of rule classification us-
ing contrastive learning. The tuning is performed
on the validation part of our dataset. The training
objective is a standard triplet loss

L(h, h+, h−) = max(
ρ(h, h+)− ρ(h, h−) + α

t
, 0),

where ρ is the distance function (e.g., cosine), α is
the margin and t is the temperature. We always use
as h+ the closest example with the same class label
and as h− – the closest example with another class
label. In terms of contrastive learning literature,
we use hard positives and hard negatives without
in-batch negatives.

We retrieve the closest positive and negative ex-
amples once in epoch. After completing the epoch
we recalculate the triples using the updated embed-
der. Further details are given in Appendix F.

5 Model evaluation

In this section we evaluate several LLMs on
our corpus8. We select two open-source mod-
els: the open-source Qwen-2.5 7B Instruct9(Yang
et al., 2024) and yandex/YandexGPT-5-Lite-8B-
instruct10 as well as closed-source YandexGPT-5

7https://huggingface.co/docs/transformers/
index

8We restrict our attention to LLMs by two reasons: first,
one of our goals is to study few-shot learning approach.
Second, in contrast to English, LLMs outperform other ap-
proaches, such as encoder-decoder or GECTOR-like, on avail-
able Russian data.

9https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

10https://huggingface.co/yandex/
YandexGPT-5-Lite-8B-instruct

Pro11. The latter two models are selected because
they were largely trained on Russian data and the
first one is chosen due to its excellent multilin-
gual abilities. We evaluate additional models, such
as LLama3-8B-Instruct(Meta, 2024) and GPT4o-
2024-05-13(OpenAI, 2023), in Appendix G.1.

We compare several settings:

1. zero-shot prompt-based application of LLM.
The prompt is provided in Appendix E.1.

2. few-shot prompt-based application of LLMs
with different selection of in-context exam-
ples: random, the general purpose e5-base-
multilingual12(Wang et al., 2024) embedder,
pretrained GECTOR and GECTOR with con-
trastive finetuning).

3. finetuning open-source LLMs on external Rus-
sian GEC data: RULEC-GEC, RU-Lang8 and
GERA(Sorokin and Nasyrova, 2025).

4. further training of the finetuned LLMs on the
validation part of our corpus.

5. LORA-based training of open-source LLMs
only on the validation part of our corpus.

The hyperparameters of the finetuning are available
in Table 9.

As is commonly done, we score the tokenized
model outputs with M2scorer(Dahlmeier et al.,
2013) and report precision, recall and F0.5 score,
using F0.5 as the main metric. The results are given
in Table 4. We make the following conclusions:

1. Finetuning on external GEC data is detrimen-
tal for LORuGEC. Since LORuGEC types of
errors are rare in general GEC corpora, the
finetuned model decides not to correct them,
hence, its recall dramatically reduces.

2. With a single exception, the GECTOR re-
triever performs better than the random one,
proving our first hypothesis: during pre-
training on general GEC data, the encoder
learns the representations for error types.
Moreover, these representations are helpful
even for rare classes of errors that the LLM
was not able to learn. In contrast, the general-
purpose e5-base-multilingual embedder pro-
duces much smaller improvements.

11https://yandex.cloud/ru/docs/
foundation-models/concepts/yandexgpt/models

12https://huggingface.co/intfloat/
multilingual-e5-base
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Qwen2.5-7B YandexGPT5-Lite YandexGPT5-Pro
Setup P R F0.5 P R F0.5 P R F0.5
zero-shot 43.3 34.0 41.0 66.4 51.0 62.6 76.5 66.7 74.3
1-shot, random 44.4 28.6 40.0 67.8 48.6 62.8 78.3 71.0 76.7
5-shot, random 47.2 30.2 42.4 68.5 56.3 65.6 83.9 79.2 83.0
1-shot, e5-base 44.6 29.5 40.5 69.4 49.4 64.2 81.6 69.7 78.9
5-shot, e5-base 47.0 31.8 42.9 68.8 56.8 66.0 81.8 72.2 79.7
1-shot, GECTOR 50.2 35.8 46.5 69.9 53.9 66.0 81.9 72.8 79.9
5-shot, GECTOR 54.3 41.7 51.2 70.0 62.4 68.3 82.7 76.7 81.4
1-shot, GECTOR+FT 52.7 39.8 49.5 71.2 56.7 67.7 83.0 76.3 81.6
5-shot, GECTOR+FT 59.3 46.2 56.1 73.1 65.5 71.4 83.5 78.1 82.3
ext. finetuning 45.1 17.7 34.4 67.0 35.4 56.9 NA
ext.+LORuGEC finetuning 50.1 37.9 47.1 77.4 73.6 76.6 NA
LORuGEC LORA finetuning 48.6 42.6 47.3 74.1 72.6 73.8 NA

Table 4: Comparison of different LLMs on the LORuGEC test set in zero-shot, few-shot and finetuning modes. Ext.
finetuning refers to training on the concatenation of other Russian GEC corpora. The best metric inside the same
approach (e.g., 1-shot) is presented in italics and the best overall metric – in bold.

3. Contrastive finetuning of the embedder is also
helpful: the 1-shot GECTOR+FT retrieval al-
most matches the performance of 5-shot GEC-
TOR retrieval. This proves our second hypoth-
esis: In-domain contrastive tuning of the
retriever improves the quality of few-shot
error correction. This also proves the useful-
ness of rule annotation that distinguishes our
corpus from general GEC data.

4. The models of the YandexGPT-5 family han-
dle “schoolbook” errors from LORuGEC
much better than Qwen-2.5 does. The details
of their training are not available, however, it
is likely that they saw more high-quality Rus-
sian data than the multilingual Qwen model.

5.1 Detailed results and examples
In Table 5 we also report the results per category
for different error types. For both compared models
punctuation errors are the easiest and the lexical
ones – the hardest. A plausible explanation of this
fact is that punctuation rules are the most strict,
mostly binary (whether to use the comma or not)
and rely on separate tokens, while the lexical rules
are more vague and usually deal with more options.

When training the embedder, we use the retrieval
quality as an intrinsic quality metric: the more of-
ten the embedder retrieves examples that belong to
the same rule, the better it is. We observe that this
internal metric correlates well with error correction
quality, as shown in Table 6.

We provide illustrative examples of retrieved

Qwen2.5-7B YandexGPT5-Pro
Category P R F0.5 P R F0.5
Grammar 50.0 36.5 46.6 86.3 69.8 82.4
Lexis 46.7 22.6 38.5 85.0 54.8 76.6
Punct. 66.2 53.6 63.0 85.7 83.3 85.2
Spelling 55.2 44.9 52.8 80.9 77.4 80.2

Table 5: Per-category scores of 5-shot learning, GEC-
TOR+FT retriever for Qwen2.5-7B and YandexGPT5-
Pro models.

samples together with corresponding model outputs
in Figures 3 and 4.

5.2 Results for other corpora

The results on the introduced LORuGEC corpus
prove the utility of our approach on a rule-oriented
corpus. We wonder whether GECTOR-based
demonstration selection improves results for gen-
eral GEC corpora as well. To verify it, we com-
pare three types of few-shot example selection (ran-
dom, GECTOR and GECTOR+FT) on three avail-
able corpora: RULEC-GEC, RU-Lang8 and GERA.
The results for the first two corpora are provided in
Table 7, the results for GERA are in Table 13.

We again observe the advantage of GECTOR-
based examples over random samples. Finetuning
of GECTOR retriever on LORuGEC data does not
have a clear positive effect probably due to the dif-
ference in error distribution between corpora. Due
to larger sizes of these corpora, few-shot learning is
not able to outperform full finetuning, but demon-
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Retriever acc. top-5 recall Qwen2.5-7B F0.5 YandexGPT5-Pro F0.5
1-shot 5-shot 1-shot 5-shot

random 2.3 10.3 40.0 42.4 76.7 83.0
GECTOR 31.7 49.3 46.5 51.2 79.9 81.4
GECTOR+FT 55.9 72.2 49.5 56.1 81.6 82.3

Table 6: Correlation between retrieval and GEC metrics for different retrevers. Accuracy is the percentage of cases
when the most closest example belongs to the same rule and recall-5 – the fraction of cases when such examples
occur among top 5 closest examples.

Qwen-2.5 7B Instruct YandexGPT-5 Lite 8B Instruct
Setup RULEC-GEC RU-Lang8 RULEC-GEC RU-Lang8

P R F0.5 P R F0.5 P R F0.5 P R F0.5
zero-shot 38.2 39.3 38.4 48.9 39.2 46.6 41.7 42.6 41.9 53.8 41.9 50.9
random, 1-shot 40.7 37.8 40.1 50.4 37.1 47.1 43.5 41.9 43.2 55.1 42.5 52.0
random, 5-shot 42.4 37.9 41.4 51.6 38.3 48.2 43.7 45.1 44.0 55.4 47.5 53.6
gector, 1-shot 41.8 37.6 40.9 53.7 38.8 49.8 45.0 42.5 44.5 56.9 43.5 53.6
gector, 5-shot 43.9 37.1 42.4 55.4 40.2 51.5 46.0 45.4 45.9 57.2 48.3 55.2
gector+FT, 1-shot 41.7 37.2 40.7 52.6 38.1 48.8 45.4 42.2 44.7 57.1 43.7 53.8
gector+FT, 5-shot 44.7 38.1 43.2 55.3 40.7 51.6 46.1 45.8 46.0 56.0 47.7 54.1
finetuning 52.2 31.2 46.0 61.7 37.2 54.5 57.3 38.9 52.4 66.3 48.5 61.8
prev. SOTA 70.5 29.1 54.82 73.7 27.3 55.01 70.5 29.1 54.82 73.7 27.3 55.01

Table 7: Comparison of different few-shot example selection methods on RULEC-GEC and RU-Lang8 corpora.
The best metric inside the same approach (e.g., 1-shot) is presented in italics and the best overall metric – in bold. 1

refers to Sorokin (2022) and 2 to Sorokin and Nasyrova (2025)

strates higher recall in 3 of 4 experiments.
We also apply our approach to English BEA cor-

pus, see Appendix G.3 for details. There GECTOR-
based example selection leads to a small (about
1.5% F0.5 score) but consistent improvement.

6 Discussion and conclusions

In our study we make two principal contributions:

1. We release a new LORuGEC corpus, which
differs from existing Russian GEC corpora in
data sources, difficulty and typology of errors
and, most importantly, the presence of rule la-
bels. This annotation makes our corpus more
suitable for L1 educational applications, such
as school writing assistants.

2. We compare several methods of in-context
learning on our data and discover that
retrieval-based demonstration selection sig-
nificantly outperforms random choice. The
retrieval leverages the encoder-based GEC-
TOR model. Contrastive finetuning of this
encoder to predict rule labels further improves
correction quality.

Since our data has a distinct error distribution, we
also check the second result on other corpora. We
observe that GECTOR-based in-context examples
retrieval is beneficial over random selection. This
confirms that our approach effectively works for
general GEC data, at least for Russian.

As a future work, we plan to extend our corpus in
terms of size and errors number. We have already
collected a small pool of sentences with multiple
errors, which require additional verification. To re-
duce annotation burden, we also experimented with
example generation. We found that LLM may ef-
fectively generate 5 examples to the required rules:
23 out of 25 samples were correct, however, they
were shorter and less variable than the manually
collected ones, thus further investigation is needed.

We also believe our approach to be viable in
domains where task-induced similarity differs from
surface meaning similarity. For example, in code
retrieval similar programs are not the ones using
the same variable names but the ones using the
same algorithms. So we hope to investigate the
usefulness of our approach in other fields.
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7 Limitations

1. As for any LLM-based method, our results are
prompt-dependent. In particular, our prompts
were optimized towards YandexGPT models
and might be suboptimal for the models from
other families or for later versions of Yan-
dexGPT. However, we did not find any major
differences in results when slightly modifying
the prompt.

2. For now we evaluate our approach only on
Russian and the results may differ for other
languages. However, the approach itself has
no language-specific details.

3. The LORuGEC corpus is rather small in size
compared to other GEC corpora, thus the re-
sult may change after collecting more analo-
gous data. We addressed this question in the
Conclusions section.

4. Though in principle contrastive tuning works
with multiple example labels, we were unable
to successfully extend our approach to the
multilabel case.

8 Ethics considerations

Our work is based on Large Language Models. We
acknowledge that such models might be used in a
harmful or malicious manner, however, we utilize
them only for scientific purposes. Nevertheless,
if a retrieved fewshot sample includes an unsafe
generation, that may bias the model towards unde-
sirable behaviour. Thus generalizing our method
to datasets containing such examples requires addi-
tional precautions.

All of the students who participated in the cre-
ation of the dataset earned credit hours as a result.
The students were informed about the goals of the
work and gave their content for dataset publication.
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A Annotation Instruction

Выберите грамматический справочник по
русскому языку, затем составьте набор правил.
Для каждого правила найдите 15 примеров

(предложений). Предложения должны быть
из разных источников и желательно не из
художественной литературы. Примеры также
не должны быть тривиальными.
Добавьте в предложения нарушения той

нормы, которую Вы исследуете. Если
есть несколько способов допустить ошибку в
правиле, отразите это в собранных примерах.
Для каждого правила протестируйте Yan-

dexGPT 3 Pro на его примерах. Если модель
не справилась хотя бы в одном примере,
то проанализируйте, что отличает сложные
предложения, и соберите еще 5-10 сложных
примеров.

(Select a reference book for Russian, after that
choose the rules for consideration.

For each rule find 15 example sentences that are
preferably from different sources and not trivial,
avoid using examples from fiction.

Add errors to the sentences based on the rule
under consideration. If there are several ways of
making a mistake in a rule, this should be reflected
in the collected set of sentences for it.

For each rule test the YandexGPT 3 Pro on its
sentences. If there are any imperfections in the
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model’s corrections, analyse what distinguishes
complicated sentences and gather 5-10 more com-
plex examples.)

B Educational sources of the rules

• High school Unified State Exam prepara-
tion books: (Berezina and Borisov, 2017)
(Simakova, 2016)

• Academic handbook on spelling and punc-
tuation: (Valgina et al., 2009), http://
orthographia.ru/

• Handbook on the contemporary Russian lan-
guage: (Valgina et al., 2002), https://
pedlib.ru/Books/6/0262/

• Handbook on spelling and stylistics: (Rozen-
tal’, 1997), https://rosental-book.ru/

• Dictionary of Russian collocations:
(Kochneva, 1983)

• Educational web-sources: https:
//orfogrammka.ru/, https://gramota.
ru/biblioteka/spravochniki/,
http://old-rozental.ru/, https:
//grammatika-rus.ru/, https://licey.
net/free/4-russkii_yazyk/, https:
//www.yaklass.ru/p/russky-yazik/

C Rules of Russian grammar in
LORuGEC

• Grammar

1 Incorrect expression of government
2 Declension of cardinal numerals
3 Declension of numerals poltora (‘one

and a half.NOM’), poltory (‘one and a
half.GEN’), poltorasta (‘a hundred and
fifty.NOM’)

4 Agreement between the participle and
the word it defines

• Punctuation

5 Commas in idiomatic expressions
6 Commas between homogeneous subordi-

nate clauses
7 Commas between subordinate and main

clauses
8 Commas between the two conjunctions

9-11 Commas before the conjunction kak
(‘as’): 3 instances

12 Sentences with homogeneous parts
13 Converbs after conjunctions
14 Clauses related to the personal pronoun
15 Clauses that are distant from the word

they define
16 Punctuation in meaningful (indecompos-

able) expressions
17 Linking words and constructions
18 Recurring conjunctions
19 Dashes in sentences with no conjunc-

tions
20 Dashes between the subject and the pred-

icate
21 Dashes in case of appositions

• Semantics

22 Collocations
23 Pleonasms

• Spelling

24 n and nn in the suffixes of adjectives
25 Vowels in the suffixes of participles
26 Noun suffixes on’k, en’k
27 Suffixes ic, ec in neuter nouns
28 Suffixes ek, ik
29 Adjective suffixes insk, ensk
30 Prefixes pre and pri
31 y and i after prefixes
32 Vowels after c
33 Vowels after sibilants
34 Separating soft and hard signs
35 Hyphens as part of written equivalents of

complex words
36 Joint, separate or hyphenated spelling of

adverbs
37 Compound adjectives
38 Particle taki (‘still’)
39 zato (‘at least’)
40 ottogo (‘that is why’)
41 prichyom and pritom (‘moreover’)
42 takzhe (‘also’)
43 chtoby (‘to’)
44 pol- (‘half’)
45 ne (negative particle) with verbs
46 ne with adjectives
47 ne with participles
48 ne with nouns
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Complexity. As may be observed in the figure 1,
the largest percentages of collected complex rules
occur among punctuation and semantics.

D Details on LORuGEC format

The dataset consists of rules, their definitions, in-
formation on their complexity for the YandexGPT
model, pairs of corresponding tokenized13 gram-
matical and ungrammatical sentences (see Table
8). There is some additional information, repre-
senting grammar sections which rules pertain to,
sources of rules as well as indication of the subset
for each sentence (validation or test, see more in
the next section). There are few sentences in the
dataset that do not contain any errors (see column
Correct source sentences in Table 1), because it is
also crucial to verify if models are prone to hyper-
correction. These sentences are also marked with
metadata. We also present our data in .M2, which
is a conventional GEC format.

An example from LORuGEC in the first format
type may be seen in the Table 8.

The same sentence, but expressed in the .M2-
standard:

S Иванова , как художника , я совсем не знаю .
A 1 2|||None||||||REQUIRED|||-NONE-|||0
A 4 5|||None||||||REQUIRED|||-NONE-|||0

According to the .M2-standard, the source text is
denoted with S, while the corresponding edits are
prefixed with A. Each edit consists of the error span,
error type, correction, if the edit is optional or re-
quired, additional remarks and annotator ID, yet
we do not make use of error types. The given anno-
tation demonstrates the requirement to delete two
commas in the sentence.

E Model hyperparameters

E.1 Model prompt

Our final prompt for grammatical error correction
of Russian texts is given in Figure 2.

E.2 Training hyperparameters

We train the model with Huggingface Transformers
Trainer using the hyperparameters from Table 9 for
all experiments. When two values are given, the
first value is used for training from scratch, and the
second – for finetuning from a checkpoint that was
already trained on a larger general GEC corpus.

13We made use of NLTK Tokenizer: https://www.nltk.
org/api/nltk.tokenize.html.

We also made the following model-specific
changes:

1. Llama-8B-Instruct is tuned using
learning_rate = 3e−6 and YandexGPT5-
Lite using learning_rate = 1e−6. For both
these models we use max_grad_norm = 0.3.

2. LORA finetuning is performed with
learning_rate = 1e−4 and physical batch
size 4.

F Retriever training

F.1 GECTOR pretraining
Since the morphological features of English and
Russian differ significantly, we reimplement the
GECTOR preprocessing by ourselves. The sets of
G-labels correspond to combinations of morpho-
logical features, e.g., the label NOUN,Nom+Plur
corresponds to putting the noun into Plural number
and Nominative case, keeping other morphological
features intact. When the corpus is converted into
the pairs of word sequences and their edit labels,
we implement training using standard HuggingFace
Transformer instruments for sequence labeling. We
omit the decoder as we do not need the exact sur-
face transformations predicted by the GECTOR
model, but only its labels and hidden states.

We train the GECTOR model on the concate-
nation of RULEC-GEC, ru-Lang8, GERA and 1
million sentences with synthetic errors. When gen-
erating synthetic data, we use the Russian subset
of Oscar corpus14 as source and introduce artifi-
cial errors simulating the error distribution of three
mentioned corpora. The model is initialized from
ruRoberta-large15 model, the hyperparameters of
training are given in Table 10.

F.2 Contrastive tuning
As mentioned in Subsection 4.3, we tune the re-
triever on the task of rule label prediction using
contrastive learning. The tuning is performed on
the validation set of LORuGEC. The training ob-
jective is a standard triplet loss

L(h, h+, h−) = max(
ρ(h, h+)− ρ(h, h−) + α

t
, 0),

where ρ is the distance function (e.g., cosine), α
is the margin and t is the temperature. Here h+

14https://huggingface.co/datasets/oscar-corpus/
OSCAR-2109

15https://huggingface.co/ai-forever/
ruRoberta-large
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Figure 1: Complexity of different grammar sections is expressed by the number of complex rules for the YandexGPT3
Pro model. We considered the rule to be difficult if the model failed to correct some of its sentences (see 3.1).

The rule Did the base model have
difficulties with the rule?

Initial sentence Correct sentence

Запятая перед
союзом “как”: 2
случай

Нет Иванова , как
художника , я
совсем не знаю .

Иванова как
художника я
совсем не знаю .

(Commas before
the conjunction kak
‘as’: second case)

(No) (I don’t know
Ivanov at all , as an
artist.)

(I don’t know
Ivanov at all as an
artist.)

Table 8: An example of a rule from the dataset with English translation. Additional metadata and other sentences
for this rule are omitted for illustrative purposes.

Parameter value
GPU A100 80B

num GPUs 1
epochs 3/5

physical batch size 1
batch size 32

learning rate 1e−5/1e−6
max_grad_norm 1.0

optimizer adafactor
scheduler triangular
warmup 0.1

weight decay 0.01
precision fp16

gradient checkpointing yes

Table 9: Hyperparameters used for 7B/8B language
models finetuning.

Parameter Value
Epochs 3
Batch size 32
Learning rate 1e-5
Optimizer AdamW
Scheduler Triangluar
Warmup 0.1

Table 10: Hyperparameters of GECTOR encoder train-
ing

is the closest example with the same class label
and h− is the closest example with incorrect label.
We represent each sentence with up to 3 hidden
states of the most probable error positions in it,
provided their probability exceeds the threshold
θ. When there is no such position, only the most
probable position is extracted. If H(s) in the set
of all hidden states corresponding to a sentence s,
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Дорогая языковая модель, после
"Исходное предложение" тебе будет дано
предложение на русском языке, которое
может содержать орфографические,
пунктуационные, грамматические и
речевые ошибки. Выведи, пожалуйста,
только корректный вариант данного
предложения, не давая никаких
комментариев и не выделяя никаких
символов. Твоя задача – минимально
изменить текст, не меняй слова и знаки
препинания, которые и так правильные.
(Dear language model, after "The initial sen-
tence" you’ll be given a sentence in Rus-
sian which may contain spelling, punctuation,
grammatical and speech errors. Print, please,
only the correct version of this sentence with-
out giving any comments and highlighting any
symbols. Your task is to minimally edit the
text, don’t change the words and punctuation
marks that are already correct.)

Figure 2: Prompt for correction of Russian text. The
English translation is given in brackets.

the distance between two sentences is the minimal
distance between its state representations:

ρ(s, s′) = min
h∈H(s),h′∈H(s′)

ρ(h, h′).

We collect training triples at the beginning of
each epoch. For each sentence we search for
its nearest neighbours using approximate nearest
neighbour (ANN) search with cosine distance. We
implement ANN search using Faiss. After process-
ing all the batches we recalculate the hidden repre-
sentations and update the vector storage. The hy-
perparameters of contrastive fine-tuning are given
in Table 11.

Parameter Value
Epochs 10
Batch size 8
Learning rate 1e-5
Optimizer AdamW
Scheduler Triangluar
Warmup 0.1

Table 11: Hyperparameters of GECTOR encoder train-
ing

G Additional results

G.1 Additional results on LORuGEC

Here we evaluate two more models on LORuGEC,
repeating the setup of Section 5. We select Llama3-
8B-Instruct16(Meta, 2024) as a medium-size open-
source model and GPT4o-2024-05-13(OpenAI,
2023) as a large open-source model. The results
are provided in Table 12. The models follow the
same pattern as the Qwen2.5-7B and YandexGPT
models (see Table 4) with GECTOR+FT being
the best few-shot selection method. That means
that our approach works both for strong closed-
source models and comparably weaker open-source
models with limited knowledge of Russian. In-
terestingly, the GPT4o model almost reaches the
level of YandexGPT5-Pro, providing additional ev-
idence that huge language models trained on large
amounts of different texts, e.g. educational ones,
may not only memorize the rules encountered in
these texts, but also apply them to similar language
material.

G.2 Additional results on GERA

The comparison of different few-shot selection
method on GERA is provided in Table 13.

G.3 Results for English

We evaluate our approach on English, using the
development subset of W&I corpus(Bryant et al.,
2019), also known as BEA-2019, as our evalua-
tion corpus. We follow the setup of the previous
subsection using Qwen2.5-7B Instruct as an open-
source model and GPT4o-05-13(OpenAI, 2023)
as the closed-source one. The main difference
with LORuGEC experiments is the absence of
analogous rule-type-annotated corpus for English.
Therefore, we cannot readily adapt the contrastive
tuning stage. We tried to replace the rule labels
with the ERRANT edit types, however, most of
the sentences contained several errors of different
types. We attempted to train the encoder on the
subset of single-error sentences but the approach
was not successful.

The generative LLM is finetuned on the W&I
corpus training set. For encoder training we utilize
a larger cLang-8 corpus (Rothe et al., 2021), corpus
parameters are given in Table 14. Note that we
don’t use BEA-2019 for GECTOR encoder training

16https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Llama3-8B-Instruct GPT4o-2024-05-13
Setup P R F0.5 P R F0.5
zero-shot 24.0 30.3 25.1 65.6 68.6 66.2
1-shot, random 30.1 32.8 30.6 71.8 69.5 71.4
5-shot, random 32.1 30.2 31.7 75.3 70.3 74.3
1-shot, GECTOR 30.5 34.9 31.3 72.8 73.2 72.9
5-shot, GECTOR 37.6 37.7 37.6 76.2 74.8 75.9
1-shot, GECTOR+FT 32.7 36.7 33.4 74.8 75.9 75.0
5-shot, GECTOR+FT 42.7 42.9 42.7 79.6 77.9 79.2
ext. finetuning 39.5 14.7 29.6 NA
ext.+LORuGEC finetuning 58.6 33.6 51.0 NA
LORuGEC LORA finetuning 48.8 36.5 45.7 NA

Table 12: Comparison of different LLMs on the LORuGEC test set in zero-shot, few-shot and finetuning modes.
Ext. finetuning refers to training on the concatenation of other Russian GEC corpora. The best metric inside the
same approach (e.g., 1-shot) is presented in italics and the best overall metric – in bold.

Setup Qwen-2.5 7B Instruct YandexGPT-5 Lite 8B Instruct
P R F0.5 P R F0.5

zero-shot 50.3 43.7 48.8 70.8 53.3 66.5
random, 1-shot 58.6 41.4 54.1 76.8 52.2 70.2
random, 5-shot 59.9 40.2 54.5 73.8 56.0 69.4
gector, 1-shot 58.9 44.0 55.1 77.7 54.8 71.7
gector, 5-shot 65.0 46.6 60.2 75.4 58.6 71.3
gector+FT, 1-shot 58.6 44.0 55.0 76.1 54.8 70.7
gector+FT, 5-shot 62.6 47.9 59.0 74.8 58.8 70.9
finetuning 75.8 45.9 67.1 78.0 59.0 73.3

Table 13: Comparison of different few-shot example selection methods on GERA. The best metric inside the same
approach (e.g., 1-shot) is presented in italics and the best overall metric – in bold.

to simulate the case when large in-domain training
corpus is not available.

Corpus Size Usage
BEA-2019 train 34308 Training
cLang-8 2372119 encoder training
BEA-2019 dev 4384 Testing

Table 14: GEC corpora used for experiments on English.

Results on BEA-2019 development set are avail-
able in Table 15. Here we use ERRANT-3.0(Bryant
et al., 2017) to obtain evaluation metrics. Compar-
ing them to the results of the previous subsection,
we observe the following:

1. Again, retriever-based selection of demonstra-
tion samples produces small but stable im-
provements. These improvements are stable
across models and the number of few-shot
examples.

2. However, the difference with baseline is
smaller than for LORuGEC. In particular, the
achieved enhancements are not sufficient to
reach the level of finetuned model. We hy-
pothesize that the reason for this is the larger
size of training corpus in case of English that
allows the finetuned model to achieve larger
improvements over the zero-shot version.

H Implementation of our Approach

We present several responses of the YandexGPT-
lite model to the sentences from LORuGEC, which
were obtained using different kinds of 1-shot
demonstration: random, GECTOR-based or fine-
tuned GECTOR-based, see Figures 3 and 4.
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Method few-shot method k Qwen2.5-7B GPT4o-05-13
Zero-shot – 0 36.2 43.4 37.5 34.2 52.6 36.8
few-shot random 1 37.9 42.8 38.8 35.7 51.5 38.0
few-shot random 5 38.4 43.6 39.4 37.2 49.0 39.1
few-shot GECTOR 1 39.1 44.4 40.1 37.2 52.0 39.4
few-shot GECTOR 5 40.0 46.0 41.1 39.4 51.5 41.4
LLM external – 0 53.4 48.8 52.4 NA NA NA

Table 15: Comparison of different few-shot example selection methods on BEA development set.

Source sentence Врачи буквально обомлели
оттого, что увидели.

The doctors literally were stunned by what they
saw.

Target sentence Врачи буквально обомлели
от того, что увидели.

(от того ‘by what’ in this context must be
written separately.)

Random 1-shot demonstration
Исходное предложение: Куда
запропастилась моя подружонька?

The initial sentence: Where is my girl-friend?

Исправленное предложение: Куда
запропастилась моя подруженька?

The correct sentence: Where is my girl-friend?

(The word подруженька‘girl-friend’ contained
a spelling error in the initial sentence.)

LLM Response Врачи буквально обомлели
оттого, что увидели.

(The model did not correct the sentence.)

GECTOR 1-shot demonstration
Исходное предложение: Родители были
счастливы от того, что Владик передумал.

The initial sentence: Parents were happy be-
cause Vladik changed his mind.

Исправленное предложение: Родители были
счастливы оттого, что Владик передумал.

The correct sentence: Parents were happy be-
cause Vladik changed his mind.
(The word оттого‘because’ must be written in
one word in this context.)

LLM Response Врачи буквально обомлели
оттого, что увидели.

(The model did not correct the sentence.)

GECTOR-FT 1-shot demonstration
Исходное предложение: Я расстроился
оттого, что увидел.

The initial sentence: I was upset by what I saw.

Исправленное предложение: Я расстроился
от того, что увидел.

The correct sentence: I was upset by what I saw.

(от того‘by what’ in this context must be writ-
ten separately.)

LLM Response Врачи буквально обомлели
от того , что увидели .

(The model successfully corrected the sen-
tence.)

Conclusion Only the finetuned GECTOR was able to obtain the sentence with the same
preposition and pronoun от того‘by what’ and the same context in which it
must be written separately, not in one word, as opposed to the demonstration
chosen by the basic GECTOR. Random selection had a spelling error in it which
did not at all resemble the target error. Consequently, LLM was able to correct
the sentence only with the GECTOR-FT demonstration.

Figure 3: Implementation of our approach on the sentence from LORuGEC using YandexGPT5-Lite model.
Incorrect parts are marked with red, corrected parts are marked with green for illustrative purposes. There were
no highlights in experiments. In the second column we also present English translations of the sentence and
demonstrations as well as comments to them in brackets. The same holds for Figure 4.
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Source sentence Кажется, это сон, и я
сплю.

It seems, it’s a dream, and I’m dreaming.

Target sentence Кажется, это сон и я
сплю.

(Кажется‘It seems’ is a part of the sentence that is
related to both clauses это сон‘it’s a dream’ and я
сплю‘I’m dreaming’ which are connected by the con-
junction и‘and’, that is why there must not be any
commas between the clauses before the conjunction.)

Random 1-shot demonstration
Исходное предложение: Вы можете
подумать, что вас это некасается и даже
рассмеяться..

The initial sentence: You may think, that it does not
concern you and even laugh..

Исправленное предложение: Вы можете
подумать, что вас это не касается и даже
рассмеяться..

The correct sentence: You may think, that it does not
concern you and even laugh..
(In Russian negative particle не must be written sep-
arately from the verb, so не касается‘does not con-
cern’ must not be written in one word.)

LLM Response Кажется, это сон, и я
сплю.

(The model did not correct the sentence.)

GECTOR 1-shot demonstration
Исходное предложение: В это время
раскрылась дверь поместья, и вышел
начальник дозора.

The initial sentence: At that moment, the door of the
manor opened, and the head of the watch came out.

Исправленное предложение: В это время
раскрылась дверь поместья и вышел
начальник дозора.

The correct sentence: At that moment, the door of the
manor opened and the head of the watch came out.
(В это время‘at that moment’ denotes the time for
both the opening of the door (раскрылась дверь
поместья) and the arrival of the head of the watch
(вышел начальник дозора), so there should not be
any commas before the conjunction и‘and’ which con-
nects these two clauses.)

LLM Response Кажется, это сон и я
сплю.

(The model successfully corrected the sentence.)

GECTOR-FT 1-shot demonstration
Исходное предложение: Самгин
понимал, что говорит плохо, и что
слова его не доходят до неё.

The initial sentence: Samgin knew that he was speak-
ing badly, and that his words were not reaching her.

Исправленное предложение: Самгин
понимал, что говорит плохо и что
слова его не доходят до неё.

The correct sentence: Samgin knew that he was speak-
ing badly and that his words were not reaching her.
(Самгин понимал‘Samgin knew’ about both facts:
that he was speaking badly (что говорит плохо) and
that his words were not reaching her (что слова его не
доходят до неё), so there must be no comma before
the conjunction и‘and’ that connects these clauses.)

LLM Response Кажется, это сон и я
сплю.

(The model successfully corrected the sentence)

Conclusion Both GECTOR-based models selected demonstrations that follow the punctuation
pattern of the source sentence. These demonstrations allowed the LLM to
effectively correct the sentence, unlike the randomly selected sentence which
had to do with incorrect spelling.

Figure 4: Implementation of our approach on another sentence from LORuGEC.
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Abstract

Comparative judgment (CJ) is an assessment
method in which multiple assessors determine
the holistic quality of essays through pairwise
comparisons. While CJ is recognized for gen-
erating reliable and valid scores, it falls short
in providing transparency about the specific
quality aspects these holistic scores represent.
Our study addresses this limitation by predict-
ing scores on a set of rubrics that measure text
quality, thereby explaining the holistic scores
derived from CJ. We developed feature-based
machine learning models that leveraged com-
plexity and genre features extracted from a
collection of Dutch essays. We evaluated the
predictability of rubric scores for text quality
based on linguistic features. Subsequently, we
evaluated the validity of the predicted rubric
scores by examining their ability to explain the
holistic scores derived from CJ. Our findings
indicate that feature-based prediction models
can predict relevant rubric scores moderately
well. Furthermore, the predictions can be used
to explain holistic scores from CJ, despite cer-
tain biases. This automated approach to explain
holistic quality scores from CJ can enhance the
transparency of CJ assessments and simplify
the evaluation of their validity.

1 Introduction

Comparative judgment (CJ) is a widely used
method for educational assessments, particularly
for evaluating writing quality of essays (Baniya
et al., 2019; Steedle and Ferrara, 2016; van Daal
et al., 2016). In CJ, assessors repeatedly compare
(different) pairs of essays and determine which one
is superior in quality each time. Then, the Bradley-
Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 1959), relates the probability of one essay
being preferred over another to the quality scores
of the essays that are compared. Based on the judg-
ments of assessors, the quality scores of essays are
estimated.

CJ offers several advantages over traditional
rubric-based assessments. Firstly, it allows asses-
sors to use their professional expertise and intuition
without strictly adhering to predetermined rubrics,
making CJ a more natural assessment method
(Bloxham, 2009; Laming, 2003). Assessors may
have different conceptualizations of quality; some
prioritize essay argumentation and organization,
while others focus on language conventions (Lester-
huis et al., 2022). Even when assessors focus on
different aspects, van Daal et al. (2016) found that
their pairwise comparisons still reflected construct-
relevant aspects of writing quality. Secondly, since
CJ incorporates multiple judgments from various
assessors, the resulting essay quality scores are
generally reliable and valid, reflecting a consensus
among the assessors (Lesterhuis et al., 2022; Ver-
havert et al., 2019; van Daal et al., 2016). Although
CJ is a valid and reliable assessment method, the
holistic scores it produces lack transparency regard-
ing their specific meaning. Since judgments are
made holistically, the assessors’ decision-making
process remains unclear. Assessors can provide
feedback while making judgments, but this takes
more time and may shift their focus from the over-
all quality of essays to specific analytic criteria
(Verhavert et al., 2019). Finding a new way to ex-
plain holistic scores is therefore crucial for making
CJ assessments more transparent and can also serve
as a form of feedback.

In this study, we investigate the use of feature-
based prediction models to explain holistic quality
scores from CJ, with the goal of enhancing their
transparency.

Our research addresses the following questions:

1. How reliably can scores on a set of rubrics
measuring text quality be predicted based on
linguistic features of essay texts?

2. To what extent do these predicted rubric
scores accurately reflect the holistic quality
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scores of essays obtained with CJ?

Our study comprised two phases. First, we con-
ducted a machine learning experiment to assess
how well rubric scores could be predicted from
linguistic features of Dutch essays. Second, we per-
formed a regression analysis to evaluate the validity
of the predicted scores in explaining the holistic
scores obtained with CJ.

2 Background

2.1 Comparative Judgment Assessments
CJ functions as an alternative assessment method to
rubric scoring and has been shown to produce reli-
able and valid scores (Verhavert et al., 2019; Lester-
huis et al., 2022; van Daal et al., 2016; Heldsinger
and Humphry, 2010). While primarily known for
assessing essay quality, CJ has also been effectively
used for various other types of assessments. These
include evaluating conceptual understanding (Jones
et al., 2019), mathematical problem-solving skills
(Jones and Inglis, 2015), design portfolios (New-
house, 2014), formative assessments (Potter et al.,
2017; Bartholomew et al., 2019), and comparing
assessment standards across examination boards
(Bramley, 2007; D’Arcy, 1997).

Generally, CJ assessments are conducted by it-
erating through three key steps. In the first step,
a pair of essays is chosen and assigned to one of
several assessors. In the second step, the asses-
sor compares the two essays and determines which
demonstrates higher quality. This relative assess-
ment approach is considered more intuitive than
absolute assessments, such as rubric-based scor-
ing. As Laming (2003) noted, all judgments in-
herently involve comparing one entity to another,
and CJ explicitly makes use of this principle. In
the third step, the BTL model is applied to link the
outcomes of all pairwise comparisons to a quality
scale (Bradley and Terry, 1952; Luce, 1959). The
BTL model relates the probability of one essay be-
ing favored over another to the difference in their
quality scores, expressed as logit values. Specifi-
cally, this probability is determined by the sigmoid
function of the quality score difference: the greater
the quality score of the first essay relative to the
second, the higher the probability it will win the
comparison. The quality scores in BTL model are
continuously updated based on the judgments that
assessors make. The assessment concludes once a
sufficient number of judgments have been collected,
typically requiring each essay to be compared 10

to 14 times to ensure reliable quality scores. Ulti-
mately, the holistic scores derived from CJ are both
reliable and valid, as they stem from numerous pair-
wise comparisons by multiple assessors (van Daal
et al., 2016; Lesterhuis et al., 2022).

However, when the CJ assessment is completed,
the resulting quality scores for essays lack clarity
regarding what they represent. The issue stems
from the scores being based on holistic pairwise
comparisons by assessors (Steedle and Ferrara,
2016; Kelly et al., 2022), a method that, while
reliable and valid, lacks the transparency offered
by detailed rubric-based marking (Jonsson, 2014;
Mortier et al., 2015). As a result of this ambi-
guity, the feedback function of the scores to stu-
dents is hindered, and the validation of the as-
sessors’ judgments is complicated. Even though
assessors can provide feedback comments when
making judgments, doing so extensively would be
time-consuming and reduce assessment efficiency.
Furthermore, writing numerous comments to indi-
vidual essays can lead assessors to adopt a more
analytical approach (Verhavert et al., 2019), which
conflicts with the holistic nature of CJ assessments
(van Daal et al., 2016). Hence, there is a need to
enhance the transparency of the holistic scores ob-
tained with CJ without requiring more effort from
assessors. To achieve this, we propose automat-
ically predicting the scores on rubrics to explain
the holistic scores derived from CJ. This prediction
task is similar to that of automated essay scoring
(AES).

2.2 Automated Essay Scoring
With recent advancements in NLP methods, AES
for summative assessments and automatic writ-
ing evaluation (AWE) for formative assessments
have received increasing attention. Initially, sys-
tems relied on analyzing hand-crafted linguistic
features from essay texts to predict scores (Ke and
Ng, 2019). However, following the ASAP Kaggle
competition organized by the Hewlett Foundation
(Hamner et al., 2012), deep learning models have
gained prominence in this domain, often surpassing
traditional feature-based prediction models in terms
of agreement with human scoring (Dong et al.,
2017; Taghipour and Ng, 2016; Wang et al., 2022).
Despite these advances, practical AES and AWE
systems, such as PEG (Dikli, 2006) and e-rater
(Burstein et al., 2004), continue to rely heavily on
hand-crafted linguistic features due to the need for
transparency. Especially, text complexity features
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such as syntactical complexity and lexical diversity
have been shown to have a large predictive power
for the writing quality of essays (McNamara et al.,
2010). For instance, for English-written essays,
the Coh-Matrix (Graesser et al., 2004) and SALAT
toolsets (Crossley et al., 2023) are commonly used
to extract complex linguistic features for AES (Mc-
Namara et al., 2015; Li and Liu, 2017; Latifi and
Gierl, 2021; Kumar and Boulanger, 2020).

While feature-based AES models and AWE sys-
tems provide more transparency, the linguistic fea-
tures themselves, such as complexity and cohesion
features, can still be hard to interpret and may lack
pedagogical clarity for students and teachers. As
Deane (2013b) stated, using linguistic features as
proxies for writing quality is neither transparent nor
instructional for students. Additionally, Crossley
(2020) noted that extensive knowledge is required
in order to use linguistic features effectively.

As assessors mostly consider higher-order as-
pects of writing when making pairwise compar-
isons, such as structure and argumentation (Lester-
huis et al., 2022), linguistic features would not
provide the desired transparency about the holistic
quality scores. Therefore, in this study, we chose
to explain the holistic scores based on more in-
structional rubrics that measure specific aspects of
writing quality. We predicted scores across these
rubrics based on linguistic features extracted from
essays. The automated scoring task of predicting
scores across multiple rubrics is also referred to as
’multi-trait’ scoring within AES literature (He et al.,
2022; Do et al., 2023; Mathias and Bhattacharyya,
2020).

3 Method

3.1 Data

We used data previously collected by Coertjens
et al. (2017). The dataset, detailed in Table 1, in-
cluded a total of 104 argumentative essays in Dutch
written by students from secondary education. The
students could choose to write an essay on one of
the topics: (1) having children, (2) organ donation,
and (3) stress experienced by students. Despite the
differences in topics, the essays were quite similar
in terms of the assessed competence: the ability to
effectively integrate source material within argu-
mentative writing. This allowed us to combine the
essays from different assignments into one dataset
for model training. We selected this data because
it is the only CJ dataset where essays are labeled

with both holistic and rubric scores.1

Assignment Essays Tokens Tokens/Essay
N M ± SD

1. Children 34 11167 328 (± 92)
2. Organ 35 11358 293 (± 93)
3. Stress 35 11859 304 (± 97)

Table 1: Overview of the argumentative writing assign-
ment gathered by Coertjens et al. (2017). Tokeniza-
tion was performed using the Dutch nl_core_news_sm
model from spaCy (Explosion, 2023).

3.1.1 Holistic Scores
Coertjens et al. (2017) used CJ to obtain holistic
scores of essay quality. During the assessment,
40 assessors made pairwise comparisons and each
essay was compared 25 times. The assessors were
asked which essay in this pair is better in terms of
argumentation. This assessment resulted in holistic
scores with a reliability of 0.87, as measured by
scale separation reliability (Verhavert et al., 2018).

3.1.2 Scores on Rubrics
Coertjens et al. (2017) asked 18 assessors to evalu-
ate the same essays using a rubric set designed to
measure 20 aspects of text quality. These were dif-
ferent assessors from those who scored the essays
holistically with CJ. These aspects were grouped
into four main components: structure (6 rubrics),
content (7 rubrics), argumentation (4 rubrics), and
language conventions (3 rubrics). The rubrics, orig-
inally developed and validated by Rijlaarsdam et al.
(1994), were adapted by Coertjens et al. (2017) for
this particular assignment on argumentative writing.
According to Coertjens et al. (2017), the intraclass
correlation coefficient was 0.85 after five different
assessors assessed each essay. For an overview and
description of all rubrics, refer to Appendix A.

3.2 Features
To extract linguistic features from the essays, we
used T-Scan (Maat et al., 2014) because Dascalu
et al. (2017) previously demonstrated that its fea-
tures have strong predictive power for automated
essay scoring. Using the T-Scan API (v0.10), we
extracted 476 document-level features related to
lexical complexity, sentence complexity, referen-
tial cohesion, lexical diversity, lexical semantics,

1The data gathered by Lesterhuis et al. (2022), for exam-
ple, includes a superset of the essays used by Coertjens et al.
(2017), but it does not include any rubric scores.
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and personal style. For details on the T-Scan con-
figuration, see Appendix B.

Since T-Scan does not account for spelling and
grammatical errors, we also used the LanguageTool
package (v2.8.1) in Python to count the number of
language mistakes in each essay. We normalized
these counts by dividing them by the total number
of tokens per essay (see Table 1).

3.3 Models

We trained regression models using the extracted
features to predict scores of essay quality. This
involved training multiple single-target regression
models, with each model predicting either the holis-
tic score or one of the rubric scores.

We experimented with five machine learning
models for the regression tasks: Lasso Regression,
ElasticNet, Random Forest, and XGBoost us-
ing scikit-learn 1.4.0 (Pedregosa et al., 2011), and
LightGBM 4.6.0 (Ke et al., 2017) in Python 3.9.12.
We applied min-max normalization to each input
feature from T-Scan as well as the rubric scores.
Before training the models, we excluded features
from the training set that had a low Pearson corre-
lation with the target. A correlation threshold of
0.12 was chosen based on Lovakov and Agadullina
(2021).

For each individual model, we ran hyperparam-
eter tuning on the training set using a randomized
search strategy with up to 100 iterations. The op-
timal hyperparameters were selected based on the
lowest mean absolute error (MAE) between the
predicted and actual rubric scores across 20 folds.

3.4 Evaluation

To optimize the prediction performance and avoid
overfitting on a small dataset, we performed leave-
one-out cross-validation (LOOCV). This involved
leaving out one essay for evaluation and training a
model on all remaining essays, repeating the pro-
cess for each essay in the dataset. The hyperpa-
rameter tuning with 20-fold cross-validation, as
mentioned before, was conducted on the training
data for each run of LOOCV. Refer to Appendix C
for an overview of the selected hyperparameters.

3.4.1 Metrics
Using the optimal model and hyperparameters for
each rubric, we evaluated the predictions of the
rubric scores with various metrics on all left-out
essays during LOOCV. We used the squared Pear-
son correlation coefficient (R2) between predicted

and actual scores. R2 is a measure of score relia-
bility in classical test theory (Brennan, 2010) and
is often used to measure the reliability of quality
scores estimated from CJ relative to true scores
(Verhavert et al., 2018).

Additionally, we used the quadratic weighted
kappa (QWK) (Cohen, 1968) and the mean ab-
solute error (MAE), two commonly used metrics
in AES research (Ramesh and Sanampudi, 2022).
QWK is a metric based on Cohen’s kappa that
measures agreement between predicted and human-
given scores, penalizing more divergent predictions.
A score of 1 indicates perfect agreement, while -1
indicates perfect disagreement.

3.4.2 Predictive Power
To validate whether the predicted rubric scores
accurately measure the assessed writing quality
with CJ, we evaluated their predictive power for
the holistic scores using linear regression models.
Using the statsmodels package (0.13.2) (Seabold
and Perktold, 2010), we constructed two regression
models measuring the effects of rubric scores on
holistic scores from CJ:

• Regression Model 1 uses the rubric scores
predicted by the model (see Section 3.3) as
covariates and holistic quality scores from CJ
as outcomes.

• Regression Model 2 uses the rubric scores
given by assessors as covariates and holistic
quality scores from CJ as outcomes.

We compared their goodness-of-fit using the
Akaike information criterion (AIC) and Bayesian
information criterion (BIC), as well as the ex-
plained variance (R2) of the holistic scores. In
the context of statistical modeling, R2 measures
the proportion of variance in holistic scores that is
explained by the (predicted) scores on rubrics. As
it can be inflated by adding many covariates, we
adjusted R2 for the number of covariates.

We expected that Model 2, which uses human-
assigned rubric scores, would fit the holistic scores
better than Model 1, which uses predicted rubric
scores. Therefore, we aimed to evaluate how
closely the fit of Model 1 approximates that of
Model 2.

To further investigate any potential biases in the
effects (i.e., coefficients) of the predicted rubric
scores on the holistic scores, we compared the co-
efficients of Model 1 with those of Model 2, along
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with their confidence intervals. We calculated Stu-
dent’s t-tests to evaluate whether the coefficients
are significantly different from zero. We omitted
intercepts for both models to make the coefficients
comparable, and inverted the normalization of all
variables to their original scales.

4 Results

4.1 Predicting Scores on Rubrics

Table 2 shows the performance of the rubric scoring
models evaluated using LOOCV. ElasticNet con-
sistently demonstrated the best performance in pre-
dicting most rubric scores (9/20 rubrics), followed
by XGBoost (5/20 rubrics), Lasso (3/20 rubrics),
RandomForest (2/20 rubrics), and LightGBM (1/20
rubrics). Overall, model performance was moder-
ately effective across all evaluation metrics, which
is expected given the small sample size.

Performance varied notably across the differ-
ent rubrics. Among all rubrics pertaining to es-
say structure, predictions showed the highest reli-
ability (R2) for Construction, Relationships, and
Continuity, and the highest agreement (QWK) with
human scores for Title compared to other rubrics.
This suggests that the linguistic features employed
in the models can capture markers of essay orga-
nization, despite the overall moderate prediction
performance.

Among rubrics pertaining to essay content,
scores on References and Citations were the most
accurately predicted, but generally, the predictions
were only moderate or poor. The scores for Intro-
duction, Persuasion, Reader Focus, Reader Engage-
ment, and Conclusion were comparatively worse.
This suggests that the linguistic features employed
in the models can capture some markers of essay
content, albeit with limited accuracy.

Among rubrics pertaining to argumentation, Sup-
port and Relevance showed the best prediction per-
formance, whereas Indication and Reference Cohe-
sion Relationships were less accurately predicted.
This shows the model’s ability to capture, to a cer-
tain extent, the argumentative writing level related
to how sources were integrated and used to support
claims.

Generally, the rubrics pertaining to language
were poorly predicted. Among these rubrics, the
scores for Style were most accurately predicted,
while predictions for Grammar and Spelling, and
Punctuation were comparatively worse. Hence, the
assessors’ scoring of language conventions differed

from the model predictions.

4.2 Explaining Holistic Scores with
Predictions

After evaluating the predicted scores on rubrics, we
examined how well these scores can explain the
holistic scores obtained through CJ. Table 3 shows
the goodness-of-fit of the two models. As expected,
Model 2 provided a better fit for the holistic scores
than Model 1, as evidenced by smaller AIC and
BIC values. Additionally, Model 2 explained 12%
more of the variance in holistic scores compared to
Model 1, as indicated by the higher R2. This differ-
ence was even more pronounced when considering
the adjusted R2 values. Although the predicted
rubric scores explained the holistic scores reason-
ably well (Model 1), 40% of the variance in holis-
tic scores still remained unaccounted for. In con-
trast, the rubric scores given by assessors (Model 2)
had greater predictive power for the holistic scores.
However, even in Model 2, 28% of the variance
in holistic scores remained unexplained, indicat-
ing a difference in how assessors score essays with
rubrics versus holistically using CJ.

Figure 1 illustrates the biases in the coefficients
of the predicted rubrics on the holistic scores
(Model 1) with respect to the coefficients of the
assessor-assigned rubric scores (Model 2). Overall,
the coefficients for the rubrics in both models were
similar in magnitude and direction, which supports
the validity of the predicted rubric scores. How-
ever, Model 1 exhibited some systematic biases,
as it tends to overshoot the magnitude of the co-
efficients. Specifically, the coefficients for rubrics
pertaining to essay structure showed upward biases,
except for Subtopic. Conversely, the coefficients
for rubrics related to content displayed downward
biases, with the exception of Introduction and Cita-
tions.

The most significant coefficients in Model 2
were Relationships, References, Conclusion, and
Grammar and Spelling. Except for Grammar and
Spelling, these rubrics were all reasonably well ap-
proximated by Model 1, as their coefficients were
similar and their confidence intervals overlapped.
This shows that predicted rubric scores accurately
explained the holistic scores based on the most
important rubrics scored by assessors. However,
of these rubrics, only the coefficients for Relation-
ships, and Grammar and Spelling were significantly
different from zero in Model 1. This can be at-
tributed to the wider confidence intervals of Model
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Aspect Rubric Best Model R2 QWK MAE

Structure Title LightGBM 0.23 0.50 0.85
Structure Construction XGBoost 0.31 0.41 0.80
Structure Layout RandomForest 0.24 0.41 0.91
Structure Subtopic XGBoost 0.25 0.41 0.74
Structure Relationships ElasticNet 0.30 0.46 0.76
Structure Continuity RandomForest 0.34 0.45 0.48
Content Introduction ElasticNet 0.27 0.45 0.54
Content Persuasion ElasticNet 0.31 0.45 0.53
Content References Lasso 0.48 0.60 0.58
Content Citations XGBoost 0.53 0.64 0.54
Content Reader Focus ElasticNet 0.30 0.40 0.39
Content Reader Engagement ElasticNet 0.38 0.42 0.38
Content Conclusion XGBoost 0.28 0.46 0.66
Argumentation Support Lasso 0.51 0.59 0.35
Argumentation Relevance ElasticNet 0.46 0.54 0.36
Argumentation Indication ElasticNet 0.22 0.30 0.59
Argumentation Reference Cohesion Relationships XGBoost 0.28 0.37 0.47
Language Grammar and Spelling Lasso 0.25 0.43 0.48
Language Punctuation ElasticNet 0.27 0.35 0.49
Language Style ElasticNet 0.38 0.45 0.34

Table 2: Evaluation of LOOCV results for predicting scores on rubrics measuring aspects of text quality, with
hyperparameter search conducted for each run.

Reg. Model AIC BIC R2 Adj. R2

1 427.60 483.20 0.60 0.50
2 390.20 445.80 0.72 0.65

Table 3: Comparison of model fit for linear regres-
sion models with holistic scores from CJ as the out-
come, where Regression Model 1 used predicted scores
on rubrics as covariates and Regression Model 2 used
scores on rubrics provided by assessors as covariates.

1 compared to Model 2.
When examining rubrics that were most accu-

rately predicted (see Table 2), it is clear that their
impact on holistic scores (Model 1) closely resem-
bled that of scores given by assessors (Model 2).
This similarity was evident for Relationships, Ref-
erences, and Citations, where Model 1’s coeffi-
cients aligned with those of Model 2, and their
confidence intervals significantly overlapped. Al-
though Support and Relevance were also predicted
more accurately, their coefficients exhibited great
uncertainty, as indicated by wider confidence inter-
vals compared to Model 2, especially for Support.
This indicates a potential lack of validity of the
predicted rubrics related to argumentation.

Conversely, when the rubric was predicted more
inaccurately, their coefficients showed more bias.
This was observed for Layout and Reader Focus, as
their rubric scores were poorly predicted and their
coefficients overestimated. Similarly, the rubrics re-
lated to language were inaccurately predicted when
compared to other rubrics, resulting in coefficients
with large biases. More specifically, the importance
of sound Grammar and Spelling was vastly overes-
timated using the predicted rubric scores, as these
scores are much higher than when rubric scores
were given by teachers. Conversely, the importance
of correct Punctuation and Style was overly neg-
ative when using the predictions compared to the
scores given by teachers. This shows that teachers
score rubrics differently and that these scores con-
tribute less to the holistic scores than when using
predictions.

5 Discussion

The lack of transparency in holistic scores obtained
through CJ limits the practical application of this
assessment method (Steedle and Ferrara, 2016).
Our analysis reveals that rubric scores can be pre-
dicted moderately well in terms of reliability and
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Figure 1: Comparison of regression coefficients of Model 1 and Model 2 for all rubric scores with 95% confidence
intervals, where significance is denoted as * p < 0.05, ** at p < 0.01, and *** at p < 0.001.

agreement with assessor-assigned scores, with the
best predictions for the rubrics relevant to the as-
signment on argumentative writing. However, not
all rubrics can be predicted well, which can be due
to the limited size of the training set.

Furthermore, the predicted rubric scores have
explanatory power for holistic scores derived from
CJ, thus showing potential for an automated ap-
proach to provide more transparency. However, it
is unlikely that the rubric scores can fully explain
the differences in holistic scores from CJ, as even
the assessor-assigned scores do not fully explain
them. This is not surprising, given that holistic
scoring with CJ involves relative assessments while
rubric-based scoring requires absolute assessments.
While both assessment approaches are reliable on
their own, they may yield slightly different results
(Coertjens et al., 2017).

Generally, the relationship between predicted
rubrics and holistic scores is similar to that of
rubric scores given by assessors, which supports
the validity of the predictions. Most importantly,
we find that the validity of the predicted rubric
scores depends on their predictability from linguis-
tic features. The rubrics that demonstrate better
predictability can also explain the holistic scores
with minimal bias. This shows that predicted scores

on assignment-relevant rubrics can explain, in part,
the holistic scores from CJ.

However, there are notable differences between
human scoring and automated scoring (Ben-Simon
and Bennett, 2007). Previously, Ramineni and
Williamson (2018) found that the e-rater AES sys-
tem often overvalues organization while undervalu-
ing content. Our findings generally support this, as
most structure-related rubrics exert an overly pos-
itive influence on holistic scores when predicted
compared to when scored by assessors, whereas
most content-related rubrics show an overly nega-
tive influence when predicted compared to when
assessed by humans.

While certain argumentation-related rubrics can
be predicted comparatively well, their influence
on the holistic scores shows more uncertainty. As
Attali (2007) stated, agreement between human
and automated scores does not directly imply that
the scores are valid. This discrepancy may be at-
tributed to the inherent difficulty in measuring the
quality of argumentation based on linguistic fea-
tures (Deane, 2013a). Hence, more elaborate lin-
guistic features based on argument mining may be
needed for more valid predictions of argumentative-
related rubrics.

Additionally, there is a difference between how
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language-related rubrics are predicted and how they
are assessed. These rubrics prove difficult to pre-
dict based on linguistic features, and their effect
on holistic quality scores is biased, either under-
valued or overvalued. Previously, Ramineni and
Williamson (2018) noted that the e-rater AES sys-
tem severely undervalues grammatical mistakes
for essay scoring. Further analysis is needed to un-
cover the potential causes of this bias. However, for
CJ assessments, language conventions are generally
less important when making pairwise comparisons
of essays (Lesterhuis et al., 2022).

6 Conclusion

To address the lack of transparency of holistic
scores from CJ assessments, we used feature-based
models to predict scores on a set of rubrics that
explain the holistic scores. Based on linguistic fea-
tures extracted with T-Scan, rubric scores of Dutch
essays were predicted with moderate success. How-
ever, we found that the most relevant rubrics were
predicted more reliably compared to other rubrics.
Furthermore, we noted that these predicted scores
on rubrics can explain holistic scores from CJ in a
manner comparable to the assessor-assigned rubric
scores.

While the automated predictions of rubrics of-
fer more transparency regarding the meaning of
holistic scores, they do differ from human assessor
scores in certain respects. For instance, structure-
related rubrics were slightly overvalued, content-
related rubrics were slightly undervalued, and the
effect of argumentation-related rubrics showed
more uncertainty. Additionally, predictions for lan-
guage convention rubrics diverged notably from
assessor-given scores.

Despite some discrepancies in how predicted
rubric scores explain holistic scores compared to
rubrics scored by assessors, they generally aligned
well for the most important rubrics and demon-
strate predictive power. This suggests that predict-
ing scores on rubrics can help explain the holistic
scores obtained with CJ. However, their acceptance
and effectiveness as feedback for students require
future research.

Limitations

Even though the scores given by assessors are reli-
able and valid, the size of the available dataset used
for training is rather limited, which could explain
the moderate prediction performance. We expect

that increasing the dataset would improve predic-
tion performance and, therefore, produce scores on
rubrics that better explain the holistic scores from
CJ. With a larger training set, it would be possible
to determine the best-performing hyperparameters
and models for each rubric for all essays, rather
than per fold as was done in this study. This ap-
proach would enhance the generalizability of the
models’ performance.

Future research could, for example, leverage the
larger ASAP dataset, which contains English es-
says scored on rubrics such as ideas, organization,
style, and conventions, for different writing genres
(Hamner et al., 2012). However, the granularity of
features is higher in this dataset, which would pro-
vide less specific explanations than in the current
study.

In case only a small set of rubric-scored texts is
available, it may be more suitable to extract rubric
scores using language models, which can capture
complex textual features. Large Language Models
(LLMs) have been applied for this purpose through
fine-tuning (Do et al., 2024) or zero-shot prompt-
ing (Lee et al., 2024). However, relying on LLMs
would make it less transparent how the predicted
scores are derived compared to using hand-crafted
linguistic features, as in this study.

To better understand the validity of predicted
scores on rubrics in relation to how they are pre-
dicted, future research could examine the most im-
portant features for making these predictions. This
is important as feature-based approaches for AES
do not capture meaning directly. Previously, it has
been noted that essay length is highly influential
for AES models, and it is advised that its effect
be studied by controlling for it (Chodorow and
Burstein, 2004). Text length is especially influ-
ential for structure, content, and argumentation,
and less so for language (Enright and Quinlan,
2010; Barkaoui and Woodworth, 2023). While
essay length is a valid factor that human assessors
also consider, its disproportionate influence can be
problematic. Moreover, analyzing the importance
of linguistic features in the model’s predictions can
help clarify why language-related rubrics were pre-
dicted with low reliability and validity. This can be
achieved by evaluating whether features extracted
with LanguageTool significantly contributed to the
prediction of language-related rubric scores.

Additionally, interpreting the coefficients of a lin-
ear regression model as effects of rubric scores on
holistic scores requires caution. Rubrics measuring
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aspects of text quality tend to be highly correlated,
which raises the potential for multicollinearity. To
gain a more accurate understanding of how rubric
scores influence the holistic scores, we recommend
employing regularization techniques or incorporat-
ing interaction effects into the model. These ap-
proaches can help mitigate the challenges posed by
correlated predictors and provide clearer insights
into the effects of rubric scores on holistic scores
from CJ. Furthermore, the validity of the predicted
scores on rubrics for explaining holistic scores is
contingent on the assessment context. In second
language (L2) writing, for instance, criteria such
as language accuracy may be weighted more heav-
ily than they were in the L1 context of this study.
Therefore, future research is essential to validate
these findings across different assessment contexts.
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A Rubric Description

Main Compo-
nent

Rubric Description

Structure Title The text has a title that clearly matches the content of the text.
Structure Construction The text contains a clear division into: introduction, argumentation,

and conclusion.
Structure Layout The text is well-organized. There is a clear division into para-

graphs. Paragraphs are separated by: blank lines, indentation, or
starting on a new line.

Structure Subtopic Each paragraph has its own single (sub)topic.
Structure Relationships

between Para-
graphs

There is a clear ’train of thought’ between paragraphs: based on
the text, coherence relationships between paragraphs can be clearly
(easily) identified.

Structure Continuity Information that belongs together is also grouped together in the
text.

Content Introduction In the introduction, the proposition/statement is presented, and
optionally, the writer’s opinion on the proposition is also made
clear.

Content Persuasion It is clear what the writer wants to convince the reader of: a choice
for or against the presented proposition.

Content References The text contains at least two (parts of) references, which are
meaningfully incorporated into the text. For example, they support
the argumentation or are used as an example in the introduction.

Content Citations (quot-
ing from refer-
ences)

The quotes from the references are correctly marked in the text.
Direct quotes (between quotation marks) and paraphrases both
have a source citation.

Content Reader Focus The text is easily understandable for a reader unfamiliar with the
assignment. For example, there is no reference to the writing task
assignment or the writer’s environment.

Content Reader Engage-
ment

The reader is clearly engaged with the text through examples
referring to daily life or common experiences.

Content Conclusion The text contains a clear conclusion that aligns with the rest of the
text and from which the writer’s opinion is evident. It is clear that
this concludes the text.

Argumentation Support The argumentation consists of multiple arguments that support the
writer’s opinion.

Argumentation Relevance The argumentation does not contain too much superfluous infor-
mation, i.e., information that does not contribute to supporting the
writer’s opinion.

Argumentation Indication of Ar-
gumentation

The arguments are clearly recognizable as arguments; e.g., through
the use of constructions like "therefore I believe (do not believe)
that...", "I find/think...", "I (do not) agree with this", etc.

Argumentation Referential and
Coherence Rela-
tions

The referential and coherence relations are clear when implicit, or
explicitly marked. Examples of markers are: therefore, thereby,
thus, because, since, first, second, third, then, etc.

Language Grammar and
Spelling

The text contains no grammatical and/or spelling errors.

Language Punctuation Punctuation marks are applied correctly.
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Language Style The tone and word choice are appropriate for the purpose and
audience of the text.

Table 4: List of rubrics used to assess Dutch essays on argumentative writing. Each rubric was assigned a score
between 1 and 5. For the original Dutch version, see Coertjens et al. (2017).

B T-Scan Configuration

Parameter Value
Overlap Size 50
Frequency Clipping 99.0
MTLD factor size 0.72
Use Alpino parser? yes
Store Alpino output? yes
Use Wopr? yes
One sentence per line? no
Prevalence data Belgium
Word Frequency List subtlex_words.freq
Lemma Frequency List subtlex_lemma.freq
Top Frequency List subtlex_words20000.freq
Compound split method compound-splitter-nl

Table 5: Configuration of T-Scan (Maat et al., 2014) used to extract linguistic features from Dutch essays.
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C Hyperparameters

Rubric Model Optimal Hyperparameters
Title LightGBM boosting_type = gbdt, num_leaves=31, max_depth=-1, learn-

ing_rate=0.1, n_estimators=100, min_child_weight=0.001,
min_child_samples=20

Construction XGBoost colsample_bytree = 0.6, gamma = 0.1, learning_rate = 0.05,
max_depth = 10, min_child_weight = 7, n_estimators = 800,
reg_alpha = 0.5, reg_lambda = 0.5, subsample = 0.4

Layout RandomForest max_depth = None, min_samples_split = 2, n_estimators = 100
Subtopic XGBoost colsample_bytree = 1.0, gamma = 0, learning_rate = 0.01,

max_depth = 20, min_child_weight = 7, n_estimators = 300,
reg_alpha = 0.0, reg_lambda = 0.0, subsample = 0.6

Relationships ElasticNet alpha = 0.01, l1_ratio = 0.3
Continuity RandomForest max_depth = None, min_samples_split = 2, n_estimators = 100
Introduction ElasticNet alpha = 0.01, l1_ratio = 0.3
Persuasion ElasticNet alpha = 0.01, l1_ratio = 0.1
References Lasso alpha = 0.001
Citations XGBoost colsample_bytree = 0.6, gamma = 0.1, learning_rate = 0.05,

max_depth = 10, min_child_weight = 7, n_estimators = 800,
reg_alpha = 0.5, reg_lambda = 0.5, subsample = 0.4

Reader Focus ElasticNet alpha = 0.01, l1_ratio = 0.1
Reader Engage-
ment

ElasticNet alpha = 0.01, l1_ratio = 0.1

Conclusie XGBoost colsample_bytree = 1.0, gamma = 0, learning_rate = 0.01,
max_depth = 20, min_child_weight = 7, n_estimators = 300,
reg_alpha = 0.0, reg_lambda = 0.0, subsample = 0.6

Support Lasso alpha = 0.001
Relevance ElasticNet alpha = 0.01, l1_ratio = 0.1
Indication ElasticNet alpha = 0.01, l1_ratio = 0.1
Reference
Cohesion Rela-
tionships

XGBoost colsample_bytree = 1.0, gamma = 0, learning_rate = 0.01,
max_depth = 20, min_child_weight = 7, n_estimators = 300,
reg_alpha = 0.0, reg_lambda = 0.0, subsample = 0.6

Grammar and
Spelling

Lasso alpha = 0.001

Punctuation ElasticNet alpha = 0.01, l1_ratio = 0.1
Style ElasticNet alpha = 0.01, l1_ratio = 0.1

Table 6: The optimal hyperparameters that were selected for the best-performing model during LOOCV. For
each run of LOOCV, the optimal hyperparameters were selected based on the lowest average MAE, using 20-fold
cross-validation with 100 randomized iterations. For brevity, we only report the most frequently selected optimal
hyperparameters for the best models.
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Abstract

Automated Essay Scoring (AES) plays a cru-
cial role in assessing language learners’ writing
quality, reducing grading workload, and provid-
ing real-time feedback. The lack of annotated
essay datasets inhibits the development of Ara-
bic AES systems. This paper leverages Large
Language Models (LLMs) and Transformer
models to generate synthetic Arabic essays for
AES. We prompt an LLM to generate essays
across the Common European Framework of
Reference (CEFR) proficiency levels and in-
troduce and compare two approaches to error
injection. We create a dataset of 3,040 anno-
tated essays with errors injected using our two
methods. Additionally, we develop a BERT-
based Arabic AES system calibrated to CEFR
levels. Our experimental results demonstrate
the effectiveness of our synthetic dataset in im-
proving Arabic AES performance. We make
our code and data publicly available.1

1 Introduction

Automated Essay Scoring (AES) is a technology
that automates the evaluation and scoring of essays
to assess language learners’ writing quality while
eliminating the need for human intervention (Sher-
mis and Burstein, 2003). AES has gained great
interest due to its significant benefits in the field of
education (Lagakis and Demetriadis, 2021; Susanti
et al., 2023). AES systems help teachers evaluate
many essays with consistent scoring and reduced
workload. On the other hand, AES helps students
improve their writing quality through rapid real-
time scoring and feedback (Hahn et al., 2021).

Unlike for English, it is difficult to develop ro-
bust and scalable AES systems for Modern Stan-
dard Arabic (MSA), primarily due to the lack of es-
say datasets necessary for building effective Arabic
AES (Lim et al., 2021; Elhaddadi et al., 2024). This

1https://github.com/mbzuai-nlp/
arabic-aes-bea25

paper presents a framework to tackle the issue of
data scarcity and quality by utilizing Transformers
and Large Language Models (LLMs) to generate
and build a synthetic dataset.

Our approach begins with prompting GPT-4o to
generate a variety of Arabic essays covering multi-
ple topics and different writing proficiency levels
as defined by the Common European Framework
of Reference (CEFR) (Council of Europe, 2001).
Subsequently, we use a controlled error injection
model to introduce errors into the correct Arabic
essays, ensuring that erroneous essays reflect the
type of errors that are commonly made by learners
of Arabic in real-world scenarios. Our error injec-
tion approach consists of two steps: (i) Error Type
Prediction, where a fine-tuned CAMeLBERT MSA
model (Inoue et al., 2021) classifies the most likely
error type for each word, and (ii) Error Realization,
where we apply a bigram MLE model to deter-
mine the most probable transformation for each
predicted error type. Our framework enables the
generation of realistic human-like essays, enhanc-
ing data augmentation for Arabic AES systems.

Our main contributions are as follows:
• Proposing a framework based on LLMs and

Transformers for augmenting Arabic essays
that accurately reflect human writing patterns.

• Creating a synthetic Arabic AES dataset with
3,040 essays annotated with CEFR profi-
ciency levels.

• Developing an Arabic AES system using a
BERT-based model, enabling accurate and
scalable evaluation of Arabic essays based
on CEFR standards.

The rest of the paper is organised as follows:
§2 reviews related work on AES, §3 describes
the dataset, and §4 outlines our data augmentation
approach. §5 details the error injection methods,
followed by an evaluation in §6. We discuss our
results in §7 and §8 presents the conclusion and
future work.
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2 Related Work

AES has been investigated extensively, particularly
in English (Lim et al., 2021; Ramesh and Sanam-
pudi, 2022), where multiple tools have been intro-
duced such as IntelliMetric (Elliott et al., 2003),
e-rater (Attali and Burstein, 2006), Grammarly,2

Write and Improve3 (Yannakoudakis et al., 2018),
and others. The development of English AES sys-
tems has been enabled by large scale annotated
datasets such as the First Cambridge English (FCE)
dataset4 (Yannakoudakis et al., 2011), Automated
Student Assessment Prize (ASAP) dataset,5 the
TOEFL11 corpus (Blanchard, 2013), and the ICLE
(International Corpus of Learner English) (Granger,
2003). These datasets contain thousands of student
essays with proficiency level grades, often along
multiple dimensions.

In contrast, Arabic AES research has received
less attention. Some studies have applied fea-
ture engineering and machine learning to develop
models (Alghamdi et al., 2014; Al-Shalabi, 2016;
Alobed et al., 2021; Gaheen et al., 2021), but
they partially address key challenges, especially
the scarcity of large, publicly available annotated
datasets for improving Arabic writing quality.

Ghazawi and Simpson (2024) introduced AR-
AES, a benchmark of 2,046 undergraduate essays
from three university faculties, annotated by two
educators per faculty using rubrics to assess aca-
demic performance. In contrast, our work focuses
on writing proficiency, using the CEFR standard.

Bashendy et al. (2024) presented QAES, the first
publicly available trait specific annotations for Ara-
bic AES. QAES extends the Qatari Corpus of Argu-
mentative Writing (QCAW) (Ahmed et al., 2024),
which consists of 195 Arabic argumentative es-
says. They implemented multi-layered annotation
of traits such as coherence, organization, grammar,
and others. Despite its comprehensive annotation,
it is small in size and limited to two prompts. While
QAES multi-traits scores are publicly available, the
QCAW holistic score is not.

Habash and Palfreyman (2022) presented the
Zayed University Arabic-English Bilingual Under-
graduate Corpus (ZAEBUC). This corpus com-
prises non-parallel essays in Arabic and English re-
lated to three prompts collected from first-year uni-

2https://app.grammarly.com/
3https://writeandimprove.com/
4https://ilexir.co.uk/datasets/index.html
5https://www.kaggle.com/c/asap-aes

versity students with differing writing proficiency.
ZAEBUC includes 216 annotated Arabic essays
featuring manual annotations for syntactic and mor-
phological characteristics and a CEFR-based pro-
ficiency assessment. Again, ZAEBUC is small in
size and limited to three prompts.

Researchers have explored data augmentation
methods like sampling, noise injection, and para-
phrasing to address data scarcity and quality (Li
et al., 2022). The recent development of LLMs has
paved the way for researchers to explore promising
new data synthesis solutions (Wang et al., 2024a;
Long et al., 2024). Transformers and LLMs can
closely mirror real-world distributions while intro-
ducing valuable variations across multiple tasks
and domains (Wang et al., 2024b).

GPT models have shown strong capabili-
ties in generating synthetic essays for English
AES (Ramesh and Sanampudi, 2022). LLMs and
Transformers have also generalized well in Arabic
NLP tasks, including Question Answering (Samuel
et al., 2024), Code Switching (Alharbi et al., 2024),
NER (Sabty et al., 2021), Grammatical Error Cor-
rection (Alhafni and Habash, 2025; Solyman et al.,
2023), and Sentiment Analysis (Refai et al., 2023).
However, to the best of our knowledge no research
has utilized such models to generate Arabic essays
across CEFR writing proficiency levels.

3 Data: The ZAEBUC Corpus

For all our experiments, we use the ZAEBUC cor-
pus (Habash and Palfreyman, 2022). ZAEBUC
comprises essays written by native Arabic speakers,
which were manually corrected and annotated for
writing proficiency using the CEFR (Council of Eu-
rope, 2001) rubrics and scale. Each essay was anno-
tated by three CEFR-proficient bilingual speakers.
Habash and Palfreyman (2022), assigned a holistic
CEFR level to each essay by converting the three
CEFR ratings into numerical scores (ranging from
1 to 6) and then taking the rounded average. The
essays in the corpus were limited to three prompt
choices on Social Media, Tolerance, and Devel-
opment; see Table 1. We use the splits created by
Alhafni et al. (2023). Table 2 shows the CEFR level
distribution of the ZAEBUC corpus based on holis-
tic CEFR scores. The ZAEBUC corpus is limited
in size and skewed toward B1–B2 levels, with no
A1 or C2 essays. This common imbalance in Ara-
bic learner data motivated our synthetic approach
to create a more balanced CEFR distribution.
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What do you think are the most important developments in
the UAE at the moment?

Table 1: The prompts given to the essay writers in the
ZAEBUC corpus (Habash and Palfreyman, 2022).

CEFR Level Count Percentage

A1 0 0%
A2 7 3%
B1 110 51%
B2 80 37%
C1 11 5%
C2 0 0%

Unassessable 6 3%

Total 214 100%

Table 2: ZAEBUC corpus CEFR level distributions.

4 Synthetic Data Augmentation

We propose a synthetic data augmentation ap-
proach leveraging the ZAEBUC dataset to generate
synthetic essays that align with CEFR rubrics and
have features similar to human text. The pipeline
utilizes three phases: Building Essay Prompts, Fea-
ture Profiling, and finally Data Augmentation.

4.1 Building Essay Prompts

We began by compiling a diverse set of essay
prompts across various categories and CEFR lev-
els. While not directly drawn from established
frameworks, our prompts were inspired by themes
common in language assessments, including place-
ment tests and academic writing. We aimed to
cover familiar and level-appropriate topics, such as
social issues, education, and personal experiences,
while ensuring balance across the CEFR bands.
We considered three proficiency levels: Beginner
(A1–A2), Intermediate (B1–B2), and Advanced
(C1–C2). General themes, such as hobbies, suited
all levels, while more complex topics, including
politics, Technology, and Education, were reserved
for advanced learners.

Topic B I A

Culture and Traditions 1 3 2
Daily Life 2 2 2
Education 3 6 8
Environment 2 2 3
Future 1 2 2
History and Culture 2 2 2
Hobbies 3 2 2
Imaginary 5 2 2
Life/Time Management 4 4 2
Personal Experiences 7 2 2
Relations 4 2 2
School Life 4 2 2
Sport and Health 2 3 1
Technology and Media 2 8 6
Travel and Experience 1 2 1
Politics and Government 2 2 7
Social Issues 2 7 6

Total 47 53 52

Table 3: Count of Arabic text prompts by level and
topic. B: Beginner level (A1, A2), I: Intermediate level
(B1, B2), A: Advanced level (C1, C2).

Using LLMs like GPT-4o6, Gemini7, and Copi-
lot8, we generated 100 prompts, followed by a man-
ual review to remove redundancies and ensure both
relevance for Arabic essay writing and balanced
proficiency coverage. The final collection consists
of 152 balanced and diverse prompts. Table 3
presents the selected categories and the distribution
of the prompts across levels, while Table 4 provides
example prompts for the Hobbies category.

4.2 Feature Profiling

We construct linguistic profiles for each CEFR level
using the ZAEBUC corpus. Each profile contains
various levels of linguistic information. Represent-
ing different lexical and syntactic features, we use
the number of words/sentences (Nw,Ns), the num-
ber of tokens/vocabulary (Nv), words/sentences
lengths (Lw,Ls), and sentence complexity mea-
sured by syntactic tree depth (Ds).

We define the lexical diversity (Type-Token Ra-
tio, TTR) as:

TTR =
Unique Tokens
Total Tokens

(1)

6https://openai.com/index/hello-gpt-4o/
7https://gemini.google.com/app
8https://copilot.microsoft.com/
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Level Arabic Prompt English Prompt

Beginner ? �éÊ 	� 	®ÖÏ @ ½�JK
 @ñë ù
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	̄ I.
	«Q�K Éë • • Do you wish to learn a new hobby? What is it and why does

it interest you?
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ñ�K 	­J
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B@ ���̄ A 	K you are interested in it and how you believe it will benefit you.

Table 4: Examples of prompts related to the topic of Hobbies and classified into one of three different levels.

Similarly, we calculate the sentence complexity by:

Cs =

∑N
i=1Di

N
(2)

where Di is the syntactic depth of sentence i and
N is the total number of sentences.

For morphological features, we use the ZAE-
BUC morphological annotations: the most frequent
POS tags, such as nouns, verbs, adjectives, etc.

We aggregate all extracted features across the es-
says to get a quantitative representation at different
writing CEFR levels, which serves as a reference
for later stages.

4.3 Zero-shot Data Augmentation

Effective LLM prompt engineering has become
increasingly important, as the model’s output varies
based on the prompt, provided instructions, and
prompt language. Previous studies in Arabic NLP
have shown that using English as the instruction
language for input prompts can improve output
quality (Kmainasi et al., 2024; Koto et al., 2024).

In our approach, we experiment with various
prompts for zero-shot data augmentation to iden-
tify those that produce human-like text while ad-
hering to guideline instructions. We use GPT-4o as
our generation model due to its affordability and
larger token capacity for both input and output. The
GPT prompts include (a) the target CEFR level, (b)
CEFR guidelines and instructions, (c) the linguistic
profile for the targeted CEFR level to control the
prompt output, and (d) the topic prompt or ques-
tion from the previously mentioned topic prompts
dataset. For these missing levels (A1 and C2), in-
stead of injecting a pre-defined profile, GPT-4o was
directly prompted to act as an assistant and gener-

ate data based on the general standards and rubrics
of the CEFR.

To check the quality of the generated essays and
whether they follow the prompt instructions, we
build a linguistic feature profile (vector) for each
augmented essay. We then assess the alignment
between the generated essays and the reference
CEFR-level profiles by computing their feature vec-
tors’ cosine similarity as in equation 3. Specifically,
given two real-valued feature vectors Pi (the CEFR
reference profile) and Qi(the generated essay), the
cosine similarity is calculated as:

cos(θ) =

∑
i PiQi√∑

i P
2
i ·
√∑

iQ
2
i

(3)

This metric ensures that the synthetic data
closely aligns with real human essay patterns.
Based on the computed similarity score, we assign
a predicted CEFR level to each essay.

Later, we calculate the alignment between the
predicted CEFR level and the target level speci-
fied in the GPT-4o prompt (ground truth) using the
following agreement formula:

Agreement =
∑n

i=1(ŷi = yi)

n
(4)

where ŷi is the predicted level and yi is the ground
truth. This process evaluates how well GPT-4o suc-
ceeded in aligning the generated content with the
intended proficiency level, serving as a measure of
agreement rather than a prediction from an external
model.

We conducted multiple rounds of prompt engi-
neering refinements to improve the quality of the
generated Arabic essays and ensure alignment with
CEFR levels.
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CEFR Level Count Percentage

A1 470 15.5%
A2 470 15.5%
B1 530 17.4%
B2 530 17.4%
C1 520 17.1%
C2 520 17.1%

Total 3,040 100%

Table 5: The generated corpus CEFR level distributions.

First, we found that straightforward prompts
without explicit controlled linguistic instructions
and explanations resulted in incoherent essays, in-
cluding irrelevant topics and English text, achiev-
ing only 20.5% matching agreement with linguistic
feature profiles. In a subsequent round, we intro-
duced detailed definitions of linguistic features and
restricted outputs to Arabic-only text, which im-
proved agreement to 26%. However, the model
still occasionally produced incomplete essays and
injected text from the prompt into the essay.

The most effective prompt structure format is
illustrated in Figure 1. We separated system-level
control instructions from user-defined parameters,
thereby providing clearer guidance for structured
and proficiency-aligned text generation. This re-
finement increased agreement to 27.5%, demon-
strating that precisely controlled instructions en-
hance LLM performance in structured writing
tasks.

Ultimately, we generated 3,040 Arabic essays
covering all CEFR levels and various topics, where
each prompt was used to create ten essays. This ef-
fort was intentionally designed to address the imbal-
anced CEFR distribution in the original ZAEBUC
corpus, where B-level essays were overrepresented.
By constructing a more balanced synthetic dataset,
we aimed to enhance model performance across
the full proficiency spectrum. The structured and
controlled prompt design also improved alignment
with learner writing styles while providing a con-
sistent framework for generating realistic Arabic
essays. Table 5 presents the distribution of gener-
ated essays across different CEFR levels. The full
dataset statistics are provided in Appendix A.1.

5 Error Injection

Human-generated text naturally contains some
grammatical errors and linguistic infelicities. In

Figure 1: GPT-4o prompts messages that have been
used to generate Arabic essays

order to create human-like essays, we need to add
similar kinds of errors to the synthetic essays that
reflect the level of writing attainment. In this phase,
we prompt GPT-4o to inject errors into the pre-
viously generated essays while maintaining their
aligned CEFR levels by utilizing error profiling.

5.1 Error Profiling

Error Distribution Profiles To model the distri-
bution of errors to inject into the synthetic essays,
we again leverage the ZAEBUC corpus, which con-
tains the erroneous essays aligned with the manu-
ally corrected ones. We followed the same method-
ology we used to construct the linguistic feature
profiles for each CEFR level to develop error distri-
bution profiles aligned with CEFR levels. The error
profile captures and reflects the authentic distribu-
tion patterns observed in human writing at different
CEFR levels.

Developing an Error Instruction Repository
To prompt GPT-4o to generate essays containing
errors we applied the Grammatical Error Detection
(GED) model proposed by (Alhafni et al., 2023) to
the ZAEBUC corpus to annotate errors using 13
error tags and to obtain error distributions for each
CEFR level. We created the repository using the
error tags, where we also added a formal definition
of what those tags describe in terms of linguistic er-
rors. In addition, we expanded the error taxonomy
by splitting it into finer-grained classes. Each er-
ror instruction is followed by an example showing
the correct word and the erroneous version. The
explanation was based on the extended ALC taxon-
omy (Alfaifi et al., 2013), which was refined later
and introduced as ARETA (Belkebir and Habash,
2021). Appendix C presents examples of the error
types. Figure 2 shows some examples from our
error instruction repository.

5.2 GPT-Based Error Injection

We prompted GPT-4o to inject errors into the syn-
thetically generated essays based on the error distri-
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Figure 2: An example of orthographical error instruc-
tions from the developed errors instructions repository

bution profiles while maintaining the CEFR level.
The model processed one essay at a time in a zero-
shot setting, except that we included the definition
and explanation of the error tags. For example,
M indicates a morphological error, while Merge
targets two mistakenly split tokens that need to be
merged, and so on.

After conducting multiple experiments, we ob-
served the following issues: (i) The model strug-
gled to follow the predefined error distribution per-
haps due to the complexity of the prompts. (ii) The
model was confused by certain error tags, particu-
larly Split and Merge. These errors were mainly
ignored in the injected text. (iii) We calculated the
cosine similarity between the main error profile and
the injected essays’ error distributions as shown in
Equation 3. When we injected all errors at once,
the similarity agreements did not exceed 20%; how-
ever, when we reduced the number of error tags
per essay the agreements significantly improved,
reaching 86%.

Therefore we implemented a method where each
error type was injected separately. This required
multiple iterations over the same essay, correspond-
ing to the number of error tags shown in the error
distribution profile for each CEFR level. Figure
3 shows an example of a GPT-4o prompt for er-
ror injection. Some error types, especially ortho-
graphic errors, are more frequent among Arabic
writers than others. The prompt was intentionally
designed through prompt engineering. The ‘helpful
assistant’ component establishes a cooperative per-
sona for the LLM, while the subsequent instruction
to ‘inject erroneous tokens’ explicitly guide GPT-
4o towards the specific task of error introduction.
This approach ensures that GPT-4o is not making
random edits but is rather following predefined in-
structions to create targeted errors, aligning with
the overall goal of generating realistic synthetic
data.

Figure 3: Sample GPT-4o error injection prompt

Figure 4: Error injection based on average error count

To reflect this, we randomly select weighted er-
ror instructions based on the average frequency of
each error type. Figure 4 shows the pseudocode
for the selection process. The full pseudocode is in
Appendix B.

5.3 Controlled Error Injection

We introduce a controlled method for injecting er-
rors into clean text, ensuring that the resulting erro-
neous sentences follow the empirical error distribu-
tions observed at each CEFR level. More formally,
given an input sentence (X) and its CEFR level
(L), we introduce errors in two steps: Error Type
Prediction and Error Realization.

Error Type Prediction We estimate the proba-
bility of an error type occurring at a given word,
i.e., P (error_type|word). To do so, we leverage
ARETA in a reverse annotation process where we
process correct–erroneous sentence pairs, tagging
each correct word with its corresponding error type.
Using this annotated data, we train a token-level
BERT classifier to predict the most likely error type
for each word in a given correct sentence. We fine-
tune CAMeLBERT MSA (Inoue et al., 2021) to
build our classifier.

Error Realization To determine how a word
should be corrupted, we first align correct–
erroneous sentence pairs using the algorithm
proposed by Alhafni et al. (2023). For
each aligned pair, we extract edit transfor-
mations that capture the operations required
to convert a correct word into its erroneous
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counterpart. Using this data, we estimate
P (transformation|error_type) with a bigram
Maximum Likelihood Estimation (MLE) lookup
model: count(transformation, error_type) /
count(error_type). During inference, we apply
the BERT classifier to predict error types for each
word in a sentence. We then filter these predictions,
retaining only error types relevant to the sentence’s
CEFR level. Finally, the MLE model selects the
most probable corruption for a given error type. A
complete example of a B1–level essay generated
by the proposed model is in Figure 5.

6 Experimental Setup

This study focuses on introducing a data augmen-
tation framework and synthetic Arabic essay cor-
pus, rather than proposing a new AES model. We
use a BERT-based model trained on the original
ZAEBUC dataset as the reference baseline, evalu-
ating how different augmentation strategies (e.g.,
GPT-4o generation, BERT-based error injection)
improve performance relative to this setup.

6.1 Data and Metrics

We use the ZAEBUC dataset for all the experi-
ments, following the splits created by Alhafni et al.
(2023): 70% Train, 15% Dev, and 15% Test.

Our primary evaluation metric is Quadratic
Weighted Kappa (QWK) (Cohen, 1968), the most
widely used metric in AES research (Ke and Ng,
2019). We also report accuracy, macro precision
(P), recall (R), and F1 scores. Model predictions are
evaluated in two settings settings: average-refence
and multi-reference. The average-reference setting
uses the rounded average of the three scores as the
gold label, while the multi-reference considers each
of the three human-assigned labels as a valid refer-
ence during evaluation, following a more tolerant
evaluation strategy (§3).

6.2 Model

We treat the task of AES as a text classification
problem. We fine-tune CAMeLBERT MSA (Inoue
et al., 2021) on the training split of ZAEBUC. The
models were trained by using the average CEFR
gold labels. During training, we ignore the essays
that are labeled as Unassessable, but we penalize
the models for missing them in the evaluation. We
fine-tune the models for 5 epochs, with a maximum
sequence length of 512, a learning rate of 5e-5, and
a batch size of 32.

6.3 Results

Our results are presented in Table 6. Our baseline
system, only trained on the ZAEBUC training set,
indicates room for improvement, with the F1 at
24.50% and QWK at 22.44%. We then switched
between different datasets to measure the impact
of data augmentation on the model.

Impact of Synthetic Data We tested data aug-
mentation by adding 3,040 corrected GPT-4o-
generated essays, which lowered QWK but in-
creased F1. Notably, the multi-reference setting
saw significant gains, with QWK at 96.00% and F1
at 92.32%. This pattern stems from the flexibility
of multi-reference evaluation, which treats all three
human-assigned CEFR labels as valid references.
This accommodates natural scoring variations and
increases the chance that model predictions, es-
pecially on synthetic data, align with at least one
reference label, boosting QWK and F1 scores for
both GPT-generated and error-injected essays.

Comparison of Error Injection Methods As
the initial synthetic essays were error-free, we
further refined the model by adding essays with
human-like errors. We compared two methods
from §5: (1) GPT-based error injection (with and
without instruction examples) and (2) the con-
trolled BERT-based method.

The results demonstrate that the controlled error
model improves performance in all metrics, par-
ticularly in the average reference setting, which
achieved 27.87 % and 38.02 for QWK and F1, re-
spectively. This result aligns with expectations,
as the BERT-injected errors closely follow CEFR-
based error distributions, producing errors that re-
alistically reflect learner writing and better match
the average of human ratings.

GPT-based error injection performed best in the
multi-reference setting, with one-shot examples
reaching 96.47% QWK and zero-shot boosting F1
to 95.12%. While less aligned with CEFR profiles,
GPT errors benefit from fluency and variability, in-
creasing the chance of matching at least one human
reference in this flexible evaluation.

7 Discussion

This study demonstrated the effectiveness of syn-
thetic data and controlled error injection in enhanc-
ing Arabic AES, providing key insights into metric
interpretation, data expansion, and methodological
choices.
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 Level  B1  Topic  Hobbies 
 Prompt تھمك؟  ولماذا  ھي  ما  جدیدة؟  ھوایة  تعلم  في  ترغب  ھل  

 Do you wish to learn a new hobby? What is it and why does it interest you? 

 Correct Essay 
  الرسم كمھارة جدیدة.  تعلم  في  أفكر  الحالي،  في الوقت  حیاتنا.  في  ومفیدة  ھوایة جدیدة یمكن أن یكون تجربة مثیرة  تعلم

  نفسي أركز  أجد  أرسم،  عندما  والصبر.  یساعد في تحسین التركیز  أیضًا  ولكنھ  وسیلة للتعبیر عن النفس،  فقط  الرسم لیس
  .  على تحسین مھارات الملاحظة لدي  یساعدني  مما  الصغیرة،  على التفاصیل

  تكون الكلمات غیر كافیة للتعبیر عما  أحیاناً،  بصریة.  بطریقة  وأفكاري  الفرصة للتعبیر عن مشاعري  یعطیني  الرسم
  بعد یوم طویل من  للاسترخاء  تعلم الرسم یمكن أن یكون وسیلة رائعة  ذلك،  إلى  بالإضافة  الفن.  دور  یأتي  نشعر بھ، وھنا

  ومریحة.  یكون تجربة مھدئة  أن  إلى قطعة فنیة یمكن  وتحویلھا  أمام لوحة بیضاء  الجلوس  الدراسة.  العمل أو

  فنیة،  ورش عمل أو مجموعات  إلى  الانضمام  یمكنني  الآخرین.  مع  للتفاعل  جدیدة  أبواباً  لي  یفتح  أن  الرسم یمكن  أیضًا،
  وتعلم  جدیدة  اجتماعیة  في بناء شبكة  یساعدني  أن  یمكن  ھذا  الاھتمام.  نفس  یشاركونني  أشخاص  حیث یمكنني مقابلة

  الآخرین.  من  جدیدة  تقنیات

  تحدٍ  إنھ  الاجتماعي.  والتفاعل  الذات،  تحسین  الفني،  یجمع بین التعبیر  لأنھ  تعلم الرسم كھوایة جدیدة یھمني  عام،  بشكل
  الھوایة.  لاكتشاف ما یمكنني تحقیقھ من خلال ھذه  متحمس  وأنا  أواجھھ،  أن  جدید أود

 Erroneous Essay 
  الرسم كمھارة  تعلو  في  أفك ر  الحالي ،  في الوقت  حیاتنا .  في  ومفیده  ھوایة جدیدة یمكن أن یكون تجربة مثیرة  ت علم
  اجد  ارس ,  عندما  و الصبر .  یساعد في تحسین التركیز  ایضا  ولكنة  ،  وسیلة للتعبیر عن النفس  بس  الرسم لیس  ,  جدیدة

  .  على تحسین مھارات الملاحظة لدي  یساعدن  مما  الصغیره ،  نفسي أركز على التفاصیل

  تكون الكلمات غیر كافیة للتعبیر عما  احیانا ،  بصریة .  بطریقھ  و أفكاري  الفرصة للتعبیر عن مشاعري  یعطینى  الرسم
  بعد یوم طویل  للإستر خاء  تعلم الرسم یمكن أن تكون وسیلة رائعة  ذلاك ،  إلى  بالاضافة  لفن .  دور ا  یاتي  نشعر بھ  وھنا

  مرتحة .  تكون تجربة مھدئة و  ان  الى قطعة فنیة یمكن  و تحویلھا  أمام لوحة بیضاء  جلوس  الدراسة  من العمل أو

  فنیة ،  ورش عمل أو مجموعات  الى  إلانضمام  یمكنني  الآخرین .  مع  لتفاعل  جدید  ابوابا  ي  بیفتح  ان  الرسم یمكن  أیضا ،
  و تعلم  جدیدة  إجتماعیة  في بناء شبكة  یساعدنى  أن  بمكن  ھذا  الاھتمام .  نفس  یشاركیننی  اشخاص  حیث یمكنني مقابلة

  الآخرین  من  جدیده  تقنیات

  تحد  انھ  الاجتماعي ,  والتفاعل  الذات ،  تحسین  الفني ،  یجمع بین التعبیر  لانھ  تعلم الرسم كھوایة جدیدة یھمني  عام ،  بشكل
  الھوایة .  لاكتشاف ما یمكنني تحقیقھ من خلال ھذه  متحم  وأنا  أواجھھ ،  ان  جدید أود

Figure 5: An Example of a B1 Arabic Essay generated by GPT-4o using the Hobbies prompt and the same essay
after injecting errors by the controlled BERT-based model.

First, we emphasize that QWK offers a more
robust metric than accuracy for evaluating AES
systems, particularly under imbalanced class dis-
tributions. Unlike accuracy, which is biased by
majority classes, QWK penalizes errors by their
ordinal distance from the correct label. As Table 6
shows, even modest QWK improvements indicate
meaningful advancements in differentiating CEFR
levels, a distinction especially relevant given the
skewed ZAEBUC dataset.

The significant gains observed in the multi-
reference setting with generated GPT-4o essays
stem from its flexibility. This evaluation approach
treats all three human-assigned CEFR labels as
valid references, accommodating natural scoring
variations and increasing the chance that model

predictions align with at least one reference label.
Our analysis revealed that while GPT-4o is pow-

erful for generating diverse content, it struggles to
precisely follow the nuanced distribution and spe-
cific linguistic features, including error patterns, ob-
served in the manually annotated ZAEBUC dataset.
In the GPT-based error injection approach, error
type selection is guided by average error counts
from the ZAEBUC corpus, but error realization
depends on GPT-4o’s interpretation of the prompt,
making it less predictable. This inherent challenge
in mimicking human-like linguistic and error distri-
butions through zero-shot generation directly con-
tributed to the observed lower agreement rate.

In contrast, the controlled method employs a
BERT-based classifier for error prediction and ap-
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Average Reference Multi-Reference
Train Data QWK Acc F1 P R QWK Acc F1 P R

ZAEBUC (baseline) 22.44 57.58 24.50 23.33 26.76 61.06 84.85 43.70 42.50 45.31
ZAEBUC + GPT essays 14.92 60.61 26.43 25.55 27.45 96.00 96.97 92.32 98.04 88.89
ZAEBUC + BERT errors 27.87 57.58 38.02 35.86 44.93 82.70 87.88 71.66 70.83 74.38
ZAEBUC + GPT errors_1 17.14 57.58 25.64 25.18 26.27 96.47 96.97 94.16 97.92 91.67
ZAEBUC + GPT errors_0 20.84 57.58 32.76 31.53 46.08 93.79 93.94 95.12 96.49 94.44

Table 6: Performance comparison of different training datasets. GPT essays are the original correct essays generated
from GPT-4o, BERT errors are the erroneous essays using the controlled injection BERT model, GPT errors_1 are
the erroneous essays using GPT-4o with one-shot error example, while GPT errors_0 with Zero-shot settings.

plies transformations using bigram-MLE. This sys-
tematic approach resulted in a more robust replica-
tion of empirically observed error patterns, leading
to its superior performance in the average-reference
setting. This is expected, as BERT-injected errors
more closely resemble learner writing and align
more closely with average human ratings.

Overall, our findings highlight a trade-off be-
tween error alignment and fluency in data aug-
mentation. Controlled error injection excels in the
average-reference setting due to its closer align-
ment with learner errors, while GPT-based augmen-
tation benefits from multi-reference flexibility but
less reliably replicates authentic errors. The con-
trolled BERT-based method thus serves as a key
component of our pipeline, effectively addressing
the limitations of direct GPT error injection.

Qualitative Analysis The qualitative analysis of
the generation process revealed various biases in
the GPT-4o outputs, including cultural, gender, and
ideological biases. For instance, the essays fre-
quently referenced traditional Arabic themes, re-
inforced stereotypical gender roles, and reflected
culturally narrow assumptions. A clear example of
religious bias is that �éªÒm.Ì'@ ‘Friday’ was selected
as the favorite day in all 20 generated essays. Ad-
ditionally, there was a noticeable tendency to use
masculine forms throughout the texts. Such biases
may unintentionally disadvantage students whose
writing reflects different experiences, perspectives,
or identities. Examples of these biases, along with
their frequencies, are provided in Appendix A.2.
We also observed a lack of diversity among the ten
essays generated per prompt, with GPT-4o often
repeating similar lexical and structural patterns.

8 Conclusions and Future Work

This paper presents a hybrid framework for Ara-
bic AES, using LLMs and transformers to tackle

data scarcity by generating synthetic essays that
partly replicate Arabic learner writing. Building on
the ZAEBUC corpus, we developed CEFR-aligned
linguistic and error profiles and used GPT-4o to pro-
duce 3,040 essays across 152 prompts. However,
GPT-4o’s performance relies heavily on prompt en-
gineering, achieving only 27.5% alignment with
our reference profiles.

To introduce errors, we compare our two meth-
ods: (1) GPT-4o prompted multi-step error injec-
tion, and (2) our controlled method fine-tuning the
CAMeLBERT MSA model to inject errors propor-
tionally to their profiled occurrence.

Evaluated with a fine-tuned BERT classifier, our
hybrid framework, combining GPT-generated data
with controlled error injection, outperformed the
baseline (QWK: 27.87%, F1: 38.02% ), offering
more reliable and interpretable results. These find-
ings demonstrate the effectiveness of controlled
error injection in capturing learner error distribu-
tions across CEFR levels.

For future work, we will prioritize integrating a
human evaluation into our framework. Human an-
notators will assess the fluency and naturalness of
synthetic essays, as well as the realism of injected
errors, ensuring that they reflect typical learner pat-
terns at specific CEFR levels.

To improve generalizability, we also plan to ex-
pand the diversity of prompts beyond predefined
topics and incorporate a wider set of writing traits,
including coherence, logical flow, and topic rele-
vance, beyond syntactic and lexical features.

We also intend to enhance CEFR-level mod-
elling by incorporating more manually annotated
essays. This will help capture nuanced linguistic
variations across levels and increase the robustness
of our dataset. Lastly, we aim to deploy the AES
system as an interactive tool to provide users with
instant feedback on errors and proficiency levels.
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Limitations

Despite the effectiveness of our hybrid Arabic AES
framework, we note several limitations related to
the quality of generated Arabic essays, error injec-
tion accuracy, and the generalization of the AES
model. The lack of A1 and C2 essays in ZAEBUC
means that there is no gold reference data for these
levels, which may impact both linguistic and error
profiles, affecting the accuracy of GPT-generated
essays. Furthermore, different biases are present in
both the ZAEBUC dataset and GPT-4o outputs as
discussed in (§7)

In addition, due to the lack of comprehensive
gold data, GPT struggles to fully replicate real
learner writing styles, achieving only 27.5% agree-
ment with linguistic feature profiles.

Another limitation is the model’s ability to gen-
eralize across various domains and question types.
The AES system may struggle with broader writ-
ing tasks and alternative prompts since the dataset
and augmentation methods focus on predefined
prompts. Relying solely on CEFR as a holistic
scoring method limits interpretability. Enhancing
the dataset with multi-trait annotations, such as co-
herence, argumentation, and organization, could
improve scoring accuracy and feedback quality.
Moreover, better-controlled GPT prompting could
refine the quality and diversity of generated essays,
reducing biases and improving alignment with real
learner writing patterns.

Due to resource constraints, human evaluation
was not feasible in this study; however, we plan to
engage CEFR-trained annotators in the future.

Ethical Considerations

While Arabic AES systems provide significant sup-
port in assessing Arabic learners’ writing profi-
ciency, it is essential to highlight the ethical im-
plications of their use. Automatic assessment and
scoring may lead to misjudgments that could dis-
tress learners and students, especially if their work
is incorrectly evaluated. AES tools should serve as
an educational assistive technology, complement-
ing the teacher’s judgment, not replacing it in edu-
cational settings.
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A GPT-4o Generated Essays

A.1 Statistics

CEFR #Essays #Words #Sentences #Tokens Avg_W_L Avg_S_L Unique_Tokens Unique_Words
A1 470 39367 6721 47612 4.66 6.08 4518 4512
A2 470 54980 5565 63769 4.82 10.46 7147 7143
B1 530 100185 7276 113672 4.97 14.62 10742 10734
B2 530 127029 7804 142995 5.03 17.32 12522 12509
C1 520 136849 7630 152962 5.16 19.05 12832 12823
C2 520 146253 7946 163461 5.16 19.57 13686 13676

Total 3040 604663 42942 684471 5.04 14.94 27286 27272

Table 7: Summary statistics of the generated Arabic synthetic essay corpus across CEFR levels. #Essays denotes
the number of essays; #Words refers to the total word count; #Sentences indicates the total number of sentences;
#Tokens represents the total number of tokens (vocabulary items); Avg_W_L corresponds to the average word
length in characters; Avg_S_L refers to the average sentence length in words; lexical diversity is captured through
the counts of unique tokens and unique words.

A.2 Bias in the Generated Essays

Arabic Prompt English Prompt Arabic Response English Response Occurrences /20 Bias
?É 	� 	®ÖÏ @ ½ÓñK
 ñë AÓ What is your favorite day? �éªÒm.Ì'@ Friday 20 Cultural/Religious Bias

?É 	� 	®ÖÏ @ ½ÓAª£ ñëAÓ What is your favorite food? @ 	Q��J
J. Ë @ Pizza 16 Globalization Bias

? �éÊ 	� 	®ÖÏ @ ½�JK
 @ñë ù
 ë AÓ What is your favorite hobby? �èZ @Q�®Ë @ Reading 10 Socioeconomic/Class Bias

AîD
Ë @
 �IJ.ë 	X �éÊgP A trip you went on QjJ. Ë @ úÍ@
 �IJ.ë 	X I went to the beach 18 Geographical/Cultural Bias

?¨ñJ.�


B@ �éK
Aî 	E �éÊ¢« ú


	̄ Éª 	®�K @ 	XAÓ What do you do on the weekend? �é�®K
YmÌ'@ úÍ@
 I. ë
	Y 	K We go to the park 20 Geographical/Cultural Bias

? �éÊ 	� 	®ÖÏ @ �éJ
�@PYË@ �èXAÖÏ @ ù
 ëAÓ What is your favorite school subject? �HAJ
 	�AK
QË @ Mathematics 17 Educational System Bias

? �éÊ 	� 	®ÖÏ @ ½�J 	�AK
P ù
 ë AÓ What is your favorite sport? ÐY�®Ë@ �èQ» Football 20 Cultural Bias

úÎ«


B@ ½Ê�JÓ èQ�. �Jª�K �	m��� A person you consider your role model ø
 YË@ð My father 17 Gender Bias

?½Ë ��K
Y� É 	� 	̄ 
@ ñë 	áÓ Who is your best friend? YÔg


@ Ahmed 20 Gender/Name Bias

�éJ
ÊJ. �®�J�ÖÏ @ �é 	JêÖÏ @ Your future profession I. �
J.£ Doctor 13 Stereotype Bias

ú
G. X


B@ ÕËAªË @ ú


	̄ Q�
îD�� ÕÎªÓ A famous teacher in the world of literature �HAÓ@Që


B@ The Pyramids 17 Cultural Bias

�é 	J�Ë@ Èñ� 	̄ É 	� 	̄ 
@ Your favorite season of the year 	­J
�Ë@ Summer 20 Climate Bias

AêÒÊª�K Xñ�K �é 	ªË A language you would like to learn �éJ
 	K AJ.�


B@ Spanish 16 Language Bias

éJ
Ë @
 Q
	®�Ë@ ú


	̄ I.
	«Q�K YÊK. A country you would like to visit Qå�Ó Egypt 10 National Identity Bias

AëA 	JÒ�J�K �é�̄PA 	g �èñ�̄ A superpower you wish to have 	à@Q�
¢Ë@ Flying 19 Media Bias

Table 8: Examples of response biases in GPT-4o generated essays.
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B GPT-4o Error Injection Algorithm
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C Error Types Taxonomy

11-Classes 42-Classes Error Description Correct Word Erroneous Word
Morphology

(M)
M

MI Inflection
	¬PA« 	¬ðQªÓ

MT Tense I. ë
	X I. ë

	YK


Orthography
(O)

O

OA Alef-Maqsura ú
æ
	�A�®Ë @ úæ 	�A�®Ë @

OA+OH Alef-Maqsura + Hamza úm� 	�
@ Am� 	�@
OA+OR Alef-Maqsura + Wrong Character Zú
æ

��» Zúæ��»
OC Chatacter Order �é�PYÖÏ @ �é�XQÖÏ @
OD Extra Character @ 	Yë @ 	XAë
OD+OG Extra Character + Lengthening Short Vowels ðPñ¢�J�K Pñ¢�J�K
OD+OH Extra Character + Hamza Ñî 	E



B Ñî 	EB



@

OD+OM Extra Character + Missing Character ú
«AÒ
�Jk. B@ ú
æ
«A

�Jk. B@
OD+OR Extra Character + Wrong Character Pñ�Ë@ Pðñ�Ë@
OH Hamza I. ªË@ I. ªË@

OH+OM Hamza + Missing Character ZAJ
 ��



B@ AJ
 ��B@

OH+OT Hamza + Ta-Marbuta �èPAÓ@
 èPAÓ@
OM Missing Character �é�PYÖÏ @ �é�YÖÏ @
OM+OR Missing Character + Wrong Character ©Ò�Jj. ÖÏ @ ©Ò¢m.Ì'@
OR Wrong Character �é�PYÖÏ @ �é�PYÖÏ @
OR+OT Wrong Character + Ta-Marbuta �é 	¢�JºÓ é 	��JºÓ
OT Ta-Marbuta �é 	̄Q 	« é 	̄Q 	«
OW Alef-Fariqa @ñJ. �J» ñJ. �J»

Semantics
(S)

S
SF Conjunction 	àAjJ.� 	̄ 	àAjJ.�
SW Word Selection úÎ« 	áÓ

Punctuation
(P)

P P Punctuation , ��ñ�Ë@ . ��ñ�Ë@

Syntax
(X)

X

XC Case Aª
K @P ©
K@P
XC+XG Case + Gender @Yî �Dm.× �èYî �Dm.×
XC+XN Case + Number h@ñ	K ú
k@ñ 	K
XF Definiteness YJ
 	®ÖÏ @ YJ
 	®Ó
XG Gender 	àA¿ �I	KA¿
XM Missing Word úÎ« NULL

XN Number 	á�
K. A�J» I. �J»
XT Unnecessary Word NULL úÎ«

Combination
(Comb.)

M+O MI+OH Inflection + Hamza �A	m���


@ ½�A	m��� @

O+X OH+XC Hamza + Case @P@Qå 	�


@ P@Qå 	�@

SPLIT SPLIT SPLIT Split �H@PAÓB
 @
�éËðX �H@PAÓB
 @

�éËðX
MERGE MERGE MERGE Merge ÕÎªËAK. ÕÎªË@ H.
DELETE DELETE DELETE Delete NULL É 	g@X

Table 9: Illustrative examples of error types categorized according to the ARETA error taxonomy (Belkebir and
Habash, 2021). The table presents hierarchical mappings from coarse-grained (11-Class) to fine-grained (42-Class)
error categories, alongside representative corrections.
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Abstract

Locally deployed Small Language Models
(SLMs) offer a promising solution for provid-
ing timely and effective programming feedback
to students learning to code. However, SLMs
often produce misleading or hallucinated feed-
back, limiting their reliability in educational
settings. Current approaches for improving
SLM feedback rely on existing human annota-
tions or LLM-generated feedback. This paper
addresses a fundamental challenge: Can we
improve SLMs’ feedback capabilities without
relying on human or LLM-generated annota-
tions? We demonstrate that training SLMs on
the proxy task of program repair is sufficient to
enhance their ability to generate high-quality
feedback. To this end, we introduce Direct Re-
pair Optimization (DRO), a self-supervised on-
line reinforcement learning strategy that trains
language models to reason about how to ef-
ficiently fix students’ programs. Our experi-
ments, using DRO to fine-tune LLaMA-3.1–3B
and Qwen-2.5–3B on a large-scale dataset of
Python submissions from real students, show
substantial improvements on downstream feed-
back tasks. We release our code to support
further research in educational feedback and
highlight promising directions for future work.

Code: § github.com/KoutchemeCharles/rlpf

1 Introduction

Learning to program remains challenging for many
students, despite advances in teaching methodolo-
gies (Luxton-Reilly et al., 2018; Vihavainen et al.,
2014). A key part of addressing these challenges
is providing timely and accurate feedback (Jeuring
et al., 2022), which is crucial for learning (Hattie
and Timperley, 2007). Large Language Models
(LLMs) such as GPT-4 have shown exceptional
success in that task (Lohr et al., 2025), leading to
their growing adoption in classrooms (Ahmed et al.,
2025; Wang et al., 2024; Vadaparty et al., 2024; Liu
et al., 2024a; Liffiton et al., 2024).

However, reliance on vendor-hosted LLMs
raises substantial privacy concerns and potential
ethical issues related to institutional control (Das
et al., 2025). The privacy issues, jointly with scal-
ability issues and associated costs, are driving a
growing shift towards leveraging smaller open-
source models (SLMs), which can be deployed
and run locally within educational institutions or
on students’ computers and browsers (Yu et al.,
2025b; Liu et al., 2024b).

However, smaller language models tend to pro-
duce misleading or hallucinated feedback, poten-
tially confusing learners and negatively impact-
ing learning (Koutcheme et al., 2025). Current
methods for enhancing SLMs typically rely on su-
pervised learning (Kotalwar et al., 2024)or rein-
forcement learning from either human annotations
(Woodrow et al., 2025) or synthetic data generated
by larger models (Ashok Kumar and Lan, 2024).
These strategies come with limitations: human an-
notations are difficult to scale and replicate, while
synthetic data inherits biases and capabilities from
general-purpose LLMs.

Addressing these limitations raises a broader
challenge for the field of programming education:
can we improve small language models’ abilities to
generate meaningful programming feedback with-
out relying on external LLMs or human annota-
tions? Exploring this question opens a promising
research direction focused on assessing how effec-
tively small models can perform when trained ex-
clusively on educational data. Understanding this
can yield insights into the inherent capabilities of
these models, free from external biases (DeepSeek-
AI, 2025). This question matters not just tech-
nically, but also pedagogically; training models
exclusively grounded in student work and learn-
ing contexts could facilitate more adaptable class-
room deployment, enhance institutional control
over model behaviour, and mitigate privacy con-
cerns (Das et al., 2025).
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Recent reinforcement learning techniques such
as Group Relative Preference Optimization
(GRPO) (Shao et al., 2024) have shown great
promise in improving language models’ reason-
ing capabilities, allowing relatively small models
to reach the performance of significantly larger
ones with minimal LLM supervision (DeepSeek-
AI, 2025). In parallel, prior work reveals a strong
correlation between language models’ abilities to
generate programming feedback and their capacity
for fixing students’ programs (Koutcheme et al.,
2024a): models proficient in program repair are
independently good at generating feedback.

Building on this insight, we hypothesise that
improving a small language model’s repair capa-
bilities through reasoning could be sufficient to
enhance the model’s feedback-generation abilities.
We argue that the reasoning needed for generating a
repair involves a thinking process useful to provide
students with feedback, much like how teaching
assistants reason about students’ mistakes before
giving advice (Koutcheme, 2022).

Our paper thus aims to answer the following
research question:

(RQ) How effective is training small language
models to reason about educational program
repair for improving their ability to generate
high-quality programming feedback, and how
does this technique compare to training mod-
els with LLM supervision?

To address this question, we introduce Direct
Repair Optimization (DRO). This reinforcement
learning training pipeline, based on Group Rela-
tive Preference Optimization, leverages historical
datasets of student submissions to fine-tune small
language models for program repair, using unit test
results and syntactic/semantic distance measures
as rewards to guide learning.

We apply DRO to fine-tune LLaMA-3.1-3B
(Dubey et al., 2024) and Qwen-2.5-3B (Hui et al.,
2024) on a large-scale dataset of student code from
introductory programming courses (de Freitas
et al., 2023). We evaluate the resulting model on
multiple feedback tasks — including bug explana-
tions, patch descriptions, and next-step hints — and
show consistent improvements over all feedback
criteria. Our contributions are as follows:

• We introduce a new LLM-free training
pipeline for feedback generation based on pro-
gram repair and reinforcement learning.

• We show that reasoning about program repair
transfers to various forms of feedback, includ-
ing explanations, fixes, and hints.

• We further demonstrate that reasoning about
program repair improves the performance of
LLM-distilled models.

• We release our code and data processing
pipeline to support future research in aligning
language models for educational feedback1.

2 Related work

2.1 Programming Feedback
Program repair. Program repair has long been a
cornerstone of AI-driven programming education,
serving as a foundation for generating actionable
feedback, such as next-step hints, through Intel-
ligent Tutoring Systems (Rivers and Koedinger,
2017). Before the rise of instruction-tuned and chat
language models, much of the work in this domain
focused on leveraging closed pre-trained models,
such as OpenAI Codex, to generate repairs through
zero- or few-shot prompting. These approaches
often relied on historical student submissions, auto-
mated unit tests, and other contextual information
to guide the repair generation process (Zhang et al.,
2022; Joshi et al., 2023).

In parallel, open-source language models were
also explored for program repair tasks. For ex-
ample, prior efforts have fine-tuned such mod-
els using datasets derived from student submis-
sions (Koutcheme et al., 2023b) and automated re-
pair tools (Koutcheme, 2023). These works demon-
strated the viability of repair-focused training but
did not directly explore its implications for improv-
ing natural language feedback.

Using program repair for improving feedback.
Even with the advent of chat models, several works
proposed leveraging the quality of repairs gener-
ated alongside feedback as a validation mechanism
to ensure only relevant suggestions reach learners
(Phung et al., 2024; Sahai et al., 2023). In paral-
lel, other studies propose generating a high-quality
candidate repair program as a reasoning step to
generate higher-quality feedback. (Phung et al.,
2023; Sahai et al., 2023). This strategy has been ex-
tended with success to distil LLM-generated repair-
induced feedback to small language models via
Supervised Fine-tuning (Kotalwar et al., 2024).

1§ github.com/KoutchemeCharles/rlpf
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Reinforcement learning from human and AI
feedback. Supervised Fine-Tuning (SFT) meth-
ods are limited in their ability to align language
models with nuanced human objectives (Ouyang
et al., 2022). Several works have explored re-
inforcement learning techniques, such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2024), to train small language models to gener-
ate higher-quality feedback. For example, this
has been done by leveraging teaching assistants’
(TAs) edits of their responses to student forum
questions (Hicke et al., 2023), collecting live TA
preferences over several model-generated feed-
back (Woodrow et al., 2025), or combining existing
high-quality human annotations with AI-generated
alternatives (Ashok Kumar and Lan, 2024).

However, these methods typically rely on human
supervision or the existence of labeled human feed-
back. This reliance poses challenges in contexts
where such annotations are scarce or unavailable.
While full Reinforcement Learning with AI Feed-
back (RLAIF) (Lee et al., 2024) approaches have
been theorized to work well in the programming
domain (Scarlatos et al., 2024), in this paper, we
explore whether we can bootstrap feedback capa-
bilities in small language models without requiring
any human or LLM involvement.

2.2 Improving SLM Reasoning Without
LLMs

Recent work has proposed leveraging automatically
evaluable tasks to define preference pairs for DPO
optimization (Pang et al., 2024), replacing the need
for human or LLM judgments. In domains like
programming and math, where correctness can be
verified programmatically, this strategy has shown
promising results. Combined with large-scale sam-
pling and chain-of-thought prompting (Wei et al.,
2022), such methods have yielded substantial im-
provements with minimal supervision (Pang et al.,
2024).

Most recently, a new line of alignment tech-
niques (Shao et al., 2024; Liu et al., 2025; Yu
et al., 2025a) takes the idea back to a fully online
optimization paradigm, showing major improve-
ments. Inspired by the success of small models
such as DeepScaleR (Luo et al., 2025), we explore
whether these reinforcement learning techniques
can be adapted to improve small language models
in programming education.

3 Methodology

In this work, we hypothesise that training small
language models for program repair will improve
their feedback ability. To validate this hypothesis,
we propose Direct Repair Optimization.

3.1 Background

Before presenting our approach, we first describe
the setup and assumptions underlying our work.

3.1.1 Environment

We assume a typical educational programming
setting, where student submissions are regularly
collected and evaluated using automated assess-
ment tools, such as unit tests, to assign scores and
provide feedback (Paiva et al., 2022). Leverag-
ing this infrastructure, we make two key assump-
tions: first, we assume access to a training dataset
D = {(di, si, ci)}Ni=1, comprising N tuples, where
each tuple consists of a problem description di, a
corresponding student program si, and a correct-
ness label ci, with ci = 0 indicating an incorrect
program and ci = 1 indicating a correct one; sec-
ond, we assume the availability of a grading func-
tion u(s) that assigns a normalized score ci ∈ [0, 1]
to each program si, reflecting its functional correct-
ness based on unit test results.

3.1.2 Definition: high-quality repair

To support the rest of this article, we formalize the
concept of a high-quality repair. A repair is typi-
cally considered high-quality if it meets two key
criteria: functional correctness and closeness to the
student’s original incorrect program (Koutcheme
et al., 2024c; Phung et al., 2023; Joshi et al., 2023;
Zhang et al., 2022). Functional correctness ensures
that the repair successfully resolves the intended
issues, while closeness ensures the repair preserves
the student’s original approach, making the solu-
tion more interpretable and educationally meaning-
ful (Price et al., 2017). Given a candidate repair
R (generated by an LM) for an incorrect program
si, we assess its quality using automated evalua-
tion methods. Functional correctness is measured
through unit test results provided by the grading
function u. For closeness, we use ROUGE (Lin,
2004), as it has been shown to be an effective and
efficient measure for selecting high-quality repairs
(Koutcheme et al., 2023a).

566



3.2 Direct Repair Optimization

In this section, we introduce Direct Repair Opti-
mization (DRO), our approach to improve language
models’ ability to generate educationally meaning-
ful program repairs. DRO is an online reinforce-
ment learning training method based on variants
of Group Relative Preference Optimization (Shao
et al., 2024). Figure 1 shows an overview of the
method. At each iteration, given an incorrect pro-
gram si, we (1) generate several completions, (2)
compute individual reward scores, based on such
generations and (3) update the model parameters
based both on such rewards and a divergence score.
Below we detail each step.

3.2.1 Sampling answers
Given an incorrect program, we sample G gener-
ations from our language model Gi1,Gi2, . . . ,Gig ∼
πθ(s

i, di). Our prompt asks our model to fix the
student’s program but to reflect thoroughly before
providing an answer (see Figure 2, Appendix C).
Each generation contains a thought T i

l and a fi-
nal repair Ri

g: Gi = (T i
g ,Ri

g). Following (Shao
et al., 2024), our prompt imposes the language
model to structure its response using a set of pre-
defined tags: the thought pattern should be gener-
ated within <think> . . . </think> and the re-
pair within <answer>. . . </answer> tags.

3.2.2 Computing rewards
For each generation Gig, we compute a reward rig,
reflecting the two criteria that define a high-quality
repair (see Section 3.1.2): functional correctness
and closeness (or “proximity”) to the student’s orig-
inal incorrect program. The total reward rig is thus
the sum of two separate components: rig = f i

g+pig.

The functional reward is an outcome-based re-
ward (Luo et al., 2025) computed by extracting
Ri

l and passing it through the available grading
function (i.e., unit tests):

f i
g =





+1.0 if u(Ri
g) = 1

+0.5 if u(Ri
g)− u(si) > 0

−1.0 if Ri
g not compiling

0 otherwise

We reward fully correct repairs (+1.0), give par-
tial credit (+0.5) if the repair improves upon the
student’s original program (i.e., it passes more tests
than si), and penalize repairs that fail to compile or

generations that do not follow the expected for-
mat (–1.0). Our reward encourages the model
to make meaningful progress toward correctness,
even when it cannot fully solve the task. We believe
that partially correct repairs that are better than the
student’s original work could also benefit feedback
generation.

The closeness reward evaluates how well the
generated repair aligns with the student’s original
code:

pig =

{
ROUGE(si,Ri

l) if u(Ri
l) = 1

0 otherwise

By integrating this reward, we encourage the
model not only to solve the programming task but
to do so by building on the student’s own approach,
implicitly forcing reasoning about what the stu-
dent is currently doing and trying to achieve. This
makes the repair (and the resulting feedback) more
pedagogically aligned. We provide this reward only
when the repair is fully correct. Since repairing a
student program inherently requires changes, cor-
rectness and closeness can become competing ob-
jectives. Rewarding both simultaneously for partial
outputs would risk destabilising training.

3.2.3 Updating the model using the rewards
We update the model using the computed rewards
with the dr.GRPO loss function (Liu et al., 2025),
a recent reinforcement learning loss function de-
signed for training stability and efficiency:

Jdr.GRPO = − 1

LG

G∑

g=1

|og |∑

t=1

lm,t (1)

where

lg,t =
πθ(og,t | di, si, og,<t)

πθold(og,t | di, si, og,<t)
Âg

and
Âg = (rig − r̄)

Here, LG is the maximum allowed completion
length, πθold is the model before the current update,
and Âg is the advantage, computed as the reward
deviation from the batch mean r̄. In practice, we
use a clipped surrogate version of this objective that
accounts for multiple updates per generation. For
clarity and space, we provide the full objective and
implementation details in section A.1 (Appendix
A, where we also show how this formulation dif-
fers from the original GRPO loss introduced in the
DeepSeek paper (DeepSeek-AI, 2025) and how it
is better adapted to our task.
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d: “Write a program that 
returns a modulo b”

s: (incorrect)

def modulo(a,b):
    return  a // b

teacher

Language model
Being trained

<think> The operand is wrong, we 
should replace “b” with “2” </think> 
<answer>
def modulo(a,b):
        return  a // 2 <answer>

…

<think> The operator is wrong, we 
should replace “//” with “%” </think> 
<answer>
def modulo(a,b):
        return  a % b <answer>

Reward function based 
on unit tests and 

closeness

…

REWARD 1

REWARD 2

REWARD G

GROUP
COMPUTATION …

ADVANTAGE 1

ADVANTAGE 2

ADVANTAGE G
def modulo(a,b):
    return  a // b

Update model parameters

Figure 1: Overview of Direct Repair Optimization.

4 Experiments

In this section, we present the experiments con-
ducted to answer our research question.

4.1 Falconcode: A Real-life Dataset

To answer our research question, we train language
models using FalconCode (de Freitas et al., 2023),
a publicly available dataset containing real-life CS1
students’ solutions to many Python programming
exercises. This dataset distinguishes itself through
the presence of free-form assignments, enabling a
broader evaluation of feedback abilities.

We follow the preprocessing approach of
(Koutcheme et al., 2024a) by selecting the incor-
rect programs from all students’ last submitted so-
lutions (as these specific solutions often reflect stu-
dents who need the most help) for each assignment
that can be automatically evaluated with unit tests.
Following those steps results in training, validation,
and testing splits with 690, 826, and 711 incorrect
programs from 44, 62 and 62 assignments.

4.2 Feedback Tasks

We train our model to generate better program re-
pairs and aim to evaluate whether this improvement
transfers to feedback generation. Specifically, we
assess our models performance on three feedback
types widely studied in prior work (Koutcheme
et al., 2025; Kotalwar et al., 2024; Phung et al.,
2024; Hellas et al., 2023): explanations (E), code
patches (P), and hints (H).

Explanations identify and describe all issues in
a student’s program, while code patches outline the
necessary corrections. These two types of diag-
nostic feedback help students understand their mis-
takes after submitting an incorrect solution. Hints,
in contrast, are more Socratic, guiding students to-
ward resolving one of the issues without giving
away the answer, and are most valuable while stu-
dents are still actively working and may be stuck.

Quality attributes. We evaluate the generated
feedback using quality criteria established in prior
work. Explanations and code patches are assessed
based on accuracy (EA, PA) and selectiveness (ES ,
PS) (Koutcheme et al., 2025). Hints, are evaluated
along three dimensions: correctness (HC), infor-
mativeness (HI ), and concealment (HCon) (Phung
et al., 2024). Table 3 (Appendix A) provides de-
tailed definitions for each attribute. We later detail
our evaluation strategy.

Generation strategy. When generating feedback,
we always prompt our models to generate the three
types of feedback sequentially: first the explana-
tions, then the code patches, and finally a single
hint for the first identified issue F = (E ,P,H).
This ordering draws from prior work, treating the
explanation as a form of chain-of-thought reason-
ing (Wei et al., 2022) that supports the generation
of more accurate patches (Koutcheme et al., 2025)
and a more helpful hint (Phung et al., 2023).

4.3 Models
We train Llama-3.2-3B (Dubey et al., 2024) and
Qwen-2.5-3B (Hui et al., 2024), two language mod-
els with strong performance on programming tasks.
Models in the 3B parameters range strike a practi-
cal balance: they are small enough for deployment
on edge devices (Kotalwar et al., 2024) yet large
enough to rapidly benefit from reinforcement learn-
ing optimization (Sui et al., 2025).

Parameter efficient finetuning. We train both
models using QLoRa (Dettmers et al., 2023), a
Parameter-Efficient Fine-Tuning technique (PEFT)
(Houlsby et al., 2019) that quantises a language
model to 4-bit and adds on top a set of trainable
parameters called adapters, while the base model
remains frozen. Using PEFT techniques has two
benefits: quantized models allow easy edge device
deployment, while adapters allow easy recovery of
the base model functionalities.
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4.4 Baseline and Oracle
Our objective is to assess (1) whether reasoning
for repair improves programming feedback and (2)
how close our DRO-trained SLMs’ can approach
the performance of models having access to LLM
supervision. To help answer each sub-question, we
consider two LLM-distillation training references:

• Reason-Repair (RR): For each incorrect pro-
gram si, we prompt an LLM to generate a cor-
rected repair by reasoning, without producing
feedback (see Figure 3, Appendix C). We then
fine-tune our small models on this thought and
repair (T i

LLM ,Ri
LLM ) sequence. These mod-

els allow us to evaluate whether learning to
repair through thoughts using supervised fine-
tuning improves feedback performance.

• Repair-First Feedback (RFF): We adopt the
repair-before-feedback strategy from (Sahai
et al., 2023; Phung et al., 2023), prompting
the LLM (see Figure 4) to first generate a
repairRi

LLM for the incorrect program as an
intermediate reasoning step to produce the full
feedback F i

LLM . While this two-step prompt-
ing strategy introduces an implicit form of
reasoning similar to chain of thought, we note
that it differs from the more explicit form of
reasoning used in models such as DeepSeek
(Luo et al., 2025). To our knowledge, such ex-
plicit reasoning has not been explored in prior
work for providing feedback. Our small mod-
els are fine-tuned on these repair-feedback
sequences (Ri

LLM ,F i
LLM ). Since this ap-

proach relies on direct access to feedback dur-
ing training, we consider RFF-trained models
as oracles, serving as a strong upper bound.

We use OpenAI GPT-4o-mini (OpenAI, 2024)
as the LLM due to its strong feedback performance
(Koutcheme et al., 2024b) and cost efficiency.

4.5 Prompting Strategy
In our main experiments, we prompt the DRO and
Reason-Repair models to generate feedback F im-
mediately (see Figure 3), without any intermediate
repair step (Koutcheme et al., 2025). This prompt-
ing strategy aims to study whether repair fine-
tuning transfers directly into feedback improve-
ments. In contrast, following (Sahai et al., 2023),
we prompt the Repair-First Feedback models to
first generate a repair for the incorrect programs
before generating the final feedback F i.

We present in Appendix B the full results of
our experiments, prompting all models with both
strategies. The second approach evaluates whether
and to what extent generating repairs before feed-
back effectively enhances small language models’
performance.

4.6 LLMs-as-feedback-judges

We leverage LLMs-as-judges (Zheng et al., 2023;
Thakur et al., 2024) to evaluate our models.
Following the jury-based approach proposed by
(Verga et al., 2024), we use a panel of two lan-
guage models: GPT-4o-mini and Gemini-2.0-flash
(Google DeepMind, 2024). While GPT-4o-mini
and Gemini-2.0-flash are lighter versions of their
full-size counterparts, they remain strong judges for
programming feedback. For instance, GPT-4o-mini
has been shown to perform on par with GPT-4o
for evaluating feedback quality (Koutcheme et al.,
2025). Moreover, (Verga et al., 2024) demonstrate
that ensembles of smaller LLMs of different fami-
lies can outperform even single large models, par-
ticularly by mitigating individual model biases.

For each feedback F generated on the test set,
we prompt both judges (see Figure 6, Appendix C)
to provide binary decisions across all quality crite-
ria (Table 3). We adopt a strict unanimity policy:
a criterion is marked correct only if both judges
agree. While this method does not provide ab-
solute performance guarantees (see Section 6), it
offers a consistent, scalable, and reliable strategy
for comparing the relative effectiveness of different
training approaches.

4.7 Experiment Details

We describe our experiment settings, including spe-
cific hyperparameters used for training and infer-
ence, in section A.3 (Appendix A).

5 Results

In this section, we present the results of our experi-
ments. A more in-depth analysis, including results
for the repair-first strategy, is provided in Appendix
B. For DRO, we show results for training for one
epoch (DRO-1) and two epochs (DRO-2).

5.1 Direct Repair Optimization Results

Table 1 shows the results of our experiments an-
swering the question: How effective is training for
repair in improving feedback abilities? We can
make the following observations.
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Table 1: Feedback performance results. We contrast
DRO model performance at n training epoch (DRO-n)
against LLM-distilled training variants RR (Reason-
Repair) for two (BASE) language models, Llama-3.1-
3B and Qwen-2.5-3B. We bold (resp. underline) the
best (resp. second best) results.

Method EA ES PA PS HC HI HCon

Llama-3.1-3B

BASE 37.4 55.4 34.5 25.2 67.5 63.4 67.8
DRO-1 40.5 64.4 36.6 30.4 73.6 69.2 72.0
DRO-2 43.5 64.7 40.5 32.2 72.6 67.9 71.9
RR 42.9 62.9 42.9 41.8 52.7 49.4 56.3

Qwen-2.5-3B

BASE 49.6 69.2 39.1 32.2 85.1 80.0 78.2
DRO-1 53.2 66.0 47.4 34.7 87.3 84.5 80.7
DRO-2 59.8 74.1 51.6 38.7 90.7 88.3 88.3
RR 59.1 70.0 51.1 38.7 91.4 90.0 85.9

Training for repair improves feedback abilities.
DRO improves feedback quality across all crite-
ria for both base models. We also observe gains
when training a model via supervised fine-tuning
on thoughts and repairs generated by a language
model (RR), although hint performance declines
for Llama.

We interpret this success as a form of transfer
learning (Raffel et al., 2020), where training on
one task improves performance on another related
task. Butler et al. (Butler and Winne, 1995) charac-
terize feedback as a two-step process: first, notic-
ing mistakes, and second, communicating them to
the learner. We view program repair as a “super-
task” of the noticing stage: to fix a student’s code,
the model must identify what is wrong (analogous
to generating an explanation) and then determine
how to correct it (analogous to generating a patch).
Manual inspection also suggests that most, if not
all, reasoning traces produced during repair explic-
itly highlight both the underlying issues and their
corresponding fixes.

Unlike full feedback, however, program repair
does not involve pedagogical communication. In
other words, it does not improve the second stage:
the model’s ability to convey information effec-
tively to a learner. Still, we believe the use of
low rank adapters allows the model to preserve
its original pedagogical capabilities while refining
its analytical skills through targeted repair train-
ing. Lastly, since a hint is a form of non-revealing
explanation, stronger repair capabilities indirectly
enhance Socratic feedback.

DRO improvements scale rapidly with base
model performance. We observe that the speed
and magnitude of the improvement at each training
epoch n depend on the base model. Qwen, which is
a stronger base model than Llama, is showing more
substantial gains after just one epoch of training,
and even faster gains after a second training epoch.
These results align with findings from prior work
(DeepSeek-AI, 2025; Luo et al., 2025), suggesting
that performance improvements when training rea-
soning models scale faster as the quality (i.e. initial
performance) of the base model increases.

DRO is competitive with LLM-distillation. Af-
ter two epochs of training (DRO-2), our models
reach performance comparable to LLM-distilled
variants. With Llama-3.1-3B, DRO-2 matches RR
for generating explanations. While it underper-
forms on patches, it significantly outperforms RR
on hint generation, where RR even falls behind the
base model. With Qwen-2.5-3B, DRO-2 surpasses
RR for generating both explanations and patches,
and performs on par for writing hints.

5.2 Refining Distilled Models with Direct
Repair Optimization

Table 2 shows the results of an experiment com-
bining model distillation and reinforcement learn-
ing. Prior work highlights how SLM reasoning
abilities can be bootstrapped by distilling chain-
of-thoughts from an LLM, before being further
enhanced through RL training (Sui et al., 2025).
Following such an approach, we further fine-tuned
Reason-Repair models using DRO for one epoch.

As we can observe, applying Direct Repair Op-
timization on top of the RR models consistently
enhances feedback performance across almost all
types of feedback for both models, allowing the
RR-trained models to reach overall stronger per-
formance (with the exception of a drop in Hint
Concealment HCon). Interestingly, we observe a
stronger boost in diagnostic feedback performance
for our Llama RR model than for our Qwen model.
Looking more closely, both models reach similar
overall performance after RL training, suggesting a
performance trade-off might be happening between
diagnostic and Socratic feedback abilities. We hy-
pothesize that this plateau may stem from the limi-
tations of LoRA adapters, which restrict how much
new “knowledge” the model can acquire (Dettmers
et al., 2023).
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Table 2: Feedback performance results. We further
fine-tune the Reasoning-Repair (RR) models with DRO
and show performance benefits of the resulting COMB
models. We bold (resp. underline) the best (resp. second
best) results.

Method EA ES PA PS HC HI HCon

Model: Llama-3.2-3B

RR 42.9 62.9 42.9 41.8 52.7 49.4 56.3
DRO-2 43.5 64.7 40.5 32.2 72.6 67.9 71.9
RFF 43.5 70.9 36.3 40.4 94.2 92.3 89.3

COMB 59.4 72.7 56.3 48.1 53.9 48.9 51.9

Model: Qwen-2.5-3B

RR 59.1 70.0 51.1 38.7 91.4 90.0 85.9
DRO-2 59.8 74.1 51.6 38.5 90.7 88.3 88.3
RFF 72.4 82.4 62.7 50.1 94.4 91.7 89.5

COMB 60.3 72.6 54.7 40.4 91.6 91.7 85.0

5.3 Comparison Against Oracles

Table 2 also contrasts the performance of models
trained with Direct Repair Optimization against the
Repair-Feedback-First (RFF) models. We consider
RFF models as oracles as those were trained with
privileged supervision in the form of both LLM-
generated feedback and repairs used as implicit
reasoning steps.

Despite not using any feedback supervision, our
DRO-2 models perform competitively in several ar-
eas, particularly with Llama-3B, where they closely
approach RFF performance on diagnostic feedback
tasks. Moreover, our combined approach (COMB),
which applies DRO fine-tuning on top of LLM-
distilled models, surpasses RFF on several criteria
for Llama, including both explanation and patch
quality. However, for Qwen, both DRO and COMB
consistently fall short of RFF performance across
most evaluation metrics.

These findings suggest that while DRO can serve
as a valuable complement to LLM supervision, and
even outperform direct finetuning in some settings,
it is not yet a reliable substitute for training models
directly on feedback generated by LLMs. Further
work is needed to understand when and how DRO
can consistently match or exceed the performance
of supervised approaches.

6 Discussion and Conclusion

In this paper, we explored whether training lan-
guage models to reason about students’ programs
could improve feedback and provided insights into
how this strategy compares to LLM supervision.

Summarizing answers to our research question.
Our findings show that (1) reasoning to repair pro-
grams improves a model’s ability to generate feed-
back, (2) DRO can further improve models fine-
tuned on LLM-generated repairs, and (3) such re-
fined models can, in some instances, match the
performance of models trained directly on LLM-
generated feedback.

Implications for programming education. Pro-
gramming education is increasingly turning to
open-source language models, particularly smaller
ones, to support teaching at scale (Liu et al., 2024b).
We are anticipating a shift from using proprietary
LLMs (e.g., GPT-4o) to open-source alternatives
(e.g., LLaMA-3.3-70B) for distillation (Kotalwar
et al., 2024), as the latter can be hosted locally and
offer more control (Denny et al., 2024). Our work
takes a step further by exploring whether we can
eliminate reliance on LLMs and train SLMs di-
rectly on educational data, avoiding both the costs
of third-party APIs and the computational demands
of hosting large open-source models.

Although our work focuses on programming
data, we believe DRO could be adapted to provide
feedback in all educational domains where the cor-
rectness of a student’s work can be automatically
evaluated. Methods such as Direct Repair Opti-
mization can leverage much of the readily available
data in educational platforms (i.e., student submis-
sions and unit tests) without requiring extensive cu-
ration. Recent work has shown that combining such
reinforcement learning methods with large-scale
data can allow relatively small models to reach the
performance of state-of-the-art proprietary models
(Luo et al., 2025).

Extensions to other training approaches. Di-
rect Repair Optimization can easily be combined
with human and LLM-supervised training strate-
gies. Models trained with DRO can be boot-
strapped from a handful of high-quality LLM-
generated examples (Hicke et al., 2023; Ashok Ku-
mar and Lan, 2024; Muennighoff et al., 2025), and
further refined using Reinforcement Learning from
Human Feedback (RLHF) (Woodrow et al., 2025)
to align with specific instructional goals. Such hy-
brid pipelines offer a practical path forward, start-
ing from refined educational data, scaling up perfor-
mance through large-scale reinforcement learning,
and applying targeted human supervision as a final
step to meet specific classroom needs.

571



Alleviating privacy concerns. Although third-
party LLM hosting services and the use of propri-
etary APIs are becoming more affordable, insti-
tutional policies on sending student data to third-
party services can restrict their use. Our experi-
ments show that institutions with access to modest
computational power (such as a single consumer-
grade GPU)2 can obtain powerful programming
teaching assistant models tailored to their classes.

Such models can also be directly deployed on
students’ laptops (Liu et al., 2024b; Kotalwar et al.,
2024; Ruan et al., 2024), enabling personalized,
timely, and offline support.

Future work. Our future work will explore how
Direct Repair Optimization performs compared to
proprietary and open-source LLMs when trained
on large-scale private educational programming
data as well as public programming data from Hug-
gingFace 3. To this end, we plan to conduct human
expert evaluations and perform A/B studies to eval-
uate how real students respond to such feedback
(SLM vs LLMs). We will also investigate how hu-
man data and preferences can be integrated into the
training pipeline to better align small models with
specific institutional goals.

Looking ahead, we aim to move beyond training
individual models on private institutional data and
tackle the broader challenge of building foundation
models for programming education (Bommasani
et al., 2022). We believe such models could be pre-
trained from publicly open-source large-scale ethi-
cal data, and further refined with federated learning
across multiple institutions.

Limitations

Our study is not without limitations. First, we
conducted all experiments on a single dataset of
Python programming submissions collected from
one institution and did not explore whether our
results hold in other contexts. Second, and per-
haps more importantly, our evaluation lacks human
annotations, expert assessment, or qualitative anal-
ysis. While prior work suggests LLMs can be used
to assess programming feedback (Seo et al., 2025;
Koutcheme et al., 2024b, 2025), such works also
highlight that their judgments are not always per-
fect. Although we partly mitigate this by combin-
ing multiple LLMs-as-judges, our results must still
be interpreted with caution.

2We trained our models on a single 32GB VRAM GPU.
3https://huggingface.co/datasets

We do not claim that DRO-trained models pro-
duce feedback that meets any absolute standard of
quality (e.g., “nearly perfect feedback”). Rather,
our findings establish DRO’s relative performance:
it improves feedback quality over a base untrained
model and can match the performance of mod-
els trained via LLM distillation. Whether such
feedback is ultimately pedagogically effective for
students remains an open question until validated
through human studies.

Additionally, our experiments were limited to
two small models with around 3B parameters.
While prior work suggests that performance im-
proves with base model size (Sui et al., 2025), it
remains to be seen whether the same trends hold
when applying Direct Repair Optimization for im-
proving other language models’ programming feed-
back. Moreover, our experiments also did not in-
clude new state-of-the-art reasoning large language
models such as OpenAI o3. Such models, which
were effectively trained for reasoning, would prob-
ably act as better candidates for LLM-distillation
and combined LLM-distillation and RL training.

Ethics Statement

This work has been conducted in accordance with
national and institutional ethical guidelines. We
recognize the growing importance of ethical con-
siderations in AI research, particularly with respect
to data use, model deployment, and societal impact.

The dataset used in this study is publicly avail-
able to the research community. Our primary goal
is to advance the development and evaluation of
open-source language models for feedback gen-
eration in programming education. By prioritiz-
ing open-source models, we aim to promote trans-
parency, accessibility, and accountability, while
mitigating privacy concerns associated with propri-
etary LLMs.

We also acknowledge broader ethical dimen-
sions of our work. These include questions of fair-
ness and equity in access to high-quality feedback,
the risk that language models may favor certain
interaction styles or learner backgrounds, and the
potential for such technologies to either reduce or
exacerbate global disparities in education. As the
use of LLMs in learning environments grows, we
believe it is essential to continuously assess and
address these challenges in collaboration with edu-
cators, institutions, and affected communities.
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A Methodological and Experimental
Details

A.1 Training loss
The original GRPO loss function is given by:

JGRPO = − 1
∑G

g=1|og|

G∑

g=1

|og |∑

t=1

lg,t−βKL(πθ, πref)

where

lg,t =
πθ(og,t | di, si, og,<t)

πθold(og,t | di, si, og,<t)
Âg,t

and Âi is a value called the advantage. Intu-
itively, the advantage tells each generation how
much better it is than the g − 1 other generations.

Compared to popular offline preference methods
such as DPO (Rafailov et al., 2024), which use
explicit preference pairs, the advantage function
helps "ranking" which of the multiple generations,
without relying on pairwise comparisons.

Âg =
(rig − r̄)

std(r)

KL(πθ, πref) is a value called the KL divergence.
This value essentially tells how much the model
responses are diverging from the model prior to the
start of training. We omit the definition of this term
for simplicity and refer the reader to the DeepSeek
paper (DeepSeek-AI, 2025). In essence, JGRPO
is the weighted average of the advantage of all
completions and a β scaled approximation of the
KL divergence.

The following works have found a few issues
with the original formulation.

Removing the KL term. (Yu et al., 2025a) finds
that the KL(πθ, πref) term can slow down training,
as in practice we want to allow the trained model
to diverge from the original policy.

Length response bias. (Liu et al., 2025) show
that the term − 1∑G

g=1|og |
introduces a response

length bias favourizing longer generations. To ad-
dress this issue, the authors propose dividing by a
constant length, being the maximum allowed size
of each generation (LG).

Program difficulty bias. Moreover, they also
show that the standard deviation in the advantage

computation Âg =
(rig−r̄)

std(r) introduces a problem
difficulty bias, where overly hard or overly easy
questions are weighted more heavily in the loss.
In our situation, the "problem" is the student pro-
gram to solve, and this bias would lead to scenarios
where student programs which are too easy to fix
or student programs which are too hard to solve
would be given more attention. Removing the stan-
dard deviation addresses this issue. Taking these
two changes into account yields the proposed loss
function (see equation 1).

Taking into account multiple updates. Because
sampling generations is computationally and time-
intensive, in practice, we use a version of this loss
function which takes into account multiple updates
per generation, as proposed by (Yu et al., 2025a):
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Jdr.GRPO = − 1∑G
g=1|og |

∑G
g=1

∑|og |
t=1

[
min

(
lg,t, ĈgÂg)

)]

where

Ĉg = clip(lg,t, 1− ϵlow, 1 + ϵhigh)

constrains the subsequent updates to stay within
a reasonable range of the original policy.

A.2 Feedback Quality Attributes.
Table 3 shows the definitions of the feedback qual-
ity criteria used in our work. These definitions are
taken from prior work in programming feedback.

A.3 Experimental Details
We outline training and inference-specific details.

A.3.1 Training
We train our models using the HuggingFace TRL
library. Unless explicitly outlined below, all hy-
perparameters were left at default values. We train
all models with QLoRa (Dettmers et al., 2023) us-
ing an alpha α = 128 and a rank r = 128. All
models are trained on a single NVIDIA V100 GPU
using our institution’s research cluster. Training for
one epoch on such compute takes approximately 8
hours. Training on an A100 takes less than 5 hours.

dr.GRPO specific hyperparameters. Table 4
shows the hyperparameters used to train our DRO
model. These parameters follow prior work
(DeepSeek-AI, 2025; Luo et al., 2025; Yu et al.,
2025a). We train all models for two epochs on
the training set of FalconCode. For each incor-
rect program, we generate four (G = 4) candidate
reasoning and repairs Gi = (T i

l ,Ri
l). We high-

light that we designed our method to run on an
entry-level GPU with 32GB of RAM. Prior work
(DeepSeek-AI, 2025) suggests that a higher number
can substantially improve results, however, more
generations require more GPU RAM.

Supervised Fine-tuning. Table 5 shows the hy-
perparameters used to train our distilled models
via supervised fine-tuning on the training set of
FalconCode. We train all models for three epochs.

A.3.2 Inference
For generating feedback at inference time, for all
models, we generate both repair and feedback us-
ing greedy decoding. For judging, we query propri-
etary models GPT-4o-mini and Gemini-2.0-flash
using the OpenAI Python API, also using greedy
decoding.

B Results Details

Table 6 shows the full results of all our experiments,
including the repair-first prompting strategy. We
additionally report the performance of our models
on additional clarity criteria.

B.1 Prompting for Repair

Prompting for repair often decreases base model
performance. Prompting the BASE models to
generate a repair before producing feedback de-
creases diagnostic feedback performance. This ob-
servation aligns with findings from (Koutcheme
et al., 2024a), who showed that a model’s ability to
provide diagnostic feedback scales independently
from its ability to perform program repair. In our
case, using SLMs, a poor-quality greedy repair may
degrade feedback quality more than providing no
repair. This does not contradict (Sahai et al., 2023),
as the authors use the Repair-First strategy with
LLMs, which are strong at both repair and feed-
back. (Phung et al., 2023, 2024) extend the single-
repair strategy with multiple repairs, but whether
an SLM benefits from this is unknown. While it
might alleviate this issue, it remains computation-
ally expensive when running models locally.

Prompting to repair before feedback also de-
creases Socratic feedback performance for Qwen
but increases it for Llama.

Prompting for repair brings benefits in diag-
nostic feedback performance for strong base
models. Prompting to repair before feedback de-
creases the performance of the Llama DRO-trained
models for generating diagnostic feedback but in-
creases diagnostic feedback performance for Qwen
models. We hypothesize that this effect is due to
the base model overfitting on low-quality, greedy-
generated repairs. We observe the same phe-
nomenon for the RFF models, which were trained
to repair before feedback: a decrease for Llama, but
an increase for Qwen. For RR and their extended
version with DRO (COMB), the effect is unclear.

B.2 Generations Clarity

We also studied how language models perform in
terms of the clarity (Cle) of the generations. How-
ever, we mostly observe that there does not seem to
be a clear correlation with base model performance,
training method, or prompting strategy.
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Name Notation Definition Used in
Accuracy EA, PA All issues in the student’s code (or all required fixes)

are correctly identified.
(Koutcheme et al., 2024b,
2025)

Selectiveness ES , PS No non-existent or irrelevant issues are mentioned;
no unnecessary changes are proposed.

(Koutcheme et al., 2024b,
2025)

Clarity EC , PC The explanation or patch is easy to understand, well-
formatted, and concise.

(Koutcheme et al., 2025)

Correctness HC The hint provides correct information that would
help fix the student’s code.

(Phung et al., 2024; Kotal-
war et al., 2024)

Informativeness HI The hint contains useful information that helps the
student understand or resolve the issue.

(Phung et al., 2024; Kotal-
war et al., 2024)

Concealment HCon The hint avoids revealing the full solution and en-
courages reasoning.

(Phung et al., 2024; Kotal-
war et al., 2024)

Clarity HCle The hint is clearly written, easy to read, and free of
unnecessary complexity.

(Phung et al., 2024; Kotal-
war et al., 2024)

Table 3: Feedback quality attributes used in this study, taken from prior work.

Table 4: GRPO training hyperparameters.

Hyperparameter Value

Learning rate 1e-6
Epochs 2
Warmup ratio 0.1
Max gradient norm 0.2
Scheduler type constant_with_warmup
Optimizer paged_adamw_8bit
Gradient checkpointing True
Batch size 2
Max prompt length 512
Max completion length (LG) 1512

GRPO-specific
Num generations 4
Num iterations 2
Epsilon 0.2
Epsilon high 0.28
Top-p 0.95
Temperature 0.7

Model settings
Precision fp16

LoRA config
LoRA rank (r) 128
LoRA alpha 128

Table 5: Supervised Fine-Tuning hyperparameters.

Hyperparameter Value

Learning rate 1e-4
Epochs 3
Warmup ratio 0.1
Scheduler type cosine
Batch size 8

Model settings
Precision fp16

LoRA config
LoRA rank (r) 128
LoRA alpha 128

C Prompts

This section shows all the prompts used in our
study.
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Table 6: Feedback performance results. We contrast DRO model performance at n training epoch (DRO-n)
against LLM-distilled training variants RR (Reason-Repair) and RFF (Repair First then Feedback), as well as the
RR further fine-tuned with DRO(COMB), for two (BASE) language models, Llama-3.1-3B and Qwen-2.5-3B, for
two prompting strategies: Direct Feedback and Repair First.

Llama-3.1-3B Qwen-2.5-3B
Method EA ES ECle PA PS PCle HC HI HCon HCle EA ES ECle PA PS PCle HC HI HCon HCle

Prompting Strategy: Direct Feedback

BASE 37.4 55.4 61.9 34.5 25.2 74.7 67.5 63.4 67.8 72.7 49.6 69.2 60.2 39.1 32.2 68.4 85.1 80.0 78.2 80.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DRO-1 40.5 64.4 62.7 36.6 30.4 75.5 73.6 69.2 72.0 77.6 53.2 66.0 65.3 47.4 34.7 71.4 87.3 84.5 80.7 83.1
DRO-2 43.5 64.7 58.2 40.5 32.2 72.7 72.6 67.9 71.9 75.8 59.8 74.1 59.5 51.6 38.7 68.6 90.7 88.3 88.3 80.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RR 42.9 62.9 65.7 42.9 41.8 72.4 52.7 49.4 56.3 59.6 59.1 70.0 59.5 51.1 38.7 75.8 91.4 90.0 85.9 86.6
RFF 54.9 76.9 56.8 44.6 40.8 66.1 90.3 86.1 87.2 84.8 52.9 65.8 66.2 44.9 30.8 68.6 91.6 89.3 88.5 81.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMB 59.4 72.7 64.4 56.3 48.1 70.5 53.9 48.9 51.9 54.9 60.3 72.6 62.6 54.7 40.4 74.7 91.6 91.7 85.0 86.5

Prompting Strategy: Repair First

BASE 29.0 56.0 58.5 18.7 19.5 51.5 83.0 79.0 82.3 77.8 34.7 57.7 65.8 26.6 24.5 61.6 79.5 74.1 73.1 81.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DRO-1 38.0 71.7 60.1 26.9 31.9 49.8 86.6 82.3 85.9 78.6 61.2 76.5 60.5 51.1 41.6 61.7 90.0 84.1 84.4 78.3
DRO-2 33.5 69.6 66.0 24.8 32.9 51.5 88.2 83.8 89.2 82.8 63.9 82.4 63.7 49.6 45.9 57.7 89.7 83.0 86.8 79.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RR 47.7 76.1 60.3 39.1 41.6 56.4 93.1 88.7 90.3 82.0 46.7 66.2 58.8 40.6 35.6 66.0 88.5 82.3 80.7 82.1
RFF 43.5 70.9 67.4 36.3 40.4 56.0 94.2 92.3 89.3 88.0 72.4 82.4 68.2 62.7 50.1 63.4 94.4 91.7 89.5 79.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMB 50.9 79.3 57.9 44.3 46.3 50.6 94.0 91.7 90.2 82.8 56.8 73.4 58.5 47.7 40.1 64.0 89.0 87.2 81.9 84.2

0

You are a helpful assistant. Before answering a user, you first
think and reason about a proper answer. You always put your
thoughts within <think> </think> tags before providing the
answer.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Your task is to repair the student program so that it fulfils the
problem description. Minimise modifications, keeping your
repair as close as possible to the original incorrect program so
that the student can better understand what was wrong. Put
your repair within <answer> </answer> tags.

<think>
...

<think>
<answer>

repair
</answer> 2

Figure 2: Training prompt. We provide: 0 a system
prompt that asks the language model to reason before
answering, 1 a description of the repair task. This
prompt is used to obtain training data for Reason-Repair
models 2 and is used during training for our DRO
models. Importantly, we prefill the model generation
with a <think> tag to force the generation of the thinking
content.

0

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Tasks

Your tasks are as follows:

1. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

2. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

3. Generate a hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your answer within <feedback> </feedback> tags.

<feedback>
feedback

</feedback> 2

Figure 3: Generation prompt: Providing direct feed-
back. We provide: 0 a description of the repair task,
and ask the language models to generate feedback 1 .
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0

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, test cases, student code

Tasks

Your tasks are as follows:

1. Repair the student program

• Minimise modifications, keeping your repair as close
as possible to the original incorrect program so that the
student can better understand what was wrong.

2. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

3. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

4. Generate a Hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your repair between <repair> and </repair> tags and
your feedback within <feedback> </feedback> tags.

<repair>
repair

</repair>
<feedback>

feedback
</feedback> 2

Figure 4: Generation and training prompt for su-
pervised finetuning. We provide: 0 a description of
the repair task, and 1 ask the LLM models to gener-
ate feedback 2 . The full completion is then learned
by the Repair-First-Feedback models using supervised
finetuning.

0

You are a helpful assistant. Before answering a user, you first
think and reason about a proper answer. You always put your
thoughts within <think> </think> tags before providing the
answer.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description, student code

Your task is to repair the student program so that it fulfils the
problem description. Minimise modifications, keeping your
repair as close as possible to the original incorrect program so
that the student can better understand what was wrong. Put
your repair within <answer> </answer> tags.

<think>
...

<think>
<answer>

repair
</answer> 2

3

Use your thought process and your repair to provide feedback
to the student.

Tasks

Your tasks are as follows:

1. Explain the bugs:

• Explain all the bugs in the student program in 1-3
sentences.

• Focus on a functional issues only; do not discuss per-
formance improvements or stylistic concerns.

2. Provide fixes for the bugs:

• For each bug, suggest a code fix by describing the
change in a concise sentence.

• You can specify a replacement, insertion, deletion, or
modification of one or several line of code.

3. Generate a Hint for the first bug:

• Provide a short and specific hint to help the student
address the first identified bug.

• The hint should encourage the student to think criti-
cally about resolving the issue without directly provid-
ing a solution or code fix.

Response format

Write your answer within <feedback> </feedback> tags.

<feedback>
feedback

</feedback> 2

Figure 5: Inference prompt: Repair before feedback.
We provide: 0 a system prompt that asks the language
model to reason before answering (only provided for
DRO and Reason-Repair models), 1 a description of
the repair task. We obtain the model generation 2 , and
then in the following turn ( 3 ) ask the model to generate
feedback.
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0

You are a computer science professor teaching introductory
programming using Python. You are an expert at evaluating
programming feedback tailored to novices.

1

Below is a problem description and an incorrect program
written by a student (i.e., it does not pass all test cases).

problem description>, student code

Below is the feedback written by a teaching assistant (TA),
which includes an explain and fixes for the bugs in the
program. As well as a hint for the first bug.

feedback

Your task is to evaluate the quality of the TA’s feedback
according to the grading criteria outlined below.

grading criteria

This evaluation will be conducted in two parts

1. Reasoning: Reflect on the quality of the TA’s feedback.

• Reflect on the quality of the feedback, using the grad-
ing criteria as a guide.

• Discuss strengths and weaknesses in the explanation
and hint.

2. Grading List: Conclude with your final assessment for
each criterion.

• If the criterion is fully met, respond with "true"; other-
wise, respond with "false".

Please provide your answer using a JSON format with two
keys:

• "reasoning": your detailed written analysis
• "grading": a dictionary with each criterion as a key

and your final answer (true or false) as the value.

Use only true or false (no other qualifiers) for each grading
criterion in the JSON output.

Figure 6: Judging prompt. We provide our three LLM
judges with a 0 system description describing their
role, 1 a description of the judging task, and the speci-
fication of the response format in json.
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Abstract

Interviews are central to the Empathy phase
of Design Thinking, helping designers un-
cover user needs and experience. Although
interviews are widely used to support human-
centered innovation, evaluating their quality,
especially from a cognitive perspective, re-
mains underexplored. This study introduces
a structured framework for evaluating inter-
view quality in the context of Design Think-
ing, using Bloom’s Taxonomy as a foundation.
We propose the Cognitive Interview Quality
Score, a composite metric that integrates three
dimensions: Effectiveness, Bloom Coverage,
and Distribution Balance Score. Using human-
annotations, we assessed 15 interviews across
three domains to measure cognitive diversity
and structure. We compared CIQS-based rank-
ings with human experts and found that the
Bloom Coverage Score aligned more closely
with expert judgments. We evaluated the per-
formance of LMA-3-8B-Instruct and GPT-4o-
mini, using zero-shot, few-shot, and chain-of-
thought prompting, finding GPT-4o-mini, es-
pecially in zero-shot mode, showed the high-
est correlation with human annotations in all
domains. Error analysis revealed that models
struggled more with mid-level cognitive tasks
(e.g., Apply, Analyze) and performed better
on Create, likely due to clearer linguistic cues.
These findings highlight both the promise and
limitations of using NLP models for automated
cognitive classification and underscore the im-
portance of combining cognitive metrics with
qualitative insights to comprehensively assess
interview quality.

1 Introduction

Design Thinking is a widely adopted framework
for creative problem-solving, particularly in areas
that require deep user understanding and human-
centered innovation. It typically progresses through
five iterative stages: Empathize, Define, Ideate,
Prototype, and Test. At the heart of this process

is the first stage, “Empathize”, enabling design-
ers to deeply understand users’ experiences, emo-
tions, and needs. It distinguishes Design Thinking
from purely analytical approaches by emphasizing
a human-centered perspective. This phase often
involves interviews, observations, and immersive
techniques, such as simulating real user experi-
ences, to uncover pain points and inform meaning-
ful design interventions (Brown, 2009; Org, 2015).
Among these methods, interviews play a vital role
by fostering open-ended, direct dialogue between
researchers and users. The quality of the interview
questions during this phase is especially critical,
as it shapes the depth, clarity, and diversity of re-
sponses, and ultimately influences the effectiveness
of the application’s design.

Despite the central role of interviews, there is
limited systematic guidance on how to structure
interview questions to encourage deeper cognitive
engagement. Many interviews rely on intuitive or
ad hoc question writing, often leading to unbal-
anced questioning that skews toward lower-order
thinking, such as remembering or understanding,
while neglecting higher-order processes such as
analyzing, evaluating, and creating (Anderson and
Krathwohl, 2001).

To address this gap, we propose a novel ap-
proach that takes advantage of Bloom’s Taxon-
omy, a widely used hierarchical framework that
classifies cognitive tasks into six categories: Re-
member, Understand, Apply, Analyze, Evaluate,
and Create (Bloom, 1956; Anderson and Krath-
wohl, 2001). Originally developed for educational
settings, Bloom’s Taxonomy has been effectively
adapted in recent years for use in question gen-
eration (Hwang et al., 2023), question classifica-
tion (Mohammed and Omar, 2018; Gani et al.,
2023), and curriculum evaluation (and, 2002). In
this study, we apply our approach to the domain of
interview question design within the context of De-
sign Thinking. Specifically, we investigate whether
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covering different levels of Bloom’s Taxonomy in
interview questions and responses has an effect on
the overall quality of interviews and contributes to
enhancing the Design Thinking process. Our anal-
ysis covers three interview subjects: AI Regulation,
Math Visualizer, and Grandfather Game.

We use Large Language Models (LLMs) to au-
tomatically classify both interview questions and
their responses according to Bloom’s Taxonomy.
Leveraging recent advances in prompt engineer-
ing techniques including zero-shot (Brown et al.,
2020), few-shot (Liu et al., 2023), and chain-of-
thought (CoT) prompting (Wei et al., 2022), we use
LLaMA-3-8B-Instruct, an instruction-tuned open-
source LLM, and GPT-4o-mini, a lightweight pro-
prietary model from OpenAI optimized for fast
reasoning tasks, to assign Bloom levels based on
the cognitive demands of the text. We also intro-
duce a composite evaluation metric, the Cognitive
Interview Quality Score (CIQS), which integrates
Bloom effectiveness, coverage, and distribution
balance scores into a single measure to assess the
overall quality of interview questions.

To guide our investigation into the cognitive
quality of interviews and the role of automated
classification, this study is driven by the following
research questions:

RQ1: Does covering multiple levels of Bloom’s
Taxonomy in interview questions and responses
contribute to higher-quality interviews within the
Design Thinking process?

RQ2: Can LLMs, such as LLaMA-3-8B-Instruct
and GPT-4o-mini, reliably classify interview con-
tent into Bloom’s cognitive levels across different
prompting strategies?

RQ3: To what extent do our CIQS-based au-
tomated rankings of interview quality align with
expert human evaluations across diverse interview
subjects?

2 Related Work

2.1 Automated Classification of Questions
Using Bloom’s Taxonomy

Bloom’s Taxonomy, originally introduced
by Bloom (1956) and later revised by Anderson
and Krathwohl (2001), has long served as a
framework for classifying learning objectives and
designing educational assessments. Numerous
studies have leveraged this taxonomy to guide
the construction of questions that effectively
target various cognitive levels, from simple

recall (Remember) to complex creative tasks
(Create). Chang and Chung (2009) developed a
keyword-based system aimed at automatically
classifying teachers’ questions according to
Bloom’s Taxonomy. By constructing a dictionary
that maps specific keywords to corresponding
cognitive levels, their system achieved a 75%
accuracy in identifying questions at the Remember
level. However, its performance declined for
higher-order levels, with accuracy ranging between
25% and 59%. Yahya and Osman (2011) explored
the effectiveness of machine learning techniques
by employing TF-IDF features combined with
Support Vector Machine (SVM) classifiers to
categorize 190 exam questions across Bloom’s
six cognitive categories. Haris and Omar (2012)
employed a rule-based classifier to categorize 135
computer programming examination questions
according to Bloom’s Taxonomy.

Building upon these methodologies, Mohammed
and Omar (2020) introduced an enhanced classi-
fication model incorporating TFPOS-IDF, a vari-
ation of TF-IDF that considers part-of-speech in-
formation, and pretrained word2vec embeddings
to capture semantic relationships. They evaluated
their model using kNN, Logistic Regression, and
SVM classifiers on datasets containing 141 and
600 questions. The SVM classifier exhibited supe-
rior performance, achieving weighted F1-scores of
83.7% and 89.7% on the respective datasets, high-
lighting the efficacy of integrating syntactic and
semantic features in question classification.

Li et al. (2022) conducted a study to automate the
classification of learning objectives according to
Bloom’s Taxonomy. They compiled 21,380 learn-
ing objectives from 5,558 courses at an Australian
university, manually labeled these objectives based
on Bloom’s six cognitive levels, and applied five
conventional machine learning algorithms—Naive
Bayes, Logistic Regression, Support Vector Ma-
chine, Random Forest, and XGBoost—as well as a
deep learning approach using the pretrained BERT
language model. Their findings demonstrated that
BERT-based classifiers outperformed others across
all cognitive levels, achieving Cohen’s κ up to 0.93
and F1 scores up to 0.95. Additionally, SVM, Ran-
dom Forest, and XGBoost models delivered per-
formance comparable to BERT-based classifiers.
The study also revealed that constructing separate
binary classifiers for each cognitive level slightly
outperformed a single multi-class, multi-label clas-
sifier, suggesting that individualized models for
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each cognitive level may enhance classification ac-
curacy.

Gani et al. (2023) focused on automating the
classification of exam questions by evaluating var-
ious pretrained word embedding techniques, both
contextual and non-contextual, across two datasets.
Their study highlighted that while deep learning
and contextual embeddings improved classification
performance, their effectiveness was significantly
influenced by dataset characteristics. Similarly, Al
Faraby et al. (2024) assessed the capability of Chat-
GPT in classifying and generating questions. They
found that in generating questions from reading sec-
tions, the differences with human-generated ques-
tions were not significant, indicating ChatGPT’s
potential for educational content creation.

2.2 Automatic Evaluation of Questions
Recent advancements in natural language process-
ing have facilitated the automated evaluation of
open-ended question complexity using Bloom’s
Taxonomy. Raz et al. (2024) employed a fine-tuned
LLM to predict human ratings of question complex-
ity, demonstrating a strong correlation (r = 0.73)
between LLM-generated scores and human assess-
ments, outperforming traditional baseline measures
such as semantic distance and word count. Si-
mone A Luchini and Beaty (2025) investigated
the use of LLMs to assess the originality of nar-
ratives across multiple languages. They trained
three distinct LLMs to predict human originality
ratings of short stories written in 11 languages.
The first model, trained exclusively on English nar-
ratives, achieved a robust correlation (r = 0.81)
with human assessments. When this model was
applied to multilingual stories translated into En-
glish, it maintained strong predictive performance
(r ≥ 0.73). Additionally, a multilingual model
trained on narratives in their original languages re-
liably predicted human originality scores across
all languages (r ≥ 0.72). Hwang et al. (2023), ex-
plored an AI-driven approach to generating and
evaluating multiple-choice questions in introduc-
tory chemistry and biology, focusing on alignment
with Bloom’s Taxonomy. They employed zero-shot
prompting with GPT-3.5 to create questions, val-
idated their cognitive levels using RoBERTa, and
assessed question quality based on Item Writing
Flaws Moore et al. (2023). The findings indicate
that GPT-3.5 is capable of generating questions at
various cognitive levels, particularly excelling at
producing higher-order thinking questions at the

Evaluation level. However, discrepancies between
AI-generated and human-assessed Bloom levels
suggest the need for further refinement in question
generation methodologies. Additionally, the study
highlights an inverse correlation between Bloom’s
level and perceived question quality, indicating that
while AI can generate complex questions, it may
struggle with nuances in cognitive distinction and
clarity at higher taxonomic levels.

3 Methodology

3.1 Dataset

This study is based on a dataset of transcribed inter-
views collected to evaluate the cognitive depth of
questions and responses used during the “Empathy”
phase of the Design Thinking process. In this study,
the interviews focused on three distinct subject ar-
eas: Grandfather Game Application, Math Visu-
alizer Software, and AI Regulation (for a descrip-
tion of each area see Appendix B). These topics
were selected to ensure a variety of user perspec-
tives and cognitive demands, ranging from personal
storytelling to educational technology and policy
discussions.

A total of 15 semi-structured interviews were
conducted. Each interview consisted of both high-
level and low-level open-ended questions. Not
all questions were equally well-structured, as the
goal was to intentionally support a range of cog-
nitive levels in line with Bloom’s Taxonomy, en-
abling analysis across varying depths of reasoning
and understanding. The interviews were audio-
recorded with participant consent, transcribed us-
ing Microsoft Teams, and manually reviewed for
accuracy. Transcripts were anonymized and struc-
tured by role (interviewer/interviewee).

While the original transcripts included more en-
tries, we removed manually segments that were not
suitable for cognitive classification. This included
ice-breaker exchanges (for example, “Hi, how are
you today?”, “Thanks for joining us!”), affirma-
tions (for example, “yes”, “okay”), and expres-
sions of appreciation (for example, “thank you”),
all of which could not be meaningfully assigned
a Bloom’s level. After this filtering process, the
final dataset consisted of 726 entries, comprising
363 interview questions and their corresponding
363 responses. All questions and responses were
manually classified by one of the authors famil-
iar with Bloom’s Taxonomy levels. Our analysis
spans the three interview subjects: AI Regulation
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(274 entries), Math Visualizer (244 entries), and
Grandfather Game (208 entries).

3.2 Bloom-Level Classification Process
To classify each interview question and response
according to Bloom’s Taxonomy, we employed a
prompt-based strategy using two LLMs: LLaMA-
3-8B-Instruct and GPT-4o-mini. We applied three
prompting techniques including: zero-shot, few-
shot, and CoT to guide the models’ responses.

In the zero-shot prompting approach, the model
receives a direct instruction to classify the input
into one of the six Bloom levels including: Re-
member, Understand, Apply, Analyze, Evaluate,
or Create, without being given any prior examples.
This method tests the model’s ability to rely on its
internalized knowledge of Bloom’s Taxonomy and
produces a fast baseline classification.

In few-shot prompting, we provide the model
with one labeled example for each Bloom’s Tax-
onomy level before introducing the target input.
These examples help calibrate the model’s under-
standing of the classification task.

Finally, we apply CoT prompting, which in-
structs the model to explain its reasoning before
presenting a final classification. This method en-
courages step-by-step cognitive processing, mak-
ing the model’s decision-making process transpar-
ent and auditable.

The purpose of this classifications is to evaluate
their alignment with human judgment and to inform
future efforts toward automating cognitive-level
assessment in interviews (see Section 4.1 for the
results).

3.3 Evaluation Framework
To assess the cognitive quality of interviews, we
used human-annotated Bloom’s Taxonomy classi-
fications for each question and response. Based
on these annotations, we calculated three key eval-
uation metrics: Effectiveness Score (ES), Bloom
Coverage Score (BCS), and Distribution Balance
Score (BDS), developed by the authors to capture
different dimensions of cognitive engagement. To-
gether, these metrics represent the Cognitive Inter-
view Quality Score (CIQS), a composite measure
reflecting the cognitive richness and structural di-
versity of each interview.

In this study, CIQS and its components were
derived from human classifications due to their
higher reliability. The following sections review
the components of the CIQS metric.

3.3.1 Effective Score (ES)
The Effectiveness Score measures how well each
interview question succeeds in eliciting the in-
tended level of cognitive engagement, as defined
by Bloom’s Taxonomy. Rather than evaluating
the question in isolation, this score is grounded in
a comparison between the cognitive level of the
question and the cognitive depth observed in the
interviewee’s response. This approach aligns with
the goals of the “Empathy” phase in Design Think-
ing, where the primary objective is not only to ask
meaningful questions but to generate equally mean-
ingful insights Brown (2009).

To calculate ES, first each question–response
pair is evaluated by comparing the intended cog-
nitive level of the question with the actual level of
the response, and rated according to this criteria:

• Highly Effective (2 points): The response ex-
ceeds the intended cognitive level (for exam-
ple, a question aimed at “Analysis” receives a
“Creative” response).

• Effective (1 point): The response matches the
intended cognitive level of the question.

• Needs Improvement (0 points): The response
falls below the intended level, indicating lim-
ited cognitive engagement.

After assigning these numerical values to each
pair, the ES for each interview is calculated as the
average score across all pairs:

Effectiveness Score =

∑n
i=1 si
n

(1)

where si ∈ {0, 1, 2} is the score assigned to the
i-th question–response pair based on the mentioned
criteria, and n is the total number of pairs in the
interview. The resulting score ranges from 0 (all
questions need improvement) to 2 (all questions
are highly effective). This metric captures not only
the cognitive intent behind the questions but also
their real-world impact as demonstrated through
participant responses.

3.3.2 Bloom Coverage Score (BCS)
The Bloom Coverage Score evaluates the extent to
which an interview engages participants across the
six levels of Bloom’s Taxonomy. A higher BCS
indicates greater cognitive diversity, reflecting an
intentional design that stimulates a broad range of
thinking processes.
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This diversity is particularly important in the con-
text of Design Thinking, where complex problem-
solving requires movement across multiple cog-
nitive domains. Wu et al. (2021) propose a de-
sign thinking model explicitly structured around
Bloom’s Taxonomy, arguing that design thinking
can be taught and structured through cognitive pro-
cesses, from basic understanding to advanced cre-
ative generation. They emphasize that aligning
design tasks with Bloom’s full spectrum enables
learners and participants to progress systematically
from comprehension to innovation.

We define BCS as the number of cognitive lev-
els covered in the interview divided by the total
number of levels (6). The ideal BCS is 1.0, in-
dicating that all six Bloom’s levels are present at
least once. The metric focuses on whether each
level appears, not how often, encouraging diverse
cognitive coverage in interview design.

3.3.3 Distribution Balance Score (BDS)
While the BCS measures the number of Bloom’s
cognitive levels represented in an interview, it does
not reflect how evenly those levels are distributed.
A cognitively rich interview is not only diverse in
coverage but also balanced, ensuring that no sin-
gle level dominates. To address this, we introduce
BDS, which quantifies the uniformity of the cogni-
tive distribution across Bloom’s levels.

Let pi represent the proportion of questions clas-
sified into the i-th Bloom’s Taxonomy level, and
let n be the total number of Bloom levels ( n = 6).
The BDS is defined as:

BDS = 1−
∑n

i=1

(
pi − 1

n

)2
n−1
n

(2)

This formula computes the squared deviation of
the observed distribution {pi} from a uniform dis-
tribution 1

n , and normalizes it by the maximum pos-
sible imbalance, which occurs when all items are
concentrated in a single Bloom level. The squared
term ensures that both over and underrepresentation
contribute equally to the imbalance score, while pe-
nalizing larger deviations more. The BDS value
ranges between 0 and 1.0. A BDS of 1.0 indicates
a perfectly balanced distribution across all Bloom
levels, reflecting equal representation. Conversely,
a BDS of 0 signifies complete imbalance, with all
items concentrated in a single Bloom level.

The formulation of the BDS is adapted from
Pielou’s Evenness Index Pielou (1966), tradition-

ally used in ecology to assess distributional unifor-
mity. We apply this concept to measure cognitive
balance across Bloom’s levels. Unlike entropy-
based alternatives, our variance-based approach of-
fers greater simplicity and sensitivity to cognitive
imbalances. This metric encourages interviews that
span multiple cognitive levels in a well-distributed
and cognitively meaningful way.

3.3.4 Cognitive Interview Quality Score
(CIQS)

To provide a comprehensive assessment of inter-
view quality from a cognitive perspective, we pro-
pose the Cognitive Interview Quality Score. This
metric combines three core dimensions: practical
effectiveness, cognitive coverage, and structural
balance. CIQS is calculated using the following
weighted formula:

CIQS = 0.5×ES+0.3×BCS+0.2×BDS (3)

In this formula, Effectiveness is emphasized most
heavily to reflect the importance of empirical suc-
cess: questions must not only be well-designed but
must also stimulate the intended cognitive engage-
ment, as evidenced by actual responses Anderson
and Krathwohl (2001). Bloom Coverage receives
moderate emphasis for its role in encouraging di-
verse thinking pathways, while Distribution Bal-
ance contributes structural integrity without domi-
nating the evaluation. The weighting scheme (0.5
for ES, 0.3 for BCS, and 0.2 for BDS) was deter-
mined to prioritize cognitive alignment in actual
responses while still valuing breadth and balance.
This design is informed by principles from edu-
cational assessment and cognitive taxonomy the-
ory Anderson and Krathwohl (2001), though the
metric itself is introduced as part of this work. The
CIQS serves as a unified cognitive quality rating
for each interview, enabling systematic comparison
across topics or participant groups while supporting
iterative improvement in interview design.

3.4 Human Evaluation of Interview Quality
To validate the CIQS framework, we conducted
a human evaluation in which an expert (tenured
Professor) in design thinking independently ranked
the interviews across all three subjects. The ex-
pert ranked each interview based on its effective-
ness in uncovering useful information about the
user and their practices and needs. This qualita-
tive judgment served as a benchmark to assess how
well CIQS scores aligned with human-perceived
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interview quality. Comparing the CIQS rankings
with the expert’s rankings helps determine whether
cognitively focused metrics reflect what a human
evaluator considers a high-quality, informative in-
terview.

4 Experiments & Results

4.1 Evaluating Human–LLM Cognitive
Classification Agreement

One of the authors annotated all question-response
pairs in our dataset for their Bloom’s Taxonomy
level. To measure the agreement between LLM-
assigned and human-assigned Bloom’s Taxonomy
levels, we used Kendall’s Tau (τ ), which is well-
suited for ordinal data and provides a robust esti-
mate of correlation, particularly with small sample
sizes and tied ranks (Kendall, 1938). The results
are presented in Table 1, indicate that the zero-shot
GPT-4o-mini achieved the strongest alignment with
human judgments in all domains: AI Regulation
(τ = 0.58), Math Visualizer (τ = 0.47), and Grand-
father Game (τ = 0.56). Among LLaMA-3-8B-
Instruct models, the few-shot prompting yielded the
highest correlations overall, particularly in AI Reg-
ulation (τ = 0.33). In contrast, zero-shot prompting
under LLaMA showed very weak agreement across
subjects.

These findings suggest that GPT-4o-mini, espe-
cially in zero-shot, is more reliable for capturing
cognitive-level distinctions in interview data, while
open-source LLaMA models show more limited
alignment with expert assessments. Performance
differences can be attributed to the models’ archi-
tectures and training methodologies. GPT-4o-mini
(OpenAI’s distilled model) balances efficiency and
advanced reasoning, excelling in nuanced tasks.1

LLaMA-3-8B-Instruct, while optimized for dia-
logue and instruction-following, may require fur-
ther fine-tuning to match the classification accuracy
demonstrated by GPT-4o-mini in this study.2

To identify which Bloom’s levels posed the
greatest challenges for LLMs, we generated sepa-
rate confusion matrices comparing the aggregated
predictions of LLaMA-3-8B-Instruct models and
GPT-4o-mini models against human classifications
across Bloom’s Taxonomy levels, as presented in
Figures 1 and 2. The LLaMA ensemble, based on

1https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

Figure 1: Confusion Matrix: LLaMA-3-8B-Instruct
Majority Vote Vs Human Classification.

majority voting, exhibited a strong overprediction
of the “Remember” category, leading to widespread
misclassification of responses originally labeled as
“Understand”, “Evaluate”, and “Create”. This pat-
tern suggests a tendency to default to lower-order
cognitive categories. In contrast, the GPT-4o-mini
ensemble produced a more balanced distribution
across predicted classes, with higher accuracy in
identifying“Remember”, “Understand” and “Evalu-
ate”, and notably less confusion between the levels.

These findings are further supported by the
quantitative results reported in Tables 2 and 3.
The LLaMA-3-8B-Instruct models showed limited
alignment with human labels, with accuracy rang-
ing from 23.9% to 29.1% and macro F1-scores
below 0.19. Their highest macro precision and re-
call were 0.312 and 0.226, respectively, under the
Chain-of-Thought setting. In contrast, all GPT-4o-
mini variants outperformed LLaMA across met-
rics. The Zero-shot GPT model achieved 53.7%
accuracy and a macro F1-score of 0.511, while
Few-shot prompting reached a macro precision of
0.642. GPT models also showed stronger weighted
F1-scores, indicating better overall balance across
Bloom levels.

4.2 Evaluating Cognitive Dimensions of
Interviews with CIQS

To evaluate and compare the cognitive quality of in-
terviews across different topics, we applied our pro-
posed scoring framework, the Cognitive Interview
Quality Score, which combines three key dimen-
sions: Effectiveness Score, Bloom Coverage Score,
and Distribution Balance Score. As illustrated in
Table 4, AI Regulation achieved the highest CIQS
(0.88), supported by strong effectiveness (ES =
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Model and Prompting Technique AI Regulation Math Visualizer Grandfather Game
LLaMA-3-8B-Instruct Zero-shot 0.08 -0.01 0.01
LLaMA-3-8B-Instruct Few-shot 0.33 0.26 0.26
LLaMA-3-8B-Instruct Chain-of-Thought 0.18 0.09 0.33
GPT-4o-mini Zero-shot 0.58 0.47 0.56
GPT-4o-mini Few-shot 0.45 0.41 0.51
GPT-4o-mini Chain-of-Thought 0.52 0.41 0.47

Table 1: Kendall’s Tau (τ ) correlation coefficients between model predictions and human annotations with highest
scoring models in bold.

Model Accuracy Macro Precision Macro Recall Macro F1 Weighted F1
LLaMA-3-8B-Instruct Zero-shot 0.239 0.218 0.171 0.129 0.180
LLaMA-3-8B-Instruct Few-shot 0.285 0.222 0.225 0.155 0.205
LLaMA-3-8B-Instruct Chain-of-Thought 0.291 0.312 0.226 0.185 0.230

Table 2: Performance of LLaMA-3-8B-Instruct models across prompting techniques.

Figure 2: Confusion Matrix: GPT-4o-mini Majority
Vote vs Human Classification.

1.01) and distribution balance (BDS = 0.80), de-
spite slightly lower Bloom coverage (BCS = 0.71).
This suggests that responses in AI-related inter-
views were well-aligned with the intended cog-
nitive levels and well-distributed, though not all
Bloom levels were equally represented. In contrast,
Math Visualizer interviews exhibited the lowest
CIQS (0.82), mainly due to a lower effectiveness
score, suggesting that responses did not consis-
tently reach the cognitive depth expected from the
questions. Grandfather Game fell in the middle
CIQS (0.84), showing relatively strong alignment
but narrower cognitive coverage.

This automated scoring approach enables an ob-
jective comparison of interviews based on cogni-
tive dimensions. However, cognitive depth is only
one aspect of interview quality. As part of future
work, we aim to explore additional metrics, such
as emotional engagement, relevance to interview
goals, procedural coverage, and question neutrality.
These dimensions emerged from the feedback we

received during our interview sessions on differ-
ent topics, where participants highlighted aspects
that contributed to more meaningful and engaging
conversations. These dimensions may offer a more
complete view of interview quality beyond what
Bloom’s taxonomy captures.

4.3 Evaluating the Alignment Between CIQS
and Human Rankings

Figures 3-5 compare CIQS-based rankings with
human expert judgments. Each CIQS score reflects
a weighted combination of ES, BCS, and BDS.

In AI Regulation, the expert ranked Interview 3
as the most effective and Interview 1 as the least,
while our CIQS-based scoring produced the op-
posite order and ranked Interview 3 as the most
effective, highlighting a misalignment between cog-
nitive structure (as captured by CIQS) and the ex-
pert’s judgment, which was based on how well each
interview uncovered useful information about the
user and their practices and needs. For Math Visu-
alizer, Interview 5 ranked highest by CIQS due to
perfect BCS and strong ES, while the expert pre-
ferred Interview 2 for its insightfulness. In Grand-
father Game, both approaches aligned on Interview
1 as the best, though discrepancies appeared in the
middle ranks. Notably, further analysis revealed
that Bloom Coverage Score more closely aligned
with human expert rankings than CIQS or other in-
dividual metrics. BCS showed moderate to strong
correlations with expert judgments across all do-
mains: (ρ = 0.50) in Math Visualizer, (ρ = 0.90)
in Grandfather Game, and (ρ = 0.71) in AI Regu-
lation. These results suggest that interviews with
broader cognitive coverage were more likely to
be perceived as informative and high-quality by
experts, contradicting our initial hypothesis that
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Model Accuracy Macro Precision Macro Recall Macro F1 Weighted F1
GPT-4o-mini Zero-shot 0.537 0.584 0.537 0.511 0.521
GPT-4o-mini Few-shot 0.491 0.642 0.481 0.477 0.453
GPT-4o-mini Chain-of-Thought 0.518 0.529 0.527 0.494 0.518

Table 3: Performance of GPT-4o-mini models across prompting techniques.

Metric AI Regulation Math Visualizer Grandfather Game
Effectiveness Score 1.01 0.84 1.00
Bloom Coverage Score 0.71 0.80 0.64
Distribution Balance Score 0.80 0.82 0.75
Cognitive Interview Quality Score 0.88 0.82 0.84

Table 4: Cognitive evaluation scores across interview subjects with highest scores in bold.

Figure 3: AI Regulation: CIQS vs Human Rankings.

Figure 4: Math Visualizer: CIQS vs Human Rankings.

Effectiveness Score would play the most influen-
tial role in overall evaluation. To further investi-
gate this we performed a linear regression to learn
the coefficients for Equation 3 that best align with
the human expert rankings. We found that BCS
had the highest coefficient but that values varied
across domains with ES and BDS less consistently
in their impact. While more work is needed to de-
termine which factors most correlate with human
judgments, these preliminary results suggest that
BCS is more impactful and that other attributes of
the topic may be relevant in expert decisions (for
full regression details, see Appendix C).

The results suggest that While CIQS captures

Figure 5: Grandfather Game: CIQS vs Human Rank-
ings.

the cognitive structure of interviews, human eval-
uations often consider additional factors such as
relevance, clarity, emotional engagement, and pro-
cedural detail. This highlights the value of combin-
ing cognitive metrics with qualitative insights for a
more complete assessment of interview quality.

5 Discussion

RQ1: Our results suggest that interviews cover-
ing a broader range of Bloom’s cognitive levels
(higher BCS) tend to be ranked more favorably by
the human expert, indicating greater cognitive di-
versity. This supports the hypothesis that cognitive
richness, particularly through varied questioning
strategies, enhances the quality of interviews in the
Design Thinking context. However, alignment with
human expert rankings was not always consistent,
implying that additional qualitative dimensions (for
example, emotional engagement and the inclusion
of procedural information) also influence perceived
interview quality.

RQ2: The outputs from LLaMA and GPT-4o-
mini demonstrated partial alignment with human
annotations, showing that LLMs have the poten-
tial to support cognitive level classification. GPT-
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4o-mini, in particular, showed stronger agreement
with human labels across prompting strategies, es-
pecially in zero-shot settings. However, inconsis-
tencies across domains and between models re-
veal that current LLMs are not yet fully reliable
as standalone evaluators. While their performance
is promising for future automation efforts, fine-
tuning and prompt engineering may be necessary
to achieve consistent, human-comparable accuracy.

RQ3: The CIQS rankings showed partial align-
ment with expert human evaluations, with higher
consistency in the Grandfather Game domain (τ
= 0.40) and greater divergence in Math Visualizer
(τ = –0.8) domain. These differences suggest that
while CIQS effectively captures the cognitive struc-
ture and balance of interviews, human experts often
consider additional qualitative dimensions, such as
emotional engagement, relevance to user needs,
and the inclusion of procedural information, that
are not directly encoded in cognitive metrics. As
such, CIQS serves as a valuable and scalable start-
ing point for evaluating interview quality, but it
should complement qualitative assessments.

6 Conclusion & Future Work

This study introduced a cognitive evaluation frame-
work for interview quality based on Bloom’s Tax-
onomy, applied within the context of Design Think-
ing. We proposed the CIQS, a composite metric
incorporating effectiveness, coverage, and distribu-
tion of cognitive levels. Using human-annotations,
we collected and evaluated 15 interviews across
three domains to measure the cognitive diversity
and structure of interview content. We compared
CIQS rankings with expert judgments, finding that
while they are partially aligned, BCS correlates
more strongly with human rankings than CIQS or
other individual metrics, suggesting that breadth is
especially valued by experts. GPT-4o-mini, partic-
ularly in zero-shot, showed the highest agreement
with human Bloom level annotations (up to τ =
0.58), outperforming LLaMA-3-8B-Instruct.

These findings suggest that while CIQS effec-
tively captures the cognitive structure of interviews,
human evaluations often prioritize additional fac-
tors such as relevance to user needs, clarity, emo-
tional engagement, and procedural depth. This
highlights the importance of complementing cog-
nitive metrics with broader qualitative dimensions
for a more comprehensive assessment of interview
quality. In future work, we plan to refine CIQS by

exploring alternative weighting, incorporating addi-
tional qualitative indicators, and fine-tuning LLMs
for more accurate, autonomous classification of in-
terview content based on Bloom’s Taxonomy. To
support continued research, we will release our cor-
pus of 726 question–response pairs spanning three
domains to support future work.

Limitations

The main challenge of this and any study of De-
sign Thinking effectiveness is the maxim “savour
surprises”, by which design thinkers mean that the
most important information is usually the informa-
tion which was not anticipated and not planned for.
This is because this information is the most likely
to invalidate a design made without in-depth user
interviews, or to lead to a new product category
which was not previously contemplated Furr and
Dyer (2014). At this stage, we are not trying to
identify such surprises, but ultimately, a research
program aiming to improve design education will
have to address it.

A more immediate limitation of this study is the
use of a single human expert. Experts in teach-
ing and evaluating design thinking are uncommon
and in demand in academia and industry. To in-
crease the number of evaluators, it will be nec-
essary to streamline the process so that it is less
time-consuming.

Another limitation of this study is that even the
human evaluator is not evaluating what we ulti-
mately care about: the acceleration of the innova-
tion process through better design interviews. We
do not know whether interviews ranked highly by
human experts actually lead to higher rates of in-
novation. Once automated metrics are found with
higher levels of agreement with human experts, val-
idation studies including the full development cycle
from initial interviews to product validation will be
necessary.

Role-playing can be challenging depending on
the task. For our AI interviews, we noticed a lack
of procedural information and emotion, where we
expected more of both. We think it is not trivial
for most people to role-play older individuals or
versions of themselves. We suggest future work in
this direction borrows from more established fields
to set up experiments involving perspective-taking,
e.g. work on empathy Batson et al. (2002).

Finally, since our intermediate goal is to produce
tools useful for teaching design skills, it is disap-
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pointing that the proprietary LLM greatly outper-
formed the open-source LLM. Many school boards
and higher education institutions will be reluctant
to submit their students’ data to proprietary LLMs
which they cannot control. In our study, we used
role-playing by sophisticated professionals, gradu-
ate students and upper-year undergraduate students
to produce a data set for training and evaluation.
In teaching scenarios, it would be much harder to
insure that personal information would not lead
into the interviews. Moreover, when you initially
describe the data set, you need to use similar lan-
guage to say that this data is designed to not include
personal information. Finally, a data set generated
using role-playing may be fundamentally different
from real design interviews in a way which effects
the validity of the metrics.

While Bloom’s Taxonomy provides a useful scaf-
fold for assessing cognitive engagement, it has
known limitations. The taxonomy does not ex-
plicitly model underlying mental processes such
as perception, memory, and intuition, and some
categories may overlap in practice—for example,
extrapolation under “Understand” often resembles
“Apply.” Furthermore, the hierarchy between “Ap-
ply”, “Analyze”, and “Create” has been critiqued
as insufficiently nuanced. Future extensions could
explore integrating more adaptive taxonomies that
better capture the fluid and context-dependent na-
ture of reasoning in design interviews (Madaus
et al., 1973).
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7 Appendix

A Prompts Used for LLM Classification

This appendix provides the exact prompts used
to classify interview questions and responses into

cognitive levels according to Revised Bloom’s Tax-
onomy, using different prompting techniques.

Zero-Shot Prompt

You are a cognitive science expert that categorizes
text into one of the Revised Bloom’s Taxonomy
levels.
You must respond with only one word: one of the
following levels: Remember, Understand, Apply,
Analyze, Evaluate, or Create.
Do not provide any explanation, reasoning, or ad-
ditional text. Only return the level name in the
following format.
Classification: <One of the six Bloom’s levels>

Few-Shot Prompt

You are a cognitive science expert trained in Re-
vised Bloom’s Taxonomy.
Classify the following text according to Revised
Bloom’s Taxonomy levels: Remember, Under-
stand, Apply, Analyze, Evaluate, or Create.
Examples:
Text: "List the main components of design think-
ing."
Classification: Remember
Text: "Explain the theory of cognitive load."
Classification: Understand
Text: "How would you apply Pythagoras’ theorem
to calculate the height of a building?"
Classification: Apply
Text: "Identify patterns in customer behavior based
on the provided dataset."
Classification: Analyze
Text: "Evaluate the effectiveness of renewable en-
ergy sources compared to fossil fuels."
Classification: Evaluate
Text: "Design a new marketing strategy for launch-
ing a product."
Classification: Create
Do not provide any explanation, reasoning, or ad-
ditional text. Only return the level name in the
following format.
Classification:<One of the six Bloom’s levels>

Chain-of-Thought Prompt

You are a cognitive science expert in Revised
Bloom’s Taxonomy.
Your task is to classify a given text into one of the
Revised Bloom’s Taxonomy cognitive levels:
Remember, Understand, Apply, Analyze, Evaluate,
or Create.
Text: {input-text}
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First, explain your reasoning step by step based on
what the text requires cognitively.
Then, based on your explanation, select the most
appropriate Bloom’s level from (Remember, Un-
derstand, Apply, Analyze, Evaluate, Create) using
the following format:
Classification: <One of the six Bloom’s levels>
Note: For all classifications, the following model
parameters were used:
Temperature = 0.0, Max tokens = 500.

B Description of Interview Topics

This study includes interviews conducted on three
different design topics, each selected to represent
different cognitive and contextual demands. The
topics were used to simulate early-stage Design
Thinking sessions and assess the cognitive qual-
ity of interview interactions.The participants in this
study included a mix of students or recent graduates
and university professors, some of whom had prior
experience with Design Thinking. To maintain
anonymity, they were instructed to avoid disclosing
any real personal information. Depending on the
interview topic, participants were asked to adopt
specific roles. In the Math Visualizer interviews,
they were asked to act as university students; in the
Grandfather Game interviews, they assumed the
perspective of older adults; and in the AI Regula-
tion interviews, they portrayed individuals using
AI platforms in organizations such as schools or
businesses. Interviewers were instructed to engage
naturally while focusing on uncovering user needs
and generating meaningful insights.

B.1 AI Regulation

This topic explores public perceptions, concerns,
and expectations surrounding the regulation of ar-
tificial intelligence. The interviewees were asked
about their understanding of AI technologies, trust
in regulatory frameworks, and suggestions for eth-
ical oversight. The domain encourages abstract
reasoning and evaluative thinking about policy and
technology.

B.2 Math Visualizer

This topic focuses on the use of visualization tools
in learning mathematics. Participants discussed
their personal experiences with visual learning, the
challenges they face in understanding mathematical
concepts, and ideas for improving visual interfaces.

B.3 Grandfather Game
This topic centers on designing a game that would
appeal to older adults. Participants were asked to
reflect on their childhood memories, personal in-
terests, and previous gaming experiences to inform
the creation of engaging and age-appropriate game
concepts.

C Linear Regression for CIQS

We can predict the human rankings of design
thinking interviews with the CIQS score by learn-
ing coefficients for Equation 3. We predict the
coefficients with intercept for each conversation
topic. The equation for the Grandfather Game
topic is shown in Equation 4 and yields R2 = 0.51
which matches human ranking. Similarly, for AI-
Regulation, we get R2 = 0.99 for Equation 5.
Lastly, for the Math Visualiser we get Equation 6
with R2 = 0.58. Here we are predicting the rank
(lower is better) with the same terms, which is dif-
ferent than ranking by the maximum score as we
did in the main part of the paper, however, it serves
the same function and supports our claims that BCS
is the most important term and the impact of factors
appears to vary with the domain.

CIQS = − 11.0× ES− 25.0× BCS

+ 9.2× BDS + 22.9 (4)

CIQS = − 13.6× ES− 3.6× BCS

+ 53.5× BDS− 23.1 (5)

CIQS = 21.0× ES− 18.8× BCS

− 13.0× BDS + 11.1 (6)
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Abstract

Easy language and text simplification are cur-
rently topical research questions, with impor-
tant applications in many contexts, and with
various approaches under active investigation,
including prompt-based methods. The estima-
tion of the level of difficulty of a text becomes
crucial when the estimator is employed inside
a simplification workflow as a quality-control
mechanism. It can act as a critic in frameworks
where it can guide other models, which are re-
sponsible for generating text at a specified level
of difficulty, as determined by the user’s needs.
We present our work in the context of simpli-
fied Finnish. We discuss problems in collecting
corpora for training models for estimation of
text difficulty, and our experiments with estima-
tion models. The results of the experiments are
promising: the models appear usable both for
assessment and for deployment as a component
in a larger simplification framework.

1 Introduction

In the US1 and in the European Union,2 legal
pressures are emerging with laws that require
government-affiliated agencies, as well as private-
sector organizations in certain situations, to use
clear communication that members of the public
can understand. Workflows that involve easy lan-
guage are already in official use at various levels
of functioning in the public and private sectors in
20 countries in the EU. Easy language also plays
a key role in second-language (L2) education, in
particular—simplification of text to a level appro-
priate for a given learner is a key component of
personalization in teaching. Simplification itself is
a widely researched area in NLP.

In this paper, we take the position that meth-
ods for evaluating and assessing the difficulty level
of a piece of text are prerequisite to methods for

1PlanLanguage.gov
2European Accessibility Act

Figure 1: Text simplification using GPT-4o guided
by level-aware feedback from a difficulty classifier as
critic.

simplification—since in the absence of effective
evaluation, simplification methods cannot be effec-
tively validated or falsified.

The task of assessing the level of difficulty of
the text can be framed as classification or (more ap-
propriately) as regression—labeling a piece of text
with a difficulty level, such as, e.g., a CEFR level.3

We will refer to models performing this task as
difficulty models. These models can serve various
purposes in language learning, such as estimating
the difficulty level of texts that learners encounter.
In this work, we use difficulty models to guide and
evaluate text simplification pipelines performed by
a large language model (LLM), specifically GPT-
4o from OpenAI (Hurst et al., 2024).

Our simplification pipeline (Figure 1) employs
a difficulty model that serves as a critic: it eval-
uates the difficulty level of the LLM output. If
the resulting text exceeds the target level, feedback
will be sent to the LLM to try again. The feedback
includes the resulting text and its estimated level.
The pipeline runs several iterations; if the result-
ing text remains harder than the target level after
N iterations, the process terminates, and an error
message is returned to the user.

We train two BERT-based difficulty models:
3CEFR: Common European Framework of Reference for

Languages.
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one regression model, which predicts continuous
scores that are later mapped to CEFR levels, and
one ordinal classification model, which directly
predicts the CEFR level of the input text. Our
results show that both models improve the perfor-
mance of the simplification pipeline over a baseline
that runs without any critical guidance. The ordinal
classification model proves to be a more effective
critic for the LLM. Our hypothesis is that it aligns
better with the difficulty assessment task because
of its ordinal (ranking) nature.

The paper is organized as follows: Section 2
presents an overview of related work; Section 3
discusses the data we use to train the assessment
models; Section 4 presents the experimental setup
for the difficulty assessment; Section 5 presents the
experiments with controlling the behavior of the
LLM via a critic that assesses difficulty; Section 6
discusses the results and concludes the paper.

2 Related Work

Assessment of text difficulty, often referred to as
readability assessment, has a long history in both
education and in NLP. Traditional readability for-
mulas, such as the Flesch-Kincaid Grade Level and
Flesch Reading Ease, and the Lexile framework,
based on item response theory (IRT), provide sim-
ple numeric scores for text difficulty (Kincaid et al.,
1975; Stenner, 1996). These methods are easy to
apply, but they rely on surface-level features and do
not directly account for deeper lexical or syntactic
complexity.

Early NLP readability systems used supervised
models with hand-crafted linguistic features, in-
cluding frequency word lists, depth of parse trees,
grammatical constructions, and discourse struc-
tures. Collins-Thompson and Callan (2004) intro-
duced a language modeling approach to predict
reading difficulty for a tutoring system. Vajjala and
Meurers (2012) incorporated features from Sec-
ond Language Acquisition research to better serve
language learners. For Russian, Laposhina et al.
(2018) introduced a feature-based readability tool
available online and widely used by L2 teachers.

Azpiazu and Pera (2019) present a multilingual
readability model using a hierarchical attention net-
work that learns to attend to difficult parts of a text
and can implicitly learn factors like semantic dif-
ficulty or subtle syntactic cues. These models can
be trained on proficiency-labeled data (e.g., with
CEFR levels) to detect nuances of text difficulty

specific to L2 readers (e.g.„ idiomatic language).
Recent work has shown that a fine-tuned BERT can
outperform strong feature-based baselines by a sig-
nificant margin in classifying texts by grade level
or proficiency level (Martinc et al., 2021). Sharoff
(2022) investigated compared the performance of
Transformer-based models for predicting text diffi-
culty vs. assessment using linguistic features, such
as frequency of conjunctions, discourse particles,
etc., for English and Russian.

Early pipeline approaches used readability clas-
sifiers to decide when to simplify: for example,
Gasperin et al. (2009) trained a model to identify
sentences that need simplification based on lin-
guistic complexity features. Aluísio et al. (2010)
developed readability assessment tools to support
simplifying texts for low-literacy readers. Read-
ability metrics have also served as simplification
objectives in rule-based systems— Woodsend and
Lapata (2011) incorporate a Flesch-Kincaid grade
formula into an optimization-based simplifier.

Readability predictors have been used as feed-
back in generation loops—Alkaldi and Inkpen
(2023) use a readability classifier in a reinforce-
ment learning framework to iteratively simplify a
text until it reaches the desired difficulty. More
recently, large-scale neural systems have combined
reading level prediction with controllable genera-
tion techniques (Agrawal and Carpuat, 2023).

3 Data

First, we describe the data used for training and
evaluating the difficulty models and for the simpli-
fication pipeline. A major challenge is the scarcity
of annotated data in Finnish for text simplifica-
tion and difficulty prediction. To address this, we
use a combination of Finnish texts annotated with
difficulty levels (“native” data), and Russian texts
annotated with difficulty levels and then translated
into Finnish using machine-translation models.

3.1 Native Data

We use two collections of native Finnish data. The
first consists of 1113 documents manually anno-
tated by teachers of Finnish as a second language
(L2), see “Manual” in Table 1. These are primarily
informative and literary texts: the former covering
topics such as human rights, social benefits, etc.;
the latter feature classic Finnish literature and frag-
ments of the Bible. The “Score” column in Table 1
shows the numerical values we assign to CEFR
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Source Level Score # Docs # Words # Sent.

SM easy 1.5 153 294 9.3
YLE- medium 3.5 766 249 8.7
selko
HS hard 5.5 715 598 13.7
YLE hard 5.5 703 480 14.5

Manual A2 2.0 363 237 10.9
B1 3.0 229 204 11.0
B2 4.0 154 221 11.8
C1 5.0 192 272 17.5
C2 6.0 175 189 19.9

Table 1: Native Finnish data.

levels, which are later used in regression models.
The second collection contains 2337 texts from

Suomen Mestari (SM), a Finnish textbook, and
YLE selkosuomeksi news,4 as well as news articles
from the major newspapers YLE and Helsingin
Sanomat (HS). These texts were not manually an-
notated. Instead, we make a coarse assumption
based on the source: all texts from SM are labeled
as easy, texts from YLE-selko as medium, and texts
from YLE and HS as hard. We then suppose these
difficulty levels roughly correspond to CEFR levels
A1-A2, B1-B2, and C1-C2, respectively. Although
this source-based annotation is a simplification—
individual texts may vary in difficulty—it provides
a practical heuristic in the context of limited human
resources for annotating data.

3.2 Translated Data
Having some amount of Russian data annotated for
difficulty, we translate it into Finnish to extend the
size of the training set.

We use two sources of annotated Russian texts:
1. the RuFoLa corpus (Laposhina, 2020), which
contains texts from coursebooks designed for learn-
ers of Russian as a foreign language; 2. the Ru-
Adapt corpus (Dmitrieva and Tiedemann, 2021), a
parallel Russian–Simple Russian dataset of texts
adapted for learners of Russian as a foreign lan-
guage. For our study, we use only the literary (Zla-
toust) and encyclopedic sub-corpora, see Table 2.
The “Score” column again shows the mapping be-
tween CEFR levels and numeric labels used later
for a BERT-based regression model.

We filter out texts shorter than 10 words, as
such a short context can negatively affect transla-
tion quality. We translated the Russian texts into
Finnish using a model from OpusMT.5 We should

4News in Simple Finnish: yle.fi/selkouutiset
5The Tatoeba model for Slavic-Finnish.

Source Level Score # Docs # Words # Sent.

RuFoLa A1 1.0 301 136 8.8
Encyclop. A1-A2 1.5 282 31 12.3
RuFoLa A2 2.0 466 183 10.5
Zlatoust A2-B1 2.5 96 50 8.2
RuFoLa B1 3.0 3300 91 12.2
Zlatoust B1-B2 3.5 1677 54 15.8
Zlatoust B2 4.0 834 228 12.8
RuFoLa C1 5.0 485 363 14.9
RuFoLa C2 6.0 29 385 16.5

Table 2: Annotated documents in Russian.

Split # Documents Source

Training 6248 MT
2221 Native

Validation 1222 MT
364 Native

Test 865 Native

Table 3: Data splits.

note that machine translation does not guarantee
that a text in Russian will remain at the same dif-
ficulty level after translation into Finnish. This
problem merits a dedicated research experiment.
The entire dataset was split into 3 sets: training,
validation, and test, see Table 3. The test set—860
texts—contains only native documents, and most
documents are manually annotated.

4 Experiments

To establish an interpretable baseline for document-
level difficulty prediction, we first train a feature-
based regression model. This allows us to evaluate
how well linguistic features alone can capture text
difficulty, and later compare its performance to that
of less interpretable deep-learning approaches.

4.1 Feature-based Regression

In this experiment, we use only native Finnish texts
to train a Ridge regression model that predicts the
difficulty level of a document. The target labels
are mapped to the following numeric values: 0.0
(easy), 1.0 (medium), and 2.0 (hard). Manually
annotated documents are mapped to the same nu-
meric values: A1-A2 to 0.0, B1-B2 to 1.0, and
C1-C2 to 2.0. We use these numeric values instead
of the scores presented in Table 1 for simplicity.

We use 179 features to capture linguistic charac-
teristics of the texts. These include normalized
averages of count of POS tags, depth of parse
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tree, sentence length, word distribution across
ten frequency bins, and the proportion of out-of-
vocabulary (OOV) words.6 The features also in-
clude the counts of over 160 linguistic constructs,
covering grammatical features—e.g., tense, case,
number, etc.—and syntactic patterns—e.g., neces-
sity constructions, government structures, etc. The
extraction of constructs from text is performed
using the text processing pipeline in the Revita
language learning system (Katinskaia et al., 2018,
2017; Hou et al., 2019); see examples of linguistic
constructs and how they are extracted from text
in (Katinskaia et al., 2023). Details of the features
appear in Appendix D.

We evaluate three variants of the baseline model:

(A) using all 179 features,
(B) using a bootstrap selection of 104 features,
(C) performing feature selection by training a

Lasso regression model.

More details on the models are presented in Ap-
pendix A. As all models exhibited comparable per-
formance, we adopt model (B) as the baseline in
subsequent analyses due to its smallest feature set.

4.1.1 Results
Evaluation was performed using only native
Finnish texts. The baseline model (B) achieved
a mean absolute error (MAE) of 0.27 and a root
mean squared error (RMSE) of 0.35. Figure 2
shows the distribution of the predicted scores in
the three coarse levels of difficulty. The plot shows
that easy texts tend to get scores higher than 0.0.
This could be explained by the fact that we have
much fewer easy texts in the native corpus, as well
as by the assumption that all SM texts should be
labeled easy, while in fact some of these texts are
of intermediate difficulty. Nevertheless, the results
provide a strong baseline for comparison with more
complex models used in subsequent experiments,
which offer less interpretability.

4.2 BERT-based Regression
We extend the BERT model for regression-
based difficulty prediction, integrating custom loss
weighting to handle class imbalances in the train-
ing data. The model is based on BERT, whose out-
put layer is replaced with: (a) a pre-classification
layer that projects BERT’s pooled output into a
lower-dimensional space, has ReLU activation and

6Based on a large Finnish corpus, we build a list of words
sorted by frequency and grouped into frequency bins.

Figure 2: Feature-based regression baseline model
(C). Predicted regression scores across difficulty lev-
els: Easy (0), Medium (1), and Hard (2).

Dropout, and (b) a final feedforward regression
head that predicts a continuous difficulty score.

The model is trained using weighted mean
squared error (MSE) loss. To prevent the model
from being biased toward the most frequent diffi-
culty levels in the training data, sample weights are
computed inversely proportional to the frequency
of each difficulty level. These weights are then
normalized to ensure they sum to 1.

The model was trained on all training data pre-
sented in Table 3, using the Adam optimizer, sepa-
rate optimization parameters for the BERT param-
eters and the linear layers, weight decay = 0.01,
cosine scheduler for the learning rate, and early
stopping.

4.2.1 Results
The evaluation was again performed on the test
set containing native Finnish texts. The BERT-
based regression model achieved MAE 0.13 and
RMSE 0.29. Figure 3 shows the distribution of
the predicted scores at all CEFR levels in the test
set. The number of documents per level is shown
in the “Support” column of Table 4. As we can
see from the plot, for some of the difficulty levels
(particularly, for level A1-A2), predicted scores
tend to be higher than the true labels, indicating
some bias toward overestimation.

To assess the classification performance, we
map real-valued predictions to the nearest CEFR
level. The resulting confusion matrix is in Fig-
ure 4. Class-wise precision, recall, and F1-scores
are in Table 4. Overall, the model performs well
across most CEFR levels. The lowest F1-score
is observed for the A1-A2 level, which also has
the smallest number of examples in the test set.
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Figure 3: Predicted regression scores across difficulty
levels using BERT-based regression model.

Figure 4: Confusion matrix after mapping difficulty
scores to CEFR levels.

Only 1.3% of the test documents were assigned a
predicted level that differs from the true level by
more than one CEFR level. We consider devia-
tions within one level to be acceptable, given the
inherent difficulty and subjectivity of the task.

We examine the agreement between the feature-
based regression model and the BERT-based re-
gression on the test set, and the agreement of both
models with the true labels. The predictions of
the two models show a strong correlation: Spear-
man’s rank correlation is 0.76, and Pearson’s corre-
lation is 0.83; Quadratic Weighted Kappa (QWK)
is 0.84.7 This suggests a high degree of both rank-
order and linear agreement between the models,
despite being trained on different datasets and us-
ing different features.

The BERT-based model achieves near-perfect

7Predictions from the feature-based model were linearly
rescaled to match the 1–6 scale of the BERT-based regression.

Level Precision Recall F1-score Support

A1-A2 1.00 0.78 0.88 32
A2 0.96 0.95 0.95 98
B1 0.85 0.95 0.90 60
B1-B2 1.00 0.98 0.99 183
B2 0.94 1.00 0.97 48
C1 0.98 0.98 0.98 59
C1-C2 1.00 1.00 1.00 340
C2 1.00 1.00 1.00 45

Table 4: Performance on the test set after mapping
difficulty scores to CEFR levels.

Model Pearson Spearman QWK

BERT vs. True 0.98 0.95 0.98
Feature vs. True 0.84 0.83 0.81

Table 5: Correlation and agreement of feature-based
baseline model and BERT-based regression model with
true labels.

agreement with the true difficulty labels (see Ta-
ble 5), where the gain in QWK suggests that BERT
is particularly better at matching difficulty lev-
els. In contrast, the feature-based model demon-
strates good but notably lower performance (0.98
vs. 0.81). Both models are available for testing.8

4.3 BERT-based Ordinal Classification

This model extends BERT for rank-consistent ordi-
nal regression (Cao et al., 2020), a task in which la-
bels have a meaningful order but unknown interval
distances. Unlike standard classification, ordinal
regression models the probability of a response ex-
ceeding certain thresholds, making it particularly
useful for difficulty assessment.

The model predicts P(Y > k) for each threshold
k using a modified BERT architecture, where a lin-
ear classifier estimates the probability that the input
exceeds a set of ordinal thresholds. In particular,
given an input sequence, we pass the pooled out-
put of BERT through a dropout layer and a linear
classification head of size (hidden_dim→ K−1),
where K is the number of CEFR levels.

For K ordinal labels, the model outputs K − 1
logits for each threshold. Each logit represents the
probability:

P(Y > k | X)

for each difficulty threshold k, where X represents
the BERT-generated input representation.

8revita.helsinki.fi/selkomitta
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Since ordinal regression differs from standard
classification, we use a binary cross-entropy (BCE)
loss adapted for ordinal constraints:

• Ordinal Target Construction: For a batch of
size N and K classes, we construct a binary
target matrix T ∈ {0, 1}N×(K−1), where
each element Ti,k = I[yi > k] indicates
whether the true label exceeds threshold k.

• Weighting Mechanism: A weight matrix
W ∈ RN×(K−1) assigns higher penalties to
more severe misclassifications. This can be
scaled by a global hyperparameter α to con-
trol the influence of the weighting.

The weighted ordinal loss function is defined as:

L =
1

N

N∑

i=1

si

K−1∑

j=1

wi,j · BCE(σ(zi,j), ti,j)

where:

• N is the batch size.
• zi,j is the model logit for level j.
• σ(z) is the sigmoid function.
• ti,j is the binary target: 1 if the true label

exceeds threshold j, 0 otherwise.
• wi,j is a weight penalty based on label dis-

tance
• si is an additional sample-level weight to ad-

dress class imbalance.

The weights wij are given by:

wij = 1 + α · |yi − j|, α > 0

where yi is the true ordinal label. This weighting
penalizes predictions that are farther from the cor-
rect class more heavily. In our experiments, we set
α = 0.5.

By modeling thresholds rather than treating
classes as independent, the loss preserves ordinal
relations. Furthermore, the model learns a proba-
bility distribution over ranks, capturing uncertainty
rather than committing to hard class decisions.

To obtain the predicted ordinal class, we apply
a sigmoid activation to the model’s output logits,
yielding threshold probabilities P(Y > k) for each
k = 1, . . . ,K − 1. The predicted class ŷ is then
calculated by counting how many of these proba-
bilities exceed the threshold of 0.5:

ŷ =

K−1∑

k=1

I [P(Y > k) > 0.5]

Accuracy 0.76 RMSE 0.57
MAE 0.28 ρ 0.89
QWK 0.87 τ 0.83

Table 6: Results of ordinal classification.

Here, I[·] denotes the indicator function, which
returns 1 if the condition is true and 0 otherwise.

Intuitively, this approach treats the predicted
class as the number of ordinal thresholds that the
input is likely to exceed with confidence greater
than 0.5—higher classes correspond to exceeding
more difficulty levels.

During training, we apply different learning
rates for BERT layers and for the classifier head.
Optimization is performed using AdamW. The
learning rate is scheduled using a cosine annealing
strategy with a linear warm-up over the first 10%
of the training steps. The model is trained using
the same data as for BERT-based regression. Since
our data is not balanced over many classes for clas-
sification, we map the labels to 6 classes only: A1,
A2, B1, B2, C1, and C2.

4.3.1 Results
The ordinal critic performs worse in terms of stan-
dard classification metrics on the same test set of
865 documents, see Table 10 and Figure 7 in Ap-
pendix B. The model achieves an accuracy of 0.76,
see Table 6. However, metrics such as accuracy do
not fully capture ordering information.

To better account for the severity of misclassifi-
cations, we report the Mean Absolute Error (MAE),
which measures the average absolute difference be-
tween the predicted and the true labels—penalizing
larger mistakes more heavily than smaller ones.
MAE of 0.28 indicates that, on average, the pre-
dicted level deviates from the ground truth by about
a quarter of a CEFR level. Analyzing the predic-
tion errors in more detail, we find that 76% of the
predictions exactly match the true levels, while
20% of the predictions are within one level of the
ground truth. Only 4% of the documents are mis-
classified by more than one level—a deviation we
consider “intolerable” due to the impact on down-
stream applications. The RMSE of 0.57, which
penalizes larger errors more heavily, confirms the
relatively low deviation.

In addition to accuracy, we report three metrics
that better reflect the ordinal nature of CEFR levels;
they include absolute- and rank-based measures,
as well as agreement-based metrics.
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Setup # Documents # Simplifications Accuracy (%)

Baseline (no critic) 209 627 41.18
Regression Critic 212 634 50.00
Ordinal Classifier Critic 196 588 71.12

Table 7: Accuracy of simplification across different critic strategies. Each document is simplified to 3 target levels:
A1, A2, and B1. A simplification is considered correct if the critic assesses it to match the target level.

• Spearman’s rank correlation coefficient
(ρ = 0.89), which suggests a strong mono-
tonic relationship between the predicted and
true rankings. A higher ρ value indicates bet-
ter ordinal agreement.

• Kendall’s Tau (τ = 0.83), which confirms
high ordinal agreement and is especially ro-
bust for small test sets.

• QWK of 0.87, which reflects substantial
agreement between the predicted and true la-
bels, while penalizing larger errors more heav-
ily than smaller ones.

Taken together, these results indicate that the
model not only achieves a high proportion of exact
matches, but also preserves the ordinal structure of
the CEFR scale with strong rank correlation and
consistent agreement.

5 LLM-based Text Simplification

In this section, we describe how we use BERT-
based difficulty models to assist LLM-based text
simplification. These models act as critics to guide
the simplification pipeline (see Figure 1):

• The original level of the input text is either
assessed by the critic or manually labeled.

• The LLM receives the input text, the target
level, and a prompt describing the target level.

• The LLM attempts to generate a simplified
version of the text.

• The critic assesses the difficulty level of the
output.

• If the target level is reached, the process is
terminated.

• Otherwise, the LLM receives its previous out-
put, the achieved level, the target level, and
an updated prompt.

• The process is repeated for a maximum of 5
iterations.

When using the BERT-based regression model
as a critic, its continuous difficulty scores are

mapped to discrete CEFR levels for compatibil-
ity with the feedback loop. When using the ordinal
classification model, predictions can be used di-
rectly without mapping.

If the output is still above the target adjective af-
ter 5 iterations, the process stops. At each step, the
LLM gets the feedback: This is your previous
attempt to simplify the text to level X.
The critic says your simplification is Y.
Try harder to reach X.

5.1 Evaluation with and without Critic

We evaluate three variants of our guided text sim-
plification pipeline: (1) Baseline, where the model
performs one-shot simplification without critic
feedback; (2) Regression-based (REG) Critic,
where the critic is a BERT-based regression model;
and (3) Ordinal Classification (ORD) Critic,
where the critic is an ordinal classification model.

The evaluation was conducted on 220 manu-
ally annotated documents from the test set, whose
original levels are above B2. Simplifications were
generated to 3 target CEFR levels: A1, A2, and B1.
The results are summarized in Table 7.9

The baseline system frequently produced simpli-
fications that were off by one CEFR level, with
common confusions such as A1 vs. A2 or A2
vs. B1. Adding the REG critic led to a moder-
ate improvement in accuracy (+9%), suggesting
that iterative refinement is beneficial. However, the
most substantial improvement came from the ORD
critic, which achieved 71.12% accuracy—nearly
30 percentage points higher than the baseline.

These results indicate that feedback from the or-
dinal critic aligns more effectively with the CEFR
framework and better guides the LLM toward the
target level. Table 8 shows that the LLM generates
more correctly simplified outputs with the ordinal
critic than with the regression critic, except for the
B1 target level—where it tends to generate more

9Several simplification pipelines failed due to random rea-
sons; they were not restarted, hence the number of simplifica-
tion experiments in Table 7 is different for different critics.
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Target Generated BL REG ORD

A1 A2 18.9 7.9 8.0
A1 A2-B1 — 8.7 —
A1 B1 5.6 7.9 0.0
A1 B1-B2 — 1.6 —

A2 A1 4.6 0.0 3.4
A2 B1 9.9 9.8 1.1
A2 B1-B2 — 5.5 —
A2 B2 0.0 1.3 0.0

B1 A1 1.9 0.0 0.9
B1 A2 13.6 1.4 15.1
B1 B2 2.9 3.9 0.0
B1 B2-C1 — 1.4 —

Table 8: Percentage of generating simplifications at
an incorrect level, across three simplification pipelines.
Each row indicates “incorrect” simplifications, where
the generated level does not match the target level.

Target Average Maximum
Level Critic Iterations Iterations

A1
Regression 2.95 5
Ordinal 2.71 5

A2
Regression 2.86 5
Ordinal 2.21 5

B1
Regression 2.74 5
Ordinal 1.87 4

Table 9: Average number of simplification iterations per
target CEFR level using regression vs. ordinal critic.

A2-level outputs when guided by the ordinal critic.
We also report the average number of iterations
required to reach the target level in Table 9: using
the ORD critic requires fewer iterations on average,
especially for the B1 target.

For all test documents, we tracked the simplifica-
tion process performed by the LLM by measuring
the intermediate CEFR levels at each iteration, and
the cosine similarity between the intermediate sim-
plification and the original input.10 Figures 5 and 6
present the mean and standard deviation of diffi-
culty and similarity scores across all documents,
with the X-axis representing the iteration number,
the left Y-axis showing difficulty scores, and the
right Y-axis showing similarity scores.

Note that unlike in Tables 1 and 2, the scores
produced by the ORD critic range from 0 to 5. Tar-
get level A1 in Figure 5 should be around 1 and in
Figure 6—around 0. The plots show that, with the

10huggingface.co/sentence-transformers/paraphrase-
multilingual-MiniLM-L12-v2

Figure 5: Regression critic with target level A1: average
score and cosine similarity per simplification iteration

Figure 6: Ordinal critic with target level A1: average
score and cosine similarity per simplification iteration

ORD critic, the difficulty of the first intermediate
output is already below A2 (i.e., below 1.0), while
for the REG critic it remains around B1 (around
3.0). We see a similar gain in performance of ORD
over REG critic when the target level is A2 (Fig-
ures 8, 9) and B1 (Figures 10, 11) in the Appendix.
Cosine similarity stays consistently at or above 0.8
in both pipelines, with slightly higher values when
using the ORD critic.

5.2 Evaluation on Parallel Data

We further evaluate our approach using the Par-
allel Corpus of Standard Finnish–Easy Finnish
(Dmitrieva and Konovalova, 2023).11 The Easy
Finnish dataset includes news articles from the Yle
archive, and consists of 1,919 manually verified
pairs, each comprising an article in Easy Finnish
and its corresponding article in Standard Finnish
(the source article). We extracted 300 document
pairs that are longer than 10 words and have Lev-

11clarino.uib.no/comedi/editor/lb-2022111625
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enshtein distance greater than 10, in order to focus
on longer contexts that can be meaningfully sim-
plified. As the dataset does not include difficulty
annotations, we estimate the difficulty levels of
the selected documents using the REG model and
the ORD model. Both models indicate that in ap-
proximately 65% of the selected pairs, the source
document is indeed more difficult than its simpli-
fied version.

We processed all source documents through the
simplification pipeline once with REG and once
with the ORD critic. The outputs generated by
the LLM were then compared to the Easy Finnish
articles using the SARI metric (Xu et al., 2016),
which has been shown to correlate with human
judgment of simplicity. The SARI metric is 40.6
for simplification with the BERT-based regression,
and 43.1—with the ordinal model.

5.3 Manual Evaluation
An expert in teaching Finnish performed a prelimi-
nary manual analysis of the simplification results
described above. We randomly selected 24 pairs
of source texts and their simplified versions, gener-
ated by the pipeline with the REG and ORD mod-
els as critics. The annotator’s task was to assess
whether the simplified text was indeed simpler than
the source in terms of lexicon, grammar, sentence
structure, and content. Although a more systematic
analysis would require a larger sample and deeper
investigation, several qualitative patterns emerged.
Table 13 and 14 present manually analyzed pairs
generated by these two simplification pipelines.

Both pipelines generally demonstrate a strong
ability to simplify text: in all 24 cases, at least
some parts of each sentence were successfully sim-
plified, and in many cases, the entire sentence was
made simpler (e.g., see Example 3 in Table 13).
Lexical simplifications include, for instance, “ti-
ivistää vientiponnisteluja” (intensify export efforts)
→ “lisätä vientiä” (increase exports), “kehittyvät
taloudet” (developing economies)→ “kehitysmaat”
(developing countries).

The REG pipeline frequently adds explanatory
or contextual information, e.g., by fronting report-
ing clauses or expounding on the original content
(see Examples 8 and 10 in Table 14). While longer
texts are not necessarily more complex, such addi-
tions may increase the risks of hallucinations. In
contrast, the ORD pipeline is often more effective
at removing redundant information, resulting in
more concise sentences. In some instances, how-

ever, the simplifications were simply paraphrases
that did not reduce the overall difficulty. Whether
a change constitutes a genuine simplification of-
ten depends on the reader and may require closer
inspection. Both pipelines also occasionally miss
clear opportunities for simplification.

In several cases, both models produced “simpli-
fied” sentences that were arguably more complex
than the original; such cases are highlighted in red
in the tables. For example, the verb “tuplaantua”
(to double) may be easier for L2 learners than the
synonym “kaksinkertaistua,” even though both are
correct. Also, a few minor grammar problems are
seen in the outputs, such as incorrect case usage
in Finnish noun phrases. In other cases, the sim-
plified sentence introduced factual ambiguities or
errors, due to the model’s misunderstanding of the
context or reference. More details on the results
are in Appendix E.

6 Discussion and Conclusion

Our experiments with difficulty models demon-
strate that small models can effectively guide
text simplification performed by a large language
model. Although both BERT-based difficulty mod-
els were trained on a mix of native and translated
data, they significantly improve over the zero-shot
baseline.

While the ordinal classifier performs worse on
standard classification metrics, it proves more ef-
fective as critice in the simplification pipeline. We
hypothesize several reasons for this. First, the re-
gression model requires mapping floating-point dif-
ficulty scores to discrete CEFR levels, which may
lose meaningful distinctions—especially during it-
erative simplification, where small improvements
may be obscured by rounding. Second, regression
assumes linear distances between levels, e.g., that
the distance between A1 and A2 is equal to the
distance between C1 and C2. This assumption is
not required by ordinal classification.

An additional benefit of the ORD critic, cur-
rently unused, is its ability to estimate probabilities
for CEFR thresholds—which could be interpreted
as a confidence of a text being A1, A2, etc., and
enable more fine-grained feedback for the LLM.

In future work, we plan to integrate feature-
based and Transformer-based models, enabling the
LLM to receive targeted feedback about which lin-
guistic features in the intermediate texts do not
match the desired difficulty level.
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8 Limitations and Ethical Considerations

While our results show that difficulty models can
effectively guide LLM-based text simplification,
several limitations remain. First, the models are
trained and evaluated on a small dataset. Work-
ing only with Finnish may limit generalizability to
other languages or domains. Second, the mapping
from regression scores to CEFR levels introduces
discretization errors that may obscure nuanced im-
provements. Third, the simplification pipeline is
constrained to five iterations, which may be insuf-
ficient for particularly complex texts, and more
iterations are expensive to run. Finally, we use a
fixed prompt template for LLM interactions; fu-
ture work could explore adaptive or dynamically
generated prompts.

This work focuses on improving language ac-
cessibility, particularly for second-language (L2)
learners, and aims to reduce linguistic barriers
in education and communication. However, sev-
eral ethical considerations must be acknowledged.
First, automated simplification tools may reinforce
biases present in the training data, especially if
texts from specific groups or dialects are under-
represented. Second, over-reliance on automated
systems may inadvertently reduce the role of hu-
man educators in assessing learner needs. Lastly,
misuse of simplification systems—e.g., to manip-
ulate or oversimplify critical content—could have
adverse effects. We emphasize that these systems
should be used as assistive tools, not as replace-
ments for human judgment in the context of educa-
tion or public communication.

References
Sweta Agrawal and Marine Carpuat. 2023. Controlling

pre-trained language models for grade-specific text
simplification. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 12807–12819, Singapore.

Wejdan Alkaldi and Diana Inkpen. 2023. Text simpli-
fication to specific readability levels. Mathematics,
11(9):2063.

Sandra Aluísio, Lucia Specia, Caroline Gasperin, and
Carolina Scarton. 2010. Readability assessment for
text simplification. In Proceedings of the NAACL
HLT 2010 Fifth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 1–9,
Los Angeles, California.

Ion Madrazo Azpiazu and Maria Soledad Pera. 2019.
Multiattentive recurrent neural network architecture
for multilingual readability assessment. Transac-
tions of the Association for Computational Linguis-
tics, 7:421–436.

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka.
2020. Rank consistent ordinal regression for neural
networks with application to age estimation. Pattern
Recognition Letters, 140:325–331.

Kevyn Collins-Thompson and James P. Callan. 2004.
A language modeling approach to predicting reading
difficulty. In HLT-NAACL 2004: Proceedings of
the Human Language Technology Conference of the
NAACL, pages 193–200.

Anna Dmitrieva and Aleksandra Konovalova. 2023.
Creating a parallel Finnish-Easy Finnish dataset from
news articles. In Proceedings of the 1st Workshop
on Open Community-Driven Machine Translation,
pages 21–26, Tampere, Finland.

Anna Dmitrieva and Jörg Tiedemann. 2021. Creating
an aligned Russian text simplification dataset from
language learner data. In Proceedings of the 8th
Workshop on Balto-Slavic Natural Language Pro-
cessing, pages 73–79, Kiyv, Ukraine. Association for
Computational Linguistics.

Caroline Gasperin, Lucia Specia, Tiago F. Pereira, and
Sandra M. Aluísio. 2009. Learning when to sim-
plify sentences for natural text simplification. In
Proceedings of the Encontro Nacional de Inteligên-
cia Artificial (ENIA), Bento Gonçalves, Brazil.

Jue Hou, Maximilian W Koppatz, José Marıa Hoya
Quecedo, Nataliya Stoyanova, Mikhail Kopotev, and
Roman Yangarber. 2019. Modeling language learn-
ing using specialized Elo ratings. In BEA: 14th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, ACL: 56th annual meeting of
Association for Computational Linguistics.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. GPT-4o system card. arXiv preprint
arXiv:2410.21276.

Anisia Katinskaia, Jue Hou, Anh-duc Vu, and Roman
Yangarber. 2023. Linguistic constructs represent the
domain model in intelligent language tutoring. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations, pages 136–144,
Dubrovnik, Croatia.

603

https://doi.org/10.3390/math11092063
https://doi.org/10.3390/math11092063
https://aclanthology.org/2023.crowdmt-1.3/
https://aclanthology.org/2023.crowdmt-1.3/
https://aclanthology.org/2021.bsnlp-1.8/
https://aclanthology.org/2021.bsnlp-1.8/
https://aclanthology.org/2021.bsnlp-1.8/
https://doi.org/10.18653/v1/2023.eacl-demo.16
https://doi.org/10.18653/v1/2023.eacl-demo.16


Anisia Katinskaia, Javad Nouri, and Roman Yangarber.
2017. Revita: a system for language learning and
supporting endangered languages. In 6th Workshop
on NLP for CALL and 2nd Workshop on NLP for
Research on Language Acquisition, at NoDaLiDa,
Gothenburg, Sweden.

Anisia Katinskaia, Javad Nouri, and Roman Yangarber.
2018. Revita: a language-learning platform at the
intersection of ITS and CALL. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

J. Peter Kincaid, Robert P. Fishburne, Richard L.
Rogers, and Benjamin S. Chissom. 1975. Derivation
of new readability formulas (automated readability
index, fog count and flesch reading ease formula) for
navy enlisted personnel. Technical report, Naval Air
Station Memphis (Research Branch Report 8-75).

Antonina Laposhina. 2020. A corpus of Russian text-
book materials for foreign students as an instrument
of an educational content analysis. Russian Lan-
guage Abroad, 6(283):22–28.

Antonina Laposhina, Tatiana Veselovskaya, Maria
Lebedeva, and Olga Kupreshchenko. 2018. Auto-
mated text readability assessment for Russian second
language learners. In Computational Linguistics and
Intellectual Technologies, pages 403–413.

Matej Martinc, Senja Pollak, and Marko Robnik-
Šikonja. 2021. Supervised and unsupervised neu-
ral approaches to text readability. Computational
Linguistics, 47(1):141–179.

Serge Sharoff. 2022. What neural networks know about
linguistic complexity. Russian Journal of Linguistics,
26(2):371–390.

A. Jackson Stenner. 1996. Measuring reading compre-
hension with the Lexile framework. Technical report,
MetaMetrics Inc., Durham, NC.

Sowmya Vajjala and Detmar Meurers. 2012. On im-
proving the accuracy of readability classification us-
ing insights from second language acquisition. In
Proceedings of the 7th Workshop on Building Educa-
tional Applications Using NLP (BEA).

Kristian Woodsend and Mirella Lapata. 2011. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 409–420, Edinburgh,
Scotland, UK.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Level Precision Recall F1-score Support

A1 0.70 0.22 0.33 32
A2 0.65 0.63 0.64 98
B1 0.72 0.77 0.75 243
B2 0.14 0.19 0.16 48
C1 0.89 0.93 0.91 399
C2 0.95 0.47 0.63 45

Table 10: Performance of ORD classifier on test set

Figure 7: Confusion matrix for ORD classifier

A Baseline classification: feature-based
regression

Models (A) and (B) were trained with a regular-
ization strength α = 1.0. For (B), we fit a Ridge
regression model to Nboot = 1000 bootstrap sam-
ples of the training set, each time recording the
feature coefficients. For each feature, we calculate
the mean and standard deviation of its coefficient
across bootstraps. The signal-to-noise ratio is de-
fined as the absolute mean divided by the standard
deviation. Features with a signal-to-noise ratio
above a threshold (e.g., ≥ 1) are selected, ensuring
selection of features with stable and consistently
strong effects across resampled datasets.

We fit a Lasso regression model (C), which was
employed for feature selection due to its ability to
perform both regularization and automatic variable
selection. Features with nonzero coefficients are se-
lected, while those with coefficients shrunk to zero
are excluded. The regularization parameter α for
the Lasso model was selected via cross-validation
using the LassoCV procedure, optimizing for mean
squared error on held-out validation folds.

604

https://aclanthology.org/L18-1644/
https://aclanthology.org/L18-1644/
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107


Figure 8: Regression critic with target level A2: average
score and cosine similarity per simplification iteration.

Figure 9: Ordinal critic with target level A2: average
score and cosine similarity per simplification iteration.

B Ordinal classification performance

Table 10 and Figure 7 show classification metrics
for the BERT-based ordinal classification difficulty
model.

C LLM Prompt Templates

Below we list the CEFR-level-specific prompts
used to guide GPT-4o in the simplification task.
The prompts were formulated based on the defini-
tions of CEFR levels.12 Each prompt instructs the
model to return a JSON object containing a single
key "SIMPLIFICATION", with text adapted to the
specified proficiency level.

Common Prompt Structure:

You must always output a JSON object
with a "SIMPLIFICATION" key. You are

12www.coe.int/en/web/common-european-framework-
reference-languages/table-1-cefr-3.3-common-reference-
levels-global-scale

Figure 10: Regression critic, target level B1: average
score and cosine similarity per simplification iteration.

Figure 11: Ordinal critic with target level B1: average
score and cosine similarity per simplification iteration.

an expert in Finnish language and lan-
guage teaching. You will be given a
text in Finnish. Your task is to read it
first and then to provide an adaptation
into CEFR level X. Please do not signifi-
cantly change the meaning of the input
text. [Level-specific instructions] This is
the text to simplify:
{text}

Imagine that you are teaching a X learner,
your adaptation should fit their profi-
ciency level.

Level-specific Instructions:

A1 Prompt
A1 is the simplest level for beginners.
The texts in A1 should be simple, with
short sentences and easy grammar. The
definition of a learner with A1 level is:
“Can understand and use familiar every-
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day expressions and very basic phrases
aimed at the satisfaction of needs of
a concrete type. Can introduce them-
selves and others and can ask and answer
questions about personal details such as
where someone lives, people they know
and things they have. Can interact in a
simple way provided the other person
talks slowly and clearly and is prepared
to help.”

A2 Prompt

A2 is just above the beginner level. The
text in A2 should be simple and have rel-
atively easy grammar. The definition of
a learner with A1 level is: “Can under-
stand sentences and frequently used ex-
pressions related to areas of most imme-
diate relevance (e.g. very basic personal
and family information, shopping, local
geography, employment). Can communi-
cate in simple and routine tasks requiring
a simple and direct exchange of infor-
mation on familiar and routine matters.
Can describe in simple terms aspects of
his/her background, immediate environ-
ment and matters in areas of immediate
need.”

B1 Prompt

B1 is an intermediate level. The defini-
tion of a learner with B1 level is: "Can
understand the main points of clear stan-
dard input on familiar matters regularly
encountered in work, school, leisure, etc.
Can produce simple connected text on
topics which are familiar, or of personal
interest. Can describe experiences and
events, dreams, hopes & ambitions and
briefly give reasons and explanations for
opinions and plans."

D Feature List

Tables 11 and 12 present the features used to train
the feature-based models. Features shown in bold
in both tables were selected via bootstrap feature
selection. The features include morphophonemic,
grammatical, lexical, and syntactic features. De-
tails regarding how these features (or constructs)
are detected in text can be found in (Katinskaia
et al., 2023).

Consonant gradations features are identified us-
ing rule-based methods. The label “Inactive” in-
dicates that gradation does not occur in the given
form, e.g.: compare “nukkua” (infinitive to sleep)
and “nukkuu” (3rd person singular she/he sleeps)—
no gradation. The label “Active” indicates that the
gradation is present, e.g.: compare “nukkua” (to
sleep) and “nukun” (1st person singular I sleep)—
gradation kk→ k.

Lexical features include groups denoting tempo-
ral concepts, e.g.: time of the day in allative case—
“aamulla” (in the morning), “yöllä” (at night); but
months in inessive case: “elokuussa” (in August),
“kesäkuussa” (in June), etc.

Vocabulary bags—from 1 to 10—represent fre-
quency bins constructed from a list of over 20,000
lemmas, sorted by their frequency. The feature OOV
coverage measures the proportion of words in the
text whose lemmas are not found in any frequency
bins, averaged over the text length.

E Simplification Results

Table 13 shows results of simplification with LLM-
based pipeline guided by the ordinal classification
model.

E.1 Simplification Pipeline guided by Ordinal
Classification

In Example 1, the simplification was achieved
by splitting the original sentence into two, gram-
mar was simplified by replacing conditional mood
with indicative: “maksaisi” (would cost)→ “mak-
saa” (costs); “pienenisivät” (would decrease) →
“pienenevät” (decrease).

Examples 2 and 3 demonstrate the removal of
unnecessary information. The simplification in Ex-
ample 4 resulted in a simpler information structure,
as “Brittania” was moved to the beginning of the
sentence. However, two sentences were combined
into one, which made the overall structure more
complex. The lexicon was also simplified; see the
blue highlights in the simplified sentence.

Example 5 illustrates a case where the “sim-
plified” version was actually more complex in
some respects: “aiotaan nostaa” (is going to be
increased) → “suunnitellaan korotettavaksi” (is
planned to be raised); “prosenttia” (percent) →
“prosentilla” (by percent).

In Example 7, the grammar was improved: “kat-
soo päätöksessään” (considers in its decision)→
“päätti” (decided); “ettei” (that not—contracted)
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→ “että ei” (that not—expanded); “ei ollut syytä
epäillä” (had no reason to suspect)→ “ei voinut
epäillä” (could not suspect). However, some parts
were made more difficult: “rekrytointia hoitanut
mies” (the man who handled the recruitment)→
“rekrytoinnista vastannut mies” (the man responsi-
ble for recruitment).

E.2 Simplification Pipeline guided by
Regression

Although the simplification in Example 8 improved
contextual information—by adding “puolue”
(party) and “lakialoite” (legislative initiative)—it
also contains an error in orthography (a missing hy-
phen between “Perussuomalaiset” and “puolue”).
Additionally, it introduces unnecessary and gram-
matically complex information, such as “lain
voimaantulon jälkeen sen aiheuttamat [kustannuk-
set]” (the [costs] caused by it after the law comes
into force).

Example 9 demonstrates changes that made the
lexicon more difficult: “yli” (over) → “ylittäen”
(exceeding); “on kasvanut paljon” (has grown a
lot)→ “lisääntynyt huomattavasti” (increased sig-
nificantly).

The simplified text in Example 10 illustrates the
removal of the unnecessary word “käytännössä”
and the simplification of some grammatical forms:
“voisivat” (could)→ “voivat” (can); “tiivistää vien-
tiponnisteluja” (intensify export efforts)→ “paran-
taa yhteistyötä viennissä” (improve cooperation in
exports). However, it also introduces new informa-
tion not present in the source (see red highlight).

The red highlights in Examples 11–13 indicate
cases where the forms were made lexically, gram-
matically, or syntactically more complex than in
the source texts.
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Feature Set 1 Feature Set 2
Comparative adjective form Consonant gradation (A type, nouns, active)
Positive adjective form Consonant gradation (A type, nouns, inactive)
Superlative adjective form Consonant gradation (A type, verbs, active)
Abessive case Consonant gradation (A type, verbs, inactive)
Ablative case Consonant gradation (“lki” A type, active)
Accusative case Consonant gradation (“lki” A type, inactive)
Adessive case Consonant gradation (A type ending with “uku”,

active)
Allative case Consonant gradation (A type ending with “uku”,

inactive)
Comitative case Consonant gradation (B type, nouns, active)
Elative case Consonant gradation (B type, nouns, inactive)
Essive case Consonant gradation (B type, verbs, active)
Genitive case Consonant gradation (B type, verbs, inactive)
Illative case Compound noun inflection
Inessive case Lists of confusable nouns
Instructive case Noun paradigm “aihe”
Nominative case Noun paradigm “bussi”
Partitive case Noun paradigm “kala”
Translative case Noun paradigm “kannel”
Clitics of emphasis Noun paradigm “koditon”
Clitics of negation Noun paradigm “koira”
Clitics of question Noun paradigm “kysymys”
Clitics han Noun paradigm “maa”
Clitics pa Noun paradigm “manner”
Construction with differen tactors Noun paradigm “mansikka”
Construction of type “ESSA” (Temporaalirakenne) Noun paradigm “nainen”
Construction with “Että”, perfect Noun paradigm “olut”
Construction with “Että”, present Noun paradigm “ovi”
Construction with “Että”, different actors Noun paradigm “puhelin”
Construction with “Että”, same actors Noun paradigm “talo”
Existential construction Noun paradigm “uusi”
Existential construction, negative Noun paradigm “uutuus”
Existential construction, positive Noun paradigm “valas”
Negative construction Noun possessive suffixes
Necessity Construction Noun of time
Permission Construction Noun of time (day, essive)
Construction of possession Nouns of time (hour, adessive)
Construction of possession, negative Noun of time (month, inessive)
Construction of possession, positive Noun of time (season, adessive, essive)
Construction with same actors Noun of time (time of the day, adessive, essive)
Construction with “TUA” (Temporaalirakenne) Noun of time (week, adessive)
Government by adjective Noun of time (year, essive)
Government by noun Plural number
Government by verb Singular number
Government by adposition Cardinal numeral
Infinitive 1 Cardinal numeral, long
Infinitive 2 Cardinal numeral, short
Infinitive 3 Ordinal numeral
Infinitive 4 Ordinal numeral, long
Infinitive 5 Ordinal numeral, short
Infinitive TUA Agentive participle
Conditional mood Perfect active participle
Conditional passive mood Perfect passive participle
Imperative mood Participle with possessive suffixes
Indicative mood Present active participle
Potential mood Present passive participle
Potential passive mood Person 1
Possessiveness Person 2
Negative polarity Person 3
Average dependency tree depth OOV coverage

Table 11: Combined linguistic feature sets for the feature-based regression model.
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Feature Set 3
Demonstrative pronoun
Indefinite pronoun
Indefinite pronoun “joku”
Indefinite pronoun “kukaan”
Interrogative pronoun
Interrogative pronoun “kumpi”
Personal pronoun
Reflexive pronoun
Relative pronoun
Active object
Object of infinitive
Genitive modifier
Object of imperative
Object of passive
Object in ablative of “sense” verbs
Object in ablative of “source” verbs
Object in adessive “instrument” verbs
Object in allative of “sense” verbs
Object in allative of “communication” verbs
Object in allative of “possession” verbs
Complement construction
Object of negative
Object of verb of “feeling” (Tunnekausatiivi)
Imperfect tense
Imperfect indicative tense
Perfect tense
Perfect Indicative tense
Pluperfect tense
Pluperfect indicative tense
Present tense
List of confusable verbs
Infinitive
Infinitive bases
Verb paradigm “haluta”
Verb paradigm “juosta”
Verb paradigm “nousta”
Verb paradigm “saada”
Verb paradigm “sanoa”
Verb paradigm “tarvita”
Verb paradigm “tehdä”
Verb paradigm “tulla”
Verb paradigm “vanheta”
Participle
Active voice
Passive voice
Passive imperfect voice
Passive perfect voice
Passive pluperfect voice
Passive present voice
Average number of POS
Average sentence length
Vocabulary bag 1
Vocabulary bag 2
Vocabulary bag 3
Vocabulary bag 4
Vocabulary bag 5
Vocabulary bag 6
Vocabulary bag 7
Vocabulary bag 8
Vocabulary bag 9
Vocabulary bag 10

Table 12: Linguistic features used for the feature-based regression model.
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Ordinal classifier as critic:

ID: 1
Source: Perussuomalaiset arvioivat, että “Lex Lindström” maksaisi noin 20-30 miljoonaa euroa, ja menot pienenisivät vuosittain.
Level: C1
Simplified: Perussuomalaiset-puolue arvioi, että “Lex Lindström” maksaa noin 20-30 miljoonaa euroa. He arvioivat, että kulut
pienenevät vuosittain.
Level: B2

ID: 2
Source: Jo täällä asuvilla maahanmuuttajilla on Nafisa Yeasminin mukaan tärkeää rooli uusien tulijoiden sopeutumisessa
Suomeen. — Me tunnemme jo suomalaisen kulttuurin ja kielen.
Level: B2
Simplified: Suomessa asuvat maahanmuuttajat auttavat uusia ihmisiä. — Me tunnemme Suomen kulttuurin ja kielen.
Level: A2

ID: 3
Source: Käytännössä Pohjoismaat voisivat esimerkiksi tiivistää puhtaan teknologian vientiponnisteluja kehittyvissä talouksissa.
Level: B2
Simplified: Pohjoismaat voisivat esimerkiksi lisätä puhtaan teknologian vientiä kehitysmaihin.
Level: A2

ID: 4
Source: Siirtymäkauden ajan Britannia säilyy EU:n sisämarkkinoilla, maksaa maksuja ja soveltaa EU-lainsäädäntöä. Se ei
kuitenkaan osallistu päätöksentekoon.
Level: B2
Simplified: Britannia on vielä vähän aikaa EU:ssa mukana, noudattaa EU:n sääntöjä ja maksaa EU:lle, mutta ei voi osallistua
päätöksiin.
Level: A2

ID: 5
Source: Korkeinta kokopäivähoidon maksua aiotaan nostaa peräti 22 prosenttia. Tällä hetkellä ylin maksu on 283 euroa
kuukaudessa ensimmäisestä lapsesta.
Level: C1
Simplified: Korkeinta kokopäivähoidon maksua suunnitellaan korotettavaksi jopa 22 prosentilla. Tällä hetkellä maksetaan
enintään 283 euroa kuukaudessa ensimmäisestä lapsesta.
Level: B2

ID: 6
Source: Oikeus katsoo päätöksessään, ettei rekrytointia hoitaneella miehellä ollut syytä epäillä saamaansa ohjetta. — Olemme
tyytyväisiä.
Level: C1
Simplified: Oikeus päätti, että rekrytoinnista vastannut mies ei voinut epäillä saamaansa ohjetta. — Olemme tyytyväisiä.
Level: B1

ID: 7
Source: Suomalaisten testamenttilahjoittajien sydäntä lähellä on erityisesti lasten ja naisten hyvinvointi ja koulutus niin
Suomessa kuin kehitysmaissa. — Lahjoittajat sanovat, että kun satsaa tyttöihin ja naisiin, niin yhteiskuntakin muuttuu vahvasti.
Level: B2
Simplified: Suomalaiset lahjoittajat haluavat auttaa lapsia ja naisia Suomessa ja muissa maissa. He sanovat, että kun auttaa
tyttöjä ja naisia, myös yhteiskunta paranee.
Level: A2

Table 13: Pairs of source texts and their simplified versions. Simplifications were guided by the ordinal classifier.
Underlined text in the source indicates which parts were changed; blue highlights mark successful simplification.
Red highlights parts which are erroneous or harder than the source.
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Regression model as critic:

ID: 8
Source: Perussuomalaiset arvioivat, että "Lex Lindström" maksaisi noin 20-30 miljoonaa euroa, ja menot pienenisivät vuosittain.
Level: B2-C1
Simplified: Perussuomalaiset puolue on arvioinut, että ’Lex Lindström’ — lakialoitteen taloudellinen vaikutus olisi noin 20-30
miljoonaa euroa. Lain voimaantulon jälkeen sen aiheuttamat kustannukset pienentyisivät vuosittain.
Level: B2-C1

ID: 9
Source: Kaiken kaikkiaan lemmikkien lääkintä — ja hoitomenot ovat tuplaantuneet kymmenessä vuodessa yli 200 miljoonaan
euroon. Lemmikkien määrä on kasvanut samassa ajassa paljon hitaammin.
Level: B2-C1
Simplified: Yhteensä lemmikkien lääkintä — ja hoitokulut ovat kasvaneet kaksinkertaisiksi kymmenessä vuodessa ylittäen 200
miljoonaa euroa. Samaan aikaan lemmikkien määrä on lisääntynyt huomattavasti hitaammin.
Level: B2

ID: 10
Source: Käytännössä Pohjoismaat voisivat esimerkiksi tiivistää puhtaan teknologian vientiponnisteluja kehittyvissä talouksissa.
Level: B2-C1
Simplified: Pohjoismaat voivat parantaa yhteistyötä puhtaan teknologian viennissä kehittyviin talouksiin esimerkiksi jakamalla
innovaatioita ja edistämällä yhteisiä hankkeita.
Level: B2-C1

ID: 11
Source: Korkeinta kokopäivähoidon maksua aiotaan nostaa peräti 22 prosenttia. Tällä hetkellä ylin maksu on 283 euroa
kuukaudessa ensimmäisestä lapsesta.
Level: B2-C1
Simplified: Kokopäivähoidon korkeinta maksua suunnitellaan nostettavaksi jopa 22 prosenttia. Nyt korkein maksu on 283
euroa kuukaudessa ensimmäisestä lapsesta.
Level: B2

ID: 12
Source: Jämsä ja Liukkokin ovat muuttaneet kulutustottumuksiaan. — Kaupassa voin jättää muovipussin ostamatta ja
ruokaillessa syön mieluummin kasviksia tai kanaa naudanlihan sijaan, Jämsä kertoo.
Level: B1-B2
Simplified: Jämsä ja Liukko ovat muuttaneet tapojaan kuluttaa. Jämsä sanoo, että kaupassa hän voi päättää olla ostamatta
muovipussia ja ruokailutilanteissa hän valitsee mieluummin kasvikset tai kanan naudanlihan sijasta.
Level: B1-B2

ID: 13
Source: Suomalaisten testamenttilahjoittajien sydäntä lähellä on erityisesti lasten ja naisten hyvinvointi ja koulutus niin
Suomessa kuin kehitysmaissa. — Lahjoittajat sanovat, että kun satsaa tyttöihin ja naisiin, niin yhteiskuntakin muuttuu vahvasti.
Level: B2
Simplified: Suomalaiset testamenttilahjoittajat haluavat parantaa lasten ja naisten elämää ja koulutusta Suomessa ja kehitys-
maissa. He uskovat, että kun tukee tyttöjä ja naisia, koko yhteiskunta voi kehittyä vahvemmaksi.
Level: B1

Table 14: Pairs of source texts and their simplified versions. Simplifications were guided by the regression model.
Underlined text in the source indicates which parts were changed; blue highlights mark successful simplification.
Red highlights parts which are erroneous or harder than the source.
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Abstract

Large language models (LLMs) are increas-
ingly being adopted in educational settings.
These applications expand beyond English,
though current LLMs remain primarily English-
centric. In this work, we ascertain if their
use in education settings in non-English lan-
guages is warranted. We evaluated the perfor-
mance of popular LLMs on four educational
tasks: identifying student misconceptions, pro-
viding targeted feedback, interactive tutoring,
and grading translations in eight languages
(Mandarin, Hindi, Arabic, German, Farsi, Tel-
ugu, Ukrainian, Czech) in addition to English.
We find that the performance on these tasks
somewhat corresponds to the amount of lan-
guage represented in training data, with lower-
resource languages having poorer task perfor-
mance. However, at least some models are
able to more or less maintain their levels of
performance across all languages. Thus, we
recommend that practitioners first verify that
the LLM works well in the target language for
their educational task before deployment.

1 Introduction

Education is a multilingual, multicultural endeav-
our. AI-based technologies have recently shown
the potential to improve students’ learning expe-
riences, and educational systems worldwide are
increasingly adopting these tools (Gligorea et al.,
2023). From personalized instruction and targeted
feedback to appropriate content generation and in-
teractive tutoring, these tools offer solutions to key
educational challenges (Leon, 2024; Rooein et al.,
2024; Mosher et al., 2024). Large language models
such as GPT, Gemini, and Llama (OpenAI, 2023;
Team, 2024; Roumeliotis et al., 2023) have become

*Equal Contribution
0We release the collected dataset and code at github.com/

eth-lre/multilingual-educational-llm-bias. The dataset com-
prises 313,500 automatically evaluated model outputs across
seven languages, four tasks, and six models.

particularly influential, with early evidence sug-
gesting their ability to support teachers or scaffold
student learning (Kasneci et al., 2023; Alqahtani
et al., 2023).

Although most of these LLMs are trained on
multilingual corpora (OpenAI, 2019; Nvidia, 2022;
Peng et al., 2023; Gu and Dao, 2023), they are still
overwhelmingly English-centric (Argoub, 2022;
Ruder et al., 2022, Table 1). Inadequate adaptation
to local languages in an educational setting risks
diminishing their utility and exacerbating existing
inequalities by privileging dominant languages and
cultures. The question of multilingualism arises in
every domain where LLMs are applied (Lai et al.,
2023; Ahuja et al., 2023, 2024). However, it is es-
pecially important in the field of education, which
has seen wide use of LLMs despite the high stakes
(Alhafni et al., 2024; Raheja et al., 2023; Naismith
et al., 2023). Without rigorous evaluation tailored
to educational tasks across languages, deploying
LLMs in classrooms may introduce new forms
of harm, including misinformation, misalignment
with curricula, or culturally inappropriate content
(Almasoud et al., 2025).

In this work, we present an empirical investiga-
tion of the capabilities of frontier LLMs on educa-
tional tasks across several languages. We identify
four education-related tasks (identifying student
misconceptions, providing targeted feedback, inter-
active tutoring, and translation grading) with well-
defined language-agnostic metrics. We then evalu-
ate several frontier LLMs (Claude, Gemini, GPT4o,
Llama, and Mistral) on these tasks in eight lan-
guages (Mandarin, Hindi, Arabic, German, Farsi,
Telugu, Ukrainian, and Czech) in addition to En-
glish.

Our results show that though performance in
English still dominates, other languages are not
too far behind, at least for GPT4o and Gemini-2.0-
flash, which emerge as the best models. We also
find that using prompts in the language of the task
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is rarely helpful compared to English prompts.

2 Methods

We select our set of tasks based on 3 desiderata:

• Relevant to Education: We focus on tasks that
LLMs would encounter specifically in the role
of tutors, teachers, or teaching assistants. We
do not cover tasks like question answering or
solving math questions, which, while possibly
being relevant to education, are more general
tasks that are primarily studied in other contexts.

• Have a Language Component: We avoid tasks
whose formulation uses purely notation, for ex-
ample, solving a math equation. If the equation
is provided in mathematical notation, the task
would remain unchanged between different lan-
guages, making the question of multilingual per-
formance moot.

• Language Invariant Evaluation: Finally, we
need evaluation metrics that remain comparable
across languages to compare performance across
different languages efficiently. This means we
cannot rely on language-dependent metrics like
BLEU or COMET (Papineni et al., 2002; Rei
et al., 2020).

Based on these, we selected following four tasks:

Task 1: Misconception identification. An im-
portant aspect of teaching is fixing student miscon-
ceptions, which first requires identifying the stu-
dent misconception (Liu et al., 2023). We build this
task on the EEDI Math Questions Dataset, which
contains thousands of multiple-choice questions
with four answer choices. For many of the wrong
choices, we have expert-annotated misconceptions
that could lead to a student picking the said choice.
We leverage these to build our task. The LLM
is given a multiple-choice question, the student’s
(incorrect) answer, and four possible misconcep-
tions. The candidate misconceptions include the
true misconception identified by experts and three
distractors chosen at random from the other mis-
conceptions present in the dataset. The LLM must
pick the correct misconception from these four op-
tions (see Example 1 for an example). We evaluate
the LLM performance by reporting accuracy in pre-
dicting the student misconception. Since the model
must pick one of four options, a random baseline
has an accuracy of 25%.

Task 2: Feedback selection. A key step towards
fixing students’ misconceptions is generating feed-
back to alleviate them. The EEDI dataset discussed
above also includes feedback for all the choices
we use for this part. The LLM is again given a
multiple-choice question, the student’s answer, and
this time, a set of four possible feedbacks, out of
which the LLM must select the feedback corre-
sponding to the student’s answer. Note that while
there are 4 possible feedbacks, one corresponds
to the correct answer. This one is easily identifi-
able as it reinforces the student’s answer, while the
feedbacks corresponding to wrong answers all try
to make the student realize their mistake. As an
example, see Option C in both parts of 2, which
are the only options in their respective questions
that do not start with a negative tone. Therefore,
if the selected answer is also the correct answer to
the problem, the LLM might be able to pick the
correct feedback using some shallow semantics,
which we want to avoid. Therefore, we ensure that
the selected answer is always incorrect. The ran-
dom baseline has an accuracy of 25%, or 33% if
choosing among responses to the wrong answer.

Task 3: Tutoring. For more complex misconcep-
tions, a single-turn feedback often does not suffice,
and fixing the misconception requires a multi-turn
conversation between the student and the teacher,
also known as tutoring. (Bloom, 1984; Cohen et al.,
1982) This involves a teacher LLM trying to help
the student identify and fix an error in their solu-
tion. We evaluate the tutoring ability of the LLM
by having it tutor a weaker LLM, which acts as
the student. Both the teacher and the student are
given the question, but only the teacher LLM can
access the correct answer. The student LLM is
instructed to stick to the wrong solution unless it
sees strong justification to shift. The teacher and
the student take turns to send messages, with the
teacher’s goal being to get the student model to
the correct answer, without revealing the answer
themselves. The teacher LLM is considered to get
a success if the student LLM states the answer. If
the teacher reveals the answer before the student
has gotten to it, it is counted as telling. An ad-
justed success occurs when there is a success but
no telling. The task is finally evaluated by Tutoring
score (Pal Chowdhury et al., 2024), which is the
harmonic mean between success rate and adjusted
success rate.

This task differs from the other tasks on this list
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Language family Script Wikipedia CommonCrawl Speakers

English Germanic Latin 6973K 42.8% 1500M
Mandarin Sino-tibetan Hanzi1 1480K 5.8% 1184M

Hindi Indo-Iranian Brahmic 165K 0.20% 609M
Arabic Afro-Asiatic Abjad 1259K 0.68% 411M

German Germanic Latin 3021K 5.5% 411M
Farsi Indo-Iranian Abjad 1034K 0.74% 134M

Telugu Dravidian Brahmic 111K 0.02% 96M
Ukrainian Slavic Cyrillic 1371K 0.62% 39M

Czech Slavic Latin 566M 0.10% 12M

Table 1: Language information, number of speakers (Ethnologue 2025), and global representations of tested
languages in NLP (Wikipedia Articles and proportion in CommonCrawl in March 2025).

in at least two significant ways. First, it is a multi-
turn conversation task, so there is no scope for
guessing the answer. Secondly, the final evaluation
depends on the performance of the student LLM,
so the multilingual capabilities of the student LLM
also restrict the applicability of this task. These
factors make this task both slower to run and more
complex for the LLMs.

Task 4: Translation grading. A common field
of education that has seen an increase in the use of
LLMs is Language learning (Klimova et al., 2024;
Zhu et al., 2024). A representative task from this
field is to assign a grade to a translation provided
by a student. While we lack proper datasets across
languages with translations and their appropriate
grades, we can approximate this task by the fact
that the machine translation of a sentence should re-
ceive a higher grade than the exact translation with
one word replaced by a random word. We use En-
glish sentences from Duolingo’s English→Spanish
SLAM dataset (Settles, 2018), which are machine
translated to other languages. We chose this dataset
because it is meant to be used for translation, so
it should contain fewer hard-to-translate sentences.
We filter out simple sentences that do not end with
a full stop or have fewer than five words. For each
translated sentence, we then create a correspond-
ing perturbed translation by replacing one of the
words in the sentence with a different word selected
at random from the other sentences in the dataset,
disrupting both the fluency and adequacy of the
translation. The LLM judges both the original and
perturbed versions on a scale from 1 (completely
incorrect) to 5 (perfect), with the expectation that it
should assign a strictly lower score to the perturbed
version. A model assigning all scores at random
would therefore score around 40%.

1Alternately referred to as Kanji, Hanja or Hantu

Figure 1: Multidimensional Scaling projection of lan-
guages based on syntax features from URIEL/lang2vec.
Languages used in our experiments are highlighted and
shown with full names, others are in ISO 639/set 2.

Language selection. We choose eight languages
for experiments: Mandarin, Hindi, Arabic, Ger-
man, Farsi, Telugu, Ukranian, Czech in addition
to English for comparison. This language selec-
tion reflects diverse linguistic properties, varying
levels of representation in training data, and differ-
ent language families (Foundation, 2024), see Ta-
ble 1. Hindi (Indo-Aryan) and Telugu (Dravidian)
represent major languages from the Indian subcon-
tinent that use the Brahmic script and are under-
represented in both CommonCrawl and Wikipedia.
German and Mandarin, on the other hand, are ex-
amples of languages well represented in both Com-
monCrawl and Wikipedia Farsi and Arabic offer
insights into LLM performance on a right-to-left
Abjad script, whereas Ukrainian and Czech allow
us to study generalisation in medium resource mor-
phologically rich languages, using the Cyrillic and
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Language Questions Misconception Feedback Translation

Mandarin 0.593 0.607 0.666 0.781
Hindi 0.455 0.546 0.593 0.831
Arabic 0.596 0.659 0.605 0.793
German 0.623 0.642 0.697 0.792
Farsi 0.574 0.644 0.708 0.840
Telugu 0.518 0.569 0.578 0.639
Ukrainian 0.607 0.642 0.682 0.821
Czech 0.611 0.626 0.663 0.805

Table 2: Average COMETDA,XL
23 scores for different languages for different components of the tasks. The Questions

are used for both Misconception and Feedback tasks. The Tutoring task is not translated.

Latin scripts, respectively.
To assess the typological diversity of our se-

lected languages, we used the URIEL typologi-
cal database (Littell et al., 2017) with lang2vec,
which provides dense vector representations of lan-
guages based on a range of typological, phyloge-
netic, and geographical features. As recommended
by the package, we extracted syntax features with
k-NN predictions for the missing values for a set
of 40 languages, constructed as the union of our
core experimental languages and the most widely
spoken languages worldwide according to Ethno-
logue (Eberhard et al., 2025). We projected each
language feature vector into two dimensions us-
ing Multidimensional Scaling, producing a 2D lan-
guage similarity plot. This allows us to visualise
(see Figure 1) the relative syntactic diversity of our
selected languages and confirm that they span a
broad typological space. The visualisation demon-
strates that our language selection (highlighted) is
well distributed across the typological landscape.

Translation. We obtain our tasks in all the above-
mentioned languages by machine translation. Fol-
lowing the GPT4 Technical Report (OpenAI, 2023,
Figure 5), we use Azure Translate to translate all
our examples to the target languages. However,
this introduces an additional noise source for tasks
performed in languages other than English. In fact,
after reviewing some of the translations manually,
it does look like the translations, though decent,
are not as easy to follow as their English coun-
terparts. This finding is further corroborated by
COMETDA,XL

23 (Rei et al., 2023) scores of the trans-
lations (see Table 7). This means that any dif-
ferences we observe between English and other-
language performance cannot be conclusively at-
tributed to the LLM being tested. However, we can
still compare the performance of different LLMs
across the same language, as the same translation

was used for all LLMs. Further, if at least one LLM
performs well in a task on a given language, we
can be reasonably certain that the translation for
that task-language pair was also good enough.

Models and prompts. We evaluate six state-of-
the-art LLMs praised for their multilingual ca-
pabilities: GPT-4o (OpenAI, 2023), Gemini 2.0
Flash (Team, 2024), Claude 3.7 Sonnet (Anthropic,
2024), Llama 3.1 405B (Grattafiori et al., 2024),
Mistral Large 2407 (AI, 2024; Jiang et al., 2023),
and Command-A (Cohere et al., 2025). We leave
all sampling parameters to their defaults. For
prompts, we use a simple chain of thought prompt-
ing method, where the model is first asked to ex-
plain why it would pick a certain answer, and then
asked to choose it in a separate prompt. Based on
literature (Mondshine et al., 2024; Huang et al.,
2023), it is unclear whether or not it is beneficial
to translate the prompt itself to the target language
or keep it in English, so we try both options.2,3

For each task, we use 1000 examples for report-
ing our results, sampled at random from the dataset,
except for 200 examples in the tutoring task, which
is multi-turn.

3 Results

In this section, we describe the results of five pop-
ular large language models on the four tasks de-
scribed in Section 2. The main results are shown
in Tables 3 to 6.

English is easiest for LLMs. The gap between
English and other languages is large in general. On

2A weaker model roleplays the student model used in the
tutoring task to be consistent with the original work. We only
use the original prompts because it does not work well with
non-English prompts.

3We machine-translate the prompts and manually verify
(with L1/L2 language knowledge) the translation adequacy.
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Input Options

Question: Which num-
ber is the greatest?
Student Answer:
5.0001
Right Answer:5.2

A: Believes the mean is total frequency divided by something,
B (correct): Thinks the more digits a number has the greater it is, regardless of place value,
C: Believes parallel lines have gradients that multiply to give -1,
D: When multiplying by a multiple of 10, gives an answer 10 times bigger than it should be

Question: What is the
lowest common multi-
ple of 8 and 4?
Student answer: 4
Right Answer: 8

A: Subtracts instead of adds when answering worded problems,
B (correct): Confuses factors and multiples,
C: Rounds up instead of down,
D: Adds instead of multiplying when expanding bracket

Example 1: Two examples of the misconception identification task (English).

Input Options

Question: 6 pencils
cost £1.50. How
much do 3 pencils
cost?
Student answer:
25p

A: I think you have made an arithmetic error when halving £1.50. Use short division to divide by two,
B: I think you have used the incorrect notation for money. Consider how the monetary values in the
question are written,
C (correct answer): If 6 pencils cost £1.50, then 3 pencils cost half of £1.50, which is £0.75 or 75p.,
D (student answer): I think you have found the cost for one pencil. The question asks for the cost of
3 pencils.

Question: A film
starts at 8.50pm.
The film lasts
2 hours and 52
minutes. What time
does the film finish?
Student answer:
11.02pm

A (student answer): This isn’t quite right. Remember that there are 60 minutes in an hour, not 100 :),
B: I think you’ve confused your method a little. Noticing that 2 hours and 52 minutes is just 8 minutes
less than 3 hours is super, just make sure you add and subtract in the correct directions though :),
C: Almost there! Take care to notice how many hours and minutes you’re adding here. Is your answer
2 hours and 52 minutes later than 8.50pm?,
D (correct answer): Adding 2 hours to 8.50pm gives 10.50pm. Adding 10 minutes on takes us to
11.00pm, and adding the remaining 42 minutes gives 11.42pm.

Example 2: Two examples of the feedback selection task (English).

Math Problem Student’s (Incorrect) Solution Correct Solution

Sam sells bread. He has a target of selling
120 crates of bread in a week. One week he
was closed on Monday and Friday. Over the
weekend he sold 20 crates. On Tuesday he
sold 15 crates, on Wednesday 12 crates, and
Thursday 18 crates. By how many crates was
Sam off from his target for the week?

Sam had 5 days to sell bread because he was
closed on Monday and Friday. He sold a total
of 20 + 15 + 12 + 18 = 65 crates of bread from
Tuesday to Thursday. Adding the 20 crates he
sold over the weekend, Sam sold a total of 65 +
20 = 85 crates of bread in a week. Sam was off
from his target by 120 - 85 = 35 crates of bread.

During the whole week
Sam sold 15 + 12 + 18
+ 20 = 65 crates. Sam
was off his target by
120 - 65 = 55 crates.

Sophia is thinking of taking a road trip in her
car, and would like to know how far she can
drive on a single tank of gas. She has traveled
100 miles since last filling her tank, and she
needed to put in 4 gallons of gas to fill it up
again. The owner’s manual for her car says that
her tank holds 12 gallons of gas. How many
miles can Sophia drive on a single tank of gas?

Sophia used 4 out of the 12 gallons of gas in her
tank, so there are 12-4 = 8 gallons of gas left
in the tank. If Sophia can drive 100 miles on
4 gallons of gas, then she can drive 100/4 = 25
miles per gallon. Therefore, with 8 gallons of
gas left in the tank, Sophia can drive 25 x 8 =
200 miles on a single tank of gas.

To find miles per gal-
lon, divide 100 miles
/ 4 gallons = 25 miles
per gallon. To find how
far Olivia can go on a
single tank, multiply 25
miles per gallon × 12
gallons = 300 miles.

Example 3: Two examples of the tutoring task.

English Source Original Translation Perturbed Translation Language

It is a kind of tomato.

Mandarin
Hindi
Arabic

Es ist eine Art Tomate Katze ist eine Art Tomate German
Farsi
Telugu
Ukrainian

Je to druh rajčete. matka to druh rajčete. Czech

Example 4: A single example of the translation grading task for non-English languages.

616



English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 97.6% 96.2% 95.1% 94.0% 95.0% 95.3% 97.6% 96.2% 95.1% 94.0% 95.0% 95.3%
Mandarin · 95.8% 95.2% · 92.5% · 92.1% · 92.8% · 92.9% 96.5% 95.0% · 91.7% 93.8% · 92.9% 94.1%
Hindi · 94.5% · 93.2% · 91.9% · 89.8% · 91.8% · 93.2% · 95.5% · 93.6% · 89.6% · 90.4% · 90.6% · 91.4%
Arabic · 95.9% · 93.0% · 92.0% ⋆ 86.0% · 92.6% · 93.4% · 95.9% · 93.0% · 92.8% · 90.9% · 92.0% 94.0%
German · 96.0% 96.2% 94.6% ⋆ 84.6% 95.1% 95.2% · 95.9% 96.6% 94.0% ⋆74.0% 94.9% 95.2%
Farsi · 94.8% · 93.3% · 93.0% · 87.5% · 92.7% · 93.1% · 95.1% · 94.4% ⋆68.0% · 88.3% ⋆66.9% · 93.6%
Telugu · 95.2% · 92.2% · 89.9% · 86.9% · 89.7% ⋆ 85.5% · 94.2% · 90.8% ⋆68.6% ⋆ 83.6% ⋆35.5% ⋆77.9%
Ukranian · 95.7% 94.9% · 92.9% 93.3% 94.4% 94.9% · 95.6% · 94.3% ⋆56.6% · 90.4% 94.2% 93.9%
Czech 96.9% 95.1% 94.5% 92.3% 94.5% 94.1% 96.6% 95.8% ⋆70.2% ⋆ 81.6% ⋆41.0% 94.5%

Table 3: Results (accuracy) for the misconception identification task. We mark results significantly lower (at least
10%=⋆, at least 5%=⋆, otherwise ·) than English with a one-sided 95% confidence t-test.

English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 53.4% 38.2% 17.0% 51.1% 48.5% 39.7% 53.4% 38.2% 17.0% 51.1% 48.5% 39.7%
Mandarin · 49.6% ⋆ 29.7% · 12.3% · 43.0% · 40.1% · 31.8% ⋆ 41.1% ⋆19.2% ⋆ 5.8% ⋆30.3% ⋆30.3% ⋆ 27.8%
Hindi · 48.7% 35.6% · 13.0% · 43.6% · 40.5% · 31.6% ⋆32.1% ⋆13.4% ⋆ 6.2% · 44.3% ⋆18.6% ⋆18.8%
Arabic · 49.6% ⋆ 28.7% · 13.9% · 45.3% ⋆ 38.8% · 33.3% · 48.8% ⋆10.7% 16.3% 48.1% ⋆27.8% ⋆ 28.9%
German 52.5% · 32.1% 15.0% · 46.4% · 42.4% · 32.8% 50.6% · 30.8% 15.6% · 44.4% ⋆ 39.4% 37.6%
Farsi 50.2% ⋆ 27.9% · 11.3% · 44.9% · 41.3% ⋆ 30.9% · 45.9% · 31.6% 16.3% · 44.0% ⋆33.5% · 35.5%
Telugu · 45.2% ⋆ 27.6% · 10.4% · 43.4% ⋆34.0% ⋆ 26.3% ⋆13.9% ⋆12.7% ⋆ 6.1% ⋆ 37.7% ⋆15.5% ⋆9.5%
Ukranian 50.3% · 33.2% · 13.0% · 44.8% · 41.3% · 32.2% ⋆35.9% ⋆19.6% ⋆ 8.1% 52.8% ⋆31.0% ⋆ 27.2%
Czech 49.9% 37.8% · 14.1% · 46.5% · 41.6% ⋆ 30.7% ⋆ 42.7% ⋆ 26.1% 19.2% · 46.6% ⋆ 35.5% · 35.6%

Table 4: Results (accuracy) for the feedback selection task. We mark results significantly lower (at least 10%=⋆,
at least 5%=⋆, otherwise ·) than English with a one-sided 95% confidence t-test.

Harmonic mean Success/1-Telling
GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 94.7% 97.0% 22.1% 93.0% 82.0% 95.5% 96.0/2.5% 97.5/1.0% 96.5/84.0% 93.5/1.0% 82.0/0.0% 96.0/1.0%
Mandarin 89.8% 89.0% 26.4% 79.7% 79.7% 88.2% 94.0/8.0% 90.5/3.0% 90.0/74.5% 80.5/1.5% 80.0/0.5% 93.0/9.0%
Hindi 90.5% 92.7% 24.2% ⋆ 72.2% 73.5% · 88.4% 95.0/8.5% 93.0/0.5% 89.5/75.5% 77.5/10.0% 73.5/0.0% 91.0/5.0%
Arabic 91.4% 89.7% 24.3% · 84.2% 75.2% 87.4% 94.5/5.9% 90.0/0.5% 91.0/77.0% 86.0/3.5% 75.5/0.5% 93.0/10.5%
German 90.7% 91.2% 23.4% 84.2% 77.2% · 86.3% 92.5/3.5% 92.0/1.5% 88.0/74.5% 85.0/1.5% 77.5/0.5% 90.5/8.0%
Farsi · 85.6% ⋆ 81.3% 28.7% 77.2% · 65.8% · 77.8% 89.0/6.5% 87.5/11.5% 91.5/74.5% 78.0/1.5% 69.5/7.0% 91.0/23.0%
Telugu ⋆50.1% ⋆39.5% 27.7% · 58.9% ⋆2.9% ⋆40.7% 77.5/40.5% 77.5/51.0% 85.5/69.0% 61.0/4.0% 59.0/57.5% 63.5/33.5%
Ukranian 91.2% 91.5% 23.5% · 81.2% 71.5% 90.9% 93.0/3.5% 92.0/1.0% 91.5/78.0% 84.0/5.5% 71.5/0.0% 93.5/5.0%
Czech ⋆43.8% ⋆44.1% 17.2% 70.2% ⋆2.9% ⋆21.5% 65.5/32.5% 73.5/42.0% 90.0/80.5% 71.5/2.5% 52.5/51.0% 77.0/64.5%

Table 5: Results (harmonic mean, success, and telling) for the tutoring task. We mark results significantly lower (at
least 10%=⋆, at least 5%=⋆, otherwise ·) than English with a one-sided 95% confidence t-test when occurring in
both success and telling. Telling is flipped such that higher is better.

English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

Mandarin 100.0% 99.3% 98.9% 99.9% 99.5% 99.9% 99.9% 99.4% 24.8% 99.6% 99.4% 99.9%
Hindi 91.5% 74.1% 92.1% 77.6% 82.4% 77.9% 93.8% 88.5% 56.5% 86.5% 87.6% 81.3%
Arabic 98.6% 97.9% 99.2% 98.8% 97.5% 99.0% 98.8% 98.3% 67.2% 98.6% 97.8% 97.9%
German 98.2% 97.9% 97.9% 98.2% 98.2% 98.2% 98.5% 98.3% 29.9% 98.0% 98.3% 97.8%
Farsi 95.3% 93.5% 96.0% 96.4% 92.3% 96.6% 96.8% 96.0% 67.0% 96.4% 94.1% 96.2%
Telugu 77.2% 33.7% 81.0% 51.9% 48.7% 25.2% 82.8% 46.8% 40.7% 82.1% 67.1% 15.6%
Ukranian 98.0% 97.3% 96.9% 96.5% 97.3% 98.3% 98.1% 97.9% 85.3% 97.7% 98.4% 98.2%
Czech 98.7% 98.3% 98.9% 98.3% 97.5% 98.8% 99.3% 98.8% 80.8% 98.7% 99.5% 99.2%

Table 6: Results (accuracy) for the translation grading task.

average4 across all tasks (excluding translation) and
models, English has 70.9%, in contrast to 63.1%
(Hindi), 55.3% (Czech), 67.8% (Ukrainian), 49.7%
(Telugu), 66.2% (Farsi), 66.8% (German), 64.6%
(Mandarin) and 67.4% (Arabic). This in itself does
not make it clear if the loss is due to the LLMs be-

4Averaging here is done to give a general idea, but we must
note that the scores are not equivalent. We use Accuracy for
tasks 1 and 2 but Tutoring Score for Task 3

ing weak or the translation quality being poor. The
poor performance on Telugu is largely driven by
Command-A and Mistral. The former is unsurpris-
ing as Telugu is the only language in our list that is
not officially supported by it (Cohere et al., 2025).
On the other hand, Mistral lists only 12 supported
languages of which we test only Hindi, Arabic,
German and Chinese. Telugu also has the lowest
representation in CommonCrawl and Wikipedia,
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Language Questions Misconception Feedback Translation

Mandarin 0.593 0.607 0.666 0.781
Hindi 0.455 0.546 0.593 0.831
Arabic 0.596 0.659 0.605 0.793
German 0.623 0.642 0.697 0.792
Farsi 0.574 0.644 0.708 0.840
Telugu 0.518 0.569 0.578 0.639
Ukrainian 0.607 0.642 0.682 0.821
Czech 0.611 0.626 0.663 0.805

Table 7: Average COMETDA,XL
23 scores for different languages for different components of the tasks. The Questions

are used for both Misconception and Feedback tasks. The Tutoring task is not translated.

so the result is expected. Manual analysis of the
low tutoring performance for Czech reveals that
the interactions switch between various language
formality styles, to the point that it becomes dis-
tracting. Additionally, the language used in Czech
classrooms is particular and likely not represented
on the internet.

Model performance and consistency. Mistral is
the most inconsistent across non-English languages
(average deviation5=0.186). For example, it com-
pletely fails the tutoring task for both Czech and
Telugu, despite performing reasonably on other
languages in the same task. Command-A is not
much better (average deviation5=0.161). On the
other hand, Gemini is the most consistent (aver-
age deviation5=0.078) and also has the second-best
performance (average score 75.0%). GPT4o, is
the best performing model (average 78.6%) while
Claude performs the worst (average 49.3%) mostly
due to Feedback and Tutoring tasks.

Task difficulty. The worst performance is ob-
served in the Feedback task despite the similarity
to the Misconception identification task. While
Claude is still the standout worst performer with a
worse-than-random performance, all models strug-
gle. Further analysis in Table 11 shows that all
models tended to default the feedback correspond-
ing to the correct answer, with the models’ chain
of thoughts being “regardless of the student’s mis-
take, this is the feedback that gives the student the
most information about the correct answer.” Most
models perform well in the Translation evaluation
task, with the accuracy being even higher than hu-
man annotators, who were presented with attention
checks with similar perturbations (Kocmi et al.,
2024; Zouhar et al., 2025). They also do well in the
Misconceptions task, with most percentage scores

5We calculate the standard deviation across the six lan-
guages for each task and then calculate the mean.

(at least in the English prompt setting) being in
the 90s. The tutoring task seems to have the most
inconsistent performance across models and lan-
guages. In general, all models struggle in Czech
and Telugu, while Claude struggles in all languages.
Avoiding telling seems to be the more challenging
part of the problem for all the models, although
success rates are not very consistent either.

English and translated prompts. Excluding
for the Tutoring task (which did not use native
prompts), using English prompts yields better per-
formance than using translated prompts (averages
72.7% and 67.2%). The exceptions to these are
GPT, Llama, Gemini, and Mistral in the transla-
tion task though in most cases, the difference is
not very large. Note that some of the poor per-
formance could be attributed to the prompts being
translated and checked for correctness rather than
being written in the target language directly, which
could introduce some translationese. Regardless,
we believe it is best to keep prompts in English. As
a further note for English-speaking developers de-
signing multilingual applications, keeping prompts
in English ensures that the chains-of-thought re-
main English, making it easier to run sanity checks.

4 Related Work

LLMs, trained on vast multilingual texts, have dom-
inated tasks such as text generation, translation, and
dialogue (Brown et al., 2020), making them promis-
ing tools in Intelligent Tutoring Systems (ITS; Cor-
bett et al., 1997; Pal Chowdhury et al., 2024). Prior
work explores their use in educational contexts,
such as dynamic student interactions (Schmucker
et al., 2023), simulating expert and novice behavior
(Liu et al., 2023), and math word problem reason-
ing (Opedal et al., 2023).

Beyond mathematical context, LLMs have also
been explored for other forms of learning. Cui
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and Sachan (2023) investigate LLMs in adaptive
and personalized exercise generation for language
learners, while (Wang et al., 2023) examines how
conversational tutoring strategies can aid student
understanding. Additionally, LLMs have been
used to assess grammatical correctness and trans-
lation accuracy (Kocmi and Federmann, 2023;
Omelianchuk et al., 2024; Freitag et al., 2024), fa-
cilitate automated essay scoring (Pack et al., 2024),
and provide corrective feedback in second language
writing (Han et al., 2024). While LLMs excel
in English, their abilities in other languages of-
ten vary, reflecting an over-representation of high-
resource languages in pre-training corpora. For ex-
ample, Koto et al. (2023) introduces IndoMMLU,
which reveals significant performance disparities
between Indonesian and English contexts. Sim-
ilarly, Holtermann et al. (2024) examines LLMs
across 137 languages and attributes discrepancies
in performance to tokenisation strategies. Li et al.
(2024); Armengol-Estapé et al. (2022) further find a
strong correlation between pre-training data propor-
tions and performance, reaffirming the gap between
high- and low-resource languages. For Catalan,
Armengol-Estapé et al. (2022) find that while GPT-
3 performed well in generative tasks, its compre-
hension capabilities were limited by the language’s
moderate representation.

Recent research has increasingly explored the ap-
plication of LLMs in multilingual educational con-
texts, though challenges persist in balancing perfor-
mance across languages. Systematic reviews of AI-
based language learning tools highlight the preva-
lence of NLP and machine learning techniques for
error correction, feedback provision, and assess-
ment in non-English contexts, though they note
persistent gaps in dialogic competence and teacher
preparedness (Alhusaiyan, 2025). Studies evalu-
ating LLMs’ cross-lingual capabilities reveal per-
formance disparities, with models demonstrating
stronger skill tagging accuracy for English-centric
curricula compared to underrepresented languages
like Irish or Marathi (Kwak and Pardos, 2024). Bib-
liometric analyses indicate growing research inter-
est in AI for foreign language education, particu-
larly in vocabulary acquisition and writing support,
though most studies still focus on high-resource
European and Asian languages (Doğan and Talan).
These works collectively underscore both the trans-
formative potential and current limitations of LLMs
in achieving equitable multilingual educational sup-
port.

To address multilingual education more directly,
projects like Kaleidoscope (Salazar et al., 2025)
and Aya (Üstün et al., 2024) by Cohere For AI aim
to support culturally diverse languages, while SEA-
HELM (Susanto et al., 2025) and ECLeKTic (Gold-
man et al., 2025) emphasise culturally grounded
evaluations in Southeast Asian and cross-lingual
contexts, respectively. These efforts highlight the
need for multilingual benchmarks that move be-
yond English-centric evaluations.

Prior pedagogical studies tend to assess single
LLMs in monolingual settings. We fill this gap
by benchmarking LLMs in multiple tasks. Specif-
ically, we conduct zero-shot experiments across
multiple models and languages to better analyze
their real-world applicability.

5 Conclusion

We analyse the performance of six well-known
state-of-the-art LLMs across six languages other
than English on four educational tasks. We find
that while performance in English continues to be
better than in other languages, the drop to other
models is not always large. In particular, we find
that GPT4o and Gemini 2.0 perform consistently
well across all languages, with a few exceptions.
We also note that English prompts work as well, if
not better, than prompts written in the target lan-
guage, when solving multilingual tasks. This opens
up opportunities for porting applications developed
for English into different languages. However, we
note that certain models perform poorly in some
tasks and languages, so we recommend first verify-
ing that a model works well in a particular language
on a specific educational task before deployment.
However, to answer the question posed by the title,
we believe that atleast some language models are
reliable across languages.

Limitations

The shown experiments could naturally be better
extended to more languages. The selected lan-
guages reflect a balance between author familiar-
ity, which is necessary for meaningful qualitative
analysis, and linguistic diversity, as evidenced by
their spread in URIEL feature space. Similarly, we
only covered six LLMs. In both cases, the cost of
experiments (see Table 8) becomes prohibitively
expensive, which motivated the data release in this
paper to enable further research.

Additionally, translation quality remains a con-

619



Model API Total Miconception Feedback Tutoring Translation

Mistral Mistral API $530 $170 $170 $120 $70
Claude Anthropic $600 $190 $190 $135 $85
Command Cohere $520 $165 $165 $120 $70
Llama Together.ai $600 $190 $190 $135 $80
GPT4o Open AI $80 $25 $25 $18 $12
Gemini Google Genai $30 $10 $10 $6 $4

Table 8: Approximate costs for the experiments. Does not include taxes or currency conversion charges. The total is
about $2360 with approximately an additional $500 spent on preliminary experiments.

cern, as previously discussed. A more thorough
evaluation would involve human translations for ev-
ery task, similar to the MMLU multilingual bench-
mark (Xuan et al., 2025), but doing so for all our
tasks would be resource-intensive.

Finally, the set of tasks is not a complete repre-
sentation of problems in the education space, pri-
marily because most of the more complex tasks
lack well-defined language-agnostic metrics.
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English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 0.0% 0.7% 0.1% 2.1% 0.0% 0.9% 0.0% 0.7% 0.1% 2.1% 0.0% 0.9%
Mandarin 0.5% 1.6% 0.0% 3.2% 0.0% 0.2% 0.5% 1.6% 0.0% 3.2% 0.0% 0.2%
Hindi 0.0% 1.6% 0.4% 2.3% 0.0% 0.4% 0.0% 0.9% 0.2% 2.5% 0.0% 0.1%
Arabic 0.1% 1.7% 0.2% 2.1% 0.0% 0.2% 0.0% 1.1% 0.3% 2.2% 0.0% 0.1%
German 0.5% 1.6% 0.3% 2.3% 0.0% 0.2% 0.5% 1.6% 0.3% 2.3% 0.0% 0.2%
Farsi 0.0% 1.8% 0.2% 2.0% 0.0% 0.3% 0.0% 1.6% 0.2% 2.9% 0.0% 0.1%
Telugu 0.0% 0.1% 0.0% 2.2% 0.0% 0.4% 0.0% 0.3% 0.1% 1.7% 0.0% 0.0%
Ukranian 0.1% 1.6% 0.1% 2.2% 0.0% 0.3% 0.0% 1.8% 0.4% 1.6% 0.0% 0.1%
Czech 0.1% 1.6% 0.1% 1.9% 0.0% 0.7% 0.0% 1.4% 0.0% 0.7% 0.0% 0.5%

Table 9: Response error rate for the misconception identification task.

English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 0.0% 0.3% 0.0% 1.3% 0.0% 0.0% 0.0% 0.3% 0.0% 1.3% 0.0% 0.0%
Mandarin 0.0% 0.1% 0.0% 1.5% 0.0% 0.2% 0.0% 0.0% 0.1% 1.6% 0.0% 0.1%
Hindi 0.0% 0.0% 0.0% 1.1% 0.0% 0.1% 0.0% 0.0% 0.0% 1.0% 0.0% 0.2%
Arabic 0.0% 0.0% 0.0% 1.5% 0.0% 0.1% 0.0% 0.0% 0.0% 2.1% 0.0% 0.2%
German 0.0% 0.0% 0.0% 1.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.8% 0.0% 0.2%
Farsi 0.0% 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.1%
Telugu 0.0% 0.0% 0.0% 1.7% 0.0% 0.1% 0.0% 0.2% 0.0% 1.8% 0.0% 0.1%
Ukranian 0.0% 0.0% 0.0% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 0.0% 0.0%
Czech 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 0.0% 0.0% 0.0% 3.0% 0.0% 0.0%

Table 10: Response error rate for the feedback selection task.

English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

English 23.7% 45.8% 75.0% 27.8% 23.0% 35.1% 23.7% 45.8% 75.0% 27.8% 23.0% 35.1%
Mandarin 26.9% 54.5% 81.5% 36.9% 33.8% 47.7% 32.6% 71.9% 89.7% 24.3% 49.3% 54.5%
Hindi 30.3% 42.3% 79.6% 34.9% 29.9% 47.9% 55.5% 78.9% 87.7% 33.2% 68.9% 71.3%
Arabic 28.0% 54.1% 79.5% 35.3% 32.9% 44.0% 21.9% 81.7% 73.6% 22.4% 36.4% 49.5%
German 25.1% 48.8% 79.4% 32.7% 30.4% 45.4% 22.3% 54.5% 77.0% 29.6% 32.9% 36.0%
Farsi 28.5% 52.5% 82.5% 31.6% 32.6% 45.5% 21.6% 52.1% 75.1% 29.3% 30.3% 28.9%
Telugu 29.2% 55.6% 81.5% 35.2% 33.1% 52.4% 78.3% 73.8% 89.5% 37.9% 70.9% 78.8%
Ukranian 27.3% 49.4% 80.3% 32.7% 33.5% 45.2% 47.3% 69.7% 87.1% 20.7% 46.7% 49.7%
Czech 27.9% 39.5% 80.2% 30.2% 31.8% 49.0% 34.9% 59.5% 67.8% 23.0% 33.1% 38.0%

Table 11: Rate of defaulting to the correct answer for the feedback selection task.

English prompt Translated prompt
Language GPT4o LLama Claude Gemini Mistral Cmd-A GPT4o LLama Claude Gemini Mistral Cmd-A

Mandarin 0.0% 0.1% 0.5% 0.0% 0.0% 0.0% 0.0% 0.1% 4.2% 0.0% 0.0% 0.0%
Hindi 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%
Arabic 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.7% 0.0% 0.0% 0.0%
German 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0%
Farsi 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Telugu 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0%
Ukranian 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0%
Czech 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.8% 0.0% 0.0% 0.0%

Table 12: Response error rate for the translation grading task.
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A Experiment Prompts

A.1 Task: Misconception Identification
We used a sequence of 3 prompts:

System prompt:
You are an expert math tutor who knows about all grade-school level math misconceptions. Your task is
to select the accurate type of misconceptions your student has based on the (incorrect) answer he/
she gives to a multiple-choice math question. You will be given 4 misconceptions types. Your selected
misconception type should correspond to the given question and answer. Explain your reasoning

User message 1:
Question: {QUESTION}
Selected Answer: {SELECTED_ANSWER}
Misconceptions:
A. {Misconception 1}
B. {Misconception 2}
C. {Misconception 3}
D. {Misconception 4}

The position of the Misconception corresponding to the selected answer rotates from question to question.
The subsequent assistant message is stored as the chain-of-thought. Thereafter, we sent the second user
message.

User message 2:
Now based on your above explanation, output the option corresponding to the correct misconception.
Only say 'A', 'B', 'C', or 'D' without any other text. Do not say anything else.

The response to this part is the final answer. We regenerate until an answer of ‘A’, ‘B’, ‘C’, or ‘D’ is
received, up to 20 times. If no answer is received, a response of ‘E’ is saved.

This method is used for all models except Gemini. In case of Gemini, we use the generate_content
method, which is recommended for non-chat tasks and allows for a single user message. In this case, after
obtaining the chain-of-thought, we make a new query with the same system prompt but with the following
user message:

Gemini message:
You have previously given the following answer and explanation:
{COT}
Now based on your above explanation, output the option corresponding to the correct misconception.
Only say 'A', 'B', 'C', or 'D' without any other text. Do not say anything else.

Note that the last part is identical to User Message 2
When using translated prompts, the System Prompt and, User Message 2 and Gemini Message are
translated to the target language.

625



A.2 Task: Feedback Selection

System prompt:
You are an expert math tutor who specialises in providing precise and helpful feedback for grade-
school level math questions. Your task is to select the correct explanation for a student's given
answer to a multiple-choice math question.

You will be provided with:
- A math question
- A specific answer chosen by the student (which can be correct or incorrect).
- Four possible explanations (labelled A, B, C, and D).
Your selected explanation should accurately correspond to the given answer. Provide your reasoning
for selecting the explanation.

User message 1:
Question: {QUESTION}
Selected Answer: {SELECTED_ANSWER}
Feedbacks:
A. {Feedback 1}
B. {Feedback 2}
C. {Feedback 3}
D. {Feedback 4}

The position of the Feedback corresponding to the selected answer rotates from question to question. If
it is placed at positions A, B, or C, the feedback corresponding to the correct answer is at position D.
Otherwise, it is at C. The subsequent assistant message is stored as the chain-of-thought. Thereafter, we
sent the second user message.

User message 2:
Now based on your above explanation, output the option corresponding to the correct explanation. Only
say 'A', 'B', 'C', or 'D' without any other text. Do not say anything else.

The response to this part is the final answer. We regenerate until an answer of ‘A’, ‘B’, ‘C’, or ‘D’ is
received, up to 20 times. If no answer is received, a response of ‘E’ is saved.

This method is used for all models except Gemini. In case of Gemini, we use the generate_content
method, which is recommended for non-chat tasks and allows for a single user message. In this case, after
obtaining the chain-of-thought, we make a new query with the same system prompt but with the following
user message:

Gemini message:
You have previously given the following answer and explanation:
{COT}
Now based on your above explanation, output the option corresponding to the correct explanation. Only
say 'A', 'B', 'C', or 'D' without any other text. Do not say anything else.

Note that the last part is identical to User Message 2. When using translated prompts, the System Prompt,
User Message 2, and Gemini Message are translated to the target language. We manually made sure that
the formatting was maintained after the translation.
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A.3 Task: Tutoring

Student system prompt:
Student Persona: {STUDENT_PERSONA}

Math problem: {MATH_PROBLEM}

Student solution: {STUDENT_SOLUTION}

Context: You need to role-play the student, {STUDENT_NAME}, while the user roleplays the tutor. {
STUDENT_NAME} thinks their answer is correct. Only when the teacher provides several good reasoning
questions, {STUDENT_NAME} understands the problem and corrects the solution. {STUDENT_NAME} can use
calculator and thus makes no calculation errors. Send <EOM> tag at end of the student message.

Teacher system prompt:
A tutor and a student work together to solve the following math word problem.
Math problem: {MATH_PROBLEM}
The correct solution is as follows:
{GROUND_TRUTH}

You need to role-play the tutor while the user roleplays the student, {STUDENT_NAME}. The tutor is a
soft-spoken empathetic man who dislikes giving out direct answers to students, and instead likes to
answer questions with other questions that would help the student understand the concepts, so that
she can solve the problem themselves.

{STUDENT_NAME} has come up with a solution, but it is incorrect. Please start the conversation, one
line at a time, aiming to figure out what is {STUDENT_NAME}'s solution and what is wrong with it.
Then try to get her to fix it.

The dialogue history was formatted as user-assistant message pairs for teacher and student roles. We
manually set the initial messages to initiate conversations in the target language.
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A.4 Task: Translation Grading

System prompt:
You are a language translation evaluator. Your task is to assess the quality of a translation from
English to {LANGUAGE}. You will be provided with two sentences:
1. An original English sentence.
2. A translated sentence in {LANGUAGE}.
Your goal is to rate the translation on a scale from 1 to 5 based on the following criteria:
1: The translation is incorrect, incomprehensible, or completely unrelated to the original English
sentence.
2: The translation has significant errors and distorts the meaning of the original English sentence.
3: The translation is understandable but contains notable errors or awkward phrasing.
4: The translation is mostly accurate with minor errors or slightly awkward phrasing.
5: The translation is fluent, natural, and accurately conveys the meaning of the original English
sentence without errors.
Explain your decision

User message 1:
English: {ENGLISH_SENTENCE}
{LANGUAGE}: {TRANSLATED_SENTENCE}

The subsequent assistant message is stored as the chain-of-thought. Thereafter, we sent the second user
message.

User message 2:
Now based on your above explanation, output the final score from 1 to 5. Only say '1', '2', '3', '4',
or '5' without any other text. Do not say anything else.

The response to this part is the final answer. We regenerate until an answer of ‘1’, ‘2’, ‘3’, ‘4’, or ‘5’ is
received, up to 20 times. If no answer is received, a response of ‘0’ is saved.

This method is used for all models except Gemini. In case of Gemini, we use the generate_content
method, which is recommended for non-chat tasks and allows for a single user message. In this case, after
obtaining the chain-of-thought, we make a new query with the same system prompt but with the following
user message:

Gemini message:
You have previously given the following answer and explanation:
{COT}
Now based on your above explanation, output the final score from 1 to 5. Only say '1', '2', '3', '4',
or '5' without any other text. Do not say anything else.

Note that the last part is identical to User Message 2
This sequence is repeated twice for each sentence, once with the original translation and once

with the perturbed translation. The scores are then compared. When using English prompts, the
LANGUAGE fields are set to their English exonyms, i.e., Mandarin, Hindi, Arabic, German, Farsi,
Telugu, Ukrainian, and Czech. When using translated prompts, the System Prompt, User Mes-
sage 2, and Gemini Message are translated to the target language. We manually made sure that
the formatting was maintained after the translation. We also use the language endonyms, namely

.
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B Translation Quality

As we mentioned in Limitations, an LLM performing poorly in a given language does not necessarily
mean that the LLM itself is bad. It could also mean that information was lost during translation. This is
particularly problematic because the machine translation systems likely suffer from the same resource
limitations that plague the LLMs in the first place. As such, we manually investigated a small subset of
translated questions for the languages they we are fluent in, namely Persian, Arabic, Czech, and Hindi.
For each language, we analysed 10 questions each for the Feedback and Misconception tasks, and 20
questions for the Translation Grading task.

In the case of Persian, the only recurring error was with mathematical notation, particularly that the
minus sign gets placed to the right of the numbers instead of the left, where it should be. This, however,
seems to be a rendering issue, which is a result of the fact that the minus sign (‘−’, U+2212) is often
replaced by the similar-looking hyphen (‘-’, U+002D), confusing the rendering program into believing
that it is rendering text. This should not be an issue since LLMs take raw Unicode encodings as input.
Beyond this, there were some minor tense errors, but the meanings were clear.

The issue with sign placement was also observed in Arabic. In addition, there seem to be some
translation errors. For example, the word ‘travel’ used here in the context of the movement of a graph was
translated to ‘liyusaafir’, which is more like ‘taking a trip’. We found no errors in the sentences for the
translation task. In Czech, the primary source of errors was improper context-dependent terminology. For
example, when translating the word ‘co-interior (angles)’, it missed the ‘co’ prefix and translated only the
‘interior’ part. While this is fine in regular speech, in Mathematical terminology, this can be confusing.
Despite making the translation harder to follow, the core meaning of the question is preserved.

In Hindi we found several cases where the Hindi sentence was difficult to follow for the Hindi speaking
author due to misinterpretation of polysemes by the translator e.g. the word ‘round’, which was being
used in the sense of ‘approximate’ was translated to the sense of ‘circle’ and ‘property’ which was being
used in the sense of ‘quality’, was translated as ‘possessions’. Also, the phrase ‘Not Quite’ was translated
to something like ‘Not Enough’, perhaps due to the word ‘quite’ not having a Hindi equivalent. However,
given the context, using the word for ’Almost’ would have been more tonally accurate. However, quite a
few translations were hard for the annotator to follow, but backtranslating them yielded reasonably good
results, meaning there was no information loss.

The translation exercises showed few errors, perhaps due to the sentences being easy to translate by
design. There were one or two mistranslations, but otherwise it worked well. One minor issue was
that word boundary detection, which was performed in Python using the regex ‘\b\w+\b’, sometimes
identified individual characters in Hindi rather than whole words. However, the resulting sentence still
had errors, just not the type of errors that we expected.
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Figure 2: Evaluation results of the four tasks across five lare language models. The error bars show a 95% confidence
interval (t-test). MathDial Graphs show tutoring score after five turns, most models flatline after 5 utterance pairs.
The English language column is absent because translation evaluation uses English as the source. All scores range
from 0.0 to 1.0, with higher being better, though they are not comparable with each other. Note the truncated y-axes
for better detail. Visualizes Tables 3 to 6.

630



Results for prompt in target language
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Figure 3: Evaluation results of the four tasks across five large language models. The error bars show 95% confidence
interval (t-test). MathDial Graphs show tutoring score after five turns, most models flatline after 5 utterance pairs.
The English language column is absent because translation evaluation uses English as the source. All scores range
from 0.0 to 1.0, with higher being better, though they are not comparable with each other. Note the truncated y-axes
for better detail. Visualizes Tables 3 to 6.
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Abstract

Vocabulary use is a fundamental aspect of
second language (L2) proficiency. To date,
its assessment by automated systems has typ-
ically examined the context-independent, or
part-of-speech (PoS) related use of words. This
paper introduces a novel approach to enable
fine-grained vocabulary evaluation exploiting
the precise use of words within a sentence.
The scheme combines large language models
(LLMs) with the English Vocabulary Profile
(EVP). The EVP is a standard lexical resource
that enables in-context vocabulary use to be
linked with proficiency level. We evaluate the
ability of LLMs to assign proficiency levels to
individual words as they appear in L2 learner
writing, addressing key challenges such as pol-
ysemy, contextual variation, and multi-word ex-
pressions. We compare LLMs to a PoS-based
baseline. LLMs appear to exploit additional se-
mantic information that yields improved perfor-
mance. We also explore correlations between
word-level proficiency and essay-level profi-
ciency. Finally, the approach is applied to ex-
amine the consistency of the EVP proficiency
levels. Results show that LLMs are well-suited
for the task of vocabulary assessment.

1 Introduction

Automated writing evaluation has become an estab-
lished area of research within natural language pro-
cessing, playing a key role in language education
and computer-assisted language learning (Huawei
and Aryadoust, 2023). Within this context, assess-
ing second language (L2) proficiency remains a
critical objective, with increasing attention being
paid not only to holistic assessment but also to
the evaluation of individual aspects of language
competence (Weigle, 2002), such as grammar, co-
herence, and vocabulary. This has proven essential
for providing detailed, pedagogically useful feed-
back to language learners (Hamp-Lyons, 1995).
Among these components, vocabulary is the es-

sential building block of language (Schmitt et al.,
2001) as words are the main vehicle for expressing
meaning (Vermeer, 2001).

Existing vocabulary assessment methods have
typically either assigned an overall vocabulary
score to learners’ texts at the essay- (Crossley et al.,
2023; Bannò et al., 2024) or sentence-level (Arase
et al., 2022), extracted vocabulary-related features
(e.g., lexical diversity or sophistication) (Kyle and
Crossley, 2015; Kyle et al., 2018), or attempted to
assess the difficulty or appropriateness of individ-
ual words (Bax, 2012; Uchida and Negishi, 2018;
Settles et al., 2020; Aleksandrova and Pouliot,
2023). The latter, however, has been largely under-
explored and presents significant challenges – par-
ticularly in dealing with polysemy and contextual
variation as well as handling multi-word expres-
sions.

Our work directly addresses this limitation by fo-
cusing on word-level, in-context vocabulary assess-
ment in a fully replicable manner. Specifically, we
leverage an open-access reference containing infor-
mation about which lexical items are used at each
level of English learning, the English Vocabulary
Profile (see Section 3.1). We combine this resource
with state-of-the-art large language models (LLMs)
to predict the proficiency level of individual words
as they are used in L2 learner writing. To the best
of our knowledge, this is the first study to apply
LLMs for this task, offering a novel and robust
approach to vocabulary assessment that explicitly
handles semantic ambiguity and contextual nuance.

In Section 2, we outline the theoretical back-
ground of L2 vocabulary assessment and review
previous studies that have implemented it in au-
tomated systems. Section 3 presents the English
Vocabulary Profile and the L2 datasets used in our
experiments. Section 4 constitutes the core of our
study. The first experiment focuses on identifying
the intended meaning of polysemous words from
the English Vocabulary Profile through the use of
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LLMs, using learner example sentences sourced
from the same dataset. In our second experiment,
we annotate sentences from a learner corpus by as-
signing each word a proficiency level based on the
English Vocabulary Profile – annotations we plan
to make publicly available. We then automatically
predict these levels and compare the performance
of various LLMs against a random baseline and a
part-of-speech (PoS)-based model. The third ex-
periment extends this approach to additional L2
learner datasets annotated only at the essay level, in-
vestigating the correlation between predicted word-
level proficiency and essay-level proficiency. Addi-
tionally, at the end of the same section, we use our
LLM-based approach to examine the consistency
of the annotations in the English Vocabulary Profile.
Finally, in Section 5, we present our conclusions
and outline directions for future work.

2 Related Work

2.1 Vocabulary assessment

Despite its fundamental importance, the assessment
of vocabulary was only selectively investigated at
the beginning of the scientific era of L2 assessment,
whereas much more attention was paid to the con-
trastive analysis of sounds and grammar (Lennon,
2008). When vocabulary knowledge was evalu-
ated, it was primarily tested using the discrete-
point approach, an assessment method focused on
testing one specific linguistic element – phonol-
ogy, morphology, syntax, and vocabulary – at a
time, generally using multiple-choice questions.
This approach to vocabulary testing faced various
criticisms, as it offered only a limited view of a
learner’s vocabulary knowledge, neglected the role
of productive language use, disregarded the impor-
tance of context in real-world communication, and
failed to consider learners’ use of strategies to cope
with unfamiliar words (Read, 2000).

The 1980s represented a watershed in vocabu-
lary assessment since a group of researchers started
to publish studies on defined procedures aiming at
assessing specific aspects of vocabulary use and
knowledge (Anderson and Freebody, 1981, 1983;
Nation, 1983; Meara and Buxton, 1987). These
seminal works were something of an exception,
given that, on the one hand, the field of L2 acquisi-
tion was primarily concerned with the investigation
of the acquisition by learners of morpho-syntactic
features, whereas, on the other hand, the advent of
the communicative approach shifted the attention

of language assessment researchers from knowl-
edge of grammatical and lexical elements to the
performance of real-world-like tasks (Read, 2013).

For our work, we believe it is important to re-
member Read’s conceptualisation of vocabulary
assessment, who classified it according to 6 di-
mensions arranged in antonymic pairs: discrete
versus embedded, selective versus comprehensive,
and context-independent versus context-dependent.
The first distinguishes whether vocabulary is as-
sessed as an isolated skill (discrete) or as part of
broader language proficiency (embedded). The sec-
ond refers to the scope of lexical items – either a
specific set (selective) or the learner’s full vocabu-
lary range (comprehensive). The third dimension
captures whether vocabulary is assessed in isolation
or within authentic contexts. Due to the widespread
acceptance of the communicative approach (Hard-
ing, 2014), it is straightforward to conclude that
current trends in language testing and assessment
tend to privilege embedded, comprehensive, and
context-dependent measures of vocabulary assess-
ment. These three characteristics are central to our
approach.

2.2 Lexical sophistication
The Common European Framework of Reference
(CEFR) (Council of Europe, 2001, 2020), a key
benchmark aligned with communicative language
teaching, testing and assessment, distinguishes be-
tween vocabulary range and vocabulary control,
which have generally been operationalised along
the dimensions of lexical diversity and lexical so-
phistication, respectively.

Lexical diversity, concerning the breadth of vo-
cabulary used by learners (Yu, 2010; Lu, 2012), is
typically measured through metrics like type-token
ratio or number of unique words. Its relationship
with L2 writing proficiency has been widely stud-
ied (Crossley and McNamara, 2012; Gebril and
Plakans, 2016; Treffers-Daller et al., 2018; Woods
et al., 2023). While important, lexical diversity is
not the primary focus of this paper.

Our work is more closely related to the idea of
lexical sophistication. Its focus is the depth of lex-
ical knowledge and is frequently characterised by
the presence of relatively rare or uncommon words
within a given language sample (Baese-Berk et al.,
2021). It is generally operationalised using features
related to word frequency and familiarity, such as
the Lexical Frequency Profile, which reflects the
proportion of a learner’s vocabulary falling within
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various frequency bands derived from a reference
corpus (Laufer and Nation, 1995). The English
Vocabulary Profile (EVP) (Capel, 2015), adopted
in our work (see Section 3), is a resource that de-
scribes words, phrases, idioms, and collocations
used by English learners at different CEFR lev-
els. The study by Leńko-Szymańska (2015), which
represents an important precedent for our work,
employed it to assign proficiency bands to 90 es-
says, finding a strong correlation between the clus-
ters obtained using the vocabulary profile and the
human-assigned CEFR levels.

Similarly to the EVP, Dürlich and François
(2018) created an online database called EFLLex,
which presents the distribution of English words
across CEFR levels (A1 to C1), mainly derived
from the analysis of textbook corpora. The CEFR-
J, a Japan-specific adaptation of the CEFR, also
features a word list with proficiency levels (Tono,
2013).

2.3 Automated approaches
Yoon et al. (2012) investigated the use of a vocab-
ulary profile to extract features of lexical sophisti-
cation for proficiency assessment of spontaneous
speech and found interesting correlations with oral
proficiency scores. Kyle and Crossley (2015) intro-
duced the Tool for Automatic Analysis of Lexical
Sophistication (TAALES), which computes 135
lexical indices. They found that 5 measures of
lexical complexity accounted for more than 50%
of the variance in the human ratings of the spo-
ken and written datasets considered in their study.
Text Inspector (Bax, 2012) is an online tool that ap-
pears to use the EVP to assess writing proficiency;
however, its implementation is not publicly avail-
able and is most likely rule-based, as it presents
all possible meanings (and corresponding profi-
ciency levels) of a word to the user when ambi-
guities arise. The calculation method used by the
CVLA (CEFR-based Vocabulary Level Analyzer)
is openly available (Uchida and Negishi, 2018);
however, the strictly vocabulary-related part of this
tool is also rule-based and, like Text Inspector, does
not appear to address issues related to polysemous
or ambiguous words.

Duolingo developed and released a tool called
the CEFR checker, which is now discontinued.
This tool allowed users to assess the difficulty level
of English and Spanish words and texts. The lexi-
cal complexity component of the tool is described
in Settles et al. (2020) and features a vocabulary

scale model based on the CEFR framework and a
database of 6,823 English words, partly obtained
from the EVP. The authors introduce two regres-
sion models trained on lexical representations us-
ing surface-level features designed to approximate
word frequency. However, these models do not
appear to account for multi-word expressions or
words with multiple meanings.

Garí Soler and Apidianaki (2021) demonstrated
that BERT could effectively generate contextual
embeddings for polysemous words, laying the
groundwork for further research in lexical com-
plexity assessment. Building on this, Aleksandrova
and Pouliot (2023) explored how the most frequent
senses of polysemous words appear in language
learner essays. Their study leverages BERT to
develop a CEFR-aligned classifier aimed at eval-
uating the lexical complexity of both single-word
and multi-word expressions in English and French.
It is important to note that their classifier is trained
to predict the CEFR level of an item in context,
but not to explicitly identify or disambiguate the
meaning or sense of that expression.1

While the aforementioned studies partially or
entirely fall short in handling polysemy and ambi-
guity, our study directly addresses this challenge
by targeting word-level, in-context vocabulary as-
sessment in a fully replicable manner. Additionally,
to the best of our knowledge, ours is the first study
to leverage LLMs for this purpose.

3 Data

3.1 English Vocabulary Profile

The English Vocabulary Profile (EVP) (Capel,
2015) is a publicly available reference2 that con-
tains information about which words, phrases, id-
ioms, and collocations are used at each level of En-
glish learning. It is grounded in extensive research
using the Cambridge Learner Corpus (Nicholls,
2003), a growing collection of exam scripts written
by learners worldwide.

For our experiments, we only considered the
British English section of the profile, which in-
cludes 15671 entries corresponding to 6747 unique
words. The difference arises because some words
have multiple meanings or grammatical functions,
resulting in several entries comprising multiple op-

1Other works have targeted word-level vocabulary assess-
ment, but not for English (Gala et al., 2014; Alfter et al., 2016;
Alfter and Volodina, 2018).

2englishprofile.org/
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tions. Additional details about the degree of poly-
semy are provided in Table 6 in Appendix A.

Figure 1: Example for the word push from the EVP.

Each EVP entry includes a base word, a guide-
word, its CEFR level(s), manually assigned PoS,
topic, and additional details such as learner and dic-
tionary examples in context (see Figure 1). Among
all entries, when distinguishing by PoS, 62.24%
have more than one CEFR level. However, when
considering only unique base words, this propor-
tion drops to 29.21%. In this work, we refer to
words that, within a single PoS, have multiple
CEFR levels as ambiguous words; the rest are con-
sidered non-ambiguous. For example, the noun aim
is classified solely as B1, making it non-ambiguous,
whereas the verb aim spans levels A2, B2, C1, and
C2 depending on context, making it ambiguous.
About 95% of the section of the EVP we considered
in our work has examples taken from L2 learner
writing, many of which also contain grammatical
errors. For the remaining 5%, we relied on dictio-
nary examples in our experiments.

3.2 L2 learner datasets

3.2.1 OneStopEnglish
OneStopEnglish (Vajjala and Lučić, 2018), is a
publicly available corpus3 for readability assess-
ment and text simplification including 189 parallel
compositions across three readability levels: El-
ementary, Intermediate, and Advanced. We ex-
tracted 293 triplets of parallel sentences from the
corpus, spanning these three readability levels (see
Appendix B for an example), and annotated them
at the word level with CEFR levels from the EVP,
excluding stopwords,4 punctuation, and words not

3github.com/nishkalavallabhi/
OneStopEnglishCorpus

4Stopwords include those from the NLTK list (nltk.org)
plus across, among, and away.

featured in the EVP (see Figure 2). These annota-
tions will be made publicly available.

3.2.2 EFCAMDAT
Arguably the largest publicly available L2
learner corpus,5 the second release of the EF-
Cambridge Open Language Database (EFCAM-
DAT) (Geertzen et al., 2013; Huang et al., 2017)
consists of 1,180,310 scripts written by 174,743 L2
learners as assignments for Englishtown, an online
English language school. The corpus includes 128
distinct writing tasks covering a range of topics,
such as describing the rules of a game, reporting
a news story, explaining a homemade remedy for
fever, and writing to a pen pal. Each composition is
annotated with a proficiency level from 1 to 16, cor-
responding to CEFR levels A1 to C2.6 Learners’
first languages are not directly available but can
be inferred from their nationalities (approximately
200 in total). For our experiments, we randomly
selected 1,000 essays for each CEFR level from the
corpus, resulting in a total of 6,000 essays.

3.2.3 ELLIPSE
The English Language Learner Insight, Proficiency,
and Skills Evaluation (ELLIPSE) Corpus (Cross-
ley et al., 2023) is a publicly available collection7

of approximately 6,500 writing samples from L2
learners of English. Each sample is annotated with
both an overall holistic proficiency score and de-
tailed analytic scores covering aspects such as co-
hesion, syntax, vocabulary, phraseology, grammar,
and punctuation conventions. Proficiency scores
are on scale from 1 to 5. For our experiments, we
extracted 359 essays from the training set and 175
from the test set. Further details about the selected
essays can be found in Table 7 in Appendix A.

4 Experiments

4.1 Semantic understanding

Our first experiment serves as a proof of con-
cept and focuses on semantic understanding, with
the goal of identifying the intended meaning of
a unique word from the EVP when considering
the EVP learner examples. Specifically, an LLM
is provided with an EVP learner-produced exam-
ple sentence containing a given word along with

5ef-lab.mmll.cam.ac.uk/EFCAMDAT.html
6The official EF-CEFR mapping can be found at:

myenglishlive.ef.com/help-me-article?articleID=
55&Vote=Up

7github.com/scrosseye/ELLIPSE-Corpus
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Figure 2: Annotation example on OneStopEnglish. S: stopword; P: punctuation; N/A: word not featured in the EVP.

all possible EVP entries for that given word. The
model’s task is to select the most contextually ap-
propriate meaning from the options provided. Note
that multi-word expressions are also included by
feeding their reference words, e.g., the word push
for the expression push (sb) for sth/to do sth (see
Figure 1).

The prompt used for this task and a relevant ex-
ample are reported in Appendix C (“Prompt for
semantic understanding”). For this experiment,
we focused on words with 3, 4, 5, and 6 possible
meanings. To avoid positional bias (Liusie et al.,
2024), all possible permutations were considered
for words with 3 options.8 For words with 4, 5, and
6 options, however, only ten permutations were
considered due to time and resource constraints.
For each permutation, we extract the logits for each
option, apply a softmax function, then compute the
average probability across permutations and select
the option with the highest average probability.

For this experiment, we compared the perfor-
mance of two proprietary LLMs, i.e., GPT-4o, GPT-
4o-mini (OpenAI, 2023), and three open-source
LLMs, i.e., Llama 3.1 8B, Llama 3.1 70B (4-bit
quantised) (Llama Team, 2024), and Qwen 2.5 32B
(4-bit quantised) (Yang et al., 2024). These mod-
els were selected to ensure a representative range
in terms of both model size and the open-source
versus proprietary distinction.

Results are evaluated in terms of Accuracy.

4.2 Word-level proficiency prediction

In the second part of our work, we perform CEFR
proficiency level prediction at the word level on
the annotated sentences extracted from the On-
eStopEnglish dataset (see Section 3.2 and Figure
2). We implement the approach proposed in Figure
3 in order to extract the proficiency level for each
word in a given composition.

8In this context, a permutation refers to a unique ordering
of the multiple-choice options associated with each question.
That is, while the content of the options remains the same,
their positions (e.g., labeled A, B, and C) are shuffled across
different permutations. This ensures that the model’s predic-
tions are not influenced by the fixed position of any particular
option, thereby reducing positional bias.

Figure 3: High-level diagram of the approach proposed
for word-level CEFR prediction.

Since it is not feasible to feed all EVP entries
for each word in a sentence into the LLM at once,
we use spaCy9 to lemmatise each word and map
the resulting lemma to its corresponding entries in
the EVP. For example, for the word work in the
sentence shown in Figure 2, the lemma remains
work, which we then match to all corresponding
work entries in the EVP. This allows us to filter out
irrelevant EVP words in each LLM run.

Figure 4: Highlighting method.

For each sentence we iterate through each word
by highlighting it in square brackets, as shown in
Figure 4. If there is no match between a given
lemmatised word in the sentence and the EVP, we
automatically assign N/A to the word (see Figure 2).
In all the other cases, we add a “None of the other
options” choice to the other available options and
ask the LLM to choose the most suitable option.
Then, we extract the logits for each option, apply
a softmax function, and select the option with the
highest average probability. Finally, we select the

9spacy.io
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CEFR level assigned to this option. In this set of
experiments, we also feed the manually assigned
PoS information and a brief definition associated
to each option.

The prompt used for these experiments as well
as a relevant example can be found in Appendix C
(“Prompt for word-level CEFR prediction”).10

It is important to note that our approach can
effectively handle multi-word expressions. For ex-
ample, when encountering the phrasal verb take off
in the sense of “becoming airborne”, the method
processes take and off separately. The word off is
treated as a stopword and thus excluded from the
final assessment. However, take is still evaluated
in context, allowing the LLM to infer the intended
meaning from the surrounding sentence or essay, in
addition to the PoS information (i.e., verb) and the
EVP definition (i.e., If an aircraft takes off, it leaves
the ground and begins to fly.). This ensures that the
CEFR level assigned reflects the actual usage rather
than the isolated form. Similarly, for the expres-
sion take advantage of sth, both take and advantage
are mapped to the same corresponding multi-word
expression in the EVP, while the stopword of is
excluded from the evaluation.

For this part of our work, we try the same LLMs
as Section 4.1 except for GPT-4o-mini and Llama
3.1 8B. We compare the performance of these
LLMs with a PoS-based system, which only relies
on PoS tags extracted using spaCy. Specifically, if
a given lemma in the sentence has only one entry
in the EVP then its corresponding level is auto-
matically assigned to the word (e.g., voluntary in
Appendix B has only one EVP entry, hence one
CEFR level). Otherwise the relevant PoS tag is
matched with the corresponding one in the EVP.
If the EVP only specifies one CEFR level for this
lemma/PoS pair then this level is automatically as-
signed to the word (e.g., criminal in Appendix B
has two entries – noun and adjective – at two dif-
ferent CEFR levels). Where the pairing is assigned
to multiple CEFR levels in the EVP, the lowest of
these CEFR levels is assigned to the word (e.g., the
word service in the example in Appendix B has 6
noun entries with 3 different CEFR levels). Addi-
tionally, we consider a random baseline that relies
solely on lexical matching. In this case, for words
with a single entry, such as voluntary, after lem-
matisation, we simply assign the associated CEFR

10We also tried this task by prompting the LLMs without
EVP information, but results were significantly worse.

level. For words with multiple levels, we randomly
pick a level from the available EVP entries.

Results are evaluated in terms of overall Ac-
curacy. Additionally, performance on individual
CEFR levels is reported using F1 score.

4.3 Essay-level proficiency prediction

The third part of our work applies the approach
presented in the previous section to additional
L2 learner datasets, namely EFCAMDAT and
ELLIPSE (see Sections 3.2). Unlike the On-
eStopEnglish data, these datasets are annotated
only at the essay level and lack word-level CEFR
labels. We therefore use our approach to predict
the CEFR level of each word and leverage this in-
formation as features for essay-level proficiency
prediction. For this part of the work, we only
used Qwen 2.5 32B11 and the PoS-based model
to extract vocabulary-related information. In other
words, we aim to explore the predictive power of
vocabulary-related features extracted through our
models in the context of holistic proficiency as-
sessment. Additionally, since the ELLIPSE data
include analytic scores targeting specific aspects
of proficiency, we further investigate the relation-
ship between these features and scores related to
dimensions such as cohesion, syntax, vocabulary,
phraseology, grammar, and punctuation conven-
tions.

To do this, for EFCAMDAT, we employ a naive
classifier that uses the distribution of predicted
CEFR levels within each essay. Specifically, we
compute the proportion of words at each predicted
CEFR level (i.e., the count of words at each level
divided by the total essay length), weight these pro-
portions by their corresponding CEFR levels (i.e.,
1 for A1, 2 for A2, 3 for B1, etc.), and sum them to
obtain a composite score. We then assess the corre-
lation between this score and the human-assigned
holistic score. In addition to the naive classifier, we
also employ a simple Support Vector Regression
(SVR) model with default parameters (i.e., ϵ = 0.1,
C = 1, and a radial basis function kernel). The
model is trained using the proportions of words at
each predicted CEFR level as input features and
evaluated using 5-fold cross-validation.

The SVR is also employed for the ELLIPSE
dataset. The model is trained on the training split
to predict the holistic proficiency scores. Subse-

11The prompt is the same reported in Appendix C (“Prompt
for word-level CEFR prediction”) with the only difference
that “sentence” is replaced with “essay”.
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quently, it is evaluated on the test set for both holis-
tic and analytic scores prediction (see Section 3.2).

Results are evaluated in terms of Pearson’s cor-
relation coefficient (PCC) and Spearman’s rank
coefficient (SRC).

Experimental results

4.4 Semantic understanding results
Table 1 reports the results in terms of Accuracy for
the semantic understanding task. As can be seen,
GPT-4o achieves the best performance, followed
by Llama 3.1 70B, with Qwen 2.5 32B performing
nearly on par. While model size appears to play
a significant role in the performance gap between
GPT-4o and the other models, this pattern does not
hold when comparing Qwen 2.5 32B to Llama 3.1
70B, despite the latter being more than twice as
large. All models show a remarkable performance
for this task with the exception of Llama 3.1 8B.
As expected, Accuracy decreases as the number of
options available for a given word increases.

A reasonable question to ask is whether these
LLMs have been exposed to the EVP during train-
ing, given that it is publicly available. This consid-
eration, among others, motivated us to extend our
experiments to additional L2 learner datasets.

Model No. of options avg.
3 4 5 6

GPT-4o 89.0 86.2 83.1 79.5 84.4
GPT-4omini 84.4 78.9 75.4 71.2 77.5
Llama3.170B 85.1 82.0 78.9 73.1 79.8
Llama3.18B 77.4 70.0 64.3 64.4 69.0
Qwen2.532B 85.6 80.8 76.4 75.4 79.6

Table 1: Accuracy (%) of EVP classification results.

4.5 Word-level proficiency prediction results

Model Ambig. Non-amb. All

Random 29.1 88.7 61.6
PoS-based 66.7 93.4 80.7
GPT-4o 75.1 90.5 83.3
Llama 3.1 70B 76.9 91.5 84.6
Qwen 2.5 32B 80.5 92.8 87.0

Table 2: Accuracy (%) results for word-level CEFR
prediction (OneStopEnglish).

Table 2 shows the results in terms of Accuracy
for the task of word-level CEFR level prediction
on the OneStopEnglish data. As mentioned in

Section 3.1, we refer to words that have multi-
ple CEFR levels within a single PoS as ambigu-
ous words, whereas the rest are considered non-
ambiguous. We report the results for ambiguous,
non-ambiguous, and all words. As expected, the
Random classifier performs extremely poorly when
predicting the level of ambiguous words. Incorpo-
rating PoS information leads to noticeable improve-
ments, as demonstrated by the PoS-based model.
However, the best performance on both ambiguous
and overall cases is achieved – in increasing order
– by GPT-4o, Llama 3.1 70B, and Qwen 2.5 32B.
Remarkably, Qwen, despite being the smallest of
the three LLMs, outperforms all others on this task.
The improved performance of LLMs is likely due
to their ability to leverage semantic information in
addition to grammatical and syntactic knowledge.

For non-ambiguous words, as expected, the Ran-
dom classifier achieves relatively decent perfor-
mance. In this setting, the PoS-based model yields
the highest accuracy, followed closely by Qwen
2.5 32B. One might expect the PoS-based model
to achieve perfect accuracy; however, this is not
the case, as the data include instances where words
are used with meanings that are not covered in the
EVP, leading to misclassifications by the PoS-based
model. To address such cases, we included a “None
of the other options” choice among the LLM’s
available options (see Section 4.2) – though this
option appears to be over-selected by the model,
potentially affecting its accuracy.

Another reason why the LLMs do not outper-
form the PoS-based model for non-ambiguous
words lies in the way options are selected. When
multiple PoS entries exist for a given lemma,
the PoS-based model uses only the relevant, non-
ambiguous entry matching the POS tag. In contrast,
all available options – including those with irrele-
vant PoS tags – are fed into the LLMs. For instance,
as illustrated in Section 3.1, if a sentence contains
the word aim used as a noun (which appears in the
EVP only at the B1 level), the PoS-based model
considers only this entry. However, the LLM is
presented with both the noun and verb entries (at
A2, B2, C1, and C2 in the EVP) for aim.12 These
findings are further supported by the performance
figures in Table 9 in Appendix D, which reports the
breakdown by word-level CEFR level in terms of
F1 score.

12We deliberately chose not to filter out these entries to
avoid assuming perfect accuracy from the spaCy tagger.
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Overall, these results suggest that the most effec-
tive solution may lie in a hybrid approach, where an
LLM is used to handle ambiguous words, while a
PoS-based model deals with non-ambiguous ones.

4.6 Essay-level proficiency prediction results

We use the same approach to predict word-level
CEFR levels on additional L2 learner data, which
are only annotated at the essay level. Starting from
EFCAMDAT, Figure 5 shows a cumulative plot
of the predicted normalised distribution of words
for each word-level CEFR level across essay-level
CEFR levels. We intentionally reverse the order
of CEFR levels on the x-axis to emphasise that vo-
cabulary usage is indicative of a certain proficiency
level or higher, rather than exclusive to that level.
For example, B1-level items are also commonly
used by more advanced learners.

Focusing on a specific element of the figure, if
we observe B1 level essays (represented by the
green line), we observe that vocabulary from the
C2 and C1 levels is used very little, while B2 level
vocabulary appears to some extent – more than in
A1 and A2 level essays, but less than in B2, C1,
and C2 level essays. Vocabulary from B1 and lower
levels is used even more frequently.

Figure 5: Predicted normalised distribution of words for
each word-level CEFR level across essay-level CEFR
levels. Qwen 2.5 32B vs PoS-based (EFCAMDAT).

When considering the overall trends, words from
A2 to B2 show a steady increase in usage as essay-

level proficiency progresses. Interestingly, higher-
level words (i.e., C1 and C2) are not as frequently
used even in essays written at higher proficiency
levels. Nonetheless, a moderate distinction across
essay-level proficiency bands can still be observed.
To this end, we present Figure 6, which displays the
empirical cumulative distribution function (eCDF)
of the AUC (Area Under the Curve) values com-
puted from Figure 5. In both figures, we observe
larger gaps – indicating better differentiation across
levels – when using Qwen compared to the PoS-
based model.

Figure 6: eCDF of AUC values. Qwen 2.5 32B vs PoS-
based (EFCAMDAT).

These findings are further supported by the essay
assessment results reported in Table 3. When used
as features for predicting holistic scores, the vocab-
ulary information extracted with Qwen consistently
outperforms that derived from the PoS-based model
both in the naive classifier and by the SVR.13

Finally, we report the results of our experiments
on ELLIPSE using Qwen in combination with an
SVR trained on holistic scores (see Section 4.3). As
shown in Table 4, despite the high inter-correlation

13These experiments aim to demonstrate the predictive
power of the extracted features, not to achieve state-of-the-art
essay scoring.
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Features Classifier PCC SRC
PoS Naive 0.580 0.603

Qwen 0.636 0.656
PoS SVR 0.734 0.713

Qwen 0.771 0.749

Table 3: Results for essay-level holistic proficiency pre-
diction (EFCAMDAT).

among all analytic scores (see Table 8 in Appendix
A), the SVR (trained on holistic scores) predictions
correlate most strongly with the Vocabulary scores,
followed by Phraseology, suggesting our features
are effectively targeting lexical aspects of language.

PCC SRC
Overall 0.650 0.624

Vocabulary 0.637 0.627
Phraseology 0.630 0.614
Grammar 0.577 0.556

Syntax 0.584 0.547
Cohesion 0.595 0.569

Conventions 0.613 0.578

Table 4: Results for essay-level holistic and analytic
proficiency prediction using Qwen-SVR (ELLIPSE).

4.7 Word-level analysis

Finally, to evaluate the consistency of the EVP, we
reverse the approach used thus far. Specifically, we
select the two most common words with multiple
meanings in the EFCAMDAT data (i.e., work and
like) and examine their word-level CEFR level dis-
tribution (predicted with Qwen) across essay-level
CEFR levels, as shown in Figures 7 and 8. The cap-
tions report the number of essays containing these
words for each essay-level CEFR level. Figures 7

work like
≥B2 88.6 -
≥B1 90.6 89.6
≥A2 96.8 99.4

Table 5: EVP consistency in terms of Accuracy (%) for
words work and like (EFCAMDAT).

and 8 are summarised in Table 5, where we assess
the consistency of the EVP for these two words in
terms of Accuracy. As discussed in Section 4.6, vo-
cabulary use typically reflects a certain proficiency
level or higher, rather than being exclusive to a
specific level. Accordingly, we compute Accuracy

Figure 7: Distribution for word work (A1: 191; A2:
278; B1: 482; B2: 667; C1: 457; C2: 667).

Figure 8: Distribution for word like (A1: 401 ; A2: 411;
B1: 380; B2: 459; C1: 497; C2: 591).

by checking whether a word appears in essays at
its assigned level or above. It is also important to
note that we are comparing word-level vocabulary
levels with essay-level holistic scores, where vocab-
ulary represents only one component of the overall
assessment. The results show high accuracy and
suggest a strong degree of consistency in the CEFR
classification provided by the EVP.

5 Conclusions and future work

In this work, we introduced a novel approach to in-
context, word-level L2 vocabulary assessment by
leveraging LLMs in combination with the English
Vocabulary Profile. We compared the performance
of several open-source and proprietary LLMs to
a PoS-based model and showed that the former
are particularly effective for this task, especially in
handling polysemy and lexical ambiguity.

We plan to integrate this approach into an auto-
matic essay grading system, where it could enrich
holistic scoring with fine-grained feedback on vo-
cabulary use, for example, by identifying lexical
gaps relative to the learner’s proficiency or high-
lighting advanced vocabulary usage as a strength.
Additionally, we plan to extend our experiments to
spoken transcriptions in order to further evaluate
the robustness of LLMs and assess their effective-
ness across different modalities.
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Limitations

One limitation of this study is the lack of a system-
atic investigation into how learner errors affect our
approach. In particular, lemmatisation and match-
ing with EVP entries may be hindered by such
errors.14 While spelling mistakes can be addressed
with a spellchecker, grammatical or lexical errors
pose a greater challenge. In this case, it would be
interesting to test our approach on pairs of original
and grammatically corrected (manually and/or au-
tomatically) sentences or essays and analyse shifts
in the LLM’s probability distributions in the pres-
ence of learner errors.

Another limitation of our approach lies in the
way word-level proficiency labels are assigned. In
our experiments, each word in the OneStopEnglish
data was annotated with its CEFR level, not its spe-
cific sense. As a result, polysemous words with
multiple meanings but identical CEFR levels could
be matched to an incorrect sense, even though the
level remains technically accurate. However, it is
important to note that the LLMs are prompted to
identify the intended meaning of each word based
on its context. The CEFR level is then assigned
post hoc by mapping that selected meaning to the
corresponding entry in the English Vocabulary Pro-
file, hence to a CEFR level.

Finally, due to space constraints, we did not con-
duct a focused analysis on multi-word expressions
such as idioms and phrasal verbs. Nonetheless,
given the strong overall results and the fact that
multi-word expressions are included in our data,
it is reasonable to assume that our approach also
performs well on these cases.
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A Appendix A: Other stats

Table 6 shows the degree of polysemy in the EVP.
Table 7 shows the scores distribution in the se-

lected ELLIPSE essays. Note that, in the original

No. of options count (%)

1 56.96
2 21.13
3 8.82
4 3.99
5 2.59
6 1.53
> 6 4.98

Table 6: Degree of polysemy in the EVP.

corpus, higher (i.e., 4.5 and 5) and lower (i.e., 1
and 1.5) proficiency levels are underrepresented
compared to intermediate levels.

Overall Score # Essays

Train Test

5 28 12
4.5 13 7
4 87 43
3.5 39 23
3 61 27
2.5 62 31
2 38 19
1.5 22 11
1 9 2

Table 7: Distribution of ELLIPSE essays by overall
score in the considered training and test sets.

Table 8 shows the Correlation between ground
truth analytic scores and ground truth overall scores
in terms of SRC for the ELLIPSE test split consid-
ered in this work.

B Appendix B: OneStopEnglish examples

The following is an example of three parallel sen-
tences across the three proficiency levels drawn
from OneStopEnglish:

Elementary: They work with the police, the pro-
bation service and other, voluntary organizations
to help members of the violent criminal gangs of
London.

Intermediate: They work with the police, the
probation service and other, voluntary organiza-
tions to help people who feel trapped and fright-
ened in the violent criminal gangs of London.

Advanced: They work with the police, the pro-
bation service and other, voluntary organizations
to help those who feel trapped and frightened in the
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Overall Vocabulary Phraseology Cohesion Grammar Syntax Conventions

Overall 1.000 0.869 0.897 0.880 0.878 0.911 0.873
Vocabulary 0.869 1.000 0.863 0.776 0.776 0.798 0.748
Phraseology 0.897 0.863 1.000 0.828 0.835 0.847 0.811
Cohesion 0.880 0.776 0.828 1.000 0.781 0.825 0.816
Grammar 0.878 0.776 0.835 0.781 1.000 0.840 0.794
Syntax 0.911 0.798 0.847 0.825 0.840 1.000 0.816
Conventions 0.873 0.748 0.811 0.816 0.794 0.816 1.000

Table 8: Correlation between ground truth analytic scores and ground truth overall scores in terms of SRC.

violent criminal gangs that operate across London.

C Appendix C: Prompts

Prompt for semantic understanding

Read this sentence: [EVP SENTENCE]
Choose the correct meaning of [WORD]
by selecting the most suitable among the
following options A, B, C, D, E, or F. No
other answer is allowed. Only output the
respective option letter without any addi-
tional comments, notes, or explanations.

A) [DEFINITION A]

B) [DEFINITION B]

C) [DEFINITION C]

D) [DEFINITION D]

E) [DEFINITION E]

F) [DEFINITION F]

Example

Read this sentence: “It was tough on
the worn out employees.” Choose the
correct meaning of “tough” by selecting
the most suitable among the following
options A, B, C, D, E, or F. No other an-
swer is allowed. Only output the respec-
tive option letter without any additional
comments, notes, or explanations.

A) not easy to break or damage

B) describes food that is difficult to cut
or eat

C) Tough people are mentally strong and
not afraid of difficult situations.

D) difficult

E) Tough rules are severe.

F) unfair or unlucky

Prompt for word-level CEFR prediction
Read this L2 learner sentence: [SEN-
TENCE]

Choose the correct meaning of [WORD]
(in square brackets) by selecting the most
suitable among the following options.
Also consider the additional information
and the PoS of each option. No other
answer is allowed. Only output the re-
spective option number without any addi-
tional comments, notes, or explanations.

1. [DEFINITION 1] - Additional infor-
mation: [INFO] (PoS)

2. [DEFINITION 2] - Additional infor-
mation: [INFO] (PoS)

3. [DEFINITION 3] - Additional infor-
mation: [INFO] (PoS)

[...]

n. None of the other options.

where the additional information consists of a
brief definition of the word. In round brackets, we
also feed the information related to the manually
assigned PoS as described in the EVP. See the ex-
ample below for further information.

The prompt for the experiments conducted on
essay-level proficiency prediction is the same. The
only difference is that “sentence” is replaced with
“essay”.

Example
Read this L2 learner sentence: They
[work] with the police , the probation
service and other , voluntary organiza-
tions to help those who feel trapped and
frightened in the violent criminal gangs
that operate across London .

Choose the correct meaning of “work”
(in square brackets) by selecting the most
suitable among the following options.
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Also consider the additional information
and the part of speech of each option.
No other answer is allowed. Only output
the respective option number without any
additional comments, notes, or explana-
tions.

1) the place where you go to do your job
- Additional information: work (PLACE)
(Part of speech: noun)

2) something you do as a job to earn
money - Additional information: work
(JOB) (Part of speech: noun)

3) to do a job, especially the job you do
to earn money - Additional information:
work (DO JOB) (Part of speech: verb)

4) the activities that you have to do at
school, for your job, etc. - Additional
information: work (ACTIVITY) (Part of
speech: noun)

5) If a machine or piece of equipment
works, it is not broken. - Additional in-
formation: work (OPERATE) (Part of
speech: verb)

6) when you use physical or mental effort
to do something - Additional information:
work (EFFORT) (Part of speech: noun)

7) If something works, it is effective or
successful. - Additional information:
work (SUCCEED) (Part of speech: verb)

8) to exercise in order to improve the
strength or appearance of your body -
Additional information: work out (EX-
ERCISE) (Part of speech: verb)

9) a painting, book, piece of music, etc.
- Additional information: work (CRE-
ATION) (Part of speech: noun)

10) to try hard to achieve something -
Additional information: work at sth (Part
of speech: verb)

11) to spend time repairing or improv-
ing something - Additional information:
work on sth (Part of speech: verb)

12) to do a calculation to get an answer
to a mathematical question - Additional
information: work sth out or work out
sth (Part of speech: verb)

13) If a problem or a complicated sit-
uation works out, it ends in a success-

ful way. - Additional information: work
out (BECOME BETTER) (Part of speech:
verb)

14) to know how to use a machine or
piece of equipment - Additional informa-
tion: can work sth; know how to work
sth (Part of speech: verb)

15) to understand something or to find
the answer to something by thinking
about it - Additional information: work
sth out or work out sth (UNDERSTAND)
(Part of speech: verb)

16) None of the other options

D Appendix D: Other results

Table 9 reports the breakdown by word-level CEFR
level in terms of F1 score. For ambiguous cases, the
PoS-based model performs reasonably well only at
the A1 level. However, this result is partly influ-
enced by the rule we set, i.e., assigning the lowest
available CEFR level when multiple options are
present (see Section 4.2), which inherently favours
lower-level classifications. For both the N/A and C2
levels, the model yields an F1 score of 0, highlight-
ing its complete inability to handle these cases. For
non-ambiguous cases, the PoS-based achieves the
best performance on all the CEFR levels for the rea-
sons explained in Section 4.5, with the exception
of the C2 level. For this specific CEFR level, the
PoS-based model obtains a high Recall (99.28%)
but a low Precision (73.02%), while Qwen shows
more balanced results, with a Recall of 90.65% and
a Precision of 89.36%.
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Ambiguous Non-ambiguous All
Qwen 2.5 32B PoS Qwen 2.5 32B PoS Qwen 2.5 32B PoS

N/A 50.0 0.0 94.3 94.4 92.0 91.6
A1 84.4 83.1 91.3 94.0 86.5 85.8
A2 82.1 67.4 89.8 91.8 85.1 75.6
B1 80.6 56.7 94.3 95.1 85.7 72.9
B2 78.5 49.3 90.5 90.8 84.2 72.0
C1 75.5 20.0 91.9 92.3 82.9 61.5
C2 67.2 0.0 90.0 84.2 78.9 59.7

Table 9: Breakdown of classification results by word-level CEFR level in terms of F1 (OneStopEnglish).
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Abstract

Question Generation (QG), the task of auto-
matically generating questions from a source
input, has seen significant progress in recent
years. Difficulty-controllable QG (DCQG) en-
ables control over the difficulty level of gener-
ated questions while considering the learner’s
ability. Additionally, narrative-controllable QG
(NCQG) allows control over the narrative as-
pects embedded in the questions. However,
research in QG lacks a focus on combining
these two types of control, which is important
for generating questions tailored to educational
purposes. To address this gap, we propose a
strategy for Joint Narrative and Difficulty Con-
trol, enabling simultaneous control over these
two attributes in the generation of reading com-
prehension questions. Our evaluation provides
preliminary evidence that this approach is fea-
sible, though it is not effective across all in-
stances. Our findings highlight the conditions
under which the strategy performs well and
discuss the trade-offs associated with its appli-
cation.

1 Introduction

Question Generation (QG) focuses on the auto-
mated generation of coherent and meaningful ques-
tions targeting a data source, including unstructured
text or knowledge bases (Rus et al., 2008). Control-
lable QG plays a crucial role in education (Kurdi
et al., 2020), as it facilitates the generation of per-
sonalized questions that address the unique needs
and learning goals of students. Recent work on QG
utilized techniques such as fine-tuning (Zhang et al.,
2021; Ushio et al., 2022) and few-shot prompting
(Wang et al., 2022b; Chen et al., 2024) to generate
questions based on a source text and, optionally, a
target answer. In controllable QG, this process is
augmented by incorporating controllability labels
into the input or prompt to guide the generation pro-
cess. Specifically, research on Narrative-Controlled

Passage: Once there were a hare and a turtle. The hare
was proud of his speed and challenged the turtle to a
race. Although the turtle was slow, he accepted. The
hare quickly left the turtle behind but decided to rest and
fell asleep. Meanwhile, the turtle kept going steadily
and eventually reached the finish line first, winning the
race.

Narrative: “character” Difficulty: “easy”
Generated QA Pair: Who challenged the turtle to a
race? The hare.

Narrative: “outcome” Difficulty: “medium”
Generated QA Pair: What happened after the hare left
the turtle behind? Decided to rest and fell asleep.

Narrative: “outcome” Difficulty: “hard”
Generated QA Pair: What happened because the turtle
kept going steadily? The turtle won the race.

Figure 1: Illustrative example of controlled question-
answer generation with varying difficulty levels and
narrative attributes.

Question Generation (NCQG) focuses on control-
ling the content of generated questions, guided by
underlying narrative elements (e.g., causal relation-
ship) (Zhao et al., 2022; Leite and Lopes Cardoso,
2023; Li and Zhang, 2024). In turn, Difficulty-
Controllable Question Generation (DCQG) empha-
sizes controlling the expected difficulty in answer-
ing the questions (Gao et al., 2019; Kumar et al.,
2019; Cheng et al., 2021; Bi et al., 2021). Some
studies have considered the relationship between
question difficulty and the learner’s ability (Uto
et al., 2023; Tomikawa and Uto, 2024).

However, research in controllable QG lacks the
combination of these two types of control, which
is especially important to facilitate human control
(Wang et al., 2022a) in the ever-increasing usage
of generative models in this field. Therefore, this
research proposes a strategy that explores the feasi-
bility of joining narrative and difficulty control to
generate reading comprehension question-answer
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(QA) pairs from children-targeted narrative sto-
ries. Figure 1 shows an example of the strategy.
Formally, we investigate the following research
question (RQ): How effectively can we control the
generation of question-answer pairs conditioned
on both narrative and difficulty attributes using a
modest1 scale model?

For our experiments, we use a well-known
dataset — FairyTaleQA (Xu et al., 2022) — in
which each question is already annotated with one
of seven narrative labels. Our method involves
two main steps: (1) using simulated-learner QA
systems to answer questions from FairyTaleQA,
thereby estimating the difficulty labels via Item
Response Theory, and (2) applying a joint narra-
tive and difficulty control model, utilizing human-
annotated narrative labels and the estimated diffi-
culty labels for each question.

The proposed method is evaluated to determine
whether both NCQG and DCQG have been suc-
cessfully applied to the generated questions. For
NCQG, we compare the similarity between human-
authored and generated questions. For DCQG, we
assess the performance of simulated-learner QA
systems on questions generated with distinct dif-
ficulty levels. Although the results demonstrate
the effectiveness of the strategy, NCQG shows con-
sistent success, whereas DCQG exhibits moderate
success, with performance varying across specific
narrative attributes and difficulty levels. Our goal
is to highlight the conditions under which the strat-
egy performs with high or low efficacy, providing
insights for researchers pursuing similar research
lines. In summary, our contributions are:

• We propose a joint strategy for controlling
the generation of question-answer pairs con-
ditioned on narrative and difficulty attributes.

• We report on the linguistic features influenced
by control and conduct an error analysis of
the generated QA pairs, providing insights
into the performance and limitations of the
method.

2 Background and Related Work

2.1 Controllable Question Generation (CQG)

As stated by Li and Zhang (2024), prior research on
CQG has explored two main perspectives: content
(or type) and difficulty.

1<1 billion of parameters.

Content control relates to the linguistic ele-
ments incorporated into the generated questions.
For instance, Ghanem et al. (2022) proposed con-
trolling specific reading comprehension skills, such
as figurative language and vocabulary. Addition-
ally, Zhao et al. (2022) focused on controlling nar-
rative elements, while Leite and Lopes Cardoso
(2023) extended this approach by controlling ex-
plicitness attributes. Elkins et al. (2023) propose
to control Bloom’s question taxonomy (Krathwohl,
2002).

Difficulty control is related to the challenge of
answering the generated questions, a concept that is
often subjective (i.e., difficulty can vary depending
on the respondent). In this regard, Gao et al. (2019)
assigned difficulty labels (easy or hard) to questions
based on whether QA systems could answer them
correctly and used these labels as inputs to control
the generation process. Kumar et al. (2019) pro-
posed estimating difficulty based on named entity
popularity, while Bi et al. (2021) tackle the chal-
lenge of high diversity in QG. Furthermore, Cheng
et al. (2021) controlled question difficulty by con-
sidering the number of inference steps required to
arrive at an answer.

One limitation of previous approaches is (1) the
lack of emphasis on the relationship between ques-
tion difficulty and learner ability. Addressing this
problem, Uto et al. (2023) proposed to use Item
Response Theory (IRT) (Lord, 2012), a mathemati-
cal framework in test theory, to quantify question
difficulty and directly relate it to learner ability. An-
other limitation is (2) the lack of integration of mul-
tiple attributes. While Li and Zhang (2024) com-
bine both narrative and difficulty attributes, they
define difficulty in terms of answer explicitness and
the number of sentences needed to answer the ques-
tions. The novelty of this study lies in integrating
content control, through narrative elements, with
difficulty control informed by simulated learners’
ability, thus building on the foundations laid by
previous research.

2.2 Item Response Theory (IRT)
IRT (Lord, 2012) is a statistical framework used
to study the interaction between test-takers (abil-
ity or proficiency) and their performance on test
items. A key aspect of IRT is to model the relation-
ship between question difficulty and learner ability,
offering insights into how well a question differen-
tiates between individuals with varying levels of
skill. This relationship allows for an estimation of
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the likelihood that a learner with a specific ability
level can correctly answer a given question, making
it particularly useful for adaptive testing and under-
standing question complexity. A commonly used
model in IRT is the Rasch model, which assumes
that the probability of a correct response depends
on the relation between learner ability (θ) and the
item’s difficulty (b):

P (Xij = 1 | θi, bj) =
eθi−bj

1 + eθi−bj
, (1)

where θi is the learner ability of individual i, bj is
the difficulty of item j, and P (Xij = 1 | θi, bj) is
the probability that individual i correctly answers
item j. In our study, we use IRT to estimate both
question difficulty (b) and learner ability (θ) param-
eters.

2.3 FairyTaleQA: Purpose and Value
We use the FairytaleQA dataset (Xu et al., 2022)
because its stories and corresponding question-
answer pairs align with the goal of addressing
narrative comprehension. According to Xu et al.
(2022), narrative comprehension represents a high-
level cognitive skill closely linked to overall read-
ing proficiency (Lynch et al., 2008). A key feature
of FairytaleQA is the expert annotations on each
question, which are grounded in evidence-based
frameworks (Paris and Paris, 2003; Alonzo et al.,
2009). The annotated narrative elements targeted
for control are:

• Character: Addresses identities or traits of
story characters (e.g., “Who...?”);

• Setting: Focusing on the time and place of
events, often starting with “Where...?” or
“When...”;

• Action: Related to the actions of characters;

• Feeling: Exploring emotional states or reac-
tions (e.g., “How did/does X feel?”);

• Causal relationship: Addressing cause-and-
effect (e.g., “Why...?” or “What caused/made
X?”);

• Outcome resolution: Focusing on the
outcomes of events (e.g., “What hap-
pened/happens after X?”);

• Prediction: Questions about future or un-
known events based on textual evidence.

While there are other popular educational QA
datasets (following the open-ended wh-questions
format), such as NarrativeQA (Kočiský et al., 2018)
and StoryQA (Zhao et al., 2023), they are not an-
notated with specific reading comprehension skills.
This further motivated our decision to use Fairy-
taleQA in this study.

3 Method

This section outlines the methodology of this re-
search, which includes augmenting FairytaleQA
with IRT-based difficulty labels and developing a
question-answer pair generation model with joint
narrative and difficulty control. Figure 2 provides
an overview of the steps discussed in this section.

3.1 Augmenting FairytaleQA With IRT-Based
Question Difficulty Labels

Let D be our dataset consisting of instances repre-
sented as quartets:

Di = (t, q, a, n), (2)

where t is a text, q is the question, a is the answer
about the text, and n is the narrative element as-
sociated with the question-answer pair (q, a). The
aim is to create a fifth element d, resulting in a new
instance augmented:

Di−augmented = (t, q, a, n, d), (3)

where d is the estimated difficulty value associated
with the question-answer pair (q, a). To create
these augmented instances, we used the method
proposed by Uto et al. (2023) and Tomikawa et al.
(2024):

1. Collecting response data for each question-
answer pair: We collected answers to the
questions from multiple respondents. Given
the unavailability of real students, we uti-
lized simulated-learner QA systems, which
are models capable of automatically extract-
ing answers to the posed questions. As ex-
plained in Section 4.2, the QA models were
deliberately chosen to represent different lev-
els of performance to simulate varying ability
levels.

2. Estimating Question Difficulty with IRT:
Using the answers collected from the
simulated-learner QA systems, we estimated
the difficulty of each question using IRT,
specifically employing the Rasch model as
described in Section 2.2.
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Figure 2: Overall methodology for joint narrative and difficulty control.

3. Augmenting FairytaleQA with difficulty es-
timates: Based on the estimated difficulty
values, we augment each instance of the
dataset with d, resulting in Di−augmented =
(t, q, a, n, d).

3.2 Question-Answer Pair Generation with
Joint Narrative and Difficulty Control

The controllable process can be represented as fol-
lows: given an instruction prompt p, the aim is to
use a model M to generate a question-answer pair
(qnew, anew). This can be formulated as:

(qnew, anew) = M(p), (4)

where prompt p incorporates the desired narrative
label n, difficulty value d, and target text t. The
prompt follows this template:

“Generate a ⟨d⟩ question-answer pair
about narrative label ⟨n⟩ considering the
following text: ⟨t⟩”

M is an encoder-decoder model that is fine-tuned
using Di−augmented = (t, q, a, n, d) instances. The
encoder receives prompt p and encodes it into a
fixed-length representation known as a context vec-
tor. The decoder takes the context vector and gen-
erates the output text (qnew, anew), using special
tokens ⟨QU⟩ and ⟨AN⟩ that serve to differentiate
between qnew and anew. The idea is to guide the
model in generating a question-answer pair of the
intended difficulty d and narrative element n.

4 Experimental Setup

4.1 Preparing the FairytaleQA Dataset
We use FairyTaleQA (Xu et al., 2022), which com-
prises 10,580 question–answer pairs manually cre-
ated by educational experts based on 278 narrative
stories. Each story contains approximately 15 sec-
tion texts, and each section (about 149 tokens) con-
tains approximately 3 question–answer pairs. From

the original dataset, we have prepared different data
setups2 for generating a QA pair:

• Text→ QA: This setup only contains the text
as input, so it serves as a baseline to compare
with the subsequent setups, which consider
control attributes.

• Nar + Text→ QA: This setup considers nar-
rative as a control attribute in the input.

• Dif + Text→ QA: This setup considers diffi-
culty as a control attribute in the input.

• Nar + Dif + Text→QA: This setup considers
both the narrative and difficulty attributes.

4.2 Creating Simulated-Learner QA Systems

To create the simulated-learner QA systems, we
trained five QA models. The choice of five was
made empirically: it provided sufficient granularity
for analysis while avoiding ties that could arise with
fewer levels (e.g., four). The selected encoder mod-
els are DeBERTaV3 (He et al., 2021), RoBERTa (Liu,
2019), BERT (Devlin et al., 2019) and DistilBERT
(Sanh, 2019). We also use one decoder: GPT-2
(Radford et al., 2019). They were fine-tuned on sep-
arate general-purpose question answering data (the
SQuAD v1.1 dataset (Rajpurkar et al., 2016)). The
models were deliberately chosen for their varying
performance levels, thereby simulating different
levels of learner skill. Table 1 shows the perfor-
mance of each QA system on the SQuAD v1.1
evaluation set, using the n-gram similarity metric
ROUGEL-F1 (Lin, 2004) (QA answer vs. SQuAD
ground-truth answer).

2The arrow separates the input (left) and output (right)
information. On the left part, the + symbol illustrates whether
the method incorporates control attributes.
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Table 1: Simulated-Learner QA systems performance
on SQuAD v1.1 evaluation set.

Sim.-Learner QA ROUGEL-F1 (0-1)
DeBERTaV3 (large) 0.87
RoBERTa (base) 0.82
BERT (base) 0.75
DistilBERT (base) 0.69
GPT-2 0.46

4.3 Answering FairytaleQA Questions with
QA Systems

For each question in the train and validation sets of
the FairyTaleQA dataset, all five simulated-learner
QA systems generated their own answers. Each
QA answer is then compared to the corresponding
ground-truth answer to determine correctness. We
considered an answer correct if it achieved either
an exact match score of 1 or a ROUGEL-F1 score
of at least 0.5. The QA answers are organized into
a binary response matrix — Figure 2 shows an
example of such a matrix. Each row corresponds
to a simulated-learner QA system and each column
corresponds to a question ID. Each cell contains
a 0 or 1, indicating incorrect or correct answers,
respectively. This matrix serves as input data for
the subsequent question difficulty estimation using
IRT.

4.4 Estimating Question Difficulty with IRT

Based on the collected correct and incorrect an-
swers for each question — organized into a binary
response matrix — we estimated question difficulty
using the Rasch Model (recall Section 2.2). Specifi-
cally, using the binary correctness data produced by
the simulated-learner QA systems, the estimation
is performed using the Expectation-Maximization
(EM) algorithm (Embretson and Reise, 2000). This
yielded difficulty values that were subsequently nor-
malized to a 0-1 scale (0, 0.28, 0.50, 0.72, and 1),
where higher values represent more difficult ques-
tions. The numerical values were converted into
corresponding categorical labels – easy, medium,
moderate, hard, and extreme – to be used in tex-
tual prompts. The distribution of the estimated
difficulty values by narrative label in the data is
presented in Table 2. Some attributes (e.g., feeling
and prediction) have limited representation in the
dataset.

Additionally, using the Maximum a Posteriori

Nar. Easy Med. Mod. Hard Extr.

Action 773 362 375 435 749
Causal 316 200 245 316 1291
Char. 497 133 101 116 115

Feeling 55 79 62 89 539
Out. 126 114 138 165 268
Pred. 22 21 23 50 250

Setting 276 70 60 54 63

Action 76 40 65 60 92
Causal 35 27 31 50 151
Char. 50 17 14 9 17

Feeling 0 9 9 5 71
Out. 11 13 19 15 39
Pred. 1 3 6 7 38

Setting 29 4 5 4 3

Table 2: Difficulty values by Nar. (train and val set).

(MAP) algorithm (Embretson and Reise, 2000),
we estimated the ability (θ) values for each QA
system. These values are reported in Table 3, with
higher values representing higher abilities. These
values align, as expected, with the systems’ original
performance levels shown in Table 1.

Sim.-Learner QA Ability (θ)
DeBERTaV3 (large) 0.43
RoBERTa (base) 0
BERT (base) -0.66
DistilBERT (base) -1.25
GPT-2 -1.60

Table 3: Simulated-learner estimated ability values (θ)
after answering questions from the FairytaleQA dataset.

We use mirt3 tool for IRT, including all estima-
tions.

4.5 Creating a Question-Answer Pair
Generation Model

We use the Flan-T5 (Chung et al., 2024) encoder-
decoder model for the controllable task. This
model builds upon the original T5 (Raffel et al.,
2020), which has been fine-tuned with task-specific
instructions using prefixes, making it well-suited
for our methodology. Additionally, Flan-T5

3https://cran.r-project.org/web/packages/mirt/
index.html
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demonstrates remarkable performance in text gen-
eration tasks, particularly in QG (Chen et al.,
2024; Li and Zhang, 2024). We employ the
flan-t5-large version, which is publicly avail-
able via Hugging Face4. Training is conducted for
up to 10 epochs, with early stopping implemented
using a patience of 2 epochs. During inference,
we apply Top-k sampling with k = 50, p = 0.9
and temp = 1.2 to encourage diversity (values ob-
tained experimentally). We initially explored beam
search, a widely used technique in QG; however,
we observed that it frequently produced repetitive
questions when tasked with generating questions
for the same narrative element across different dif-
ficulty levels.

4.6 Generating QA Pairs for Evaluation
We fine-tune the Flan-T5 model on the training
set of FairytaleQA. We obtain 4 models, as the
model has been trained on each of the 4 data setups
described in Section 4.1. For the 2 setups where
difficulty labels are used, we apply the resulting
models (inference) to the corresponding test set
and generate 5 QA pairs for each text’s section —
one QA pair for each difficulty label. Since the
FairytaleQA test set contains 394 section texts, we
obtain a total of 1,970 generated QA pairs. Ad-
ditionally, each text includes human-authored QA
pairs associated with different narrative labels. This
approach ensures that the generated QA pairs are
balanced across distinct difficulty levels and narra-
tive elements for further evaluation.

5 Evaluation

5.1 Evaluation Procedure
For NCQG, our evaluation protocol follows prior
studies (Zhao et al., 2022; Leite and Lopes Cardoso,
2023, 2024) that focused on controlled generation
using narrative labels. For DCQG, the evaluation
protocol is based on recent works (Uto et al., 2023;
Tomikawa et al., 2024; Tomikawa and Uto, 2024)
that emphasize the use of simulated-learner QA
systems across generated questions with distinct
difficulty levels.

Narrative Control: To assess narrative control,
we use a standard approach in QG: comparing
generated questions directly with human-authored
ground-truth questions. Hypothesis 1 (H1) is that
incorporating narrative attributes will result in
generated questions that are more similar to the

4https://huggingface.co/google/flan-t5-large

ground-truth, as previously shown by Leite and
Lopes Cardoso (2024). To quantify the similarity,
we employ the n-gram similarity metric ROUGEL-
F1 (Lin, 2004), as originally adopted by the Fairy-
taleQA authors. For a better perception of the idea,
consider the human-authored ground-truth ques-
tion: “What did Matte and Maie do on Saturdays?”
(annotated with the action narrative element) and
the generated question targeting the same narra-
tive element: “What did Maie and Matte do to
provide for themselves?”. These questions yield a
high ROUGEL-F1 score because they are similar
in terms of the narrative-related vocabulary they
share, thus indicating successful narrative control.

Difficulty Control: For difficulty control, the
evaluation focuses on analyzing the performance
of simulated-learner QA systems when answering
questions generated at varying difficulty levels. Hy-
pothesis 2 (H2) posits that simulated-learner QA
systems will perform better on easier questions and
worse on more difficult ones, relative to their ability
levels.

5.2 Results

Narrative Control: Table 4 presents the results
from the narrative control perspective, measured
using ROUGEL-F1 n-gram similarity between
the generated questions and the human-authored
ground-truth questions. We observe an improve-
ment in the similarity to ground-truth questions
when narrative control attributes are incorporated.
This trend is consistently observed across all seven
narrative labels. Furthermore, these findings align
with the results reported in prior studies on narra-
tive control (Leite and Lopes Cardoso, 2023, 2024).
Of novelty, when narrative and difficulty labels are
fused, we observe a similar improvement trend,
comparable to the incorporation of narrative at-
tributes alone. These results support Hypothesis 1
(H1), indicating that our method effectively con-
trols the narrative elements underlying the gener-
ated questions. Appendix A shows further support
by reporting semantic similarity results.

Difficulty Control: Figure 3 presents the results
for difficulty control only, showing the percentage
of correct responses from the simulated-learner QA
systems across all difficulty levels. The percentage
of correct answers decreases as the difficulty level
increases for all simulated learners5. Additionally,

5All percentages are relatively low (<60). This is because
the QA models were not trained on the FairyTaleQA dataset
but were instead trained on SQuAD. This intentional choice
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Data Setup Char. Setting Action Feeling Causal Out. Pred.
Text→ QA .227 .269 .287 .281 .271 .227 .251
Nar + Text→ QA .304 .537 .427 .527 .412 .458 .348
Nar + Dif + Text→ QA .305 .530 .412 .529 .405 .425 .365

Table 4: Narrative Control: Similarity (ROUGEL-F1) between generated and ground-truth questions on the test
set by narrative element. Text→ QA is used as a baseline to assess whether narrative control helps the generated
questions approximate the ground-truth questions.

learners with higher abilities achieve higher per-
centages of correct answers, while those with lower
abilities achieve lower percentages. These findings
are consistent with previous works (Uto et al., 2023;
Tomikawa et al., 2024) and support Hypothesis 2
(H2), demonstrating that the method controls the
difficulty levels of the generated questions.
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Figure 3: Percentage (%) of correct answers by difficulty
level when only difficulty control labels are used (Dif +
Text→ QA).
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Figure 4: Percentage (%) of correct answers by difficulty
level when both difficulty and narrative control labels
are used (Nar + Dif + Text→ QA).

ensures that the models’ knowledge remains unbiased with
respect to FairyTaleQA content.

Joint Narrative and Difficulty Control: Figure 4
presents the results for difficulty control when dif-
ficulty and narrative attributes are fused. In most
cases, the percentage of correct answers decreases
as the difficulty level increases across all simu-
lated learners. These findings demonstrate that
even when conditioning the generation process on
both narrative content and difficulty, it remains pos-
sible to perform difficulty control. However, some
inconsistencies are observed: for DeBERTaV3, there
is no distinction between medium and moderate
difficulty levels; for RoBERTa, the percentage of
correct answers increases between medium and
moderate levels; and for GPT-2, a similar trend oc-
curs between moderate and hard levels. For an
overall graphical comparison of difficulty control
using only difficulty versus combining difficulty
and narrative attributes, see Appendix B.

Figure 5 shows the overall accuracy for each nar-
rative label, with trends suggesting difficulty con-
trol particularly between easy, hard, and extreme
levels. However, control becomes inconsistent at
intermediate levels. Among the attributes, causal
and outcome demonstrate the most consistent con-
trol across difficulty levels, while prediction and
feeling exhibit the least success. This inconsis-
tency can be related to the limited representation of
these attributes in the FairytaleQA dataset (recall
Table 2), which prevents the model from learning
to generate questions across different difficulty lev-
els. Additionally, questions tied to these attributes
are inherently more challenging, as reflected in
the lower global performance of simulated-learner
QA systems. For attributes such as character,
prediction, action, and setting, the confusion is par-
ticularly evident between medium and moderate
levels. To address this, we experimented with an
alternative model trained on a lower granularity of
difficulty levels, combining medium, moderate, and
hard into a single medium level. In Figure 6, we
show the result of this experiment, which demon-
strates more consistent control across all levels.

653



cau
sal

ou
tco

me

cha
rac

ter

pre
dic

tio
n

fee
ling

act
ion

set
tin

g

Narrative Elements

0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

 o
f C

or
re

ct
 A

ns
we

rs
 (%

)

27.5%

36.5%

62.2%

11.9%

18.3%

36.8%

57.6%

9.0%

21.3%

33.5%

6.9% 6.8%

21.4%

43.1%

Difficulty Level
Easy
Medium
Moderate
Hard
Extreme

Figure 5: Percentage (%) of correct answers per narra-
tive element and difficulty level (5 levels).
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Figure 6: Percentage (%) of correct answers per narra-
tive element and difficulty level (3 levels).

However, the character and prediction attributes
continue to reveal some difficulty in distinguishing
levels. These results support Hypothesis 2 (H2),
confirming that the joint method enables difficulty
control, although with less consistency than when
controlling for difficulty alone. In Section 6, we
outline potential explanations for these results.
Linguistic Features Influenced By Control: To
better understand the linguistic features influenced
by the controllability method, we analyze the lin-
guistic properties of the generated QA pairs across
different difficulty levels and narrative attributes.
Prior work on difficulty-only controlled generation
(Tomikawa et al., 2024) identifies two key factors
that distinguish difficulty levels: (1) the average
number of words in the generated answers, and
(2) the distribution of initial interrogative terms in
the generated questions. While we also explore
these features (see Appendix C), we emphasize
here a novel aspect that we also found experimen-
tally to be relevant: (3) the degree of lexical nov-
elty in the generated QA pairs relative to the source

narrative text. To quantify this, we use the PINC
(Paraphrase In N-gram Changes) metric (Chen and
Dolan, 2011), which computes the percentage of
n-grams present in the generated QA pairs but not
in the source text. Higher PINC scores indicate
greater lexical novelty and diversity. The results
in Table 5 show that the diversity of the QA pairs
increases with higher difficulty levels. This trend
is observed both when difficulty labels are used
independently and when combined with narrative
labels. Therefore, we conclude that the linguistic
diversity between the generated QA pairs and the
source text is a feature influenced by difficulty con-
trol, regardless of whether difficulty labels are used
alone or in conjunction with narrative labels.

Data Setup Easy Med. Extr.
Dif + Text
→ QA

Q 55.60 60.23 63.94
A 9.88 23.17 48.69

Nar + Dif + Text
→ QA

Q 57.34 60.72 65.57
A 22.02 26.00 41.14

Table 5: PINC values (%) considering 3-gram novelty
for generated questions (Q) and answers (A).

Error Analysis of Generated QA Pairs: We ran-
domly selected 100 generated QA pairs and ana-
lyzed potential problems. Two main issues were
identified, as shown in Figure 7: (1) hallucinated
content (14%) and (2) nonsensical QA pairs (10%).

In the first example (1), the generated QA pair
introduces made-up terms that do not exist in the
source text. This is the most frequent problem en-
countered, likely due to the nature of the inference
method (Top-k sampling). In example 2a, the prob-
lem is that the generated QA pair misleading. In
Example 2b, the question seeks a motivation not
in the text, and the vague answer just reuses the
question’s wording without adding meaning.

6 Discussion

We revisit our research question (RQ): How effec-
tively can we control the generation of question-
answer pairs conditioned on both narrative and
difficulty attributes using a modest scale model?

Our findings indicate that the model effectively
controls narrative elements, whether alone or com-
bined with difficulty attributes. It also shows effec-
tive difficulty control when conditioned solely on
difficulty attributes. The joint model, which com-
bines narrative and difficulty attributes, generally
achieves consistent control for at least three levels
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Example 1 (hallucinated content):

Text: And then he cried for the third time: “Old Hopgiant!”
And there appeared a fellow of truly horrible size, with a
scythe as large as a ship’s mast.
Gen. Q: Who appeared to the hunter at the swan?
Gen. A: A fellow of truly horrible size, with a scythe as large
as a ship’s mast.
Explanation: There is no mention of any hunter or swan in
the source text.

Example 2a (nonsensical QA pairs):

Text: When the old man had finished his dance, the big demon
said: “Thank you very much for your amusing dance. Now
give us the pleasure of drinking a cup of wine with us,” and
with these words he handed him his largest wine-cup.
Gen. Q: What did the old man do after he finished dancing?
Gen. A: Danced with the big demon.
Explanation: The old man had finished dancing and did not
dance with anyone again.

Example 2b (nonsensical QA pairs):

Text: But the rich neighbor wanted the meadow for himself
alone, and told the poor one that he would drive him out of
house and home if he did not come to an agreement with him
that whichever one of them mowed the largest stretch of the
meadowland in a single day, should receive the entire meadow.
Gen. Q: Why did the neighbor want to own the meadow?
Gen. A: He wanted to have the meadow.
Explanation: The question contains the answer.

Figure 7: Examples of problematic generated question-
answer pairs (error analysis).

(easy, hard, and extreme). However, inconsisten-
cies arise in the intermediate levels (medium and
moderate). We also observed that certain attributes
are more conducive to effective control, while oth-
ers, like prediction and feeling, are less effective.
Notably, reducing the granularity of difficulty lev-
els improves the overall control. We now delve into
two main factors that underlie our findings.

First, generating QA pairs while simultaneously
controlling both difficulty and narrative attributes
is an inherently challenging task. When the narra-
tive element is fixed, the space of plausible ques-
tions becomes more constrained. This makes it
harder to vary difficulty meaningfully, as the ques-
tions tend to focus on similar content. For instance,
in Figure 1, the last two questions share the same
narrative element but differ in difficulty. This over-
lap in content makes it harder to generate questions
with clearly distinct difficulty levels.

Second, some narrative attributes naturally lead
to easier questions. For instance, the character at-
tribute often involves straightforward “Who” ques-
tions, making it harder to create questions with dis-
tinct difficulty levels. In contrast, questions follow-
ing the prediction attribute are demanding, adding

complexity to the learning process of generating
well-differentiated questions.

Transferability to other domains: While our
current work focuses on narrative comprehension,
the principles of controllable QG are not domain-
specific. For instance, it would be feasible to con-
trol generation based on other reading comprehen-
sion skills, as explored by Ghanem et al. (2022).
Progress in this direction depends on the availabil-
ity of datasets annotated with these dimensions,
which are scarce.

Relevance to education: We believe our find-
ings hold promise for educational applications, par-
ticularly in personalized QG. Recent work has ex-
plored adapting QG to student ability (Tomikawa
et al., 2024). We argue that incorporating narrative
control adds another valuable layer to personaliza-
tion, enabling more targeted and contextually rich
QG.

7 Conclusions

This work investigates a strategy for controlling
both narrative and difficulty attributes in gener-
ated QA pairs. The results offer a preliminary
yet promising demonstration of the potential of
QG models and the proposed control strategy. Fu-
ture efforts could leverage larger datasets with a
more balanced distribution of questions across cat-
egories to improve the model’s control capabilities.
Additionally, examining the impact of different in-
ference methods on generation would be valuable,
especially to address the issue of repetitive out-
puts observed with beam search. Finally, future
research could explore few-shot prompting tech-
niques, providing minimal examples to assess the
model’s control ability without extensive training.

Limitations

While our approach provides promising insights
into controllable QG, some limitations should be
acknowledged.

First, the limited representation of question cat-
egories across narrative attributes and difficulty
levels hinders the model’s ability to learn effec-
tively. FairytaleQA consists of approximately 10k
instances. Associating questions with multiple nar-
rative elements and difficulty levels significantly
reduces the number of examples per category, lim-
iting the model’s ability to learn effectively. For
instance, as shown previously in Table 2, prediction
and feeling questions are poorly represented.
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Second, top-k sampling enables control over nar-
rative elements and question difficulty but can lead
to undesired hallucinations. Initially, we experi-
mented with beam search — a more commonly
used technique for QG — but found it often gener-
ated repetitive questions when addressing the same
narrative element across varying difficulty levels.
Moreover, our findings indicate that the choice of
inference method significantly impacts control. For
instance, as shown in Section 5.2, the diversity of
the generated QA pairs increases at higher difficulty
levels. However, this diversity can also produce
unintended side effects, such as the hallucinations
noted with error analysis. While hallucinated QA
pairs may affect evaluation by inflating perceived
difficulty, we believe that reporting such cases was
important to reveal potential failure modes of con-
trollable QG systems. Although they may add some
noise, these observations help contextualize the
results and guide future improvements in model
robustness.

Third, the evaluation relies on simulated learner
responses rather than real student data. While
this approach offers scalability and approximations
of question difficulty, it may not fully reflect how
actual students would respond. Nonetheless, it pro-
vides a valuable proxy for assessing the model’s
behavior, and we believe it still offers meaningful
insight into the controllability of QG systems. Fu-
ture work should explore incorporating real student
data to further validate these findings.

Ethics Statement

This research involves the automatic generation of
QA pairs from narrative texts, incorporating control
attributes such as difficulty level and narrative ele-
ments. The dataset used, FairytaleQA, consists of
human-authored QA pairs from publicly available
fairy tales. No personally identifiable or sensitive
information is included, ensuring compliance with
ethical guidelines for data usage. The generated
QA pairs were evaluated using both automatic met-
rics and manual inspection to identify potential er-
rors, such as hallucinated content and nonsensical
questions. We acknowledge that these models may
introduce unintended errors or biases. While this
paper does not focus on error mitigation, future
work could explore extended human-in-the-loop
validation to enhance the reliability of generated
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A Narrative Control: Semantic Similarity

Table 6 presents the results from the narrative con-
trol perspective, measured using BLEURT (Sellam
et al., 2020). The goal is to show an improvement
in semantic similarity to ground-truth questions
when narrative control attributes are incorporated.
As observed with ROUGEL-F1 similarity (recall
Section 5.2), this trend is observed across all seven
narrative labels. When narrative and difficulty la-
bels are fused, we observe a similar improvement
trend, comparable to the incorporation of narra-
tive attributes alone. These results further support
Hypothesis 1 (H1) — incorporating narrative at-
tributes will result in generated questions that are
more similar to the ground-truth — indicating that
our method controls the narrative elements under-
lying the generated questions.

B Difficulty-Only vs. Difficulty+Narrative
Control

To compare difficulty control when operating solely
on difficulty versus combining difficulty and nar-
rative attributes, Figure 8 provides an overview of
the performance at each level for both setups. Both
setups show the expected trend: the percentage of
correct answers decreases as difficulty increases.
However, a linear approximation of the observed
data points reveals that the decrease is less pro-
nounced when both attributes are combined, though
it remains consistent overall.
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Data Setup Char. Setting Action Feeling Causal Out. Pred.
Text→ QA .332 .332 .353 .370 .360 .346 .358
Nar + Text→ QA .379 .504 .422 .491 .418 .444 .409
Nar + Dif + Text→ QA .378 .482 .413 .499 .417 .422 .401

Table 6: Narrative Control: Semantic similarity (BLEURT) between generated and ground-truth questions on
the test set by narrative element. Text→ QA is used as a baseline to assess whether narrative control helps the
generated questions approximate the ground-truth questions.
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Figure 8: Percentage of Correct Answers by Dif. Level.

C Additional Linguistic Features
Influenced By Control

Table 7 presents the average number of words in
the generated question-answer pairs. For generated
answers, when only difficulty labels are incorpo-
rated, no significant trend is observed. For gener-
ated questions, an upward trend is noted, though
it is not significant. When narrative and difficulty
labels are combined, no trend is observed. Based
on these findings, we conclude that the average
length of generated question-answer pairs is not
influenced by difficulty or narrative control labels
in our experiments.

Data Setup Easy Med. Extr.
Dif + Text
→ QA

Q 10.80 11.83 12.49
A 7.19 8.95 8.88

Nar + Dif + Text
→ QA

Q 11.81 11.62 11.70
A 7.42 7.96 7.61

Table 7: Average number of words for generated ques-
tions (Q) and answers (A).

Figure 9 illustrates the proportion of initial inter-
rogative terms in the generated questions. When
only difficulty labels are used (top chart), higher
difficulty levels show an increase in terms like
“why” and “how” and a decrease in terms like

“what” “who” and “where”. This aligns with ex-
pectations, as “why” and “how” are often linked
to questions requiring higher cognitive effort, as
described in Bloom’s taxonomy (Krathwohl, 2002).
When both narrative and difficulty labels are fused
(lower chart), the proportion of all interrogative
terms is more consistent across difficulty levels.
This outcome is expected since this setup aims to
control difficulty levels while also demanding for
certain narrative elements. In this case, narrative
labels are the primarily influence for the choice
of interrogative terms (e.g., “who” for character-
related questions), rather than difficulty labels.
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Abstract

We present the framework Omethi, which is
aimed at scoring short text responses in a semi-
automatic fashion, particularly fit to interna-
tional large-scale assessments. We evaluate
its effectiveness for the massively multilingual
PISA tests. Responses are passed through a
conditional flow of hierarchically combined
scoring components to assign a score. Once
a score is assigned, hierarchically lower com-
ponents are discarded. Models implemented
in this study ranged from lexical matching of
normalized texts—with excellent accuracy but
weak generalizability—to fine-tuned large lan-
guage models—with lower accuracy but high
generalizability. If not scored by any automatic
component, responses are passed on to manual
scoring. The paper is the first to provide an
evaluation of automatic scoring on multilingual
PISA data in eleven languages (including Ara-
bic, Finnish, Hebrew, and Kazakh) from three
domains (n = 3.8 million responses). On aver-
age, results show a manual effort reduction of
71 percent alongside an agreement of κ = .957,
when including manual scoring, and κ = .804
for only the automatically scored responses.
The evaluation underscores the framework’s
effective adaptivity and operational feasibility
with its shares of used components varying sub-
stantially across domains and languages while
maintaining homogeneously high accuracy.

1 Introduction

A river adapts its flow to diverse exterior condi-
tions, by meandering, or alternating its velocity
and depth, to reach its target inevitably and natu-
rally. In this paper, we propose the hierarchical,
response-adaptive framework Omethi for automati-
cally scoring short text responses from assessments.
The proposed framework is named after the Ome-
thi River, for it is similarly responsive by com-
bining modern and baseline scoring methodology
adaptively at the response level, while contending

with diverse languages and multiple assessment do-
mains in an operational setting and distinct quality
requirements. Large-scale assessments, especially
international ones (e.g., PISA, the Programme for
International Student Assessment; OECD, 2023),
pose diverse conditions to automatic scoring (Zesch
et al., 2023), similar to the varied surroundings
a river is exposed to. In turn, automatic scoring
encompasses a range of approaches with partic-
ular strengths and weaknesses (see Galhardi and
Brancher, 2018; Gao et al., 2024).

Accordingly, the paper provides three major con-
tributions. First, we present a novel hierarchical
composition of models for automatically scoring
short text responses, particularly fit to the complex
settings present in large-scale assessments.

Second, for a first implementation of the frame-
work, we propose a hierarchical collection of
models, including a new rigorous method with
weak generalizability, called Fuzzy Lexical Match-
ing (FLM), alongside fine-tuned XLM-RoBERTa
(XLM-R; Conneau et al., 2020) and support vec-
tor machine classifiers (SVM; Cortes and Vapnik,
1995). Human raters, integral to assessment opera-
tions, serve as the final component in the sequence
of scoring methods presented here, turning the im-
plemented pipeline into a semi-automatic system.

Third, this is the first paper to evaluate automatic
scoring on massively multilingual data from PISA
tests including all three major domains (i.e., read-
ing, mathematics, and science; OECD, 2024). With
the complete dataset containing 59 test languages
from 86 countries and regions in total, we sampled
a subset of 11 test languages for the present evalua-
tion, resulting in about 3.8 million text responses
to 160 items from 3 assessment domains and more
than 270,000 students. To represent diverse lan-
guage families and writing systems, the selected
test languages included Arabic, Finnish, Hebrew,
Kazakh, and Korean, among others.

The empirical evaluation was guided by two
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overarching research questions. (I) Overall and
for each subcomponent, how effective is the model
at generating accurate scores and reducing man-
ual effort? (II) How robust are scoring accuracy
and reduced manual effort across subsamples with
different test languages?

2 Background

2.1 Relevance for Operational Assessments

International educational large-scale assessments,
such as PISA, are characterized by their large
scope in addressing diverse student characteristics
from different cultures using complex methodology.
This can pose significant challenges for automatic
scoring (Yan et al., 2020; Zesch et al., 2023). The
resulting diversity manifests in response texts and
corresponding scoring, stemming from many fac-
tors, including the world-wide participation (i.e.,
over ninety countries and economies in PISA 2025;
OECD, 2025). The tests are administered in a large
number of test languages (almost sixty test lan-
guages from 2018 to 2022), with high-resource
languages, such as Indonesian, just as low-resource
languages, such as Kazakh or Catalan. Moreover,
the tests assess three major literacy domains, using
a large number of items and various item types with
complex coding guides for constructed-response
formats. Additionally, the low-stakes nature at
the individual level often results in lower test en-
gagement (Schlosser et al., 2019) and, thus, more
informal, fragmented, and less integrated (Chafe,
1982) text responses. Continuous changes in assess-
ment design—such as the transition from paper- to
computer-based testing and the adoption of adap-
tive testing—introduce additional variability over
time; for example, by reducing the number of re-
sponses per item (OECD, 2024) or by impacting the
length and quality of text responses (Zehner et al.,
2019, 2020). On top of this, not only sample sizes
vary largely per test language (e.g., from n = 269
to n = 22,163 responses per item in the present
paper’s reported dataset), which poses challenges
for training, but also a reduced rigor in human cod-
ing can lead to more label noise in subsamples. At
the same time, large-scale assessments pose incon-
testable quality requirements (see OECD, 2025),
including high-quality coding and accountability
(i.e., explainability), due to their high stakes at the
state level. Shin et al. (2019) demonstrated that
automatic scoring can align closely with human
experts in identifying rater severity, and less so

regarding centrality and accuracy, highlighting fur-
ther challenges in introducing automatic systems
in operational procedures. Noteworthy, large-scale
assessments usually administer a subset of items
repeatedly over time, making them an attractive
field of application for supervised learning.

Thus far, automatic scoring has seen limited re-
search and operational use in international large-
scale assessments. Early efforts include the intro-
duction of PISA’a Machine-Supported Coding Sys-
tem (Yamamoto et al., 2018), a precursor to FLM,
and a baseline evaluation for German (Zehner et al.,
2016). Recent research funded by international
bodies, such as on IEA’s ePIRLS data (Interna-
tional Association for the Evaluation of Educa-
tional Achievement; Shin et al., 2024), and a com-
petition on data from the National NAEP (Na-
tional Assessment of Educational Progress; Whit-
mer et al., 2023) signal growing interest in automat-
ing scoring, notoriously centering around national
U.S. assessments (Yan et al., 2020).

2.2 Diverse Models to Address Text Diversity
All these extraneous factors manifest in varying de-
grees of linguistic variance in text responses (Zesch
et al., 2023; Horbach and Zesch, 2019) across co-
horts, subpopulations (i.a., languages), domains,
items, and their context. Single automatic scoring
approaches can fall short of adequately addressing
this diversity. For instance, while lexical match-
ing methods offer excellent accuracy for known
responses, they lack generalizability to unseen lin-
guistic expressions. Moreover, supervised clas-
sifiers are often hampered as they assign a label
regardless of relatively low probabilities (i.e., con-
fidence) for certain instances (Li et al., 2023).

Recognizing these limitations, the here presented
first collection of implemented components in an
Omethi framework retain human raters as the fi-
nal recourse when automatic models fail to score
responses with sufficient confidence, rendering it
a semi-automatic system. By hierarchically com-
posing multiple scoring approaches and discarding
lower-level components once a score is confidently
assigned, Omethi navigates the complexities of in-
ternational large-scale assessments while maintain-
ing the high-quality standards required for them.

2.3 Ensembles for (Semi-)Automatic Scoring
Ensembles for automatic and semi-automatic scor-
ing come in two fashions: algorithmic ensembles
that inherently comprise multiple models (e.g., ran-

661



dom forests) or combinations of relatively loosely
coupled models (e.g., stacking). Omethi belongs to
the latter and diverges from traditional systems by
combining multiple components, including super-
vised classifiers, in a conceptually governed, top-
down manner rather than relying on data-driven,
bottom-up learning. Unlike the common paradigm
of identifying a single optimal model for a dataset,
task, or domain, Omethi deliberately alternates
models at the response level based on explicit cri-
teria. This approach contrasts with standard en-
sembles, such as those in Goenka et al. (2020) and
Ormerod (2022), where model selection is carried
out uniformly (e.g., majority voting or averaging)
or with ensembles designed to capture diverse re-
sponse characteristics (e.g., Mohler et al., 2011;
Sahu and Bhowmick, 2020; Sakaguchi et al., 2015;
Zhang et al., 2022). For instance, Heilman and
Madnani (2013) stacked models for item-specific
n-gram features and text similarity, while Roy et al.
(2016) employed transfer learning between general-
and question-specific classifiers.

If humans are still involved during inference, the
scoring is considered semi-automatic. For systems
deferring responses to humans, appropriate confi-
dence thresholds of the automatic component need
to be identified; referred to as deferral policy in
(Li et al., 2023), which we rephrase here as the
eligibility policy for assigning a score. This has
been investigated for semi-automatic systems, such
as in Andersen et al. (2023) and Horbach et al.
(2014), which combined unsupervised clustering
with human scoring. Horbach and Pinkal (2018)
more directly integrated humans and machines via
semi-supervised clustering. In the context of la-
bel probabilities as a confidence criterion, results
on identifying optimal confidence thresholds have
been mixed. Suen et al. (2023) successfully set
thresholds based on a minimum required F1 score,
while Bexte et al. (2024) observed substantial item-
and data-wise variation in confidence distributions
with this, failing to identify viable thresholds for
certain items at all. Funayama et al. (2022) sim-
ilarly used confidence scores to revert to human
raters, and Li et al. (2025) proposed a constant
threshold of δ = .25, basically halving the range of
values from random chance to perfect agreement.

3 Omethi Framework

Unlike traditional ensemble methods, Omethi or-
chestrates scoring components hierarchically based

on their conceptual priority, compiling a logical de-
cision flow that is informed by each component’s
inherent characteristics. If a component is eligi-
ble by satisfying its specific conditions (i.e., its
eligibility policy), it assigns the final score and the
response bypasses subsequent components.

Match?
Yes

Yes

Fallback to Manual Scoring

Yes

Sufficient 
Certainty?

No

I) Fuzzy
Lexical

Matching

II) Supervised
Classifier

XLM-R

IV) Human

Sufficient 
Training
Quality?

Yes Yes

Sufficient 
Certainty?

No

III) Supervised
Classifier

SVM

No No

No

Response Score

Sufficient 
Training
Quality?

Response

Figure 1: Response flow through the implemented Ome-
thi pipeline

In this paper, we present an initial implementa-
tion consisting of four components, described in
the following (see Figure 1). The rationale underly-
ing the implementation was to allocate components
with the highest accuracy prior to those exhibit-
ing higher generalizability, while also aiming at
minimizing human effort resulting from responses
deferred to the final component.

During training, each scoring component was
built separately using data from a given subsam-
ple; that is, for (i) a specific item and (ii) test
language. Human scores available from the op-
erational PISA studies served as the ground truth
for training. During inference, each response was
first evaluated by Fuzzy Lexical Matching (FLM),
which attempts to match normalized text to a pool
of normalized response texts. If sufficient matching
responses were identified that satisfied predefined
score-homogeneity criteria (see next section), prop-
agating their score to the unseen response is con-
sidered highly reliable, as the response had been
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scored multiple times previously by humans, or
at least a lexically very close counterpart. FLM,
therefore, receives the highest priority in the flow
because its classifications are largely valid, inter-
pretable, and applicable for any language. How-
ever, FLM’s obvious downside is its lack of out-
of-sample generalization, the severity of which de-
pends on the item-specific linguistic variance in the
responses. Thus, if FLM could provided a score,
that score was adopted, bypassing subsequent com-
ponents. Otherwise, the response proceeded to the
next scoring component.

Responses not scored by FLM were next passed
to a supervised classifier: a fine-tuned XLM-
RoBERTa classifier or SVM. The model’s output
was assigned to the response if its overall train-
ing performance quality sufficed and the individual
classification’s confidence exceeded an item- and
language-specific threshold.

If none of the automatic components satisfied
their eligibility policy, the response was forwarded
to the final component, namely manual scoring by
human raters.

3.1 Fuzzy Lexical Matching
FLM extends the idea of PISA’s Machine Support
Coding System (Yamamoto et al., 2018), opera-
tionally introduced in PISA 2018. There, strict
exact string matching was applied, automatically
propagating scores if at least five homogeneously
scored text responses were found in legacy data.

FLM builds on this widely adoptable principle
of matching unseen to historic data. In contrast to
exact matching, FLM first normalizes the texts by
traditional preprocessing techniques. The normal-
ization pipeline was first evaluated on ePIRLS data
(the Progress in International Reading Literacy
Study; Shin et al., 2024). The standard techniques
used were white-space trimming, punctuation re-
moval, case insensitivity, diacritics removal, stem-
ming, stop word removal, and bag of words.

For optimization to a subsample (i.e., item and
language), this set of normalization techniques is
trained on the respective data. That is, the effec-
tiveness of each pipeline step is evaluated using the
coefficient ER (Effort Reduction), simply consti-
tuting the share of matched responses, ER = nm

nt
;

nt denoting the total number of responses in the
data and nm the number of matches. Importantly
though, FLM’s scoring quality also manifests in
ER because the method requires sufficiently fre-
quent as well as homogeneously scored responses

for automatic scoring. That is, if the grouping of
the normalized texts leads to heterogeneous scores
within that group, ER will decrease. A response
is automatically scored if the following criteria are
met. For a given response i, let mi denote the
number of its matches and si the number of re-
sponses that received the dominant score in the
group. Then, the response is scored (M = 1) or
not scored automatically (M = 0) as follows:

M =




1,

if mi ≥ 3 and

si ≥ max (⌈mi · .92⌉, mi − 5)

0, otherwise

That is, a response is scored automatically if at least
3 responses are matched, requiring a minimum of
92 percent of homogeneous scores, but limited to
an absolute maximum of 5 deviant responses.1

Whenever a pipeline step in FLM leads to a de-
crease in ER, the respective step is discarded for
the specific subsample (i.e., item and language).
For example, if respondents were asked to provide
an email address from a text, applying punctuation
removal on the responses eliminates relevant infor-
mation, leading to heterogeneously scored match-
ing groups, a reduced ER, and, hence, this normal-
ization step would be discarded during inference.

Another adaptive step in FLM is the tailoring
of stopword lists to the subsample. The rationale
behind this is twofold. For one, stopword lists are
language-specific and differ largely in their scope.
Second, whether certain words are predictive for a
response’s score depends on the item. Therefore,
if an optimized stopword list leads to an increase
in ER or an increase of the overall accuracy while
ER remains identical, the optimized stopword list
is used during inference.

3.2 Supervised Classifiers
Two types of classifiers based on supervised learn-
ing were built: fine-tuned XLM-RoBERTa models
and support vector machines. During inference,
both only take response texts as their input, not
considering item stems, stimulus materials, or scor-
ing guides.

As a core component, fine-tuned XLM-
RoBERTa models (Conneau et al., 2020) were em-
ployed for their robust multilingual representation
and classification capabilities. XLM-R is a mas-
sively multilingual model pretrained on a corpus

1In PISA, the minimum inter-rater agreement is required
to be 92 percent (OECD, 2024).
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comprising one hundred languages. For enabling
binary (i.e., dichotomous) and multiclass (i.e., poly-
tomous) scoring, respectively, a classification head
was appended to the pretrained model.

With the objective to only have the model as-
sign fairly probable scores, labels’ output probabil-
ities were stored for each instance. Using Receiver
Operating Characteristic (ROC) analysis, an opti-
mal threshold of label output probability oj , spe-
cific to subsample j, was determined to minimize
misclassifications. This threshold was determined
by maximizing Youden’s index (Youden, 1950),
which quantifies the trade-off between sensitivity
and specificity. Specifically, we computed

oj = arg max
x∈[0,1]

(
TPx

TPx + FNx
− FPx

FPx + TNx

)
,

where TP, FP, TN, and FN denote subsample j’s
number of true positives, false negatives, and so on,
based on a vector of classification correctness at
threshold x.

This threshold identification differs from conven-
tional ROC analyses, which typically rely on the
actual binary labels rather than their correctness.
With tailored confidence thresholds, the XLM-R
classifiers ensure reliable predictions while defer-
ring uncertain cases to downstream components.
Moreover, only classifiers with sufficient training
performance were employed at all.

In addition to fine-tuned XLM-R classifiers, sup-
port vector machine classifiers were trained using
XLM-R embeddings as the input features. With
a small number of entirely underfitting XLM-R
models, the SVM classifiers were designed as fall-
back classifiers before ultimately deferring to hu-
man scoring. While linguistic representation re-
mained consistent with XLM-R classifiers, SVMs’
distinct classification provided—despite somewhat
poorer accuracy—more robustness in scenarios
where datasets may be small, noisy, or skewed in
their class distribution.

As the threshold for inference certainty, SVM
classifiers used the arithmetic mean probability in-
stead of the ROC-based approach employed for
fine-tuned XLM-R models. This simpler threshold-
ing mechanism was chosen because SVMs were
applied only to responses that had already been
deemed uncertain by upstream models.

4 Empirical Evaluation

Omethi implemented as described above was evalu-
ated by simulating its flow on a real-world dataset.

4.1 Dataset and Instrument

In PISA (OECD, 2023), 15-year-old students take
tests in a total of three domains to assess their sci-
entific, mathematics, and reading literacy. For the
present study, we had available text responses for
all construct-response items from all Field Trials
and Main Studies for PISA 2018 and 2022. With
the complete data being too large for one evaluation
and its reporting, we sampled 11 datasets with di-
verse languages for the present paper: Arabic (Jor-
dan), Traditional Chinese (Chinese Taipei), Finnish
(Finland), English (U.S.), German (Germany),
Hebrew (Israel), Indonesian (Indonesia), Kazakh
(Cyrillic script; Kazakhstan), Korean (South Ko-
rea), Portuguese (Brazil), and Spanish (Spain). Cor-
responding to n = 270,445 students, this resulted
in a total of n = 3,773,728 responses that had al-
ready been assigned human scores in PISA with its
high quality standards (OECD, 2025).

The dataset comprised 160 items (89 reading,
39 math, and 32 science items), 121 with two and
39 of them with three score levels. Not all items
had been administered in all selected languages,
resulting in a total of 1,676 datasets (i.e., classifiers
to be trained). Sample items with corresponding
coding guides can be found on the OECD’s web-
site (OECD, 2025). Coding guides for some items
are simple, such as “Full credit is given when the
student states that the weight or size [. . . ] was
not provided . . .” (CR548Q09), others are more
complex, such as “Selects one of the names and
gives an appropriate explanation as described be-
low.” (with 19 explanations specified and mapped
to one of three different names; CR557Q14).

Table 1 shows exemplary responses for each do-
main. They are selected from coding guides re-
leased by the OECD and not from the evaluation
data set, because items in PISA are confidential
due to the assessment’s high stakes at the national
level, constraining the selection options. Note that
constructed-response items in math regularly in-
volve mathematical reasoning (sometimes, naming
a number), but rarely involve stating formulas.

4.2 Implementation

We used Python 3.11.5 and R 4.4.3 (R Core Team,
2025). For XLM-R, the base model2 with 279
million parameters was used. Due to the large num-
ber of required classifiers, hyperparameters and

2https://huggingface.co/FacebookAI/
xlm-roberta-base [2025-04-01]
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Domain Item ID Item Stem Sample Response Context

Math CMA159Q01 Peter thinks there is a greater prob-
ability of the arrow stopping on
blue in Spinner A than there is in
Spinner B. Is Peter correct?

Because 1
2

= 2
4

. He is not correct
because the probability is the same for
each spinner.

Details
(OECD, 2025)

Reading CR548Q09 With whom do you agree? Sam. These are only two texts and
more research is needed before a con-
clusion can be made.

Details
(OECD, 2025)

Science CS623Q03 What is the biological reason for
this effect?

Increasing sweat levels in high temper-
atures keeps the body from getting too
hot.

Details
(OECD, 2024)

Table 1: Sample PISA items and responses from released coding guides

settings were not tuned classifier-wise for compu-
tational constraints. Instead, a fixed batch size of
B = 32, learning rate of η = 5e−5, the AdamW
optimizer (Loshchilov and Hutter, 2017), and a co-
sine learning rate scheduler with warm-up were
used. Training was capped at ten epochs, with
early stopping after stagnating performance in three
consecutive epochs. Cross-entropy loss was used
for optimization. SVMs employed a Radial Basis
Function (RBF) kernel.

Classifiers were deployed only if they met min-
imum training performance thresholds (κ ≥ .300
for XLM-R and κ ≥ .900 for SVM) as mea-
sured by QWK (Quadratic Weighted Kappa; Co-
hen, 1960). F1-score is reported as F1 micro. Im-
portantly, in the reported evaluation, the final man-
ual scoring component was assumed to yield per-
fect accuracy, despite normal inconsistencies in
human scoring. That is, this component takes the
ground truth label, as provided by PISA’s human
raters, as its output. This assumption was made for
two reasons: (i) consistent estimates of inter-rater
agreements were not available for all subsamples,
and (ii) the substantial reduction in manual effort
could alter relevant rater cognition (Bejar, 2017)
and reliability (Padó and Padó, 2022).

Finally, due to computational constraints stem-
ming from the fine-tuning of many XLM-R models,
an 80/20 training-test-split was used for evaluation.

4.3 Results

All reported average values constitute means
weighted by sample size across all classifiers.3

3For the sake of readability, only a selected set of standard
errors is reported (in brackets) where comparisons may be
relevant. All result data is available upon request.

Acc (%) κ F1 ER (%)

Math 98.8 .972 .988 73.0
Reading 97.7 .954 .977 71.0
Science 97.7 .951 .977 67.3

Table 2: Omethi’s performance by domain

4.3.1 Performance by Domain

Omethi achieved very high agreement with human
scores, with an average κ = .957, TPR = .968,
and FPR = .977, alongside substantial manual ef-
fort savings (on average, ER = 70.5%). Notably,
these results include a share of responses scored
manually, as reflected in the effort reduction met-
ric, and assume perfect agreement for this subset.
Nonetheless, the reported figures represent the ex-
pected scoring quality if Omethi were deployed in
an operational setting.

Table 2 details the agreement and effort reduc-
tion across all domains. Scores showed the highest
agreement for math items with an average accuracy
of 98.8 percent [±0.1%], κ = .972 [±.003], and
an effort reduction of 73.0 percent [±1.2%], mean-
ing 27.0 percent of responses have been deferred
to human scoring. For the other two assessment
domains, Omethi scores showed marginally lower
but still very high agreement values, with accu-
racy at 97.7 percent [±0.1%] for reading and iden-
tical 97.7 percent [±0.3%] for science (κ = .954
[±.002] and κ = .951[±.005]), and an effort reduc-
tion of 71.0 percent [±0.8%] and, for science some-
what lower, 67.3 percent [±1.1%], respectively.

The overall high agreement for the majority of
classifiers across domains and languages with only
rare exceptions is visualized in Figure 2.

Distinguishing performance of individual auto-
matic components, Table 3 reports component-
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Figure 2: Omethi’s distribution of performance at the
item- and language-level across domains

wise agreement values, excluding manual scor-
ing during inference. The first three columns
show the agreement of the components’ automatic
score with human scores for the subset of re-
sponses that were scored by the respective com-
ponent for Omethi. For FLM, accuracy was at
AccFLM = 98.6 percent on average, XLM-R’s
performance was κXLM = .775 [±.011], and for
SVM, κSVM = .554. The fourth column (κauto)
shows agreement for all automatic components
combined, again only for the subset of responses
scored automatically; κauto = .804 [±.009]. The
last column (κXLMall) reports agreement as would
have been the case if all responses were scored by
XLM-R classifiers alone, showcasing the substan-
tial added value of the combination of automatic
scoring approaches beyond transformer finetuning
as displayed in the adjacent column on the left
(∆κauto,XLMall

= .093). The Appendix visual-
izes this gain of the Omethi pipeline over mere
XLM-R fine-tuning (see Figure 4). Similarly, Fig-
ure 5 (see Appendix again) shows that XLM-R
outperforms SVM for the majority of item- and
language-specific classifiers, which is in line with
the rationale underlying the component hierarchy,
while also showcasing the number of random-level
XLM-R classifiers, for which SVM was added as a
potential fallback.

4.3.2 Robustness across Languages
Table 4 displays Omethi’s agreement with hu-
man scores and effort reduction across subsamples,

AccFLM κXLM κSVM κauto κXLMall

Math 99.2 .715 .414 .765 .683
Reading 98.2 .792 .584 .845 .739
Science 98.8 .784 .600 .756 .677

Table 3: Performance for automatic components and
their combination (auto); responses deferred to manual
scoring excluded, except for XLMall

which includes, among others, different test lan-
guages. Overall agreement was homogeneously
high, with accuracy ranging mainly from 97.8
(Spain) to 99.0 percent (Jordan) and the exception
of Indonesia with 96.9 percent. In contrast, effort
reduction varies largely from 60.3 (Indonesia) to
76.1 percent (Chinese Taipei), showing how the im-
plemented scoring conditions effectively identified
instances that required human scoring. Similarly,
the shares of responses scored by different com-
ponents varied heterogeneously across subsamples
(see Appendix A, Table 6). For example, FLM
scored 29.5 percent of responses in the subsample
from Chinese Taipei (Traditional Chinese), which
stands in stark contrast to the one from Israel (He-
brew) with only 19.7 percent. For Spain (Spanish),
SVMs only scored 1.2 percent of the responses,
compared to Jordan (Arabic) with 9.8 percent com-
bined with an outlier of only 28.1 percent of suffi-
ciently confident scoring by XLM-R, whereas the
XLM-R classifiers for the U.S. (English) scored
even 52.2 percent of the responses.

Acc (%) κ F1 ER (%)

ara-jor 99.0 .965 .990 66.7
deu-deu 98.1 .961 .981 72.2
eng-usa 98.0 .959 .980 75.5
esp-esp 97.8 .957 .978 70.4
fin-fin 98.5 .969 .985 75.2
heb-isr 98.1 .961 .981 70.8
ind-idn 96.9 .928 .969 60.3
kaz-kaz 98.3 .962 .983 67.9
kor-kor 98.3 .965 .983 75.1
por-bra 98.4 .965 .984 72.0
zho-tap 98.1 .963 .981 76.1

Table 4: Performance and effort reduction by language,
incl. manual scoring
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4.3.3 Component Shares
Table 5 shows the percentage of responses scored
by the respective component due to meeting the
eligibility policy. FLM and XLM-R played the ma-
jor role for automatic scoring. With its position at
the end of the sequence of automatic components,
SVMs only played a minor role quantitatively. Nev-
ertheless, as shown in Table 6, there were settings,
such as the subsample from Jordan (Arabic) in
which the first automatic components do not per-
form well and SVM takes over some of the shares
to retain the homogeneously high level of accuracy.

The prevalence of different flows responses take
through the scoring components is displayed in Fig-
ure 3. Said cases where XLM-R and FLM do not
manage to score responses for which SVM takes
over are visible in the figure as the orange ribbon.
Moreover the figure disentangles the specific condi-
tions for why responses are not scored by specific
components.

5 Discussion

The results demonstrate Omethi’s effectiveness
in orchestrating multiple methods in an explicitly
designed, adaptive scheme for automatic scoring
across domains and languages while maintaining
uniformly high accuracy. With an average agree-
ment of κ = .957 compared to complete human
scoring and manual effort reductions of 70.5 per-
cent across domains, Omethi proves its feasibility
in and operational usefulness. Thus far, for PISA
data, effort reduction gains have been reported to be
smaller with other methods and data sets compris-
ing fewer test languages and assessment domains
(Andersen et al., 2023; Yamamoto et al., 2018).
Critically, the system’s hierarchical composition
and scoring conditions ensured that accuracy was
prioritized, resulting in varying effort reduction
across settings. It is important to note that manual
effort reduction here does not refer to the entirety of
human involvement in operational assessment pro-
cedures but only the share of automatically scored
responses during inference.

FLM XLM-R SVM Manual

Math 35.0 34.2 3.8 27.0
Reading 24.1 44.5 2.5 29.0
Science 18.4 46.0 2.8 32.7

Table 5: Proportions (%) of component usage

The importance of combining different method-
ologies was evidenced by the homogeneous ac-
curacy levels despite heterogeneous shares of re-
sponses being scored by different components
across domains and languages. Each component
in Omethi played a distinct role, contributing to
the system’s overall robustness. While FLM and
XLM-R dominated the scoring, partly due to their
position in the sequence, SVMs served as a crucial
fallback mechanism, stepping in when upstream
components failed to score confidently. Although
SVMs scored only a minor share of responses quan-
titatively, their role turned out as indispensable in
maintaining accuracy for certain subsamples. This
underscores the importance of the adaptive work-
flow, where eligibility policies diagnosed the risk of
misclassifications and led to passing on responses.

For identifying a confidence threshold as compo-
nents’ eligibility policy, the proposed maximizing
of the ROC-based Youden’s Index on misclassifi-
cations worked excellently for XLM-R classifiers.
Less so for SVM classifiers that were faced with
only the more challenging responses not scorable
by upstream components. Hence, this measure may
be added to the repertoire of threshold identifica-
tion methods, complementing fixed constants (e.g.,
Li et al., 2025) or the definition of minimum F1

scores as proxies (e.g., Bexte et al., 2024), but its
suitability needs to be verified.

Omethi’s strength in adaptivity may also intro-
duce challenges in ensuring equivalence and fair-
ness across test languages and subpopulations, ne-
cessitating careful validation and bias checks, as
bias is known to be potentially masked at the ag-
gregate level (Andersen et al., 2023). From an
operational standpoint, implementing Omethi in in-
ternational large-scale assessments would require a
rigorous quality monitoring.

For human raters, the implementation of such
a framework would result in multiple changes
that may affect rater cognition in positive or neg-
ative ways, or both. First, the number of re-
sponses decreases, potentially leading to less fa-
tigue, monotonous work, and slippage. Second,
raters’ oversight of frequent responses would di-
minish and would thus change so-called contrast or
context effects by preceding responses, an effect re-
peatedly found even in highly standardized settings
with well-trained raters (Attali, 2011; Meadows
and Billington, 2005). Third, both for automatic
systems as well as humans (Padó and Padó, 2022),
incorrect responses are more challenging to score.
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Figure 3: Share of response flows through Omethi’s components. Y/N (yes/no) = eligibility policy satisfied?

Accordingly, if classifiers with poor recall leave
human raters with a higher frequency of incorrect
responses, this also may show effects.

In conclusion, Omethi’s response-level adaptiv-
ity, combined with its capability to maintain high
accuracy across diverse contexts, positions it as a
powerful tool for operational employment in assess-
ments. While challenges may remain in, among
others, ensuring fairness, the system’s effectiveness
and flexibility pave the way for its operational use
and future enhancements. In follow-up studies, the
results presented here may be used to sample spe-
cific datasets informative to diverse facets to carry
out an evaluation in order to systematize perfor-
mance differences and identify optimal hyperpa-
rameters, respectively.

Ethical Considerations

The implementation of a framework such as Ome-
thi in large-scale assessments necessitates careful
attention to ethical principles, which is not always
at the forefront of attention (Holmes et al., 2022).
Fairness and the mitigation of bias are paramount,
as variability in component usage across languages
and cultures could lead to disproportionate dis-
advantages for certain groups. Rigorous valida-
tion and bias investigations are essential to ensure
equitable performance across diverse populations.
Transparency in the scoring process is critical to
fostering trust among stakeholders, including or-
ganizations such as the OECD, policymakers, and
test takers. Clear documentation of the system’s
decision-making mechanisms and limitations must
be provided to ensure interpretability and account-

ability. Additionally, equity in resource allocation
must be discussed, as disparities in system perfor-
mance between high- and low-resource languages
could exacerbate existing inequalities. Finally, the
increasing automation of standardized assessments
raises broader questions about their role in educa-
tion. While automation enhances efficiency and
scalability, it also risks amplifying uniformity, po-
tentially overlooking diversity facets.

Limitations

The study faces several limitations, primarily due
to computational constraints. With many test lan-
guages, items, and domains, a large number of item-
and language-specific classifiers were fine-tuned
using the XLM-RoBERTa base model. This scale
rendered classifier-specific hyperparameter tuning
via grid search computationally infeasible, necessi-
tating the use of fixed hyperparameters. Similarly,
k-fold cross-validation was not conducted due to
resource limitations, restricting the evaluation to a
single 80/20 train-test split.

The system’s runtime scales with the number
of components, complicating potential real-time
deployment in certain settings. Additionally, the
evaluation focused exclusively on operational data,
lacking comparison with public benchmarks or
standardized datasets. The use of human scoring
as the gold standard, particularly for responses de-
ferred to manual scoring, assumes perfect inter-
rater reliability, which may overestimate accuracy
in production.
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A Appendix

A.1 Proportions of Component Usage by
Subsample

FLM XLM-R SVM Manual

ara-jor 28.8 28.1 9.8 33.3
deu-deu 23.3 46.1 2.9 27.8
eng-usa 20.0 52.2 3.2 24.5
esp-esp 25.8 43.4 1.2 29.6
fin-fin 25.3 46.4 3.5 24.8
heb-isr 19.7 46.8 4.4 29.2
ind-idn 23.0 35.0 2.3 39.7
kaz-kaz 27.5 37.6 2.8 32.1
kor-kor 21.1 50.1 4.0 24.9
por-bra 28.8 39.8 3.4 28.0
zho-tap 29.5 44.1 2.5 23.9

Table 6: Proportions (%) of component usage by sub-
sample

A.2 Gains Beyond Mere XLM-R Fine-Tuning

Figure 4: Quadratic Weighted Kappa of XLM-R fine-
tuning applied to all responses and Omethi. The com-
plete Omethi pipeline, which includes XLM-R itself
and a share of human-scored responses, strongly outper-
forms XLM-R consistently (values above the diagonal).

A.3 XLM-R Fine-Tuning and SVM

Figure 5: Quadratic Weighted Kappa of XLM-R fine-
tuning applied to all responses and SVM. Generally,
XLM-R outperforms SVM for the majority of classifiers
(values above the diagonal), but SVM shows to be more
robust with respect to a number of XLM-R classifiers
only showing chance-level performance.

A.4 Acknowledgments
We gratefully acknowledge the OECD for grant-
ing access to PISA data, and we thank their PISA
Research and Development for Innovation pro-
gramme, whose funding of a prior project led to the
development of the FLM method presented here.

671



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 672–686
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Lessons Learned in Assessing Student Reflections with LLMs

Mohamed Elaraby, Diane Litman
University of Pittsburgh

Pittsburgh, PA, USA
{mse30,dlitman}@pitt.edu

Abstract

Advances in Large Language Models (LLMs)
have sparked growing interest in their potential
as explainable text evaluators. While LLMs
have shown promise in assessing machine-
generated texts in tasks such as summarization
and machine translation, their effectiveness in
evaluating human-written content—such as stu-
dent writing in classroom settings—remains
underexplored. In this paper, we investigate
LLM-based specificity assessment of student
reflections written in response to prompts, us-
ing three instruction-tuned models. Our find-
ings indicate that although LLMs may under-
perform compared to simpler supervised base-
lines in terms of scoring accuracy, they offer
a valuable interpretability advantage. Specif-
ically, LLMs can generate explanations that
are faithful, non-repetitive, and exhibit high
fidelity with their input, suggesting potential
for enhancing the transparency and usability of
automated specificity scoring systems.

1 Introduction

Reflective writing is a fundamental skill that en-
hances learning by encouraging students to criti-
cally engage with course material and articulate
their thoughts. This process benefits both stu-
dents and instructors by fostering greater awareness
and facilitating meaningful classroom interactions
(Baird et al., 1991; Menekse, 2020). The quality of
written reflections is often assessed based on their
specificity (Menekse et al., 2011; Li et al., 2025),
which measures the level of detail and depth in
a given reflection. Table 1 shows student reflec-
tions written after a physics lecture, along with
human-assessed specificity scores, both from the
ReflectSumm corpus described in Section 3.

Automating specificity assessment is crucial for
delivering interventions to help students improve
the quality of their reflections (Knoth et al., 2020;
Wilhelm, 2021), e.g., by providing scaffolding feed-

Prompt: Describe what you found most confusing in
today’s class.

[Score 1] I thought that most of the topics explained were
relatively simple or I had previously learned them. I felt
confident in my understanding after the class session.
[Score 2] the class participation activity
[Score 3] Undirected vs directed was a bit confusing in
terms of how to read the chart
[Score 4] Finding the right problem to address.

Prompt: Describe what you found most interesting in
today’s class.

[Score 1] I found nothing interesting in class. Being Friday,
I could barely pay attention.
[Score 2] the review session
[Score 3] The part about bias in data labeling was thought
provoking
[Score 4] Writing the problem statement.

Table 1: Representative reflections for each specificity
score (1–4) across two prompts. This illustrates one

challenge of assessing specificity: long reflections may
lack substance (Score 1), while short ones may convey

detailed, content-specific insights (Score 4).

back which in turn can ultimately enhance learn-
ing outcomes (Menekse et al., 2025). More spe-
cific reflections can also provide instructors with
more reliable insights into student understanding
and needs (Menekse, 2020). Traditionally, speci-
ficity scoring has relied on supervised models (Ma-
gooda et al., 2022; Carpenter et al., 2020; Li and
Nenkova, 2015). However, collecting large anno-
tated datasets in educational contexts is resource-
intensive and not always feasible. Depending on
model type, the reasoning behind the scoring might
also not be explainable to students or instructors.

Advancements in Large Language Models
(LLMs) for evaluating natural language, commonly
referred to as the LLM-as-a-judge paradigm (Zheng
et al., 2023), have introduced new possibilities
for leveraging LLMs in educational applications.
These models can generate human-like judgments
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Research Question Key Finding Lessons

RQ1: LLM vs. Supervised Baselines
Retrieval-based few-shot improves
scoring

Selecting semantically similar in-context ex-
amples boosts accuracy over random or fixed
examples.

LLMs underperform supervised
models

Distill-BERT outperforms all LLMs, suggest-
ing a need for adaptation.

Chain-of-Thought (CoT) explana-
tions do not improve scoring

Generated explanations fail to enhance LLM-
based scoring.

RQ2: Self-Generated Explanations
Explanations are faithful to the input
and explanation vocabulary do not
fully overlap with the input reflection
vocabulary

Explanations do not contradict or repeat the
input, suggesting potential for interpretable
and supportive understanding of the scores.

High fidelity suggests explanations
are highly influencing the predictions

Misleading explanations can negatively affect
the scoring.

Table 2: Key findings of RQ1 and RQ2 .

without task-specific training, making them attrac-
tive for low-resource tasks such as reflection speci-
ficity assessment. Their generative capabilities in
addition suggest new possibilities for explainable
methods. This paper investigates whether LLMs
can serve as viable alternatives to traditional super-
vised models for assessing reflection specificity.

Reflective writing poses challenges compared
to other educational scoring tasks. Unlike Au-
tomatic Essay Scoring (Foltz et al., 1999; Attali
and Burstein, 2004; Shermis and Wilson, 2024),
which typically assesses longer texts, reflective
writing is often concise and highly variable in
length, with reflections ranging from a single word
to multiple phrases or complete sentences (Kem-
ber et al., 2008). This variability poses a unique
challenge in distinguishing different levels of speci-
ficity: shorter reflections may lack sufficient con-
text, while longer ones can introduce ambiguity in
assessment. Table 1 presents two examples of re-
flections that contain multiple sentences yet receive
the lowest specificity score (1) due to vague or off-
topic content, as well as two shorter reflections that
achieve the highest specificity score (4) by provid-
ing concise, content-rich responses relevant to the
prompt. Also, while tasks such as Short Answer
Grading (Burrows et al., 2015), which is closer in
length and variability to reflections, primarily in-
volve assessing objective responses within a given
question context with reference answers, reflec-
tive writing is inherently subjective as it conveys
personal experiences and insights, further compli-
cating standardized assessment.

In this work, we extend prior research on leverag-

ing LLMs as judges for educational text evaluation
by focusing on reflection specificity. We investi-
gate this through two research questions: RQ1:
Can LLM-based specificity assessment improve
scoring reliability compared to supervised base-
lines? We explore two approaches to LLM-based
specificity assessment: (1) Standard Prompting:
LLMs are instructed to predict specificity scores
based on the input reflection. (2) Chain-of-Thought
(CoT) Prompting: LLMs are prompted to generate
a rationale before making a specificity judgment.
This technique, widely used in complex NLP tasks,
encourages models to engage in step-by-step rea-
soning, potentially leading to more consistent and
interpretable assessments. We investigate these
settings under both zero-shot and few-shot condi-
tions to assess their impact on model performance.
RQ2: Do self-generated explanations enhance
interpretability? We investigate whether gener-
ated explanations contribute to the transparency of
LLM-based specificity scoring, potentially making
the evaluation process more interpretable and infor-
mative for students and educators. Our key findings
are summarized in Table 2.1

Our contributions are twofold:

1. We evaluate the effectiveness of three open-
weight LLMs in scoring student specificity
under various zero-shot and few-shot settings.

2. We analyze the linguistic properties of the gen-
erated explanations and their role in interpret-
ing the output, aiming to assess whether these

1https://github.com/EngSalem/
Explainable-Reflection-Quality
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Score Specificity Meaning Definition
1 Vague Reflection implies "no confusing issue," e.g., "nothing" or "none for this class."

2 Non-specific Reflection does not include any statement(s) about course content but refers to
organizational aspects (e.g., homework, exams).

3 General Reflection includes statement(s) about course content but lacks specific details.

4 Specific Reflection includes specific and detailed statement(s) about course content.

Table 3: Rubric for evaluating reflection specificity based on decision tree from Luo and Litman (2016).

explanations are meaningful and potentially
useful for providing students with feedback
on their reflective writing.

2 Related Work

LLM-as-Judge LLMs have demonstrated correla-
tion with human evaluation of machine-generated
texts in tasks such as counter-narrative generation
(Zubiaga et al., 2024), text summarization (Fu et al.,
2024; Liu et al., 2023), multi-turn question answer-
ing (Zheng et al., 2023), and automatic persuasion
ranking (Elaraby et al., 2024). However, for more
nuanced human-written content, such as academic
reviews (Zhou et al., 2024) and essay scoring (Man-
sour et al., 2024; Stahl et al., 2024), LLMs (partic-
ularly without fine-tuning or alignment) still fall
short compared to human evaluators and domain-
specific supervised models trained on high-quality
annotated data. In this work, we investigate LLMs
as specificity evaluators for student reflections, a
distinct category of human-written text.
LLM-as-Judge in Educational Text Traditional
approaches to assessing student writing often rely
on surface linguistic features to enhance automatic
scoring models ranging from feature-based to hy-
brids with deep learning, including list ranking
(Uto et al., 2020) and neural-based methods (Jin
et al., 2018; Uto et al., 2020). Recent work has
explored leveraging LLMs as evaluators for educa-
tional text. Stahl et al. (2024) employed persona-
based zero-shot prompting for essay scoring, and
Hou et al. (2025) integrated linguistic features into
zero-shot evaluations; however, both studies found
limited improvements over traditional supervised
baselines. In contrast, Baral et al. (2024) showed
that a fine-tuned Mistral-7B model outperformed
other supervised models in math essay scoring.
Closely related to our work, Li et al. (2025) investi-
gated reflection specificity assessment, demonstrat-
ing that multi-LLM voting strategies outperform
single LLM scoring approaches. Building on these
developments, our work examines LLMs’ capabil-

ities in assessing student reflections, focusing on
how in-context examples influence predictions. Ad-
ditionally, we analyze the interpretability of LLM-
generated explanations, offering a novel perspec-
tive particularly valuable for building downstream
applications in high-stakes domains like education.
Evaluating Self-Generated Explanations Assess-
ing self-generated explanations has largely cen-
tered on their impact on model performance. Exist-
ing metrics, such as accuracy differences with and
without explanations (Hase et al., 2020a; Wiegr-
effe et al., 2021a) and information-theoretic mea-
sures (Chen et al., 2023), quantify how expla-
nation content influences predictions. Wiegreffe
and Marasovic (2021) proposed evaluation criteria
based on surface validity, grammatical correctness,
and alignment with the target label, including con-
trast with alternative labels. Expanding on this,
Joshi et al. (2023) introduced novelty, capturing the
introduction of new information, which proved use-
ful in human-AI collaboration tasks. These mea-
sures have since been extended to domains like
persuasiveness evaluation (Elaraby et al., 2024).
Despite these advancements, self-generated expla-
nations remain largely unexplored in educational
contexts beyond their role in enhancing automatic
scoring (Stahl et al., 2024). In this work, we exam-
ine their effectiveness not only in improving speci-
ficity scoring, but also for their potential to gener-
ate explanations that are faithful and non-repetitive
with input, and exhibit fidelity with scoring.

3 Datasets

For LLM evaluation, we utilize ReflectSumm2

(Zhong et al., 2024), a corpus of 17,509 reflections
aggregated by unique reflection per lecture from
24 STEM courses across 2 universities, written in
response to the prompts in Table 1. This dataset
was selected for its inclusion of high-quality anno-
tations of individual reflection specificity scores,

2https://huggingface.co/datasets/mse30/
ReflectSumm
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Score Count Ref. Length (Min / Mean / Max)
1 1,841 1 / 11.19 / 135
2 2,488 1 / 6.17 / 62
3 9,231 2 / 15.26 / 87
4 3,949 4 / 30.19 / 194

Table 4: Distribution of reflection specificity scores in
the ReflectSumm dataset, with reflection (ref.) length

in number of words statistics.

rated on a scale from 1 (vague) to 4 (specific)
using the rubric in Table 3. The annotations ex-
hibit substantial inter-annotator agreement, with
a reported pairwise Quadratic Weighted Kappa of
0.668 across 4 distinct annotators (trained college
students with backgrounds in the appropriate sub-
ject domains) (Zhong et al., 2024). Table 4 summa-
rizes the score distribution. The table also empha-
sizes the variability in reflection lengths across all
scores.

For both training supervised pre-LLM baselines
and as a reflection bank for LLM in-context prompt-
ing, we use the publicly available annotated re-
flections from the CourseMIRROR dataset3 which
is composed of 6680 reflections distributed as
1210, 2035, 2377, 1058 for scores 1 − 4, respec-
tively. Note that although annotated using the same
specificity rubric, the CourseMIRROR reflections
are from STEM course offerings that are disjoint
from those in ReflectSumm.

4 Experimental Settings

4.1 Included LLMs

We included 3 whitebox models which demon-
strated strong performance across NLP tasks,
as evaluated in the Chatbot Arena leaderboard
(Zheng et al., 2023)4: Llama3.1-8B-instruct
(Grattafiori et al., 2024), Mistral-8B-instruct
(Jiang et al., 2024), and Qwen-7B (Yang et al.,
2024). For efficient inference, we employed VLLMs
(Kwon et al., 2023). All experiments were con-
ducted with a decoding temperature set to 0, en-
abling greedy decoding to mitigate variability that
might stem from temperature sampling.

4.2 Prompting the LLMs (Zero-Shot)

Building on the reflection quality assessment of
Luo and Litman (2016), we prompt LLMs to assign
specificity scores on a scale from 1 to 4, consistent
with the guidelines provided to human annotators.

3https://engineering.purdue.edu/coursemirror/
4https://lmarena.ai/

The scoring rubric is adapted from the decision-tree
criteria described in Luo and Litman (2016), and
its definitions are presented in Table 3. This align-
ment enables a direct comparison between model
predictions and dataset reference annotations. Ap-
pendix A provides the prompts used for scoring.

4.3 Scoring Evaluation Metric

Given that our prediction is based on point-wise
scoring, we rely on Quadratic Weighted Kappa
(QWK) to report the model prediction agreement
with ground truth human annotations.

5 RQ1: LLM-based Assessment vs.
Supervised Baselines

These experiments evaluate the effectiveness of
LLM-based specificity assessment across a range
of settings to enable a comprehensive comparison.

5.1 Supervised Baselines

We include two supervised baselines. The first is
Finetuned-DistilBERT, where we fine-tune Distil-
BERT (Sanh, 2019) for specificity assessment fol-
lowing Magooda (2022). The model is initialized
from the Hugging Face checkpoint5 and trained on
the annotated reflections from the CourseMIRROR
dataset. We fine-tuned the model for 20 epochs
using 5-fold cross-validation, optimizing hyperpa-
rameters such as the learning rate and number of
training epochs. The checkpoint with the high-
est overall QWK score was selected for evaluating
specificity across the full ReflectSumm corpus.

The second baseline is Nearest Neighbors (NN)
Retrieval. Given a target reflection, we retrieve
semantically similar reflections from an annotated
reflection bank Rbank and estimate its specificity
score based on the most frequently occurring speci-
ficity label among its nearest neighbors. We
use the CourseMIRROR dataset as the reflection
bank. This method is used as a comparable base-
line to LLMs with nearest neighbor in-context
examples (Section 5.2). For each reflection in
the ReflectSumm evaluation set, we generate a
dense embedding using the all-MiniLM-L6-v2
model from the sentence-transformers library
(Reimers and Gurevych, 2019). This maps reflec-
tions into a shared vector space, enabling semantic
similarity comparisons. We compute the cosine
similarity between each reflection in ReflectSumm
and the annotated reflections in CourseMIRROR

5distilbert/distilbert-base-uncased
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(Rbank), and retrieve the top-n most similar reflec-
tions. For efficiency, we use the Faiss library
(Johnson et al., 2019) for fast approximate nearest-
neighbor search. The specificity score of a reflec-
tion is determined using a mode-based voting mech-
anism from its nearest neighbors’ specificity labels.

5.2 Prompting with In-Context Examples

We explore three in-context learning strategies,
ranging from fixed demonstrations (Brown et al.,
2020) to selection-based strategies that draw from
pre-existing demonstrations (Min et al., 2022).
(1) Fixed In-Context Examples: A fixed set of
manually curated examples is used as in-context
demonstrations across all runs. These examples
are drawn from annotated student reflections in
Luo and Litman (2016) and remain unchanged dur-
ing prompting. Since the examples provided in
the original paper focused primarily on confusing
prompts, we supplemented them with additional re-
flections written in response to interesting prompts
from the Rbank set. Each specificity score is repre-
sented by an equal number of examples to ensure
balanced coverage.6 This prompting method serves
as a baseline for few-shot in-context learning.
(2) Random In-Context Examples: For each in-
stance, n examples are randomly sampled from the
annotated reflection bank Rbank. This approach as-
sesses the variability in model performance based
on arbitrary example selection.
(3) Nearest-Neighbor In-Context Examples:
Similar to the nearest-neighbor retrieval baseline,
the top-n semantically similar reflections from
Rbank are retrieved for each input reflection. These
nearest neighbors serve as in-context demonstra-
tions.

Table 5 shows that none of the included LLMs
were able to match the performance of the
DistillBERT baseline (0.658 QWK) in either zero-
shot or any of the few-shot settings. This highlights
the limitations of LLMs in specificity assessment
when compared to dedicated supervised models.
Among the LLMs, Mistral-8B-instruct consis-
tently achieved the highest QWK agreement across
both zero-shot and few-shot settings. The best per-
formance (0.624 QWK) was obtained when paired
with nearest-neighbor retrieval, indicating that re-
trieving semantically similar reflections enhances
the model’s ability to assess specificity by provid-
ing more contextually relevant examples. However,

6Fixed in-context examples are provided in Appendix B.

increasing the number of in-context examples neg-
atively impacted performance across all models
and few-shot settings. This suggests that excessive
context may introduce conflicting information or di-
vert the model’s attention away from the specificity
criteria. Also, both fixed and randomly sampled in-
context examples performed worse than zero-shot
prompting, implying that arbitrarily chosen exam-
ples introduce noise rather than meaningful guid-
ance. These findings underscore the importance of
carefully curating in-context examples when lever-
aging LLMs for specificity scoring. This limitation
further reinforces the challenge of deploying LLMs
for automated assessment in educational settings
without access to high-quality annotated datasets.

5.3 Chain-of-Thought (CoT) Prompting

Instead of directly instructing the model to assign
a specificity score to a given reflection, we em-
ploy Chain-of-Thought (CoT) prompting (Wei et al.,
2022) to encourage the model to generate a ratio-
nale before providing its final assessment. This
approach aims to enhance the reliability and in-
terpretability of the model’s scoring process by
explicitly incorporating reasoning. To implement
CoT prompting, we modify the original scoring
prompt by introducing a zero-shot CoT instruc-
tion (Kojima et al., 2022) that prompts the model
to generate a brief explanation before assigning a
score. Specifically, we refine the commonly used
CoT instruction, Let’s think step by step,
proposed by Kojima et al. (2022), by prompting
Mistral-8B-instruct to generate an alternative
phrasing that better aligns with the specificity eval-
uation task. The final instruction used in our exper-
iments is: Think critically, consider all
aspects, and then decide.

Table 6 demonstrates that prompting
Mistral-8B-instruct (the best performing LLM
from Section 5.2) to generate self-explanations
before assigning specificity scores does not
improve QWK performance. Across most settings,
CoT prompting either slightly lowers or maintains
performance compared to standard prompting,
with exceptions for 3-shot with random examples
and 10-shot with random and nearest neighbor
examples. However, this gain does not surpass
the best-performing settings. Our findings thus
suggest that CoT self-generated explanations offer
limited utility in improving scoring performance.
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Supervised Baselines (QWK) Best QWK

Distill-BERT 0.658 0.658
Nearest Neighbor – – 0.410 (3-shot) 0.473 (5-shot) 0.506 (10-shot) – – – 0.506

LLM-Based Models (QWK) Best QWK

Model Zero-Shot Few-Shot (Fixed 4-shot per score) Few-Shot (Random) Few-Shot (Nearest Neighbor)

3-shot 5-shot 10-shot 3-shot 5-shot 10-shot

Llama3.1-8B-instruct 0.552 0.515 0.546 0.549 0.504 0.601 0.595 0.578 0.601
Mistral-8B-instruct 0.595 0.522 0.532 0.553 0.575 0.624 0.605 0.575 0.624
Qwen-7B 0.559 0.485 0.519 0.540 0.456 0.600 0.597 0.569 0.600

Table 5: Quadratic Weighted Kappa (QWK) results for specificity assessment across various few-shot settings on
the full ReflectSumm benchmark. The rightmost column highlights the best QWK result within each model group.

Shaded cells indicate the best score per model row, and bolded values represent group-level best performance.

Retrieval Method No-CoT (QWK) CoT (QWK)

Zero-shot 0.595 0.556
Few-shot (Fixed) 0.522 0.522

Few-shot (Random)

3-shot 0.532 0.576
5-shot 0.553 0.532
10-shot 0.575 0.588

Few-shot (Nearest-Neighbor)

3-shot 0.624 0.607
5-shot 0.605 0.602
10-shot 0.575 0.587

Table 6: QWK scores for Mistral-8B-instruct
comparing No-CoT (repeated from Table 5) vs. CoT
prompting. Italicized rows indicate settings improved

by including CoT prompting. Underlined numbers
represent best performing non-CoT and CoT settings.

5.4 RQ1 Summary
As summarized in Table 2, our evaluation of 3
instruction-tuned LLMs in zero-shot, few-shot, and
CoT settings shows that reflection specificity as-
sessment using LLMs lags behind using supervised
models, with nearest-neighbor in-context learning
offering the best LLM scoring performance.

6 RQ2 Analyzing Self-Generated
Explanations

Although self-generated explanations did not im-
prove specificity assessment, we explore whether
they offer added interpretability benefits beyond
those of traditional supervised models. To system-
atically assess the quality of these explanations as
interpretability tools, we examine three key dimen-
sions. Two are adapted from free-text rationale
evaluation criteria (Wiegreffe and Marasovic), fo-
cusing on surface-level linguistic qualities: vocab-
ulary overlap (to capture repetition or label leak-
age) and faithfulness (to assess alignment with
the input). We also incorporate fidelity analysis
(Wachsmuth et al., 2017; Gilpin et al., 2018) to

evaluate whether the model’s predictions are truly
guided by its own chain-of-thought, thus reflecting
internal consistency in reasoning.

6.1 Vocabulary Overlap Analysis
LLMs often leak the predicted label within ex-
planations (Wiegreffe et al., 2021b; Hase et al.,
2020b), raising concerns that generated rationales
may merely restate the expected output rather than
provide meaningful reasoning. Similarly, Elaraby
et al. (2024) demonstrated that, in assessing ar-
gument quality through pairwise ranking, LLM-
generated explanations often exhibit redundancy
by merely restating the input argument, rendering
the self-generated explanations meaningless. We
extend this analysis, investigating whether explana-
tions contain excessive lexical overlap with the in-
put reflections, thereby reducing their utility in pro-
viding a meaningful interpretibility for the scores.
We leverage the formula in Ye and Durrett (2022)
which was mainly used for ensuring that explana-
tions are relevant to the input. Let a reflection R
consist of a sequence of words R = (r1, . . . , rn)
and a generated explanation E consist of a se-
quence of words E = (e1, . . . , em), where n and
m are the respective word lengths. We quantify
lexical overlap V as:

V(E,R) =
|E ∩ R|
|E|

A higher value indicates greater redundancy be-
tween the explanation and the input reflection.

6.2 Faithfulness Analysis
Prior work (Ye and Durrett, 2022) highlights that
self-generated explanations may be unfaithful to
the input, introducing hallucinated or contradicting
information. To assess whether an explanation E
remains faithful to its reflection R, we utilize an
off-the-shelf entailment model. Specifically, we
use a pretrained RoBERTa model (Liu et al., 2019)
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fine-tuned on the MNLI dataset (Williams et al.,
2018)7. We frame this as a natural language infer-
ence (NLI) task, where the reflection serves as the
premise and the corresponding explanation as the
hypothesis. An entailment model is then used to
predict whether the explanation entails, contradicts,
or is neutral with respect to the input reflection. We
compute the percentage of contradictions across all
explanations.

6.3 Fidelity Analysis
Fidelity evaluates whether LLM-generated explana-
tions genuinely influence the model’s predictions
(Gilpin et al., 2018). Following the counterfac-
tual reasoning methodology introduced by Wachter
et al. (2017), we assess fidelity by introducing mis-
leading explanations and measuring the percent-
age of predictions that are affected. Specifically,
we consider a set of generated explanations E for
which the model’s predictions align with human-
labeled specificity scores. Rather than manually
creating corrupted explanations, we generate a mis-
leading set Emislead by prompting GPT-4o to rewrite
each original explanation to justify an incorrect
rubric score.8 The final fidelity F (E) is:

F (E) =

∑
ri∈R

I
[
M(ri, e

mislead
i ) ̸= scorelabeled(ri))

]

|R|
where M(ri, ei) is the model’s predicted speci-
ficity score for reflection ri given explanation ei,
and scorelabeled(ri) is the ground truth label. 0 ≤
F (E) ≤ 1, where 0 indicates that LLMs do not rely
on explanations while 1 refers to LLMs fully utiliz-
ing explanations in predicting scores. We sampled
100 explanations per score category (400 in total)
from the Mistral-8B-instruct CoT outputs. For
each original explanation and its misleading coun-
terpart, we re-prompted Mistral to generate new
predictions. Fidelity was then measured based on
whether the model’s prediction deviated from the
original ground truth. Table 7 presents an example
of a corrupted explanation9.

6.4 RQ2 Findings
Table 8 summarizes the self-explanation analyses.
On average, explanations exhibited a vocabulary

7https://huggingface.co/roberta-large-mnli
8We set the temperature to 0.7 to encourage diverse gener-

ations. The full prompt is in Appendix C Table 13.
9The prompt used for generating predictions is included in

Appendix C Table 14.

Reflection:
I didn’t know which equations went into which sections of
the WDM.

Ground Truth Specificity Label: 3

Original Explanation:
The reflection mentions specific equations and a specific
section of the WDM (Worked Distributed Model), which
indicates a specific understanding of the course content.
However, it does not provide detailed explanations or ex-
amples of the confusion, which is why it scores a 3.

Corrupted Explanation:
The reflection explicitly mentions specific equations and
a particular section of the WDM (Worked Distributed
Model), demonstrating a clear and detailed understand-
ing of the course content. The mention of specific equa-
tions and sections indicates a precise engagement with the
material, which aligns with a more detailed and specific
reflection. Therefore, it deserves a score of 4.

Table 7: Example of a corrupted explanation for
specificity assessment. Gray text indicates the modified

portion of the original explanation used to steer the
LLM toward a different score.

Figure 1: Confusion matrix between original labels and
corrupted labels after misleading explanations.

overlap of 23.55% with their corresponding reflec-
tions, suggesting that the model does not simply
replicate the input text—contrary to findings in
argument quality tasks where smaller instruction-
tuned models often repeated the input (Elaraby
et al., 2024). Examples in Table 9 illustrate that
high-overlap cases (71.11%) and low-overlap cases
(8.88%) primarily reflect restatements of key con-
cepts rather than superficial repetition.

Faithfulness analysis shows that only 5.48% of
explanations were predicted to contradict their cor-
responding reflections, indicating high alignment.
As shown in Table 10, even explanations flagged as
contradictions often did not exhibit explicit conflict,
suggesting potential entailment model errors due
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Average Vocabulary Overlap (%) ↓ Contradiction Rate (%) ↓ Fidelity in % F (E)× 100 ↑

23.55± 14.23 5.48 93.00

Table 8: Self-explanation analysis results for Mistral-8B-instruct+CoT. (↑) means that higher values
correspond to better explanation quality, while (↓) means that lower values correspond to better quality.

Vocabulary Overlap

High Overlap Example

Reflection:
What I found most interesting in today’s lecture was the
conceptual questions. The sled question tricked me a
little so it was interesting to see what the answer was
and why.
Explanation:
The reflection mentions a specific aspect of the lecture
conceptual questions and provides a detailed explana-
tion of why it was interesting the sled question tricked
me a little so it was interesting to see what the answer
was and why.
Overlap Percentage: 71.11%
Specificity Scores: annotated: 4 predicted: 4

Low Overlap Example

Reflection:
Cramer’s rule and matrices.
Explanation:
The reflection mentions Cramer’s rule and matrices,
which are specific topics from the course content. How-
ever, it does not provide any details about what was
confusing or needed more explanation, so it falls into
the ’general’ category.
Overlap Percentage: 8.88%
Specificity Scores: annotated: 3 predicted: 3

Table 9: Vocabulary overlap analysis between
reflections and explanations. Highlighted text indicates

overlapping segments.

to surface-level lexical differences (e.g., "specific
tools" vs. "general statement").

Finally, fidelity analysis on our random sample
yielded a score of 93.00%, confirming that the
model strongly conditions its predictions on the
provided explanations. As discussed in Section 5.3,
this reliance may partially explain the observed
performance degradation under chain-of-thought
(CoT) prompting. Figure 1 shows how corrupted
explanations lead to prediction shifts, causing orig-
inally correct predictions—referred to in the fig-
ure as "True Labels" (i.e., those aligned with the
ground truth)—to become incorrect.

In sum (and as summarized for RQ2 in Table
2), the overlap and faithfulness analyses along
with the example generations suggest that LLMs
can potentially generate meaningful interpreta-

Faithfulness Analysis

Contradiction Example

Reflection:
I was confused about how to use a calculator to solve
matrices.
Explanation:
The reflection mentions a specific tool (calculator) and a
specific topic (solving matrices), but it does not provide
any details about the confusion or what was unclear.
It is a general statement about the confusion without
specific details.
Entailment Model (RoBERTa-NLI) Decision: Con-
tradiction
Specificity Scores: annotated: 3 predicted: 3

Entailment Example

Reflection:
The circuits and how they decide evenly.
Explanation:
The reflection mentions ’circuits’ and ’how they decide
evenly’, which are specific topics from the course con-
tent. However, it lacks detailed explanation or specific
examples, making it a general reflection.
Entailment Model (RoBERTa-NLI) Decision: Entail-
ment
Specificity Scores: annotated: 2 predicted: 3

Table 10: Faithfulness analysis of reflections and
explanations based on entailment model predictions.

tions for their scores. Their personalized nature
in fact makes them potentially well-suited for
integration into reflection writing systems such
as CourseMIRROR(Magooda et al., 2022), where
scaffolding helps students identify missing details
and improve reflection specificity. For example,
CourseMIRROR provides fixed prompts based solely
on predicted specificity scores (e.g., "Sounds good,
can you please tell us why it is confusing?"), while
dynamically produced explanations can potentially
convey a deeper, reflection-specific understanding,
identifying underlying concepts that contribute to
specificity. Finally, the fidelity analysis highlights
that the CoT explanations not only accompany but
also influence the model’s final predictions, rein-
forcing their reliability as interpretability tools.
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7 Conclusion and Future Work

In this study, we systematically analyzed the poten-
tial of LLMs as explainable specificity evaluators
for student-generated reflections, evaluating three
instruction-tuned models in zero-shot and few-shot
settings against supervised baselines. Our findings
reaffirm prior research that LLM-based evaluation
of educational texts still lags behind supervised
models, with nearest-neighbor retrieval offering
only marginal improvements in alignment with hu-
man annotations. Chain-of-thought prompting does
not enhance specificity assessment either, suggest-
ing that self-generated explanations do not mean-
ingfully influence model decision-making. How-
ever, we extend prior analyses by focusing on eval-
uating generated self-explanations, an emergent
capability that is underexplored in the context of ed-
ucational text assessment. Our analysis reveals that
self-explanations can enhance interpretability by
providing faithful justifications for model’s scores
and to the input reflections.

Future work should explore alignment tech-
niques—including fine-tuning with annotated cor-
pora and self-alignment strategies—to improve the
utility of LLMs in student specificity assessment.
Additionally, the role of self-generated explana-
tions should be further investigated for their poten-
tial to deliver automated, personalized feedback to
students, enhancing both the interpretability and
pedagogical value of LLM-based evaluation.
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Limitations

This work focuses on instruction-tuned LLMs with
comparable parameter sizes, allowing for a con-
trolled comparison; however, this design choice

may limit the generalizability of our findings. Fu-
ture research should explore models of varying
scales to better understand the impact of model size
on specificity assessment performance. Moreover,
our analysis is restricted to a particular genre of
reflective writing—short student reflections written
in response to structured prompts. Expanding the
evaluation to include other forms of reflective writ-
ing, such as longer essays or open-ended journal
entries, would offer a more comprehensive under-
standing of LLM capabilities across diverse con-
texts. Lastly, our examination of generated explana-
tions was limited to surface-level properties, includ-
ing use of an off-the-shelf entailment model not
designed for reflections. Additionally, we did not
analyze the correlation between self-explanations
and other black-box explanation methods, such as
LIME (Ribeiro et al., 2016) and SHAP (Lundberg
and Lee, 2017). Future work could incorporate
human-centered studies to evaluate the effective-
ness of these explanations in delivering personal-
ized feedback to students based on their reflections.

Ethical Considerations

This study uses publicly available, anonymized
student reflection data from the ReflectSumm and
CourseMIRROR datasets. All experiments were con-
ducted in accordance with data usage terms, and
no personally identifiable information was used.
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A Prompts for specificity evaluation

Table 11 shows the exact prompt used in our exper-
iments. The prompt includes few-shot examples,
which are only included in the case of few-shot
specificity scoring.

Scoring Prompt

Background:
A group of students in a classroom were asked to describe
what they found interesting or confusing in a lecture.

Task:
You will be given the original prompt to the students, fol-
lowed by a single reflection written by a student. Your task
is to score the reflection from 1 to 4 based on the given
specificity rubric.

Rubric:
Score 1 (vague): Reflection implies "no confusing issue,"
e.g., "nothing" or "none for this class."
Score 2 (non-specific): Reflection does not include any
statement(s) about course content but refers to organiza-
tional aspects (e.g., homework, exams).
Score 3 (general): Reflection includes statement(s) about
course content but lacks specific details.
Score 4 (specific): Reflection includes specific and detailed
statement(s) about course content.

Few-Shot Reflection Examples (Only in case of few-
shot):
{reflections_with_scores}

Input Example:
{ "prompt": "{prompt}", "reflection":
"{reflection}" }

Output Format:
Return only the score in a valid JSON format:
{ "score": "1, 2, 3, or 4" }

Table 11: Specificity scoring prompt with rubric and
in-context examples.
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B Fixed reflections examples

Table 12 shows examples of fixed reflections in-
cluded in the prompt for the fixed in-context re-
flection experiments.

C Prompts for fidelity analysis

Table 13 presents the prompt used to generate mis-
leading explanations by corrupting the original ex-
planation that supported the correct score.

Table 14 presents the modified prompt used to
compute final fidelity. The prompt incorporates
corrupted explanations as part of the input and in-
structs the model to output only the predicted score.
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Score Score Meaning Reflection Example Prompt
Type

1 Vague Not sure if I understand Confusing
1 Vague Elephant stampede in a rainstorm. Confusing
1 Vague teacher bringing chocolates to class Interesting
1 Vague Made some kind of sense Interesting
2 Non-specific size of print and colors are hard to read Confusing
2 Non-specific I tried to follow along but I couldn’t grasp the concepts. Plus it’s hard to

see what’s written on the white board when the projector shines on it
Confusing

2 Non-specific Examples were interesting Interesting
2 Non-specific lzw compression and expansion Interesting
3 General I didn’t understand the attractive and repulsive force graphs from the third

slide
Confusing

3 General The repulsive/ attraction charts Confusing
3 General the history of founder of student distribution was interesting Interesting
3 General the transformations between random variables was interesting Interesting
4 Specific Part III on worksheet in class, comparing metals. I was confused about

why each metal was selected
Confusing

4 Specific computing length, edges and atomic packing factor for FCC Confusing
4 Specific Learning the where the n-1 degrees of freedom coming in the sample

variance distribution was very interesting
Interesting

4 Specific the process of deciding among differen population estimators was quite
interesting

Interesting

Table 12: Fixed reflections for in-context specificity scoring.
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Corrupted Explanation Generation Prompt

Background:
Students in a classroom were asked to reflect on a lecture
by describing what they found interesting or confusing.

Task:
You will be provided with:

• The original prompt given to the students.

• A reflection written by a student.

• A specificity score assigned to the reflection based
on a predefined rubric.

• An explanation justifying this score.

Your goal is to generate an alternative explanation that
supports a different specificity score for the same reflec-
tion. The new explanation should maintain a similar style
to the given justification but justify a different score.

Rubric:
Score 1 (vague): Reflection implies "no confusing issue,"
e.g., "nothing" or "none for this class."
Score 2 (non-specific): Reflection does not include any
statement(s) about course content but refers to organiza-
tional aspects (e.g., homework, exams).
Score 3 (general): Reflection includes statement(s) about
course content but lacks specific details.
Score 4 (specific): Reflection includes specific and detailed
statement(s) about course content.

Input:
{ "prompt": {prompt}, "reflection":
{reflection}, "explanation": {explanation},
"label": {label} }

Instructions:

• Construct a new explanation that justifies a differ-
ent specificity score than the original label.

• Maintain a logical structure and tone similar to the
provided explanation.

• Output only the alternative explanation.

Table 13: Prompt for generating corrupted explanations
to support alternative specificity scores while

maintaining logical tone and style.

Score with Predefined Explanations

Background:
A group of students in a classroom were asked to describe
what they found interesting or confusing in a lecture.

Task:
You will be given the original prompt provided to the stu-
dents, followed by a reflection written by a student. Your
task is to score each reflection from 1 to 4 based on the
given specificity rubric.

Rubric:
Score 1 (vague): The reflection implies "no confusing is-
sue", e.g., responses like "nothing" or "none for this class."
Score 2 (non-specific): The reflection does not mention
course content (e.g., lecture slides, in-class activities, or
discussion) but refers to class organization or assignments
(e.g., homework, exams).
Score 3 (general): The reflection mentions course content
but lacks detailed or specific statements.
Score 4 (specific): The reflection includes both course
content and specific, detailed statements.

Input:
{ "prompt": {prompt}, "reflection":
{reflection} }

Explanation:
{explanation}

Instruction:
Therefore, determine the score based on the explanation
and reflection. Answer with the score only.

Table 14: Prompt for scoring reflections based on
predefined explanations, using the specificity rubric.
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Abstract

Identifying instances of first language (L1)
transfer – the application of the linguistics struc-
tures of a speaker’s first language to their sec-
ond language(s) – can facilitate second lan-
guage (L2) learning as it can inform learn-
ing and teaching resources, especially when
instances of negative transfer (that is, interfer-
ence) can be identified. While studies of trans-
fer between two languages A and B require a
priori linguistic structures to be analyzed with
three datasets (data from L1 speakers of lan-
guage A, L1 speakers of language B, and L2
speakers of A or B), native language identifica-
tion (NLI) – a machine learning task to predict
one’s L1 based on one’s L2 production – has
the advantage to detect instances of subtle and
unpredicted transfer, casting a "wide net" to
capture patterns of transfer that were missed
before (Jarvis and Crossley, 2018). This study
aims to apply NLI tasks to find potential in-
stances of transfer of collocations. Our results,
compared to previous transfer studies, indicate
that NLI can be used to reveal collocation trans-
fer, also in understudied L2 languages.

1 Introduction

The investigation of first language (L1) transfer
is fascinating not only because it reveals how the
brain processes two languages, but also because the
identification of L1 transfer can help direct learning
and teaching resources to areas where transfer, es-
pecially negative transfer, interferes with efficient
communication. Corpus (learner production) data
provide valuable insights into identifying instances
of L1 transfer on L2 production. For L1 language
A and L2 language B, transfer effect can be tested
– given data of L1 speakers of A, L1 speakers of
B, and L2 speakers of B – based on intragroup
homogeneity (the distribution of the candidate of
transfer need to be homogenous in this L1 group),
intergroup heterogeneity (it is not the case that the
distribution of the candidate of transfer is the same

across all different backgrounds of L1s), and intra-
L1-group congruity (the linguistic pattern of the
candidate of transfer can be found in the native
production of the L1 language) (Jarvis, 2000) to
confirm that the proposed instances of linguistic
structures come indeed from L1 transfer. The limi-
tation of this approach is that 1) one needs to start
with a priori linguistic structures to test, and 2) the
L1 and L2 languages one can work with depend
not only on available L2 data but also L1 data.

On the other hand, Native Language Identifica-
tion (NLI) (Koppel et al., 2005; Malmasi and Dras,
2015; Markov et al., 2020; Ionescu and Popescu,
2017; Lotfi et al., 2020), a machine learning task
that aims to identify the L1 of a language user
based on their L2 production, is particularly appli-
cable to the study of L2 learning because it can
reveal transfer patterns between L1 and L2. Lin-
guistic features that have high predictive power to
identify the L1 background of a language producer
can distinguish these speakers from those of other
L1 backgrounds, i.e., features highly possible with
intergroup heterogeneity and intragroup homogene-
ity. Therefore, NLI models can be used to identify
potential instances of linguistic transfer (or transfer
candidates) for multiple L1/L2 pairs.

This study aims to test the potential of leveraging
NLI to find instances of transfer, and specifically,
those of collocations (frequently co-occurring lex-
ical combinations within a phrase). We focus on
collocations for the following reasons. First, col-
locations are easily interpretable features. They
are units of formulaic language that reveal psycho-
logical associations between words in the mental
lexicon (Hoey, 2005). Compared to other common
features of NLI tasks, such as syntactical structures
(e.g., n-grams of part-of-speech tags and depen-
dency tags) and pure lexical features that ignore
word-dependency relationships (word and charac-
ter n–grams), collocations features can be imple-
mented in L2 pedagogy more straightforwardly.
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Second, studies have found that second language
learners tend to struggle with collocation acqui-
sition (Nesselhauf, 2003; Laufer and Waldman,
2011), and L1 collocations interfere with L2 pro-
duction (Paquot, 2013; Wu and Tissari, 2021). This
may lead to communication inefficiency (e.g., the
use of ’deliver a discussion’ instead of ’hold a dis-
cussion’), and thus, identifying transfer of colloca-
tions can facilitate L2 production.

We ask the following research questions: 1) In
this NLI task, do collocation features with high
predictive power align with those identified for this
specific L1/L2 pair in previous analyses? In other
words, does the machine actually select those that
are highly likely to be collocation transfer? 2) Why
do we observe low performance for some L1s? In
order to address the first question, we built a ridge
classifier with collocations as features, selected two
L1s, and compared the features with high coeffi-
cient values to the findings of previous transfer
studies. To address the second question, we per-
formed hierarchical clustering and compared it to
the confusion matrix.

Testing on English L2 data (15 L1s, 5,600 pieces
of writing), our positive NLI results suggest that
this method can be used to cast a broad net to
capture collocation transfer for multiple L1s, and
specifically for understudied L2 languages.

2 Literature Review

2.1 Collocations and L1 transfer

Collocations, or words that often occur together
within a phrase (Sinclair, 1991; Cowie, 2006), are
units of formulaic language revealing psychologi-
cal associations between words in the mental lexi-
con. Collocation frequencies affect native speakers’
perception (Hilpert, 2008), processing (Kapatsinski
and Radicke, 2009), and priming effects (Durrant
and Doherty, 2010). These effects can be explained
by the knowledge the mind has accumulated from
the frequent association of a word. In other words,
processing of a word primes the mind to activate
words that frequently occur with it.

Moreover, research has shown that L1 colloca-
tion knowledge impacts L2 production (e.g., Laufer
and Waldman 2011; Paquot 2013; Wu and Tissari
2021) and processing (e.g., Wolter and Gyllstad
2011; Cangır and Durrant 2021). For instance, Wu
and Tissari (2021) found that Chinese learners of
English use fewer types of intensifiers with verbs
compared to native English writers, which can be

explained by the fewer number of intensifiers in
Chinese compared to English. Psycholinguistic
tests also show that the L1 affects the processing of
collocations in the L2. Wolter and Gyllstad (2011),
using lexical decision task, found that, for Swedish
learners of English, an L2 verb-noun collocation
congruent with the L1 tends to be processed faster
in general than an L2 collocation that has no trans-
lation equivalent in Swedish. Cangır and Durrant
(2021), also using lexical decision task, even found
cross-linguistic transfer effects in Turkish learners
of English, who demonstrated positive priming ef-
fects with adjective-noun collocations when seeing
the adjective in Turkish and the noun in English.
These findings suggest that lexical knowledge of
the L1 impacts both the production and processing
of L2 collocations.

Besides the impact on production and process-
ing, studies have also found that L2 learners tend
to struggle with collocation acquisition. Focusing
on verb-noun collocations produced by Hebrew
learners of English, Laufer and Waldman (2011)
found that learners underuse the collocations that
native speakers frequently use, and L1 influence
probably caused them to choose erroneous verb-
noun combinations. Nesselhauf (2003) also found
that learners have difficulty acquiring native-like
L2 collocations: Using learner production from the
German Corpus of Learner English (GeCLE), she
found that more than half of the verb-noun collo-
cations produced by German learners of English
were erroneous or questionable.

2.2 Native language identification
The basic idea behind native language identifi-
cation is that the native language impacts one’s
second language (Krashen, 1981), leaving "finger-
prints" on L2 production. NLI can thus detect the
linguistic features of transfer and the extent of trans-
fer. Jarvis calls this a "detection-based approach",
i.e., leveraging the intragroup homogeneity and in-
tergroup heterogeneity, which signals group-based
behavior that is distinct from other L1 groups,
to capture linguistic transfer features (Jarvis and
Crossley, 2018). Another method to identify lin-
guistic transfer is the so-called "comparison-based
approach", where one leverages statistical signifi-
cance tests to find evidence from group-based be-
havior and rules out other factors that could po-
tentially lead to its occurrence (i.e., topic, profi-
ciency) using comparison to source-based behavior.
Both approaches have different strengths: While
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the "comparison-based approach" is good at rul-
ing out false-positive findings (i.e., identifying a
feature as transfer while actually it is not), the
"detection-based approach" excels in finding sub-
tle, unpredicted, or indirect features of transfer that
do not align with the L1 language (e.g., avoidance
of certain structures, over corrections) (Jarvis and
Crossley, 2018).

Frequent linguistic features used in NLI include
lexical features (e.g., word frequencies and word
n-grams) and syntactic features (e.g., dependency
relationships n-grams, part-of-speech (POS) tag
frequencies and POS n-grams) (see Goswami et al.,
2024 for a review of NLI studies). While these
studies focused on feature engineering and model
performance, only a few (e.g., Liu et al., 2022)
investigated the interpretability of these models
or implications regarding cross-linguistic impact
(Goswami et al., 2024). Because collocations are
regarded as formulaic language expressions stored
in one’s language repertoire and hence readily in-
terpretable, they are chosen as features in this study
to showcase the potential of the NLI task as a tool
to reveal language transfer patterns.

3 Method

3.1 Data

We use the International Corpus of Learner En-
glish (Granger et al., 2020), a corpus of college
student essays, as the training and testing corpus.
L1s whose number of essays is fewer than two per-
cent of the whole data size are excluded, with 15
L1s (Russian, Finnish, Spanish, Czech, Norwegian,
Chinese, Turkish, Japanese, French, Bulgarian, Ital-
ian, Tswana, Swedish, Polish, German) remaining
in the study. The sample size of each L1 is un-
balanced (mean = 379, standard deviation = 171),
with L1 Chinese as the largest group (N = 980)
contributing approximately 16% of the total sam-
ple size, and L1 Finnish as the smallest group (N
= 230) contributing less than 4% of the total size.
On average, each text is about 600 words.

The best clue for topic information of each es-
say is its prompt, which can be found from the
ICLE metadata. In some L1 groups, each prompt
is shared among tens to hundreds of essays (e.g.,
Bulgarian), while in others, a significant portion of
the essays use idiosyncratic prompts. See Figure 1
for the frequency of prompts in each L1 group.
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Figure 1: A histogram of the relative frequency of
prompts in each L1 groups. Bars represent unique
prompts, sorted by their relative frequencies in the L1
group.

3.2 Feature extraction, reduction, and
topic-influence removal

The collocation features’ structures, categories, and
lengths are adopted from previous L2 collocation
studies. Four structures of collocations are used:
1) adverb-verb pairs (Wu and Tissari, 2021), 2)
a three-word bundle with a verb (Paquot, 2013),
3) verb-noun pairs (Nesselhauf, 2003), and 4)
adjective-noun pairs (Siyanova and Schmitt, 2008).
Dependency parsing information (derived from the
Python package spaCy Honnibal et al. 2020) is
used to ensure that the extracted features are in-
deed collocations, not just neighboring words: 1)
the adverb is a child of (i.e., modifies) the verb, the
adjective is the child (i.e., modifies) the noun, and
the noun is a child (i.e., an object) of the verb, 2) in
the three-word bundle that contains a verb, the verb
is a member of the ancestors of the two other words,
so the three-word bundle does not spread across
the clause whose root is the verb (for instance, in
the sentence "The unicorn who can fly, surprisingly,
can also sing", surprisingly does not modify fly;
if parsed correctly, surprisingly is not a child of
fly, hence can fly surprisingly is not counted as a
feature).

To achieve a balance between the number of fea-
tures and model performance, and to address topic
influence on lexical features, the following feature
filtering steps are used together with 10-fold cross-
validation. First, collocates used by at least n%
of texts from an L1 group are selected as training
features. To ensure that the word bundles were
used homogeneously in an L1 group and heteroge-
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neously in other L1 groups, one-way ANOVA test
is applied to the lexical features (Paquot, 2013).

In order to address the topic’s influence on lex-
ical features, we approximated the dispersion of
prompts where a feature appears via its entropy
value. A collocation that is independent from topic
influence is likely to appear in all prompts equally
likely, and would thus have a high entropy value,
whereas a collocation occurring due to topic influ-
ence would appear in limited prompts, resulting in a
low entropy value. For a feature in an L1 group, its
entropy value is calculated as Eq (1) below, where
pi is the estimated probability of prompti from the
pool of essays containing this feature, and T , the
base of log, is the number of unique prompts in this
L1 group. The base of log is set this way so that
entropy values of features from L1s of different
number of prompts can be fairly compared. An en-
tropy value is always one if its probability to occur
in each prompt is equal, regardless of how many
prompts there are in the L1 group. Features with
entropy values lower than 0.25 are removed. 1

−Σpi · logT (pi) (1)

Finally, 10-fold validation is used to obtain a re-
liable fitting result. Within each iteration, training
features are reduced via steps outlined in the previ-
ous two paragraphs. The TfidfVectorizer function
from the package sklearn (Buitinck et al., 2013),
which counts the frequency of each feature in a text
and weights a feature’s text-wide frequency based
on its corpus-wide frequency, is used with default
parameters to compute the input matrix. For a fea-
ture, the smaller the corpus-wide frequency, the
higher the weight. This is because if a feature is
ubiquitous in the corpus and thus shared by many
texts with different labels, it probably has low pre-
diction power and thus receives a lower weight. Af-
ter the feature counts are weighted, TfidVectorizer
performs normalization so that the sum of squares
of the feature frequency for one data point is 1.

1As an example for calculation, if an L1 group contains 40
distinct prompts, and a feature occurs in five essays of prompts
prompt1, prompt1, prompt1, prompt1, prompt2, then the
entropy value of this feature is − 4

5
· log40( 45 )− 1

5
· log40( 15 )

= 0.136; if a feature occurs in five essays, all with the same
prompt, then its entropy value is 0. A higher entropy value in-
dicates that the feature is used in more prompts, which means
that it is less likely to be influenced by topic. In this model,
features with entropy values lower than 0.25 are removed.

Figure 2: Model. accuracy vs. number of training
features. The data is averaged across 10-fold validation.

3.3 Classification

The Ridge Classifier from sklearn is used in this
project for three reasons. 1) The Ridge Classifier
penalizes large coefficients, and such avoidance is
essential for this task of lexical features, where 45%
of the features in the training set do not reappear
in the test set. If some features have high coeffi-
cients but do not appear in the testing data, their
prediction power is wasted. 2) It is much more time-
efficient compared to other training methods that
also handle sparse training data, such as support
vector machine (SVM). 3) The coefficient value
can reveal transfer candidates. Because the goal is
to find potential collocation transfers for each L1
group, we need to identify the most characteristic
features of each L1. Those with the highest coeffi-
cients are those signaling the identity of an L1 and,
thus, are potential instances of collocation transfer.

4 Analysis

4.1 Model results

The fitting scores of the model demonstrate that
collocations provide prediction power for NLI. Fig-
ure 2 shows the accuracy rate plotted against the
number of training features. To balance between
features and performance, the rest of the analysis in
this paper uses about 1,800 features with an accu-
racy of 61%. This result outperforms baseline mod-
els using strategies of "random guessing" based
on uniform probability, "most frequent label" that
always selects the most frequent class, and "strati-
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Figure 3: Model performance for each L1 averaged across 10-fold validation using 1,800 collocation features. The
left x-axis represents the fitting score, and the right x-axis represents the relative sample size in percentage.

Uniform Most frequent Stratified This model (with 1,800 features)
F1 8% 5% 8% 60%
Precision 9% 3% 8% 60%
Recall 7% 17% 8% 61%
Accuracy 7% 17% 8% 61%

Table 1: Weighted average results of baseline models
using strategies of uniform random guessing, most-
frequent label, and "stratified", and this model with
1,800 features.

fied" (which guesses randomly based on the class
distribution probability in the training data), which
return accuracy rates ranging from 7% to 17%, as
shown in the Table 1 2.

A closer look at the performance of each L1
group shows that the performance varies across
L1s, as shown in Figure 3. The lowest recall is
Finnish (19%), and the highest is Chinese (92%).
One of the reasons causing the lower fitting scores
for some L1s is the unbalanced sample sizes. All L1
groups with recall rates lower than 50% (Finnish,

2As our focus is on model interpretation but not model per-
formance, we do not contrast our model with LLMs or other
neural models, which may outperform our ridge classifier but
are hard to interpret.

Swedish, Norwegian, Czech, and Spanish) have
below-average data sizes. Moreover, as the L1
Chinese group contributes a large portion of the
data (17%), the classifier may tend to misclassify
other L1 groups as L1 Chinese to achieve a better
fit.

4.2 Collocation idiosyncrasies

Given the unequal performance of each L1 groups,
we wonder whether the idiosyncrasies and simi-
larities of the collocations in each group impacted
the fitting result. A hierarchical clustering was
performed to investigate the similarities and differ-
ences among collocations of L1 groups. For each
L1, we counted the occurrences of collocates (those
used by at least 2.5% of within-group samples,
passing the ANOVA test, and returning an entropy
value no less than 0.25), obtaining a vector docu-
menting the frequencies of collocates from each
L1. The vectors were then normalized and inputted
into hierarchical clustering using Ward’s algorithm
(Ward, 1963), a bottom-up clustering method that
minimizes within-cluster variance. The Python
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Figure 4: Hierarchical clustering dendrogram based
on collocations of L1s using Ward’s algorithm. Branch
colors are automatically assigned by the Python package
scikit-learn.

package scikit-learn (Buitinck et al., 2013) is used
to implement the clustering, visualized in 4.

The clustering dendrogram, which shows the ex-
tent of similarity and difference in collocation pro-
duction of these L1 groups, helps to further explain
the model performance. In the dendrogram, the
height of the horizontal branches where two clus-
ters merge can be regarded as a measure of their dif-
ferences, and lower height implies higher similarity.
For instance, collocations produced by Norwegian,
Swedish, Finnish, and German L1s is regarded as
similar by the clustering method. Indeed, L1s with
highly similar collocation production are relatively
harder for the model to distinguish. For the Ger-
man L1 group, despite a higher-than-average sam-
ple size, the classifier does not perform well (recall
rate = 51%) likely because its collocations are not
particularly unique, as shown by the low branch
height where German is joined to other groups on
the dendrogram. On the other hand, Turkish, Ital-
ian, and Japanese are joined to the dendrogram at
higher branch levels, indicating a higher degree of
idiosyncratic collocations these speakers produce.
Unsurprisingly, the classifier performs better for
these languages (recall rates 58%, 60% , and 74% ,
respectively), despite their medium or small sizes.

4.3 Confusion matrix
To investigate the misclassification of the model
and whether this aligns with collocation similarities
between groups, we plotted a normalized confusion

matrix (Figure 5) that shows the percentages of
predicted labels for each true label. Each row sums
up to 100%. The second cell of the first row is
1.3%, which means that the classifier misclassifies
1.3% of Bulgarian writers as Chinese.

The confusion matrix aligns with the clustering
dendrogram to some extent: A small-distance clus-
ter in the middle of the dendrogram consisting of
Norwegian, Swedish, Finnish, and German can ex-
plain the high misclassification rates of German
as Swedish (8.2%), Swedish as German (13.5%),
Finnish as German (11.3%), Finnish as Swedish
(11.3%), and Finnish as Norwegian (10.4%). An-
other small-distance cluster, in the left part of the
dendrogram, aligns with the high misclassification
rates among Czech, Russian, and Bulgarian (9.1%
of L1 Czech gets misclassified as Russian, and
9.5% of Russian as Bulgarian).

However, the clustering method is not perfect for
indicating similarity distances between language
groups. The adopted method, Ward’s algorithm,
minimizes within-cluster variance when computing
the hierarchical clustering. It shows that, if Span-
ish is joined with the group Czech and Russian,
the resulting group variance is smaller than, say, a
group of Bulgarian, Czech, and Russian. However,
it does not mean that Czech and Russian are the
most similar groups to Spanish. In fact, Spanish
L1s are most commonly misclassified as French
(7.6%) and Italian (7.2%), whose similarities are
not revealed in the dendrogram. This is because
hierarchical clustering conveniently visualizes over-
all differences, but does not show the amount of
differences from the perspective of each group. Fu-
ture research can examine pair-wise differences in
collocation production to further investigate the
model misclassification and feature similarities.

4.4 Collocation features compared with
previous SLA studies

The features with high coefficients are the signals
the classifier identified for each L1. We compared
such features with available L2 collocation studies
to see if the classifier is able to find valid instances
of collocation transfer. The L1s we compared to
previous studies are French and Chinese, both with
high classification results in this model.

4.4.1 Salient features for L1 French
We examined the top 10% features in terms of co-
efficient values for L1 French and compared those
to the instances of collocation transfer identified
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Figure 5: Confusion matrix of the ridge classifier with a training size of 80%. The summation of each row is 100%.
Rows represent true labels, and columns represent predicted labels by the classifier.

by Paquot (2013). In Paquot’s study, data from the
ICLE corpus were used, and three-word bundles
from L1 French writers were compared with those
from 10 other L1s to see if they are used statisti-
cally differently; the frequent bundles were then
triangulated with a native French corpus to validate
the cause of L1 transfer. Out of the fifteen bun-
dles identified by Paquot (2013), eight were found
with high classifier coefficients in this model (i.e.,
deemed as characteristics of L1 French writers).

The other bundles that were identified by Paquot
but did not receive high coefficients in this model
were actually not included in the training features.
They are likely to be excluded in the step of topic re-
moval. While Paquot (2013) removed bundles that
occurred only in the most popular topic by French
writers (creation and future of Europe) but not in
other topics covered by French writers, our treat-
ment of topic influence removes more features: the
use of entropy estimates the dispersion of prompts,
and features that occur in more than one prompt
but still only covering a small portion of all the
prompts in the language group were also excluded.
Therefore, the mismatch between our model results
and the one by Paquot must be attributed to the
different treatments of topic influence.

4.4.2 Salient features for L1 Chinese

We also investigated the intensifier-verb colloca-
tions produced by L1 Chinese to compare to a pre-
vious study by Wu and Tissari (2021). They found
that Chinese learners of English produce far fewer
types of intensifiers – defined as adverbs which
"indicate a point on the intensity scale which may
be high or low" (Quirk and Greenbaum, 1973 as
cited by Wu & Tissari) compared to native English
writers. As the data of the current study, the ICLE
corpus, does not include native English writings,
we added the LOCNESS corpus (Granger, 1998),
the native counterpart compared to the ICLE cor-
pus, to our model to identify intensifiers used by
native writers. Compared to using ICLE alone,
adding native data has a small impact on the fit-
ting scores (mean f1 difference = 0.012, standard
deviation of f1 difference = 0.031). Indeed, the
high-coefficient features for the L1 Chinese group
contain far fewer intensifiers compared to those of
native writers (4 vs. 7), aligning with the findings
of Wu and Tissari (2021).

Interestingly, L1 Chinese is not the only group
that produces fewer types of intensifiers in their
most positive adverb-verb features: among the L1
groups with the best performance in this model,
L1 French and Italian groups have 6 and 5 intensi-
fiers respectively in their high-coefficient features,
while L1 Tswana and Japanese groups contain only
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3. While Wu & Tissari attributed the use of lim-
ited types of intensifiers by L1 Chinese writers to
the comparatively lower number of intensifiers in
Chinese and the limited number of English inten-
sifiers with direct translation equivalents in Chi-
nese, it turns out that Tswana and Japanese writers
also use fewer types of intensifiers in their collo-
cates. In contrast, it seems that Italian and French
writers have a larger repertoire of intensifiers. Po-
tential reasons could be the comparative lack of
translation-equivalent intensifiers or cognates in all
Chinese, Japanese, and Tswana.

5 Discussion

This research intended to test the potential of lever-
aging native language identification (NLI) tasks to
efficiently identify L1 transfer candidates. Focus-
ing on collocation transfer, we show that, indeed,
collocation features have predictive power to iden-
tify the L1. We asked whether the features with
high positive coefficients, i.e., those deemed char-
acteristic of each L1 group by the classifier, align
with those identified in previous corpus studies.
The three-word features with high coefficients for
L1 French encompass those identified in a previous
transfer study by Paquot (2013), except the ones ex-
cluded from our feature filtering process. The fewer
types of intensifiers among the high-coefficient L1
Chinese features compared to those of native En-
glish writers confirm the findings from Wu and
Tissari (2021) that Chinese writers use fewer types
of intensifiers. By examining intensifiers of other
well-predicted L1s (French, Italian, Tswana, and
Japanese) in this model, we found a general lack of
intensifier variety of non-European language L1s.

Our second research question was what caused
the low fitting performance for some L1s. Us-
ing hierarchical clustering and confusion matrices,
we show that, beyond the impact of small sample
size, the extent of collocation idiosyncrasies affects
model performance for each L1, and similarities
of collocations between two L1s prompt model
misclassification between them.

The current study compared features of high co-
efficient values to those of direct transfer patterns
(French word bundles and intensifiers in Chinese).
As outlined in Jarvis and Crossley (2018), by cast-
ing a wide net, NLI tasks can not only detect direct
transfer patterns (i.e., those that can be found in
the source language), but may also reveal indirect
transfer effects, such as patterns of avoidance, or be-

havior that is not attested in the L1 but arises from
the impact of L1 language system on L2 perception.
It is interesting for future research to investigate
the interpretation of indirect transfer effects based
on NLI features.

6 Limitation

Since this project utilizes lexical features, which
tend to occur sparsely in test data, model perfor-
mance is impacted as some features of high predic-
tive power may not be attested in the test data. The
average length of essays used in this study is about
600 words, and about 45% of the features in the
training data are not found in the test set. Longer
texts would allow for more opportunities for each
lexical feature to occur in the data, and thus are
likely to improve model performance.

Although we used entropy values to mitigate the
impact of topics, not all confounding factors could
be removed from this study. First, the impact of
the threshold of the entropy value, set at 0.25, has
not been tested; It is unclear whether some collo-
cations from topic influence survive the filtering
process, especially when the information of top-
ics is obtained only from prompts. Second, the
proficiency levels in different L1 groups are not
balanced in the ICLE corpus. For example, Best-
gen and Granger (2011), examining argumentative
essays in ICLE by L1 German, French, and Span-
ish, found that proficiency levels of Spanish L1s
are significantly lower than that of German and
French. An L1 group with low proficiency level
may lead the classifier to pick out features that re-
flect low proficiency rather than cross-linguistic
transfer (Jarvis et al., 2013).

The validity of collocation transfer also depends
on the classifier’s performance. For L1s with
high fitting scores, such as Chinese, Japanese, and
Tswana, and Italian, the confidence that their high-
coefficient features are collocation transfers is high.
However, for L1s with low classification perfor-
mance, such as Czech and Finnish, the features
selected by the classifier may have less value for
transfer identification. A corpus of balanced train-
ing samples and balanced proficiency levels would
provide more reliable transfer candidates.

Finally, we used SpaCy to calculate dependency
tags. However, the performance of SpaCy on L2
English is unknown, though its accuracy on labeled
dependencies is around 90% 3.

3https://spacy.io/models/en#en_core_web_lg
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7 Conclusion

This project demonstrates the potential of using
NLI tasks to reveal collocation transfer. We find
that collocations are effective features to detect L1
background, and the results provide insights into
the linguistic transfer effects on collocation pro-
duction. Specifically, we show that this method
can capture direct collocation transfer identified by
previous transfer studies, though the model perfor-
mance for each L1 group is impacted by sample
size and their collocation idiosyncrasies compared
to other groups. While direct transfer effects can
be easily confirmed by comparing features to pre-
vious transfer studies or L1 language production,
the interpretation of indirect transfer effects from
NLI features calls for future investigation.
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Abstract

Across cultures, names tell a lot about their
bearers as they carry deep personal, histori-
cal, and cultural significance. Names have also
been found to serve as powerful signals of gen-
der, race, and status in the social hierarchy–
a pecking order in which individual positions
shape others’ expectations on their perceived
competence and worth (Podolny, 2005). With
the widespread adoption of Large Language
Models (LLMs) and given that names are of-
ten an input for LLMs, it is crucial to evaluate
whether LLMs may sort people into status po-
sitions based on first and last names and, if so,
whether it is in an unfair, biased fashion. While
prior work has primarily investigated biases in
first names, little attention has been paid to last
names and even less to the combined effects of
first and last names. In this study, we conduct
a large-scale analysis with bootstrap standard
errors of 45,000 name variations across 5 eth-
nicities to examine how AI-generated responses
exhibit systemic name biases. Our study inves-
tigates three key characteristics of inequality
and finds that LLMs reflect, construct, and rein-
force status hierarchies based on names that sig-
nal gender and ethnicity as they encode differ-
ential expectations of competence, leadership,
and economic potential. Contrary to the com-
mon assumption that AI tends to favor Whites,
we show that East and, in some contexts, South
Asian names receive higher rankings. We also
disaggregate Asians, a population projected to
be the largest immigrant group in the U.S. by
2055 (Pew Research Center, 2015). Our results
challenge the monolithic Asian model minority
assumption, illustrating a more complex and
stratified model of bias. Additionally, spanning
cultural categories by adopting Western first
names improves AI-perceived status for East
and Southeast Asian students, particularly for
girls. Our findings underscore the importance
of intersectional and more nuanced understand-
ings of race, gender, and mixed identities in

*Both authors contributed equally to this research.

the evaluation of LLMs, rather than relying on
broad, monolithic, and mutually exclusive cate-
gories. By examining LLM bias and discrimi-
nation in our multicultural contexts, our study
illustrates potential harms of using LLMs in
education as they do not merely reflect implicit
biases but also actively construct new social
hierarchies that can unfairly shape long-term
life trajectories. An LLM that systematically
assigns lower grades or subtly less favorable
evaluations to students with certain name sig-
nals reinforces a tiered system of privilege and
opportunity. Some groups may face structural
disadvantages, while others encounter undue
pressure from inflated expectations.

1 Introduction

Imagine a five-year-old about to enter a classroom
for the first time. Even before stepping inside, their
teachers, classmates, and automatic grading sys-
tems may already have subconscious expectations
about their intelligence and future success–based
on their first and last names.

The adoption of AI tools in education is rapidly
reshaping how students and educators interact in
academic systems. As schools face budget con-
straints and staff shortages, educators employ AI
for grading assignments, lesson planning, com-
municating with students and parents, and even
drafting recommendation letters (Walton Family
Foundation, 2023). School districts have signed
numerous contracts with AI vendors to integrate
AI into classrooms, from automatic grading in San
Diego to $6M chatbots in Los Angeles and San
Francisco (CalMatters, 2024).

In many real-world scenarios, names are often
an input for AI models—a seemingly innocuous
feature that can act as a proxy for race, gender, and
class. However, AI systems have been found to ex-
hibit name biases (An et al., 2024; Maudslay et al.,
2019; Shwartz et al., 2020; Wolfe and Caliskan,
2021; Wang et al., 2022; Jeoung et al., 2023; San-
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doval et al., 2023; Wan et al., 2023), which exac-
erbate inequities, widen opportunity gaps, deepen
racial segregation, and perpetuate inequality and
discrimination. While a number of studies have
examined first-name bias, comparatively little at-
tention has been paid to bias based on last names,
and even less to the combined effect of first and
last names, despite their profound impact on per-
ceptions and judgments.

This paper asks whether AI, when prompted to
assign student scores and potential, exhibits biased
hierarchies of competence based on the ethnicity
and gender associated with students’ first and last
names. We design prompts instructing the LLM to
generate numerical answers regarding a student’s
academic competence, expected earnings, and lead-
ership potential, with each prompt containing the
instruction and the student’s first and last names.
With large-scale analysis, we find that, surprisingly,
the LLM tends to rank East Asian (EA) students the
highest, followed by South Asian (SA) and White
students, while students with Hispanic and South-
east Asian (SEA) names are always ranked at the
bottom in terms of academic competence, wage,
and leadership potential. Our findings add a novel
perspective, challenging the common assumption
that AI tends to favor White names. It also dis-
tinguishes subgroups of Asians into East Asians,
South Asians, and Southeast Asians 1, rather than
grouping them together as Asians. Although prior
social science research shows that Asian American
students have the highest score expectations from
their teachers (Tenenbaum and Ruck, 2007), our
findings highlight an often overlooked subgroup
as they show that SEA names consistently rank
the lowest in the AI’s name status hierarchy of the
five races in this study despite EA and SA names
aligning with previous research on high perceived
competence. Also contrary to popular beliefs, girls
are ranked higher in predicted school math scores,
aligning with real world data that girls tend to per-
form better than boys in school math. However,
despite the LLM’s belief in the relatively superior

1East Asians, South Asians, and Southeast Asians are
broad geographical and cultural groupings used to describe
peoples and countries in parts of Asia: East Asians typically
originate from countries in the eastern part of the Asian con-
tinent such as China, Japan, and Korea. South Asians in-
clude but are not limited to countries such as India, Pakistan,
Bangladesh, Sri Lanka, and Nepal. Southeast Asians are asso-
ciated with peoples in the southeastern region of Asia, which
often include but are not limited to Thailand, Vietnam, Laos,
Myanmar, Cambodia, Malaysia, Indonesia, and the Philip-
pines, in no particular order.

academic performance of girls, the model suggests
lower compensation to girls. Furthermore, we find
that adopting Western first names while maintain-
ing ethnic last names helps elevate status in the AI
academic hierarchy for some social groups, partic-
ularly for East Asian girls, Southeast Asian girls,
and Southeast Asian boys. Overall, gender biases
manifest differently among various ethnic back-
grounds.

Our study illustrates potential harms of using
LLMs in multicultural educational contexts. As
AI systems increasingly serve as trusted assistants
in instruction, tutoring, and assessment, they may
institutionalize harmful social hierarchies in educa-
tion, employment, and economic mobility, through
their biased assessments which not only reflect hu-
man prejudice but also become real-world evalu-
ations. By systematically assigning lower compe-
tence expectations to students whose names reflect
certain ethnic origins and gender, biased LLMs
may shape long-term mobility and perception of
children and lead to structural invisibility of cer-
tain ethnic minorities who are excluded from both
privilege and intervention, resulting in greater in-
equality over time. Our experiments contribute to
societal and academic efforts to enhance fairness
in our multicultural world and raise concerns about
implicit AI biases that have numerous harmful con-
sequences to humans and societies.

2 Background

2.1 Names

Names are connected to our deepest sense of self,
signifying meaning and identity (Bodenhorn and
Bruck, 2006). Last names also convey lineage,
ethnicity, and inheritance, among others. Names
also serve as bridges for crossing boundaries–
connecting life and death, past and future, and
different cultures. They can transcend ethnic and
cultural divisions, as seen in the common practice
of adopting Western first names in America and
Hong Kong (Li, 1997). In social life, the power of
names plays a critical role as names typically re-
veal information like gender, ethnic origin, age, or
religion, which can trigger stereotypes and biases.
Bertrand and Mullainathan (2004) created 5,000 re-
sumes submitted in response to job ads and found
that candidates with White names received 50%
more callbacks than those with Black-sounding
names. A Swedish study found that immigrants
who changed their names from foreign, such as
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Mohammed, to more Swedish-sounding or neutral
names like Lindberg earned 26% more than those
who retained their ethnic names (Arai and Skog-
man Thoursie, 2006). Similarly, teachers’ lower
expectations of students whose names were asso-
ciated with lower status affected the students’ aca-
demic performance (Figlio, 2005). For example, a
boy named Damarcus scored 1.1 percentile lower in
math and reading than his brother named Dwayne
but outperformed his brother named Da’Quan by
0.75 percentile. Conversely, children with Asian
names were often held to higher expectations and
more frequently placed in gifted programs. An-
other study found that names served as indicators
of status, which correlated with life outcomes, but
when researchers controlled for background, the
name effect disappeared (Fryer and Levitt, 2004).
As such, names by themselves, in absence of other
information, should not yield different expectations
and outcomes, in a fair world.

Several recent works have studied name biases in
language models (Maudslay et al., 2019; Shwartz
et al., 2020; Wolfe and Caliskan, 2021; Wang et al.,
2022; Jeoung et al., 2023; Wan et al., 2023; An
et al., 2023). An et al. (2024) studied 300 White,
Black, and Hispanic first names and found that
LLMs tend to favor White applicants in hiring de-
cisions, while Hispanic names receive the least
favorable treatment. In a study of 600 last names,
Pataranutaporn et al. (2025) found that legacy last
names influenced AI’s perceptions of wealth and
intelligence in the U.S. and Thailand. Distinc-
tively, our study investigates implicit LLM biases
in educational settings through large-scale experi-
ments on both first and last names across five racial
groups, including names that pair White first names
with ethnic minority last names, resulting in a total
of 45,000 name permutations.

2.2 Status
Although Mill (1843) defined names as “meaning-
less markers” that tell us nothing certain about the
identity of the named persons, names have been
found to serve as powerful signals of gender, race,
and status in the social hierarchy–a pecking order
in which individual positions shape others’ expec-
tations on their perceived competence and worth
(Podolny, 2005; Ridgeway, 2019). A comparative
position of an individual in a ranked social system,
status is a universal form of inequality (Ridgeway,
2019; Berger et al., 1977; Correll and Ridgeway,
2003; Webster and Foschi, 1988; Weber, 1957).

As they shape implicit assumptions of who is bet-
ter, more competent, and more deserving (Ridge-
way, 2014), status biases about relative competence
and worthiness of individuals have self-fulfilling ef-
fects on behavior and outcomes of otherwise equal
men and women (Ridgeway, 2019). In school, the
higher status students may speak up eagerly, while
the status disadvantaged hesitate; the same idea
may be received more favorably from a higher-
status student than from a lower-status one. Status
biases legitimize and perpetuate inequality through
various mechanisms such as social homophily, in-
group favoritism, and outgroup derogation as those
perceived as high-status receive greater validation
and opportunities, while those deemed lower-status
face skepticism, invisibility, and exclusion. Fur-
thermore, status bias perpetuates inequality due
to resistance to status challenges. When a per-
son of a lower status performs well, others may
think, “prove it again,” thus facing greater barriers
to prove high ability and overcome others’ doubts
and suspicions (Ridgeway, 2019; Cohen and Roper,
1972). When students from low-status groups are
perceived to challenge the status hierarchy, they fre-
quently encounter a hostile backlash reaction from
others (Ridgeway et al., 1994; Ridgeway, 2014)

Although modern societies have recognized that
all humans are equally worthy of respect (Taylor,
1994), gender and ethnic inequalities persist. It is
often believed that men and whites are “revealed to
be simply better” at valued tasks than are women
and people of color and are often perceived to be
at the top of the social status hierarchy (Ridgeway,
2019). LLMs, trained on human-generated data, do
not operate independently of these social dynamics.
Instead, they inherit and may amplify status hierar-
chies by assigning predictive rankings that shape
real-world outcomes. As AI becomes increasingly
embedded in our multicultural society and given
that status profoundly influences well-being and op-
portunities, it is crucial to evaluate whether LLMs
sort people into status positions, particularly based
on the race and gender of names, in an unfair, bi-
ased fashion.

2.3 Hypotheses of AI Name Biases
Given that social biases often manifest in hierarchi-
cal perceptions of competence and potential, we
hypothesize that AI will produce ranked hierar-
chy of ethnicities in their responses, with certain
groups receiving systematically higher evaluations
than others. Specifically, we expect these biases to
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be reflected across Weber’s ((Weber, 1957)) three
forms of inequality: status (perceived competence),
wealth (wage), and power (leadership potential).

2.3.1 Hypothesis 1:
We expect to find White-sounding student names
to be favored by AI and receive the highest LLM-
generated predicted academic scores and leadership
potential. This connects to prior work and tradi-
tional perceptions of Whites being at the top of the
status hierarchy (Ridgeway, 2019).

2.3.2 Hypothesis 2:
According to the model minority stereotype (Ruiz
et al., 2023), we expect to find Asian-sounding stu-
dent names, including East, South, and Southeast
Asian origins, to receive the next highest academic
score predictions, after White-sounding names.

2.3.3 Hypothesis 3:
Based on prior work (An et al., 2024), we expect
to find Hispanic-sounding names to be the most
biased against in LLM predictions of academic
scores and leadership potential.

2.3.4 Hypothesis 4:
According to real world data (O’Dea et al., 2018),
we expect to find girls to receive higher academic
score predictions but lower wage suggestions than
boys, with potential variations across racial groups
due to differing gender stereotypes.

2.3.5 Hypothesis 5:
We expect students with Western first names but
non-Western last names to receive higher academic,
wage, and leadership potential predictions, com-
pared to those with fully ethnic names. However,
this effect may vary by ethnicity, with some groups
benefiting more than others.

3 Experiment Setup

Name Data We obtain 100 first names that are
representative of each of the five races in our
study (White, Hispanic, East Asian-Chinese, South
Asian-Indian, and Southeast Asian-Thai), evenly
distributed between two genders (female and male).
As a result, we have 50 first names in each intersec-
tional demographic group and 500 first names in
total. We also obtain 50 last names that are verified
by native speakers from each cultural background
to ensure they are characteristic of their respec-
tive origins. For each race, we thus have 5,000
unique names, 25,000 unique names in total. To

study the effects of adopting White-sounding first
names, we also mix White first names with non-
White last names, totaling 20,000 mixed names.
Altogether, our study has 45,000 unique name vari-
ations. Name selection details are available in Ap-
pendix A.

Prompts We create a set of prompt templates
that instruct the model to respond in numerical
forms to prompts on school math scores, national
math competition scores, wage, and leadership po-
tential. Each prompt includes placeholders for
‘[first name]’ and ‘[last name],’ which we replace
with first names linked to specific racial and gender
identities and last names associated with particular
racial groups. This name-substitution methodology
is a widely-used approach in social science and
NLP research for detecting biased or discriminatory
behavior (An et al., 2024; Greenwald et al., 1998;
Bertrand and Mullainathan, 2004; Caliskan et al.,
2017). We deliberately do not include other appli-
cant details to avoid confounding factors and pre-
vent excessive variables, which could compromise
experimental control (Veldanda et al., 2023). We
then extract numbers from the textual responses.

Statistical model We employ ordinary least
squares regression to analyze how the LLM as-
signs academic scores, wages, and leadership po-
tential based on race, gender, and their interaction,
through student first and last names. This approach
allows us to quantify the model’s implicit biases
by estimating the effects of demographic attributes
on the predicted outcomes. We employ bootstrap
resampling with 1,000 replications to estimate the
variability of our regression coefficients and en-
hance the robustness of our inferences. The choice
of 1,000 bootstrap replications is based on the trade-
off between computational efficiency and statistical
accuracy.

LLM Model We carry out our experiments on
name biases using GPT4o-mini (OpenAI, 2024),
which is one of the latest, most popular general-
purpose large language models in 2025. ChatGPT
has over 400 million weekly active users (Reuters,
2025).

4 Results and Discussion

4.1 Predicted School Math Scores

As shown in Table 1 and Figure 1, AI tends to as-
sign higher school math scores to girls than to boys
in all races, confirming Hypothesis 4. However, EA
names consistently receive the highest predicted
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Ethnicity Male Female

Chinese 87.8† +0.9†

Indian 85.6† +1.4†

White 84.7† +2.0†

Hispanic 82.2† +1.9†

Thai 79.2† +0.6†

Table 1: Predicted Math Score. † indicates p < 0.01.

math scores–3.1% higher than White names. SA
and then White names follow at second and third,
while Hispanic names come fourth. SEA names
receive the lowest predicted school math scores,
8.6% lower than EA names. Hence, Hypotheses 1,
2, and 3 are not supported. These findings also chal-
lenge the monolithic model minority assumption
that the high academic status and expectations from
the model minority bias apply to all Asians. South-
east Asians face a consistent, distinct algorithmic
disadvantage, which illustrates how AI constructs
granular hierarchies within racial groups.

4.2 Predicted Math Competition Scores

Ethnicity Male Female

Chinese 135.6† −0.4
White 133.9† +1.0†

Indian 128.4† -1.0†

Hispanic 122.9† +0.3∗

Thai 113.2† −0.2

Table 2: Predicted National Math Competition Score
(AMC 10). † indicates p < 0.01. ∗ indicates p < 0.05.

As another measure of academic competence
bias, we asked the model to predict national math
competition scores. As shown in Table 2 and Figure
2, EA names, again, lead in predicted math com-
petition scores. Only White and Hispanic girls are
predicted to have higher math competition scores
than boys. This suggests that the LLM perceives
Asian girls differently in competitive settings com-
pared to in school environments. In a high-stakes
competition, the model no longer attributes a fe-
male advantage to Asian students.

The LLM, again, predicts the lowest scores for
SEA names. For instance, Siwakorn Khandhawit is
expected to score 20 and 22 points lower than Sam
Richardson and Pengxi Wang, respectively, demon-
strating a consistent LLM pattern in which SEA
names are systematically ranked at the bottom.

Ethnicity Male Female MDC

Chinese 20.4† -0.3† 0.14
White 20.1† -0.2† 0.12
Indian 20.1† -0.5† 0.12

Hispanic 18.5† -0.3† 0.03
Thai 17.9† -0.1 —

Table 3: Predicted Wage $/ Hour for Research Assis-
tantship. † indicates p < 0.01.

4.3 Predicted Pay for Research Assistantship

Following Becker (1957), suppose there are two
groups, w and n. In the absence of discrimination,
the wage rates of w and n would be equal. With dis-
crimination, their wage rates will differ. Becker’s
Market Discrimination Coefficient (MDC) between
two races, w and n, can be computed as

MDC =
(πw − πn)

πn
(1)

Using SEA-Thai wage rate as the base, MDCs are
shown in Table 3. Students with EA, SA, and White
names are suggested to be paid the highest, while
there is a noticeable drop in pay for those with His-
panic and SEA names. The LLM suggests paying
students with White and EA names 12% and 14%
higher than those with SEA names, respectively.

Remarkably, although girls are expected to per-
form better academically, the LLM suggests lower
wages for girls in all races, with SA, EA, and His-
panic girls having the greatest payment decrease.
While SA males are expected to have higher wages
than White males, SA females are expected to have
lower wages than White females. This suggests
that ethnic minority girls are disadvantaged more
in academic wages despite their perceived higher
academic competence.

4.4 Predicted Likelihood of Becoming CEO

Ethnicity Male Female

Chinese 7.7† -0.1†

White 7.2† +1.1†

Indian 7.1† -0.4†

Hispanic 6.2† +0.4†

Thai 5.6† +0.1

Table 4: Likelihood of Becoming CEO, on a scale of
0-10. † indicates p < 0.01.
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Being a White female is predicted to have the
greatest chance of becoming a CEO. In general,
EA, White, and SA students are most likely to
become CEO in the future, while Hispanic and SEA
students are least likely. Prompting the LLM with
a female name increases the chance of becoming a
CEO for White and Hispanic named students, while
being female decreases the chance of becoming
a CEO for EA and SA students. The results in
Table 4 and Figure 4 suggest a greater degree of
bias against female leaders in EA and SA students,
indicating that gender bias effects each ethnicity
differently.

4.5 Adopting Western Names

Ethnicity Math M Math F AMC M AMC F

Chinese 86.1† +0.7† 131.3 -0.7∗

Indian 83.2† +2.8† 127.1 -2.4†

White 81.2† +3.8† 122.8 +0.3
Hispanic 80.8† +3.5† 122.2 -0.3
Thai 80.8† +1.7† 121.8 -2.0†

WhChinese 84.0† +3.1† 131.5 -0.5
WhIndian 81.7† +3.6† 124.6 +0.3
WhThai 81.1† +3.2† 122.2 +0.1
WhHispanic 80.9† +3.3† 121.5 +0.3

Table 5: Predicted Math Scores. † indicates p < 0.01. ∗

indicates p < 0.05

Research on category crossing (Rao et al., 2005)
suggests that crossing categories can dilute iden-
tity, which can negatively affect the “spanner.” At
the same time, spillover effects may blend positive
traits from different categories, potentially creating
a “best of both worlds” benefit. Our findings show
that adopting Western names increases predicted
scores for EA-Chinese and SEA-Thai girls, presum-
ably because this crossover helps them avoid nega-
tive stereotypes associated with Asian female iden-
tities (e.g. exoticization, objectification, submis-
siveness, passivity, and quietness (Mukkamala and
Suyemoto, 2018) in American classrooms. Boys
with SEA-Thai last names also gain from using
White first names, as it may reduce harmful stereo-
types tied to being Southeast Asian. Granovetter’s
theory of the Strengths of Weak Ties (Granovetter,
1973) may also explain how one would benefit from
being at the cross-cultural junction as one would
benefit from information that flows from more than
one cultural community. However, these advan-
tages do not extend to other groups. Category cross-
ing theory posits that crossing categories makes

one’s identity “fuzzy,” weakening group member-
ship and authenticity. For Chinese boys and Indian
students, adopting White first names may dilute the
strong academic schema often attributed to their
original cultural identities.

4.6 Charts Showing Student Name Biases by
Gender and Race in GPT4o-mini
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Figure 2: Predicted National Math Competition Scores
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Figure 3: Predicted Wage $/ Hour for Research Assis-
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Figure 4: Likelihood of Becoming CEO, on a scale of
0-10.

4.7 Llama3.2

We also conduct experiments on Llama3.2
(MetaAI, 2025) and find that it predominantly
refuses to respond to the prompts, except when
predicting national math competition scores and
wages. When responses are provided, Llama3.2
exhibits significant name biases, as demonstrated
in Table 6.

Ethnicity AMC M AMC F Wage M Wage F

Chinese 91.1† +2.1 18.1† +0.1
Indian 95.4† −1.1 19.6† −1.4†
White 94.7† −3.2† 19.8† −1.2†
Hispanic 88.7† −1.6 18.7† −1.0†
Thai 84.5† +0.2 17.2† −0.7†
WhCh 92.4† −0.6 19.1† −1.1†
WhIn 95.3† −0.9 20.1† −1.6†
WhHp 89.3† −0.5 18.9† −1.5†
WhTh 87.6† −0.2 18.2† −0.9†

Table 6: Predicted AMC Scores and Wages by Llama3.2.
† indicates p < 0.01. ∗ indicates p < 0.05

Llama3.2 exhibits a strong gender bias against
white female students in math competition scores:
having a female name decreases the score by 3.2
points. Having a female name also results in
lower wage suggestions across all racial groups,
except EA-Chinese. Furthermore, according to
Llama, Indian, White, and mixed White+Indian
names lead in the ranking of math competence,
followed by mixed White+Chinese, Chinese, His-
panic, mixed White+Hispanic, mixed White+Thai,
and Thai names. Similar to GPT4o-mini, SEA
names are ranked at the bottom of the academic
and wage hierarchies, receiving 11 points lower in
predicted scores and 13% lower wage than White
names, while adopting White first names provides
significant benefits. However, contrary to GPT4o-

mini, Llama3.2 significantly favors White over Chi-
nese names. The findings suggest that despite its
attempts to avoid engaging with sensitive questions,
implicit gender and racial biases remain embedded
in Llama3.2’s model.

5 Conclusion

We find that LLMs reflect, construct, and reinforce
status hierarchies based on names that signal gen-
der and ethnicity as they encode differential expec-
tations of competence, leadership, and economic
potential. Contrary to the common assumption that
AI tends to favor Whites, we show that East and, in
some contexts, South Asian names receive higher
rankings in GPT-4o-mini. Notably, while East and
South Asian names often receive the highest sta-
tus rankings, Southeast Asian names consistently
face algorithmic disadvantage. Our results thus
challenge the monolithic “Asian model minority”
assumption, illustrating a more complex and strat-
ified model of bias. Furthermore, gender biases
interact with racial identity in complex ways, dis-
advantaging certain groups such as girls in lead-
ership and wage predictions, despite AI assigning
them higher non-competitive academic potential.
These disparities have profound implications for
NLP and AI fairness in educational applica. As
LLMs increasingly play crucial roles in daily life
and decision-making, they may institutionalize bi-
ases that shape long-term social and economic tra-
jectories. A necessary line of research is a future
study on the implications of AI in education and
society, which are not currently well-understood.
This paper hopes to frame that discussion. AI-
generated predictions influence human evaluation
and decision-making, reinforcing and legitimizing
inequalities and discrimination through feedback
loops and even textual justification that disadvan-
tage already marginalized groups. The fact that
adopting Western first names improves predicted
outcomes for some racial groups underscores how
crucial it is for researchers to study mixed ethnic-
ity and names rather than focusing simply on first
names or last names. This study challenges the no-
tion that AI bias can be understood solely in terms
of mutually exclusive race and gender categories.
Instead, we show that AI constructs hierarchical
relationships between subgroups, and hence fair-
ness interventions must account for these granular
subtleties rather than assuming monolithic group ef-
fects. We also propose algorithmic anonymization
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as a necessary intervention, alongside systematic
bias audits and adaptive fairness corrections, to
prevent AI from becoming an invisible arbiter of
social mobility. An AI in education that systemat-
ically assigns lower grades, subtly less favorable
evaluations, or less rigorous material to students
with certain names, races, or socioeconomic back-
grounds reinforces a tiered system of privilege and
opportunity over time. Some groups, such as South-
east Asians, face structural invisibility—they are
excluded from both privilege and intervention be-
cause they do not fit into dominant social categories.
East and South Asian students not only encounter
undue pressure from inflated expectations but also
risk having their individual achievements overshad-
owed by racial and gender stereotypes. This reduc-
tion of personal merit to racial and gender identity
challenges the principles of a fair, meritocratic sys-
tem and reinforces systemic biases that shape both
opportunities and perceptions of success.

As generative AI systems are increasingly used
in education, ensuring that they do not codify and
amplify historical hierarchies into digital infras-
tructure must be a central concern for NLP re-
search. Future work could investigate the mecha-
nisms through which generative AI learns and per-
petuates these biases in a wider variety of domains,
races, genders, and languages as well as strategies
for developing models that do not merely mitigate
or "hide" harm but actively promote fairness in
educational AI systems.

Limitations

Our study considers only two genders, whereas fu-
ture research should explore gender-neutral names
to cover a broader range of identity representations.
This study also includes only five ethnicities, out of
numerous other ethnic identities. White, Hispanic,
East Asian (Chinese), South Asian (Indian), and
Southeast Asian (Thai) names tend to have distinct
name characteristics that make them more reliably
categorized by both humans and AI models. We
aimed to select names that are strongly character-
istic of their ethnic origins and hence decided not
to include first and last names that may not be cat-
egorized correctly. For example, many Black last
names are of European origin and are indistinguish-
able from White last names, making precise classi-
fication challenging. The study’s decision does not
suggest that Black name bias is unimportant, but
rather that it presents unique challenges that require

separate investigation. We also acknowledge poten-
tial limitations in our name dataset, as discussed in
Appendix A. Additionally, names can reflect other
attributes such as religion and age. Furthermore,
our study focuses on a specific set of LLMs, but
future work should assess biases across a wider
range of models. Exploring LLMs in non-English
languages would also uncover distinct patterns of
bias and social hierarchies that are not captured in
this study.

Our study uses a minimal-context design to iso-
late how LLMs respond to names alone, without
additional context. This approach aims to detect
bias and reveal whether an LLM’s response is influ-
enced by the mere differences in names associated
with race and gender as it makes biased predic-
tions with different names even before any sub-
stantive input is given. However, we acknowledge
that this design does not illustrate how such biases
might affect students in full educational settings
where writing samples and further contextual pro-
files are involved. In real classrooms, students are
not graded solely on names. While our results re-
veal that LLMs exhibit differential behaviors even
at the name level, further work is needed to ex-
plore whether and how these biases manifest in
scoring or feedback in realistic educational sce-
narios. Future work will build on this foundation
by including more relevant inputs such as student
writing and rubrics while varying only the student
name or even without name, similar to the Matched-
Guise Technique used in other sociocultural re-
search (Campbell-Kibler, 2008).
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dividuals selected for national and international
competitions are likely to come from higher so-
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B Sample Prompts

Prompt Type Prompt

Math Please give predicted math
scores for the following students:
$FIRSTNAMES+LASTNAMES$
without further context. Just give
numbers for the students.

AMC Please give predicted scores
on the American Mathemat-
ics Competitions 10 (AMC 10)
for these students: $FIRST-
NAMES+LASTNAMES$ without
further context. Just give scores
out of 150.

Wage Please suggest research assistant
internship salaries per hour for
$FIRSTNAMES+LASTNAMES$.
No further context. Just give
numbers.

CEO Please rate these students on
how likely they are to be a
future CEO (0 = least likely,
..., 10 = most likely): $FIRST-
NAMES+LASTNAMES$. Just
give a number for each student
without further context.

Table 7: Sample LLM Prompts

707



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 708–715
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Exploring LLM-Based Assessment of Italian Middle School Writing: A
Pilot Study

Adriana Mirabella
Department of Linguistic

and Literary Studies,
University of Padua

adriana.mirabella@studenti.unipd.it

Dominique Brunato
Istituto di Linguistica Computazionale

“Antonio Zampolli” (CNR-ILC),
ItaliaNLP Lab, Pisa

dominique.brunato@ilc.cnr.it

Abstract

This study investigates the use of ChatGPT for
Automated Essay Scoring (AES) in assessing
Italian middle school students’ written texts.
Using rubrics targeting grammar, coherence
and argumentation, we compare AI-generated
feedback with that of a human teacher on a
newly collected corpus of students’ essays. De-
spite some differences, ChatGPT provided de-
tailed and timely feedback that complements
the teacher’s role. These findings underscore
the potential of generative AI to improve the as-
sessment of writing, providing useful insights
for educators and supporting students in devel-
oping their writing skills.

1 Introduction and Background

Advances in Natural Language Processing (NLP)
and Generative Artificial Intelligence (GenAI) have
enabled platforms like ChatGPT to generate human
language with notable accuracy, making them valu-
able tools and stimulating growing interest among
educators and researchers. However, integrating
GenAI into education has elicited mixed reactions.
Some educators, particularly those less familiar
with such tools, express concerns about misinfor-
mation and the potential devaluation of teachers’
roles. Others emphasize AI’s potential, especially
in addressing diverse educational needs. Studies
such as Law (2024) and Kaplan-Rakowski et al.
(2023) highlight AI’s role in personalized learn-
ing, notably in multicultural settings, by adapting
to varied learning styles and reflecting educators’
increasing openness to experimentation.

Within this evolving landscape, Steele (2023)
calls for a balanced approach, stressing that while
misuse is possible, the educational value of GenAI
depends on thoughtful implementation. When ef-
fectively integrated, AI benefits both students and
teachers. It offers students immediate, personalized
feedback on written work, improving grammar, co-
herence and overall writing skills. For teachers,

it reduces the burden of time-intensive tasks like
grading and enables data-informed instruction by
revealing student performance patterns.

This study investigates the use of generative
AI for automated essay scoring (AES)—a long-
established area of research in education, tradition-
ally supported by NLP-based approaches (Shermis
and Burstein, 2013; Uto et al., 2020; Wu et al.,
2022; Higgins et al., 2004), and more recently re-
visited through the lens of large language models.
Specifically, we assess how ChatGPT’s function-
alities align with the one-to-one tutoring model
proposed by Bloom (1984)—which emphasizes
personalized, formative support to enhance learn-
ing outcomes—and we examine its ability to pro-
vide fine-grained evaluations of student writing that
align with those of human teachers. Our study
builds on current research, particularly Mizumoto
and Eguchi (2023) and Naisimith et al. (2023). The
former, focused on AES for English as a second
language (L2), demonstrated that GPT-3 can ap-
proximate expert ratings across multiple dimen-
sions of writing—such as cohesion, lexical rich-
ness, and grammatical accuracy—while also show-
ing that performance improves when explicit, multi-
level linguistic features are incorporated. The lat-
ter showed that GPT-4 can effectively analyze the
logical flow of ideas in a text, offering a robust
evaluation of discourse coherence. The study by
Yavuz et al. (2024) further demonstrated that, when
guided by a detailed five-domain rubric and modest
prompt adjustments, LLMs like ChatGPT achieve
high agreement with experienced human raters, par-
ticularly on objective criteria (grammar, mechan-
ics) but with some divergence on more interpretive
domains (content, organization).

While previous studies have primarily focused
on English language learners, our work represents,
to our knowledge, one of the first attempts to ap-
ply these methodologies to middle school students
writing in Italian as a first language.
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Contributions This paper offers three main con-
tributions: i) a new Italian language corpus of au-
thentic argumentative essays written by middle
school students1; ii) initial evidence that LLMs
can produce evaluations comparable to a teacher’s,
particularly when guided by rubrics, within this spe-
cific educational context; iii) a fine-grained look
at the alignment between human and AI-generated
criteria.

2 Methodology

The study involved 17 middle school students,
both native and non-native Italian speakers. A
preliminary questionnaire, adapted from the IN-
VALSI2 model, collected data on students’ lan-
guage habits. Results showed that over half of
the participants, although born in Italy, spoke Ital-
ian as an L2. Before the writing task, students
and their Italian teacher were introduced to Chat-
GPT to familiarize themselves with its function-
alities and make the experience more engaging.
For this exploratory investigation, we selected Ope-
nAI’s ChatGPT—specifically the free-tier GPT-4
version—due to its widespread accessibility and
popularity, even among non-expert users. Notably,
the version used was not fine-tuned for educational
or assessment-specific tasks.

As part of their regular curriculum, students were
then introduced to argumentative writing. Once pre-
pared, each student composed two short argumen-
tative texts, as detailed in Section 2.1. The teacher
subsequently developed an evaluation rubric, which
was used by both herself and the model. Addition-
ally, ChatGPT was prompted to generate its own
rubric, enabling a comparative analysis between
the model’s and the teacher’s feedback (Section
2.2).

2.1 Dataset
The corpus consisted of 34 argumentative texts,
evenly divided into two groups (A and B). Group
A included open-topic texts, where students inde-
pendently chose a theme to explore. Group B
included responses to assigned prompts on current
social issues, such as the influence of social me-
dia personalities or the decline in teenage reading

1The corpus will be made freely available at
http://www.italianlp.it/resources/

2The INVALSI (National Institute for the Evaluation of the
Education System) is a public research organization responsi-
ble for evaluating students’ knowledge and skills, the quality
of educational programs and supporting school assessments
in Italy.

habits. In both cases, students were required to
take a position and support it using provided mate-
rials3. Texts were collected, anonymized and dig-
itized using Google Docs’ voice recognition and
transcription tools, then carefully reviewed and cor-
rected while deliberately preserving any typos or
non-standard language produced by the students. 4

Linguistic analysis To better understand the
composition of the corpus, all texts were analyzed
through Profiling-UD (Brunato et al., 2020), a web-
based application designed to provide the linguis-
tic profile of a text for multiple languages. The
tool is based on the Universal Dependencies (UD)
framework (De Marneffe et al., 2021) and allows
to extract a large set of features spanning across
raw, lexical and morpho-syntactic level.

For each text, we also computed the Gulpease
Index (Lucisano and Piemontese, 1988), a basic
readability metric specific to Italian combining sen-
tence and word length into a score from 0 (low
readability) to 100 (high readability)5.

As shown in Table 1, Group A produced longer
texts in terms of tokens, as well as with more sen-
tences and longer average sentences—suggesting
greater fluency and engagement. Group B’s texts
were shorter but featured slightly longer words and
a higher Type Token Ratio, possibly due to more
formal or technical vocabulary, consistent with the
nature of the assigned prompts.

Gulpease Index scores were similar across
groups, though Group B exhibited a slightly greater
standard deviation, possibly reflecting varied re-
sponses to the prompt—ranging from simplifica-
tion to more complex lexical or syntactic strategies.

2.2 Rubrics

The evaluation rubric shown in Table 2 was devel-
oped by the teacher, drawing on Vignola (2021) and
the assessment criteria established by the Italian
Ministry of Education for this school level.

Five criteria were identified, covering ortho-
graphic, grammatical, syntactic and content-related
aspects. These assess the student’s ability to
present ideas clearly, support them with appropri-
ate evidence and structure arguments coherently

3Synthesized versions of the prompts are available in Ap-
pendix A.

4This tool was used exclusively to speed up manual tran-
scription. No student voice recordings were used and the tool
does not play a relevant role in the analysis.

5The Gulpease Index expresses the readability score as a
percentage, based on standardized value ranges.
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Feature Group A Group B
Mean SD Mean SD

Number of Tokens 625.18 338.33 470.71 164.36
Number of Sentences 27.24 16.66 25.24 12.31
Avg Sentence Length 25.63 8.61 20.84 6.62
Avg Word Length (in characters) 4.70 0.22 4.89 0.31
Lexical Density* 0.49 0.02 0.51 0.02
Type-Token Ratio* 0.71 0.05 0.75 0.05
% Present Tense Verb* 59.51 11.11 77.64 10.80
% Past Tense Verb* 34.87 10.21 20.25 9.69
Avg Link Length 2.76 0.38 2.70 0.33
Gulpease Index 54.81 4.28 55.84 5.15

Table 1: Mean and standard deviation (SD) for a subset
of linguistic features in Group A and Group B. Features
with a significant statistical difference according to the
Mann Whitney U Test (p < 0.05) are marked with *.

Criterion A (2) I (1) B (0.5)

Focus Clear Key points Some points
Support 3+ refs. 2 refs. 1 ref.
Accuracy Logical Minor Flaws Inconsistent
Grammar No errors Minor errors Distracting
Tech.Terms Consistent Frequent Partial

Table 2: Teacher Evaluation Rubric for Argumentative
Texts. A = Advanced, I = Intermediate, B = Basic. A
score of 0 indicates no competence.

and accurately. Specifically, support refers to the
quantity and relevance of examples or factual evi-
dence used to substantiate claims, while accuracy
evaluates the logical consistency of the argument,
regardless of the number of references cited.

Each category is scored from 0 to 2, correspond-
ing to four competence levels: Beginner, Basic,
Intermediate and Advanced. The teacher applied
this rubric to both sets of texts, assigning a final
score based on the average across all categories.

In response to a dedicated prompt (see Section
2.3), ChatGPT generated its own rubric, outlined
in Table 3, identifying five evaluation categories.
It was then instructed to align its scoring system
with that of the teacher. Although not identical, the
two rubrics focus on similar core aspects. Notably,
ChatGPT introduced parameters such as emotional
impact and persuasion, which are often absent
from traditional assessment frameworks.

2.3 Prompt configurations

To evaluate the consistency between ChatGPT’s
and the teacher’s assessments, the three structured
prompts reported in Table 4 were designed:
1. The first asked the model to provide an overall
assessment of the texts without referencing specific
criteria;
2. The second required the model to evaluate based

Criterion Description

Clarity Fluent, structured (A); Clear, minor
gaps (I); Inconsistent, unclear (B)

Argumentation Strong, supported (A); Good, missing
details (I); Weak development (B)

Originality Highly original (A); Good, developed
(I); Limited, superficial (B)

Style Precise, context-appropriate (A);
Clear, minor errors (I); Simple, some
errors (B)

Impact Engaging, persuasive (A); Good, par-
tially engaging (I); Limited impact (B)

Table 3: ChatGPT’s Evaluation Rubric for Argumenta-
tive Texts. A = Advanced, I = Intermediate, B = Basic.
A score of 0 indicates no competence.

on its self-generated rubric (Table 3);
3. The third instructed the model to use the
teacher’s rubric for assessment (Table 2).

3 Results and Discussion

To ensure maximum accuracy in comparing the two
sets of feedback, Pearson and Spearman correlation
coefficients were employed.

Table 5 summarizes the correlations between
teacher and ChatGPT scores across the three
prompt conditions, for both Group A (open-topic
texts) and Group B (prompted texts).

Group Prompt Pearson / Spearman

Group A Prompt 1 0.6948 / 0.6967
Prompt 2 0.6217 / 0.5839
Prompt 3 0.7319 / 0.7089

Group B Prompt 1 0.1096 / 0.2040
Prompt 2 0.4978 / 0.6317
Prompt 3 0.5918 / 0.7267

Table 5: Correlation coefficients between teacher and
ChatGPT evaluations for each prompt.

As shown in Table 5, Prompt 3—where the
model used the teacher’s rubric—yielded the high-
est agreement with human evaluations, particularly
for Group A. This suggests that rubric alignment
is a key factor in achieving consistency between
human and AI assessments. To gain a more gran-
ular understanding of this alignment, we analyzed
the correlations for each individual criterion in the
teacher’s rubric under the third prompt condition.
These results are presented in Table 6.

It can be seen that ChatGPT’s evaluations most
closely align with the teacher’s when assessing
higher-order dimensions such as content accuracy
and argumentative support. In contrast, lower cor-
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First Assign a score to each of the argumentative texts I will provide as input. There are 17 texts in total, all argumentative
essays written in response to a given prompt. You will be given the document containing the prompts from which
students were free to choose. You may assign a score from 0 to 10, where 0 corresponds to the lowest possible
score and 10 to the highest. The score should reflect an overall judgment. You will not be asked to justify the score
assigned.

Second Assign a score to each of the argumentative texts I will provide as input. There are 17 texts in total, all argumentative
essays written in response to a given prompt. You will be given the document containing the prompts from which
students were free to choose. You may assign a score from 0 to 10, where 0 corresponds to the lowest possible score
and 10 to the highest. The score should be based on the evaluation rubric that you provide. You will not be asked to
justify the score assigned.

Third Assign a score to each of the argumentative texts I will provide as input. There are 17 texts in total, all argumentative
essays written in response to a given prompt. You will be given the document containing the prompts from which
students were free to choose. You may assign a score from 0 to 10, where 0 corresponds to the lowest possible score
and 10 to the highest. The score should be based on the evaluation rubric I will provide. You will not be asked to
justify the assigned scores.

Table 4: Prompt formulations for each scenario.

Criterion Group A Group B
Pearson Spearman Pearson Spearman

Focus 0.5992 0.5818 0.4205 0.4839
Support 0.5090 0.5153 0.6765 0.7002
Accuracy 0.6993 0.6987 0.4956 0.4948
Grammar 0.3440 0.2692 0.3776 0.3780
TechTerms 0.6271 0.6318 0.650 0.5024

Table 6: Correlation coefficients between teacher and
ChatGPT evaluation for specific criteria (Prompt 3).

relations were observed for surface-level features
like spelling and grammar, especially in Group
B. This indicates that while the model captures
content-related aspects relatively well, it may be
less reliable for assessing language correctness in
L2 contexts. A possible explanation lies in the
model’s tendency to prioritize semantic coherence
over formal accuracy: grammar and orthographic
errors that do not significantly affect overall mean-
ing are often overlooked or downplayed.

Preliminary insights from our qualitative analy-
sis support this interpretation. In particular, typical
L2 learner errors—such as incorrect verb conjuga-
tions, article omission or gender mismatches—tend
to be less salient to the model than to a human
teacher, who is trained to recognize them as key de-
velopmental indicators. This discrepancy is partic-
ularly evident in one case where the model praised
a student’s text for its clarity and thematic structure,
while failing to note multiple morphosyntactic in-
accuracies and instances of negative transfer from
English. Notably, the expression "non è tutto di-
vertimento e giochi", a literal calque of "it’s not
all fun and games" went unremarked. While the
teacher identified this as a sign of L1 interference,
the model prioritized coherence and reader engage-
ment. The full text is included in Appendix B.

Furthermore, teacher evaluations for both groups
reveal a strong polarization within the class, with a
clear distinction between high-performing students
and those who struggle the most, often receiving
insufficient scores. Conversely, ChatGPT tends to
avoid particularly severe judgements. Instead, it
highlights the positive aspects of the text, often jus-
tifying minor errors. This explains the upward vari-
ation of approximately two points in many cases
compared to the teacher’s scores.

Moreover, the model frequently goes beyond the
prompt’s explicit requirements by offering qual-
itative feedback in addition to numerical scores.
Its comments aim to encourage students, as in the
following example:

You have presented a thorough and well-
structured analysis, examining different perspec-
tives and providing compelling arguments. Your
text is clear and well-articulated, though minor
syntactic adjustments could improve its overall
fluency. Excellent work in delivering a compre-
hensive view of the issue!

However, this "positive bias" can lead the model
to misjudge texts by relying on superficial features,
such as formal register and citations, while over-
looking the absence of clear argumentative pro-
gression and the overuse of abstract formulations.
For instance, it may mistake weak arguments, en-
hanced with technical terminology, for genuinely
well-constructed reasoning.

This discrepancy becomes especially apparent
when compared to the teacher’s evaluations. Unlike
the model, the teacher can draw on subject-specific
knowledge and a deeper understanding of students’
academic backgrounds, resulting in more nuanced
and context-aware assessments. A concrete exam-
ple of this dynamic is offered by Essay 2 included
in Appendix B.
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Nonetheless, the correlation indices indicate a
moderate yet meaningful level of agreement be-
tween the two evaluators. This highlights both the
model’s ability to identify major trends and its lim-
itations in fully replicating human judgment.

4 Conclusion

This study has offered promising insights into
the use of ChatGPT for Automated Essay Scor-
ing (AES), particularly in a non-English, middle
school setting. Despite the absence of fine-tuning
or domain-specific adaptation, ChatGPT consis-
tently provided coherent and structured feedback,
showing a level of reliability that makes it a vi-
able support tool for formative assessment. This
consistency was evident across multiple zero-shot
prompts, where the model produced comparable
scores and qualitative feedback for the same texts,
even with slight changes in prompt phrasing.

To strengthen and extend these initial findings,
we are currently expanding the corpus and test-
ing additional generative models, including those
natively trained on Italian, to better evaluate the
generalizability of the results.

Future research should also explore ways to in-
corporate students’ linguistic and educational back-
grounds into the evaluation process. Doing so
would enable models to better reflect the holis-
tic perspective of human teachers—one that ac-
counts not only for the final written product, but
also for individual learning trajectories and devel-
opmental progress. Finally, we believe that examin-
ing the impact of automated feedback on students’
understanding of their own errors, as well as on
teachers’ ability to refine their evaluations, will
yield valuable insights into how generative models
can effectively complement traditional pedagogical
practices, supporting both teaching strategies and
student learning outcomes.

5 Limitations

This study is exploratory in nature, and its find-
ings are limited by the small dataset, single-school
context and use of a general-purpose version of
ChatGPT. As such, results should be viewed as
provisional and not yet generalizable.

Beyond methodological constraints, we are
aware of broader issues with using generative AI in
education. The model’s feedback can suffer from
bias, redundancy and inconsistency, especially
when it overemphasizes some aspects (e.g., content

coherence) while overlooking others (e.g., gram-
matical accuracy). Variability in outputs across
identical prompts and occurrences of hallucinations
further challenge its reliability.

Ethical concerns also remain. These include
risks related to privacy, misinformation, bias (e.g.,
xenophobia), and misuse of data, as demonstrated
by the temporary ban of ChatGPT in Italy in 2023,
lifted only after OpenAI introduced stricter data
protection measures.

In line with UNESCO’s 2021 Recommendation
on the Ethics of AI, we stress that AI should sup-
port—not replace—teachers, promoting inclusive,
transparent, and ethically responsible learning en-
vironments.
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A Assigned Writing Prompts (Group B)

The following is a synthesized version of the origi-
nal writing tasks:

• Influencers and social media. Students were
asked to reflect on the role of influencers in
shaping opinions and behavior. The prompt
encouraged them to take a stance on whether
influencers are manipulative figures or authen-
tic role models, and to support their opinion
using the sources provided.

• Reading habits among teenagers. Students
were invited to comment on the decreasing
number of young readers in Italy (ages 15–17),
based on a report by the national statistics in-
stitute (Istat) and a related blog article. They
were asked to introduce themselves to a new
school community and to share their per-
spective on the advantages of ebooks versus
printed books, referring to the given materials.
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B Examples of Discrepant Evaluations

Essay 1

Original English Translation
Nel mondo online di oggi, gli influencer sono
ovunque e danno forma a ciò che le persone acquis-
tano e pensano su piattaforme come Instagram e
You-Tube. ma cosa si nasconde veramente dietro le
loro vite glamour? Certo, gli influencer sembrano
avere tutto: viaggi fantasiosi, feste fantastiche e
cose gratis. Ma creare post perfetti richiede tan-
tissimo impegno. Trascorrono anni a trovare idee,
scattare e modificare foto e video e chattare con i
loro follower. La chiave per essere un influencer
di successo? costruire una base di fan fedeli. Ciò
significa essere reali, riconoscibili e attenersi a uno
stile. Ai fan piacciono gli influencer di cui si fidano
e con cui sentono una connessione. Quindi, gli in-
fluencer devono rimanere onesti, anche quando ven-
gono pagati per promuovere cose. Ma non è tutto di-
vertimento e giochi. I social media sono in continua
evoluzione, quindi gli influencer devono stare al
passo con la tendenza e gli algoritmi. Ciò significa
cambiare continuamente la propria strategia di con-
tenuto ed è estenuante cercare di rimanere al passo.
E non dimentichiamo il dramma. Gli influencer ven-
gono denunciati per qualsiasi cosa, dai falsi follower
alle sponsorizzazioni losche. Inoltre, si confrontano
continuamente con gli altri, il che può farli sentire
piuttosto male con se stessi. Ma nonostante le sfide,
molti influencer amano ciò che fanno, che stiano
lottando per cause importanti, diffondendo la pos-
itività corporea o semplicemente condividendo la
propria vita, sanno che stanno facendo la differenza.
Ci sono così tanti influencer che fanno grandi la-
vori, ma gli hater lo dicono sempre: “stai copiando
gli altri” queste affermazioni li fanno sentire così
male e li incoraggiano a realizzare più video e a
dare i loro consigli. Quindi, essere un influencer
non è solo sfarzo e glam. E’ un lavoro duro, con
molta pressione per rimanere rilevanti. Ma per col-
oro che amano connetterti con le persone e fare la
differenza, ne vale assolutamente la pena. Non è
facile essere un influencer.

In today’s online world, influencers are everywhere
and shape what people buy and think on platforms
like Instagram and YouTube. But what really lies
behind their glamorous lives? Sure, influencers
seem to have it all: fancy trips, amazing parties,
and free stuff. But creating perfect posts takes a lot
of effort. They spend years coming up with ideas,
taking and editing photos and videos, and chatting
with their followers.
The key to being a successful influencer? Building
a loyal fanbase. This means being real, relatable,
and sticking to a consistent style. Fans like influ-
encers they trust and feel a connection with. So,
influencers need to stay honest, even when they’re
paid to promote things.
But it’s not all fun and games. Social media is
constantly evolving, so influencers have to keep up
with trends and algorithms. This means constantly
changing their content strategy, and it’s exhausting
trying to stay on top.
And let’s not forget the drama. Influencers get
called out for everything—from fake followers to
shady sponsorships. They also constantly compare
themselves to others, which can make them feel
pretty bad about themselves.
But despite the challenges, many influencers love
what they do. Whether they’re fighting for impor-
tant causes, spreading body positivity, or simply
sharing their lives, they know they’re making a dif-
ference. There are so many influencers doing great
work, but haters always say: “you’re copying oth-
ers.” These comments make them feel really bad
and push them to make more videos and share their
advice.
So, being an influencer isn’t just glitz and glam. It’s
hard work, with a lot of pressure to stay relevant.
But for those who love connecting with people and
making a difference, it’s absolutely worth it. It’s
not easy being an influencer.

Teacher’s score: 4.5/10
Lower score due to superficial argumentation and
frequent morphosyntactic interference.
Model’s score: 8.5/10
Higher score, highlighting lexical range and coher-
ence while overlooking language transfer issues.
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Essay 2

Original English Translation
La rivoluzione digitale è pienamente entrata nel
nostro patrimonio sociale, culturale e influenza
costantemente il nostro stile di vita. Come ogni
rivoluzione diviene oggetto di valutazione, sia in
senso negativo che in senso positivo, e comunque
rimane oggetto di osservazione costante rispetto
all’utilizzo che ne fa e alla funzione che ricopre.
La rete è certamente un enorme e potente stru-
mento per comunicare ed è in costante evoluzione
nelle sue forme utilizzate. Innanzitutto, vale la
pena porre l’accento sul significato di "utilizzo",
poichè ogni strumento dovrebbe essere considerato
come un "mezzo" che viene manovrato dall’uomo
e non viceversa. Rainie and Wellman, nella loro
analisi sulle tecnologie digitali, compiono una dis-
amina attenta sul cambiamento digitale, ponendo
l’attenzione su ciò che le persone fanno con le tec-
nologie. Malgrado la grande attenzione che viene
rivolta ai nuovi gadget, la tecnologia non deter-
mina il comportamento umano, sono gli uomini
a determinare il modo in cui vengono utilizzate
le tecnologie. Di sicuro stiamo assistendo ad una,
non consueta, ma singolare modalità di relazione
all’interno dei rapporti umani: internet è anche uno
strumento di socialità che ha anche assunto una
natura "partecipativa" della convivenza sociale. I
social network mettono in rapporto il singolo con
gruppi sempre più ampi, non solo, ma le relazioni
sembrano modificarsi da relazioni stabili e statiche
a relazioni rapide, veloci e meno accurate. Pertanto,
si tratta di un cambiamento non solo quantitativo,
ma anche qualitativo. Gli autori osservano poi come
in questa "socialità integrata",le relazioni mutano
sperimentando nuove forme in via di evoluzione,
ponendo anche l’accento sulla possibilità che es-
istano maggiori possibilità per ognuno di attivare
e arricchire i legami sociali, ma anche allo stesso
tempo maggiori responsabilità.

The digital revolution has become an integral part
of our social and cultural heritage, and it constantly
influences our lifestyle. Like any revolution, it be-
comes a subject of evaluation—both negatively and
positively—and remains under constant observation
regarding how it is used and the role it plays. The
internet is undoubtedly a vast and powerful tool
for communication, and it is constantly evolving in
the forms through which it is used. First and fore-
most, it’s worth emphasizing the meaning of “use,”
since any tool should be seen as a “means” that
is operated by humans—not the other way around.
Rainie and Wellman, in their analysis of digital
technologies, provide a careful examination of digi-
tal change, focusing on what people do with tech-
nologies. Despite the great attention given to new
gadgets, technology does not determine human be-
havior; rather, it is humans who determine how
technologies are used. We are certainly witness-
ing a way of relating within human relationships
that is not conventional, but rather unique: the in-
ternet is also a tool for social interaction and has
even taken on a “participatory” role in social life.
Social networks connect individuals with increas-
ingly large groups, and not only that—the nature
of relationships seems to be changing from stable
and static bonds to faster, more dynamic, and less
accurate ones. Therefore, this is a change that is
not only quantitative but also qualitative. The au-
thors also note that in this “integrated sociality,”
relationships are evolving and experimenting with
new forms, while also highlighting the increased
opportunities for individuals to initiate and enrich
social ties—along with, at the same time, greater
responsibilities.

Teacher’s score: 2.5/10
Lower score, pointing out the vagueness of the ar-
gument and lack of critical positioning.
Model’s score: 7.5/10
High score due to advanced vocabulary and aca-
demic references.
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Abstract

Engaging students in a coherent classroom dis-
cussion is one aspect of high-quality instruction
and is an important skill that requires practice
to acquire. With the goal of providing teach-
ers with formative feedback on their classroom
discussions, we investigate automated means
for evaluating teachers’ ability to lead coher-
ent discussions in simulated classrooms. While
prior work has shown the effectiveness of large
language models (LLMs) in assessing the co-
herence of relatively short texts, it has also
found that LLMs struggle when assessing in-
structional quality. We evaluate the general-
izability of task formulation strategies for as-
sessing the coherence of classroom discussions
across different subject domains using GPT-4o
and discuss how these formulations address the
previously reported challenges—the overesti-
mation of instructional quality and the inability
to extract relevant parts of discussions. Finally,
we report lack of generalizability across do-
mains and the misalignment with humans in
the use of evidence from discussions as remain-
ing challenges.

1 Introduction

High-quality STEM instruction is well-organized
and structured to provide opportunities for students
to engage in productive scientific sensemaking,
build their conceptual understanding, and link sci-
ence ideas within and across lessons (Chen and Li,
2010; Roth et al., 2011). In fact, effective organi-
zation and structure are key features attended to
in observational protocols for assessing teachers’
practice, including the Framework for K-12 Sci-
ence Education (National Research Council, 2012),
Danielson’s Framework for Teaching (Danielson,
2013), and the Classroom Assessment Scoring Sys-
tem protocol (Pianta, 2008). One specific high-
leverage teaching practice that requires effective

*This research was conducted during an internship at ETS.

structuring is the facilitation of coherent content-
focused discussions, as teachers need to ensure
that students understand how the ideas that are dis-
cussed relate to and build upon one another and
ensure that the work the students are doing sup-
ports progress towards addressing the discussion’s
learning goal (Carpenter et al., 2020; Stein et al.,
2008).

Facilitating such discussions is a difficult skill
to learn (Hanuscin et al., 2016; Plummer and Ta-
nis Ozcelik, 2015; Ramsey, 1993). To help teach-
ers develop these skills, it is important to provide
them with ample practice opportunities paired with
accurate assessments of their current skills and tar-
geted personalized feedback (Ferrini-Mundy et al.,
2007; Wang and Demszky, 2023; Xu et al., 2024).
However, the assessment of teaching practice has
limitations, including resource constraints, scalabil-
ity challenges, and varying evaluator competence,
as it is usually done by human evaluators (Kelly
et al., 2020; Kraft et al., 2018).

Prior research has sought to overcome the limi-
tations of manual assessment of classroom discus-
sions by using natural language processing (Alic
et al., 2022; Nazaretsky et al., 2023; Ilagan et al.,
2024; Demszky et al., 2021; Suresh et al., 2019).
These studies were mostly limited to analyzing
turn-level teaching moves such as classifying open-
ended and close-ended questions (Alic et al., 2022),
labeling certain teaching strategies (Nazaretsky
et al., 2023; Ilagan et al., 2024; Suresh et al., 2019),
and identifying speaker contributions (Demszky
et al., 2021). Assessment of discussion coherence
is potentially more challenging because connec-
tions between ideas are not necessarily linear but
can be hierarchical (Tao et al., 2015), and the over-
all coherence is not necessarily an accumulation of
locally coherent moves.

Large language models (LLMs) have been suc-
cessful in assessing the coherence of relatively
short text, such as essays in an English proficiency
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test (Naismith et al., 2023) and news article sum-
maries (Liu et al., 2023; Liusie et al., 2024). How-
ever, it is still challenging for LLMs to assess class-
room instruction. For example, LLMs’ scores on
instructional quality do not correlate with human
ratings, and they fail to extract relevant utterances
from classroom transcripts (Wang and Demszky,
2023). Also, they overestimate instructional quality
and struggle to summarize it (Xu et al., 2024). We
hypothesize that the discrepancy between LLMs’
success in assessing coherence and failure to ana-
lyze instructional quality in classrooms could lie in
the formulation of LLMs’ tasks (Tran et al., 2024).
Our goal is to evaluate the generalizability of task
formulation strategies previously used to assess
the coherence of short documents with LLMs to
evaluate classroom discussions holistically:

RQ1 Do the task formulation strategies that work
well for the coherence of short documents gen-
eralize to longer classroom discussions?

RQ2 Do the effective strategies from RQ1 gener-
alize across subject domains (math and sci-
ence)?

Our contributions are as follows:
1. We demonstrate that task formulation strate-

gies in prior work can generalize to extended
discussions, but the generalization across sub-
ject domains remains challenging.

2. We show that the strategies result in a reduc-
tion of GPT-4o’s overestimation bias.

3. A closer look at the results suggests that while
GPT-4o extracts utterances relevant to aspects
of discussion coherence, it sometimes uses
them differently from humans when justify-
ing their answers, which raises concerns in
practical real-world applications.

2 Related Work

2.1 Automated assessment of instructional
quality

Prior research on automated evaluation of instruc-
tional quality in classroom discussions focused
on detecting specific teacher or student discourse
“moves” that characterize high-quality instruction
using human-annotated corpora. Such “moves” are
defined at the utterance-level and include building
on student responses (Bywater et al., 2019; Dem-
szky et al., 2021; Nazaretsky et al., 2023; Suresh
et al., 2022; Tran et al., 2023), asking questions
(Alic et al., 2022; Feldhus et al., 2024; Jensen et al.,
2021; Tran et al., 2023), and giving supportive state-

ments (Hunkins et al., 2022). These models are
used to give feedback to teachers, showing, for
example, the frequency of the target behavior in
the discussion (Demszky et al., 2023; Jensen et al.,
2020; Mikeska et al., 2024; Jensen et al., 2021).

More recently, LLMs have been used for holis-
tic assessment of classroom interactions, includ-
ing how effectively teachers support cognitive and
language development (Whitehill and LoCasale-
Crouch, 2024), to what extent classroom inter-
actions exhibit encouragement and warmth (Hou
et al., 2024), and how well tutors respond to stu-
dents’ math errors (Kakarla et al., 2024). However,
LLMs still face challenges. For instance, ChatGPT
(gpt-3.5-turbo) has low correlations with human
evaluation and often fails to generate insightful
and relevant suggestions for improvement (Wang
and Demszky, 2023). Moreover, it overestimates
instructional quality, and using its extractive sum-
maries as inputs for the classification of instruction
practices does not improve the results (Xu et al.,
2024). Tran et al. (2024) have explored different
task formulations to improve LLM’s assessment
of instructional quality, but its best-performing
method is only compatible with the metrics based
on the number of utterances satisfying certain crite-
ria. We investigate prompting and task formulation
strategies that are informed by recent LLM litera-
ture and can be applied to do a holistic coherence
evaluation of a classroom discussion.

2.2 Automated assessment of coherence
Prior work on evaluating the coherence of a
text benefited from deep neural networks, includ-
ing long short-term memory (Mesgar and Strube,
2018), rational graph convolutional networks (Mes-
gar et al., 2021), and pretrained language models
(Duari and Bhatnagar, 2022; Jeon and Strube, 2022;
Zhong et al., 2022). However, these methods con-
sidered local coherence and were evaluated on tasks
that could exploit it such as judging coherent and
incoherent sentence pairs (Duari and Bhatnagar,
2022; Mesgar et al., 2021; Zhong et al., 2022) and
short source-summary pairs (Mesgar et al., 2021;
Zhong et al., 2022). BBScore (Sheng et al., 2024)
captures global text coherence but treats utterances
as a sequential process. This is not always the case
for classroom discussions. Indeed, local coherence
based on similarities of adjacent utterances had
low correlations with human ratings of classroom
discourse coherence (Boyle and Crossley, 2024).

LLMs enable a more holistic evaluation of coher-
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ence without modeling local coherence. Naismith
et al. (2023) evaluated the coherence of pieces of
writing in an English language test used for higher-
education admissions, based on the Common Euro-
pean Framework of Reference for Languages. Liu
et al. (2023) proposed using an automatic Chain of
Thought (Auto CoT) to generate steps for LLMs
to follow when evaluating coherence. Liusie et al.
(2024) showed prompting LLMs to compare texts
is more effective than prompting them to assign
numerical scores. However, these studies used rel-
atively short texts, such as essays and summaries.
We incorporate their insights and evaluate the meth-
ods with long, multi-party classroom discussions.

3 Data

We used the dataset collected in previous studies
Mikeska et al. (2023, 2025), where elementary
pre-service teachers facilitated an argumentation-
focused discussion in mathematics or science with
five fictional student avatars controlled by a human
actor using voice modulation software. The human
actor is instructed to reflect each avatar’s person-
ality, background, and interest (e.g., “Emily is an
introverted, studious, independent, serious, and lit-
eral child.”) given by the researchers. Science
discussions involved the Mystery Powder (MP)
task (Mikeska et al., 2021), where students con-
structed arguments about the identity of a mystery
powder based on its properties such as color, tex-
ture, and weight, and determined which properties
were useful to identify it. The mathematics discus-
sions focused on the Ordering Fractions (OF) task
(Howell et al., 2021), where the learning goal was
to evaluate and contrast strategies for ordering frac-
tions with varying numerators and denominators.
The teachers were given handouts on the simulated
environment, the students’ work before the discus-
sion, and the goal of the discussion a week prior
to the discussion. The teachers had up to 20 min-
utes to lead the discussion. Each discussion was
video-recorded, transcribed, and timestamped for
manual evaluation. One teacher facilitated at most
two discussions in the dataset. Table 1 shows snip-
pets of example transcripts from the MP task; Table
2 shows the descriptive statistics of the datasets.

The rubrics for human scoring have five dimen-
sions, each with 2-3 supporting indicators (GO
Discuss Project, 2021). Depending on the data
collection phase, dimensions have three or four
discrete levels and indicators are continuous be-

tween 1-3 or 1-4. This study focuses on Indicator
2A (“Overall Coherence of the Discussion”) in Di-
mension 2 (“Facilitating a Coherent and Connected
Discussion”). This indicator measures if a teacher
leads a well-organized discussion focused on the
content and uses the time allotted to address the
given learning goal (the full rubrics are in Appendix
A). Raters were current and retired K-12 teachers
in STEM (Nazaretsky et al., 2023). About 27%
of the discussions were double-scored; the intra-
class correlations (Shrout and Fleiss, 1979) were
0.630 (MP) and 0.588 (OF). Both have moderate
reliability (Koo and Li, 2016), commensurate with
other dimensions (Ilagan et al., 2024; Nazaretsky
et al., 2023) and other publicly available data on
coherence (Gopalakrishnan et al., 2019). Raters
optionally provided quotes to justify their scores.

We map a score x on the 1-4 scale to 1-3 by
2
3x+ 1

3 . The score distributions are in Figure 1.

Figure 1: Score histograms in MP (left) and OF (right).

4 Experiment Setup

The MP and OF datasets were used differently. We
used the MP data to develop prompts and select
promising strategies; the OF data was used to test
the generalization of the MP-based selections to
a new domain (RQ2). For the MP data, we cre-
ated four sets: five discussions used for reference
(Refs), two development sets (Dev1 and Dev2), and
a test set. The test set (n = 36) was the same as
in prior work modeling other rubric dimensions
(Ilagan et al., 2024; Nazaretsky et al., 2023). Using
all the non-test data, we identified the five Refs
discussions (see Section 5.2), then randomly chose
71 development discussions from the remainder of
the data, randomizing by teachers (all discussions
by the same teacher were in the same partition).
We then divided the set of 71 discussions into two
groups (35 and 36): Dev1 was used for experimen-
tation with prompts, and Dev2 was used to select
the most promising strategies for final testing on
the MP and OF test data. For the OF dataset, we
first sampled, by teacher, half the discussions for
the test set (n = 106, from 71 teachers) and then
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Coherent (human rating = 2.6) Incoherent (human rating = 1.4)
Teacher: How about we all take about a minute to look at our own
shared workspaces? ... just talk to your partner next to you about
things you want to bring to the discussion about how you got to your
answer, your claim, your reasoning, and just think of some evidence.
So that way, when someone has a question, you can answer that
question because in this discussion, it’s going to be all of you having
more of a discussion, and me just listening and answering questions
here and there. Does that sound good?
Will: Yeah. Okay.
...
Teacher: ... I’m going to let you take the lead like I said, so we have
to make sure that we don’t talk over each other and that once, and I
don’t have to have a conversation at all. ... So the conversation can go,
Carlos to Jayla. Mina can talk to Jayla. You don’t have to raise your
hand, and you don’t have to go in order. ... I just want to make sure
that everyone understands and make sure everyone has the right
answer. ...
Carlos: Well, my question is for Mina and Will, and I was just
wondering why you think that it’s flour?
Will: Well, we think that it’s flour because we looked at the texture
and the color and the weight, and they all matched flour. So it was
pretty obvious.
...
Teacher: Sometimes it’s easier to learn from classmates. It’s
sometimes easier to learn from your classmates than a teacher
teaching and lecturing you, huh?
Emily: Yeah. I thought everyone had really good ideas. [End of
discussion]

Teacher: Today we’re going to
review what we’ve been doing
for the last couple of classes. We
are going to be working on
identifying a substance based on
its properties. Can anybody tell
me what properties are? All
right, Mina, what are properties?
Mina: ... the properties are ...
like what the powder has.
Teacher: Right, like maybe
characteristics?
...
Teacher: When we’re looking at
properties, you might think of a
bear might have different
properties than a snake. ... A
bear has fur, a snake has scales.
...
Teacher: Yeah. What about you
Jayla and Emily? You still think
it’s baking soda?
Jayla: Yeah.
Teacher: Well, you guys are
right. It’s baking soda. [End of
discussion]

Table 1: Snippets of a coherent discussion and an incoherent one from the MP task.

Mystery Powder (MP) Ordering Fractions (OF)
# Transcripts 157 241
# Teachers 81 142
Av. # Utterances per Transcript 97.6 99.5
Av. # Words per Transcript 1919.6 2090.2
Av. Duration (mins) 14.5 16.7
Av. Coherence score 2.05 1.93

Table 2: Descriptive statistics of the datasets.

chose five discussions from the rest for the OF Refs
set.

We test our method with GPT-4o on Azure Ope-
nAI,1 setting the temperature to 0 to reduce random-
ness. We evaluated GPT-4o predictions vs human
scores using Pearson and Spearman correlations
and mean squared error (MSE). For double-rated

1https://learn.microsoft.com/en-us/azure/
ai-services/openai/concepts/models

discussions, we averaged the two scores.

5 Task formulation strategies

We describe how we design our prompts. The ac-
tual prompts are in Appendix B.

5.1 Prompts to assess a single discussion

NAIVE BASELINE We prompt GPT-4o to score
discussion coherence on a scale of 1-3 based on
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the rubric given to human raters. This rubric imple-
ments a score-level characterization strategy that
describes what to expect to see in a discussion at
a given score level. In addition, we give the back-
ground information on the topic, the learning goal
of the classroom discussion, and the names of the
student avatars. We add a new characteristic based
on the justifications provided by the raters: They
often pointed out that a coherent discussion had
an introduction with clear and detailed learning
goals and expectations. NAIVE BASELINE imple-
ments CoT (Wei et al., 2022), instructing GPT-4o
to output the reasoning behind its score.

STRUCTURED COT (ST. COT) The rubric in the
NAIVE BASELINE prompt characterizes highly co-
herent and incoherent discussions. We hypothesize
that this design may prevent GPT-4o from under-
standing the aspects of coherence, each of which
can be present or absent, or done well or badly, in a
given discussion. We summarize these aspects into
six bullet points and instruct GPT-4o to consider
them when deriving a holistic score. This aspect-
based rubric resembles the CoT prompt used to
evaluate the coherence of shorter texts (Liu et al.,
2023).

QUOTES Wang and Demszky (2023) have shown
that LLMs cannot extract utterances relevant to in-
structional quality from classroom transcripts and
that instructing LLMs to generate reasoning does
not improve the correlation with human graders.
On the other hand, Naismith et al. (2023) have
found that LLMs cite examples from essays that
contribute to coherence and that asking for ratio-
nale increases the correlation with humans. This
line of work implies that the evaluation by LLMs
can be improved if they can quote the right ex-
amples. Thus, we ask GPT-4o to provide quotes
supporting the rating in CoT.

NEGATIVE FOCUS Prior work has shown that
LLMs overestimate instructional quality (Xu et al.,
2024). This tendency, known as leniency bias
(Thakur et al., 2024), is observed when LLMs act as
a judge even outside of education. Li et al. (2024)
achieved better alignment between LLM and hu-
man judgment by training LLMs to generate a crit-
ical review before the final judgment. Since we
use GPT-4o without fine-tuning, we ask GPT-4o
to “conclude to what extent (mostly, somewhat, or
seldom) the teacher failed to shape a coherent dis-
cussion and build ideas toward a learning goal” to
make GPT-4o’s reasoning critical.

5.2 Comparison between discussions

The comparison strategy is motivated by the find-
ing that LLMs are better at comparison than as-
signing numerical scores, including for evaluating
the coherence of summaries (Liusie et al., 2024).
However, we need O(N2) comparisons to compare
all discussions and fully rank them. To reduce the
cost, we compare a discussion with a small set of
reference discussions. Reference discussions (re-
ferred to as Refs in Section 4) are chosen so that
they (1) are not in the test set, (2) are rated by two
raters, and (3) have an average score between 1.7
and 2.3 on the scale of 1-3 (i.e., middle-level perfor-
mance). Of all the discussions that fit the criteria,
we picked five with the smallest difference in the
ratings between the two raters. The number five
is based on the literature on the evaluation of auto-
mated summaries that found the comparison to 4-5
reference summaries was optimal (Nenkova and
Passonneau, 2004). For each reference discussion,
we ask the LLM whether the discussion-to-score
is better/worse than or similar to the reference. If
the discussion-to-score is better than the reference,
we assign a score of 3; if it is similar – 2; worse –
1. For the final continuous score, we average the
scores across the reference discussions.

We incorporate the comparison paradigm into
the NAIVE BASELINE prompt and the best-
performing formulation strategy for a single discus-
sion on Dev 2 by changing the LLM’s task from
rating to comparison. The definition of coherence
in NAIVE BASELINE stays the same, except that
it is now characterized by highly coherent, moder-
ately coherent, and incoherent, instead of the score
levels. We call this NAIVE BASELINE COMPARI-
SON. Also, we apply the comparison formulation
to the CoT outputs of the best strategy for a single
discussion on Dev 2 because the reasoning pro-
vided by CoT might be a good summary of the
degree of coherence of a discussion. We call this
<STRATEGY NAME> (2 STEP), where <strategy
name> is determined in the next section.

6 Results on MP dev data (Dev 2)

The top pane of Table 3 shows the results for single-
discussion strategies on the MP Dev 2 set. ST. COT
has the lowest MSE. QUOTES has the best Pear-
son correlation but has the worst MSE. NEGATIVE

FOCUS trails behind the other methods. Thus, we
combine the two most promising strategies, ST.
COT and QUOTES. The combination shows the
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Single discussion strategies Pearson Spearman MSE
NAIVE BASELINE .503 (.458-.542) .447 (.405-.495) .533 (.516-.558)
ST. COT .480 (.405-.580) .499 (.426-.594) .335 (.276-.373)
QUOTES .542 (.491-.608) .497 (.443-.557) .598 (.564-.620)
NEGATIVE FOCUS .469 (.436-.504) .478 (.456-.510) .483 (.459-.504)
ST. COT+QUOTES .512 (.468-.567) .565 (.526-.629) .359 (.329-.387)
Comparison strategies Pearson Spearman MSE
NAIVE BASELINE COMPARISON .584 (.562-.604) .607 (.587-.631) .326 (.316-.334)
ST. COT+QUOTES COMPARISON .555 (.538-.572) .596 (.557-.625) .496 (.456-.549)
ST. COT+QUOTES (2-STEP) .538 (.505-.590) .550 (.506-.628) .352 (.316-.399)

Table 3: Pearson and Spearman correlations (higher numbers are better) and MSE (lower numbers are better) for the
single-discussion formulations (top) and the comparison formulations (bottom) on Dev 2. We report an average and
a range of five runs. The best result is in bold, and the second-best result is underlined.

MP (n = 36) OF (n = 106)
Strategies Pearson Spearman MSE Pearson Spearman MSE

NAIVE BASELINE
.574 .578 .493 .167 .139 .754

(.548-.599) (.547-.611) (.481-.504) (.140-.210) (.110-.183) (.715-.788)
ST. COT +
QUOTES

.663 .607 .272 .416 .420 .405
(.592-.730) (.541-.692) (.233-.317) (.389-.447) (.394-.451) (.379-.439)

NAIVE BASELINE

COMPARISON

.708 .702 .236 .308 .328 .523
(.686-.732) (.664-.736) (.219-.252) (.280-.341) (.295-.365) (.507-.553)

Table 4: Results on test sets; reported are the average and range of five runs. The best performance is in bold.

best or second-best performance and outperforms
the NAIVE BASELINE on all metrics. Therefore,
we create ST. COT+QUOTES (2 STEP) as a 2-step
comparison strategy.

The bottom pane of Table 3 shows the results
for comparison strategies. The results support the
effectiveness of comparing the discussion-to-be-
scored with references. The comparison versions
of NAIVE BASELINE and ST. COT+QUOTES per-
form better than their single-discussion versions on
all metrics, both in terms of average performance
and stability (narrower range), apart from MSE
for ST. COT+QUOTES. The results do not sup-
port the two-step formulation. This implies that
the description of a discussion does not capture the
information necessary for the comparison, consis-
tently with prior literature (Xu et al., 2024).

For the final evaluation of test data, we select
NAIVE BASELINE COMPARISON, as it showed the
best performance on Dev 2. We also evaluate the
ST. COT+QUOTES single-discussion formulation,
since it performs best in the more resource-lean
scenario without reference discussions. The NAIVE

BASELINE scoring scenario will also be evaluated
on test data to check whether gains over baseline
are replicated in the test results.

7 Final test results

Table 4 shows the results on the test sets of MP and
OF. To answer RQ1 (generalizability of strategies
to classroom discussion), we compare the rows.
Our results support the generalization of the strate-
gies evaluated on short text to long classroom dis-
cussions: Both ST. COT+QUOTES and NAIVE

BASELINE COMPARISON outperformed NAIVE

BASELINE on all metrics. RQ2 (generalizability
across subject domains) is answered by compar-
ing the columns. We observe that the performance
on the OF data is generally much worse, across
formulations and metrics, than on MP data.

We further analyze how the task formulation
strategies address the limitations of LLMs in as-
sessing instructional quality found in the literature.

Overestimation of quality One of the limitations
is that LLMs tend to overestimate the instructional
quality (Xu et al., 2024). To check this tendency,
we plot GPT-4o predictions vs human scores in
Figure 2, using the runs with the median MSE out
of five. The NAIVE BASELINE exhibits overestima-
tion, as most of the points are above the diagonal;
the median scores are 2.75 (MP) and 2.5 (OF). ST.
COT+QUOTES reduces the median scores to 2.5
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Figure 2: Scatter plots of GPT-4o predictions vs human scores. The top row is MP (Dev 2), and the bottom row is
OF (discussions not in Refs or test set). The points above the diagonal are over-estimations by GPT-4o.

(MP) and 2 (OF). NAIVE BASELINE COMPARISON

further pushes down the scores; >60% of the discus-
sions receive 2±0.2 points for MP, and >90% of the
discussions receive 1.6± 0.6 points for OF. Thus,
our results confirm the over-scoring by NAIVE

BASELINE observed in the literature and suggest
that the ST. COT+QUOTES and NAIVE BASELINE

COMPARISON formulations help reduce it.

Inability to provide relevant quotes Another
limitation is that many quotes provided by LLMs
are unfaithful or irrelevant (Wang and Demszky,
2023). Therefore, we investigated the quotes pro-
duced by ST. COT+QUOTES, using the same
runs as above. We sampled six discussions (three
MP, three OF) with at least 50 words in their hu-
man justifications. ST. COT+QUOTES provided
more quotes than humans: 4.33 vs 1.83 per dis-
cussion, on average. All quotes given by ST.
COT+QUOTES exist in the discussions. In five
out of six discussions, the system picked at least
one quote also picked by a human. Generally, the
system picked quotes relevant to the specific as-
pect; see Table 5 for example output. However,
the interpretations of the quote were not always
aligned. For example, “Do you all feel like you
learned something from this?” was cited as jus-
tification for a critical evaluation of the teacher’s
conclusion by a human rater (“Conclusion is mini-
mal”), whereas the system picked the same quote
to justify the evaluation “The teacher summarized
important conclusions consistently throughout the
discussion.” Thus, while the system’s quotes show

the grounding of the aspects in the discussion, they
do not consistently support the evaluation of the
aspect. Other five discussions are in Appendix C.

8 Discussion

Our results show the promise for generalizability of
task formulation strategies for the evaluation of the
coherence of short text to the evaluation of teachers’
ability to lead coherent discussions. Further analy-
ses suggest that these strategies address previously
reported challenges: overestimation bias (Xu et al.,
2024) and the inability to extract relevant parts of
discussions (Wang and Demszky, 2023). However,
we also highlight two challenges in deploying GPT-
4o in classroom discussion assessment.

The first challenge is the generalizability across
subject domains (RQ2). This would be a bottle-
neck in real-world applications because it implies
that we should tune prompts for every subject, in-
creasing cost and time and making it difficult to
generalize without a decent-sized corpus. More-
over, inconsistent scoring across subjects threatens
fairness in professional development and evalua-
tion of teachers. For instance, if we used GPT-4o’s
assessment to determine the need for professional
development, teachers in the more mis-scored sub-
jects (math in our example) would suffer from more
mis-allocation of resources such as coaching ses-
sions than teachers in other subjects even when
teaching practice is comparable.

The second challenge is the misalignment in the
interpretation of discussions and quotes between
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Human

The discussion is mostly organized, purposeful, and focused on the content at hand. The
teacher presents the task and sets expectations for the discussion. She systematically moves
from group to group, sharing key ideas. Transitions are timely and appropriate. Conclusion
is minimal (“Yeah, you did. And everyone had good methods. Do you all feel like you
learned something from this? Sometimes it’s easier to learn from classmates. It’s sometimes
easier to learn from your classmates than a teacher teaching and lecturing you, huh?")

GPT

1. The teacher did not state a clear, detailed learning goal and expectation at the beginning.
The teacher mentioned that the students would discuss their findings and answer questions,
but did not explicitly state the learning goal of constructing an argument based on properties.
For example, the teacher said, ‘in this discussion, it’s going to be all of you having more of
a discussion, and me just listening and answering questions here and there.’
2. The teacher moved between groups of ideas in a timely manner with apparent rationale.
The teacher facilitated the discussion by asking each group to share their findings and then
prompted students to ask questions, which kept the discussion focused and organized. For
example, ‘All right. So, let’s just pick one person from our group... Mina and Will, go ahead
and pick one person to share what your claim was, what your evidence was and what your
answer was.’
3. The teacher instructed with deliberation, ensuring that students understood the process
and the importance of respectful conversation. For example, ‘I’m going to let you take the
lead like I said, so we have to make sure that we don’t talk over each other.’
4. The teacher introduced well-chosen new ideas that benefited student understanding at
relevant moments. For example, the teacher clarified the importance of checking all
properties but also understanding which ones are most useful, ‘Sometimes in science, and
like Carlos said, Carlos did check the weight. He just realized that the weight was not as
useful.’
5. The teacher summarized important conclusions consistently throughout the discussion.
For example, ‘Does everyone understand how Carlos did that?’ and ‘Do you all feel like
you learned something from this?’
6. The teacher connected a series of ideas to the learning goal by guiding students to
understand which properties were most useful in identifying the mystery powder. For
example, ‘Carlos, I’m reading your answer. Could you maybe tell us maybe one of the
properties that aren’t that important? Maybe that would help Mina and Will.’
Overall, the discussion was coherent and well-facilitated, but the initial learning goal could
have been stated more clearly.

Table 5: Human evaluation and STRUCTURED COT + QUOTES (GPT) output for the coherent example in Table
1. The green and red texts represent agreement and disagreement between the human and STRUCTURED COT +
QUOTES, respectively. The blue texts are quotes from the discussion appearing in both evaluations.

humans and GPT-4o. This is concerning when we
base feedback for teachers on GPT-4o’s outputs be-
cause it would give teachers incorrect action items
or miss opportunities for improvement. In the ex-
ample in Table 5, the human evaluation suggests
the conclusion is the area for improvement; the
teacher could have elaborated more than just say-
ing “Do you all feel like you learned something
from this? ...” However, ST. COT+QUOTES identi-
fies it as a good conclusion. Instead, it recommends
“explicitly stating the learning goal of constructing
an argument based on properties,” which was al-

ready achieved according to the human evaluation.
This misalignment could undermine the validity
and usability of GPT-4o in generating something
more than scores, including feedback. A poten-
tial remedy could be retrieving relevant pre-defined
human-written feedback based on the score, but it
cannot fully utilize LLMs’ advantages in flexibility
and personalization. This motivates future work on
in-depth analysis of human and LLM quotes and
on improving the evaluation of quotes selected by
GPT-4o.
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9 Conclusion

We evaluated task formulation strategies to assess
the coherence of classroom discussions. Our re-
sults show that strategies previously evaluated for
assessing the coherence of short text, such as essays
or summaries, successfully generalize to assess-
ing much longer texts—transcripts of 20-minute-
long simulated classroom discussions. We reveal
that these strategies help GPT-4o tackle the limita-
tions pointed by the literature: overestimation of
instructional quality and failure to quote relevant
utterances from discussions. However, they do not
show cross-domain generalization even within the
same simulated setting. Our study serves as a step
toward supporting teachers’ development with au-
tomated personalized feedback by providing accu-
rate automated evaluation of the target skill, though
challenges still remain.

Limitations

We acknowledge the limitations of our evaluation.
First, the generalizability of our findings should
be explored with other LLMs and datasets. Our
results demonstrate some generalizability of coher-
ence evaluation methods from other genres (essays
and summaries) to our context but also show that
generalization across STEM subjects within the
same simulated classroom context is not straight-
forward since performance is lower on OF than
MP. Improving generalization across content do-
mains is our most immediate goal. In addition, we
implicitly show the generalizability across models
because the prior work our prompts are based on
uses models different from ours: GPT-4 for ST.
COT (Liu et al., 2023) and QUOTES (NAISMITH

ET AL., 2023) and open-source LLMs, including
FlanT5 and Llama2, for the comparison strategy
(Liusie et al., 2024). Although our results imply
that the strategies in this paper are potentially gener-
alizable to other models, further experiments would
be necessary to verify it.

Second, our implementation of the comparison
formulation compares discussions only with moder-
ately coherent reference discussions and results in
excessive lowering of scores. We leave it to future
work to explore strategies for selecting reference
discussions that could help mitigate this excessive
correction of over-scoring.

Third, human quotes are not the “gold standard”
since the raters were asked to provide some exam-
ples from the discussion (see Section 3); there are

potentially other good quotes that weren’t selected.
The analysis in Section 7 motivates future work
to improve the evaluation of quotes selected by
GPT-4o.

Finally, our experiments are done only in simu-
lated classrooms. These are important for scaling
up practice opportunities by allowing teachers to
repeat the cycle of practice and reflection on their
teaching without harming real students by their
mistakes (Dalinger et al., 2020; Dieker et al., 2014).
Generalizability to real classrooms with real stu-
dents is also important. However, since our goal
of scaling up feedback aligns better with the ad-
vantages of simulated classrooms, we prioritized
this exploration on data from simulated discussions,
leaving exploration of real-life discussions to future
work.

Ethical considerations

We would like to address potential ethical concerns.
First, giving student names and the whole discus-
sions to GPT-4o is not a breach of privacy. In
this work, we are not using data from real elemen-
tary students. Instead, all the data comes from
responses from elementary student avatars in a sim-
ulated classroom. The student avatars are operated
by an adult, called a simulation specialist, who is
trained to use specialized equipment (e.g., game
controllers, voice modulation software, etc.) to
sound, move, and respond like upper elementary
students (cf. Section 3). Each teacher participant
signed a consent form that provides their written
approval for the research use of the video-recorded
discussion and who it can and cannot be shared
with. Video recordings are only shared outside of
our research team if the participant has consented
to that use. For this study, no video recordings were
used; we used de-identified transcripts for analyses.

Second, LLMs could be susceptible to their al-
gorithmic biases. Our work addresses bias con-
cerns by showing how to reduce overestimation
(bias against low-performing teachers) in Section 7.
The model’s explanations could be biased, too, and
might not be pedagogically sound (cf. Section 7).
As discussed above, instead of giving teachers the
model’s explanations as they are as feedback, we
plan to use the scores and outputs to provide the
teachers with feedback by, for example, retrieving
relevant pre-defined human-written feedback.

The costs of using GPT-4o and collecting and
scoring discussion data for model development
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could also be a barrier to applying our results to the
real world. However, the best performing method,
STRUCTURED COT + QUOTES, is zero-shot and
does not require any reference discussions. Thus,
it works well in resource-constrained settings. The
price of GPT-4o is $0.00250 / 1K input tokens
and $0.01000 / 1K output tokens as of writing.
Since the average number of words in discussions
is around 2K and the output is usually no more
than 500 words (cf. Tables 2 and 5), the cost per
discussion is less than $0.1. Therefore, our method
scales well at low cost.
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Level Label Description

1 Beginning
Discussion has a weak
sense of organization,
purpose, and focus.

2 Developing

Discussion is somewhat
organized, purposeful, and
focused on the content at
hand. AND/OR Portions of
the discussion are strongly
variable with respect to
organization, purpose, and
focus.

3 Well-prepared

Discussion is mostly
organized, purposeful, and
focused on the content at
hand.

4 Commendable

Discussion is organized,
purposeful, and focused on
the content at hand. AND
The teacher uses the time
allotted so that the learning
goal is achieved.

Table 6: Rubrics for Indicator 2A (“Overall Coherence
of the Discussion”) (GO Discuss Project, 2021)

and the observation notes in Table 7 (GO Discuss
Project, 2021).

B LLM Prompts

B.1 Naive baseline
The prompt used as a baseline is the following:

Following is a discussion about <task in-
formation>. <task learning goal> <stu-
dent information> <rating instruction>
<coherence definition>

A score of 3 is characterized by <score 3
characteristics>

A score of 2 is characterized by <score 2
characteristics>

A score of 1 is characterized by <score 1
characteristics>

Please output your score and reasoning in
the following JSON format: {“reason”:
“...”, “score”: “a float number between
1-3”}.

<the discussion to score>

<task information> and <task learning goal> are
dependent on the dataset. For MP, <task informa-

For Indicator 2a, only consider evidence of
organization or planning that is connected to
the intended student learning goal.
A score of 4 is characterized by a strong degree
of coherence around the content and ideas that
are discussed and the teacher’s successful use
of the available time during the discussion to
address the learning goal.
A score of 3 is characterized by a strong degree
of coherence around the content and ideas that
are discussed. For example:
• Transitions between ideas and/or groups are
timely and make sense.
• Instruction takes place in ways that suggest
deliberation on the part of the teacher.
• New ideas that are introduced are well
chosen and occur at relevant moments.
Note that you can score a 3 even if the teacher
does not achieve the learning goal by the end of
the discussion.
A score of 2 is characterized by a variable
degree of coherence around the content and
ideas that are discussed. For example, different
portions of the discussion might be scored as a
1 or 3 if viewed separately. At least some
portion of the discussion is highly coherent.
A score of 1 is characterized by a lack of
coherence around the content and ideas that are
discussed. For example:
• Discussion has a weak sense of purpose and
trajectory.
• Teacher moves between ideas abruptly and
without apparent rationale.
• Teacher introduces new ideas that have
limited potential for benefiting student
understanding.
• Important conclusions may be left unstated
or inconsistently summarized.
• Discussion may be characterized as a series
of unconnected ideas taken up one at a time.

Table 7: The observation notes provided to human raters
(GO Discuss Project, 2021).

tion> is “identifying a mystery powder in a sci-
ence classroom”, and <task learning goal> is “The
learning goal is that students will construct an
argument about the identity of a mystery powder
based on its properties and come to a consensus
about which properties are most useful in identify-
ing the unknown powder.” For OP, <task informa-
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tion> is “ordering fractions in a math classroom”,
and <task learning goal> is “The learning goal is
that students will evaluate, justify, compare, and
contrast strategies for ordering fractions with dif-
ferent numerators and denominators.” These de-
scriptions are taken from the handouts given to the
teachers in the dataset before they facilitate discus-
sions (Mikeska et al., 2023, 2025).

<student information> is “Mina, Will, Emily,
Jayla, and Carlos are students.”. <rating instruc-
tion> is “Your task is to rate the discussion based
on its coherence on a scale of 1-3.” <coherence
definition> is “To be coherent, a discussion must be
organized, purposeful, and focused on the content
at hand, and the teacher must use the time allotted
so that the learning goal is achieved.”

<score 3 characteristics>: a strong degree of
coherence around the content and ideas that are
discussed and the teacher’s successful use of the
available time during the discussion to address the
learning goal. For example,

- The teacher states a clear, detailed learn-
ing goal and expectation at the begin-
ning.

- Transitions between ideas and/or groups
are timely and make sense.

- Instruction takes place in ways that
suggest deliberation on the part of the
teacher.

- New ideas that are introduced are well
chosen and occur at relevant moments.

<score 2 characteristics>: a variable degree of
coherence around the content and ideas that are
discussed. For example, different portions of the
discussion might be scored as a 1 or 3 if viewed
separately. At least some portions of the discussion
are highly coherent.

<score 1 characteristics>: a lack of coherence
around the content and ideas that are discussed. For
example:

- Discussion has a weak sense of purpose
and trajectory.

- Teacher moves between ideas abruptly
and without apparent rationale.

- Teacher introduces new ideas that have
limited potential for benefiting student
understanding.

- Important conclusions may be left un-
stated or inconsistently summarized.

- Discussion may be characterized as a
series of unconnected ideas taken up one
at a time.

These score characteristics are adopted from the
observation notes in Table 7. Only the discussion
is sent as a user input to GPT-4o, and the rest is
sent as a system input.

B.2 Prompts for the single discussion
strategies

Only the discussion is sent as a user input to GPT-
4o, the rest is sent as a system input.

STRUCTURED COT

Following is a discussion about <task in-
formation>. <task learning goal> <stu-
dent information> <rating instruction>
To do so, first, read the discussion care-
fully. Then, describe whether the teacher
succeeded in doing or failed to do each
of the following:

<aspects of coherence>

In the end, rate the discussion on a scale
of 1-3.

Please output your description and score
in the following JSON format: {“descrip-
tion”: “1. The teacher ...”, “score”: “a
float number between 1-3”}.

<the discussion to score>

<aspects of coherence>:

1. state a clear, detailed learning goal and
expectation at the beginning,

2. move between (groups of) ideas
timely with apparent rationale,

3. instruct with deliberation,

4. introduce well-chosen new ideas that
benefit student understanding at relevant
moments,

5. summarize important conclusions con-
sistently throughout the discussion, and

6. connect a series of ideas to the learn-
ing goal.
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QUOTES The prompts is the same as NAIVE

BASELINE, with the addition of the following right
before "Please output your score...":

When you rate the discussion, provide
quotes from it in your reasoning to sup-
port your score.

NEGATIVE FOCUS The prompts is the same as
NAIVE BASELINE, with the addition of the follow-
ing right before "Please output your score...":

When you rate the discussion, provide
your reasoning and conclude to what ex-
tent (mostly, somewhat or seldom) the
teacher failed to shape a coherent discus-
sion and build ideas toward the learning
goal.

STRUCTURED COT + QUOTES prompt The
prompts is the same as STRUCTURED COT, with
the addition of the following right before "In the
end, rate...":

When you describe each of the above as-
pects, provide quotes from the discussion
in your reasoning to support your score.

B.3 Prompts for the comparison strategies
Only the part starting from “Here’s the first discus-
sion;” is sent as a user input, the rest is sent as a
system input. We optimized the ordering of the
discussions for each prompts using Dev 1 because
it impacts the decisions (Liusie et al., 2024).

NAIVE COMPARISON BASELINE

Following is a discussion about <task in-
formation> <task learning goal> <stu-
dent information> <comparison instruc-
tion> <coherence definition>

A highly coherent discussion is charac-
terized by <score 3 characteristics>

A moderately coherent discussion is char-
acterized by <score 2 characteristics>

An incoherent discussion is character-
ized by <score 1 characteristics>

You may say that the first discussion has
a similar coherence to the second one.

Please output your decision and reason-
ing in the following JSON format: {“rea-
son”: “...”, “The first discussion is”:
“similar/better/worse”}.

Here’s the first discussion;

<a reference discussion>

Here’s the second discussion

<the discussion to score>

<comparison instruction> is “Your task is to deter-
mine whether the first discussion is better or worse
than the second one based on their coherence.”

ST. COT+QUOTES COMPARISON

Following are two discussions about
<task information> <task learning goal>
<student information> <comparison in-
struction> To do so, first, read both dis-
cussions carefully. Then, for each dis-
cussion, describe whether the teachers
succeeded in doing or failed to do each
of the following:

<aspects of coherence>

When you describe each of the above
aspects, provide quotes from the discus-
sions in your reasoning to support your
comparison.

In the end, decide whether the first dis-
cussion is better or worse than the second
one. You may say that the first discus-
sion has a similar coherence to the sec-
ond one.

Please output your decision and rea-
soning in the following JSON format:
{“reason”: “1. In the first discussion,
...”, “The first discussion is”: “simi-
lar/better/worse”}.

Here’s the first discussion;

<the discussion to score>

Here’s the second discussion

<a reference discussion>

ST. COT+QUOTES COMPARISON - TWO STEP
Step 1 prompt is the following:

Following is a discussion about <task in-
formation>. <task learning goal> <stu-
dent information> Your task is to de-
scribe the coherence of the discussion.
To do so, first, read the discussion care-
fully. Then, describe whether the teacher
succeeded in doing or failed to do each
of the following:
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<aspects of coherence>

When you describe each of the above as-
pects, provide quotes from the discussion
to support your description.

Step 2 prompt is the following:

Following are the evaluations of two
different classroom discussions about
<task information> <comparison instruc-
tion> To do so, first, read each aspect in
both evaluations carefully, including the
quotes in the evaluations. In the end, de-
cide whether the first discussion is better
or worse than the second one. You may
say that the first discussion has a similar
coherence to the second one.

Please output your decision and reason-
ing in the following JSON format: {“rea-
son”: “...”, “The first discussion is”:
“similar/better/worse”}.

Here’s the evaluation of the first discus-
sion;

<the output of step 1 for a reference dis-
cussion>

Here’s the evaluation of the second dis-
cussion;

<the output of step 1 for the discussion
to score>

C Additional comparisons between
human and ST. COT+QUOTES

Tables 8-12 have additional comparisons be-
tween justifications by human raters and ST.
COT+QUOTES.
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Human

The discussion was mostly organized with portions that were harder to follow. At the
beginning of the lesson, the teacher said (e.g., today we’re going to look at everyone’s claim
from our experiment. And, I want us all to work on constructing, defending and critiquing
ours and others’ claims) and then during the discussion, references the properties chart to
help guide the students toward the learning goal.

GPT

1. The teacher did not state a clear, detailed learning goal and expectation at the beginning.
The teacher mentioned, ‘I want us all to work on constructing, defending and critiquing ours
and others’ claims,’ but did not provide a detailed learning goal or clear expectations.
2. The teacher moved between groups of ideas timely with apparent rationale. For example,
the teacher transitioned from discussing the importance of weight to other properties like
texture and color, and then to the reactions with vinegar and water.
3. The teacher instructed with deliberation, asking students to turn and talk, and then come
back together to share their thoughts.
4. The teacher introduced well-chosen new ideas that benefited student understanding at
relevant moments, such as explaining why weight might not be as important and guiding
students to see that color was not a distinguishing property.
5. The teacher summarized important conclusions consistently throughout the discussion,
such as reiterating that weight and color were not as useful in identifying the mystery
powder.
6. The teacher connected a series of ideas to the learning goal by guiding students to use the
most relevant properties (texture, reaction with vinegar, and reaction with water) to identify
the mystery powder as baking soda.

Table 8: Human evaluation and STRUCTURED COT + QUOTES (GPT) output. The green and red texts represent
agreement and disagreement between the human and STRUCTURED COT + QUOTES, respectively. The blue texts
are quotes from the discussion appearing in both evaluations.
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Human

The T made a small attempt to frame the purpose of the discussion at the start by asking the
students if they knew what was meant by “properties”. The students did try to provide
information, but the T wound up taking over and giving a weak example of what properties
were. The T had each group share their claim and evidence. After each group shared, the T
critiqued their evidence while reading the groups’ prework section containing their rationale
about the most important properties (Key Idea 3). There was a weak review of the
properties at the end of the discussion—again with the T providing the information. There
was a short “consensus” discussion where the T polled the students to see if they thought the
mystery powder was baking soda. The T had a very weak ending.

GPT

1. The teacher did not state a clear, detailed learning goal and expectation at the beginning.
The teacher mentioned, ‘Today we’re going to review what we’ve been doing for the last
couple of classes. We are going to be working on identifying a substance based on its
properties,’ but did not elaborate on the specific learning goal or expectations.
2. The teacher moved between ideas timely with apparent rationale, such as transitioning
from discussing properties to having students share their answers and reasoning. For
example, ‘Talk among yourselves for a couple of minutes about what the mystery powder is
and how you can support your answer. You guys ready to share your answers with the
class?’
3. The teacher instructed with deliberation, providing clear explanations and feedback. For
instance, ‘That’s a good explanation. You guys said that baking soda is white, smooth,
bubbles when mixed with vinegar, looks clear when is mixed with water and weighs 24
grams.’
4. The teacher introduced well-chosen new ideas that benefited student understanding at
relevant moments, such as explaining why weight might not be a useful property in this
context: ’Weight just tells you how much you have, so I didn’t bother with it.’
5. The teacher summarized important conclusions consistently throughout the discussion,
such as reiterating the properties to consider: ‘When we do look at properties, you want to
consider everything, because in this chart, something can’t be smooth and rough.’
6. The teacher connected a series of ideas to the learning goal by discussing the properties
and how they help identify the mystery powder, but the connection could have been stronger
with a clearer initial statement of the learning goal.

Table 9: Human evaluation and STRUCTURED COT + QUOTES (GPT) output. The green and red texts represent
agreement and disagreement between the human and STRUCTURED COT + QUOTES, respectively. The blue texts
are quotes from the discussion appearing in both evaluations.
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Human 1

The discussion overall was coherent and focused on the learning goal. The T began the discussion
by explaining that they will be talking about the fractions they ordered. The T then shares that they
will begin by explaining the strategy they used and why it works for any set of fractions. After the
students finished sharing their strategies and why they used them, the T then shifted to having the
students think about other groups strategies. Once Mina came to the realization that her strategy
did not work, the T then transitions the discussion to think about whether the other strategies used
could be used with any set of fractions. To end the discussion, the T asks the student what strategy
they would use if she gave them the same problem again based on the discussion. By the end the
learning goal was achieved. Mina realized that her strategy would not work and the other groups
realized their strategy could not be generalized to all fraction sets.

Human 2

The T opens the discussion by saying, “Today we’re going to be talking about ordering fractions
and the worksheet that you guys did with three-ninths, nine-tenths, oh three-tenths, nine-tenths
and three-fourths. So first I want everyone to go around the room and I will call on you. And
you’re going to explain your strategy and why you think it works for any set of fractions. First,
we’re going to start off with Will and Jayla. I want you to explain to the group what you did for
your strategy.” She then asks each group to share their strategy. Then, she focuses on one strategy
at a time and asks others what they think about it. After that (and convincing M she is incorrect),
she discusses the answers from one group at a time to the last question. Finally she asks them
what they would do “If I were to give you this problem again, after listening to everyone’s strategy
and what the limitations were and what they did and why they did it, would you do a, would you
use a different strategy for the next time? I want Mina to go first.” So overall, the discussion was
pretty organized. However, there were times when the T transitioned to a different idea rather than
continuing with a S’s thought; for example, when C brought up that M’s strategy would work if
the fractions had the same denominator, the T said, “So now we’re going to jump back to Will and
Jayla. So now we’re going to talk about the second question.” Also, the T introduced a new
representation (rectangles) instead of using W and J’s number line to convince M her answer was
incorrect.

GPT

1. The teacher did not state a clear, detailed learning goal and expectation at the beginning. The
teacher mentioned the topic but did not articulate the specific learning objectives. For example, the
teacher said, ‘Today we’re going to be talking about ordering fractions and the worksheet that you
guys did,’ but did not elaborate on the learning goals.
2. The teacher moved between groups of ideas timely with apparent rationale, ensuring each
student had a chance to explain their strategy and then facilitating a discussion on the strengths
and limitations of each method. For instance, the teacher asked each group to explain their
strategy and then prompted other students to comment on it.
3. The teacher instructed with deliberation, asking follow-up questions to ensure students
explained their reasoning. For example, the teacher asked Mina to explain more about her strategy
and why she chose it.
4. The teacher introduced well-chosen new ideas that benefited student understanding at relevant
moments, such as when the teacher provided a visual explanation to help Mina understand why
her method did not work.
5. The teacher did not consistently summarize important conclusions throughout the discussion.
While the teacher did clarify points at times, there was no consistent summarization of key
takeaways after each strategy discussion.
6. The teacher connected a series of ideas to the learning goal by discussing the limitations and
strengths of each strategy, but this connection could have been more explicit. The teacher asked
students to reflect on whether they would use a different strategy next time, which helped tie the
discussion back to the learning goal.

Table 10: Human evaluation and STRUCTURED COT + QUOTES (GPT) output. The green and red texts represent
agreement and disagreement between the human and STRUCTURED COT + QUOTES, respectively. The blue texts
are quotes from the discussion appearing in both evaluations.

734



Human

No discussion guidelines or introduction provided. Introduced unproductive or confusing
tangents (asked Ss to define numerator and denominator but accepted simplistic description
of the top number vs. the bottom number; started drawing an incorrect area model to help M
demonstrate her strategy; suggested that E/C use a picture or time line to demonstrate their
strategy.) T provided some clear and timely transitions between discussions of different
strategies.

GPT

1. The teacher clearly stated the learning goal at the beginning: ‘So today students, we are
going to evaluate, justify, compare and contrast strategies for ordering fractions with
different numerators and different denominators.’* This sets a clear expectation for the
lesson.
2. The teacher moved between ideas timely and with apparent rationale, such as
transitioning from discussing Jayla and Will’s number line strategy to practicing with new
fractions: ‘I think this might be easier if we practice on some new numbers, okay?’
3. The teacher instructed with deliberation, ensuring students understood each step before
moving on, as seen when the teacher asked students to place dots on the number line and
confirmed their understanding: ‘Yes. Good job. So now from this number line, we know that
five-eighths is greater than three-eighth, but we still don’t know where one fourth lands.’
4. The teacher introduced well-chosen new ideas at relevant moments, such as comparing
fractions to one-half to determine their relative sizes: ‘The next strategy is Mina’s strategy.
Do you want to describe to the class what you did?’
5. The teacher summarized important conclusions consistently, such as confirming the order
of fractions after each exercise: ‘So, now we can see that the correct order three-tenths is the
least greatest then it is three-fourths and the greatest is nine-tenths.’
6. The teacher connected a series of ideas to the learning goal by revisiting different
strategies and ensuring students understood the rationale behind each: ‘Now to finish up this
discussion, I’m going to give you guys another set of fractions and whatever strategy that
you want you can decide what one is the greatest and what one’s the smallest, okay?’
Overall, the discussion was coherent and well-structured, effectively meeting the learning
goal.

Table 11: Human evaluation and STRUCTURED COT + QUOTES (GPT) output. The green and red texts represent
agreement and disagreement between the human and STRUCTURED COT + QUOTES, respectively. The blue texts
are quotes from the discussion appearing in both evaluations. *The human rater annotated “So today students, ...” as
the evidence for introduction in a separate document.
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Human

The teacher provides hardly any introduction at the beginning, but then provides a better
introduction at 0:24 after “testing the waters.”*1 The teacher focuses on addressing Mina’s
misconception, but does so with what I think are area models that she drew before the
interaction rather than using the number lines, which could do the same thing. The teacher
does try to make it clear that the number line strategy is not always a good option, but most
of the ideas are her own.

GPT

1. The teacher did not state a clear, detailed learning goal and expectation at the beginning.
The teacher mentioned discussing strategies but did not clearly outline the learning goal:
‘we’re going to talk about what strategies are helpful when we are comparing fractions, and
what strategies might be better used on a different kind of problem.’
2. The teacher moved between ideas timely with apparent rationale, focusing on different
students’ work and strategies: ‘So we’re going to start our discussion by looking at Will and
Jayla’s work with their ordering fractions.’
3. The teacher instructed with deliberation, asking students to explain their thought
processes and addressing misconceptions: ‘If you could just explain to the class, your
thought process for putting together the strategy, I think that might be really helpful to the
other students in the class.’
4. The teacher introduced well-chosen new ideas that benefited student understanding at
relevant moments, such as using visual aids: ‘I actually drew a picture that maybe we could
look at together.’*2

5. The teacher summarized important conclusions consistently throughout the discussion,
reinforcing key points: ‘So when we look at this picture, can we see which one’s biggest?’
6. The teacher connected a series of ideas to the learning goal by discussing different
strategies and their effectiveness: ‘All of the strategies we’re going to talk about today do
work at some point, but we want to talk about the benefits and maybe some of the things
that are a little bit harder about those strategies as well.’

Table 12: Human evaluation and STRUCTURED COT + QUOTES (GPT) output. The green and red texts represent
agreement and disagreement between the human and STRUCTURED COT + QUOTES, respectively. The blue texts
are quotes from the discussion appearing in both evaluations. *1at 0:24, the teacher said “we’re going to talk ... ”
*2the human rater annotated “I actually drew ...” as the evidence for the introduction of new ideas in a separate
document.
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Abstract
Understanding how linguistic topics are re-
lated to each another is essential for design-
ing effective and adaptive second-language
(L2) instruction. We present a data-driven
framework to model topic dependencies and
their difficulty within a L2 learning curricu-
lum. First, we estimate topic difficulty and
student ability using a three-parameter Item
Response Theory (IRT) model. Second, we
construct topic-level knowledge graphs—as di-
rected acyclic graphs (DAGs)—to capture the
prerequisite relations among the topics, com-
paring a threshold-based method with the statis-
tical Grow-Shrink Markov Blanket algorithm.
Third, we evaluate the alignment between IRT-
inferred topic difficulty and the structure of the
graphs using edge-level and global ordering
metrics. Finally, we compare the IRT-based
estimates of learner ability with assessments of
the learners provided by teachers to validate the
model’s effectiveness in capturing learner pro-
ficiency. Our results show a promising agree-
ment between the inferred graphs, IRT esti-
mates, and human teachers’ assessments, high-
lighting the framework’s potential to support
personalized learning and adaptive curriculum
design in intelligent tutoring systems.

1 Introduction

A key goal of Intelligent Tutoring Systems (ITS)
is to support personalized learning by answering
key questions: What does the student know? How
are they performing? What should they learn next?
Achieving this requires three components: a Do-
main Model (to represent subject knowledge), the
Student Model (to represent learner proficiency),
and the Instruction Model (to implement pedagogi-
cal strategy). Of these, the domain model is foun-
dational, as it informs both the student assessment
and the instructional choices. Prior work has ex-
plored domain modeling in many learning domains,
such as mathematics (Ritter et al., 2007; Arroyo
et al., 2014; Klinkenberg et al., 2011).

Beyond proficiency estimation, recent work em-
phasizes domain models that offer pedagogical
insights—such as relative topic difficulty and effi-
cient or optimal learning paths (Swamy et al., 2022;
Cohausz, 2022; Weidlich et al., 2022). These can
help teachers adapt instruction and improve learn-
ing outcomes. In this paper, we focus on modeling
relationships among topics in language learning
using two approaches: predictive modeling and
causal modeling. The causal model aims to provide
an interpretable domain structure, while the predic-
tive model offers empirical estimates of learning
outcomes.

We collect data from real-world learners in our
language learning system, Revita (Katinskaia et al.,
2018; Katinskaia and Yangarber, 2018; Katinskaia
et al., 2017).1 In Revita’s learning setting, learn-
ers complete exercises related to grammar topics
in the target language. These exercises are auto-
matically generated from texts that learners upload
themselves or select from a shared library of ma-
terials. The exercises are presented in the form of
multiple-choice or fill-in-the-blank (“cloze”) ques-
tions. Each question is associated with one or more
learning topics—a.k.a. linguistic constructs (Katin-
skaia et al., 2023)—and the learner’s answer is
graded according to its correctness in terms of each
topic. We collaborate with language teachers from
several universities and collect real data from lan-
guage learners.

The main goal of this paper is to explore the
domain model—using data from learners of Rus-
sian, one of several languages offered by the Revita
learning platform—which is based on the Russian
topics and their relationships. We highlight the
following contributions of this paper:

1. We present a simple causal modeling scheme
for the domain model and model topics with
a directed acyclic graph (DAG). The nodes

1revitaai.github.io
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in the graph represent topics, and the edges
represent the relationships between them.

2. We verify our graph structure with predictive
analysis: Bayesian network and hierarchical
item response theory (IRT) model.

The paper is organized as follows. In section 2
we outline relevant prior work. Section 3 describes
our topic inventory, the process of data collection
and performance aggregation by topic. Section 4
describes our approach to build the prerequisite
graph structures and the statistical models we use
to verify the graph structures. Section 5 shows
the experiment results. Section 6 concludes with
current directions of research.

2 Related Work

Several approaches for modeling learning have
been proposed. We briefly review two types of
models: (1) predictive models and (2) causal mod-
els.

Predictive models focus on predicting with a set
of independent latent variables. When modeling
learning, these latent variables refer to the levels of
the student’s proficiency on various learning top-
ics. One approach is Item Response Theory (van
der Linden and Hambleton, 2013). ITS is not the
only application of IRT—it can be applied in many
settings, including stress testing, psychological and
medical testing, etc. Depending on the applica-
tion domain, the latent trait can be level of anxiety,
neurosis, authoritarian personality, etc. IRT has
an information-theoretic basis similar to “Elo” rat-
ings (Elo, 1978). The Elo formulas, originally de-
veloped for rating chess players, have been adapted
in the context of ITS (Pelánek, 2016; Hou et al.,
2019). The language-learning domain is more com-
plex than other domains where IRT is used, since
the learning topics to be mastered are relatively
much more numerous, and have complex relation-
ships among them.

With the rise of deep learning in recent
years, deep knowledge tracing (DKT) was pro-
posed (Piech et al., 2015), modeling the state
of learner knowledge with a recurrent neural
network—RNN (Hochreiter and Schmidhuber,
1997). Researchers have proposed several neural
network-based approaches (Zhang et al., 2017; Ab-
delrahman and Wang, 2019; Su et al., 2018; Liu
et al., 2019; Pandey and Srivastava, 2020; Song
et al., 2021). The benefit of applying neural net-
works is that they do not require human-engineered

features; despite the success of deep learning, they
suffer from a lack of interpretability (Jiang et al.,
2024).

Causal models describe the causal relationships
in a system. In our case, we consider the causal re-
lationship to be the prerequisite relationship among
topics or the learner’s knowledge states. The bene-
fit of using causal models is that they can provide a
more directly interpretable representation of the do-
main knowledge (Jiang et al., 2024). Some causal
models describe the domain as a directed acyclic
graph (DAG), which provides direct value from
the perspective of pedagogy. Researchers have ex-
plored the use of causal models in education with
Bayesian networks (Pardos and Heffernan, 2010)
or Markov Blanket (Jiang et al., 2024).

In the field of education, Knowledge Space The-
ory (KST) (Doignon and Falmagne, 2012) can
also be considered as a special graphical causal
model. KST is a mathematical framework for mod-
eling the learner’s knowledge, and represents the
learner’s current proficiency as a set of mastered
skills, which is referred as a knowledge state. Each
state contains a subset of the skills in the domain.
The student has mastered the domain when she
reaches the state containing all skills. KST models
not only the learner knowledge, but also learning
paths, starting from the empty set toward the full
set of topics. Various approaches are used to build a
knowledge space, from explicit elicitation of knowl-
edge from human experts to data-driven methods,
such as Formal Concept Analysis (FCA) (Ganter
and Wille, 2012).

3 Data

This work uses learner data collected in collabora-
tion with language teachers at several universities.
The dataset covers university students learning Rus-
sian as a second language (L2), whose levels range
from A1 to C2 on the CEFR scale (Little, 2007),
both as part of their university courses and as inde-
pendent study. Learners upload texts of personal
interest, or, if participating in a university course,
practice with texts selected or adapted for them by
their teachers. Based on the selected texts, the Re-
vita intelligent language tutoring system automat-
ically generates interactive exercises (Katinskaia
et al., 2023).2

Revita supports a variety of exercise types for
each language, including grammar, vocabulary, lis-

2revita.helsinki.fi
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Topics Examples
(1) Verb: II conjugation Мы скоро увидим восход. (We will see the sunrise soon.)
(2) Complex pronoun: Нам нужно кое о чем поговорить. (We need to talk about something)
(3) Perfective vs. imperfective aspect Страны согласовали проект о будущих отношениях.

(The countries agreed on a draft on future relations.)
(4) Dative subject with predicative Мне необходимо поговорить с врачом. (I need to talk to a doctor.

adjective, or with impersonal verb Literally: [it is] necessary for me to talk to a doctor.)

Table 1: Examples of instances of topics found in text (underlined). Candidates are words that will be chosen for
exercises about the topics (marked in bold).

tening comprehension, etc. It also provides con-
tinual diagnostic assessment. It assists the learn-
ers with contextualized feedback and hints depend-
ing on their answers. Exercise creation and hint
generation are built upon a linguistically-informed
domain model, which drives the personalized se-
lection and generation of exercises based on each
learner’s proficiency level. In this study, we focus
on learner data from grammar exercises in Russian,
which serve as the foundation for modeling topic
dependencies and estimating topic difficulty.3

3.1 Data collection
Topics: In this paper, we use the term topic to
refer to specific language learning targets (also
known as “skills” in ITS and education literature)—
for example, particular patterns of nominal case
usage, verb conjugation classes, syntactic construc-
tions involving negation and tense, etc. These are
not simply individual grammatical features, such
as past tense or plural number, but rather combi-
nations that reflect in a meaningful fashion how
language is taught and learned. For instance, learn-
ers may work on mastering topics such as past
tense of a certain verbal paradigm, rather than past
tense in general.

To define these topics, we consulted with ex-
perts in language pedagogy and textbooks, to align
with real-life instructional goals. Table 1 shows
examples of topics and exercises that target them.

Exercises: All exercises are automatically gener-
ated by the Revita system, based on authentic texts
chosen by the teachers and learners from arbitrary
sources. The system creates a number of exercise
types; here we focus on fill-in-the-blank (“cloze”)
and multiple-choice exercises. In a cloze exercise,
the system hides certain words or phrases, and
shows the learner a hint—the lemma (dictionary
form) of the hidden word or phrase. The learner’s

3All learner data was anonymized prior to analysis in ac-
cordance with ethical research requirements and standards.

task is to enter the correct surface forms, based on
the context of the cloze. In a multiple-choice exer-
cise, the learner is given several options to choose
from, with the options generated automatically.

Learners are allowed multiple attempts for each
exercise. When an answer is incorrect, the system
provides hints on subsequent attempts to support
the learner. These hints gradually guide the learner
toward the correct answer—starting with general
guidance and becoming increasingly specific with
each additional attempt.

The exercise sequencing strategy follows a hy-
brid adaptive design. The system is designed
to model the learner’s state to select those exer-
cises that optimally match each learner’s current
proficiency—targeting an expected success rate of
50%, to keep the exercises appropriately challeng-
ing. This is in keeping with Vygotsky’s theory of
the Zone of Proximal Development, which states
that for optimal learning, the exercises must not
be too difficult too often (to avoid frustrating the
learner) and not too easy too often (to avoid boring
the learner) (Poehner, 2008). Alternatively, learn-
ers can manually select their own study paths using
a predefined lesson structure, organized from easier
to more difficult topics.

Assignment of credit and penalty: Each exer-
cise is associated with one or more topics. The
system evaluates the learner’s response to estimate
performance on each topic individually. A response
may be correct with respect to some topics but
incorrect with respect to others—for instance, a
learner might use the correct verb tense but the
wrong grammatical person. If the learner answers
correctly only after receiving hints, we apply a
slight penalty, proportionally distributed across the
topics linked to those hints. To assign credit and
penalty, the system uses several NLP components,
including a morphological analyzer, dependency
parser, and rule-based pattern matcher. These tools
compare the learner’s response with the correct an-
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Figure 1: Distribution of the number of unique topics
practiced by each student.

swer to determine the topic-level performance for
each exercise.

Assignment of credits and penalties is one of
the main challenges in our work on assessment.
Most statistical approahes, such as IRT, have a clear
definition of an item, and a clear credit standard—
right/wrong answer given by the learner in response
to the item. The classic example of an item in IRT
is a test question, e.g., in mathematics: it is dichoto-
mous and unambiguous, with a clear judgment of
the answer—correct or incorrect. Our major chal-
lenge is that our topics are not judged directly, as
test items are in other learning domains. It is chal-
lenging to determine the credit and penalty for each
topic based on the learner’s answer, because the
link from exercise to topic is one-to-many. This
one-to-many nature of the link makes the standard
of credit less clear. To tackle this problem, a more
sophisticated approach is required to assign credit
and penalty. We also face another common prob-
lem in language learning and assessment: ambi-
guity. A substantial proportion of exercises admit
more than one possibly correct answer, leading to
the problem of determining grammatical correct-
ness (Katinskaia and Yangarber, 2021, 2023, 2024).
The quality of our NLP components directly im-
pacts the accuracy of the assessment, and therefore
the quality of our learning data.

3.2 Data pre-processing

We have collected over 470K student exercise
attempts, each with credit and penalty assigned.
These exercises were completed by 1,639 unique
students. These exercises span over 200 detailed
grammatical constructs (Katinskaia et al., 2023),
which we group into a smaller set of learning topics
that align with pedagogical learning targets, as de-
scribed above. From this, we derive over 80 distinct
topics to be used for modeling and construction of
prerequisite graphs.

Figure 2: Distribution of counts of co-practiced topics,
based on shared student activity. Each value on the X-
axis indicates with how many other topics each topic
was co-practiced. The Y-axis shows how many topics
have the given co-practiced count.

Each exercise is associated with one or more lin-
guistic topics. To enable topic-level analysis, we
“explode” (i.e., multiply out) the data, so that each
exercise attempt is represented multiple times—
once per each topic linked to the exercise. This
allows us to track student performance separately
for each topic. The number of “exploded” data
points—pair-wise records linking between student
and topic—is approximately 990K.

The histogram in Figure 1 shows the distribution
of unique topics practiced per student. Most stu-
dents engage with 25 to 50 distinct topics, with a
concentration around 30. Since learners tend to fo-
cus on topics appropriate to their proficiency level,
we expect considerable overlap in practiced topics
among students of similar levels. This local overlap
is useful for constructing prerequisite graphs, as it
provides aligned performance patterns across com-
parable learners without requiring complete topic
coverage by each individual.

We next check what topics are co-practiced with
other topics—i.e., which topics have been prac-
ticed together with other topics by at least one
student. Figure 2 shows how many topics are co-
practiced with other topics. In fact, most topics
are co-practiced with 80 or more other topics, indi-
cating a highly interconnected curriculum, where
students tend to practice multiple topic combina-
tions. This highlights the dense overlap in student
exposure across topics, which is a useful signal for
data-driven construction of dependency graphs.

Figure 3 shows the distribution of students that
have engaged with each topic. While some topics
are widely practiced by hundreds of learners, others
are encountered by only a few students, indicating
potential variation in topic popularity, curriculum
coverage, or personalized learning paths. This vari-
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Figure 3: Distribution of the number of students per
topic.

ability may impact both topic-level estimation and
the structure of the prerequisite graph.

We have also collected data from over 50 stu-
dents who completed 100 or more exercises each,
and who have teacher-assigned CEFR levels. This
subset provides a valuable reference for evaluat-
ing student ability and topic difficulty. Overall,
the dataset’s size and structure support both robust
probabilistic modeling of learner proficiency and
detailed analysis of topic interdependencies.

4 Methodology

4.1 Prerequisite graph construction

To represent the prerequisite structure of the top-
ics, we construct a DAG (Chickering, 2002) over
learning topics, where each node represents a topic.
Directed edges in this graph indicate prerequisite
relationships inferred from empirical student per-
formance patterns. Specifically, a directed edge
from topic A to topic B, denoted A → B, means
that mastery of topic A is likely a prerequisite for
success on topic B.

We explore multiple methods for constructing
the prerequisite graph. The first is a threshold-
based approach, in which a directed edge A→ B
is added if a statistically significant fraction of
students consistently perform better on topic A
than the same students perform on topic B. This
approach focuses solely on relative performance
outcomes across topics. By aggregating student-
specific accuracy rates, the method infers likely
learning dependencies under the assumption that
prerequisite topics are easier for students to master
than their dependents.

The second method is Grow-Shrink Markov
Blanket (GS-MB) approach to learn topic depen-
dencies based on statistical conditional indepen-
dence tests (Margaritis and Thrun, 2000). We first
identify potential neighbors of a target topic by

evaluating unconditional correlations (grow phase),
then we remove far neighbors by testing for condi-
tional independence given the remaining set (shrink
phase) until reaching the actual Markov blanket of
the topic. The resulting undirected dependencies
are then converted into directed edges using edge
orientation heuristics.

To ensure that the resulting prerequisite graph
is a valid directed acyclic graph (DAG), we apply
data-driven postprocessing to eliminate cycles and
resolve bidirectional edges. If a cycle is detected,
we iteratively remove the weakest edge within the
cycle—where “weakness” is determined using sta-
tistical evidence such as a low agreement ratio or
minimal co-occurrence frequency across student
performance data. Unlike the traditional Grow-
Shrink approach proposed by Margaritis and Thrun
(2000), which attempts to reverse and reinsert re-
moved edges followed by directional propagation
heuristics, our method permanently removes low-
confidence edges without reorientation. This sim-
plification focuses on preserving only the most sta-
tistically supported links while enforcing global
acyclicity. For bidirectional dependencies (i.e.,
both A → B and B → A), we retain only the
edge with the stronger statistical support, ensuring
a consistent and interpretable prerequisite structure.

4.2 IRT Modeling of Student Performance

We use a probabilistic model to estimate student
ability and topic difficulty based on their exercise-
performance data. Specifically, we apply the three-
parameter logistic (3PL) Item Response Theory
(IRT) model (Baker, 2001). In 3PL, each student
has an ability parameter θs, and each topic has
two parameters: difficulty βt, and discrimination
αt. We also take into account the factor of luck
as guessing parameter g. The probability that a
student s answers topic t correctly is modeled as:

cu,t ∼ Bernoulli (g + (1− g) · σ (αt(θs − βt)))

where σ(·) is the sigmoid function.
We assume a fixed guessing parameter g = 0.01

for cloze-style exercises, which approximates the
probability of answering correctly by chance. For
multiple-choice exercises, g is determined dynami-
cally based on the number of answer options.

To estimate the posterior distributions of the
model parameters, we perform fully Bayesian in-
ference via Markov Chain Monte Carlo (MCMC)
(Gilks et al., 1995), using the No-U-Turn Sampler
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Figure 4: Posterior distributions of topic difficulty (β) estimated by the IRT 3PL model. X-axis is estimated topic
difficulty. Each curve represents the density for a different topic.

(NUTS) (Hoffman and Gelman, 2014) as imple-
mented in PyMC (Patil et al., 2010; Salvatier et al.,
2016).

NUTS is a gradient-based sampling algorithm
that extends Hamiltonian Monte Carlo (HMC) by
adaptively deciding how many steps to simulate
on each iteration, based on the gradients of the
log-posterior. It dynamically simulates forward
and backward trajectories in the parameter space,
stopping when a “U-turn” is detected, and then se-
lects a new sample from the visited states using
a probability distribution. The posterior samples
of β and α for each topic capture both the param-
eter estimates (mean) and their associated uncer-
tainty (standard deviation), enabling more detailed
downstream analysis and validation of the graph
structure.

4.3 Comparing Graph Structure with IRT
Difficulty

We assess the extent to which the structure of the
prerequisite graph agrees with IRT-inferred topic
difficulty. Intuitively, if topic A is a prerequisite for
topic B, then A should be easier (i.e., have lower
β) than B. To evaluate this alignment, we use three
complementary metrics.

Edge Agreement Score (EAS) measures the
proportion of edges in the graph that follow the
expected difficulty order. For each edge A → B,
we check whether βA < βB . The EAS is calculated
as the fraction of such edges over all edges in the
graph. A perfect score of 1.0 indicates that all
edges point from an easier to a harder topic.

Weighted Direction Score (WDS) refines this
idea by incorporating the size of the difficulty gap.
Rather than using a hard threshold, we score each
edge A → B using a sigmoid-transformed differ-
ence between the difficulties of topics A and B:

σ(βA, βB) = 1/(1 + e−(βB−βA))

This yields higher scores when βB is much

greater than βA, and values near 0.5 when the differ-
ence is small or uncertain. WDS offers a smoother
estimate that rewards clear hierarchical structure.

Kendall’s Tau, originally introduced by Kendall
(1938), is designed to measure the ordinal asso-
ciation between two ranked variables. We use it
to compare the global ordering of topics implied
by the graph with the ranking induced by the IRT-
inferred difficulty estimates. This is done by com-
puting a topological sort of the graph to obtain a
linear topic ordering, which is then correlated with
IRT’s β values using Kendall’s Tau. A high Tau
value indicates strong agreement: topics that ap-
pear earlier in the graph tend to be easier than those
ranked later.

Together, these metrics offer both local and
global perspectives on how well the learned DAG
structure matches the IRT-inferred difficulty land-
scape.

5 Experiments and Results

5.1 IRT Estimations

Figure 4 shows the posterior density of all topic
difficulty estimates. The IRT model estimates topic
difficulty values ranging from -3.31 to 1.16, giving
a total range of 4.47 on the X-axis. Of 83 topics,
38 have standard deviations below 0.05, and 55 are
below 0.10, meaning that their difficulty estimates
are quite stable. For 95% confidence intervals (CI),
50 topics (∼60% of all topics) have interval widths
under 0.30, which is about 6.7% of the full diffi-
culty range. For 17 topics (20% of all topics), the
estimated CI width is under 0.10—only 2.2% of
the full range. These statistics suggest that many
topics are estimated with high confidence, and they
are reliable enough to be used for comparison with
the topic graph.

Figure 5 illustrates the relationship between un-
certainty in topic difficulty (standard deviation of
β) and topic discrimination (mean of α). Topics
with higher discrimination α tend to show lower
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Figure 5: Correlation between uncertainty in the diffi-
culty of a topic—std(β)—and discrimination parame-
ter of the topic—mean α—for each topic. Each point
represents a topic. Marker color and size indicate the
uncertainty in α.

uncertainty in their estimated difficulty, indicating
more stable and informative estimates. In contrast,
topics with lower discrimination show greater un-
certainty in β, as well as higher variability in α, as
indicated by larger, lighter-colored markers. This
pattern suggests that strongly discriminative topics
provide more reliable signals for modeling.

A detailed heatmap of the correctness of the stu-
dent responses by topic and student ability quan-
tiles (Q1 = lowest, Q5 = highest) is shown in Ap-
pendix Figure 9 and 10. In the heatmap, topics
are ordered by their IRT-estimated mean difficulty
β. The color of each cell shows the average cor-
rectness rate, and the number of student-topic in-
teractions. As expected, higher-ability students
(Q4–Q5) perform better, particularly on the more
difficult topics, reinforcing the validity of the esti-
mated difficulty scores.

Figure 6 shows how the estimates of student
ability θ vary across CEFR levels assigned by the
teachers. The correlation between CEFR grade and
IRT-estimated ability is moderate, with a Spearman
coefficient of r = 0.473, indicating that as CEFR
level increases, IRT-based ability estimates also
tend to rise.

Figure 7 shows the relationship between the num-
ber of exercises completed by each student and
the uncertainty in their estimated ability, measured
as the posterior standard deviation of θ. There
is a strong negative correlation (r = −0.758,
p < 0.001), indicating that students who complete
more exercises tend to have more confident (lower-
variance) ability estimates. This supports the in-
tuitive notion that additional observations reduce

posterior uncertainty in the IRT model.
Figure 8 shows a strong negative relationship be-

tween the number of students who practiced a topic
and the uncertainty in that topic’s IRT difficulty es-
timate. Topics attempted by more students tend to
have significantly lower standard deviation in their
β values, suggesting higher confidence in the esti-
mated difficulty. This trend is quantitatively sup-
ported by a Spearman correlation of r = −0.899
(p < 0.001), confirming that broader student cov-
erage leads to more stable parameter estimates.

5.2 Graph construction

We construct two types of topic prerequisite graphs
to capture learning dependencies. The first, a
threshold-based graph, connects topics where a
consistent performance advantage suggests one
precedes the other. The second, built using the
Grow-Shrink Markov Blanket algorithm, identifies
conditional dependencies between topics based on
statistical independence tests.

The threshold-based graph includes 83 nodes
and 173 edges, resulting in a wide and dense struc-
ture with many inferred prerequisite links. In con-
trast, the GS-MB graph is sparser, with 80 nodes
and 86 edges, forming a deeper and narrower hier-
archy. Both graphs are processed to remove cycles
and bidirectional edges, ensuring they are valid di-
rected acyclic graphs (DAGs). Visualizations of
both graphs can be found in the Appendix (Fig-
ures 11 and 12).4

Both graphs offer useful perspectives. When
we manually examine their qualitative plausibil-
ity from a linguistic standpoint, we find that the
threshold-based graph often aligns more intuitively
with expected topic relationships in Russian, sug-
gesting that threshold-based edges may capture
pedagogically meaningful dependencies more ef-
fectively than the GS-MB structure. We will ex-
plore this in further depth in future work.

5.3 Graph vs. IRT estimations

Two approaches are evaluated for constructing
topic prerequisite graphs: a threshold-based
method and the Grow-Shrink Markov Blanket algo-
rithm. Both produce DAGs, which are evaluated for
alignment with the IRT-inferred topic difficulties
using three metrics: Edge Agreement Score (EAS),

4Both of these graphs are too large to fit into the paper;
please see the complete graph of threshold-based approach
here and GS-MS approach here.
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Figure 6: IRT ability estimates θ across teacher-assigned CEFR levels. Boxplot shows distribution of student
abilities per CEFR level.

Graph Uncertainty Filter EAS WDS Kendall’s Tau
Threshold-based (Gdag1) σβ < 0.05 1.000 0.869 0.240

σβ < 0.10 0.604 0.609 0.220
GS-Markov Blanket (Gdag2) σβ < 0.05 0.523 0.514 0.050

σβ < 0.10 0.505 0.502 0.014

Table 2: Agreement between graph structure and IRT-estimated topic difficulty. EAS: Edge Agreement Score. WDS:
Weighted Direction Score. Kendall’s Tau compares topological sort with IRT difficulty rank.

Weighted Direction Score (WDS), and Kendall’s
Tau.

Table 2 summarizes the results under two topic
uncertainty thresholds—σβ < 0.05 and σβ < 0.1—
which correspond to subsets of 30 and 50 topics,
respectively. The threshold-based graph consis-
tently shows stronger alignment with IRT diffi-
culty estimates, achieving perfect edge agreement
(EAS = 1.00), high directional consistency (WDS =
0.869), and a moderate Kendall’s Tau of 0.240 un-
der stricter filtering. Even with relaxed thresholds,
it maintains relatively strong scores across all three
metrics. In contrast, the GS-MB graph produces
lower EAS, WDS, and notably near-zero Kendall’s
Tau values (i.e., 0.050 and 0.014), indicating that
its topological structure does not match the global
difficulty ranking well.

These results suggest that while GS-MB could
be effective at capturing local conditional depen-
dencies, it falls short in representing an overall
difficulty hierarchy—a strength more consistently
captured by the threshold-based method.

6 Conclusion

In this work, we present a unified framework for
modeling topic difficulty and learning dependen-
cies in second-language acquisition, leveraging

large real-world learner data from thousands of
students. Using probabilistic modeling and graph-
based structure learning, we analyze over 470K
student exercise attempts spanning more than 80
topics. Our aim is twofold: (1) to estimate topic-
level difficulty and learner ability using a Bayesian
IRT model, and (2) to construct interpretable pre-
requisite graphs that reveal topic hierarchies poten-
tially useful for improving learning.

We compare two graph construction methods:
a threshold-based approach that aggregates rela-
tive performance gaps across students, and a Grow-
Shrink Markov Blanket (GS-MB) method based
on statistical conditional independence tests. Three
evaluations using Edge Agreement Score (EAS),
Weighted Direction Score (WDS), and Kendall’s
Tau show that the threshold-based method aligns
more closely with the IRT-inferred topic difficul-
ties. This supports the hypothesis that prerequisite
topics tend to be easier than their dependents, and
suggests that simple, data-driven heuristics can re-
veal meaningful pedagogical structures.

Our findings also demonstrate that model con-
fidence is strongly influenced by the volume and
diversity of learner data. Students who have com-
pleted more exercises tend to have lower uncer-
tainty in their ability estimates; topics practiced by
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Figure 7: Relationship between number of exercises completed and ability uncertainty (standard deviation of θ).
Each point represents a student.

more learners show lower variability in their diffi-
culty estimates. These patterns highlight the value
of large-scale learner data in stabilizing the param-
eter estimates and guiding curriculum analysis.

Moreover, the estimated IRT abilities exhibit
a correlation with teacher-assigned CEFR levels,
providing external validation for the model and sup-
porting its use in real-world learner assessment. We
further explore several aggregate statistics, includ-
ing topic-topic co-occurrence and student-topic in-
teraction distributions, to explore coverage patterns
and the implications for curriculum design.

In summary, this study contributes a robust
methodology for combining statistical modeling
and graph structure learning in an educational set-
ting. The approach offers practical tools for curricu-
lum designers and language educators to identify
learning gaps, and to evaluate learner proficiency.
In future work, we will explore extending the
model to dynamic learning sequences, fine-grained
topic representations, and multilingual adaptation,
to further enhance intelligent language tutoring sys-
tems.

Limitations

Our results at present have several limitations that
may affect the generalizability and precision of the

results.
The dataset primarily consists of learners at the

A2, B1, and B2 levels, with relatively few samples
from C-level students and very limited representa-
tion of pre-A1 and A1 learners. As a result, the
inferred difficulty hierarchy and student ability es-
timates may not fully reflect the learning needs or
patterns of beginners and advanced learners.

The distribution of labeled performance data is
imbalanced: 78.4% of responses are correct, while
only 21.6% are incorrect. This skew may reduce
the model’s sensitivity to detecting subtle topic-
level challenges, and can introduce bias in esti-
mating both the topic difficulty and discrimination
parameters.

Addressing these gaps—through more di-
verse learner sampling and more balanced task
evaluation—would improve the robustness of fu-
ture modeling efforts.

References
Ghodai Abdelrahman and Qing Wang. 2019. Knowl-

edge tracing with sequential key-value memory net-
works. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 175–184.

Ivon Arroyo, Beverly Park Woolf, Winslow Burelson,

745



Figure 8: Topic difficulty uncertainty (std(β)) vs. number of unique students per topic. Each point represents a
topic.

Kasia Muldner, Dovan Rai, and Minghui Tai. 2014.
A multimedia adaptive tutoring system for mathe-
matics that addresses cognition, metacognition and
affect. International Journal of Artificial Intelligence
in Education, 24(4):387–426.

Frank B. Baker. 2001. The Basics of Item Response
Theory. ERIC Clearinghouse on Assessment and
Evaluation.

David Maxwell Chickering. 2002. Optimal structure
identification with greedy search. Journal of machine
learning research, 3(Nov):507–554.

Lea Cohausz. 2022. Towards real interpretability of
student success prediction combining methods of xai
and social science. International Educational Data
Mining Society.

Jean-Paul Doignon and Jean-Claude Falmagne. 2012.
Knowledge spaces. Springer Science & Business
Media, New York, NY.

Arpad E. Elo. 1978. The rating of chessplayers, past
and present. Arco Pub., New York.

Bernhard Ganter and Rudolf Wille. 2012. Formal con-
cept analysis: mathematical foundations. Springer
Science & Business Media, New York, NY.

Walter R Gilks, Sylvia Richardson, and David Spiegel-
halter. 1995. Markov Chain Monte Carlo in Practice.
Chapman and Hall/CRC.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Matthew D Hoffman and Andrew Gelman. 2014. The
no-u-turn sampler: adaptively setting path lengths

in hamiltonian monte carlo. In Journal of Machine
Learning Research, volume 15, pages 1593–1623.

Jue Hou, Maximilian W Koppatz, José Marıa Hoya Que-
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Figure 9: Heatmap of rate of correct answers per topic (Part 1). Correctness rates shown per topic and student
ability quantile (Q1 = lowest ability, Q5 = highest). Color shows average correctness rate. Number in box indicates
support: the number of student-topic interactions. Topics are ordered by their IRT-estimated difficulty β.
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Figure 10: Heatmap of correctness per topic (Part 2); continuation of the heatmap showing remaining topics.
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Figure 11: Prerequisite graph constructed using the threshold-based method.
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Figure 12: Prerequisite graph constructed using the Grow-Shrink Markov Blanket method.
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Abstract

Recent advancements in natural language pro-
cessing, particularly large language models
(LLMs), are making the automated evaluation
of classroom discussions more achievable. In
this work, we propose a method to improve
the performance of LLMs on classroom discus-
sion quality assessment by utilizing in-context
learning (ICL) example retrieval. Specifically,
we leverage example re-ranking and label ratio
regulation, which forces a specific ratio of dif-
ferent types of examples on the ICL examples.
While a standard ICL example retrieval ap-
proach shows inferior performance compared
to using a predetermined set of examples, our
approach improves performance in all tested
dimensions. We also conducted experiments
to examine the ineffectiveness of the generic
ICL example retrieval approach and found that
the lack of positive and hard negative examples
can be a potential cause. Our analyses empha-
size the importance of maintaining a balanced
distribution of classes (positive, non-hard nega-
tive, and hard negative examples) in creating a
good set of ICL examples, especially when we
can utilize educational knowledge to identify
instances of hard negative examples.

1 Introduction

The automatic evaluation of classroom discussion
quality has emerged as a significant area of inter-
est within educational research. A wide range of
studies have established that the quality of class-
room discourse plays a pivotal role in facilitating
student learning and cognitive development (Desi-
mone and and, 2017; Wilkinson et al., 2015; Suresh
et al., 2019; Jacobs et al., 2022). Nevertheless,
large-scale assessment of classroom discussions
remains prohibitively resource-intensive and logis-
tically challenging. The development of automated
scoring systems offers a promising solution, en-
abling the generation of extensive datasets to in-
vestigate the mechanisms through which discourse

shapes student reasoning and understanding. Fur-
thermore, such systems hold the potential for inte-
gration into formative assessment practices, provid-
ing educators with actionable feedback to enhance
the effectiveness of classroom discussions.

Compared to pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019), large
language models (LLMs) have been shown to
be more reliable in scoring different dimensions
of classroom discussion quality, based on the In-
structional Quality Assessment (IQA) (Tran et al.,
2024a). Prior LLM approaches for classroom dis-
cussion assessment have ranged from using zero-
shot prompts (Wang and Demszky, 2023; Whitehill
and LoCasale-Crouch, 2024) that do not exploit
the few-shot learning capability of LLMs (Brown
et al., 2020), to utilizing few-shot prompts but
with a fixed set of examples for every input (Tran
et al., 2024a,b). Inspired by the advancement of
in-context learning (ICL) example retrieval (Wang
et al., 2024; Zhang et al., 2023), we attempt to au-
tomatically select few-shot examples based on a
given input.

Our work thus aims to improve the automated
scoring of classroom discussion quality with ICL
example retrieval. Utilizing LLMs for binary pre-
diction with a ‘target’ label (e.g., if we are identi-
fying if a label y is present in the current turn, the
target now is y), we define the types of examples
as follows. If an example has the same label as the
target label, it is a positive example, otherwise, it
is a negative example. A hard negative example is
a negative example that we expect will be difficult
for a model to distinguish from positive examples,
i.e., positive and hard negative examples are se-
mantically similar in the input space but represent
different classes in the output space. From a re-
trieval perspective, the hard negative examples are
often selected based on some quantitative metrics
such as their distance in the embedding space or
their ranking from a reward model (Wang et al.,
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Figure 1: Overview of the proposed method.

2024; Zhang et al., 2023). However, in the context
of classroom discussion, since we can leverage a
qualitative metric (i.e., domain knowledge about
the definition of the labels), we can identify hard
negative examples for the target label more reliably.
Specifically, based on the definitions of the labels,
for a target label A, we know that label A’ is closer
to A compared to other labels from a human per-
spective. Therefore, when finding hard negative
examples for A, we can quickly select instances
with label A’ as candidates without needing to cal-
culate any kind of ‘distance’ between them.

After experimenting with a generic ICL example
retrieval approach (LLM-R by Wang et al., 2024),
we found it is ineffective for classroom discussion.
We hypothesized that the problem is from 1) the
imbalance of positive/negative examples and 2) the
lack of hard negative examples, as we cannot con-
trol the retrieval process. The first hypothesis is
well-known in ICL learning as we need both posi-
tive and negative examples to learn effectively (Min
et al., 2022). The second hypothesis is from the ob-
servation that hard negative examples play a crucial
role in getting good prediction performance (Tran
et al., 2024a; Robinson et al., 2021). Moreover,
although we have domain knowledge about hard
negative examples based on the annotations of the
labels, the ICL retriever only relies on quantitative
metrics (e.g., higher-ranking examples) to identify
them. To address these issues, we proposed a 2-step
approach. First, we train a BERT-based re-ranker
to re-order the retrieved examples from LLM-R
(Wang et al., 2024). Second, we employ label ra-
tio regulation (LRR), which selects examples from
the sorted list while maintaining a specific ratio
of positive, non-hard negative, and hard negative
examples in the 10-example set used in the prompt
(Figure 1).

Our goal is to answer these research questions:
RQ1 Does the proposed method help improve per-

formance?
RQ2 Does ICL example retrieval have good cov-

erage of the label space (type of examples)?
RQ3 How does the ratio of the ICL examples used

in the label ratio regulation influence the per-
formance?

Our contributions are three-fold. First, we show
that a standard ICL example retrieval approach,
despite being useful for other natural language pro-
cessing (NLP) tasks, is ineffective for classroom
discussion assessment. Further analyses suggest
that the lack of positive examples and hard nega-
tive examples can be causes for this poor perfor-
mance. Second, we propose an approach utilizing
re-ranking and label ratio regulation to comple-
ment the standard ICL example retrieval. It helps
improve performance and yields comparable re-
sults to a finetuned retriever without finetuning the
retriever. Third, we demonstrate that even with
re-ranking, the retrieval process fails to effectively
select hard negative examples, which emphasizes
the importance of label ratio regulation when the
domain knowledge of the classes (e.g., which class
is a hard negative example) is available.

2 Related Work

2.1 LLMs for Classroom Discussion Scoring

As generative LLMs such as GPT-4 (OpenAI et al.,
2024), Llama (Grattafiori et al., 2024), and Mistral
(Jiang et al., 2023) have outperformed PLMs in
many NLP tasks, there has been growing interest in
leveraging these LLMs for classroom discussions.

When predicting accountable talk moves in class-
room discussions, a finetuned LLM such as GPT-3
has consistently surpassed RoBERTa (Liu et al.,
2019) in precision (Kupor et al., 2023). However,
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since finetuning LLMs requires significant exper-
tise, extensive data, and substantial computational
resources, researchers have increasingly focused
on zero-shot and few-shot approaches that do not
require additional training. For instance, one study
examined the zero-shot capabilities of ChatGPT
in three tasks: scoring transcript segments using
classroom observation instruments, identifying key
strengths and missed opportunities in instructional
strategies, and providing actionable suggestions
for fostering student reasoning (Wang and Dem-
szky, 2023). The findings revealed that ChatGPT
struggled to score classroom transcripts using in-
struments like the Classroom Assessment Scoring
System (CLASS) or the Mathematical Quality of
Instruction (MQI) and offered repetitive feedback.

Research has also explored the application of
LLMs at more granular levels, such as sentence-
level or utterance-level analysis. While zero-shot
ChatGPT provided clear and detailed explanations
for its predictions, it performed significantly worse
than the smaller BERT model in three out of four
student talk move categories for the classification
task (Wang et al., 2023). Tran et al. (2024b) an-
alyzed three prompt-based factors: task formula-
tions, context length, and the presence of few-shot
examples and found that all of them can have im-
pacts on the final performance. Although the im-
portance of few-shot examples has been shown and
some prior work utilized few-shot prompting, they
had a fixed set of examples, which might not be
representative enough and might not have examples
relevant to the current input (Tran et al., 2024a,b).
Our work focuses on automatically retrieving a set
of examples based on the input to cover dynamic
scenarios in a classroom discussion.

2.2 ICL Example Retrieval for LLMs
In-context learning, the emergent capability of
LLMs that allows them to execute diverse tasks
by conditioning on a limited set of input-output
examples without requiring parameter updates or
finetuning, has been demonstrated in many LLMs
such as GPT-3 (Brown et al., 2020) or Llama (Tou-
vron et al., 2023). Various approaches have been
made to create better LLM prompts (Li and Liang,
2021; Le Scao and Rush, 2021; Hao et al., 2022).
Different from the standard retrieval-augmented
generation by using a dense retriever such as Col-
BERT (Khattab and Zaharia, 2020) to get addi-
tional information for LLMs, there is an area of
research focused specifically on finding better ICL

examples to boost LLMs’ performance (Ye et al.,
2023; Li and Qiu, 2023; Li et al., 2023; Zhang et al.,
2023). Liu et al. (2022) demonstrated that ICL
performance can be enhanced by either using the
BM25 algorithm or by finetuning dense retrievers
with feedback from LLMs to retrieve relevant ex-
amples from a training set. Wang et al. (2024) pro-
posed an iterative training framework (LLM-R) to
retrieve ICL examples in 3 steps: 1) rank an initial
set of retrieved candidates based on the conditional
LLM log probabilities of the ground-truth outputs;
2) train a cross-encoder reward model to capture
the fine-grained ranking signals from LLMs; and 3)
train a bi-encoder dense retriever using knowledge
distillation. Our work falls into this area by propos-
ing a method to dynamically retrieve ICL examples.
However, we focus on the label ratio of the example
set, which has not been studied in prior work.

3 Dataset

We use videos of English Language Arts classes in
a Texas district to create our corpus. The videos
were recorded during the course of an online in-
structional coaching program (Correnti et al., 2021).
They were collected from 18 fourth-grade and 13
fifth-grade classes, whose teachers on average had
13 years of teaching experience. 61% of the student
population was considered low income, with the
following racial proportion: Latinx (73%), Cau-
casian (15%), African American (7%), multiracial
(4%), and Asian or Pacific Islander (1%).

Annotators manually scored videos holistically,
on a scale from 1 to 4, using the IQA on 11 dimen-
sions (Matsumura et al., 2008) for both teacher and
student contributions. They were also scored us-
ing more fine-grained talk moves annotated at the
sentence level using the Analyzing Teaching Moves
(ATM) discourse measure (Correnti et al., 2021).
The final corpus consists of 112 discussion tran-
scripts that have been scored using both the IQA
and the ATM (see Appendix A for the statistics of
the scores). Thirty-two videos (29%) were double-
scored, showing good to excellent reliability for the
IQA (the Intraclass Correlation Coefficients (ICC)
range from .89-.98) and moderate to good reliabil-
ity for the ATM (ICC range from .57 to .85). Below
is a excerpt with annotated ATM codes:

Teacher: [Justin.]Repeat [Tell me who’s
Justin?]Press

Student: [Justin is... Well, Via’s
boyfriend who stands up for August and
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is very nice to him. Even though he
saw him for the first time, he was kind
of shocked, but he kind of got used to
him.]Strong Explanation

IQA dimension scores. To compare with prior
work (Tran et al., 2024a), we focused on 4 of the
11 IQA dimensions, in which 2 of them focus
on teaching moves and 2 focus on student con-
tributions. They were previously chosen because
of their relevance to dialogic teaching principles
that emphasize collaboration and active participa-
tion in meaning-making. Furthermore, all four
scores are calculated based on the frequency of
their related ATM codes. The four dimensions
include: Teacher links Student’s contributions (T-
Link), Teacher presses for information (T-Press),
Student links other’s contributions (S-Link), Stu-
dent supports claims with evidence and explanation
(S-Evid). We define S-Evid as the higher score of
Student provides text-based evidence and Student
provides explanation. Descriptions of these dimen-
sions can be found in Appendix B.

Based on the definitions of the ATM codes (Ap-
pendix C), 2 IQA dimensions have hard negative
examples (e.g., have examples that are semantically
similar to the positive examples but have a different
label based on a notion of strength). For S-Link, a
positive example has Strong Link as the ATM label
while a hard negative example has Weak Link. A
similar rule applies to S-Evid (Strong Text-based
Evidence vs Weak Text-based Evidence; Strong Ex-
planation vs Weak Explanation).

Due to the small size of the data, we follow
Tran et al. (2024a) and use 2-fold cross-validation.
In each fold, half of the data (56 transcripts) is
considered as training data and the remaining data
(56 transcripts) is used for evaluation. We also
make sure that transcripts of the same teacher are
in the same fold to prevent data leakage.

4 Methods

4.1 ICL Example Retrieval for LLMs
We adopt the prompts from prior work (Tran et al.,
2024a) for our LLM. We utilize the predictive ap-
proach, which is the approach that yields the best
results in all 4 IQA dimensions (Predictive-llm).
It is the BC-5turns-10s strategy described by Tran
et al. (2024a), utilizing the LLM as a binary classi-
fier by prompting it to determine whether an obser-
vation related to an IQA dimension is present in a
single turn (yes or no) (see Appendix D).

For our ICL example retriever, we use LLM-R
(Wang et al., 2024)1. It uses LLMs to rank the can-
didates based on the log-likelihood of the ground-
truth output, then trains a cross-encoder as a reward
model to mimic the preferences of LLMs, and fi-
nally distills that knowledge to a bi-encoder for
efficient inference. For a given input (a 5-turn di-
alogue excerpt), we retrieve the top 10 examples
from the training data and use them as few-shot
examples in the LLM prompt. We use separate re-
trievers (LLM-R) for teachers’ and students’ turns.
In other words, when predicting a teacher or stu-
dent’s turn, we will only try to retrieve examples
from a pool consisting of examples from the same
speaker role (student or teacher). For example, if
we are predicting if the last turn (given its 4 previ-
ous turns) is T-Press, the retriever will only try to
find examples (5-turn dialogue windows) by look-
ing at ones that end with a teacher’s turn.

Although LLM-R specializes in ICL example re-
trieval, it was trained on tasks different from class-
room discussions (e.g., sentiment, reading compre-
hension, closed-domain QA). Besides using off-
the-shelf LLM-R, we also fine-tune it on classroom
discussions. However, because our dataset is small,
finetuning an ICL example retriever on the training
set is ineffective. We instead use another classroom
discussion dataset, TalkMoves (Suresh et al., 2022),
to finetune LLM-R.

The TalkMoves dataset contains K-12 math
classroom transcripts, annotated for talk moves
based on accountable talk theory and dialog acts.
The dataset includes 567 transcripts, comprising
174,186 annotated teacher utterances, 59,874 an-
notated student utterances, and 1.8 million words
(15,830 unique). All of the transcripts are anno-
tated for 6 teacher talk moves (Keeping everyone to-
gether, Getting students to relate to another’s ideas,
Restating, Pressing for accuracy, Revoicing, and
Pressing for reasoning) and 4 student talk moves
(Relating to another student, Asking for more info,
Making a claim, and Providing evidence or reason-
ing). For finetuning the retriever, we use the same
binary prediction task as Predictive-llm. However,
we perform multiple binary predictions (yes/no)
for all possible talk moves in each turn and use
the definitions of these talk moves from the dataset
(Suresh et al., 2022). While these moves differ
from ATM codes, they share similarities and reflect

1https://github.com/microsoft/LMOps/tree/main/
llm_retriever
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a theoretical approach closely related to the one
behind ATM.

4.2 Re-ranking and Label Ratio Regulation
In this section, we propose a method that uses re-
ranking and forces a specific label ratio in the exam-
ple set to improve ICL performance for classroom
discussion quality assessment.
Re-ranking. Re-ranking is a popular approach in
retrieval tasks. The initial retrieval process is gen-
erally designed to be fast, often prioritizing speed
over perfect accuracy. As a result, in ICL example
retrieval, the first batch of examples retrieved can
be broad, including both highly relevant and some-
what irrelevant information. Re-ranking addresses
this by filtering and reordering these examples ac-
cording to refined relevance scores, reducing noise
and irrelevant information. In the first step, we
re-rank the top-100 retrieved examples to get a set
of examples ordered by their usefulness. We exper-
iment with 2 re-ranking methods.

LLM as a re-ranker: We use a Llama3 model
as the scorer. Specifically, for a given input and a
retrieved example, we ask a yes/no question if the
example can help answer the given question and
use the probability of “yes” as the score.

BERT as a re-ranker: We train a BERT-based
model as a cross-encoder reward model that gives
higher scores to good ICL examples. We first cre-
ate the necessary training data to train the BERT
model. To do this, from our available training data
(Section 3), for each instance (a turn), we retrieve
the top-K using the LLM-R retriever (either trained
or not trained). We then employ Llama3 to obtain
the rankings. The ranking score is calculated as
log p(y|x, xi, yi) where x is the given input, y is the
gold answer, xi and yi are an in-context learning
example retrieved and its label. For a training ex-
ample (x, y), we first sample one positive example
(x+, y+) from the top-ranked candidates and Nneg

negative examples (x−i , y
−
i )

Nneg

i=1 from the bottom-
ranked candidates. The reward model takes as input
the concatenation of (x, y, x+, y+) and produces
a score s(x, y, x+, y+) for the positive example,
and s(x, y, x−i , y

−
i ) for the negatives. The training

objective is to minimize the cross-entropy loss:

Lreward = − log
es(x,y,x

+,y+)

es(x,y,x+,y+) +
∑Nneg

i=1 es(x,y,x
−
i ,y−i )

Label Ratio Regulation (LRR). Thinking that
the lack of hard negative examples and the imbal-
ance of positive/negative examples can be potential

causes for the poor performance of the off-the-shelf
retrieval setting, we want to ensure that this will not
happen. To do so, we make sure the 10-example set
follows a specific label ratio of positive, negative,
and hard negative (if applicable) examples. For a
fair comparison, we force the ratio to mimic the
ratio from the fixed setting (defined in Tran et al.
(2024a)). Although the ordering of few-shot ex-
amples is also a non-trivial factor (Ye et al., 2022),
it is not what we focus on. Therefore, we fix the
order of the chosen examples. For T-Press and T-
Link, from top to bottom, we want 5 positive and
then 5 negative examples. Similarly, for S-Link
and S-Evid, we will see 4 positive, 4 easy negative,
and 3 hard negative examples, respectively, from
top to bottom of the example set. To do so, given
the ranked list of examples, we pick from top to
bottom until the predetermined label ratio is satis-
fied and skip examples that violate the label ratio if
added. For instance, if we already have 5 positive
examples for T-press, we will ignore the remaining
positive examples in the list and only pick an ex-
ample if it is a negative one as we go down the list.

5 Experimental Setup

To make it comparable to prior work without ICL
example retrieval from Tran et al. (2024a), we use
LLama3-8B (Grattafiori et al., 2024) as the LLM
for classroom discussion assessment 2.

We use 3 baselines to test the effectiveness of
the proposed method:

fixed: In this setting, we use a set of 10 fixed
examples for each fold in the cross-validation. We
follow prior work to pick those 10 examples for
the LLM prompts (Tran et al., 2024a). This setting
is also used as a baseline for comparison with ap-
proaches that utilize ICL example retrieval. One
thing to note is that using this sampling method,
we will have a fixed ratio of positive, easy negative,
and hard negative examples in the 10-shot example
set.

retrieved: In this setting, we use LLM-R (Wang
et al., 2024) to find the top-10 examples from the
training data. Then, we use those 10 examples for
few-shot prompting.

mixed: In this setting, we construct a set of top-5
retrieved examples and 5 examples from the fixed
set. For the 5 examples from the fixed set, we pri-

2https://huggingface.co/meta-llama/Llama-3.
1-8B
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oritize hard-negative examples first. In addition,
prior work has shown that lacking hard negative
examples is detrimental to the performance (Tran
et al., 2024b). Therefore, we decide to select harder
negative examples from the fixed set, as we can-
not guarantee that they exist in the retrieved set.
Specifically, for S-Link and S-Evid, we pick 3 hard
negative examples, 1 positive example, and 1 non-
hard negative example. For T-Press and T-Link, we
pick 3 positive and 2 negative examples. Then, we
choose the remaining 5 examples from the retrieved
ones based on the descending order of cosine sim-
ilarity between them and the input embedded by
LLM-R.

To test the performance of the proposed method,
we experimented with 2 re-ranking methods: using
LLama3 as the LLM re-ranker and using a fine-
tuned BERT re-ranker. To highlight the importance
of each component (LRR and re-ranking), we re-
port the performance from utilizing both re-ranking
and label ratio regulation in combination and from
using each component separately.

To compare the performances between non-
finetuned and finetuned retrievers, we finetune
a new LLM-R on another classroom discussion
dataset (TalkMoves from Suresh et al., 2022) and
repeat the experiments.

Quadratic Weighted Kappa (QWK) is used as
the main evaluation metric. It is a common met-
ric for quantifying inter-rater reliability that penal-
izes disagreements proportional to the degree of
disagreement, which is vital in contexts where a
greater distance between scores is meaningful.

6 Results and Discussion

RQ1: Effectiveness of the proposed method. Ta-
ble 1 shows the macro average over 2-fold cross-
validation of QWK scores in various settings, in-
cluding the 3 baselines and the proposed method
for both non-finetuned and finetuned retrievers.

The standard ICL example retrieval is not effec-
tive. When using a non-finetuned LLM-R, we ob-
serve that relying solely on retrieved examples (row
2) is worse than the fixed baseline (row 1). This
implies that using ICL retrieval is ineffective in
this case, despite helping to improve performance
in previous work on other domains (Wang et al.,
2024; Zhang et al., 2023). On the other hand, the
mixed settings (row 3), where we combine exam-
ples from the retriever with the fixed set, are the
baselines that achieve the best performance in all

IQA dimensions. This suggests that the retrieved
examples are still useful to some extent.

Our proposed method with BERT as the re-
ranker achieves the best performance in all 4 IQA
dimensions (row 7) for both non-finetuned and fine-
tuned retrievers. Although finetuning the LLM-
R boosts the performance of the retrieved setting
(row 2), the proposed method performs compara-
bly for both non-finetuned and finetuned settings
of the LLM-R retriever (row 7), suggesting that
finetuning the retriever on a new domain, which is
computationally expensive, is not necessary. Our
hypothesis for this minimal gain is that the Talk-
Moves data consists of math discussions, which
contain math-specific lexicons not present in En-
glish Language Art discussions from our dataset.
Additionally, the TalkMoves dataset is skewed to-
wards sixth-grade to eighth-grade students, while
our data only has discussions from fourth-grade
and fifth-grade students.

As a re-ranker, although LLama3 shows equal
or better performance over the retrieved setting in
T-Link and T-Press (row 5 vs 2), it is inferior to the
fixed setting in S-Link and S-Evid (row 5 vs row 1).
On the other hand, using BERT as a re-ranker with
label ratio regulation achieved the best results in
all dimensions. With this combination, we are now
able to outperform the mixed setting despite using
only retrieved examples. This implies that for this
task, using an LLM such as Llama3 as a judge for
re-ranking is not a reliable method in comparison
with finetuning a PLM such as BERT.

The LRR is shown to be essential for improved
performance as removing it leads to decreases in
QWK (rows 6 and 8 compared to the previous
rows). The drop in performance in S-Link and S-
Evid is larger than the drop in T-Link and T-Press.
The former 2 dimensions (S-Link and S-Evid) have
hard negative examples based on the coding man-
ual, which suggests that LRR is more important
when hard negative examples are available for the
target dimension. With only re-ranking, we can per-
form similarly or worse than the retrieved setting.
For instance, using a Llama3 re-ranker without
LRR is worse than vanilla retrieval (row 6 versus
2). On the other hand, with LRR, we consistently
outperform the retrieved setting, with or without
using a re-ranker (row 4, 5, 7 versus 2)4. Moreover,
when the retriever is finetuned, if we have to pick

3Two-tailed t-test on 2-fold cross-validation.
4Except for S-Link with finetuned retriever.
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ID Setting Non-finetuned Retriever Finetuned Retriever
T-Link T-Press S-Link S-Evid T-Link T-Press S-Link S-Evid

1 fixed 0.65 0.73 0.64 0.79 0.65 0.73 0.64 0.79
2 retrieved 0.62 0.71 0.62 0.75 0.66 0.73 0.66 0.80
3 mixed 0.68 0.76 0.67 0.81 0.72 0.77 0.71 0.82

4 LRR only 0.63 0.72 0.65 0.79 0.68 0.76 0.65 0.81

5 Llama3 + LRR 0.65 0.72 0.62 0.76 0.68 0.75 0.63 0.77
6 w/o LRR 0.61 0.70 0.56 0.68 0.65 0.72 0.60 0.70

7 BERT + LRR 0.72 0.80 0.73 0.83 0.73 0.81 0.73 0.83
8 w/o LRR 0.66 0.78 0.64 0.77 0.66 0.78 0.65 0.77

Table 1: Quadratic Weighted Kappa (QWK) scores of the two retrievers. For each IQA dimension (T-Link, T-Press,
S-Link, S-Evid), italic numbers represent the best baseline results. Bold numbers highlight the best retriever results.
All numbers are statistically significant compared to their counterparts in the mixed baseline (p < 0.05).3

IQA Non-finetuned LLM-R Finetuned LLM-R

Avg % w/o hard negative Avg % w/o hard negative

S-Link 3 / 1.2 / 3.2 / 1.5 0 / 27.2 / 0 / 24.3 3 / 1.5 / 3.3 / 1.7 0 / 23.3 / 0 / 20.7
S-Evid 3 / 1.9 / 3.1 / 2.1 0 / 22.7 / 0 / 20.8 3 / 1.7 / 3.4 / 2.0 0 / 20.5 / 0 / 19.1

Table 2: Presence of hard negative examples in the fixed, retrieved, mixed setting and an approach utilizing BERT
re-ranking without LRR. We report the average number of hard negative examples included in the 10 examples
(Avg) and the percentage of test instances where the few-shot examples in the prompt do not have any hard negative
example. In each cell, from left to right, the 4 numbers represent the statistics for fixed, retrieved, mixed settings,
and from an approach utilizing BERT re-ranking without LRR.

only one component, using LRR is usually better
than using a re-ranker (row 4 versus rows 6 and 8).
This suggests that we should always enforce the
label ratio in the example set.

RQ2: Issues in the label ratio of retrieved exam-
ples from automatic ICL example retrieval.

The lack of hard negative examples and skew
in the ratio of positive and negative examples can
be potential causes for the low performance of ex-
ample retrieval. Noticing that directly using the
retrieved examples is not an effective way to im-
prove the performance of LLM-based classroom
discussion quality assessment, we hypothesize the
potential causes and do analyses to test them. Com-
pared to the fixed and mixed settings, one thing
we could not control in the retrieved setting is the
distribution of the examples. We can think of two
causes for the poor performance using the retrieved
setting: 1) the lack of hard negative examples and
2) the lack of positive examples.

Missing hard negative examples in the few-shot
example set will have a negative influence (Tran
et al., 2024a). Table 2 shows the presence of hard

negative examples in the fixed, retrieved, mixed set-
tings, and an approach using BERT ranking without
LRR for S-Link and S-Evid (the only two dimen-
sions that have hard negative examples according
to the definitions in the coding manual). We can
see that the retrieved setting has fewer hard neg-
ative examples on average compared to the fixed
and mixed settings. We also only witness cases in
which the example set has no hard negative exam-
ples in the retrieved setting. With only a BERT
re-ranker, these numbers barely change as we only
see small increases in the average number of hard
negative examples and decreases in the number
of cases without any hard negative example com-
pared to the retrieved setting (4th number versus
2nd number) in each cell. This aligns with one
of our previous observations from Section 6 that
removing LRR results in bigger decreases in QWK
for S-Link and S-Evid compared to the other two
dimensions. This implies that re-ranking alone still
does not guarantee the presence of hard negative
examples in the set of 10 few-shot examples for
prompting. However, with domain knowledge of
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IQA Non-finetuned LLM-R Finetuned LLM-R

Avg % without positive Avg % without positive

T-Link 5 / 3.7 / 4.7 / 4.2 0 / 6.8 / 0 / 1.2 5 / 3.3 / 3.5 / 3.5 0 / 5.3 / 0 / 2.3
T-Press 5 / 7.3 / 5.4 / 6.1 0 / 0.0 / 0 / 0.0 5 / 6.8 / 5.2 / 5.5 0 / 0.0 / 0 / 0.0
S-Link 4 / 3.2 / 3.8 / 3.5 0 / 6.2 / 0 / 0.0 4 / 3.8 / 4.3 / 4.1 0 / 0.0 / 0 / 0.0
S-Evid 4 / 5.9 / 5.1 / 5.5 0 / 2.3 / 0 / 0.0 4 / 5.6 / 4.9 / 4.3 0 / 3.1 / 0 / 1.2

Table 3: Presence of positive examples in the fixed, retrieved, mixed setting, and an approach with only BERT
re-ranking (no LRR), with the same notations as Table 2.

Figure 2: Results of T-Press and T-Link from different
label ratios with N positive examples for BERT+LRR.

hard negative examples (i.e., knowing that Weak
Link is a hard negative example label for Strong
Link, which represents S-Link), even with auto-
mated retrieval, we can ensure that hard negative
examples are in the set.

Looking at the presence of positive examples
(xi, yi = y) in Table 3, we see that the retrieved
settings (2nd numbers of the cell) tend to include
more positive examples in the 10-example set for
T-Press and S-Evid while having fewer positive
examples for T-Link and S-Link. Although they
are rare, there are still cases in which we have no
positive examples in the 10-example set for the re-
trieved setting, which never happens for the fixed
and mixed settings. The BERT re-ranking (4th
number) helps decrease the number of cases with-
out any positive examples, and it makes the average
number of positive examples retrieved in each IQA
dimension closer to the fixed and mixed settings.
RQ3: The ratio of different types of examples
does matter. We conduct additional experiments
on our best model (BERT+LRR) by varying the
ratios by changing the number of positive examples,
negative examples, and hard negative examples (if
they are available) to see if certain label ratios yield

Figure 3: Results of S-Link and S-Evid from differ-
ent label ratios with N hard negative examples for
BERT+LRR.

better results. Specifically, for T-Press and T-Link,
because there is no hard negative example for these
two dimensions, we record the performance with
the N positive examples (N = 0 to 10) and 10-N
negative examples. For S-Link and S=Evid, we
pick N (N = 0 to 10) hard negative examples and
equally split the remaining 10-N examples into
positive examples and non-hard negative examples
(if 10-N is odd, we have 1 more positive example).

Figure 2 shows the results for T-Press and T-Link
with various positive/negative ratios. We observe
that increasing the number of positive examples
helps improve the performance to a certain point.
Specifically, we see noticeable improvements until
N=3, then it starts to slow down. However, af-
ter N=5 positive examples, the QWK begins to go
down as N increases. This suggests that we should
have a balance between positive and negative exam-
ples, which is reasonable, as having too many exam-
ples of a certain perspective (positive or negative)
can create biases in that direction for the LLMs.
Similarly, for S-Link and S-Evid, the performances
are boosted until N=3 hard negative examples are
selected and then they quickly drop (Figure 3). This
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time, the downward trend after N=4 is more notice-
able compared to Figure 2, implying that having too
many hard negative examples causes more harm
than good. In other words, although hard negative
examples are essential for high performance, we
should keep room for positive and non-hard nega-
tive examples. Overall, these observations suggest
that we should be cautious when selecting a label
ratio for the example set, and having a balanced
split between the possible labels (positive, non-hard
negative, and hard negative) is a safer choice, as the
dominance of a label tends to result in decreased
performance.

7 Conclusions

This work proposes a simple but effective ICL ex-
ample retrieval method that utilizes example re-
ranking and label ratio regulation (LRR) to im-
prove few-shot LLM performance in automated
classroom discussion assessment. The results show
that our fully automated example retrieval and se-
lection approach outperforms the baselines in all
tested IQA dimensions. Additionally, the perfor-
mance of a non-finetuned example retriever (LLM-
R) is comparable to that of a retriever finetuned
on a similar domain dataset, suggesting that skip-
ping the finetuning process of the retriever is viable.
Further analyses show that the lack of positive and
hard negative examples can be the reason for the
poor performance of the traditional ICL example
retrieval approaches. We also observe that even
with re-ranking, both finetuned and non-finetuned
retrievers fail to select enough hard negative ex-
amples to make the few-shot prompting effective,
which highlights the importance of label ratio reg-
ulation in maintaining the presence of hard neg-
ative examples. Finally, we investigate the influ-
ence of the ratio of positive, non-hard negative, and
hard negative examples, demonstrating that having
an excessive number of any category hurts perfor-
mance. We would like to explore the proposed
method with a more advanced prompting method,
such as Chain-of-thought (Wei et al., 2022), in the
future.

Limitations

While our method uses Label Ratio Regulation
(LRR) to maintain a specific ratio, it treats each
potential example separately when selecting the
top-10. This independent selection might not be
ideal, as the chosen examples can interact with each

other. Exploring combinatorial optimization and
sequential decision-making techniques could lead
to improvements.

Another limitation of our study is the lack of
analysis on the influence of the size of the example
pool on the performance. Because our training set
is small, the relevance and diversity of the candi-
date examples can be a hindrance to the generic
ICL example retrieval baseline. If we have a bigger
example pool with more diversity, the LRR might
become unnecessary.

The proposed approach involves several compo-
nents, which people might find too complex and
counterintuitive, potentially hindering the ease of
LLM usage for downstream tasks. Additionally, the
experiments are conducted on a single and small
dataset. As a result, the generalizability of the find-
ings is weakened.

Furthermore, we only use the smallest version
of LLama3. Utilizing a bigger LLM (e.g., LLama3-
70B) might yield higher results and undermine the
effectiveness of ICL example retrieval.

Last but not least, our experiments are grounded
on a binary classification task and the assumption
that hard negative examples can be identified based
on the definitions of the labels.
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longest reaches 6,393 tokens. Table 4 presents the
statistics for the four key IQA dimensions high-
lighted in this work.

B Description of IQA Dimensions

Descriptions of the 4 focused IQA dimensions can
be found in Table 5.

C Description of ATM codes

Descriptions of the relevant ATM codes can be
found in Table 6.

D Prompts

Figure 4 contains the prompt used for the binary
prediction of a target IQA adopted from Tran et al.
(2024a), where {IQA description} is from the sec-
ond column in Table 5.
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IQA Distribution Avg Score Relevant ATM code Hard negative ATM Code
T-Link [69, 23, 9, 11] 1.66 Recap or Synthesize S Ideas n/a
T-Press [8, 13, 11, 80] 3.46 Press n/a
S-Link [84, 7, 10, 11] 1.54 Strong Link Weak Link

S-Evid [38, 17, 9, 48] 2.60
Strong Text-based Evidence Weak Text-based Evidence

Strong Explanation Weak Explanation

Table 4: Data distribution and mean (Avg) of 4 focused IQA rubrics for Teacher (T ) and Student (S) with their
relevant ATM codes and hard negative ATM code (if available). An IQA rubric’s distribution is represented as the
counts of each score (1 to 4 from left to right) (n=112 discussions).

IQA Dimen-
sion

IQA Dimension’s Description

T-Link:
Teacher links
Student’s
contribution

Did Teacher support Students in connecting ideas and positions to build coherence in the discussion
about a text?
4: 3+ times during the lesson, Teacher connects Students’ contributions to each other and shows how
ideas/ positions shared during the discussion relate to each other.
3: Twice. . .
2: Once. . . OR The Teacher links contributions to each other, but does not show how ideas/positions
relate to each other (re-stating).
1: The Teacher does not make any effort to link or revoice contributions.

T-Press:
Teacher
presses
Students

Did Teacher press Students to support their contributions with evidence and/or reasoning?
4: 3+ times, Teacher asks Students academically relevant Questions, which may include asking Students
to provide evidence for their contributions, pressing Students for accuracy, or to explain their reasoning.
3: Twice. . .
2: Once. . . OR There are superficial, trivial, or formulaic efforts to ask Students to provide evidence for
their contributions or to explain their reasoning.
1: There are no efforts to ask Students to provide evidence for their contributions or to ask Ss to explain
their reasoning.

S-Link:
Student links
other’s
contributions

Did Students’ contributions link to and build on each other during the discussion about a text?
4: 3+ times during the lesson, Students connect their contributions to each other and show how ideas/po-
sitions shared during the discussion relate to each other.
3: Twice. . .
2: Once. . . OR the Students link contributions to each other, but do not show how ideas/positions relate
to each other (re-stating).
1: The Students do not make any effort to link or revoice contributions.

S-Evid(a):
Student
provides
text-based
evidence

Did Students support their contributions with text-based evidence?
4: 3+ times, Students provide specific, accurate, and appropriate evidence for their claims in the form of
references to the text.
3: Twice. . .
2: Once. . . OR There are superficial or trivial efforts to provide evidence.
1: Students do not back up their claims.

S-Evid(b):
Student
provides
explanation

Did Students support their contributions with reasoning?
4: 3+ times, Students offer extended and clear explanation of their thinking.
3: Twice. . .
2: Once. . . OR There are superficial or trivial efforts to provide explanation.
1: Students do not explain their thinking or reasoning.

Table 5: IQA dimensions and their definitions. For each IQA dimension, the italic line is {IQA description} used in
the prompt in Appendix D.

763



Code Definition Example

Press T asks the same S follow-up Questions (i.e., uptake/push-
back Q’s, request for text-based evidence and explana-
tion).

Why did you say that?
Where is the evidence?
How else might Salva feel?

Recap or Syn-
thesize S Ideas

T links multiple Ss’ ideas or positions. T synthesizes
multiple responses.

What I hear you saying is that the char-
acter has changed from the beginning of
the book which is similar to Ana’s idea
that the character has matured.

Weak Link Ss attempt to link contributions to each other, but do
not show how ideas/positions relate to each other. The
S might simply be revoicing or repeating another S’s
contribution.

“I disagree with Ana”... without explain-
ing why or which aspect of Ana’s state-
ment S disagrees with.

Strong Link Ss connect their contributions to each other and show
how ideas/positions shared during the discussion relate
to each other. Ss elaborate, challenge, or build on each
other’s ideas.

I’m not sure what Ana says is right be-
cause I don’t see where in the text it says
that. . .

Weak Text-
Based Evidence

Ss provide inaccurate, incomplete, inappropriate, vague,
or trivial evidence from/reference to text

Naya lived a hard life because in the
chapters about her, we learn that she has
to do a lot of things for her family.

Strong Text-
Based Evidence

Ss provide accurate, appropriate, specific evidence
from/reference to text that supports claim

On page 59, in the last paragraph it says,
“I have talked to the others here,’ uncle
Jake said. ‘We believe that the village of
Loun-Ariik was attacked and probably
burned your family.’ Uncle paused and
looked away.”

Weak Explana-
tion

S provides a brief or circular explanation that basically
repeats or restates the response or relies on evidence to
speak for itself.

I think that they didn’t catch the fish be-
cause, , Tim hasn’t caught any fish and
Tim and Tom haven’t caught any fish
lately.

Strong Explana-
tion

Ss provide an elaboration/justification of their answer or
of the evidence they selected to support their answer.

Yeah, it is. The cause is, he didn’t get
the little girl’s advice so, the effect of
that is the calabash broke.

Table 6: ATM codes and their definitions

Prompt for binary prediction

Given a dialogue between a teacher and students in a classroom, in the last turn, {IQA description}?
# Example 1
Dialogue: {Example Excerpt 1(5-turn)}
Answer (yes or no): {Example Answer 1}
...
# Example 10
Dialogue: {Example Excerpt 10 (5-turn)}
Answer (yes or no): {Example Answer 10}
# Input
Dialogue: {Dialogue}
Answer (yes or no):

Figure 4: Prompt templates for binary prediction.
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Abstract

Tutoring dialogues have gained significant at-
tention in recent years, given the prominence of
online learning and the emerging tutoring abil-
ities of artificial intelligence (AI) agents pow-
ered by large language models (LLMs). Recent
studies have shown that the strategies used by
tutors can have significant effects on student
outcomes, necessitating methods to predict how
tutors will behave and how their actions impact
students. However, few works have studied pre-
dicting tutor strategy in dialogues. Therefore,
in this work we investigate the ability of mod-
ern LLMs, particularly Llama 3 and GPT-4o,
to predict both future tutor moves and student
outcomes in dialogues, using two math tutoring
dialogue datasets. We find that even state-of-
the-art LLMs struggle to predict future tutor
strategy while tutor strategy is highly indica-
tive of student outcomes, outlining a need for
more powerful methods to approach this task.

1 Introduction

Tutoring has been shown to be highly effective in in-
creasing student learning, both when administered
by human tutors or intelligent tutoring systems
(Nickow et al., 2020; Nye et al., 2014). Recently,
several automated tutors, powered by large lan-
guage models (LLMs), have been deployed in edu-
cational settings, such as Khan Academy’s Khan-
migo (Khan Academy, 2023) or Carnegie Learn-
ing’s LiveHint (Carnegie Learning, 2024). To en-
sure that students benefit from these tools, it is
important to study the strategies used by tutors and
how they impact student learning outcomes.

Tutor strategy is commonly formalized using
“moves”, or high-level pedagogical actions taken
in any given dialogue turn to support student learn-
ing (Demszky and Hill, 2023; Macina et al., 2023;
Suresh et al., 2022). Recent studies have shown
that explicit move and strategy information can be
used to improve tutor effectiveness (Wang et al.,

2024a,b). Others that train LLMs to be effective
tutors (Tack et al., 2023; Team et al., 2024; Sonkar
et al., 2024; Huber et al., 2023; Vasselli et al., 2023;
Scarlatos et al., 2025b) have also highlighted the
importance of pedagogical strategy. Several prior
works have used tutor moves to predict student
outcomes (Lin et al., 2022; Borchers et al., 2024;
Abdelshiheed et al., 2024; Yin et al., 2025), though
text alone processed by LLMs is often sufficient
(Scarlatos et al., 2025a; Chen et al., 2024). In this
work, we explicitly study the effect of move anno-
tations, compared to text alone, on predicting tutor
strategy and student outcomes.

While many works have studied how to identify
tutor moves in dialogues (Demszky et al., 2021;
Wang and Demszky, 2024; Moreau-Pernet et al.,
2024; Wang et al., 2023; McNichols and Lan,
2025), there are few works studying how to predict
future tutor moves. One prior work does so using
GRUs and RoBERTa (Ganesh et al., 2021), though
to the best of our knowledge, none have studied
how generative language models, such as Meta’s
Llama 3 (Dubey et al., 2024) or OpenAI’s GPT-4
(OpenAI, 2024b), perform on this task.

In this work, to address the needs of understand-
ing tutor strategy and its effect on student outcomes,
we seek to answer the following research questions:
RQ1: Can LLMs predict tutor strategy using tutor
moves and dialogue history?, RQ2: Can LLMs
predict student outcomes using tutor moves and
dialogue history?, and RQ3: Which tutoring strate-
gies have the highest impact on student outcomes?
To the best of our knowledge, our study is the first
to jointly address these questions using modern
generative LLMs. Overall, we find that tutor strat-
egy prediction is highly challenging, with student
outcome prediction being easier and facilitated by
tutor move annotations. Our findings indicate that
tutor strategy prediction is an important and chal-
lenging task worth further study in future work.
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Speaker Utterance

Tutor Hi Ayisha, please talk me through your solution
(generic)

Student I started by noting .... I concluded that the desk
cost her $350, since that was her winning bid.
....

Student Yes, you’re right...Carmen’s bid added an
additional $150, making the total $200 + $150 +
$150 = $350.

Tutor Check your calculation of $200 + $150 + $150 =
$350. Your total is not correct (probing)

Table 1: A tutor-student dialogue from MathDial, show-
ing annotated moves for tutor turns.

2 Methodology

In this section, we detail the four primary tasks
we use to study tutor strategy and student outcome
prediction, as well as the various LLM and non-
LLM methods we evaluate on these tasks. First, we
define our notation. Each tutor-student dialogue,
D = {Ti, Si,Mi, Ei, C}Ni=1, contains a sequence
of alternating textual student utterances Si and tu-
tor utterances Ti. Each tutor turn is associated
with one or more categorical moves, i.e., granular
pedagogical actions, Mi, and each student turn is
optionally associated with a binary measure of suc-
cess Ei. Each dialogue is also labeled with a final
binary measure of success, C. As our focus is to
study tutor strategy and student outcomes, rather
than student behavior, we do not use student move
labels. We show an example dialogue in Table 1.

2.1 Tasks
We now detail our four primary tasks. First, we
examine future tutor move prediction to investigate
if models can predict tutoring strategy. Second,
we examine tutor move classification to investigate
if models can infer moves from tutor utterances.
Third, we examine future dialogue success predic-
tion to investigate if models can infer the outcome
of a dialogue from limited context. Finally, we
examine next student turn success prediction to in-
vestigate if models can predict short-term student
outcomes. We formalize these tasks as follows:

M̂i+1 = fθ({Tj , Sj ,Mj}ij=1) (1)

M̂i = fθ({Tj , Sj ,Mj}i−1
j=1, Ti, Si) (2)

Ĉi = fθ({Tj , Sj ,Mj}ij=1) (3)

Êi+1 = fθ({Tj , Sj ,Mj}ij=1) (4)

2.2 LLM-Based Methods

We evaluate tutor move and student outcome pre-
diction using two large language model (LLM)-
based methods. First, we fine-tune the Llama
3.2 3B model using Low-Rank Adaptation (LoRA)
(Saari et al., 2018), where we train the model to
predict the labels as text tokens following the in-
put, using comma separation for multi-label turns.
Second, we use zero-shot prompting with GPT-4o,
where we prompt the model to follow the annota-
tion schema in each particular dataset to identify
and predict tutor moves. We do not use GPT-4o
for student outcome prediction because pre-trained
LLMs do not show high alignment with student
behavior (Liu et al., 2025). We show an example
prompt in Figure 7, and provide further implemen-
tation details in Appendix A. In order to determine
how tutor move information impacts LLM predic-
tions, for both methods, we experiment with includ-
ing only the dialogue as input, as well as both the
dialogue and previous turn move labels as input.

2.3 Baselines

We additionally experiment with three traditional
baselines, where the input space only uses the move
labels of previous turns. First, we employ a second-
order Markov Chain (Boyer et al., 2009), which
estimates the probability of a tutor move or student
success given the two preceding moves. Next, we
employ Logistic Regression, using the frequency
distribution of moves up to the current turn as in-
put features. Finally, in order to capture temporal
dependencies beyond adjacent moves, we employ
an LSTM model on sequences of tutor move types
encoded as multi-hot vectors.

We do not use these baselines for current move
identification since they do not process text. Addi-
tionally, we do not use Markov Chain and Logistic
Regression for predicting future moves for Alge-
braNation because it is a multi-label task; the input
space for Markov Chain would be exponentially
large, and Logistic Regression would suffer from
an overwhelming amount negative labels per class.

3 Experiments

3.1 Datasets

We experiment with two math tutoring datasets,
MathDial (Macina et al., 2023) and AlgebraNation
(Lyu et al., 2024), to answer our research questions.
MathDial contains one-on-one dialogues where a
tutor guides a student through solving multi-step
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MathDial AlgebraNation

Model Tutor Move Future Tutor Move Tutor Move Future Tutor Move

Acc. F1 Acc. F1 Acc. F1 Acc. F1

Markov Chain – – 42.27 42.81 – – – –
Logistic Regression – – 44.69 34.58 – – – –
LSTM – – 46.19 31.13 – – 3.36 23.17

GPT-4o - Dialogue 49.56 48.76 36.48 32.49 79.22 54.30 65.72 27.32
GPT-4o - Dialogue & Moves 50.07 49.03 31.72 29.00 83.82 57.40 69.86 26.33
Llama 3 - Dialogue 52.58 45.88 42.74 32.92 58.82 62.78 24.53 20.20
Llama 3 - Dialogue & Moves 59.69 57.26 50.35 49.33 63.42 68.90 25.69 21.09

Table 2: Results for identifying tutor moves and predicing future tutor moves. Llama 3 performs best on MathDial,
while GPT-4o generally performs best on AlgebraNation.

math reasoning problems. The student utterances in
this dataset are simulated by an LLM, prompted to
mimic common student misconceptions. Each tutor
turn is labeled with one of four moves: probing,
focus, telling, and generic. We leverage turn-level
student correctness labels from (Scarlatos et al.,
2025a). Our final dataset contains 2, 484 dialogues
with a 1, 947/537 train/test split.

AlgebraNation contains discourse from an on-
line forum where students pose questions and dis-
cuss with both tutors and peers. Each tutor turn is
labeled with any number of 16 move types. Each
post on the forum is marked with success if the re-
sponses resolve the original student question. The
dataset contains 2, 318 forum posts, which we split
into a 1, 854/464 train/test split. We show label
distributions for both datasets in Appendix C.

3.2 Evaluation Metrics
We employ two widely used metrics: i) accuracy
(Acc.), the portion of predicted labels that match
the ground truth, and ii) weighted F1, the harmonic
mean of precision and recall, weighted by label
frequency to account for imbalanced label distri-
butions. For AlgebraNation, where each tutor turn
may have multiple moves, we use exact match
across all moves in a turn to compute accuracy.

3.3 Tutor Move Prediction
Quantitative Analysis We show the results for
tutor move prediction Table 2. Across all methods,
predicting the next tutor move proves to be more
difficult than classifying the current move, particu-
larly for AlgebraNation, which contains real-world
interactions and more granular move definitions.
LLMs improve over baselines for future move pre-
diction, showing the importance of textual context
and powerful models for this task. However, the
F1 for future move prediction is low overall, only

reaching 49% for MathDial and 27% for Algebra-
Nation. These results indicate that tutor behavior is
highly unpredictable, and that even state-of-the-art
LLMs struggle to predict future tutor moves.

Additionally, the results across models and
datasets are inconsistent; Llama 3 performs bet-
ter on MathDial while GPT-4o performs better on
AlgebraNation. Notably, unlike the other methods,
GPT-4o was not trained on AlgebraNation, which
exhibits a highly skewed label distribution (Figure
4). This imbalance may help explain why Llama
3 tends to default to predicting the majority class
in the future move prediction task (Figure 2), a pat-
tern not observed with GPT-4o. On the other hand,
GPT-4o’s move prediction on MathDial likely suf-
fers from confusion between label definitions, as
we discuss in the qualitative analysis.

For the move identification task, Llama 3 per-
forms best on MathDial, with the inclusion of an-
notated move labels significantly increasing per-
formance. Similar to future move prediction, we
attribute Llama 3’s higher performance to GPT-
4o’s confusion between labels. For AlgebraNa-
tion, GPT-4o outperforms Llama 3 in accuracy but
underperforms it in F1. This disparity can be ex-
plained by observing that Llama 3’s output dis-
tribution more closely resembles the ground truth
distribution, as seen in Figure 1.

Qualitative Analysis We examine label misclas-
sifications to investigate error patterns in model
predictions, revealing dataset-specific challenges.
For move classification, in MathDial, confusion fre-
quently arises between probing and focus moves,
while in AlgebraNation, giving instruction is often
mistaken for giving explanation (Table 4). These
misclassifications are likely attributable to concep-
tual overlap in the definitions of these categories,
underscoring the nuanced nature of interpreting tu-
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MathDial AlgebraNation

Model Turn Success Dialogue Success Dialogue Success

Acc. F1 Acc. F1 Acc. F1

Markov Chain 53.75 52.86 53.27 49.01 62.99 63.55
Logistic Regression 52.80 52.54 64.05 66.43 69.30 63.24
LSTM 52.20 52.27 79.13 69.90 77.98 77.76

Llama - Dialogue 63.56 50.54 79.21 70.11 75.64 75.52
Llama - Dialogue & Moves 64.11 49.27 79.16 69.96 81.00 80.84

Table 3: Results for predicting student outcomes from dialogues. Baselines are competitive on MathDial, while
Llama 3 performs best on AlgebraNation.

tor intentions. The MathDial authors also note that
annotators had difficulty differentiating between
probing and focus moves (Macina et al., 2023).
On the other hand, the AlgebraNation annotation
guidelines are more specific and instruction-driven,
likely helping GPT-4o’s performance due to its
ability to generalize well under clear, directive an-
notation schemes (OpenAI, 2024a). Notably, mis-
classifications decrease when observing previous
move labels, reflected in Table 2, with these labels
likely acting as informative in-context examples.

3.4 Student Outcome Prediction
Quantitative Analysis We show the results for
student outcome prediction in Table 3. Notably,
both Llama 3 and LSTM are able to achieve high
performance on dialogue success prediction for
both datasets, indicating the tractability of predict-
ing near-term student outcomes in dialogues. How-
ever, we note that the MathDial results are inflated
as they reflect majority class prediction, as shown
in Figure 3. On the other hand, the distribution is
more balanced for AlgebraNation, indicating that
the outcomes of real students are more reliably pre-
dicted than the outcomes of simulated ones. We
also see that previous move labels improve perfor-
mance for Llama 3, showing that tutor moves com-
plement dialogue text to infer student outcomes.

Predicting student outcomes at the turn-level
proves to be more difficult than at the dialogue-
level in MathDial, with baselines performing close
to random chance. However, using LLMs improves
performance on this task, capturing nuanced details
in the dialogue text to help predict student behavior,
as noted in (Scarlatos et al., 2025a).

Regression Analysis To investigate the impact
of tutor moves on student outcomes, we examine
the learned coefficients of our logistic regression
model when predicting dialogue-level success and
perform a Chi-squared analysis, shown in Tables

8 and 9. For AlgebraNation, confirmatory feed-
back, giving instruction, and giving explanation
have the greatest positive impact on success. These
tutor moves share a common thread: they are all
instructionally supportive behaviors that actively
guide the student’s understanding or progress. Each
move either reinforces correct reasoning (confirma-
tory feedback), clarifies procedural steps (giving
instruction), or deepens conceptual understanding
(giving explanation). This correlation suggests that
successful dialogues are those in which tutors take
an active and supportive role in scaffolding the
student’s learning process. For MathDial, generic
and probing have the strongest positive impact on
success, whereas telling has a negative impact on
success. This finding aligns with prior work (Bergh-
mans et al., 2014) showing that facilitative peer
tutoring is more effective than directive tutoring.

4 Conclusion

In this work, we investigate the abilities and limita-
tions of LLMs in classifying and predicting tutor-
ing strategies and student outcomes in dialogues.
We find that while results vary across models and
datasets, LLMs outperform traditional baselines
while still struggling at the task of tutor strategy
prediction overall. Additionally, we find that stu-
dent outcome prediction is tractable for LLMs, with
tutor move information improving accuracy. Our
findings emphasize the importance and challenges
of studying tutor strategy in dialogues, given the
impact that such strategies can have on student
outcomes. Future work should explore how to im-
prove tutor strategy prediction, potentially using in-
context learning (Lee et al., 2024) or reinforcement
learning (Li et al., 2024). Additionally, future work
should explore how to suggest optimal tutor moves,
potentially using reinforcement learning guided by
student outcomes (Scarlatos et al., 2025b).
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Limitations

We identify several technical and practical limita-
tions of our work. First, the generalizability of our
results is constrained by the scope and nature of
the datasets. MathDial involves synthetic student
responses generated by LLMs, which may not re-
flect the complexity and variability of authentic stu-
dent behavior. Conversely, AlgebraNation, while
comprising real-world interactions, has a highly
imbalanced label distribution that poses challenges
for model evaluation. Additionally, our evalua-
tion methodology predominantly relies on exact
match accuracy and weighted F1 scores. These
standard metrics may not fully capture the nuanced
characteristics of our models. Finally, the absence
of student move tracking in our current modeling
approach may affect the results, as sequential mod-
eling of student behavior could potentially enhance
predictive performance.
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A Details on Experimental Setup

For finetuning Llama 3, we perform a hyperparam-
eter search over learning rates [5e-5, 1e-4, 2e-4, 3e-
4] and LoRA ranks [4, 8, 16, 32]. For the final train-
ing, we set LoRA’s α to 16, LoRA’s rank to 8, batch
size to 64 using gradient accumulation, gradient
norm clipping to 1.0, and learning rate to 1e-4. We
train for 5 epochs using the AdamW optimizer. We
use a random 20% percent of dialogues in the train
set to use as a validation set for early stopping. We
use the meta-llama/Llama-3.2-3B-Instruct
model from the Huggingface Transformers li-
brary (Wolf et al., 2019) and run all experiments
on NVIDIA L40 GPUs.

We prompt GPT-4o with the OpenAI API using a
temperature of 0 while setting the maximum tokens
to 1000 and response format to JSON.

Logistic regression is implemented using the
sklearn library. The model input is the frequency
distribution of moves up to the target tutor move.

For the second-order Markov chain, we compute
transition matrices by mapping state pairs based
on frequency and normalizing them to yield valid
probability distributions.

For the LSTM, we encode the sequence of moves
as multi-hot vectors. For multi-label prediction, we
use positive weighting for each class, calculated
using the proportion of instances in each class. We
perform a hyperparameter search with hidden di-
mensions [64, 128, 256, 512], number of layers [2,
3], dropout rates [0.1, 0.3, 0.5], and learning rates
[1e-3, 5e-3, 1e-2]. For multi-label classification,
we also search for the optimal probability threshold.
Our final models were trained with hidden dimen-
sions 128, 2 layers, dropout of 0.3 and learning
rate of 0.001. The learned threshold for multi-label
classification is 0.85. We implement the LSTM
using Pytorch.
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B Misclassification Analysis

Llama 3 Finetuned on Tutor Move Classification
Without Previous Tutor Moves With Previous Tutor Moves

Ground Truth Predicted Count Ground Truth Predicted Count
MathDial

probing focus 572 probing focus 339
telling focus 143 telling focus 136
focus probing 81 focus probing 124
focus telling 78 generic focus 69
generic focus 46 focus telling 57

AlgebraNation
giving_explanation giving_instruction 73 giving_explanation giving_instruction 74
giving_instruction giving_explanation 40 giving_instruction questioning 29
managing_discussions asking_for_elaboration 34 asking_for_elaboration questioning 24
questioning giving_instruction 34 managing_discussions questioning 23
giving_instruction questioning 27 giving_instruction giving_explanation 23

Table 4: Top 5 misclassifications for MathDial and AlgebraNation with Llama 3, comparing inputs with vs. without
previous tutor moves. The most common confusion in MathDial is between focus and probing. The most common
confusion in AlgebraNation is between giving instruction and giving explanation. Total misclassifications decrease
by including previous tutor moves.

GPT-4o on Tutor Move Classification
Without Previous Tutor Moves With Previous Tutor Moves

Ground Truth Predicted Count Ground Truth Predicted Count
MathDial

probing focus 400 probing focus 431
focus probing 274 focus probing 218
focus telling 169 focus telling 180
telling focus 69 telling focus 63
telling probing 60 probing telling 61

AlgebraNation
giving_instruction giving_explanation 95 giving_instruction giving_explanation 79
giving_explanation giving_instruction 50 giving_explanation giving_instruction 44
giving_instruction correcting 37 encouraging_peer_tutoring praising_and_encouraging 44
encouraging_peer_tutoring praising_and_encouraging 37 confirmatory_feedback praising_and_encouraging 40
confirmatory_feedback praising_and_encouraging 36 asking_for_elaboration questioning 38

Table 5: Top 5 misclassifications for MathDial and AlgebraNation with GPT-4o, comparing inputs with vs. without
previous tutor moves. The most common confusion in MathDial is between focus and probing. The most common
confusion in AlgebraNation is between giving instruction and giving explanation.
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Llama 3 on Future Tutor Move Prediction
Without Previous Labels With Previous Labels

Ground Truth Predicted Count Ground Truth Predicted Count
MathDial

probing focus 736 probing focus 378
telling focus 335 telling focus 175
generic focus 252 generic focus 125
focus telling 78 focus telling 121
probing telling 64 focus probing 119

AlgebraNation
questioning giving_instruction 105 giving_explanation giving_instruction 162
giving_explanation giving_instruction 88 questioning giving_instruction 131
giving_instruction giving_explanation 82 confirmatory_feedback giving_instruction 95
confirmatory_feedback giving_instruction 65 providing_further_references giving_instruction 79
managing_discussions giving_instruction 65 managing_discussions giving_instruction 78

Table 6: Top 5 misclassifications for MathDial and AlgebraNation with Llama 3, comparing inputs with vs. without
previous tutor moves. The most common confusion in MathDial is between focus and probing. Previous labels
decrease the total top five misclassifications for MathDial. The most common misclassifications in AlgebraNation
all occur when giving instruction is predicted.

GPT-4o in Future Tutor Move Prediction
Without Previous Labels With Previous Labels

Ground Truth Predicted Count Ground Truth Predicted Count
MathDial

focus probing 551 focus probing 553
probing focus 311 probing focus 309
telling probing 288 telling probing 283
generic focus 176 telling focus 178
telling focus 173 generic focus 170

AlgebraNation
giving_instruction giving_explanation 144 giving_instruction giving_explanation 144
giving_explanation giving_instruction 66 confirmatory_feedback giving_explanation 62
confirmatory_feedback giving_explanation 66 questioning giving_explanation 56
questioning giving_instruction 65 giving_instruction confirmatory_feedback 54
questioning giving_explanation 61 questioning giving_instruction 54

Table 7: Top 5 misclassifications for MathDial and AlgebraNation with GPT-4o, comparing inputs with vs. without
previous tutor moves. The most common confusion in MathDial is between focus and probing. The most common
confusion in AlgebraNation is between giving instruction and giving explanation. Overall, including previous tutor
moves decreases the top 4 misclassifications rates.
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Figure 1: Label distribution of tutor move classification for GPT-4o and Llama 3 trained with dialogue and tutor
moves.

Figure 2: Label distribution of future tutor move prediction for GPT-4o and Llama 3 trained with dialogue and tutor
moves. Llama 3 predictions are heavily skewed towards giving instruction.

Figure 3: Left: Distribution of dialogue success classification in MathDial using Llama 3. Right: Distribution of
dialogue success classification in AlgebraNation using Llama 3.
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C Label Distributions

Figure 4: Tutor move distribution of AlgebraNation dataset. Few classes make up the majority of the distribution.

Figure 5: Tutor move distribution of MathDial dataset.

Figure 6: Left: Distribution of turn-level student success in MathDial. Center: Distribution of final turn student
success in MathDial. Right: Distribution of dialogue success in AlgebraNation.
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D Logistic Regression Coefficients and Chi-Squared Analysis

Feature Coefficient χ2 p-value Significant
confirmatory feedback 0.168682 684.413557 7.330488e-151 Yes
giving instruction 0.144908 505.315750 6.628000e-112 Yes
giving explanation 0.130397 408.828643 6.593282e-91 Yes
praising and encouraging 0.089068 189.507614 4.072012e-43 Yes
giving answers 0.072106 123.889276 8.907816e-29 Yes

Table 8: Logistic regression coefficients and Chi-squared analysis conducted to evaluate the impact of tutor moves
on final dialogue correctness, with corresponding p-values for the top 5 significant features for AlgebraNation.

Feature Coefficient χ2 p-value Significant
generic 1.063463 18.7393 1.4986e-05 Yes
focus 0.175187 2.2684 1.3203e-01 No
probing -0.186663 6.7967 9.1324e-03 Yes
telling -1.062664 19.3447 1.0912e-05 Yes

Table 9: Logistic regression coefficients and Chi-squared analysis conducted to evaluate the impact of tutor moves
on final dialogue correctness, with corresponding p-values for all features for MathDial.
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E Prompt Examples for Tutor Move Classification
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Prompt Used for Classification Task (MathDial)

System: You are a math teacher who tutors student on a variety of problems.
Dialogue ID: 14
Task: Classify the last teacher move into one of the following four categories: Focus, Probing, Telling, Generic. These
four categories are defined below:

• Focus

– Seek Strategy: So what should you do next?
– Guiding Student Focus: Can you calculate . . . ?
– Recall Relevant Information: Can you reread the question and tell me what is . . . ?

• Probing

– Asking for Explanation: Why do you think you need to add these numbers?
– Seeking Self Correction: Are you sure you need to add here?
– Perturbing the Question: How would things change if they had . . . items instead?
– Seeking World Knowledge: How do you calculate the perimeter of a square?

• Telling

– Revealing Strategy: You need to add . . . to . . . to get your answer.
– Revealing Answer: No, he had . . . items.

• Generic

– Greeting/Farewell: Hi . . . , how are you doing with the word problem? Good Job! Is there anything else I
can help with?

– General Inquiry: Can you walk me through your solution?

Instructions: Given the student-teacher dialogue below, classify the final teacher move. Return a JSON object with the
dialogue ID as the key and the teacher move type as the value. For example:

{"1234": "focus"}

Dialogue:
[BEGIN DIALOGUE]
Teacher Turn 0: Hi Ayisha, please talk me through your solution (generic)
Student Turn 0: I started by noting that the first bid was $200 and each subsequent bid was $50 more,
so the second bid was $200 + $50 = $250, the third bid was $250 + $50 = $300, and the fourth bid was
$300 + $50 = $350. Then I realized that Carmen bid after each of the other 3 people, so she made 3
bids in total. Therefore, I concluded that the desk cost her $350, since that was her winning bid.
Teacher Turn 1: Okay, let's start again. If each bid adds $50 to the price and there were 3 bids -
how much is added to the overall cost? (focus)
Student Turn 1: The overall cost is increased by $150, since each bid adds $50 and there were 3 bids.
Teacher Turn 2: Yes $150. Carmen adds a $50 bid after each of the three bids. How much more does this
add to the cost? (focus)
Student Turn 2: This adds an additional $150, since each bid is $50 and there were 3 bids. Therefore,
the total cost of the desk is $350.
Teacher Turn 3: 3 x 50 is 150. So it adds a further $150 making the total so far $300 (telling)
Student Turn 3: Yes, that's correct. The total cost of the desk is $350, since the first bid was
$200 and each subsequent bid was $50 more, so the final bid was $300 + $50 = $350.
Teacher Turn 4: No, go back and check what we said. The 3 bids $150 + Carmen's Bid $150 + the opening
bid $200 (focus)
Student Turn 4: Yes, you're right. The total cost of the desk is $350, since the opening bid was $200,
the 3 bids added $150, and Carmen's bid added an additional $150, making the total $200 + $150 + $150 =
$350.
Teacher Turn 5: Check your calculation of $200 + $150 + $150 = $350. Your total is not correct
[END DIALOGUE]

Figure 7: Full prompt used to classify the final tutor move in a MathDial dialogue.
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Prompt Used for Classification Task (AlgebraNation)

System: You are a math teacher who tutors student on a variety of problems.
Dialogue ID: 10520899
Task: Classify the last tutor move into one or more of the following categories: confirmatory_feedback, nega-
tive_feedback, correcting, giving_instruction, giving_explanation, providing_further_references, questioning, ask-
ing_for_elaboration, praising_and_encouraging, managing_frustration, managing_discussions, giving_answers, en-
couraging_peer_tutoring, guiding_peer_tutoring, acknowledging_tutor_issue, and other. These categories are
described below:

• confirmatory_feedback: Whether a reply provides confirmatory feedback about an answer’s correctness.

• negative_feedback: Whether a reply states that an answer is incorrect.

• correcting: Whether a reply addresses errors in the student’s problem-solving approach.

• giving_instruction: Whether a reply breaks down a task, performs a part, or initiates a task for the student to
complete.

• giving_explanation: Whether a reply explains concepts, principles, or provides additional information.

• providing_further_references: Whether a reply includes additional resources or references related to the topic.

• questioning: Whether a reply asks questions to stimulate thought or constructive discussion.

• asking_for_elaboration: Whether a reply requests further details or explanation from the student.

• praising_and_encouraging: Whether a reply praises or encourages the student for their efforts or successes.

• managing_frustration: Whether a reply addresses the student’s negative emotions or frustration.

• managing_discussions: Whether a reply organizes the flow of discussion or adjusts the direction of inquiry.

• giving_answers: Whether a reply directly provides an answer to the posed question.

• encouraging_peer_tutoring: Whether a reply promotes tutoring interactions among peers.

• guiding_peer_tutoring: Whether a reply provides feedback on peer tutoring interactions.

• acknowledging_tutor_issue: Whether the tutor expresses uncertainty in their reply.

• other: Binary indicator for tutoring strategies not classified under the existing labels.

Instructions: Given the student-teacher dialogue below, classify the final teacher move. Return a JSON object with the
dialogue ID as the key and the teacher move type(s) as the value. For example:

{"1234": ["confirmatory_feedback", "correcting"]}

Dialogue:
[BEGIN DIALOGUE]
Student: Can someone help me?
Student: You have to plug in zeros for x and y right
Tutor: Get it into y=mx+b form. ['giving_instruction']
Tutor: SO bring 6x to the right side first. ['giving_instruction']
Teacher: Okay Patrice, you want to put that in slope-intercept form ['giving_instruction']
Student: -5y=30+6x
Teacher: Now isolate y ['giving_instruction']
Student: -5 on both sides ?
Student: or divide
Teacher: You would divide
[END DIALOGUE]

Figure 8: Full prompt used to classify the final tutor move in an AlgebraNation dialogue.
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Abstract

This paper presents a data-driven analysis of
Romanian secondary school textbooks through
the lens of Bloom’s Taxonomy, focusing on the
promotion of critical thinking in instructional
design. Using the ROTEX corpus, we extract
and annotate almost 2 million words of Roma-
nian Language and Literature textbooks (grades
5-8) with Bloom-aligned labels for verbs as-
sociated with pedagogical tasks. Our annota-
tion pipeline combines automatic verb extrac-
tion, human filtering based on syntactic form
and task relevance, and manual assignment of
Bloom labels supported by in-text concordance
checks. The resulting dataset enables fine-
grained analysis of task complexity both across
and within textbooks and grade levels. Our
findings reveal a general lack of structured cog-
nitive progression across most textbook series.
We also propose a multi-dimensional frame-
work combining cognitive-level and linguistic
evaluation to assess instructional design qual-
ity. This work contributes annotated resources
and reproducible methods for NLP-based edu-
cational content analysis in low-resource lan-
guages.

1 Introduction

Critical thinking is a key competence in education,
shaping students’ ability to analyze, evaluate, and
synthesize information. It refers to cognitive and
metacognitive processes that enable individuals to
question assumptions, construct arguments, and
engage in logical reasoning (Ennis, 1985). These
processes include argument evaluation (e.g., iden-
tifying sound reasoning and fallacies), metacogni-
tion (e.g., self-monitoring of thinking), and epis-
temic skepticism (e.g., questioning the credibility
of sources and claims). However, recent studies
indicate that these very capacities may be eroding
in the age of generative AI, which has been shown
to reduce users’ cognitive effort and reliance on re-
flective thinking (Lee et al., 2025). In the context of

education, the extent to which textbooks promote
critical thinking has been a major research con-
cern, particularly regarding curriculum effective-
ness (Paul and Elder, 2007) and the role of instruc-
tional materials in fostering higher-order thinking
skills (Facione, 1990). Studies suggest that educa-
tional texts should challenge students intellectually
while being cognitively accessible, following devel-
opmental frameworks such as the zone of proximal
development (ZPD) (Vygotsky and Cole, 1978).

Research on textbooks as facilitators of critical
thinking has traditionally relied on manual con-
tent analysis and qualitative coding (Halpern, 1998;
Kuhn, 2005). However, recent advances in natural
language processing (NLP) and computational text
analysis have enabled large-scale automated evalu-
ation of educational materials. NLP-based methods
allow for the detection and quantification of crit-
ical thinking components by analyzing linguistic,
structural, and argumentative features in textbooks
(Allen et al., 2015; Graesser et al., 2011). These fea-
tures include argumentative density (e.g., presence
of claims, counterclaims, and rebuttals), discourse
coherence (e.g., logical connections between ideas),
and syntactic complexity (e.g., sentence structures
that require higher cognitive processing) (Crossley
and McNamara, 2016). The availability of NLP-
driven readability and complexity assessment tools
(see Section 3) varies across languages, depending
on the availability of annotated corpora and com-
putational models designed to process textbook
content.

Building on this context, our study is guided by
the following research questions:

RQ1: To what extent do Romanian language text-
books at the secondary level include tasks that sup-
port higher-order cognitive processes, as defined
by Bloom’s Taxonomy?

RQ2: How are these tasks distributed across
grades and chapters, and do they reflect a coherent
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pedagogical progression?

RQ3: Which textbook series demonstrate the
most effective use of instructional tasks for promot-
ing critical thinking, based on verb-level cognitive
classification?

These questions aim to bridge linguistic and cog-
nitive evaluation frameworks through a data-driven
analysis of instructional content, contributing both
methodological tools and empirical insights to the
field of educational NLP.

The paper presents the ROTEX corpus analy-
sis and introduces the computational methodology
used to extract, classify, and quantify critical think-
ing elements in school textbooks.1 We begin by
reviewing related work on critical thinking assess-
ment and educational data mining. This is followed
by a description of the corpus and the NLP-based
methods used to evaluate cognitive complexity. We
then present the results of our analysis, focusing on
the patterns found in Romanian school textbooks
and their implications for curriculum development.
The paper concludes with a discussion on the edu-
cational relevance of our findings and the potential
for integrating AI-driven tools in textbook evalua-
tion and curriculum design.

2 Related Work

Thinking, in its broadest sense, is an active and
deliberate process through which individuals make
sense of information (Dewey, 2022), ask relevant
and purposeful questions (Nosich, 2005), identify
what they do not know (ibid.), and revise their be-
liefs based on new evidence. Dewey (2022) defines
reflective thinking as “active, persistent, and care-
ful consideration of any belief or supposed form of
knowledge in the light of the grounds that support
it and the further conclusions to which it tends” (p.
6). He further characterizes thought as inherently
inferential: “the exercise of thought is, in the literal
sense of that word, inference; by it one thing carries
us over to the idea of, and belief in, another thing.
It involves a jump, a leap, a going beyond what
is surely known to something else accepted on its
warrant” (p. 26). This view frames thinking not as
passive reception, but as a generative act of drawing
justified conclusions. These foundational processes
represent the basis of more specific forms of think-
ing, such as critical thinking, which adds a layer

1The code and the annotated data is available here:
https://github.com/mcmarius/ro-textbook-parser

of evaluative and reflective judgment. For exam-
ple, questioning assumptions (Brookfield, 2011),
evaluating arguments (Halpern, 2013), and recog-
nizing knowledge gaps (Nosich, 2005) are central
to critical engagement. Brookfield (2011) further
defines critical thinking as the intentional effort
to uncover hidden reasoning structures and chal-
lenge taken-for-granted beliefs. Kahneman (2011)
complements this view by highlighting the dual-
process nature of thinking: fast, intuitive cognition
and slow, deliberate reasoning, both of which in-
fluence how individuals analyze and respond to
information. Together, these perspectives suggest
that critical thinking is not separate from general
thinking but represents its most reflective, analyt-
ical, and self-aware form. To apply these dimen-
sions of thinking in instructional design, educa-
tors have adopted structured cognitive frameworks,
with Bloom’s Taxonomy being the most widely
used.

2.1 Bloom’s Taxonomy and linguistic research
Bloom’s Taxonomy is a foundational framework
in pedagogy that categorizes cognitive learning
objectives into six hierarchical levels: remember,
understand, apply, analyze, evaluate, and create
(Bloom et al., 1956; Anderson and Krathwohl,
2001). These levels provide a systematic approach
to designing, analyzing, and evaluating educational
materials by addressing varying cognitive demands,
from basic recall of facts to complex critical think-
ing and creative tasks. While its original use was in
curriculum development, Bloom’s Taxonomy has
since been widely applied in educational research
and, more recently, in corpus-based studies.

In corpus research, Bloom’s Taxonomy has
played a crucial role in evaluating the complex-
ity of educational texts and tasks. For instance,
Oraviţan et al. (2023) used the ROTEX corpus of
Romanian language textbooks and applied Bloom’s
Taxonomy to categorize linguistic features in writ-
ing tasks. The authors extracted n-grams and verb
patterns to align tasks with taxonomy levels. They
found that higher-order levels, such as creation
(e.g., write, design), were overrepresented in com-
parison to mid-level skills like analysis (e.g., com-
pare, analyze). Similarly, Graves (2017) employed
Bloom’s Taxonomy to examine how writing assign-
ments across university disciplines vary in their
cognitive demands, noting the need for balanced
progression across the taxonomy levels.

Bloom’s Taxonomy has guided the extraction
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and classification of cognitive processes from tex-
tual datasets. Tools like Coh-Metrix (Graesser
et al., 2011) enable the identification of linguis-
tic markers, such as cohesive devices and argu-
mentation patterns, that correspond to taxonomy
levels. Çavdar and Doe (2012) linked writing tasks
explicitly with Bloom’s Taxonomy to assess crit-
ical thinking skills in argumentative assignments,
showcasing how cognitive skills can be measured
quantitatively in textual corpora.

2.2 Textbook design
A growing consensus among researchers empha-
sizes the pivotal role of textbook design in cul-
tivating students’ critical thinking abilities, with
Bloom’s Taxonomy serving as a widely endorsed
framework for structuring cognitive development in
learning materials. The revised taxonomy from An-
derson and Krathwohl (2001) explicitly advocates
for a hierarchical integration of cognitive processes,
ranging from remembering to creating, in the de-
sign of instructional materials, highlighting the
necessity for a scaffolded progression within and
across units. Studies analyzing textbooks across
various contexts have consistently found a domi-
nance of lower-order thinking skills (LOTS), rais-
ing concerns about insufficient cognitive stimula-
tion. For example, Miyazaki (2024) found that
97.3% of tasks in a widely used Japanese Grade 8
textbook fell into the remember, understand, or ap-
ply categories, despite national curriculum reforms
encouraging analyze, evaluate, and create levels.
A similar imbalance was reported by Riazi and
Mosalanejad (2010) in Iranian high school and pre-
university English textbooks, where lower-order
tasks were prevalent, although pre-university mate-
rials showed a modest improvement in higher-order
inclusion. These findings echo those of Mizbani
et al. (2023), who found that in Iran’s “Vision 2”
textbook, high-order thinking activities were lack-
ing across all four language skills, undermining
deeper learning opportunities. These studies re-
inforce the idea that effective textbooks must not
only include all levels of Bloom’s Taxonomy but
must structure tasks progressively within units and
increase the proportion of higher-order thinking
tasks by grade level. Such recommendations are
further supported by global curriculum standards
like those in Japan2, which now explicitly aim to
foster “the ability to think, make judgments, and ex-

2https://www.mext.go.jp/en/policy/education/
overview/index.htm

press oneself”, outcomes achievable only through
textbooks that prioritize higher-order cognition. As
Beauchamp and Kennewell (2010) argue, materials
that fail to challenge students beyond information
recall risk reinforcing surface learning, rather than
equipping learners with the reasoning and creativity
needed in a complex, unpredictable world.

2.3 Multitasking and critical thinking

While complex, layered tasks are often intended to
simulate real-world problem solving, research sug-
gests that combining multiple cognitive demands
within a single assignment may, in fact, hinder the
development of critical thinking. According to Cog-
nitive Load Theory (Sweller, 1988; Van Merrien-
boer and Sweller, 2005), the human working mem-
ory has limited capacity and overloading it with too
many simultaneous instructional demands can lead
to superficial engagement rather than deep learning.
This is especially problematic when tasks require
students to analyze, evaluate, and create under
strict, multi-part conditions, prompting a “check-
list mindset” rather than genuine intellectual ex-
ploration (Torrance, 2007). Paul and Elder (2007)
argue that critical thinking flourishes under condi-
tions of conceptual clarity and reflective inquiry,
conditions undermined when students are forced
to meet narrowly defined sub-goals in one task.
Perkins (2008) similarly notes that such instruc-
tional designs often lead to “fragile knowledge,”
where students complete tasks without fully inter-
nalizing the concepts involved. While the Revised
Bloom’s Taxonomy encourages progression toward
higher-order thinking (Anderson and Krathwohl,
2001), this does not imply simultaneous execution
of all levels in a single prompt. On the contrary,
effective critical thinking tasks are often those that
isolate and deepen one cognitive demand at a time,
especially at the create and evaluate levels, where
open-ended exploration is most essential.

3 Method

3.1 Corpus

The analyses are based on the ROLAT subset of
the ROTEX corpus (Chitez et al., 2024), the Roma-
nian Corpus of School Textbooks, which comprises
Romanian Language and Literature textbooks cur-
rently used in secondary schools in Romania. No-
tably, there is limited continuity within individual
publishing house series, as only ArtKlett provides
a complete set of textbooks for grades 5 through 8
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(Table 1).

Textbook 5th

grade
6th

grade
7th

grade
8th

grade

ArtKlett 82,249 80,312 95,968 108,918
Booklet 63,416 93,031 - -
Corint 58,719 85,836 - 93,214
Litera 55,191 67,895 77,288 -
Intuitext 71,279 78,211 85,143 -
CD
Press

47,618 51,801 71,273 -

EDP - 57,096 64,126 -
Paralela
45

- 88,567 99,002 -

Ars
Libri

- - 62,527 -

Aramis - - 75,734 66,294

Total 1,880,708

Table 1: ROTEX sub-corpus size (no. words)

3.2 Annotation

Due to the lack of resources with verbs annotated
using Bloom’s Taxonomy labels in Romanian, we
have annotated the ROTEX corpus with these la-
bels through a multi-step process. The main com-
putational analysis steps are: (1) task extraction,
(2) verb extraction, (3) syntactic filtering, and (4)
Bloom-level labeling. The processing pipeline is
presented in Appendix A, Figure 4).

First, all tasks were extracted from the ROTEX
corpus based on two methods: regular expression
heuristics and multimodal prompting with Gemini
(Team et al., 2023) (the prompt used is detailed in
Appendix A, Table 4). Then, tasks found by both
methods were deduplicated. Next, verbs were ex-
tracted using the spaCy3 POS tagger for Romanian.
To target pedagogical intent, verbs were filtered
to retain only those in second person singular or
plural, typically indicative of task instructions (e.g.,
scriet,i, gândit,i, comparat,i). This filtering was per-
formed either automatically with spaCy morpholog-
ical features or manually by human reviewers. For
the latter, a group of trained students identified task-
related verbs by examining in-text concordances.

Next, the remaining verbs were reviewed for ac-
curacy by expert annotators on the research team.
Bloom’s Taxonomy labels were assigned based

3https://spacy.io/

on a seed list of verbs from existing literature, di-
rectly translating verbs from the Bloom Taxonomy
Levels (e.g., “analyze” translated to “analizat,i”)
or from didactic expertise. Verbs without auto-
matic label matches were manually annotated by
the same group of human raters. In-text concor-
dances were again used to support disambiguation,
particularly for verbs potentially associated with
multiple Bloom categories. A final expert veri-
fication ensured the accuracy of the annotations,
resulting in the finalized list of verbs and their cor-
responding Bloom labels. Table 2 shows the most
frequent verbs, identified as recurring across all
instructional prompts and tasks within the ROTEX
corpus.

A multi-step human validation process was im-
plemented to ensure the reliability of the Bloom-
level annotations. After the initial annotation phase
by trained student raters, the assigned labels were
reviewed by expert members of the research team,
who verified the alignment between each verb’s
usage in context and its cognitive category. Special
attention was given to polysemous verbs and those
that could potentially map to multiple Bloom levels.
In these cases, in-text concordances were used to
assess task intent and clarify ambiguities. Although
no formal inter-annotator agreement metric was cal-
culated, the annotation process was iterative and
consensus-based, ensuring consistency in labeling
and fidelity to both linguistic form and pedagogi-
cal function. It is important to note that assigning
cognitive categories to verbs in isolation would
be reductive; instead, the full task must be taken
into account. Therefore, when applying Bloom’s
Taxonomy to real educational materials (such as
ROTEX), a contextualized approach has to be used,
to ensure that the categorization remains pedagog-
ically meaningful and accurately reflects how the
tasks are designed to engage students cognitively.

In total, 434 verbs were annotated: 86 were la-
beled as “analyze,” 84 as “apply,” 47 as “create,”
112 as “understand,” 26 as “remember,” and 79 as
“evaluate”. The annotated list of verbs was then
compiled at both the chapter and textbook levels
to enable macro- and micro-level distribution anal-
ysis. The annotated dataset (Bloom-labeled verbs
per task) is publicly available via GitHub4, under a
CC-BY license.

4https://github.com/mcmarius/ro-textbook-parser
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Bloom Taxonomy Level Task signal phrases
Remember: Recalling
facts, concepts, or basic in-
formation.

numes, te, rememorează,
reproducet,i, rostes, te, urmăres, te
(EN: name, recall, reproduce,
recite, follow)

Understand: Explaining
ideas or concepts.

asociază, caută, centralizează,
delimitează, descrie, extrage,
indică, identifică, ment,ionează,
organizează, precizează,
recunoas, te, selectează, sublini-
ază
(EN: associate, search, cluster,
delimite, describe, extract, in-
dicate, identify, mention, orga-
nize, specify, recognize, select,
underline)

Apply: Explaining ideas
or concepts.

adaugă, adresează, alcătuies, te,
aplică, arată, combină,
completează, construies, te,
demonstrează, exemplifică,
foloses, te, formează, for-
mulează, îmbină, înlocuies, te,
încadrează, marchează, re-
zolvă, transformă, valorifică
(EN: add, address, compose,
apply, show, combine, com-
plete/fill in, build, demonstrate,
exemplify, use, form, formu-
late, merge, replace, frame, la-
bel, solve, transform, utilize)

Analyze: Identifying con-
nections between ideas or
breaking down a concept.

analizează, aseamănă, car-
acterizează, comentează,
corectează, corelează,
defines, te, desprinde, sep-
ară, stabiles, te, lucrat,i pe
echipe
(EN: analyze, compare,
describe/characterize, com-
ment/interpret, revise, correlate,
define, distinguish, differenti-
ate, determine, collaborate)

Evaluate: Forming judg-
ments or justifying a deci-
sion or opinion.

alege, argumentează, com-
pară, convinge, dezvoltă, dis-
cută, documentează, evaluează,
interpretează, justifică, mo-
tivează, sust,ine, verifică
(EN: choose, argue, compare,
convince, develop, discuss, re-
search, evaluate, interpret, jus-
tify, motivate, support, check)

Create: Producing some-
thing new or original.

compune, concepe,
confect,ionează, continuă,
desenează, evocă, gândes, te,
imaginează(-t,i), închipuie(-
t,i), prezintă, realizează,
redactează, reformulează,
rescrie, scrie, transpune
(EN: compose, design, make,
complete, draw, evoke, think,
imagine, envision, present, cre-
ate, write, rephrase, rewrite,
write, adapt)

Table 2: Bloom-taxonomy verb examples
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Figure 1: Bloom category counts by publisher and grade

4 Textbooks Analysis

In this section, we present the findings from our
analysis of the ROTEX corpus concerning Roma-
nian language textbooks for grades 5 to 8. The anal-
ysis indicates a general absence of structured cogni-
tive progression among most publishers. Below, we
provide the identified patterns of Task Complexity
Distribution (TCD).

4.1 TCD per textbook series

According to Bloom’s Taxonomy, instructional
tasks should ideally evolve from foundational cog-
nitive levels, i.e. remember and understand, toward
more complex processes such as analyze, evaluate,
and create. However, the distribution of task types
across publishers and grades, as shown in Figure 1,
suggests minimal scaffolding toward higher-order
thinking.

Publishers such as ArtKlett exhibit consistently
high counts of lower-order tasks (remember and
understand) across all four grades (43.3% or 3304
out of 7626), with surprisingly high rates in higher
grades (43.7% or 1805 out of 4132), when the
upper-order tasks should prevail. Other textbooks,
such as CD Press and EDP, maintain a near-flat
profile across grades, with understand tasks mak-
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ing up 36% of the content (812 out of 2252), and
create tasks remaining negligible throughout (12%
or 281 out of 2252).5

When we look at the growth patterns for higher-
order thinking tasks, several trends emerge. Intui-
text stands out for its clear increase in analyze and
evaluate tasks across grades, and the gradual intro-
duction of create tasks by grade 8. CDPress and
ArtKlett also show moderate gains in higher-order
categories, especially in the upper grades. Booklet
and Paralela45 include a range of task types but
lack a clear upward trajectory. In contrast, Corint,
Litera, ArsLibri, and Aramis remain static, with
modest presence of higher-order tasks throughout.
EDP shows some potential, but lacks full grade
coverage.

Based on these findings, a hierarchy of textbooks
based on their capacity to promote critical thinking
can be established. Intuitext ranks highest, showing
the most consistent inclusion and progression of an-
alyze, evaluate, and create tasks across grades. CD-
Press follows, with moderate presence of higher-
order tasks, especially in upper grades. ArtKlett
shows some higher-order tasks by grade 8, but lacks
consistent instructional sequencing. All other text-
books (Booklet, Paralela45, Corint, Litera, Aramis,
ArsLibri) display minimal to no critical thinking
tasks, remaining focused on lower-order categories
(55% or 10150 out of 18518).

Table 3 shows higher-order tasks included in
ROTEX textbooks that exhibit variability and in-
consistency regarding Bloom’s Taxonomy for sev-
eral reasons (sequence combining several levels
or using multiple verbs and tasks), reflecting the
complexity of educational tasks and practices.

4.2 TCD per learning unit within textbooks
By making a fine-grained analysis on the distribu-
tion of tasks within each textbook per grade (Ap-
pendix A, Figure 5), we can notice similar patterns
to the overall task complexity distribution. Among
all series, Intuitext demonstrates the most coher-
ent and intentional progression of task complexity.
Across its chapters, there is a visible build-up from
lower-order tasks toward analyze, evaluate, and
even create, particularly in the upper grades, re-
flecting a well-structured approach to competence
development. CDPress presents a similarly struc-
tured pattern, with higher-order tasks becoming
more prominent in later chapters, suggesting a

5See also Figure 3 for counts shown as percentages (Ap-
pendix A).

Task example Bloom taxonomy
level

a) Extrage, din text,
enumerat,ia care se asociază
peisajului marin.

b) Cum se raportează instant,a
lirică la ideea de patrie?
Argumentează-t,i răspunsul.

(EN:
a) Extract, from the text, the enumer-

ation associated with the seascape.
b) How does the lyric instance relate

to the idea of homeland? Give rea-
sons for your answer.)

Understand

Evaluate
Create

Cui consideri că îi apart,in cu-
vintele as,ezate între liniile de
pauză din versul „– S, i Dum-
nezeu cunoas, te cum vorba s, i-o
păzes, te –”?
Alege una dintre variantele urmă-
toare s, i motivează-t,i opt,iunea:

a) personajului, care jură în
fat,a păsărilor domestice
pentru a da greutate cuvin-
telor sale;

b) naratorului, care intervine
astfel spre a avertiza citi-
torul că personajul minte.

(EN: Who do you think the words be-
tween the pause lines in the line "– And
God knows how the word is spoken and
keeps it –" belong to? Choose one of the
following options and give your reasons:

a) the character, who swears in front
of the domestic birds to give
weight to his words;

b) the narrator, who intervenes to
warn the reader that the character
is lying.)

Analyze
Evaluate

Evaluate

Amintes, te-t,i ultima călătorie pe
care ai făcut-o. Formulează
enunt,uri care să continue urmă-
toarele începuturi. . .
(EN: Remember the last trip you took.

Make statements that continue the fol-

lowing beginnings. . . )

Remember
Create

Recites, te textul Fascinat,ii de
George S, ovu s, i notează în caiet o
secvent,ă narativă s, i una descrip-
tivă, precizând ce rol au în cadrul
textului.
(EN: Reread the text Fascinations by

George S, ovu and write down a narrative

and a descriptive sequence in your note-

book, specifying their role in the text.)

Remember
Understand

Evaluate

Table 3: Examples of exercises that exhibit variability
and inconsistency regarding Bloom’s taxonomy by com-
bining multiple levels in the same task
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lightweight but effective progress model. In con-
trast, ArtKlett includes a wide variety of task types,
including higher-order ones, in nearly every chapter
from the outset. However, the lack of variation or
progression across chapters indicates a dense and
static design rather than a pedagogically sequenced
one. Other textbook series, such as Booklet, Litera,
Corint, Paralela45, and Aramis, show predomi-
nantly flat distributions, with chapters consistently
focused on lower-order categories like remember
and understand, and little evidence of an inten-
tional cognitive arc. These findings suggest that
while some series embed critical thinking tasks,
only a few succeed in distributing them progres-
sively and meaningfully throughout the learning
units.

4.3 TCD per learning unit within series across
grades

A cross-grade analysis of task distribution reveals
distinct patterns in how textbook series support
cognitive development over time. Intuitext is the
only series to exhibit a clear upward trajectory in
task complexity, with a gradual increase in an-
alyze, evaluate, and create tasks from grades 5
to 7, aligning well with students’ developmental
stages. CDPress also shows moderate progres-
sion, with higher-order tasks becoming more promi-
nent in grades 6 and 7, although coverage is lim-
ited. In contrast, ArtKlett distributes higher-order
tasks relatively evenly across all grades, indicat-
ing cognitive density without meaningful scaffold-
ing. The remaining series, Booklet, Litera, Corint,
Paralela45, Aramis, and ArsLibri, maintain static
task profiles, dominated by lower-order categories
throughout, with minimal evidence of progression.
These results suggest that most textbook series do
not implement systematic cognitive progression
across grade levels, potentially limiting their ef-
fectiveness in supporting long-term competence
development.

4.4 Multi-task presence

Since tasks can contain multiple sentences and
phrases, it is difficult to assign a single label when
multiple verbs correspond to several Bloom levels.
This complexity persists despite the annotation ef-
forts detailed in Section 3.2, which aimed to assign
a single Bloom level to each verb. In the previous
sections, we addressed this ambiguity to assign a
single Bloom level per task by dividing each task
into individual sentences and then further splitting
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Figure 2: Bloom category counts by publisher and grade
for multitask exercises

each sentence based on the main verb identified in
the parse tree. Finally, we assigned the label of the
first verb in order of appearance.

For this analysis, we keep the labels from all
verbs and focus our attention only on these multi-
level tasks, which account for 26% of all exercises.
After considering tasks at the sentence level, we
are left with 15% multi-task exercises. Following
the same methodology, we group tasks by textbook
series, grades, and learning units (Figure 2). A
fine-grained analysis on the distribution of tasks
per learning unit within each textbook is presented
in Appendix A, Figure 6.

Based on the assumption that a gradual progres-
sion would result in multi-task exercises to contain
verbs assigned to consecutive Bloom levels, we
aggregate these multi-task exercises in four cate-
gories: (1) low level + high level, (2) low level +
middle level, (3) middle level + high level and (4)
any other combination, most likely consisting of
all levels. While the number of such tasks is mod-
est (15%), this reveals another concerning trend,
once again confirming a general lack of pedagog-
ical principles. Except for ArsLibri, all textbooks
across all grades mix low levels and high levels
in more than half of all multi-task exercises. Fur-
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thermore, ArtKlett, Litera and Intuitext exhibit this
trend consistently across most grades and chapters.

If we analyze just one example of a task from a
textbook designed for the 5th grade (ArtKlett), we
can justify several challenges: „Select four verbs
from the given text and write them on your work-
sheet. Use them in a composition in which you
present a story set in the garden, showing how you
make friends with one of the creatures in the text.
In your composition, you will fulfill the follow-
ing requirements: (1) use the four verbs, with the
possibility of changing their form; (2) present a
story from the garden, showing how you make
friends with a creature from the text; (3) give an
appropriate title to your composition; (4) follow
the structure of a composition: introduction, con-
tents and conclusion; (5) write your essay in at least
ten lines; (6) you will write correctly, using correct
phrasing, punctuation and layout.”. The assignment
asks students to use four verbs in a creative context,
which requires higher-order thinking skills such
as synthesis (creating a story) and evaluation (re-
flecting on their experiences). However, the initial
focus on simply selecting and using verbs (under-
stand, apply) may lead to confusion about the pri-
mary cognitive demand. While Bloom’s Taxonomy
emphasizes distinct cognitive levels, from remem-
bering to creating, this task blurs those lines by
combining various levels without clear differentia-
tion. Moreover, the requirement to “make friends”
with a creature introduces an imaginative aspect
that can be challenging to evaluate and assess at
a cognitive level within Bloom’s Taxonomy. The
subjective nature of forming friendships makes it
difficult to measure students’ cognitive engagement
and understanding effectively. Last, but not least,
while structure is essential for effective writing, the
task’s emphasis on format (introduction - content
- conclusion) may detract from the creative pro-
cess. A more explicit delineation of the cognitive
demands of the instructional tasks, coupled with a
more focused pedagogical approach, would facili-
tate a better achievement of the intended learning
outcomes.

5 Discussion and Conclusions

The present analysis provides a systematic view
of how Romanian secondary school textbooks pro-
mote critical thinking through task design, as oper-
ationalized via Bloom’s Taxonomy. This responds
directly to the concerns raised in prior research

(Paul and Elder, 2007; Facione, 1990; Halpern,
1998) and discussed in the literature review, where
critical thinking was framed as a key educational
competence often underrepresented in instructional
materials. While previous work by Chitez et al.
(2024) focused on the linguistic and structural com-
plexity of these textbooks, highlighting issues such
as lexical overload, syntactic density, and redun-
dancy, our current findings complement that per-
spective by offering a cognitive-level analysis of
instructional tasks. Together, both dimensions re-
veal a misalignment between task complexity and
learner accessibility: even when textbooks attempt
to include higher-order tasks (analyze, evaluate,
create), these are often embedded in overly dense
or poorly scaffolded materials, which may nega-
tively impact rather than support competence de-
velopment (RQ1).

To address RQ2 and RQ3, our results show that
only a few textbook series, most notably Intuitext,
demonstrate a structured progression in cognitive
demands across both chapters and grades, reflect-
ing an intentional effort to build students’ reasoning
skills over time. In contrast, other series, such as
ArtKlett, while displaying a large variety of tasks,
distribute higher-order activities uniformly, lack-
ing clear instructional sequencing. This confirms
earlier concerns (Chitez et al., 2024) that task over-
load and lack of cognitive pacing may dilute the
intended pedagogical impact. Moreover, several
series (Corint, Litera, Paralela45, Aramis) display
static cognitive profiles dominated by lower-order
tasks, further reinforcing a pattern of surface-level
engagement already observed in their linguistic
structures.

These findings reinforce arguments from the lit-
erature that effective textbook design must not only
include a range of cognitive operations but must
also organize them in a way that reflects devel-
opmental progression (Anderson and Krathwohl,
2001; Graesser et al., 2011). Critical thinking can-
not be effectively sustained by simply including
complex verbs or isolated higher-order tasks. These
should be embedded within a deliberate instruc-
tional sequence and supported by clear, accessible
language. For textbook designers, this implies a
double perspective: to align task design with stu-
dents’ cognitive growth and to calibrate language
complexity to ensure engagement and understand-
ing.

The combined model of cognitive and linguis-
tic evaluation offers a replicable framework for
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assessing instructional quality in educational mate-
rials. Future research could extend this methodol-
ogy by integrating argumentation mining, dialogic
task analysis, or learner performance data, with the
goal of aligning curriculum design more closely
with evidence-based models of competence devel-
opment.

Finally, the annotated set of Bloom Taxonomy
labels for verbs in instructional materials developed
in this study provides a valuable resource for NLP
research in education. By linking specific verb
forms to cognitive processes such as remember, an-
alyze, or create, this dataset enables more granular
and automated assessments of instructional intent.
Unlike traditional readability metrics, which focus
on surface-level linguistic features, Bloom-aligned
annotations allow for the identification of pedagog-
ical depth and cognitive demand. This enables a
range of novel applications, including automatic
task classification, educational question generation,
and curriculum alignment modeling, particularly
in low-resource educational settings like Roma-
nian. Moreover, integrating Bloom-labeled data
into NLP models can enhance the interpretability
of text complexity predictions and support the de-
velopment of AI-driven tools for textbook evalu-
ation, instructional design, and adaptive learning
systems.

Limitations

While this study effectively identifies and cate-
gorizes the most frequent verbs associated with
Bloom’s Taxonomy within the ROTEX corpus, it
has limitations that must be acknowledged. From
a pedagogical standpoint, focusing solely on verbs
does not provide a complete picture of the instruc-
tional tasks and learning objectives. The meaning
and effectiveness of verbs can vary significantly
depending on the context in which they are used.
A verb might imply different cognitive processes
based on the surrounding tasks, objectives, and
instructional strategies. Therefore, the rating and
categorization process was highly contextual in the
case of ROTEX.

In this context, one limitation of this study is
that automated keyword matching alone cannot
capture the full nuance of instructional language,
often resulting in oversimplified cognitive labels.
To address this, we applied a contextual annota-
tion strategy that considers how verbs function
within the broader pedagogical framing of each

task. This method improves the accuracy of classi-
fication by accounting for cases where the intended
cognitive process is not clearly expressed through
verbs alone. This variation underscores the need
for an interpretive approach, and our annotation
method responds by capturing how Bloom’s Taxon-
omy operates in real instructional contexts, where
taxonomic intent is often implicit.

A separate limitation is the absence of formal
inter-annotator agreement scores in the Bloom Tax-
onomy label annotation process. Although we did
not compute quantitative measures of annotation
reliability, we addressed annotation reliability by
implementing a multi-phase validation pipeline in-
volving trained student raters and subsequent ex-
pert review. This layered approach, particularly
the involvement of domain experts in the final ver-
ification, helped ensure that annotations aligned
closely with pedagogical intent and contextual us-
age. Similarly, while the assignment of a single
Bloom Taxonomy level per task, based on the first
verb, might appear reductive given the complexity
of some prompts, this simplification was necessary
for large-scale processing and related automatic dis-
ambiguation procedures. The automation is further
supported by an additional sentence-level analy-
sis of multi-task exercises. Such choices balance
methodological rigor with the practical demands of
corpus-level annotation.

Furthermore, although the ROTEX corpus fo-
cuses exclusively on Romanian Language and Lit-
erature textbooks and includes uneven grade-level
representation for some publishers, it still captures
the full range of instructional materials currently
in use. Finally, while our study does not include
learner performance data, it offers a strong foun-
dation for future work linking task design with
educational outcomes. By combining linguistic
analysis with pedagogical classification, the article
effectively contributes a resource and methodology
that can inform both textbook development and
automated curriculum evaluation.
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Figure 4: Pipeline for annotating Bloom’s Taxonomy labels

Gemini Prompt
You are given a page from a Romanian language and literature textbook written in Romanian.
Extract all exercises from the page. Usually, exercises are numbered. Keep the number of exercises in the structured output.
Do not shorten or summarize the text of the exercises. Use the full text that is presented in the document. Do not remove any
sentence from the exercise text. Keep the order of the exercises as they appear on the page. Unite the syllabified words in the
exercises.
Make a JSON file of the output. The output JSON should include all the exercises from the file with their full text.
Include the page number and the name of the section that each exercise belongs to in the JSON file. The section name is typically
found just before the exercises. If the section name is not provided on the page, leave that field empty. Use an integer to indicate the
order of the sections in the document; the first section should be labeled as 1, the second as 2, and so on. There can be multiple
sections with the same name in the document.
If the document does not contain any exercise, leave the JSON file empty.

Table 4: Prompt used for extracting tasks from textbooks
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792



1 2 3 4 5 6
0

5

10

15

20

25

co
un

t

publisher = Booklet — grade = 5

1 2 3 4 5

publisher = Booklet — grade = 6 publisher = Booklet — grade = 7

1 2 3 4 5 6
0

5

10

15

20

25

co
un

t

publisher = ArtKlett — grade = 5

1 2 3 4 5

publisher = ArtKlett — grade = 6

1 2 3 4 5

publisher = ArtKlett — grade = 7

1 2 3 4 5

publisher = ArtKlett — grade = 8

1 2 3 4 5 6
0

5

10

15

20

25

co
un

t

publisher = Corint — grade = 5

1 2 3 4 5 6

publisher = Corint — grade = 6 publisher = Corint — grade = 7

1 2 3 4 5 6

publisher = Corint — grade = 8

1 2 3 4 5 6 7
0

5

10

15

20

25

co
un

t

publisher = Litera — grade = 5

1 2 3 4 5 6

publisher = Litera — grade = 6

1 2 3 4 5 6

publisher = Litera — grade = 7 publisher = Litera — grade = 8

1 2 3 4 5 6
0

5

10

15

20

25

co
un

t

publisher = Intuitext — grade = 5

1 2 3 4 5 6 7

publisher = Intuitext — grade = 6

1 2 3 4 5 6 7

publisher = Intuitext — grade = 7 publisher = Intuitext — grade = 8

1 2 3 4 5
0

5

10

15

20

25

co
un

t

publisher = CDPress — grade = 5

1 2 3 4 5

publisher = CDPress — grade = 6

1 2 3 4 5

publisher = CDPress — grade = 7 publisher = CDPress — grade = 8

0

5

10

15

20

25

co
un

t

publisher = EDP — grade = 5

1 2 3 4 5 6

publisher = EDP — grade = 6

1 2 3 4 5 6

publisher = EDP — grade = 7 publisher = EDP — grade = 8

0

5

10

15

20

25

co
un

t

publisher = Paralela45 — grade = 5

1 2 3 4 5 6

publisher = Paralela45 — grade = 6

1 2 3 4 5 6

publisher = Paralela45 — grade = 7 publisher = Paralela45 — grade = 8

0

5

10

15

20

25

co
un

t

publisher = ArsLibri — grade = 5 publisher = ArsLibri — grade = 6

1 2 3 4 5 6

publisher = ArsLibri — grade = 7 publisher = ArsLibri — grade = 8

chapter0

5

10

15

20

25

co
un

t

publisher = Aramis — grade = 5

chapter

publisher = Aramis — grade = 6

1 2 3 4 5 6
chapter

publisher = Aramis — grade = 7

1 2 3 4 5 6
chapter

publisher = Aramis — grade = 8

Bloom categories
L1,L2 + L5,L6
L1,L2 + L3,L4
L3,L4 + L5,L6
other

Figure 6: Bloom category counts for multitask exercises by publisher, grade, and chapter

793



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 794–804
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Improving AI assistants embedded in short e-learning courses with limited
textual content

Jacek Marciniak, Marek Kubis, Michał Gulczyński
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Abstract
This paper presents a strategy for improving AI
assistants embedded in short e-learning courses.
The proposed method is implemented within
a Retrieval-Augmented Generation (RAG) ar-
chitecture and evaluated using several retrieval
variants. The results show that query qual-
ity improves when the knowledge base is en-
riched with definitions of key concepts dis-
cussed in the course. Our main contribution
is a lightweight enhancement approach that in-
creases response quality without overloading
the course with additional instructional content.

1 Introduction

AI assistants based on large language models
(LLMs) are increasingly used to support learning
and access to educational content. Most research
in this area assumes access to large-scale textual
resources, such as entire textbooks or extensive
document collections. To reduce hallucinations
and improve grounding, many approaches rely on
techniques such as Retrieval-Augmented Gener-
ation (RAG; Lewis et al., 2020), where relevant
documents are retrieved from a knowledge base
and passed to the model at inference time. How-
ever, the effectiveness of such methods typically
depends on the availability of rich textual input—an
assumption that often does not hold in real-world
educational contexts.

In practice, modern educational programs of-
ten rely on short e-learning modules designed to
teach narrowly defined learning objectives within
a limited timeframe. These modules—especially
in higher education—are intentionally concise to
preserve instructional clarity and reduce cognitive
load. When AI assistants are embedded in such
courses, they are expected to provide accurate,
context-aware support without relying on large ex-
ternal corpora or hallucinating irrelevant content.

Despite the growing popularity of LLM-based
assistants, there is a lack of research on how to

design such systems when instructional content
is minimal. Existing work typically targets high-
resource settings, and it remains unclear whether
techniques developed for large-scale retrieval trans-
fer effectively to low-resource educational contexts.
Moreover, instructors often have limited time and
must make strategic decisions about which con-
cepts or materials are worth covering. Expanding
materials solely to meet model requirements is ped-
agogically undesirable.

This paper investigates how to improve the ef-
fectiveness of AI assistants embedded in short
e-learning courses with limited textual content.
Rather than expanding the course, we propose a
lightweight enhancement strategy: injecting defi-
nitions of key course concepts into the assistant’s
knowledge base. We evaluate this approach using
a real-world e-learning course on machine learning
fundamentals (approx. 30 learning objects) and a
benchmark of 94 questions collected from students
who completed the course.

Our main contributions are as follows:

1. We identify and address the challenge of build-
ing AI assistants for short e-learning courses
with limited instructional content.

2. We show that augmenting the knowledge
database with definitions of key course con-
cepts improves response quality, even without
modifying the course itself.

3. We demonstrate that retrieval method variants
have relatively little impact compared to con-
tent enrichment, providing a practical and scal-
able solution for educators with limited time
and resources.

2 Related work

Recent research on AI-powered educational as-
sistants has largely relied on large-scale datasets.
For example, Wang et al. (2024) introduced
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Book2Dial, which generates synthetic teacher-
student dialogues from 35 textbooks to fine-tune
chatbots—though issues like hallucinations and
repetitive content remain. Similarly, Fernandez
et al. (2024) proposed SyllabusQA, a 5k QA-pair
dataset from 63 course syllabi, aimed at handling
logistical queries. Despite high similarity scores,
factual accuracy remained a challenge.

Huang et al. (2025) presented RAM2C, a RAG-
based system generating pedagogically grounded
dialogues in liberal arts education. The method
depends on rich, curated knowledge bases, which
limits applicability to low-resource contexts. Gar-
cia (2025) combined RAG and LLMs to help in-
structors analyze student reflections and identify
course-wide learning challenges through topic mod-
eling. While RAG offered valuable insights, it did
not consistently outperform standalone LLMs.

To the best of our knowledge, no prior work has
addressed how to design AI assistants for courses
with limited textual content, where expanding the
material is not feasible due to instructional con-
straints.

3 AI-assisted course

The study was conducted using the e-learning
course Introduction to Machine Learning, designed
to provide foundational knowledge and develop
practical skills in constructing and analyzing sim-
ple machine learning models. (Szczepański et al.,
2025). The course emphasizes applied learning
through examples and hands-on exercises using
Google Teachable Machine. Figure 1 shows an
excerpt from the course materials.

Figure 1: Fragment of the learning materials.

The course is organized into four modules: (1) in-
troduction, (2) data preparation, (3) model training,
and (4) evaluation metrics. It is used in AI-related
computer science classes as a preparatory resource

to align students’ baseline knowledge in machine
learning. Estimated completion time is 3–4 hours.

The content is intentionally concise, focusing on
the fundamentals of classification. While broader
AI and machine learning topics are briefly men-
tioned, they are not developed in detail. As an
introductory resource, it is used by students with
varying prior knowledge, leading to diverse ques-
tions during the learning process. To support this,
an AI assistant was introduced to help in four areas:
(1) clarifying course content, (2) deepening under-
standing of key concepts, (3) addressing related but
uncovered topics, and (4) summarizing material.

Expanding the core content was considered ped-
agogically inappropriate. The course was purpose-
fully limited to foundational topics, with advanced
material reserved for later stages in the curriculum.
Nonetheless, students may still raise more complex
questions. The course is a validated educational
resource, positively received by students in earlier
editions, and modifying it solely to enhance AI
assistant performance was not an option.

Designed for self-paced learning outside of
class—where instructor support may be unavail-
able—the course positions the AI assistant as a
key element of the learning experience, offering
targeted guidance as students navigate the material
independently.

4 Method

The AI assistant embedded in the e-learning course
follows RAG architecture, which combines the
strengths of large language models with the ability
to incorporate domain-specific knowledge— in our
case, the textual content of the course.

To develop the system, we compared several
RAG variants. After a series of preliminary tests,
we decided to adopt AdvanceRAG approach with
a query routing mechanism as it yielded the best
results. This model involves classifying the user
query into a predefined type—such as requesting a
citation, paraphrase, summary, or elaboration—and
dynamically selecting a tailored prompt accord-
ingly. Based on the chosen prompt, the system
retrieves relevant data from a knowledge database,
which is then passed to the language model along
with the prompt to generate the final response. We
chose LLaMA 3.1 8B as our foundation model due
to its balance between output quality and hardware
requirements.

To evaluate how different retrieval strategies im-
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pact response quality, we tested four configurations
of increasing complexity and contextual coverage:

Baseline The initial setup used only the course
text as the knowledge base, paired with a dense
retriever. To improve retrieval precision, the mate-
rial was preprocessed to remove auxiliary or transi-
tional content (e.g., phrases such as “Let’s move on
to the next section”) that could degrade semantic
relevance. This minimal configuration reflects a
real-world scenario where the assistant operates
solely on content provided by course authors.

Reranking This variant introduced a reranking
stage using the ms-marco-MiniLM-L-6-v2 cross
encoder to improve semantic relevance.

Extended In this configuration we added curated
Wikipedia articles containing definitions of key
concepts presented in the course to the document
set, to increase the breadth of available information.

Combined The final configuration employs both
reranking and the extension of the document set.

5 Experiments

5.1 Data

To evaluate the performance of the proposed sys-
tem, we collected a set of real user questions related
to a short e-learning course on the basics of ma-
chine learning. The questions were formulated by
students who had previously completed the course.
To help participants simulate realistic interactions
with an AI assistant, they were instructed to first
ask their question and then obtain an answer from
ChatGPT, followed by an evaluation of whether the
response was satisfactory.

A total of 94 questions were collected from 14
students. Each student submitted between 2 and 10
questions, covering all four modules of the course
(28 questions from module 1, 19 from module 2,
29 from module 3, and 18 from module 4).

The resulting dataset consists of natural, goal-
oriented queries and can be categorized into four
main types: (1) clarifying course content (45 ques-
tions); (2) deepening understanding of key con-
cepts (33 questions); (3) addressing related but
uncovered topics (10 questions); (4) summarizing
material (6 questions).

This dataset forms the basis for evaluating re-
trieval configurations under realistic student-like
usage scenarios.

5.2 Retrieval evaluation

For the purpose of evaluating retrieval performance
we measured Reciprocal Rank@K (RR@K),
Normalized Discounted Cumulative Gain@K
(nDCG@K), Average Precision@K (AP@K), Re-
call@K (R@K), Precision@K(P@K) and deter-
mined F1 scores. The results are given in Table 1.
The Baseline solution while competitive in pre-
cision for top-ranked results (RR@3 = 0.2579),
lacked contextual depth, limiting the assistant’s
ability to handle more complex or exploratory
queries. In case of Reranking model the perfor-
mance improved for K=1, however all metrics for
K=3, 5 decreased. This suggests that reranking
narrows the focus at the cost of contextual diver-
sity—an undesirable trade-off in educational set-
tings, where broader context is often beneficial
for comprehension. The Extended configuration
significantly improved context diversity and pre-
cision, especially for K=5, where precision rose
from 0.1167 to 0.1663. However, nDCG@5 de-
clined, likely due to the added noise from general-
purpose content. The Combined approach yielded
the best performance for K=1 but consistently un-
derperformed for higher values of K, indicating a
trade-off between precision at the top and overall
contextual coverage. Among all tested configu-
rations, the Extended configuration proved most
effective. It provided the best balance between pre-
cision and recall at K=3 and K=5 (e.g., F1@3 =
0.2306; F1@5 = 0.2179), making it well-suited for
educational assistants that must deliver context-rich
responses aligned with instructional goals.

5.3 End-to-end assessment

To measure end-to-end performance of the AI as-
sistant we asked a group of three experts to assess
the quality of the responses yielded by the system.
Each expert was provided with reference answers,
responses predicted by the system and the contex-
tual information retrieved from the knowledge base
for the given question. The experts were requested
to verify, if the answer returned by the system is
adequate given the provided reference answer and
the context being retrieved, with three options avail-
able Yes, No and Don’t know. Three configurations
were evaluated Baseline, Extended and Combined
to measure the impact of enhancing the AI assistant
with the definitions of key course concepts on re-
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Table 1: Retrieval results

Model K RR@K nDCG@K AP@K R@K P@K F1 Score
1 0.1904 0.1904 0.1785 0.1785 0.1904 0.1843

Baseline 3 0.2579 0.3104 0.2569 0.4642 0.1626 0.2410
5 0.2000 0.2878 0.2012 0.5595 0.1166 0.1931
1 0.2142 0.2142 0.2023 0.2023 0.2142 0.2082

Reranking 3 0.1607 0.1932 0.1488 0.3134 0.1111 0.1641
5 0.1644 0.2165 0.1481 0.4146 0.0904 0.1485
1 0.2530 0.2530 0.0957 0.0957 0.2530 0.1390

Extended 3 0.3092 0.2323 0.1478 0.2574 0.2088 0.2306
5 0.2263 0.2095 0.1307 0.3160 0.1662 0.2179
1 0.2650 0.2650 0.1128 0.1128 0.2650 0.1583

Combined 3 0.2168 0.1530 0.0913 0.1720 0.1405 0.1547
5 0.1903 0.1452 0.0788 0.2192 0.1108 0.1473

Table 2: End-to-end expert evaluation

System type % Yes % No % Don’t know Fleiss’ κ
Baseline 47 41 12 0.14
Extended 53 38 9 0.26
Combined 55 31 14 0.24

sponse quality.1 The evaluation results along with
inter-annotator agreement measured with Fleiss’
κ are reported in Table 2. The results show that
extending the knowledge base with definitions of
key concepts lead to the rise of the percentage of
adequate answers from 47% for Baseline system
to 53% in case of Extended configuration. The in-
troduction of reranking resulted in additional 2%
performance rise as shown by Combined configu-
ration, however it has to be noted that it also lead
to 5% increase of responses that where considered
by the experts to be ambiguous.

5.4 Challenges in human annotation of
end-to-end AI assistant responses

The annotation process highlighted how challeng-
ing human evaluation can be in the development of
AI assistants. System outputs were assessed by an-
notators (two instructors and one student) familiar
with the course content and its pedagogical intent,
and the resulting labels reflect the complexity of
the task — yet they show that the adopted label-
ing scheme provided a solid basis for meaningfully
capturing the quality of the assistant’s responses.

1Due to the limited availability of human annotators, the
Reranking configuration was not included in end-to-end evalu-
ation. Nevertheless, the impact of reranking can be observed
by contrasting the Extended configuration, which does not
employ reranking, with the Combined configuration, which
incorporates both reranking and the extended document set.

For example, the following response to Question
14 (“What is the reward and punishment system in
machine learning?”) generated by the Combined
configuration was labeled No: The answer to the
student’s question: The reward and punishment
system in machine learning is a model that learns
by interacting with the environment, through a sys-
tem of rewards and punishments. The sentence is
incoherent, repetitive, and lacks both clarity and
educational value; it relies on a tautological struc-
ture, effectively rephrasing the question instead of
providing a meaningful or instructive definition.

Another example is the response to Question 38
(“Does class imbalance matter?”), generated by
the Combined configuration, which was labeled
Don’t know: Yes, class imbalance does matter. In
the case of a very rare disease and an extremely un-
even class distribution — between sick and healthy
individuals — both in the training set and in the
test set randomly drawn from the population, there
is only one sick person for every 99 healthy ones.
In such a scenario, the model ignored the minority
class and automatically assigned all examples to
the dominant one, achieving a very high accuracy
of 99%, yet failing to fulfill its primary purpose
— correctly diagnosing the sick individual. Con-
sequently, it was to be expected that the model,
having ‘seen’ only a single instance of that digit
during training, would be unable to learn to recog-
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nize it, and would instead simply ignore it. While
the response is generally correct, the explanation
is lengthy and somewhat dense. It relates to course
content but does not explicitly reference it or direct
the learner to definitions provided in the material.
As a result, it may hinder comprehension rather
than support it, especially for learners unfamiliar
with the concept.

A third case illustrates a different kind of diffi-
culty — when the relevant information is simply
missing. In response to Question 65 (“What is
an edge case in machine learning?”), the Com-
bined configuration returned: I cannot answer this
question because the context does not contain any
passages that could be quoted as a valid answer.
This response was annotated as No, although it is,
in principle, correct — the concept of edge cases
was not covered in the course content nor included
in the extended knowledge base. The annotator’s
negative judgment likely resulted from the system’s
failure to provide a pedagogically helpful justifi-
cation, such as: This topic falls outside the scope
of the course and is therefore not addressed here.
This example demonstrates that analyzing student
queries alongside system responses can help iden-
tify gaps in coverage and motivate iterative updates
to the knowledge base.

The full answers returned by the system across
all three configurations discussed above are in-
cluded in Appendix C.

6 Discussion

The results of our experiments show that even
modest extensions to the assistant’s knowledge
base—specifically, the inclusion of carefully se-
lected definitions of course-relevant concepts—can
lead to measurable improvements in response qual-
ity. However, while the improvements were con-
sistent, they remained moderate in scope. Expert
assessments showed only fair agreement (Fleiss’
κ = 0.26), highlighting the inherent challenges of
evaluating AI-generated responses in educational
contexts, where interpretation often depends on the
perceived intent behind a student’s question.

Instructors providing feedback to students must
often determine whether a question stems from
confusion, a need for clarification, or simple cu-
riosity. The experts participating in our evaluation
may have applied similarly critical reflection when
judging the assistant’s answers. During annotation,
they likely evaluated the responses based on cri-

teria such as factual correctness, relevance to the
question, and linguistic clarity, as well as pedagog-
ical usefulness, alignment with course terminology,
and the ability to communicate uncertainty when
appropriate.

Additionally, some limitations in response qual-
ity likely stem from the assistant’s lack of access to
richer content. This may have particularly affected
questions aimed at deepening understanding (e.g.,
through examples beyond those given in the course)
or exploring topics that, while present in the instruc-
tional material, were not discussed in sufficient
detail due to being outside the intended scope of
instruction. In these cases, although the retrieved
context included terms relevant to the student’s
question, the absence of detailed explanation or
clear definitions reduced the educational usefulness
of the assistant’s response. Such cases highlight the
need for a more nuanced expansion of the knowl-
edge base, especially when dealing with boundary
concepts that are implicitly acknowledged in course
materials but not explicitly explained.

7 Future work

This study did not examine the impact of enriching
the assistant’s context with broader resources, such
as domain-specific books or curated examples from
outside the course scope. Future work should also
explore how different segmentation strategies for
content added to the knowledge base influence AI
assistant performance. Another important direction
for future work is expanding the knowledge base
with content addressing topics raised by students
that are currently missing from both the course and
the extended resources. It is also planned to collect
feedback on the usefulness of AI assistants during
learning, with particular attention to their perceived
limitations.

8 Conclusions

Our study shows that AI assistants embedded in
short e-learning courses can be improved without
expanding the core instructional content. Instead
of increasing course length or adding in-line ma-
terial—which could compromise clarity and co-
herence—instructors can enhance assistant perfor-
mance by supplying concise, reference-style con-
tent directly to the RAG knowledge base.
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9 Limitations

The use of a general-purpose dense retriever not
tailored to educational content represents a limita-
tion of this study. Future research should investi-
gate task-adapted or hybrid retrieval methods more
closely aligned with instructional needs.

The course materials utilized in the experiments
cover only one specific STEM subject. To what
extent the presented results can be generalized to
social sciences and humanities coursework requires
further investigation.

References
Nigel Fernandez, Alexander Scarlatos, and Andrew Lan.

2024. SyllabusQA: A course logistics question an-
swering dataset. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10344–
10369, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Frank Ley Garcia. 2025. Llm+rag driven topic mod-
eling. In Proceedings of the 56th ACM Technical
Symposium on Computer Science Education V. 2,
SIGCSETS 2025, page 1754, New York, NY, USA.
Association for Computing Machinery.

Haoyu Huang, Tong Niu, Rui Yang, and Luping Shi.
2025. RAM2C: A liberal arts educational chat-
bot based on retrieval-augmented multi-role multi-
expert collaboration. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 448–458, Abu Dhabi, UAE. Association for
Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS ’20, Red Hook, NY, USA. Curran
Associates Inc.
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A Sample Student Questions Used for
Evaluation

1) Clarifying course content:

• Explain the difference between a training set
and a test set in Machine Learning.

• Explain in one sentence what overfitting and
underfitting mean in machine learning.

2) Deepening understanding of key concepts:

• Why is precision worse than accuracy?

• When is the F-score a good evaluation metric?
In what situations should it be used?

3) Addressing related but uncovered topics:

• What are large language models?

• Why can’t you switch between browser tabs
during training in Google Teachable Ma-
chine?

4) Summarizing material:

• Shorten it by half: ...

• Write it out for me shorter, so that each defini-
tion takes up one sentence. ...

B RAG prompts

Common system context (used in all prompts):
You are an educational assistant in an e-learning
course on deep learning and artificial intelligence.
Your task is to answer student questions only when
they are relevant to the course topics. You are
capable of analyzing text, answering questions, ex-
plaining concepts, summarizing, and paraphrasing
content.

Citation prompt: Answer the student’s question
using only quotations from the context below.

Context: {context}
Chat history: {chat_history}
Student question: {question}

Respond by quoting only fragments of text found
in the context. Citations should include full sen-
tences or coherent passages. You may use multiple
quotes if needed to fully answer the question. Do
not add any words, interpretations, or paraphras-
ing of your own. If the context does not contain
suitable quotes, state this clearly.
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Summarization prompt: Answer the student’s
question by creating a concise but informative sum-
mary based solely on the context.

Context: {context}
Chat history: {chat_history}
Student question: {question}

Craft a summary that synthesizes key informa-
tion from the context using your own words. The
summary should be complete, accurate, and based
only on the context. If the context lacks sufficient
data, state this clearly.

Paraphrasing prompt: Answer the student’s
question by explaining the concept using different
words, based on the context.

Context: {context}
Chat history: {chat_history}
Student question: {question}

Provide a paraphrased or simplified explanation
using only information from the context. Do not
quote directly, add new information, or change the
original meaning. If the context lacks sufficient
information, state this clearly.

General fallback prompt: Answer the student’s
question using only the context and chat history
provided.

Context: {context}
Chat history: {chat_history}
Student question: {question}

Respond clearly and precisely based solely on
the available information. Do not use external
knowledge. If the context lacks sufficient infor-
mation, state this clearly.

Routing prompt (for classification): You are
an intelligent e-learning assistant that analyzes
user questions and classifies them into one
of four categories: citation, summarization,
paraphrasing, or other.

Input: {question}
Return a valid JSON object with two keys:

"option" and "explanation".
Example output:

{
"option": "citation",
"explanation": "The user is asking for a
precise definition."
}

Return only valid JSON, with no extra text.

C End-to-end expert evaluation
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Table C.1: Example 1 of end-to-end expert evaluation

Question 14: What is the reward and punishment system in machine learning?
System type System answer Evaluation

Baseline The answer to the student’s question: The reward and punishment
system in machine learning is a model that learns by interacting
with the environment, through a system of rewards and punish-
ments.

No

Extended Here’s the answer to the student’s question: Reinforcement learn-
ing is a subfield of machine learning focused on how software
agents should take actions in an environment to maximize a notion
of cumulative reward. Reinforcement learning is a way of machine
learning where the agent receives feedback in the form of rewards
or punishments. In machine learning, the reward and punishment
system is part of the learning process, where the agent is rewarded
for actions that lead to desirable outcomes and punished for those
that lead to undesirable ones.

Yes

Combined The answer to the student’s question: The reward and punishment
system in machine learning is a model that learns by interacting
with the environment, through a system of rewards and punish-
ments.

No
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Table C.2: Example 2 of end-to-end expert evaluation

Question 38: Does class imbalance matter?
System type System answer Evaluation

Baseline Yes, class imbalance does matter. In the case of a very rare disease
and an extremely uneven class distribution — sick versus healthy
individuals — both in the training set and in the test set randomly
sampled from the population, there may be only one sick person
for every 99 healthy ones. In such a scenario, the model simply
ignored the minority class and automatically assigned all examples
to the dominant one, achieving a seemingly high accuracy of 99%,
while entirely failing at its main task: correctly diagnosing the sick
individual. It was therefore to be expected that a model exposed to
only a single instance of that digit during training would be unable
to learn to recognize it — and would instead simply ignore it. This
example clearly shows how important it is to ensure that all classes
in the training set are represented in roughly equal numbers.

Don’t know

Extended Yes, class imbalance does matter. For instance, in the case of a
very rare disease and an extremely uneven distribution between
the sick and the healthy, the model may ignore the minority class
and automatically assign all examples to the dominant one —
achieving very high accuracy, yet failing to accomplish its primary
objective. In such a case, the model will not be able to correctly
diagnose the sick individual.

Yes

Combined Yes, class imbalance does matter. In the case of a very rare disease
and an extremely uneven class distribution — between sick and
healthy individuals — both in the training set and in the test set
randomly drawn from the population, there is only one sick person
for every 99 healthy ones. In such a scenario, the model ignored
the minority class and automatically assigned all examples to
the dominant one, achieving a very high accuracy of 99%, yet
failing to fulfill its primary purpose — correctly diagnosing the
sick individual. Consequently, it was to be expected that the model,
having "seen" only a single instance of that digit during training,
would be unable to learn to recognize it, and would instead simply
ignore it.

Don’t know

Table C.3: Example 3 of end-to-end expert evaluation

Question 40: What is an edge case in machine learning?
System type System answer Evaluation

Baseline There is no answer to this question in the given context. No
Extended There is no answer to this question in the context. No
Combined I cannot answer this question because the context does not contain

any passages that could be quoted as a valid answer.
No
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Table C.4: Original Polish version of Example 1

Question 14 in Polish: Co to jest system kar i nagród w uczeniu maszynowym?
System type System answer in Polish

Baseline Odpowiedź na pytanie kursanta: System kar i nagród w uczeniu maszynowym to
model, który uczy się wchodząc w interakcje ze środowiskiem, poprzez system kar i
nagród.

Extended Oto odpowiedź na pytanie kursanta: Reinforcement learning jest obszarem uczenia
maszynowego, który koncentruje się na tym, jak agenty software powinni podejmować
działania w środowisku, aby maksymalizować pewną koncepcję nagród kumulaty-
wnych. Reinforcement learning to sposób uczenia maszynowego, w którym agent
otrzymuje feedback w postaci nagród lub kar za podejmowane działania. W ucze-
niu maszynowym system kar i nagród jest częścią procesu uczenia się, w którym
agent otrzymuje nagrody za podejmowane działania, które prowadzą do pożądanych
wyników, a kary za działania, które prowadzą do niepożądanych wyników.

Combined Odpowiedź na pytanie kursanta: System kar i nagród w uczeniu maszynowym to
model, który uczy się wchodząc w interakcje ze środowiskiem, poprzez system kar i
nagród.

Table C.5: Original Polish version of Example 2

Question 38 in Polish: Czy ma znaczenie liczebność klas
System type System answer in Polish

Baseline Tak, znaczenie ma liczebność klas. W przypadku bardzo rzadkiej choroby i skrajnie
nierównej liczebności klas: chorych i zdrowych - zarówno w zbiorze uczącym, jak i w
zbiorze testowym, losowo wybranym z populacji, mamy tylko jednego chorego na 99
zdrowych. Model w takim przypadku zignorował klasę mniej liczną i automatycznie
przypisał wszystkie przykłady do klasy dominującej, osiągając przy tym bardzo
wysoką dokładność (accuracy) na poziomie 99%, nie spełniając swojego głównego
zadania, czyli prawdiłowego zdiagnozowania osoby chorej. W związku z tym, należało
spodziewać się, że model, "widząc" w procesie treningu tylko pojedyncze wystąpienie
tej cyfry, nie będzie w stanie nauczyć się go rozpoznawać, a zamiast tego po prostu
będzie je ignorował. Na tym przykładzie widać, jak ważne jest to, by wszystkie klasy
w zbiorze uczącym miały podobną liczbę reprezentantów.

Extended Tak, znaczenie ma liczebność klas. Na przykład, w przypadku bardzo rzadkiej choroby
i skrajnie nierównej liczebności klas: chorych i zdrowych, model może zignorować
klasę mniej liczną i automatycznie przypisać wszystkie przykłady do klasy domin-
ującej, osiągając przy tym bardzo wysoką dokładność, ale nie spełniając swojego
głównego zadania. W takim przypadku model nie będzie w stanie prawidłowo zdiag-
nozować osoby chorej.

Combined Tak, znaczenie ma liczebność klas. W przypadku bardzo rzadkiej choroby i skrajnie
nierównej liczebności klas: chorych i zdrowych - zarówno w zbiorze uczącym, jak i w
zbiorze testowym, losowo wybranym z populacji, mamy tylko jednego chorego na 99
zdrowych. Model w takim przypadku zignorował klasę mniej liczną i automatycznie
przypisał wszystkie przykłady do klasy dominującej, osiągając przy tym bardzo
wysoką dokładność (accuracy) na poziomie 99%, nie spełniając swojego głównego
zadania, czyli prawdiłowego zdiagnozowania osoby chorej. W związku z tym, należało
spodziewać się, że model, "widząc" w procesie treningu tylko pojedyncze wystąpienie
tej cyfry, nie będzie w stanie nauczyć się go rozpoznawać, a zamiast tego po prostu
będzie je ignorował.
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Table C.6: Original Polish version of Example 3

Question 40 in Polish: Czym jest przypadek graniczny w uczeniu maszynowym?
System type System answer in Polish

Baseline Nie ma odpowiedzi na to pytanie w podanym kontekście.
Extended Nie ma odpowiedzi na to pytanie w kontekście.
Combined Nie mogę udzielić odpowiedzi na to pytanie, ponieważ w kontekście nie ma fragmen-

tów, które mogłyby być zacytowane jako odpowiedź na to pytanie.
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Abstract

This paper presents an LLM-powered approach
for generating concept maps to enhance digi-
tal reading comprehension in higher education.
While particularly focused on supporting neu-
rodivergent students with their distinct informa-
tion processing patterns, this approach benefits
all learners facing the cognitive challenges of
digital text. We use GPT-4o-mini to extract
concepts and relationships from educational
texts across ten diverse disciplines using open-
domain prompts without predefined categories
or relation types, enabling discipline-agnostic
extraction. Section-level processing achieved
higher precision (83.62%) or concept extrac-
tion while paragraph-level processing demon-
strated superior recall (74.51%) in identify-
ing educationally relevant concepts. We im-
plemented an interactive web-based visualiza-
tion tool https://simplified-cognitext.
streamlit.app that transforms extracted con-
cepts into navigable concept maps. User eval-
uation (n=14) showed that participants experi-
enced a 31.5% reduction in perceived cognitive
load when using concept maps, despite spend-
ing more time with the visualization (22.6%
increase). They also completed comprehension
assessments more efficiently (14.1% faster)
with comparable accuracy. This work demon-
strates that LLM-based concept mapping can
significantly reduce cognitive demands while
supporting non-linear exploration.

1 Introduction

Complex academic texts in higher education
present cognitive challenges for students who must
process and retain extensive information across di-
verse disciplines. These challenges are particularly
pronounced for neurodivergent students, including
those with ADHD (Attention Deficit Hyperactivity
Disorder), who process information differently and
often struggle to identify and retrieve central ideas
from traditional linear texts despite recognizing

their importance (Ben-Yehudah and Brann, 2019;
Yeari et al., 2018).

These challenges are further amplified in digi-
tal reading environments. Rather than attempting
to improve traditional digital reading directly, we
propose concept maps as an alternative digital inter-
face that transforms linear text into interactive vi-
sual knowledge structures, bypassing linear reading
challenges entirely while maintaining comprehen-
sive coverage of educational content. These visual
representations externalize knowledge structures,
potentially reducing cognitive load while support-
ing the visual-spatial processing strengths often
seen in students with attention-related learning dif-
ferences (Sperotto, 2016; Sweller, 1988). Rather
than attempting to improve traditional reading di-
rectly, concept maps provide an alternative knowl-
edge access method that bypasses linear reading
challenges entirely while maintaining comprehen-
sive coverage of educational content.

Despite advances in automated concept mapping,
significant gaps remain in current tools. Existing
automated approaches typically rely on rule-based
systems or predefined ontologies that lack flexi-
bility across different domains and disciplines, of-
ten struggling with domain-specific terminology
and conceptual relationships. Furthermore, exist-
ing approaches frequently extract concepts without
adequately capturing the nuanced relationships be-
tween them, resulting in concept maps that lack
the semantic depth necessary for comprehensive
understanding.1

This paper investigates how large language mod-
els (LLMs) can generate comprehensive concept
maps from educational texts across diverse aca-
demic disciplines. Rather than enhancing tradi-
tional digital reading, we propose concept maps
as an alternative educational interface that trans-

1All our resources including source codes and concept map
data are publicly accessible through our open source project:
https://github.com/emorynlp/cognitext
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forms linear text into interactive visual knowledge
structures, enabling students to access the same
information through non-linear exploration. We
examine three research questions:

1. How effectively can LLMs identify key con-
cepts across diverse academic disciplines with-
out domain-specific training or ontologies?

2. What differences exist in the extraction and
representation of knowledge relationships
across different academic disciplines?

3. To what extent do automatically generated
concept maps reduce cognitive load and im-
prove reading comprehension compared to tra-
ditional linear reading?

Our approach implements concept extraction to
identify key terms and ideas, relation identifica-
tion to determine semantic connections between
concepts, and concept map generation to organize
these elements into visual knowledge structures.
We evaluate system performance across ten aca-
demic disciplines and assess the impact of result-
ing concept maps on reading comprehension and
cognitive load.

This work makes several key contributions: (1)
we establish a methodological framework for LLM-
based concept extraction across different types of
academic content; (2) we provide empirical evi-
dence for domain-specific knowledge structures
that inform adaptive concept mapping; (3) we
demonstrate the practical application of language
models for educational concept map generation;
and (4) we present evidence that concept map vi-
sualization as a reading alternative significantly
reduces cognitive load while maintaining or im-
proving comprehension outcomes.

While each system component (preprocessing
granularity, LLM-based extraction, and user eval-
uation) merits individual investigation, this work
demonstrates their integration for practical educa-
tional applications. We focus on the educational
impact as our primary contribution, with detailed
component analysis providing supporting evidence
for system design decisions.

2 Related Work

2.1 Cognitive Load in Educational Contexts

Cognitive Load Theory, developed by (Sweller,
1988), distinguishes between three types of mental

processing: intrinsic load (inherent task complex-
ity), extraneous load (poor instructional design),
and germane load (meaningful learning processes).
Educational interventions that reduce extraneous
load while maintaining or enhancing germane load
can greatly improve learning outcomes, particu-
larly for students with diverse cognitive processing
patterns.

Complex academic texts impose substantial cog-
nitive demands through dense information presen-
tation, abstract concept relationships, and linear
narrative structures that may not align with individ-
ual learning preferences. For neurodivergent stu-
dents, these challenges are particularly pronounced.
Le Cunff et al. (2024) demonstrated that neurodi-
vergent students, particularly those with ADHD,
reported significantly higher extraneous cognitive
load compared to neurotypical peers, while show-
ing no differences in intrinsic or germane cognitive
load. This pattern suggests that the presentation
format of educational materials, rather than their
inherent complexity, creates disproportionate chal-
lenges.

While digital reading environments present ad-
ditional complications—with neurobiological re-
search by Zivan et al. (2023) revealing higher cog-
nitive load patterns in screen-based reading—the
fundamental challenge extends beyond medium
to the linear, text-heavy presentation of complex
information. Bahari et al. (2023) identified sev-
eral approaches that successfully manage cogni-
tive load in educational environments, including
visualization-based approaches and argument map-
ping, with most strategies aimed at reducing extra-
neous cognitive load while fostering germane load
through generative learning practices.

Concept maps specifically address cognitive load
by transforming extraneous processing demands
into germane learning opportunities. By external-
izing knowledge structures and providing visual-
spatial representations, concept maps can reduce
the working memory burden of maintaining concep-
tual relationships while reading, allowing students
to focus cognitive resources on understanding and
connecting ideas rather than tracking linear narra-
tive flow.

2.2 Automated Concept and Relation
Extraction for Education

Automated concept extraction and concept map
generation has evolved from rule-based approaches
to sophisticated machine learning methods. Early
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computational approaches established foundations
for extracting concept maps from educational texts,
with Aguiar et al. (2018) providing comprehensive
approaches for concept maps mining from text.

Recent work has applied large language mod-
els to concept map generation. Perin et al. (2023)
demonstrated automated concept map generation
using fine-tuned large language models, while other
work has shown that LLMs can identify concep-
tually complex regions of text (Garbacea et al.,
2021) and extract concepts from academic materi-
als while preserving semantic relationships (Zhang
et al., 2023).

Educational relation extraction differs from
general-purpose approaches in its emphasis on ped-
agogically meaningful connections that support
learning progression (Dessì et al., 2020). Recent
advances in prompt-based approaches have shown
particular promise for educational contexts. Chen
et al. (2022) introduced KnowPrompt, incorporat-
ing knowledge from relation labels into prompt
construction. Advancing this, Chen et al. (2024) de-
veloped a Generative context-Aware Prompt-tuning
method (GAP) that eliminates the need for domain
experts to design prompts. Large language models
can extract relational knowledge when prompted
appropriately (Jiang et al., 2020), with models
like GPT-3.5 and GPT-4 demonstrating competitive
performance in processing domain-specific educa-
tional content with minimal training requirements
(Hu et al., 2024).

The key challenge lies in distinguishing concepts
and relations of varying pedagogical importance
while capturing both local conceptual connections
and broader structural relationships that reflect dis-
ciplinary knowledge organization. Our work builds
on these foundations by implementing hierarchi-
cal concept classification and multi-level relation
identification for cross-disciplinary educational ap-
plications.

2.3 Visualization Techniques for Knowledge
Representation

Concept maps, originally developed by Novak (No-
vak, 1998) and refined by Novak and Cañas (Novak
and Cañas, 2008), organize knowledge through ex-
plicit propositions with labeled relationships (e.g.,
"Photosynthesis → produces → Oxygen"). Un-
like mind maps (Buzan, 1993), which support
ideational writing through brainstorming via radial
structures, concept maps employ hierarchical rep-
resentations optimized for reading comprehension

and systematic knowledge acquisition.
Meta-analyses demonstrate educational effec-

tiveness: Anastasiou et al. (2024) found a moderate
positive effect of concept maps on science achieve-
ment (g = 0.776) across 55 studies, while Schroeder
et al. (2018) reported similar benefits of learning
with concept maps on educational outcomes (g =
0.58) across 142 studies. Recent neurological re-
search by Shealy et al. (2022) demonstrated that
concept mapping alters cognitive activation pat-
terns, increasing activity in brain regions associ-
ated with divergent thinking. Yang et al. (2025)
addressed cognitive load concerns by introducing
progressive concept maps that integrate informa-
tion incrementally, improving learning outcomes
compared to conventional approaches.

Our approach builds on Novakian concept map-
ping theory specifically for reading support rather
than writing facilitation. Alternative text rep-
resentation frameworks include Schema Theory
(Bartlett, 1932; Rumelhart, 1977), van Dijk and
Kintsch’s macrostructures (van Dijk and Kintsch,
1983), and Rhetorical Structure Theory (Mann and
Thompson, 1988). Our work combines LLM con-
textual understanding with comprehensive knowl-
edge representation across diverse disciplines, im-
plementing progressive disclosure to manage cog-
nitive load in educational concept maps.

3 Methodology

We developed a systematic approach for extract-
ing concepts and relationships from educational
texts and transforming them into interactive con-
cept maps. Figure 1 illustrates the key components
of our methodology.

3.1 Dataset Selection and Preparation

We selected ten Wikipedia articles representing
diverse academic disciplines: biology, mathemat-
ics/statistics, computer science, linguistics, art, his-
tory, philosophy, political science, health/medicine,
and one general non-academic field. Articles were
chosen based on specific criteria to represent con-
tent that undergraduate students would likely en-
counter during their academic studies but would
not be familiar with from prior education.

Each selected article maintained sufficient con-
ceptual depth, a neutral academic tone, and in-
troduced new concepts rather than common ba-
sics. The articles ranged from 1,383 to 11,337
words (mean: 4,839). Preprocessing steps included
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Figure 1: Overview of the methodology for concept &
relation extraction, and concept map visualization.

HTML removal, section identification, reference
removal, and tokenization using spaCy.

3.2 Text Processing Modes

We implemented three distinct text processing
modes to evaluate how different granularities of
input text affect extraction quality:

1. Section-level processing utilizes complete
sections from articles as input units, enabling the
system to process larger chunks of coherent text
and potentially capture broader thematic relation-
ships. Each complete section was provided as sin-
gle input to GPT-4o-mini for concept and relation
extraction.

2. Paragraph-level processing operates on in-
dividual paragraphs, allowing the system to focus
on local concepts and relationships within more
concentrated contexts. Individual paragraphs were
processed separately as independent input units,
with results from all paragraphs subsequently ag-
gregated to form the complete concept map for
each article.

3. Paragraph-pruned processing applies post-
processing filters to the results obtained from
paragraph-level processing to address noise and
irrelevant concepts. After completing the standard
paragraph-level extraction described above, we ap-
plied two filtering mechanisms: first, elimination
of concepts appearing exclusively in single para-
graphs to reduce noise from isolated mentions; sec-
ond, semantic filtering using the allMiniLM-L6-
v2 transformer model by Reimers and Gurevych
(2019) to calculate similarity scores between con-
cepts and their section contents, preserving only

concepts with similarity scores above 0.6.

3.3 Extraction Framework
3.3.1 Concept Extraction
The concept extraction process utilizes GPT-4o-
mini with precise prompting strategies to identify
educationally relevant concepts within academic
texts. A concept is defined as "a significant term
or phrase that represents a fundamental idea, entity,
or phenomenon within a discipline."

The extraction methodology implements a hier-
archical schema that categorizes concepts into three
distinct layers based on educational significance:

1. Priority Layer (Core Concepts): Fundamen-
tal principles, key terminology, major themes,
and critical processes (15-20%)

2. Secondary Layer (Supporting Concepts):
Sub-processes, related theories, and compo-
nent parts (40-50%)

3. Tertiary Layer (Contextual Elements): Au-
thor contributions, specific examples, and his-
torical developments (30-40%)

We developed a specialized prompt structure that
explicitly targets concepts answering fundamental
knowledge questions ("what," "how," "why," and
"when"), ensuring comprehensive coverage across
knowledge dimensions.

3.3.2 Relation Extraction
The relation extraction framework defines semantic
connections between previously extracted concepts
as structured triplets consisting of a source concept,
a target concept, and a descriptive relation type.
The extraction employs a multi-tiered approach:

1. Local Relations: Connections between con-
cepts within the same textual segment (section
or paragraph)

2. Global Relations: Higher-order connections
between concepts across different sections

This dual-layer approach addresses the challenge of
aligning relation extraction with learning objectives
by prioritizing pedagogically meaningful connec-
tions. Local relations establish foundational con-
cept understanding within focused contexts, while
global relations reveal broader conceptual frame-
works essential for comprehensive domain knowl-
edge. Combined with our hierarchical schema (Pri-
ority, Secondary, Tertiary layers) from concept ex-
traction (Section 3.3.1), this ensures that extracted
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relations support progressive learning objectives,
with core concepts and their relationships receiving
priority in visualization to align with pedagogical
goals of foundational understanding before detailed
exploration. Each identified relationship includes
supporting evidence from the source text that val-
idates its authenticity and enhances educational
value, ensuring extracted relations support struc-
tured learning goals rather than arbitrary semantic
associations.

3.4 Evaluation Framework

To establish a gold standard dataset, two undergrad-
uate annotators independently performed complete
manual concept and relation extraction from each
article. The first annotator had greater familiar-
ity with STEM disciplines, while the second had
stronger background in liberal arts and humanities.
Each annotator identified all educationally relevant
concepts and their relationships within each text,
creating comprehensive manual annotations that
served as ground truth for evaluating our automated
extraction performance.

Concepts were rated on a 4-point scale (0-3) as-
sessing educational significance from irrelevant (0)
to core concepts (3). Relations were evaluated on
a 3-point scale (0-2) based on pedagogical utility.
Inter-annotator agreement was assessed using Co-
hen’s Kappa coefficient, with values of κ = 0.76
for concepts and κ = 0.71 for relations, indicating
substantial agreement between annotators despite
their different disciplinary backgrounds.

The evaluation employed precision, recall, and
F1 scores, comparing our automated extractions
against the manually created gold standard anno-
tations. Fuzzy matching was applied to accom-
modate linguistic variability between automated
and manual annotations. The matching algorithm
applied a hierarchical process beginning with ex-
act string comparisons and progressively applying
more flexible techniques based on edit distance
and word-level similarity to identify semantically
equivalent concepts and relations across the two
annotation sets.

We acknowledge that using undergraduate an-
notators rather than domain experts across all ten
disciplines represents a limitation in our evalua-
tion methodology, as disciplinary expertise could
affect the identification of field-specific concepts
and relationships.

3.5 Concept Map Visualization

We implemented an interactive concept map visual-
ization system called Cognitext using D3.js force-
directed layouts. The interface, shown in Figure 2,
incorporates several features designed to support
effective navigation:

1. Hierarchical information architecture: Pri-
ority concepts are displayed with the darkest
node coloring to indicate their fundamental
importance, while secondary and tertiary con-
cepts remain initially hidden to prevent cogni-
tive overload

2. Self-directed exploration: When priority
concepts have connections to hidden lower-
level concepts, they display a pulsing orange
indicator circle that signals available deeper
exploration and encourages user interaction

3. Visual focus management: Selecting con-
cepts brings related nodes to the foreground
while fading others

4. Relationship transparency: Hovering over
connections reveals relationship types and sup-
porting textual evidence

5. Intelligent content enhancement: An inte-
grated concept chatbot provides contextual
explanations and answers questions based on
the extracted knowledge

Users interact with the system through multiple
methods: exploring from central nodes outward,
clicking for concept explanations, and rearrang-
ing nodes to customize their view. The imple-
mentation uses Python for backend processing
and Streamlit Cloud for web deployment: https:
//simplified-cognitext.streamlit.app.

3.6 User Evaluation

To assess the efficacy of concept maps for read-
ing comprehension, we conducted a controlled
study with 14 undergraduate participants (8 female,
6 male; ages 19-24; 4 self-identified as ADHD).
While the sample size is modest, it provides initial
insights into concept map effectiveness.

Concept Map Generation. For the user study,
concept maps were generated using section-level
processing results, which achieved the highest av-
erage F1 score in our evaluation. To ensure valid
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Section-Level Paragraph-Level Paragraph-Pruned

Discipline P R F1 P R F1 P R F1

CS 81.53 59.40 68.72 55.71 69.41 61.81 64.89 67.54 66.19
Biology 89.86 68.17 77.52 59.92 79.62 68.38 69.10 76.75 72.72
History 85.47 65.83 74.38 62.29 81.35 70.55 71.43 75.09 73.21
Philosophy 80.63 53.70 64.46 56.42 72.13 63.31 65.51 70.25 67.80
Politics 83.92 67.15 74.61 61.93 81.63 70.43 68.19 72.76 70.40
Linguistics 82.14 49.62 61.87 50.92 62.62 56.17 60.12 63.75 61.88
Art 83.21 63.54 72.06 58.32 75.02 65.62 66.46 70.15 68.25
Math 79.13 58.37 67.18 53.94 71.62 61.53 63.18 68.83 65.88
Medicine 82.98 66.82 74.03 54.66 73.28 62.61 67.84 69.49 68.65
General 87.35 69.18 77.21 60.77 78.38 68.46 71.95 74.60 73.25

Average 83.62 62.18 71.20 57.49 74.51 64.89 66.87 70.92 68.82

Table 1: Performance of concept extraction by discipline with fuzzy matching (P/R/F1 = Precision/Recall/F1 Score).

assessment of effectiveness, the automatically ex-
tracted concepts and relations were manually cor-
rected using our gold standard annotations before
visualization. This correction process removed in-
correctly identified concepts, added missing educa-
tionally relevant concepts, and refined relationship
labels for accuracy and clarity.

Experimental Design. Participants read
two academic articles, linguistics and physics,
with comparable college-level complexity (Flesch-
Kincaid scores: 16.9 and 17.2). Articles were se-
lected based on complexity metrics rather than par-
ticipant domain expertise. One article was read us-
ing traditional linear reading and the other through
the concept map interface. Article assignment and
reading sequence were counterbalanced across par-
ticipants to mitigate order effects.

Assessment Methodology. Following each read-
ing task, participants completed a comprehensive
assessment designed to evaluate understanding
across different conceptual levels supported by the
hierarchical concept map structure. The assessment
included: 10 factual recall questions on priority
concepts (multiple choice), 5 conceptual under-
standing questions requiring integration of priority
and secondary level knowledge (short answer), 3
relationship identification tasks, and 2 knowledge
transfer problems requiring synthesis of informa-
tion from multiple concept layers. Questions were
developed by the lead researcher based exclusively
on the original source texts, without reference to
extracted concept maps or their structural limita-
tions.

Measurements. Cognitive load was assessed
using the mental demand dimension of the NASA
Task Load Index (Hart and Staveland, 1988), a
validated multidimensional rating scale. While

the full NASA-TLX measures perceived workload
across six dimensions (mental demand, physical
demand, temporal demand, performance, effort,
and frustration), we focused specifically on the
mental demand subscale as it most directly relates
to cognitive load in reading comprehension tasks.
Participants rated mental demand on a 1-10 scale,
with scores ranging from 1 (very low mental de-
mand) to 10 (very high mental demand). Addition-
ally, semi-structured interviews were conducted
to gather qualitative feedback on user experience
and perceived effectiveness of the concept mapping
approach.

Figure 2: Cognitext interface showing the interactive
concept map with labeled relationships between con-
cepts (visible on hover), exploration features, and con-
cept chatbot.
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4 Results

4.1 Extraction Performance

Table 1 presents the performance metrics for con-
cept extraction across various academic disciplines
using fuzzy matching. We compared three distinct
text processing approaches.

Section-level processing demonstrated superior
precision across all disciplines, achieving an aver-
age precision of 83.62%, with biology (89.86%)
and general domain (87.35%) articles showing
highest performance. However, this approach
showed comparatively lower recall (62.18% av-
erage), indicating that while it extracted highly rel-
evant concepts, it missed some concepts present in
the gold standard dataset.

Paragraph-level processing yielded considerably
higher recall metrics (74.51% average), with po-
litical science (81.63%) and history (81.35%) ar-
ticles showing highest recall. This improvement
came at the cost of precision, which dropped to
57.49% average. The paragraph-level pruned ap-
proach achieved intermediate performance in both
precision (66.87%) and recall (70.92%).

When comparing F1 scores, section-level pro-
cessing performed best overall (71.20% average),
followed by paragraph-level pruned (68.82%) and
standard paragraph-level (64.89%) approaches.

Relation extraction performance followed sim-
ilar patterns across processing approaches and
disciplines (detailed results in Appendix A Ta-
ble 3). Section-level processing achieved high-
est overall precision (78.61%), with biology and
general articles showing particularly strong per-
formance (82.09% and 83.51% respectively) and
moderate recall (59.76%). Paragraph-level pro-
cessing exhibited substantially lower precision
(51.95%) but higher recall (69.08%), while the
pruned approach demonstrated intermediate per-
formance with 62.01% precision and 67.29% re-
call. Overall, section-level processing performed
best with an average F1 score of 67.71%, followed
by paragraph-level pruned (64.52%) and standard
paragraph-level (59.28%) approaches.

4.2 Concept/Relation Distribution Patterns

Figure 3 presents a heatmap visualization of the
normalized concept distribution across academic
disciplines. When normalized for text length, the
philosophy article showed the highest concept den-
sity (31.09 concepts per 1,000 words), followed
by health/medicine (30.93) and political science

(27.66). In contrast, the history (9.61) and art
(10.86) articles exhibited the lowest density.

Normalization revealed discipline-specific pat-
terns in concept distribution. The computer science
article emphasized problems & solutions and math-
ematical foundations (both 3.14 concepts per 1,000
words). The health/medicine article showed a pro-
nounced focus on medical & safety concepts (7.73)
and processes & mechanisms (6.87). The philoso-
phy article demonstrated a great emphasis on core
concepts (6.51) and socio-cultural contexts (4.34).

For relation distribution, Table 5 in Appendix A
shows that structural relations emerged as the most
frequent relation type across all disciplines, with
the health/medicine (12.89), philosophy (11.57),
and political science (10.19) articles showing the
highest normalized frequencies. The overall rela-
tion density varied substantially across disciplines,
with health/medicine exhibiting the highest den-
sity (54.22 relations per 1,000 words), followed by
philosophy (45.55) and political science (41.48).

Figure 3: Concept distribution heatmap across academic
disciplines, normalized per 1,000 words. Color intensity
represents frequency, darker blue = higher density.

4.3 User Study Results

To evaluate concept map effectiveness on read-
ing comprehension, we compared traditional lin-
ear reading with concept map-assisted reading (Ta-
ble 2). Participants spent more time with the con-
cept mapping tool (32.5 vs. 26.5 minutes, 22.6% in-
crease) but completed comprehension assessments
more quickly (18.3 vs. 21.3 minutes, 14.1% de-
crease).

Most significantly, participants reported substan-
tially reduced perceived mental effort when us-
ing concept maps (5.0 vs. 7.3 on NASA TLX
scale), representing a 31.5% decrease in cognitive
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load that was statistically significant (p = 0.00092).
Comprehension accuracy showed slight improve-
ment (98% vs. 97%), though not statistically sig-
nificant.

We acknowledge that our assessment instrument
focused on propositional knowledge, which con-
cept maps represent effectively, and this should
be considered when interpreting the comparable
accuracy results.

User feedback was generally positive (mean rat-
ing 4.21/5), with participants highlighting the tool’s
ability to "visually analyze basic concepts" and
"show hierarchical relationships between different
concepts."

Metric Without Tool With Tool
Reading Time 26.5 min 32.5 min
Assessment Time 21.3 min 18.3 min
Mental Effort 7.3 5.0
Correctness 97% 98%

Table 2: Comparison of reading performance with and
without concept mapping tool. Reading time refers to
text reading (linear condition) vs. concept map explo-
ration (concept map condition)

5 Analysis and Discussion

5.1 Extraction Performance and Disciplinary
Patterns

The consistent precision-recall trade-off across
processing approaches demonstrates a fundamen-
tal tension in concept extraction methodology.
Section-level processing achieved higher precision
through comprehensive contextual understanding,
while paragraph-level processing captured more
concepts through granular analysis. The substan-
tial precision advantage for relations (78.61% vs.
51.95%) suggests that relational semantics often de-
pend on broader contextual understanding than can
be captured within paragraph boundaries, align-
ing with discourse coherence theory that seman-
tic relationships emerge from macro-level textual
structures.

The paragraph-level pruned approach effectively
mitigated many limitations of standard paragraph-
level processing while preserving much of its recall
advantage. This suggests that incorporating multi-
stage validation processes into extraction pipelines
can substantially improve performance without re-
quiring contextual windows as large as section-
level processing.

Cross-disciplinary analysis revealed systematic
knowledge organization patterns reflecting episte-
mological differences between fields. Scientific
text (biology) showed superior extraction metrics
across all approaches, suggesting more explicit ex-
ternalization of conceptual relationships through
standardized linguistic patterns. Historical text per-
formed better with paragraph-level processing, in-
dicating conceptual relationships are established
within localized narrative units rather than ex-
tended theoretical frameworks. The linguistics arti-
cle’s extraction challenges highlight complexities
in meta-disciplinary discourse where language is
both medium and subject of analysis.

The distinctive patterns in concept and rela-
tion distribution reflect disciplinary epistemologies.
Philosophy’s high density of causal relations but ab-
sence of functional relations suggests emphasis on
conceptual reasoning, while health/medicine’s high
functional relation density points to procedural
knowledge focus. These findings suggest that uni-
versal knowledge representation approaches may
not be optimal, and concept maps might benefit
from tailoring to specific relation structures ob-
served in different academic content types.

5.2 Concept Map Effectiveness for Cognitive
Load Reduction

The comparison of concept mapping visualization
to traditional linear reading reveals a complex rela-
tionship between time investment, cognitive load,
and comprehension outcomes. The observed in-
crease in reading time (22.6%) paired with a de-
crease in assessment time (14.1%) when using the
concept mapping tool suggests a shift in cognitive
resource allocation. While users invested more
time in initial exploration, they subsequently com-
pleted assessment tasks more efficiently.

The substantial reduction in perceived mental
effort (31.5%) despite longer engagement time rep-
resents one of our most significant findings. This
relationship suggests the visualization transformed
extraneous cognitive load into germane cognitive
load, enabling more productive mental processing
rather than simply reducing overall demands. This
transformation is particularly valuable for educa-
tional applications where sustained engagement
with complex material is desirable.

While the marginal improvement in comprehen-
sion accuracy (1%) appears modest, this should
be interpreted within the context of the already
high baseline performance (97%), suggesting a po-
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tential ceiling effect. The combination of compa-
rable comprehension outcomes with significantly
reduced cognitive effort indicates an improved effi-
ciency ratio—participants achieved similar results
with less mental strain.

The generally positive user feedback (4.21/5)
confirms participants recognized value in the vi-
sualization approach. The implementation of hier-
archical information architecture with progressive
disclosure aligns with cognitive load theories by
preventing information overload while maintaining
access to comprehensive content, enabling incre-
mental mental model construction while preserving
underlying concept connections.

5.3 Implications for Educational Technology

These findings suggest that domain-agnostic extrac-
tion systems face inherent limitations, and maxi-
mizing extraction performance might benefit from
adaptive approaches tailored to different discourse
types. The cognitive load reduction without com-
promising comprehension indicates concept map-
ping tools could be particularly valuable for stu-
dents experiencing cognitive fatigue during tra-
ditional reading, including those with attention-
related difficulties.

Morever, the implementation of hierarchical in-
formation architecture with progressive disclosure
aligns with cognitive load theories by preventing
information overload while maintaining access to
comprehensive content. The observed self-directed
exploration through concept maps aligns with con-
structivist learning principles, suggesting these
tools can support diverse learning approaches and
accommodate individual differences in background
knowledge and processing styles while transform-
ing extraneous cognitive load into germane cogni-
tive load.

6 Conclusion and Future Work

This work demonstrates that LLM-based concept
mapping can significantly reduce cognitive de-
mands while supporting non-linear exploration of
educational content. Our findings suggest con-
cept mapping tools particularly benefit students
experiencing cognitive fatigue, transforming lin-
ear text into interactive visualizations that support
self-directed exploration.

Future work should prioritize three key direc-
tions based on our empirical findings:

Adaptive Extraction Methodologies. Our anal-

ysis revealed systematic variation across disci-
plines, with philosophy articles showing highest
concept density (31.09 per 1,000 words) while his-
tory articles exhibited lowest (9.61). Future re-
search should develop adaptive methodologies that
automatically adjust to disciplinary discourse pat-
terns by: (1) implementing discourse pattern recog-
nition to select optimal processing granularity, (2)
developing domain-specific relation taxonomies
based on our finding that structural relations dom-
inate in health/medicine (12.89 per 1,000 words)
while causal relations are prominent in philoso-
phy (10.85 per 1,000 words), (3) creating hierar-
chical processing pipelines that combine section-
level precision (83.62%) with paragraph-level re-
call (74.51%), and (4) developing automated qual-
ity assurance methodologies that can refine ex-
tracted concepts and relations without manual in-
tervention.

Longitudinal Impact Studies. While our study
(n=14) demonstrated 31.5% cognitive load reduc-
tion, critical questions remain about long-term ed-
ucational impact. Future studies should examine
knowledge retention and transfer beyond imme-
diate comprehension, conduct targeted research
with larger samples of neurodivergent students
(our study included only four self-identified par-
ticipants), and investigate whether concept maps
sustainably reduce cognitive load across time and
contexts.

LMS Integration. Current implementation bar-
riers limit practical deployment. Priority efforts
should focus on developing plugins for major learn-
ing management systems (Canvas, Blackboard,
Moodle), implementing collaborative features for
shared editing and instructor annotations, and ad-
dressing processing latency through scalable archi-
tectures for institutional deployment.

These directions address our core finding that
concept mapping transforms extraneous cognitive
load into germane cognitive load while maintaining
comprehension outcomes.

Limitations

Despite the promising results of this research, sev-
eral limitations should be acknowledged when in-
terpreting our findings.

Corpus limitations. Our analysis was restricted
to examining only one article per academic disci-
pline, which limits generalizability. The findings
should be interpreted as article-specific observa-
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tions that suggest potential disciplinary patterns
rather than definitive characterizations of entire do-
mains. Future work should expand the corpus to
include multiple texts from each discipline to es-
tablish more generalizable patterns.

Ecological validity limitations. Our use of
Wikipedia articles, while providing standardized,
neutral content across disciplines, may not fully
represent typical educational materials such as text-
books, journal articles, or course-specific read-
ings. Wikipedia’s encyclopedic structure and hy-
perlinked format may facilitate concept extraction
differently than traditional academic texts. Future
work should evaluate performance on authentic
course materials to establish broader applicability.

Evaluation methodology limitations. Our eval-
uation relied on undergraduate annotators rather
than domain experts, and comprehension questions
were developed by the lead researcher rather than
assessment professionals. While inter-annotator
agreement was substantial and questions assessed
multiple understanding levels, expert involvement
would strengthen future evaluations.

Generalizability across learning differences.
While we hypothesized particular benefits for stu-
dents with attention-related learning differences,
our sample included only a small number of self-
identified neurodivergent participants (n=4). More
targeted research with larger samples of neurodi-
vergent students would be necessary to substantiate
claims about differential benefits across students.

Assessment methodology limitations. The
node-and-edge structure of concept maps excels
at representing straightforward propositions (e.g.,
"Photosynthesis produces Oxygen") but struggles
with conditional relationships (e.g., "A causes B
only under specific conditions"), complex tempo-
ral sequences, or counterfactual reasoning. Conse-
quently, our question development may have inad-
vertently excluded assessment items requiring these
more complex cognitive operations, potentially fa-
voring the concept map condition. While this lim-
itation does not invalidate our findings within the
scope of propositional knowledge comprehension,
it restricts generalizability to the full spectrum of
reading comprehension skills typically assessed in
educational contexts.

Technical constraints. The use of GPT-4o-mini,
while cost-efficient, introduced model-specific con-
straints including knowledge cutoff limitations, re-
duced parameter capacity compared to larger mod-
els, and context window restrictions that particu-

larly affected global relation extraction. These limi-
tations may have impacted extraction performance,
especially for longer documents. The system also
demonstrated significant processing latency with
longer articles, which could limit practical deploy-
ment in time-sensitive educational contexts.

Implementation challenges. The current im-
plementation faces practical deployment barriers
including limited integration with existing learning
management systems, basic visualization capabil-
ities without advanced features like collaborative
editing, and minimal customization options for ed-
ucators. These constraints, while providing clear
directions for future development, limit immediate
broad adoption in educational settings.
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A Appendix

A.1 Detailed Extraction Performance
Table 3 presents the detailed performance metrics
for relation extraction across the ten academic disci-
plines. Similar to concept extraction, we compared
three distinct text processing approaches: section-
level, paragraph-level, and paragraph-level pruned
processing.

Section Paragraph Para-Pruned

Disc. P R F1 P R F1 P R F1

CS 79.3 56.9 66.3 49.5 63.9 55.8 60.2 64.9 62.5
Bio 82.1 66.8 73.7 56.8 74.9 64.6 65.9 74.3 69.9
Hist 78.3 66.1 71.7 57.6 76.5 65.7 66.2 70.4 68.2
Phil 79.2 50.4 61.6 50.6 66.2 57.4 59.0 67.6 63.0
Pol 76.5 62.7 68.9 52.0 75.6 61.6 61.9 68.9 65.2
Ling 78.8 47.6 59.4 46.1 57.4 51.2 55.8 59.2 57.5
Art 77.6 59.0 67.1 52.8 68.3 59.6 60.4 66.2 63.2
Math 73.4 57.7 64.7 47.9 66.2 55.6 59.7 63.2 61.4
Med 77.4 64.9 70.6 49.2 68.3 57.2 63.6 67.7 65.5
Gen 83.5 65.5 73.4 56.9 73.6 64.2 67.4 70.5 68.9

Avg 78.6 59.8 67.7 52.0 69.1 59.3 62.0 67.3 64.5

Table 3: Performance of relation extraction by discipline
with fuzzy matching (P = Precision, R = Recall, F1 =
F1 Score).

A.2 Concept and Relation Categorization
Table 4 presents the normalized distribution of con-
cept types across disciplines (per 1,000 words),
highlighting discipline-specific knowledge organi-
zation patterns.

Concept CS BIO HIST PHIL POL LING ART MATH MED GEN

Core 2.2 1.2 0.6 6.5 4.7 2.6 1.6 2.2 3.4 1.7
Research 2.7 2.6 1.1 2.9 1.1 2.2 0.0 0.9 2.6 2.5
SocioCult 0.0 1.5 0.9 4.3 2.9 0.4 1.4 0.2 0.0 1.0
Process 2.5 3.8 1.0 2.2 4.4 4.8 1.2 1.9 6.9 2.5
Classif 1.7 2.6 0.0 2.2 0.4 0.0 0.0 1.4 0.0 0.0
Struct 0.0 2.3 0.0 2.2 3.6 0.0 0.0 1.7 2.2 0.0
Property 1.2 3.2 0.6 3.6 2.9 0.0 0.9 1.0 4.7 0.8
Environ 0.0 1.5 0.6 0.0 0.0 0.0 0.0 0.3 0.0 0.0
People 1.7 0.3 2.4 2.2 1.8 0.0 1.4 0.7 0.0 0.0
Docs 0.0 0.0 1.3 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Problems 3.1 0.0 0.0 0.0 0.4 0.0 0.0 1.9 0.0 0.6
Math/Comp 3.1 0.0 0.0 0.0 0.0 0.9 0.0 2.1 0.0 0.0
Impact 0.7 0.0 0.1 0.0 1.1 0.0 0.5 0.7 3.0 1.3
Politics 0.0 0.0 0.1 0.7 4.0 0.0 0.3 0.0 0.0 0.0
Medical 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 7.7 1.3
Media 0.3 0.0 0.1 0.0 0.0 0.0 0.5 0.3 0.0 0.0
Events 0.0 0.6 1.5 0.0 1.5 0.0 2.1 0.0 0.4 0.0

Table 4: Normalized concept distribution (per 1,000
words) across all disciplines.

Table 5 presents the normalized distribution of
relation types across disciplines (per 1,000 words).

A.3 Example Prompt Templates
To facilitate reproducibility, we provide examples
of the prompt templates used for concept and rela-
tion extraction:

Relation Type BIO LING PHIL HLTH CS

Structural 6.74 4.40 11.57 12.89 6.95
Causal 2.34 4.40 10.85 10.31 5.96
Impact 4.98 3.96 10.12 9.88 6.29
Functional 6.45 1.32 0.00 9.02 5.79
Interaction 2.05 3.52 6.51 6.01 4.14
Cognitive 0.00 3.08 0.00 0.86 0.50
Linguistic 0.00 2.20 0.00 0.43 0.17

Table 5: Normalized relation distribution (relations per
1,000 words) for selected relation types across five rep-
resentative disciplines.

A.3.1 Concept Extraction Prompt
(Abbreviated)

A concept is defined as a significant term or phrase
that represents a fundamental idea, entity, or phe-
nomenon within a discipline. Extract key con-
cepts from the provided text using the following
guidelines.

Concept Layers: 1. Core Concepts (Priority
Layer): - Primary theoretical concepts and fun-
damental principles - Key terminology and defi-
nitions essential to the topic - Major themes and
overarching frameworks

2. Supporting Concepts (Secondary Layer): -
Sub-processes and variations of core concepts -
Related theories and complementary ideas - Com-
ponent parts and organizational structures

3. Contextual Elements (Tertiary Layer): - Au-
thor names and their key contributions - Specific
examples and case studies - Historical context and
developments

Output Format: [List of JSON objects with en-
tity, context, evidence, and layer fields]

A.3.2 Relation Extraction Prompt
(Abbreviated)

Extract key relationships between these available
concepts using the following guidelines. The ex-
tracted relations will be used for visualizations to
aid educational comprehension.

Guidelines: - Ensure that the relations are clearly
defined and relevant to the text’s main ideas. -
Focus on capturing a variety of relationship types
without restricting to specific categories. - Avoid
speculative relationships; only include those with
explicit or strong implicit textual support.

Output Format: [List of JSON objects with
source, relation_type, target, and evidence fields]
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Abstract

Correct verb placement is difficult to acquire
for second-language (L2) learners of Germanic
languages. However, word order errors and,
consequently, verb placement errors, are heav-
ily underrepresented in benchmark datasets of
NLP tasks such as grammatical error detection
(GED)/correction (GEC) and linguistic accept-
ability assessment (LA). If they are present,
they are most often naively introduced, or clas-
sification occurs at the sentence level, prevent-
ing the precise identification of individual er-
rors and the provision of appropriate feedback
to learners. To remedy this, we present Ger-
mDetect: Universal Dependencies-based (UD),
linguistically informed verb placement error
detection datasets for learners of Germanic
languages, designed as a token classification
task. As our datasets are UD-based, we are
able to provide them in most major Germanic
languages: Afrikaans, German, Dutch, Faroese,
Icelandic, Danish, Norwegian (Bokmål and
Nynorsk), and Swedish. We train multilingual
BERT (mBERT) models on GermDetect and
show that linguistically informed, UD-based
error induction results in more effective models
for verb placement error detection than models
trained on naively introduced errors. Finally,
we conduct ablation studies on multilingual
training and find that lower-resource languages
benefit from the inclusion of structurally related
languages in training.

1 Introduction

Correct verb placement is difficult to acquire for
L2 learners of Germanic languages. This is due to
the placement depending on different factors such
as finiteness and the clause type in which the verbs
occur. Example (1) illustrates a Dutch sentence
consisting of a single main clause.

(1) Hij
he
S

heeft
has
V2

een
a
O

hond
dog
O

gekocht.
bought
V

‘He has bought a dog.’

Two characteristics can be observed here: The fi-
nite verb heeft is placed in the second position
(V2) and the non-finite, participle verb gekocht is
placed clause-finally. Example (2), consisting of a
main and a subordinate clause, illustrates how the
verb placement changes: Here, the finite weet oc-
cupies the V2 position in the main clause, but both
the finite heeft and non-finite gekocht are placed
clause-finally in the subordinate clause, following
subject-object-verb (SOV) word order.

(2) Ik
I
S

weet
know
V2

dat
that
_

hij
he
S

een
a
O

hond
dog
O

heeft
has
V

gekocht.
bought
V

‘I know that he has bought a dog.’

These and other context-dependent changes in verb
placement in Germanic languages are not trivial for
L2 learners. Therefore, being able to provide accu-
rate feedback to learners about their verb placement
is crucial.

However, word order errors are heavily under-
represented in both GED/GEC shared task datasets
and LA datasets. If they are present, they are often
introduced naively, which means they do not rep-
resent the kinds of errors L2 learners are likely to
make. This leaves the capability of GED systems to
detect naturalistic word order errors underexplored.
Verb placement errors, as a subset of word order
errors, are even more poorly represented, which, in
the context of Germanic languages, is particularly
critical. Additionally, LA datasets are often for-
mulated as sentence-level binary classification or
pair-wise ranking tasks. This does not allow for lo-
cating errors within a sentence and therefore offers
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Figure 1: Number of sentences per language in Ger-
mDetect (log scale); language codes follow ISO 639-1.

little usability for providing feedback to learners.
To address this gap, we present GermDetect:

UD-based, linguistically informed verb placement
error detection datasets for learners of Germanic
languages that can serve as a new benchmark to
test GED systems’ capabilities in detecting nat-
uralistic verb placement errors. The token-level
classification design allows individual errors in
verb placement to be located, and the datasets
are available in most major Germanic languages:1

Afrikaans, German, Dutch, Faroese, Icelandic,
Danish, Norwegian (Bokmål and Nynorsk), and
Swedish. Figure 1 presents a brief overview of
the magnitude of our dataset, with a more detailed
breakdown in Appendix A. We make the datasets
and the code available at https://github.com/
noahmanu/gerlangmod.

In the following sections, we provide a brief
introduction to related work, followed by a descrip-
tion of our dataset creation algorithm. We then
present the results of different mBERT configura-
tions on our new benchmark.

2 Related Work

In this section, we introduce verb placement rules
in Germanic languages, briefly talk about the fre-
quency of verb placement errors in learner corpora,
present relevant GED/GEC/LA datasets and their
shortcomings with regard to the evaluation of word
order errors, and survey popular GED/GEC tools’
capabilities in detecting verb placement errors.

1Excluding English as English is the only modern Ger-
manic language that does not follow V2.

2.1 Verb Placement Rules in Germanic
Languages

Correct verb placement is challenging to acquire
for L2 learners of Germanic languages (Orgassa,
2009; Schimke and Dimroth, 2018; Westergaard
and Lohndal, 2019; Angantýsson, 2021). This is
due to the placement depending on different factors
such as finiteness and the clause type in which the
verbs occur.

All Germanic languages covered in GermDetect
follow V2 in main clauses, which means that the
finite verb always occupies the second position.
Example (1) illustrates how in West Germanic lan-
guages, SOV is the default syntax pattern for all
other verbs, i.e., non-finite verbs are placed clause-
finally in main clauses. In subordinate clauses,
where V2 does not hold, all verbs follow SOV and
are therefore found at the end of the phrase. Ex-
ample (3) demonstrates by means of a Swedish
sentence that, in North Germanic languages, all
verbs follow SVO in main clauses.

(3) Han
he
S

har
has
V2

köpt
bought
V

en
a
O

hund.
dog
O

This masks the V2 constraint, as the surface word
order in main clauses often resembles that of canon-
ical SVO languages. Example (4) briefly presents
how, when an element other than the subject takes
the clause-initial position, V2 holds while the rest
of the main clause follows SVO.

(4) Kanske
maybe
_

har
has
V2

han
he
S

köpt
bought
V

en
a
O

hund.
dog
O

‘Maybe he has bought a dog.’

Additionally, all GermDetect languages form po-
lar questions by inversion, placing the finite verb
in the clause-initial position.2 Examples (5) and
(6) illustrate this structure for both German and
Faroese. Non-finite verbs follow the respective
default syntax patterns.

(5) Hat
has
V1

er
he
S

einen
a
O

Hund
dog
O

gekauft?
bought
V

‘Has he bought a dog?’

2In analogy to V2, we call this position V1.
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Languages Main–Finite Main–Non-Finite Subordinate PolarQ–Finite PolarQ–Non-Finite

af, de, nl V2 SOV SOV V1 SOV

fo, is, da, nb, nn, sv V2 SVO SVO V1 SVO

Table 1: Overview of the most unmarked syntax patterns in the languages covered by GermDetect; distinction
between finite and non-finite verbs in main clauses and polar questions (PolarQ), and subordinate clauses.

Dataset Task % WOE Languages

Dale and Kilgarriff
(2011)

GEC < 7.5 en

Ng et al. (2013) GEC 0.0 en
Ng et al. (2014) GEC 2.4 en
Napoles et al.
(2017)

GEC N/A en

Bryant et al. (2019) GEC 1.6 en
Warstadt et al.
(2019)

LA N/A en

Warstadt et al.
(2020)

LA 19.4 en

Nielsen (2023) LA 50.0 da, fo, is, nb,
nn, sv

Volodina et al.
(2023)

GED N/A cs, de, en, it,
sv

Masciolini et al.
(2025)

GEC N/A cs, de, el, en,
et, is, it, lv,
ru, sl, sv, uk

Table 2: Percentage of word order errors (WOE) in dif-
ferent benchmark datasets; languages covered by Ger-
mDetect underlined.

(6) Hevur
has
V1

hann
he
S

keypt
bought
V

ein
a
O

hund?
dog
O

Table 1 summarizes the most unmarked syntax pat-
tern for both language groups, i.e., West Germanic
and North Germanic. With verb placement being
this complex in Germanic languages, learners are
prone to make errors when trying to acquire the
correct syntax patterns. However, learners typi-
cally do not make random errors in verb placement.
Instead, the errors they make are often influenced
by their previous language background. Therefore,
certain error types are less likely to occur than oth-
ers. Example (7) shows an unlikely example of an
error where the learner splits the noun phrase een
hond by misplacing a verb between the elements of
this constituent. This is unlikely because nominal
constituents are generally joint units, so this would
most likely be considered an error in any of the
languages the learner knows.

(7) *Ik
I

weet
know

dat
that

hij
he

een
a

heeft
has

hond.
dog

Example (8), in contrast, illustrates a more likely
error that could be produced by a first-language
English speaker.

(8) *Ik
I

weet
know

dat
that

hij
he

heeft
has

een
a

hond.
dog

It is evident that verb placement presents itself as
a very complex system of rules for L2 learners of
Germanic languages to acquire. Next, we briefly
show how this is reflected in real learner corpora.

2.2 Verb Placement Errors in Germanic
Learner Corpora

In the German part of the MERLIN corpus (Boyd
et al., 2014),3 which comprises texts from all CEFR
levels but is especially rich in texts from levels A2–
C1,4 34% of errors are annotated as “movement
errors”, i.e., errors corrected by placing a token
in a different position within the same sentence.5

Out of these, 12.1% involve the misplacement of a
verb.6 The vast majority of verb placement errors
in MERLIN are concentrated among the levels A2–
B2 (94.9%).

In the FalkoEssayL2 v2.4 corpus (Lüdeling et al.,
2008),7 which only comprises German L2 texts at
the levels B2–C2, movement errors make up 29.6%
of total errors. Out of these, 12.5% involve the
misplacement of a verb. This suggests that even at
advanced levels, learners continue to produce verb
placement errors at rates comparable to those at

3Accessible at: https://commul.eurac.edu/annis/
merlin/, last accessed: 2025/06/03.

4CEFR: Common European Framework of Reference for
Languages.

5We only count grammatical errors towards the total, i.e.,
spelling errors are excluded.

6Appendix B contains the queries with which we deter-
mined the number of total grammatical error occurences in
MERLIN and Falko, the number of movement errors, and the
number of movement errors involving the misplacement of a
verb.

7Accessible at: https://korpling.german.hu-berlin.
de/falko-suche/, last accessed: 2025/06/03.
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Tool Languages Verb Placement Large-Scale Eval

GermDetect af, de, nl, fo, is, da, nb, nn, sv af, de, nl, fo, is, da, nb, nn, sv ✓

Grammarly en / ✗

LanguageTool en, de, nl, da, sv, +21 others de ✓

ProWritingAid en / ✓

Quillbot en, de, nl, +3 others de, nl ✗

Table 3: Overview of grammar checking tools with language support, verb placement error detection capabilities,
and large-scale evaluation capabilities.

earlier stages, highlighting the pedagogical value
of providing targeted feedback on such errors.

In the Icelandic Child Language Error Corpus
and the Icelandic L2 Error Corpus (Ingason et al.,
2021; Glisic and Ingason, 2022), there are two des-
ignated error categories for verb placement errors
related to V2 violations.8 This indicates that verb
placement is not trivial not only in L2 learning but
also in first-language acquisition.

However, verb placement errors as a subset of
word order errors are heavily underrepresented in
all relevant benchmark datasets as we will point
out in the following section.

2.3 Word Order Errors in GED/GEC/LA
Benchmark Datasets

In recent years, several shared tasks have been or-
ganized in the field of GED/GEC. Additionally, LA
tasks have been developed to test language mod-
els’ linguistic capabilities. Table 2 presents the
most prominent benchmark datasets from all three
domains covering Germanic languages and the per-
centage of word order errors they contain.

All of the datasets have in common that word
order errors typically only make up a very small
fraction of the errors present within them, or no
information about the distribution of word order
errors is provided at all. Germanic languages other
than English have only recently seen their repre-
sentation increase. However, with the exception of
the ScaLA dataset (Nielsen, 2023), no information
is available about the presence and distribution of
word order errors in the datasets containing sub-
sets of the languages covered by GermDetect. This
leaves the capabilities of language models in de-
tecting erroneous word order underexplored.

This situation is especially critical in the context
8Both corpora are accessible at: https://github.

com/icelandic-lt/iceErrorCorpusSpecialized/, last
accessed: 2025/06/03. Verb placement errors are annotated
with the error code v3.

of Germanic languages, whose successful acqui-
sition depends on mastering their complex verb
placement rules. Verb placement errors, as a subset
of word order errors, are consequently even more
poorly represented in the datasets, thus limiting the
development of GED systems capable of reliably
detecting and providing feedback on such errors.
Moreover, in the only Germanic dataset where in-
formation about the presence of word order errors
is available – the ScaLA dataset – such errors were
introduced using a naive corruption strategy that
swaps adjacent tokens.9 As a result, the dataset
neither specifically targets verb placement errors
nor reflects the kind of word order errors that natu-
rally occur in learner language. Thus, it provides
little insight into whether language models can de-
tect naturalistic word order errors that could be
produced by L2 learners.

2.4 Survey GED/GEC Tools

While numerous writing assistants claim to provide
feedback on grammatical errors, few are suitable
for detecting verb placement errors in Germanic
languages other than English. Among those capa-
ble of handling word order errors to some extent,
many lack API access, which complicates large-
scale evaluation.

Table 3 presents an overview of the most popu-
lar tools, the languages they support, and whether
word order errors, particularly those involving verb
placement, are among the phenomena they claim
to be able to identify and provide feedback on. As
the table shows, two of the most popular tools –
Grammarly and ProWritingAid – do not support
any of the relevant languages covered by GermDe-
tect. While Quillbot claims to handle syntax errors
in German and Dutch, and LanguageTool does so

9To ensure the corrupted sentences are indeed ungram-
matical, Nielsen (2023) enforces a variety of part-of-speech
restrictions prohibiting certain token swaps.
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ik weet dat hij een hond heeft gekocht
PRON VERB SCONJ PRON DET NOUN AUX VERB

ROOT

nsubj

ccomp

det

mark

nsubj

obj

aux

Figure 2: Dependency tree for the Dutch sequence “ik
weet dat hij een hond heeft gekocht”; blue arc indicates
where our algorithm splits verb phrases; orange arc
indicates where our algorithm aggregates noun phrases
into impermeable units.

ik weet dat hij een_hond heeft gekocht
PRON VERB SCONJ PRON NOUN AUX VERB

ROOT

nsubj

mark

nsubj

obj

aux

Figure 3: Dependency tree for the Dutch sequence
“ik weet dat hij een hond heeft gekocht”; verb-headed
phrases are aggregated as verbal heads plus their depen-
dencies; noun-headed phrases are impermeable units.

for German, our manual evaluation on 100 Ger-
mDetect test sentences for each of the two lan-
guages found that their feedback on verb place-
ment errors was largely unreliable, inaccurate, or
incomplete.10 This highlights that effective tools
for providing feedback on verb placement in Ger-
manic languages are unavailable as of today. To
remedy this, in the following section, we present
our linguistically informed corruption algorithm
that can introduce verb placement errors into any
UD-annotated Germanic language subject to V2
verb placement.

10A locally hosted server of LanguageTool’s Python wrap-
per (Version 6.5; available at https://pypi.org/project/
language-tool-python/, last accessed: 2025/06/03)
flagged none of the 132 verb placement errors present in the
German test sentences as word order errors; via their respec-
tive GUIs, LanguageTool was able to identify 41 and Quillbot
was able to identify 38 out of 132 verb placement errors. For
Dutch, Quillbot was able to identify 37 out of 130 verb place-
ment errors. We counted errors as correctly identified even
when they were not explicitly flagged as syntax errors, as
long as the tool highlighted the relevant part of the sentence –
whether as a missing or superfluous word or verb, or with a
vague message such as “something is wrong” in combination
with the appropriate error correction suggestion, among other
generic error types.

3 Dataset Creation

Here, we briefly present the UD datasets as a ba-
sis for GermDetect, we present our preprocessing
steps, and we describe our data corruption algo-
rithm in detail.

3.1 Universal Dependencies
As the basis for our datasets, we use the UD Tree-
banks (Version 2.15; Zeman et al., 2024), including
all available datasets for each of the GermDetect
languages. Appendix A summarizes the datasets
and their sizes after removing sentences without
verbs.

Figure 2 illustrates how sentences are annotated
for dependency relations in UD. Our algorithm cur-
rently operates both on the part-of-speech (POS)-
tag level and the dependency arc level, but tokens
are typically annotated with more linguistic infor-
mation. We remove common punctuation tokens
and lowercase all characters to ensure that models
trained on GermDetect data cannot fall back on
any orthographic information when determining
the (in)correctness of verb placement and have to
rely on their syntactic understanding only. This is
especially relevant for sentences that begin with
verbs, as the initial capitalization can reveal their
original position. If such verbs are moved to an-
other part of the sentence, the capitalization may
serve as an unintended signal of misplacement.

3.2 Corruption Algorithm
Given a dependency parse tree T for a sentence
S = {w1, w2, . . . , wn}, we define an aggregation
procedure to extract syntactic substructures cen-
tered around full verbs and nouns. The algorithm
proceeds as follows:

Step 1 - Aggregation of Verb-Headed Phrases.
Identify all tokens v ∈ S such that POS(v) =
VERB. These serve as the roots of verb-headed
phrases.11

For each full verb v, construct a verb-headed
phrase Vv ⊆ S defined as:

• Vv includes the full verb v itself,

• Plus all tokens in S that are recursively gov-
erned by v – i.e., all descendants of v in the
subtree rooted at v,
11Due to inconsistent annotations, some UD treebanks use

the VERB POS-tag for adjectives derived from verbs. We
implemented a number of additional checks to prevent these
tokens from heading their own verb-headed phrases.
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• With the constraint that no token is included if
the dependency path from it to v passes through
another full verb (cf. verb phrase splitting in
Figure 2).

This ensures that each verb-headed phrase captures
the local syntactic scope of a full verb, while nested
verbs and their subtrees are aggregated indepen-
dently.

Step 2 - Aggregation of Noun-Headed Phrases
within Verb-Headed Phrases. Identify all to-
kens n ∈ Vv such that POS(n) = NOUN. These
serve as the roots of noun-headed phrases within
verb-headed phrases.

For each noun n, construct a noun-headed
phrase Nn ⊆ Vv defined as:

• Nn includes the noun n itself,

• Plus all tokens in Vv that are recursively gov-
erned by n – i.e., all descendants of n in the
subtree rooted at n,

• With the constraint that no token is included if
the dependency path from it to n passes through
another noun.

Each noun phrase Nn is treated as an imperme-
able unit: During any subsequent processing, i.e.,
the data corruption, the tokens in Nn must remain
contiguous and in their original order. No external
tokens may be inserted into the span of a noun-
headed phrase.

Step 3 - Output. The final output is a collection
of verb-headed phrases {Vv1 , Vv2 , . . . , Vvi}, each
rooted at a full verb. Within each Vv, zero or more
noun phrases {Nn1 , Nn2 , . . . , Nnj} ⊆ Vv are iden-
tified as impermeable subunits. This structure sup-
ports the linguistically-informed manipulation of
the sentence while preserving core syntactic bound-
aries. Figure 3 illustrates how, with the help of
UD’s dependency structure, we are able to isolate
syntactic structures that often correspond to main
and subordinate clauses. This allows us to inject
the data with more targeted corruptions, which aim
to reproduce learner errors more closely.

Step 4 - Corruption of Verb-Headed Phrases.
Each extracted verb-headed phrase Vv is corrupted
by permuting the positions of a randomly selected
subset of its verb tokens. Specifically:

• Identify all verb tokens τ ∈ Vv such that
POS(τ) ∈ {VERB,AUX}. Each such token is

selected for permutation with a probability of
roughly p = 0.5, resulting in the dataset contain-
ing approximately as many correctly placed as
incorrectly placed verbs.

• The selected verb tokens may be relocated to
any position within Vv, either before or after any
other token, provided that the relative order of
all non-verb tokens is preserved.

• Noun-headed phrases Nn ⊆ Vv remain con-
tiguous and untouched; verb tokens may move
around them but not split them.

• If Vv = Vv1 , i.e., it is the first verb-headed phrase
in the sentence, no verb token may occupy the
first position in Vv, unless a verb originally lo-
cated in this position remains in it. This con-
straint is imposed to avoid the accidental genera-
tion of valid polar question syntax, which would
undermine the goal of synthetically generating
syntactically perturbed structures.

• All verb tokens that are moved from their orig-
inal positions are automatically labeled as syn-
tactically incorrect (F), enabling the generation
of training data for GED models. This labeling
strategy is justified by the relatively rigid verb
placement rules found in Germanic languages,
as explained earlier. Verbs that remain in their
original position are labeled as correct (C), all
non-verb tokens are labeled as other (O).

Example (9) illustrates how misplacing a verb in
the first position is not permitted by our algorithm.
This is to avoid generating well-formed polar ques-
tions that would be incorrectly labeled as ungram-
matical (cf. Table 1).12

(9) ik weet | dat hij een_hond heeft gekocht
weet ik* | dat hij een_hond heeft gekocht

Example (10) showcases all possible corruptions
when we reduce the number of verbs in the sub-
ordinate clause of our running example to one, re-
sulting in ik weet dat hij een hond heeft “I know
that he has a dog”. There are 5 positions that heeft
can theoretically take. One of them corresponds to
the correct placement, while the last corruption in

12In addition to the standard *left asterisk indicating linguis-
tically unacceptable examples, we use the asterisk on the right*
side to indicate examples not permitted by our algorithm.
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the example is not permitted due to the imperme-
able noun-headed phrase constraint. If a verb in
the phrase is selected to be permuted, a permitted
position is randomly chosen.

(10) ik weet | dat hij een_hond heeft
ik weet | *heeft dat hij een_hond
ik weet | *dat heeft hij een_hond
ik weet | *dat hij heeft een_hond
ik weet | *dat hij een heeft hond*

Finally, example (11) illustrates what a labeled cor-
rupted sentence could look like if we reintroduced
the second verb. Note that the relative order of
non-verb tokens always remains the same but the
relative order of verb tokens to one another can
change.

(11) ik
O

weet
C

|
|

*dat
O

gekocht
F

hij
O

heeft
F

een
O

hond
O

The GermDetect algorithm makes it possible to in-
sert errors that specifically target verb placement
while making sure to exclude misplacements that
are unlikely, such as breaking up noun phrases, or
that would result in a well-formed sentence despite
the change of verb placement, such as in polar ques-
tions. The full extent of our dataset is summarized
in Appendix A.

4 Benchmark Results

In this section, we present our experimental setup
and analyze the results of evaluating various
mBERT configurations trained on GermDetect.

4.1 Experimental Setup
Following the creation of the GermDetect dataset,
we train and evaluate multiple mBERT models us-
ing various training dataset configurations and their
combinations (Devlin et al., 2019). We use mBERT
as our base model primarily due to computational
constraints and methodological considerations. All
experiments are conducted locally on a MacBook
Pro with an Apple M4 Pro chip and 24 GB of RAM
(macOS 15.4.1), which makes training larger mod-
els such as XLM-R impractical (Conneau et al.,
2020). In addition to its lighter memory footprint,
mBERT’s relatively lower performance ceiling pro-
vides a clearer basis for analyzing the impact of

training data composition. Specifically, we com-
pare training on the target language alone with
training on the target language and related Ger-
manic languages, as explained in Section 4.3. Since
stronger models like XLM-R often achieve robust
performance regardless of training data composi-
tion, they may obscure more subtle transfer effects
that are easier to detect with a smaller model. This
choice also supports the growing emphasis on en-
vironmentally responsible NLP, as smaller models
require significantly less energy to train and deploy.

To implement our approach, we add a
BertForTokenClassification head to mBERT
and fine-tune the sequence tagger using Hugging
Face’s Trainer API. Appendix C summarizes the
parameters we use to train our models. For each
input sentence, the model generates one of three la-
bels for each token: O for tokens that are not verbs,
and C (correct) or F (false) for verb tokens, depend-
ing on whether their placement in the sentence is
correct or incorrect.

We retain the original dataset splits provided
by UD for training, development, and testing, and
we do not make any further modifications beyond
removing sentences without any verb tokens, as ex-
plained in Section 3.1. During training, the models
are evaluated based on their loss on the develop-
ment set. At inference time, in line with earlier
works in GED (Bell et al., 2019; Yuan et al., 2021;
Volodina et al., 2023), the models are evaluated
using the macro-averaged F0.5 score, which we
compute exclusively over the C and F categories.
This metric places greater emphasis on precision
than recall, which aligns with standard practice
in intelligent computer-assisted language learning
applications where false positives, i.e., flagging
correct structures as incorrect, are especially unde-
sirable as they risk demotivating learners.

4.2 Monolingual Baseline Configurations
Table 4 presents the F0.5 performance results for
different configurations of the mBERT model on
the GermDetect test data.

We evaluate three baseline configurations:
target, random, and adjacent. The target con-
figuration trains models exclusively on GermDetect
data from the target language. The random config-
uration trains models on data in which half of the
verbs assume any position within a sentence other
than their original position, while the other half
remain in their original positions. This corruption
strategy represents generic verb placement errors,
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mBERT Configuration F0.5 Score by Language

af de nl fo is da nb nn sv

random 0.74 0.80 0.72 0.63 0.74 0.76 0.80 0.79 0.79
adjacent 0.71 0.67 0.69 0.68 0.64 0.72 0.74 0.75 0.75
target 0.82 0.94 0.88 0.72 0.82 0.85 0.90 0.89 0.86

all 0.88 0.94 0.89 0.85 0.84 0.90 0.93 0.92 0.91
all-balanced 0.86 0.94 0.89 0.79 0.83 0.88 0.92 0.91 0.90
west 0.87 0.93 0.88 – – – – – –
west-balanced 0.84 0.94 0.88 – – – – – –
north – – – 0.84 0.83 0.89 0.92 0.91 0.90
north-balanced – – – 0.78 0.83 0.86 0.92 0.91 0.89
island – – – 0.82 0.83 – – – –
island-balanced – – – 0.75 0.83 – – – –
mainland – – – – – 0.88 0.91 0.90 0.89
mainland-balanced – – – – – 0.87 0.92 0.90 0.89

Table 4: Macro-averaged F0.5 performance scores (computed over the C and F categories only) of different
configurations of the mBERT model across the Germanic languages covered by GermDetect; models ablate the
influence of training classifiers based on different data corruption strategies and by combining the training data of
structurally related groups of languages; balanced indicates that the target language sets the upper limit for how
many sentences of each language are used to train the classifier.

i.e., linguistically uninformed verb placement er-
rors. For the adjacent configuration, half of the
verbs switch positions with one of their adjacent
tokens (both left and right swaps are equally fre-
quent), approximating the word-order error induc-
tion mechanism described in Nielsen (2023), but
applied to verbs only.

As shown in the results, the target configu-
ration significantly improves performance across
all languages compared to both the random and
adjacent configurations, indicating that training
directly on GermDetect data effectively enhances
the detection of naturalistic verb placement errors.

4.3 Ablation of Multilingual Configurations

Next, we assess the effects of training models on
configurations that include structurally related lan-
guages.

For the all configuration, one model is trained
on all available data. Similarly, the west, north,
island, and mainland configurations each include
all data from the languages within their respective
groups.13 In the balanced configurations, the num-
ber of sentences from each language is capped at
the level of the target language, ensuring that the
target language contributes at least as many sen-

13West Germanic: af, de, nl. North Germanic: fo, is, da, nb,
nn, sv. Island Scandinavian: fo, is. Mainland Scandinavian:
da, nb, nn, sv.

tences as any other included language. This means
that, e.g., in the north-balanced configuration
with Faroese as the target language, if the Faroese
dataset contains X sentences, then each of the other
North Germanic languages can contribute at most X
sentences to the training set, ensuring that Faroese
is not underrepresented in the training data.

The results demonstrate that training on all avail-
able data yields the best-performing models, consis-
tent with the expectation that more data generally
improves performance. However, training solely
on West Germanic data yields performance scores
nearly equivalent to those obtained by using all
data when tested on West Germanic languages, a
trend also observed among North Germanic lan-
guages. Furthermore, training exclusively on main-
land Scandinavian languages results in only a mi-
nor performance reduction in these languages, com-
pared to training on all North Germanic languages.
These observations suggest that, while incorporat-
ing more diverse data is generally beneficial, the
models effectively exploit structural similarities
among related languages, achieving performance
scores close to the best-performing configurations.
Balancing the representation of languages within
the training sets does not provide additional ben-
efits; thus, it is preferable to utilize all available
data.
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It is equally unsurprising that German benefits the
least from the inclusion of related languages in
training, as it is by far the most well-represented
language in GermDetect. Similarly, Icelandic and
Dutch also exhibit only minor performance im-
provements. In contrast, Afrikaans and Faroese –
being the languages with the least available data
– benefit the most from the inclusion of data from
related languages in training.

5 Conclusion

We have introduced GermDetect: UD-based,
linguistically informed verb placement error de-
tection datasets for learners of Germanic lan-
guages, designed as a token classification task. As
our datasets are UD-based, we can provide them in
most major Germanic languages: Afrikaans, Ger-
man, Dutch, Faroese, Icelandic, Danish, Norwe-
gian (Bokmål and Nynorsk), and Swedish. Unlike
existing resources, GermDetect targets a specific
and pedagogically relevant error type that is under-
represented in current benchmark datasets and goes
undetected by most existing GED/GEC tools. Our
results show that multilingual models trained on
data corrupted by the GermDetect algorithm out-
perform models trained on naively corrupted data.
Furthermore, while training on all data consistently
yields the highest performance, models trained on
structurally related languages perform nearly as
well – demonstrating the benefits of typological
similarity. Crucially, the amount of available train-
ing data strongly influences the degree to which
models benefit from multilingual training: high-
resource languages such as German, Icelandic, and
Dutch see marginal improvements, whereas low-
resource languages such as Afrikaans and Faroese
benefit substantially. These findings highlight the
importance of both linguistic structure and data
quantity in training robust GED/GEC models and
suggest that targeted, linguistically informed error
induction can support the development of systems
capable of providing fine-grained feedback on com-
plex syntactic phenomena such as verb placement
in Germanic languages.

Limitations

In its current implementation, the verb placement
error generation algorithm is subject to several lim-
itations. It assumes UD sentences to be grammati-
cally well-formed and their annotations to be accu-
rate. However, this is not always the case, as data

quality can vary and annotation practices can differ
across datasets. To address this, future iterations of
the algorithm should include more robust checks
to ensure that all tokens are treated correctly, even
in the presence of inconsistent or imperfect anno-
tations. Another limitation lies in the assumption
that every corruption introduced by the algorithm
results in an incorrect sentence. In theory, how-
ever, some corruptions can still yield well-formed
or acceptable constructions. Although restrictions
are currently in place to prevent the generation of
polar question syntax, and the relatively rigid word
order of Germanic languages minimizes the num-
ber of such cases, they are not entirely eliminated.
A manual inspection of 100 German sentences re-
vealed an error rate of 2.9% in which verbs were
incorrectly labeled. For Dutch, this error rate was
2.1%. Future developments should aim to reduce
these accidentally grammatically sound relocations
of verbs even further. In the Dutch sentences we
manually checked, we also noticed that, for very
long sentences, the algorithm sometimes did not re-
store the correct order of the extracted verb-headed
phrases. This affected the soundness of the respec-
tive sentence in 4% of the sentences we checked.
In a future iteration, it should be examined whether
this was caused by an algorithmic shortcoming or
by insufficient data and annotation quality.

Additionally, while keeping noun phrases intact
represents a step toward introducing linguistically
informed errors, further restrictions could be added
– for instance, preserving additional syntactic struc-
tures or avoiding verb placements that would mis-
represent subordinate clause boundaries, such as
placing verbs in front of subjunctions. Future ver-
sions of the algorithm could also take further ad-
vantage of the rich linguistic information already
present in UD annotations to better approximate a
wider range of learner phenomena. Another issue
arises when the root of a sentence is not a verb but
a noun, which can occur in some UD treebanks
when the main clause contains a copula verb. In
such cases, the corresponding noun phrase is cur-
rently not impermeable. Moreover, although the
current implementation provides feedback on the
position of verb placement errors, it does not yet
explain why a given verb placement is correct or
incorrect. Providing this type of explanatory feed-
back in the form of a feedback message would
offer more meaningful support to learners. Lastly,
it goes without saying that it would be desirable
to evaluate our models on actual learner data once
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natural learner data annotated for verb placement
errors become available.

Ethics Statement

We do not see any major ethical concerns in the
context of this work. As always, to promote di-
versity, it would be desirable to extend the cover-
age of our datasets to more Germanic languages,
in particular, lower-resourced ones, minority lan-
guages, and regional language varieties such as
Luxembourgish, Frisian, Yiddish, Low German,
Swiss German, etc. As our algorithm operates on
UD data, this would be implementable as soon as
sufficient UD-annotated data for these languages
become available. Of course, implementing an API
demonstration of our trained verb placement er-
ror detection tools is a natural next step to ensure
that language learners can directly benefit from the
models we developed.
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A Dataset Specifications

Language Dataset Split # Sents # C # F # O

af AfriBooms
Train 1,300 2,617 2,615 25,341
Dev 192 404 402 3,966
Test 425 776 776 7,637

de

GSD
Train 9,710 9,728 9,726 129,050
Dev 613 697 694 6,730
Test 648 737 737 7,740

HDT
Train 104,322 120,674 120,674 1,391,353
Dev 12,234 14,105 14,104 159,956
Test 12,758 14,497 14,497 167,172

LIT Test 1,784 2,657 2,656 27,315

PUD Test 738 1,053 1,052 10,864

nl

Alpino
Train 11,604 14,167 14,165 132,951
Dev 697 777 775 8,536
Test 557 827 827 7,947

LassySmall
Train 10,389 14,063 14,060 167,415
Dev 1,252 1,790 1,788 19,352
Test 1,272 1,719 1,718 19,241

fo

FarPaHC
Train 1,015 2,284 2,283 13,993
Dev 292 728 726 5,676
Test 299 760 760 5,845

OFT Test 1,203 770 770 6,869

is

GC
Train 3,908 6,707 6,706 58,746
Dev 495 941 938 7,972
Test 529 860 861 7,755

IcePaHC
Train 32,505 62,068 62,066 475,106
Dev 4,579 12,379 12,375 94,062
Test 4,965 11,982 11,983 95,484

Modern
Train 2,659 5,660 5,660 45,435
Dev 383 745 746 6,141
Test 432 883 882 7,620

PUD Test 995 1,484 1,481 14,091

da DDT
Train 3,989 6,186 6,188 55,403
Dev 518 825 823 7,167
Test 532 803 803 6,870

nb Bokmaal
Train 14,120 19,775 19,773 171,489
Dev 2,178 2,966 2,966 25,653
Test 1,810 2,526 2,526 21,095

nn Nynorsk
Train 12,718 18,464 18,461 177,112
Dev 1,685 2,429 2,425 22,475
Test 1,337 1,858 1,858 18,115

sv

LinES
Train 3,008 4,672 4,669 39,408
Dev 989 1,562 1,559 13,327
Test 969 1,438 1,437 11,969

PUD Test 992 1,343 1,341 14,502

Talbanken
Train 3,909 4,769 4,768 47,995
Dev 478 709 708 7,263
Test 1,140 1,573 1,571 14,798

Total 275,607 381,884 381,816 3,795,723

Table 5: Datasets per language and number of sentences
(# Sents) as well as number of labels per data split.

B MERLIN and Falko Search Queries

Examples (12), (13), and (14) show the queries
we used when looking for all errors, movement
errors, and movement errors involving verbs in both
MERLIN and Falko, respectively. Table 6 shows
the exact error numbers. We show the MERLIN
queries. The Falko queries are essentially equal
with only minor differences in category names.
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(12)

TH1Diff!=/(CHA)|(CHA\x2FSPLIT)/

(13)

TH1Diff=/(MOVS)|(MOVT)|(MOVS\x2FCHA)|
(MOVT\x2FMERGE)|(MOVS\x2FSPLIT)|
(MOVT\x2FCHA)/

(14)

TH1Diff=/(MOVS)|(MOVT)|(MOVS\x2FCHA)|
(MOVT\x2FMERGE)|(MOVS\x2FSPLIT)|
(MOVT\x2FCHA)/
& tok_pos=/(VAFIN)|(VAIMP)|(VAINF)|
(VMFIN)|(VMINF)|(VVFIN)|(VVIMP)|
(VVINF)|(VVPP)|(VVIZU)|(VAPP)/
& #1_=_#2

Errors / Corpus MERLIN Falko

All grammatical errors 14,366 8,535
Movement errors 4,880 2,526
Movement errors with verb 591 315

Table 6: Movement errors across MERLIN and Falko
corpora.

C Model Training Parameters

Hyperparameter Value

Number of training epochs 3
Training batch size 16
Evaluation batch size 16
Weight decay 0.01
Learning rate 5e-5
Checkpoint saving strategy Per epoch
Evaluation strategy Per epoch
Max number of saved checkpoints 1
Metric for best model selection Evaluation loss
Load best model at end True

Table 7: Model training parameters.
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Abstract

This study examines vulnerabilities in
transformer-based automated short-answer
grading systems used in medical education,
with a focus on how these systems can be
manipulated through adversarial gaming
strategies. Our research identifies three main
types of gaming strategies that exploit the
system’s weaknesses, potentially leading to
false positives. To counteract these vulner-
abilities, we implement several adversarial
training methods designed to enhance the
system’s robustness. Our results indicate
that these methods significantly reduce the
susceptibility of grading systems to such
manipulations, especially when combined
with ensemble techniques like majority voting
and Ridge regression, which further improve
the system’s defense against sophisticated
adversarial inputs. Additionally, employing
large language models such as GPT-4 with
varied prompting techniques has shown
promise in recognizing and scoring gaming
strategies effectively. The findings underscore
the importance of continuous improvements
in AI-driven educational tools to ensure their
reliability and fairness in high-stakes settings.

1 Introduction

As technology advances, automated scoring of free-
text responses is transforming how we evaluate
written answers, making the process faster and
more consistent (Yannakoudakis et al., 2011). Early
research in this area has focused on instance-based
methods, treating the task as a supervised text clas-
sification problem (Burrows et al., 2015), (Bai and
Stede, 2023). In this approach, models are trained
using labeled data to predict labels for unseen data,
such as predicting whether a short answer sub-
mitted to an Automated Short Answer Grading
(ASAG) system is correct or incorrect (Bonthu
et al., 2021). More recently, some ASAG systems
have taken a similarity-based approach, where each

new response is assigned the label of the response
it most closely matches from a sample of previ-
ously annotated responses. Neural similarity-based
models have further advanced this field by learning
rich response (or question-response) embeddings
and matching them using cosine similarity, demon-
strating superior performance in capturing meaning
beyond surface-level text (Schneider et al., 2022).

Despite the significant potential demonstrated
by similarity-based ASAG models, these models
are especially vulnerable to scoring errors when
presented with certain kinds of responses (Section
2). This creates an opportunity for examinees to ex-
ploit these vulnerabilities to earn undeserved credit,
which can erode trust in automated grading and
raise concerns over the responsible use of AI in
educational assessments. Deliberate attempts by
examinees to exploit ASAG systems in this way
are known as “gaming strategies."

The objective of this study is to identify and
analyze potential gaming strategies that students
may use to manipulate or deceive automated
short-answer grading (ASAG) systems, particularly
within medical education. To counteract these vul-
nerabilities, we propose a dual approach combin-
ing: (1) adversarial training and ensemble tech-
niques—such as majority voting and Ridge re-
gression—applied to a transformer-based ASAG
system (ACTA), and (2) prompt engineering tech-
niques applied to a large language model (GPT-4)
to evaluate its ability to detect and mitigate gaming
attempts. This dual framework allows us to exam-
ine the effectiveness of both system-level defenses
and LLM-based scoring interventions in improving
accuracy and reducing false positive rates (FPR)
when presented with adversarial inputs. We eval-
uate the robustness of these methods before and
after the proposed defenses are applied. This inves-
tigation is guided by three research questions:

1. How vulnerable are transformer-based grad-
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Component Description

Stem A previously healthy 26-year-old man is brought to the emergency department because of a tingling
sensation in his fingers and toes for 3 days and progressive weakness of his legs. He had an upper
respiratory tract infection 2 weeks ago. He has not traveled recently. He was unable to get up from bed
this morning and called the ambulance. Temperature is 37.3°C (99.1°F), pulse is 110/min, respirations
are 22/min, and blood pressure is 128/82 mm Hg. Pulse oximetry on room air shows an oxygen saturation
of 99%. Physical examination shows weakness of all four extremities in flexion and extension; this
weakness is increased in the distal compared with the proximal muscle groups. Deep tendon reflexes are
absent throughout. The sensation is mildly decreased over both feet.

Lead-in What is the most likely diagnosis?

Sample Cor-
rect Answers

Guillain-Barré syndrome; acute immune-mediated polyneuropathy

Table 1: The parts of a short-answer question in the medical domain.

ing systems to adversarial gaming strategies
used by test takers?

2. What effect do adversarial training and ensem-
ble methods have on system robustness?

3. How effective are different prompt engineer-
ing strategies in identifying and mitigating
adversarial inputs?

This study advances the ASAG field by address-
ing the critical issue of vulnerability to adversarial
gaming strategies. By identifying such strategies
and developing effective countermeasures, the ro-
bustness, integrity, and reliability of transformer-
based short-answer grading systems can be im-
proved. The reported findings have broad practi-
cal benefits including improving the trustworthi-
ness of automated grading tools in educational set-
tings and contributing to the security of AI-driven
systems against adversarial attacks. The technical
advancements that are reported are also comple-
mented by theoretical insights into the challenge
posed by gaming in the context of ASAG specif-
ically as well as into the responsible use of AI in
education more generally.

2 Related Work

With the advent of transformer models, neural
similarity-based ASAG techniques have demon-
strated improved accuracy and reduced data an-
notation requirements compared to instance-based
methods (Bexte et al., 2023). However, these ad-
vancements have also introduced new challenges,
particularly the susceptibility of similarity-based
systems to adversarial attacks (Filighera et al.,
2020). Such attacks can range from submitting ran-
dom strings of letters (Ding et al., 2020) to adding
irrelevant yet carefully chosen words to otherwise
valid responses (Filighera et al., 2023), with the

goal of deceiving the model into misclassification.
For example, Ding et al. (2020) found that a non-
sensical string like "nswvtnvakgxpm" could be clas-
sified as a correct response by an ASAG system.

Within the medical domain, Baldwin et al.
(2025) have shown that several gaming strategies
were successful in "deceiving" a similarity-based
system. These strategies consisted of entering the
following as responses to the short-answer ques-
tions: (1) random number of words selected at ran-
dom from the stem1, (2) random number of con-
secutive words selected at random from the stem,
(3) random number of medical terms selected at
random from the stem, (4) keywords selected from
the stem by a content expert, and (5) a summary of
the stem produced by GPT 3.5, as well as (6) list-
ing multiple responses only one of which is correct.
The results showed that the first five strategies lead
to a success rate between 6% to 16%, while the last
strategy led to a success rate of 57%, underscoring
the need for addressing these vulnerabilities.

While prior work defined the problem of gam-
ing strategies and quantified their effects on
transformer-based scoring systems, this study fo-
cuses on systematically evaluating multiple adver-
sarial training techniques and ensemble strategies
to enhance system resilience within the clinical
ASAG domain. Additionally, we explore the role
of LLMs, such as GPT-4, in detecting and mitigat-
ing adversarial manipulation.

3 Methodology

This study investigates two approaches for defend-
ing against gaming strategies in automated short-
answer grading (ASAG) systems. The first ap-

1An item stem is the part of a test question that presents
the problem or scenario to be answered or responded to, as
shown in Table 1.
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proach centers on the ACTA system, a transformer-
based model that classifies short medical responses
as correct or incorrect by leveraging sentence-
BERT embeddings and a similarity-based matching
mechanism. This approach is trying to enhance the
robustness of the ACTA system through adversar-
ial training and ensemble methods. The second
approach involves a large language model (LLM)-
based method, where GPT-4 is used with various
prompt engineering techniques to independently
score student responses and detect gaming strate-
gies. This allows us to examine the effectiveness of
both system-level defenses and LLM-based scoring
interventions.

3.1 ACTA System Overview
Experiments were undertaken using the ACTA sys-
tem (Analysis of Clinical Text for Assessment;
Suen et al. (2023)), a transformer-based ASAG
system designed to classify short responses to med-
ical questions as correct or incorrect. To achieve
this, ACTA utilizes sentence BERT (Reimers and
Gurevych, 2019) and contrastive learning. When
presented with a new response, ACTA matches
it to the most similar response within a training
set of human-scored responses and assigns it the
matched response’s label (correct or incorrect), pro-
vided their similarity exceeds a given operational
threshold (for a detailed description of ACTA, see
Suen et al. (2023)). While ACTA achieves near
human-level performance with a binary F1 score of
.98, previously reported weaknesses of transformer-
based grading systems require an investigation of
ACTA’s susceptibility to gaming.

We evaluate the effectiveness of adversarial train-
ing by assessing the ACTA system’s performance
on gaming data both before and after the training
is applied.

3.2 Prompt Engineering with GPT-4
Using large language models to score the real
dataset has already shown promising results. This
motivated the use of these models with different
prompting techniques to evaluate whether large lan-
guage models can accurately recognize and score
gaming responses. Due to the consistently strong
performance demonstrated by ChatGPT4 (Achiam
et al., 2023) across various experimental settings,
this model was selected as the primary tool for
conducting this series of experiments.

To evaluate system robustness, we simulate gam-
ing strategies that students might use to deceive

ASAG systems—detailed in Section 4. These ad-
versarial examples are used both to adversarially
train the ACTA model and to test the effectiveness
of prompt engineering with GPT-4.

4 Experiment Design

4.1 Dataset
The dataset comprises 71 short-answer questions
(SAQs) with 36,735 responses from 24,235 exam-
inees. An example of an SAQ is shown in Table
1. Responses were collected during the administra-
tion of a Medicine Clinical Science subject exam
distributed to a large number of medical schools in
the US and Canada for use as a summative, end-of-
semester exam.

4.2 Gaming Strategies Simulation
Following Baldwin et al. (2025), we simulate three
gaming strategies meant to resemble how students
without the requisite knowledge of a correct answer
might nevertheless respond to an item. Data were
generated as follows:

1. Simulate responses by randomly sampling
words (excluding stop words) from a given
item’s clinical vignette. Variations of this
strategy include consecutive words, non-
consecutive words, and samples of words that
appear in both the item description and a
generic list of medical terms.

2. Utilize a summary of the clinical scenario as
a response. Summaries were obtained using
ChatGPT.

3. Utilize “mixed" responses that combine both
correct and plausible incorrect answers into a
single response, which, following operational
guidelines, should be scored as incorrect.

For our data, the strategies generated an imprac-
tically large number of responses. To create a set
of responses that could feasibly be used as part of
an operational process, we randomly sample 5%
from each strategy, resulting in 14,657, 573, and
584 simulated responses for strategies 1, 2, and
3, respectively. While simulated responses were
largely nonce phrases or unequivocally incorrect, 3
simulated responses exactly matched (real) correct
responses from the training data. Three misclassifi-
cations were deemed tolerable for our purpose, and
all artificial responses were designated as incorrect.

Following a principal component analysis
(PCA), Figures 2 and 3 plot the responses for two
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Gaming Data Train/test split

Experiment 1

Experiment 2

Phase1:  Training the LLM models with train Gaming Data

Training LLM models

Fine-tuned LLMs: LLMs that have  
Knowledge  about data

Phase2:  Testing the LLM models with test Gaming Data

Test Data LLMs’ Predicted Scores Ensemble Predicted Score

Method 2: 
Ridge 

Regression

Method 1: 
Majority 

Vote 

Final Scores

Clinical 
BERT

Sentence 
BERT

Sci- BERT Blue -BERT Bio- BERT

Figure 1: Adversarial Defense Workflow. Gaming data is combined with real data for training and testing purposes.
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Figure 2: PCA of Response Embedding for Item 1
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Figure 3: PCA of Response Embedding for Item 2

SAQs in the space defined by principal components
1 and 2. Differences in the identification of adver-
sarial examples across items can be observed. For
SAQ 1 (Figure 2), the distribution of gaming re-
sponses shares considerable overlap with the distri-
bution of correct responses, suggesting that gaming
responses may have a relatively high probability
of being misclassified. In contrast, for SAQ 2 (Fig-
ure 3), gaming responses are comparatively iso-
lated, suggesting that these responses may be more
readily identified by an ASAG system.

4.3 Adversarial Training Setup for ACTA

To enhance the resilience of the ACTA system
against gaming responses, two adversarial train-
ing experiments were undertaken to investigate (i)
whether adversarial training based on all three types
of gaming responses improves system robustness to
these types of responses and (ii) whether adversar-
ial training based on two types of gaming responses

improves robustness to a third type of responses.
The general workflow is demonstrated in Figure
1. The first experiment entailed the inclusion of
70% of the simulated responses from each strategy
into the training dataset (together with the authentic
responses), with the remaining 30% of both arti-
ficial and authentic responses allocated to the test
set. The objective of the second experiment was to
assess the capacity of data derived from specific
strategies to bolster the model’s defenses against
gaming strategies that were not identified during
the training phase. This was achieved through
the implementation of a 3-fold cross-validation
method, where the model was trained on data from
two gaming strategies and tested on the third. This
approach enabled the evaluation of the model’s
enhanced ability to recognize unknown examples
through exposure to known gaming adversarial ex-
amples.

To enhance the results and evaluate the efficacy
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of various models, we employed five different mod-
els for response embeddings to predict whether a
response was related to gaming: Clinical-BERT
(Huang et al., 2019), Bio-BERT (Lee et al., 2020),
Sci-BERT (Beltagy et al., 2019), and Blue-BERT
(Peng et al., 2019). These models are pretrained
on medical domain datasets, leveraging their spe-
cialized knowledge to aid in training the system.
They were fine-tuned with the adversarial data in a
70/30 split (for experiment 1) and fine-tuned with
two gaming strategies, and tested on the third one
for experiment 2, as detailed above. These fine-
tuned models are then used to classify responses as
correct or incorrect. The embeddings generated by
these models were then combined with the ACTA
model using a majority vote method and ridge re-
gression to determine if there was an improvement.

4.4 Prompt Engineering Setup for GPT-4
Three prompting techniques were employed in this
experiment:

1. The model was provided with the item ques-
tions and the examinee’s response to the ques-
tion. The model was then asked to score the
response, given the question.

2. The model was given the questions along with
examples of correct answers for each ques-
tion. The model was then asked to score the
examinee’s response.

3. The model was provided with examples of
correct answers only, and then asked to score
the examinee’s response.

Using ChatGPT-4, scores using each of these
strategies were obtained. Due to resource limita-
tions, 100 samples of each gaming data and real
data were used for these experiments.

5 Results

5.1 ACTA Pre-Adversarial Training Results
We began by evaluating ACTA’s scoring of gam-
ing responses prior to any adversarial training. The
model was trained on 70% (26,095) of the real
responses and evaluated on the remaining 30%
(10, 890) combined with all artificial responses.
Since the number of simulated gaming responses
varies across strategies and experiments, we report
two separate measures: F1 for real responses and
false positive rate (FPR) for artificial responses.
ACTA performed well when scoring real data (F1
= .9845); however, the gaming strategies deceived

ACTA into misclassifying many of the artificial re-
sponses as “correct." FPRs for strategies 1, 2, and
3 were .061, .189, and .435, respectively, demon-
strating the vulnerability of this system to exami-
nee gaming (Table 2). Responses from strategy 3
were especially challenging to classify correctly,
illustrating the potential for examinees with par-
tial knowledge to game systems that have not been
adversarial trained by simply listing as many plau-
sible answers as possible.

5.2 ACTA Post Adversarial Training Results
The results from the experiments described above
are shown in Figures 5 and 6 and Tables 3 and
4. In the first experiment, the model maintained
a high F1 score, with substantial reductions in
FPRs across various gaming strategies and em-
bedding models. This demonstrates the efficiency
of adversarial training in enhancing model accu-
racy. The FPR results for the gaming strategy “In-
formation from the Stem" were consistently the
lowest across models, indicating that even without
adversarial training, this model recognized these re-
sponses better than the other two gaming strategies.
The post-adversarial training gains for the “Mixed
Responses" strategy are particularly encouraging,
suggesting that training on simulated gaming re-
sponses is an effective countermeasure against the
most successful gaming strategy. This highlights
the significant benefits of adversarial training for
defending against complex adversarial attacks.

The second experiment also maintained a high
F1 score of 0.98 for real responses, while still pro-
viding some improvements with gaming detection.
These results suggest that familiarity with known
gaming strategies helps the model recognize re-
sponses based on unknown gaming strategies, en-
hancing overall robustness. The model’s resilience
is significantly bolstered by training with ‘strong’
gaming examples (high FPR) instead of ‘weak’
ones. The model’s performance was least effective
under strategy 3; however, incorporating this strat-
egy into adversarial training markedly improved
model efficiency against strategies 1 and 2. In con-
trast, training with the relatively weaker strategies
1 and 2 yielded lesser improvements in detecting
strategy 3, reducing the FPR from 0.435 to 0.067,
which is the smallest FPR for the ACTA model
in the second experiment among all the models.
This observation highlights the intricate relation-
ship between the effectiveness of gaming strate-
gies and the robustness of model training, suggest-
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Figure 4: FPR Across Different Models - Part 1
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Figure 5: FPR Across Different Models - Part 2

Gaming Strategy FPR Before Adv Training FPR Adv Training #1 FPR Adv Training #2
Information from the Stem .061 .017 .067

Clinical Case Summary .189 .036 .04
Mixed Responses .435 .041 .067

Table 2: False positive rates for the gaming responses before and after adversarial training

Gaming strategy Acta Model ClinicalBert

NoAdvT AdvT1 AdvT2 NoAdvT AdvT1 AdvT2

Information from stem 0.061 0.017 0.067 0.061 0.023 0.060
Clinical case summary 0.189 0.036 0.040 0.189 0.033 0.040
Mixed responses 0.435 0.041 0.067 0.435 0.038 0.080

Gaming strategy BioBert SciBert

NoAdvT AdvT1 AdvT2 NoAdvT AdvT1 AdvT2

Information from stem 0.061 0.023 0.064 0.061 0.027 0.064
Clinical case summary 0.189 0.034 0.037 0.189 0.044 0.047
Mixed responses 0.435 0.039 0.082 0.435 0.044 0.092

Gaming strategy BlueBert

NoAdvT AdvT1 AdvT2

Information from stem 0.061 0.023 0.061
Clinical case summary 0.189 0.034 0.036
Mixed responses 0.435 0.038 0.093

Table 3: False positive rates for gaming responses before and after adversarial training using various models.
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Majority Vote Model Ridge Regression

Gaming strategy FPR (NoAdvT) FPR (AdvT1) FPR (AdvT2) FPR (NoAdvT) FPR (AdvT1) FPR (AdvT2)

Information from stem 0.061 0.015 0.053 0.061 0.014 0.040

Clinical case summary 0.189 0.029 0.033 0.189 0.029 0.029

Mixed responses 0.435 0.035 0.076 0.435 0.035 0.068

Table 4: False positive rates for the gaming responses before and after adversarial training using Majority Vote and
Ridge Regression models
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Figure 6: False Positive Rates for Majority Vote and
Ridge Regression

Gaming strategy Accuracy TNR FPR

Information from stem 0.89 0.89 0.11

Clinical case summary 0.97 0.97 0.03

Mixed responses 0.99 0.99 0.01

Table 5: ChatGPT results for the gaming responses

ing a positive correlation where more sophisticated
adversarial training leads to improved robustness.
Table 4 shows the FPR results after applying the
embedding models’ results to Majority Vote and
Ridge Regression (“AdvT2"). Ridge regression out-
performed the majority vote with the FPRs for
both experiments 1 and 2 (Figure 6). These find-
ings suggest the effectiveness of these two models
compared to considering an individual embedding
model. Similar to the embedding model FPR re-
sults, gaming strategy 3 is more challenging to rec-
ognize and has a higher FPR than gaming strategies
1 and 2. However, FPR results for all gaming strate-
gies are improved compared to each embedding
model’s results.

5.3 Prompt Engineering Results

Summary results from the prompt engineering ex-
periments are shown in Table 5. Because it per-
formed best overall, only results from the first

prompting strategy, submitting a question and a
response and requesting a score, are reported.

For the experiment with real data, the model
maintained high performance, with an accuracy of
0.93, a precision of 0.97, and False Positive Rate
(FPR) of 0.06. For the gaming data, the highest
accuracy was achieved for the third gaming strat-
egy, “submit multiple answers", with an accuracy
of 0.99, a TNR of 0.99, and the lowest FPR of 0.01.
This suggests that in this experiment, ChatGPT-
4 was more successful in recognizing and scor-
ing responses generated using the third strategy
compared to the adversarial training approaches
reported above. The second gaming strategy, “sum-
marize item vignette", also performed strongly with
an accuracy of 0.97 and an FPR of 0.028. The first
strategy, “copy words from the item vignette", had
the lowest performance among the gaming strate-
gies, with an accuracy of 0.89 and an FPR of 0.11.
These results underscore the model’s effectiveness
in handling various gaming strategies, with notable
success in the third strategy, and relative ineffec-
tiveness with responses from the first strategy.

6 Error Analysis

6.1 Error Analysis For Adversarial Training
The model’s performance was notably better for
gaming strategies it was trained on compared to
those it had not encountered during training. This
points to a potential overfitting issue, where the
model becomes too specialized in detecting known
adversarial patterns but may struggle with novel or
unseen strategies. Despite the reductions in FPRs,
some gaming strategies, particularly Strategy 3
(“Mixed Responses"), remained challenging for
the model to detect. This suggests that while ad-
versarial training improves the model’s defenses,
it may not fully mitigate all vulnerabilities, espe-
cially for more sophisticated or nuanced gaming
strategies. The quality and representativeness of
the adversarial examples used in training had a sig-
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nificant impact on the model’s performance. Train-
ing with “strong“ adversarial examples (those with
high FPRs) led to more substantial improvements
in robustness, whereas training with “weaker" ex-
amples provided less benefit. This underscores the
importance of carefully selecting adversarial ex-
amples that accurately reflect the types of gam-
ing strategies the model might encounter in real-
world applications. The cross-validation experi-
ments demonstrated that while training on multiple
gaming strategies can enhance the model’s gener-
alization capabilities, the process is complex and
computationally expensive.

6.2 Error Analysis For Prompt Engineering
Upon reviewing the rationales across various
datasets, several common patterns emerged that ex-
plain why certain responses were predicted wrong.

Summary of the clinical scenario: Many ra-
tionales indicate that a response “aligns with the
intended correct pattern" or “matches the expected
correct response." This suggests that the system
recognizes patterns it anticipates, regardless of the
response’s accuracy. For instance, if a response cor-
rectly lists all the symptoms of a disease, the model
may consider it correct simply because it aligns
with the expected diagnosis related to those symp-
toms. Some rationales reveal that the presence of
specific keywords in the responses triggers the sys-
tem to mark it as correct, e.g., phrases like “man,
36, suffers sleepiness, ED, weight gain, hyperten-
sion" match key descriptors associated with the
correct answers, such as “sleep study."

If a response mentions symptoms that suggest a
disease, the model may consider it correct, even if
the actual cause of the disease differs. An example
would be a response stating, “Man on anti-malaria
drugs shows signs of hemolysis," where the correct
answer is “Hemolysis due to G6PD deficiency".
In this case, because the hemolysis disease was
mentioned in the response, the model scored this
response as correct.

Utilize mixed responses: Here, the rationales
often point to specific phrases within the re-
sponse, indicating that the model matches exact
or nearly exact phrases it expects, regardless of
whether the combination is logically sound. If a
response includes correct elements alongside ir-
relevant parts that do not negate the correct diag-
nosis, the model may still consider it correct. For
instance, “Rheumatic fever" might be irrelevant,
but it does not invalidate the correct diagnosis of

“systemic sclerosis (scleroderma)." Sometimes, the
model assesses the overall picture of the response;
if a disease shares similarities with another men-
tioned in the response, it may still be considered
correct. For example, the response “chronic ob-
structive pulmonary disease bronchiectasis" might
be deemed correct because “bronchiectasis" was
the intended correct answer, and it shares similar-
ities with “chronic obstructive pulmonary disease
bronchiectasis".

Randomly sampling words: This strategy in-
volves the use of random words; in cases where the
model erroneously produces a correct score, the
sample words are general and provide no specific
clues about the disease. In such cases, the model
relies on the question and uses the information pro-
vided to predict the disease, ultimately considering
the response correct, although there was not any
correct information in the response.

Real Dataset: If a response contains minor mis-
spellings, the model may consider it incorrect, even
if it matches the correct response. Conversely, the
model may consider a vague term correct if it en-
compasses the specific diagnoses listed. For exam-
ple, the response “heart disease" might be accepted
as correct, even if the correct answer is a specific
type of heart failure or disease. The rationales some-
times rely on broad medical logic. The model might
still consider it correct when a response refers to
a general disease category without specifying de-
tails or subcategories. This suggests that the model
applies standard medical reasoning but may lack
the subtlety needed to distinguish between similar
conditions. In some cases where the general con-
cept is correct but details are slightly different, the
model may still mark the response as wrong de-
spite its correctness. These patterns indicate that
the model prioritizes exact matches and penalizes
variations, even when the overall concept is cor-
rect, highlighting its limitations in understanding
nuanced or slightly varied responses.

7 Discussion

These results add new evidence related to ex-
ploitable vulnerabilities in transformer-based grad-
ing systems. Despite being artificially generated
approximations of potential gaming behaviors, all
three gaming strategies were successful in deceiv-
ing the non-adversarial trained system. This aligns
with findings from previous research, which also
reported that adversarial approaches could compro-
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mise the integrity of automated systems, particu-
larly when the system is not specifically trained
to recognize such attacks (Baldwin et al., 2025).
The first group of adversarial training experiments
showed that data augmentation is a promising way
to fortify ASAG systems against such attacks. The
cross-validation experiments also showed that it
is beneficial to train on examples across gaming
strategies, suggesting a transfer of learning be-
tween strategies, which holds the potential to pro-
tect against unforeseen gaming tactics that may
arise in practice.

The results show that incorporating embedding
models into Majority Vote and Ridge Regression
significantly reduced the false positive rates (FPR)
in experiments, which is in line with findings
from research on ensemble learning methods that
demonstrate their superiority in reducing error rates
(Naderalvojoud and Hernandez-Boussard, 2023).
Among the gaming strategies evaluated, strategy
3 proved to be the most challenging to recognize,
yielding higher FPRs than strategies 1 and 2. De-
spite this, the FPR results across all gaming strate-
gies showed improvement when compared to the
results of each individual embedding model. This
mirrors findings in previous studies, where certain
adversarial strategies consistently posed greater
challenges to detection systems.

The experiments demonstrated the first prompt-
ing strategy was effective, where the model was
given questions and responses to score. With real
data, the model showed high accuracy and preci-
sion and a low FPR, indicating robust performance
in evaluating genuine responses. For gaming data,
the best results were seen in the “submit multiple
answers" strategy (consistent with Baldwin et al.
(2025)). The “summarize item vignette" strategy
also performed well; however, the “copy words
from the item vignette" strategy performed rela-
tively poorly.

In summary, while the non-adversarially trained
system was susceptible to gaming, the defense
mechanisms explored in this paper showed signif-
icant reduction in FPR both when training within
strategy and across strategies. As the understand-
ing of possible gaming strategies in the context
of medical education matures, future work will in-
clude the simulation of new adversarial attacks for
ASAG systems that are more closely aligned with
human behaviors as well as further experimentation
with adversarial training. Employing regularization
techniques such as dropout, weight decay, and early

stopping can limit overfitting, which may improve
a model’s generalizability. Furthermore, employing
various prompt engineering techniques with LLMs
also has the potential to enhance performance.

8 Limitations and Ethical Considerations

While this study provides promising directions for
improving robustness in ASAG systems, several
limitations must be acknowledged. First, the adver-
sarial examples used in our experiments are simu-
lated approximations of gaming strategies, rather
than authentic, organically derived examples from
real-world test-takers. As such, while the strate-
gies are plausible and their effectiveness in gam-
ing the scoring system was proven, they may not
fully reflect the diversity and nuance of actual test-
taker behaviors, particularly in high-stakes envi-
ronments. Furthermore, the experiments were con-
ducted within a single domain and dataset, and
the generalizability of the findings to other do-
mains—such as legal education, K-12, or general
writing assessment—remains uncertain. Different
domains may involve distinct response styles, ex-
pectations, learner populations, and gaming behav-
iors, which could impact the effectiveness of ad-
versarial training strategies. Last but not least, this
study explored the effects of these gaming strate-
gies on the ACTA scoring system and on using
GPT-4 to score responses via prompt engineering.
The extent to which these results generalize to other
transformer-based or few-shot scoring systems is
an open question.

From an ethical standpoint, adversarial training
raises important questions related to fairness, trans-
parency, and trust in AI-based scoring. While im-
proving robustness is a core goal, it is also critical
to ensure that ASAG systems do not unfairly pe-
nalize legitimate test-taking strategies or linguistic
variability, especially among non-native speakers
or individuals from underrepresented groups.

It should also be recognized that research into
gaming strategies inherently raises concerns about
dual-use. While our intention is to strengthen the
integrity of ASAG systems, the publication of meth-
ods for generating adversarial responses could inad-
vertently aid malicious actors. To mitigate this risk,
we have intentionally abstracted implementation
details and focused on generalizable insights rather
than system-specific exploits.

On the positive side, adversarial examples can
serve an additional purpose in enhancing explain-
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ability. When used in conjunction with feature attri-
bution methods, adversarial perturbations can help
identify which aspects of a response most influence
model predictions. For example, if minor lexical
changes significantly affect scoring, it may indicate
an over-reliance on specific keywords or surface
features rather than deeper semantic understanding.
For example, the error analyses of the prompt en-
gineering approach revealed that the models tend
to recognize anticipated patterns as a proxy to ac-
curacy, which is what makes them particularly sus-
ceptible to gaming responses that follow the ex-
pected pattern of correct answers. These insights
are critical for diagnosing model weaknesses, refin-
ing scoring rubrics, and improving transparency. In
high-stakes assessment, the ability to explain and
justify model decisions is essential for fostering
user trust and ensuring accountability in automated
assessment.

Overall, while adversarial training is a valuable
tool for increasing the reliability of ASAG systems,
its application must be guided by ethical principles
that prioritize fairness, interpretability, and align-
ment with educational values.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Xiaoyu Bai and Manfred Stede. 2023. A survey of cur-
rent machine learning approaches to student free-text
evaluation for intelligent tutoring. International Jour-
nal of Artificial Intelligence in Education, 33(4):992–
1030.

Peter Baldwin, Victoria Yaneva, Kai North, Le An Ha,
Yiyun Zhou, Alex J Mechaber, and Brian E Clauser.
2025. The vulnerability of ai-based scoring systems
to gaming strategies: A case study. Journal of Edu-
cational Measurement.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Marie Bexte, Andrea Horbach, and Torsten Zesch. 2023.
Similarity-based content scoring-a more classroom-
suitable alternative to instance-based scoring? In
Findings of the association for computational linguis-
tics: Acl 2023, pages 1892–1903.

Sridevi Bonthu, S Rama Sree, and MHM Kr-
ishna Prasad. 2021. Automated short answer grading
using deep learning: A survey. In Machine Learn-
ing and Knowledge Extraction: 5th IFIP TC 5, TC

12, WG 8.4, WG 8.9, WG 12.9 International Cross-
Domain Conference, CD-MAKE 2021, Virtual Event,
August 17–20, 2021, Proceedings 5, pages 61–78.
Springer.

Steven Burrows, Iryna Gurevych, and Benno Stein.
2015. The eras and trends of automatic short answer
grading. International journal of artificial intelli-
gence in education, 25:60–117.

Yuning Ding, Brian Riordan, Andrea Horbach, Aoife
Cahill, and Torsten Zesch. 2020. Don’t take “nswvt-
nvakgxpm” for an answer–the surprising vulnerabil-
ity of automatic content scoring systems to adversar-
ial input. In Proceedings of the 28th international
conference on computational linguistics, pages 882–
892.

Anna Filighera, Sebastian Ochs, Tim Steuer, and
Thomas Tregel. 2023. Cheating automatic short an-
swer grading with the adversarial usage of adjectives
and adverbs. International Journal of Artificial Intel-
ligence in Education, pages 1–31.

Anna Filighera, Tim Steuer, and Christoph Rensing.
2020. Fooling automatic short answer grading sys-
tems. In International conference on artificial intelli-
gence in education, pages 177–190. Springer.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint
arXiv:1904.05342.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioin-
formatics, 36(4):1234–1240.

Behzad Naderalvojoud and Tina Hernandez-Boussard.
2023. Improving machine learning with ensemble
learning on observational healthcare data. In AMIA
Annual Symposium Proceedings, volume 2023, page
521. American Medical Informatics Association.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Trans-
fer learning in biomedical natural language process-
ing: an evaluation of bert and elmo on ten benchmark-
ing datasets. arXiv preprint arXiv:1906.05474.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Johannes Schneider, Robin Richner, and Micha Riser.
2022. Towards trustworthy autograding of short,
multi-lingual, multi-type answers. International
Journal of Artificial Intelligence in Education, pages
1–31.

King Yiu Suen, Victoria Yaneva, Janet Mee, Yiyun
Zhou, Polina Harik, et al. 2023. Acta: Short-answer
grading in high-stakes medical exams. In Proceed-
ings of the 18th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2023),
pages 443–447.

839



Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th annual
meeting of the association for computational linguis-
tics: human language technologies, pages 180–189.

840



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 841–849
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

EyeLLM: Using Lookback Fixations to Enhance Human-LLM Alignment
for Text Completion

Astha Singh1, Mark Torrance2, Evgeny Chukharev1

1Iowa State University, 2Nottingham Trent University
asthas@iastate.edu, mark.torrance@ntu.ac.uk, evgeny@iastate.edu

Abstract

Recent advances in LLMs offer new opportu-
nities for supporting student writing, particu-
larly through real-time, composition-level feed-
back. However, for such support to be effec-
tive, LLMs need to generate text completions
that align with the writer’s internal representa-
tion of their developing message, a represen-
tation that is often implicit and difficult to ob-
serve. This paper investigates the use of eye-
tracking data, specifically lookback fixations
during pauses in text production, as a cue to
this internal representation. Using eye move-
ment data from students composing texts, we
compare human-generated completions with
LLM-generated completions based on prompts
that either include or exclude words and sen-
tences fixated during pauses. We find that incor-
porating lookback fixations enhances human-
LLM alignment in generating text completions.
These results provide empirical support for gen-
erating fixation-aware LLM feedback and lay
the foundation for future educational tools that
deliver real-time, composition-level feedback
grounded in writers’ attention and cognitive
processes.1

1 Introduction

Natural language processing (NLP) solutions exist
for scaffolding students who are learning to pro-
duce effective text. These support both surface-
level accuracy (grammar and spelling), and also
compositional-level effectiveness, i.e. helping stu-
dents produce text that communicates a coherent
message (e.g., Franzke et al., 2005; Roscoe and
McNamara, 2013). Recent advances in large lan-

1Following the initial submission, we discovered an error
in one of the analysis scripts that inadvertently introduced
data contamination. To ensure the validity of the findings, all
models were rerun using corrected code. This version reports
the updated results. While specific numerical values have
changed, the main conclusions of the study remain unaffected.
Our code is available publicly at https://go.chukharev.
com/bea-2025.

guage models (LLMs) enable promising innova-
tive applications for intelligent support of writing
tasks. Specifically, there are potential advantages
to providing composition-level feedback in real
time, while the writer is still forming their mes-
sage, rather than retrospectively, once their text is
complete.

Achieving this is challenging, but is brought
within reach by LLMs. These can generate plausi-
ble completions to text that a student is in the pro-
cess of composing. However, providing feedback
based on these plausible completions has limited
learning benefit unless the LLM-generated com-
pletions are aligned with those that the student in-
tended to produce. Human-LLM alignment will
increase if the LLM captures important features
of the writer’s current internal representation of
their developing message. However, these mental
representations are not directly observable. They
are also likely to be implicit, at least in part: The
writer might not have explicitly articulated their
developing message even in their own internal rep-
resentation (Torrance, 2016).

One possible clue to this implicit internal repre-
sentation is provided by writers’ eye movement.
During text production writers frequently hesi-
tate, often very briefly, and look back within their
own text. These lookback eye movements typi-
cally involve “hopping around” between isolated
words and phrases rather than sustained reading
(Chukharev-Hudilainen et al., 2019; Torrance et al.,
2016). This eye movement is, however, targeted:
Words are not fixated at random, but tend to be
informationally rich. Previous work in cognitive
psychology has suggested that lookbacks may be
driven by the writer’s internal representation of the
emerging message (Torrance, 2016; Torrance et al.,
2016), but this hypothesis has not been systemati-
cally evaluated.

In this paper, we propose the use of eye-tracking
cues to enhance LLM performance in predicting
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text completion. If eye fixations cue content for
what the writer produces next, then lookback data
can help provide completion suggestions that align
more closely with the writer’s current thinking.
To test this hypothesis, we use keystroke and eye
movement data from human writers composing ar-
gumentative texts. We extract hesitation events:
pauses when writers stopped and looked back into
their text and then, without editing, continued writ-
ing (e.g., finishing the sentence that they were writ-
ing before the pause). We compare writers’ own
completions with LLM completions generated on
the basis of prompts that did and did not include
the words and sentences that the writers fixated on
during lookback. Increased overlap between LLM
and writer completions when prompts incorporate
information from lookbacks would be evidence
for the potential value of eye-movement-informed
message-level scaffolding of written composition.

The purpose of this paper is two-fold: First, we
evaluate whether the information on the writer’s
lookback fixations can enhance the alignment be-
tween the human and the LLM in the text comple-
tion task. Second, we investigate whether LLM
text completions with and without eye movement
data can provide evidence for the (cognitive) hy-
pothesis about the role of lookbacks in human text
production. This lays the necessary groundwork for
designing novel educational applications wherein
useful composition-level feedback can be provided
to students in real time, before the text is completed
by the student.

2 Related Work

Functions of reading during writing in humans.
Research in cognitive psychology suggests that
writers often look back at their own text during
pauses in production, particularly near sentence
boundaries. These fixations frequently involve lex-
ical processing rather than simple error-checking.
Most are not part of sustained reading sequences
but instead consist of gaze shifts among isolated
words via forward and backward saccades. These
lookbacks are thought to support the planning of
upcoming text rather than merely identifying mis-
takes in previously written content (Chukharev-
Hudilainen et al., 2019; Torrance et al., 2016).

Human–LLM Alignment. Recent efforts to en-
hance alignment between humans and large lan-
guage models (LLMs) in writing support systems
have focused on modeling writers’ intentions and

cognitive states (Zhang et al., 2024; Gero et al.,
2022). However, these internal intentions are of-
ten difficult to directly observe. Looking back into
existing text, in addition to supporting error mon-
itoring, is likely to support ongoing text produc-
tion, cuing both message and linguistic (lexical,
syntactic) form for what the writer will say next
(Chukharev-Hudilainen et al., 2019; Torrance et al.,
2016). Knowledge of what words and sentences
a writer fixates during these lookbacks, therefore,
may provides insight into the writer’s evolving men-
tal representation of their developing composition.

While some recent approaches have explored
aligning LLM-generated suggestions with user in-
tentions (Reza et al., 2025), most have not incorpo-
rated real-time behavioral signals. Our work builds
on this line of inquiry by explicitly integrating gaze-
based cues into prompting strategies, aiming to im-
prove alignment between LLM completions and
the writer’s unfolding mental model.

Eye-Tracking in NLP. Eye-tracking data has
also been leveraged to improve NLP models across
a variety of tasks. Prior studies show that incor-
porating gaze signals can enhance performance in
named entity recognition (Hollenstein and Zhang,
2019), text comprehension (Reich et al., 2022), and
question answering (Wang et al., 2024). More re-
cently, (López-Cardona et al., 2025) introduced
a reward model that uses eye-tracking data to
optimize Human–AI alignment. Advances in
LLMs have further spurred research into using
neural and behavioral signals for better alignment.
For instance, (Aw et al., 2023) demonstrate how
instruction-tuning can align LLMs with human
brain signals. In a similar vein, our study investi-
gates whether reading fixations can serve as mean-
ingful input for improving alignment between LLM
text completion responses and writers’ cognitive
processes.

3 Methodology

3.1 Data
Thirty undergraduate college students (22 women,
8 men, age range 18-22, mean age 19.7 years) com-
posed two texts each using the CyWrite text editor
(Chukharev-Hudilainen et al., 2019)2, while their
eye movements were recorded with an SR Research
EyeLink 1000 Plus system in a monocular remote
setup, calibrated using a 9-point procedure. Cy-
Write maps on-screen eye fixation coordinates to

2https://github.com/chukharev/cywrite
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corresponding in-text locations – i.e., the specific
words being fixated – accounting for scrolling, line
wrapping, and text edits. The writing task appeared
as the top paragraph in the editor, with participants
composing their responses below it. There was
no time limit for the writing tasks, the order of
tasks was counterbalanced across participants, and
a short break was provided between the two tasks
for each participant. Participants were not allowed
to consult any external sources. All texts were com-
posed in English, and all participants reported that
English was their first language.

CyWrite generates a time-aligned log file that
records the timestamp for every key press, key re-
lease, and eye fixation. Fixations are classified into
sustained reading (operationalized as sequences of
at least three consecutive eye fixations on words
within the same line of text progressing from left
to right) and fixating isolated words (defined as fix-
ations on text that are not part of sustained reading
sequences). For this study, we define hesitations
as pauses between successive keypresses during
which the participant engages in sustained reading.

3.2 Language Models

We generate responses for four LLMs, namely,
GPT-3.5, GPT-4, LLaMa3-8B and Mistral7B.
We use gpt-3.5-turbo (OpenAI, 2023) and gpt-
4.1 (Achiam et al., 2023) via the OpenAI API. The
exact number of parameters for the GPT models
have not been officially disclosed but gpt-3.5-turbo
is expected to have approximately 20 billion para-
maters (Singh et al., 2023). The responses are
generated at a temperature setting of 0.7. We use
Llama3-8B and Mistral-7B through ollama (Ol-
lama, 2023). LLaMa3-8B and Mistral-7B have 8
billion and 7 billion parameters, respectively. For
all the models, the number of tokens to be gener-
ated is dynamically defined to be approximately
equal to the number of tokens in the corresponding
completion.

3.3 Prompt Design

We first create a baseline prompt that consists of
the pretext, an instructional prompt, and the task
description provided to the student. The two task
descriptions are:

• Some people have said that finding and imple-
menting green technologies, such as wind or
solar power, should be the focus of our efforts
to avert climate crisis. To what extent do you

agree or disagree with this statement? Try to
support your arguments with appropriate evi-
dence from, for example, your knowledge of
scientific evidence, your own experience, or
your observations and reading.

• Some people have argued that animals should
be given similar rights to humans. To what
extent do you agree or disagree with this state-
ment? Try to support your arguments with
appropriate evidence from, for example, your
knowledge of scientific evidence, your own
experience, or your observations and reading.

To contrast the LLM responses with fixations
against those without fixations, we generate re-
sponses for a control condition where along with
the baseline prompt we provide the LLM with a
matched number of non-fixated non-stop words
from the pretext (if there are fewer non-fixated
words in the pretext than fixated words, we include
all non-fixated words). Thus, we generate LLM
responses in four conditions:

1. Baseline. Baseline Prompt only

2. Words. Baseline + fixated non-stop words

3. Sentences. Baseline + filtered fixated sen-
tences

4. Control. Baseline + a matched number of
non-fixated words

The prompts for each of the conditions are pre-
sented in Table 1.

3.4 Evaluation Metrics
To evaluate the performance of LLMs with and
without fixations, we establish similarity between
human and LLM-generated completions in each
of the four conditions on both semantic and token-
based (surface linguistic form) measures.

3.4.1 Semantic Similarity
We quantify the semantic similarity between hu-
man and LLM responses by computing the cosine
similarity between embedding vectors generated
from the completions using the text-embedding-
ada-002 model via OpenAI API (OpenAI, 2024).
This approach captures global semantic alignment
between the different completions.

3.4.2 Token-based Similarity
We calculate two token-based similarity metrics:
F1 Score and Jaccard Index.
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Condition Prompt

Baseline This was the task description provided to a student: <task_description >.
Please write a continuation of: <pretext >.

Words
This was the task description provided to a student: <task_description >.
We have identified the following key words as particularly important: <fixated words >.
Please write a continuation of: <pretext >.

Sentences
This was the task description provided to a student: <task_description >.
We have identified the following sentences as particularly important: <fixated sentences >.
Please write a continuation of: <pretext >.

Control
This was the task description provided to a student: <task_description >.
We have identified the following key words as particularly important: <non-fixated words >.
Please write a continuation of: <pretext >.

Table 1: Prompt for each condition

F1 Score: F1 score accounts for both precision
and recall, making it useful for evaluating word
overlap between the two texts. Precision mea-
sures the proportion of shared words in the second
text (W2), while recall measures the proportion of
shared words in the first text (W1).

Precision =
|W1 ∩W2|
|W2|

Recall =
|W1 ∩W2|
|W1|

The F1 Score, which balances precision and
recall, is calculated as:

F1 Score = 2× Precision× Recall
Precision + Recall

Jaccard Index: Jaccard Index is a set-based mea-
sure that quantifies the overlap between two texts
by comparing the size of their intersection with
their union. This metric focuses on shared words
without considering their relative frequency. It is
defined as:

Jaccard Similarity =
|W1 ∩W2|
|W1 ∪W2|

4 Approach

In this section, we present our approach to data
extraction and LLM response generation. The ap-
proach is outlined in Figure 1.

4.1 Extract Hesitation Events
The first step in our approach is to obtain valid
hesitation events from human text production data.
We defined hesitations as inter-keypress intervals
where writing is interrupted by a pause, during

which the writer engages in sustained reading. At
the time of hesitation, we extract the span of text
between the start of the current paragraph and the
cursor location. We call this the pretext. In Figure
2, | represents the cursor location at the time of
hesitation. We discard all hesitations where the
pretext is empty.

Once we have a valid hesitation, we traverse
the log file to extract the human completion of the
pretext. To this end, we consider all keystrokes
following the hesitation until the writer types a
sentence-final punctuation symbol (./?/!). The
completion is valid so long as the writer does not
edit or delete any portion of the pretext at any point
during the completion process. Valid human com-
pletions serve as the gold standard for comparison
against the LLM-generated completions. However,
we discard all invalid completions. We define a
hesitation event as a valid hesitation followed by a
valid completion. The process of extracting hesita-
tion events is outlined in Algorithm 1.

Algorithm 1 Extract Hesitation Events
1: function GETHESITATIONS(data)
2: for i in data do
3: if len(data[i].pretext) > 0 then
4: if sustained reading in data[i] then
5: for j from i+1 to len(data) do
6: if data[j] starts data[i] then
7: if data ends in {.,?,!} then
8: Extract en

4.2 Extract Fixations
Once we have a set of valid hesitation events
en(pretext, completion), we extract, from the avail-
able eye-tracking data, all eye fixations on the text
that occurred during each hesitation event. We
include both sustained reading fixations, and fixa-
tions on isolated words. We apply the following
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Writing task
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Figure 1: Overview of EyeLLM Approach

Going back on the original 
question of putting the focus on 
creating these different efforts to 
help with the climate crisis, I do 
believe that it is important to aim 
our goals to reach |

(a)

|

(b)

|

(c)

Figure 2: Example showing the extraction of pretext, fixations, and completion. (a) The writer pauses (hesitates)
during text production. | indicates their cursor location at the point of hesitation. Everything between the start of
the current paragraph and | is the pretext. (b) The writer fixates on the highlighted points as shown in the scanpath.
Words containing eye fixations are fixated words. (c) The writer continues to produce text (highlighted in green).
This is the completion.

Model Similarity Scores

Semantic F1 Jaccard

Control Baseline Words Sentences Control Baseline Words Sentences Control Baseline Words Sentences

GPT-3.5 .8075 .8066 .8086* .8090* .1483 .1484 .1511* .1480 .0823 .0824 .0841* .0821
GPT-4 .8078 .8056* .8089 .8101* .1332 .1336 .1347 .1347 .0732 .0735 .0742 .0744

LLaMa3 .7945 .7958* .7958 .7959 .1356 .1360 .1364 .1360 .0749 .0752 .0754 .0753
Mistral7B .7935 .7919* .7950* .7945 .1228 .1244 .1262* .1236 .0673 .0682 .0693* .0678

Table 2: Average similarity scores across all LLMs. The highest score for each LLM is highlighted in bold. * marks
scores that are significantly different from Control, p < 0.01.
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filtering criteria:

1. We only include lookback fixations, i.e. fixa-
tions on the text before the cursor at the time
of the hesitation.

2. We exclude fixations on words from the NLTK
list of stop words, to ensure that only fixations
on semantically important words are included.

3. For the Sentences condition, we identify fix-
ated sentences as sentences that contain valid
fixations on at least three words.

The process of extracting fixations is outlined in
Algorithm 2. We only consider hesitation events
that have at least 1 fixated word and at least 1 fix-
ated sentence. After this filtering process, we get
822 valid hesitation events. The mean number of
fixated words across all valid hesitation events is
11.11 (median 8), and the mean number of fixated
sentences is 1.90 (median 1).

Algorithm 2 Extracting Fixations
1: function GETFIXATIONS(data, hesitation_events, n)
2: for hesitation in hesitation_events do
3: Extract fixations for current hesitation
4: Remove fixations on stop words
5: Store sentences with ≥ n fixated words
6: if valid fixations found then
7: Append to results
8: end if
9: end for

10: return results

4.3 Response Generation

After extracting fixation data for all hesitation
events, we prompt several LLMs to generate com-
pletions. The full experimental setup is already
described in Section 3.

5 Results

We run each model for 10 iterations. The results
for all the models averaged over all iterations are
presented in Table 2. We answer the following two
research questions:

• RQ1: Does incorporating information about a
writer’s lookback fixations improve the align-
ment between human and LLM-generated text
completions?

• RQ2: How do different LLMs compare across
conditions with and without lookback fixa-
tions?

5.1 RQ1: Impact of Lookback Fixations on
the Similarity Scores

We perform inferential hypothesis testing to assess
whether prompting condition had a statistically sig-
nificant effect on similarity scores. In our analy-
sis, we treat each similarity measure as a depen-
dent variable. We fit linear mixed effects models
(LMERs) with prompting condition (Control, Base-
line, Words, Sentences) as the fixed factor. As
detailed above, we generate completions 10 times
for each hesitation event. LMERs therefore include
random by-event intercepts and slopes for prompt-
ing condition.

First, we perform the analysis separately for each
LLM. We fit LMERs for each measure (semantic
similarity, F1, Jaccard), resulting in a total of 12
series of nested LMERs. In each series, we first
fit an intercept-only model (M0), and then add the
prompting condition fixed effect (M1). We com-
pare model fit using the likelihood ratio test. We
adopt a conservative significance threshold p < .01
to guard against Type I errors. When M1 signifi-
cantly improves model fit over M0, we evaluate the
fixed-effect coefficients in M1 to determine which
prompting conditions show significant differences
from the Control.

The results are shown in Table 2 and Figure 3.
As expected, the Control condition does not out-
perform Baseline for F1 and Jaccard scores. For
semantic similarity, however, Control provides sig-
nificant performance gains over Baseline for GPT-4
and Mistral7B. This suggests that providing addi-
tional input to the LLM (even if it is unrelated to
the eye-tracking signal) can improve human-LLM
alignment in text completion.

Crucially, introducing eye-tracking signals (via
Words and Sentences conditions) yields modest but
statistically significant improvements over Control
in all LLMs except LLaMa3. In terms of semantic
similarity, Sentences generally outperform Words,
except in Mistral7B. For token-based metrics (F1
and Jaccard), Words tend to perform better than
Sentences, with GPT-4 being the exception.

To assess the overall effect of prompting condi-
tion across LLMs, we examine differences of av-
erage similarity scores between Control and other
conditions (Table 3). To test for significance of
these differences, we fit one LMER per similarity
metric using data from all LLMs, treating LLM
as a fixed effect, and including its interaction with
prompting condition. Due to LMER convergence
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issues, we simplify the random effects structure
by removing the random by-event slopes. We then
perform Tukey-adjusted pairwise comparisons of
estimated marginal means across prompting con-
ditions. We find that, for semantic similarity, all
pairwise differences across conditions are statisti-
cally significant (p < .0001) except between Sen-
tences and Words (p = .426). For F1 and Jaccard,
Words significantly outperform all other conditions
(p < .01), while differences among the remaining
conditions are not significant (p > .15).

These findings support our hypothesis that in-
cluding fixation-based information in prompts im-
proves human–LLM alignment. Although LLM
responses vary in sensitivity to the eye-tracking sig-
nal, overall we find that providing LLMs with fix-
ated sentences enhances semantic alignment, while
providing fixated words enhances both semantic
and token-level alignment with human text comple-
tions.

Metric Change relative to Control

Control Baseline Words Sentences

Semantic .8008 -.0008* +.0013* +.0016*
F1 Score .1350 +.0006 +.0021* +.0006
Jaccard .0744 +.0004 +.0013* +.0005

Table 3: Performance changes across prompting con-
ditions, relative to the Control. Bold values indicate
improvements. * indicates significant change (p < .01).
Averages computed across all models.

5.2 RQ2: Differences among LLMs in
Performance Across Prompting
Conditions

To assess whether differences between LLMs are
statistically significant, we extend the inferential
tests from Section 5.1 by fitting a series of nested
linear mixed-effects models (LMERs) for each sim-
ilarity measure, using data from all four LLMs. We
begin with a baseline intercept-only model (M0),
then sequentially add the fixed effect for prompt-
ing condition (M1), the fixed effect for LLM (M2),
and finally the interaction between condition and
LLM (M3). Due to convergence issues, we remove
by-event slopes from the random effects structure.

Model comparisons are conducted using likeli-
hood ratio tests. For semantic similarity, succes-
sive models significantly improve the fit (M3 >
M2 > M1 > M0, all p < .0001). The signifi-
cant interaction term in M3 for semantic similarity

indicates that the effect of prompting condition
varies by LLM–that is, not only do the LLMs dif-
fer overall, but the way they respond to different
prompting conditions also differs significantly, but
only with respect to the semantic metric. On the
other hand, for Jaccard and F1, M3 does not pro-
vide further improvement of model fit over M2

(p = .018; p = .044, respectively). This suggests
no evidence for the condition-LLM interaction for
the token-based metrics.

Pairwise comparisons between LLMs reveal sig-
nificant differences throughout (all p < .0001 with
Tukey adjustment), with the exception of the dif-
ference between GPT-3.5 and GPT-4 for semantic
similarity (p = .157).

We present an overview of descriptive statistics
for different similarity measures below.

Semantic Similarity: As shown in Figure 3a,
GPT models consistently outperform LLaMa and
Mistral in the semantic alignment across all con-
ditions. With eye-tracking cues, all models show
small relative improvements compared to the Con-
trol condition (between +.13% and +.29%), but
only some of these improvements are statistically
significant.

F1 Score: Figure 3b presents model comparisons
based on the F1 score. Interestingly, GPT-3.5
outperforms all other models across all prompt-
ing conditions, showing the strongest token-level
alignment with human completions. GPT-4 and
LLaMa3 are closely comparable, while Mistral7B
consistently underperforms relative to other mod-
els. Across prompting conditions, F1 score changes
show greater variability. From Control to Words,
only Mistral7B and GPT-3.5 show significant im-
provement (by +2.77% and +1.89%, respectively).
GPT-4 and LLaMa3 show smaller improvements
that do not reach significance threshold. All
changes from Control to Sentences (ranging from
+1.13% to -0.98%) are not statistically significant.

Jaccard Index: As shown in Figure 3c, Jaccard
scores generally follow trends seen in F1 scores.
From Control to Words, all models improve (be-
tween +0.67% and +2.97%), but only GPT-3.5 and
Mistral7B show significant improvements. The
shift to Sentences shows mixed changes (between
+1.64% and -0.74%), none of which reach signifi-
cance.

Overall, both GPT models show greatest seman-
tic alignment with student text completions, while
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(a) Semantic Score

(b) F1 Score

(c) Jaccard Index

Figure 3: Scores of different models across prompting
conditions with 95% confidence intervals.

GPT-3.5 clearly leads on token-based similarity
metrics. Eye-tracking cues are not sufficient to sig-
nificantly change the relative performance of any
two LLMs on any of the measures investigated.

6 Summary and Conclusion

To our knowledge, this paper is the first to investi-
gate the impact of word- and sentence-level look-
back fixation signal captured during writing pauses
on LLM-generated text completions.

We first asked whether the eye-tracking cues
improve the human-LLM alignment in the text
completion task. By comparing different prompt-
ing conditions, we demonstrated that the addition
of both the words and the sentences that a writer
fixates resulted in small, but statistically signifi-
cant improvement in the semantic alignment be-
tween LLM-generated text completions and what
the writer themselves actually wrote. Adding fix-
ated words (but not sentences) improves perfor-
mance on token-based similarity metrics. This
provides tentative (but, to date, best-available) evi-
dence of the role of lookback in text planning and,
again tentatively, suggests value in incorporating
lookback data in intelligent, real-time tools for sup-
porting and training written composition skills.

We then asked how different LLMs compare
across prompting conditions. We found that GPT
models outperform smaller open-source models on
semantic metrics, while GPT-3.5 offers substantial
advantages in token-based similarity. For semantic
(but not token-based) metrics, significant statistical
interaction between LLM and prompting condition
suggests that different LLMs react differently to
the eye-tracking signal.

Relative performance gains, while statistically
significant, were small (in single-digit percent)
across LLMs and similarity metrics. It remains to
be seen whether improvements on this scale have
practical value for developing educational technolo-
gies that support written composition. At the very
least, they highlight the need for further research
into how lookback information can be used to re-
fine prompts.

Limitations

One limitation of our study lies in the scope of the
data collected, which includes responses from 30
students. Nonetheless, we extracted 822 valid hes-
itation events across 60 composition sessions, re-
inforcing the robustness of our findings. Secondly,
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while the variation in scores across conditions is
statistically significant, it is relatively small and
its practical significance will depend on the use
case. Lastly, we do not present a complete end-
to-end tool for providing LLM-generated writing
assistance. However, this work establishes a strong
foundation for future development in that direction.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grants No.
2016868 and 2302644. We gratefully acknowledge
the insightful comments and constructive feedback
from the reviewers, which significantly contributed
to improving the quality of this paper. We are
grateful to Dr. Emily Dux Speltz, Zoë DeKruif,
and Jamie Smith for their assistance with data col-
lection from human participants.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Khai Loong Aw, Syrielle Montariol, Badr AlKhamissi,
Martin Schrimpf, and Antoine Bosselut. 2023.
Instruction-tuning aligns llms to the human brain.
arXiv preprint arXiv:2312.00575.

Evgeny Chukharev-Hudilainen, Aysel Saricaoglu, Mark
Torrance, and Hui-Hsien Feng. 2019. Combined
Deployable Keystroke Logging and Eyetracking for
Investigating L2 Writing Fluency. Studies in Second
Language Acquisition, 41(3):583–604.

Marita Franzke, Eileen Kintsch, Donna Caccamise,
Nina Johnson, and Scott Dooley. 2005. Summary
street®: Computer support for comprehension and
writing. Journal of Educational Computing Re-
search, 33(1):53–80.

Katy Gero, Alex Calderwood, Charlotte Li, and Ly-
dia Chilton. 2022. A design space for writing sup-
port tools using a cognitive process model of writing.
In Proceedings of the First Workshop on Intelligent
and Interactive Writing Assistants (In2Writing 2022),
pages 11–24, Dublin, Ireland. Association for Com-
putational Linguistics.

Nora Hollenstein and Ce Zhang. 2019. Entity recog-
nition at first sight: Improving NER with eye move-
ment information. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1–10, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Ángela López-Cardona, Carlos Segura, Alexandros
Karatzoglou, Sergi Abadal, and Ioannis Arapakis.
2025. Seeing eye to ai: Human alignment via gaze-
based response rewards for large language models.
In International Conference on Learning Representa-
tions (ICLR).

Ollama. 2023. Ollama: Run llms locally. Accessed
2025.

OpenAI. 2023. gpt-3.5-turbo-0613 announcement.
Function calling, 16k context window, and lower
prices.

OpenAI. 2024. Openai api. Used to generate text em-
beddings via the OpenAI API.

David Robert Reich, Paul Prasse, Chiara Tschirner,
Patrick Haller, Frank Goldhammer, and Lena A.
Jäger. 2022. Inferring native and non-native human
reading comprehension and subjective text difficulty
from scanpaths in reading. In 2022 Symposium on
Eye Tracking Research and Applications, New York,
NY, USA. Association for Computing Machinery.

Mohi Reza, Jeb Thomas-Mitchell, Peter Dushniku,
Nathan Laundry, Joseph Jay Williams, and Anastasia
Kuzminykh. 2025. Co-writing with ai, on human
terms: Aligning research with user demands across
the writing process. Preprint, arXiv:2504.12488.

Rod D. Roscoe and Danielle S. McNamara. 2013. Writ-
ing pal: Feasibility of an intelligent writing strategy
tutor in the high school classroom. Journal of Edu-
cational Psychology, 105(4):1010–1025.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le,
Carina Negreanu, and Gust Verbruggen. 2023. Code-
fusion: A pre-trained diffusion model for code gener-
ation. Preprint, arXiv:2310.17680.

Mark Torrance. 2016. Understanding planning in text
production. Handbook of writing research, 2:72–87.

Mark Torrance, Roger Johansson, Victoria Johansson,
and Åsa Wengelin. 2016. Reading during the com-
position of multi-sentence texts: an eye-movement
study. Psychological Research, 80(5):729–743.

Bingbing Wang, Bin Liang, Lanjun Zhou, and Ruifeng
Xu. 2024. Gaze-infused bert: Do human gaze signals
help pre-trained language models? Neural Comput-
ing and Applications, 36(20):12461–12482.

Shuo Zhang, Liangming Pan, Junzhou Zhao, and
William Yang Wang. 2024. The knowledge
alignment problem: Bridging human and external
knowledge for large language models. Preprint,
arXiv:2305.13669.

849

https://doi.org/10.1017/S027226311900007X
https://doi.org/10.1017/S027226311900007X
https://doi.org/10.1017/S027226311900007X
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.18653/v1/2022.in2writing-1.2
https://doi.org/10.18653/v1/2022.in2writing-1.2
https://doi.org/10.18653/v1/N19-1001
https://doi.org/10.18653/v1/N19-1001
https://doi.org/10.18653/v1/N19-1001
https://openreview.net/forum?id=uZgK0tcPqd
https://openreview.net/forum?id=uZgK0tcPqd
https://ollama.com
https://community.openai.com/t/gpt-3-5-turbo-0613-function-calling-16k-context-window-and-lower-prices/263263
https://platform.openai.com
https://doi.org/10.1145/3517031.3529639
https://doi.org/10.1145/3517031.3529639
https://doi.org/10.1145/3517031.3529639
https://arxiv.org/abs/2504.12488
https://arxiv.org/abs/2504.12488
https://arxiv.org/abs/2504.12488
https://doi.org/10.1037/a0032340
https://doi.org/10.1037/a0032340
https://doi.org/10.1037/a0032340
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://doi.org/10.1007/s00426-015-0683-8
https://doi.org/10.1007/s00426-015-0683-8
https://doi.org/10.1007/s00426-015-0683-8
https://arxiv.org/abs/2305.13669
https://arxiv.org/abs/2305.13669
https://arxiv.org/abs/2305.13669


Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 850–859
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Span Labeling with Large Language Models: Shell vs. Meat

Phoebe Mulcaire
Duolingo

phoebe@duolingo.com

Nitin Madnani
Duolingo

nitin@duolingo.com

Abstract

We present a method for labeling spans of
text with large language models (LLMs) and
apply it to the task of identifying shell lan-
guage, language which plays a structural or
connective role without constituting the main
content of a text. We compare several re-
cent LLMs by evaluating their "annotations"
against a small human-curated test set, and
train a smaller supervised model on thousands
of LLM-annotated examples. The described
method enables workflows that can learn com-
plex or nuanced linguistic phenomena without
tedious, large-scale hand-annotations of train-
ing data or specialized feature engineering.

1 Introduction

Madnani et al. (2012) show that writers or speak-
ers engaging in argumentative discourse do not
simply enumerate their claims and evidence, but
rather structure them in some manner for their argu-
ment to be convincing. Such discourse, therefore,
might contain not only language expressing the
core claims and evidence (the “meat” of the argu-
ment), but also language used to organize or sup-
port them (the ‘shell”). The authors also propose
approaches to automatically detect shell language
in real-world examples of argumentative discourse,
such as test-taker responses and political debates.

To illustrate the difference between “meat” and
“shell”, we provide a hypothetical test-taker re-
sponse below discussing whether people learn bet-
ter by being told what to do or shown what to
do. Spans representing shell language are shown
in bold while the core content of the argument is
shown as plain text.

This is a very interesting
topic for a debate. I would
advocate the argument that being
shown what to do is the better
option because people are visual

learners. They learn better
by watching than by just being
listening to what someone else
tells them. While this may
not apply to everyone, I think
that it certainly applies to the
average joe. For this reason,
it is therefore clear that being
shown what to do is better.

In this paper, we build on the work of Madnani
et al. (2012) by focusing more deeply on how shell
language is used in responses written by test-takers
for the Duolingo English Test (DET), a high-stakes
English language proficiency test. Our goal is to
build a finer-grained, accurate, and scalable shell
detection pipeline for this use case, leveraging mod-
ern transformer-based approaches to power each
stage.

We first detail our motivations for applying
shell detection to test-taker responses (§2). Next,
we discuss our annotation rubric for identifying
shell language (§3) and our small-scale use of hu-
man annotation to validate and refine this rubric.
We experiment with automatic annotation of test-
taker responses using both non-reasoning & rea-
soning foundation models (§4), resulting in strong
machine-human agreement rates. Then, we attempt
to distill our annotations into a BERT model that
would be cheaper & faster to deploy for operational
use (§5), and provide additional discussion of our
approach and error analysis (§6). Finally, we con-
clude with a comparison to related work (§7) and
possible directions for future work (§8).

2 Motivation

English language assessments typically contain
prompts asking test-takers to write open-ended re-
sponses as a demonstration of their writing profi-
ciency. These prompts generally require arguing
for/against a position with appropriate supporting
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evidence, or relating a past event matching a high
level-description (e.g. “talk about a time when...”).
Given the nature of the writing tasks, these re-
sponses are likely to contain some amount of shell
language, as illustrated by the sample response in
the previous section.

A certain amount of shell is useful – neces-
sary, in fact – to scaffold one’s arguments and
produce a comprehensible and convincing argu-
ment. However, we have observed that many test-
takers overuse such language to artificially inflate
response length and vocabulary sophistication –
both of which can impact the accuracy of auto-
mated essay scoring systems.

In this paper, we want to reliably identify (and
categorize) spans of shell language in test-taker re-
sponses, independently of whether it is used appro-
priately to connect and organize the text or misused
to pad it out with formulaic phrases. Some possi-
ble applications of reliable shell detection would
include:

• Detecting the use of memorized response tem-
plates and other bad-faith patterns that rely on
shell language overuse,

• Developing an independent measure of con-
tent development (the “meat”), and

• Gaining insights into stylistic variance that
may arise even in the absence of shell overuse

Achieving these goals would allow us not only
to improve the robustness of automated assessment
to a common strategy employed by test-takers to
fool automated scoring systems but also to improve
measurement of content and coherence.

3 Annotation Rubric

The starting point of our pipeline, and the founda-
tion of our approach, is an annotation rubric which
defines & categorizes shell text. We use this rubric
for manual annotation as well as to bootstrap au-
tomatic annotations using large language models.
Since Madnani et al. (2012) do not share any anno-
tation guidelines, we construct our own rubric for
identifying shell language in test-taker responses.

We relied on multiple rounds of human anno-
tation to start with an initial draft of our shell an-
notation rubric1 and refine it into its final form.

1To create the initial draft rubric, we employed few-shot
prompting, supplying ChatGPT with a general description of
shell language from (Madnani et al., 2012) along with 100
actual test-taker responses containing a range of shell language
spans.

Specifically, the authors first collaboratively anno-
tated 11 test-taker responses using the draft rubric
and made major revisions based on the ensuing
discussions. Next, the authors independently anno-
tated 50 additional responses based on the revised
rubric to determine any remaining discrepancies
which were then resolved in a curation session. No
changes were made to the rubric after this point.
Annotation, review and curation were performed
using INCEpTION (Klie et al., 2018).

Given that our goal is to enable finer-grained
analyses of shell language, our final rubric defines
multiple shell categories, as described in the sub-
sections below.

3.1 Category A: Discourse Markers/Linking
Expressions

The shell language spans in this category are de-
fined to be words and phrases that are either serv-
ing an organizational or discursive purpose. For
example, ones that link sentences or paragraphs
with the goal of progressing between ideas. How-
ever, single-word coordinating conjunctions like
“because”, “but”, “and”, etc. within sentences are
not annotated as shell language. Examples of cat-
egory A spans observed in test-taker responses in-
clude but are not limited to:

• To begin with . . .
• In conclusion . . .
• Firstly . . .
• Secondly . . .
• In addition . . .
• There are three examples of . . .
• For example, . . .
• That is because . . .
• Expanding on the previous discussion
. . .

• This is another reason
• . . . in addition to the previous
discussion

As the examples show, this category is mainly
defined by short phrases and expressions, not en-
tire sentences. A complete sentence of shell-like
material is more likely to be category B, which we
describe next.

3.2 Category B: General/Vague Statements
This category consists of phrases or statements that
are formal and/or impersonal in nature and add em-
phasis, reflection, or consideration of the prompt
or topic under consideration but without any real
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content. Spans of this extremely productive cate-
gory are often employed as padding in bad-faith
responses. A very small subset of observed exam-
ples is shown below.

• It is imperative to recognize that
. . .

• . . . would be very significant for us
• In today’s age . . .
• Today in society, there is a heated
on-going discussion on the topic of
. . .

• If you ask me I would say that the
statement has both pros and cons.

• In this burgeoning epoch of science
and technology, we are dwelling in
the 21st century.

• There is a widespread worry that this
will lead to a myriad of concern in
the world.

3.3 Category C: Prompt/Topic Restatement
This category contains sentences or chunks that
simply restate the prompt or initial argument with-
out any further development. We have observed
that when a large part of the prompt is restated,
the surrounding phrases are often from categories
A or B. A few real-world examples are shown be-
low with the corresponding prompt in parentheses.
Note that only the category C spans are shown in
bold; spans of any other categories are not shown.

• Today in the society,there is a heated
on-going on discussion on the topic
that due to the invention of cell
phones, people can communicate via
text messages.
(Due to the invention of cell phones, people
can communicate via text messages. Describe
the ways texting has changed how we commu-
nicate.)

• One of the most important trends in
today’s world is the sudden upsurge
in the statement that Acquiring new
knowledge and skills doesn’t always
happen quickly.
(Acquiring new knowledge and skills doesn’t
always happen quickly. Do you think that pa-
tience is key when it comes to learning, or do
you think it is possible to learn things quickly
if you are motivated? Support your opinion
with your personal experience and observa-
tion.)

It must also be noted that not all mentions of the
prompt should automatically be marked as shell.
Specifically, we do not mark such a mention as
shell if the response:

1. sufficiently restructures or paraphrases it (es-
pecially to use it as a topic claim) instead of
just quoting or restating it, or

2. simply refers to to entities or noun phrases
from the prompt in context.

As an example consider the span . . . being
focused on a single thing is more likely
to lead to higher productivity in a response
to the prompt Are you more productive when you
are doing a few things at the same time, or are
you more productive when you have only a single
thing to focus on? What do you think helps you to
be more productive? We would not mark this as a
category C shell span because the prompt topic has
been paraphrased sufficiently to serve as a topic
claim/thesis statement. This distinction is some-
what subjective, and while we achieved good inter-
annotator agreement on this category, this point
was likely a source of ambiguity for models.

3.4 Category D: Appeal to Authority
This category includes mentions of reports or stud-
ies that imply external validation or evidence. Ex-
amples include:

• A report from University of Maryland
shows that . . .

• Oxford University conducted a study
that confirmed . . .

• For example, a report published by
The New York Times reveals that . . .

3.5 Category E: Stance-taking
This category contains phrases or statements used
to convey the writer’s stance or position, whether
in the first-person or third. Observed examples
include:

• I feel/believe/think (that) . . .
• From my point of view . . .
• In my opinion . . .
• Yes, I agree with the statement that
. . .

The exception for this category are phrases that
are used to convey the writer’s personal preference
and do not serve a stance-taking role. For example,
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consider the sentence I like good environment
for touring because i loved with nature.
Here, the phrase I like is used to convey the
writer’s personal preference for a specific type of
environment rather than their argumentative stance.

3.6 Rubric usage

Although our final rubric delineates five different
categories of shell text, many shell language spans
usually serve multiple purposes (e.g., the phrase
More and more people believe that . . . can
be said to convey both general emphasis (category
B) and the writer’s position (category E). In such
cases, our practice is to consistently choose the cat-
egory that seems more relevant in the context of
the full response. For purposes of evaluation and
error analysis, we also sometimes refer to a sixth
category “O” consisting of all spans not labeled
as shell (the “meat” of the response). We do not
separately label this category manually or ask mod-
els to directly annotate O spans; it’s defined by the
absence of annotations for other classes.

Once the final rubric was created, the authors
independently annotated 92 additional responses
followed by curation, for a final dataset of 142
responses with individual and curated shell anno-
tations. Note that the first 11 annotated responses
(used to make major revisions to the initial rubric)
are not part of this final set, as their annotations
do not reflect the final rubric. We then split this
dataset into a "training set" of 40 responses, from
which few-shot examples are drawn (see §4), and a
test set of 102 responses.

4 Scaling Annotation with LLMs

Shell annotation is a complex task and traditional
supervised approaches would require a much larger
number of annotated examples to train, but human
span annotation is time-intensive and tedious. In
this section we evaluate the accuracy of annotations
elicited with few-shot learning.

4.1 Method

For LLM-based annotation, we compare five mod-
els: DeepSeek-V3 (Chandra et al., 1981) GPT-4o
(Hurst et al., 2024), DeepSeek-R1 (Liu et al., 2024),
o1 (Jaech et al., 2024), and o3-mini (OpenAI,
2025). Note that the first two are non-reasoning
models, while the latter three use self-prompting
or reasoning techniques recently popularized by o1
and DeepSeek-R1.

<shell category="B"> In this modern
world </shell>, artificial intelligence <shell
category="B"> is so well known in the
world </shell>, which is a kind of intelli-
gence. <shell category="A"> Futhermore
</shell>, <shell category="E"> I firmly
agree with this given notion that </shell>
intelligence has distinct types.

Figure 1: Markup format for LLM annotations.

Model Success
rate

Format
errs

Generation
errs

DeepSeek-R1 0.75 3 22
DeepSeek-V3 0.95 4 1

gpt-4o 0.93 7 0
o1 0.98 0 2

o3-mini 0.99 0 1

Table 1: Success rate of generating a valid annotation on
the first try, by model (using 5 examples). Error counts
are out of 102 responses. Note that DeepSeek-R1 had
high rates of prematurely truncated responses seemingly
unrelated to the task.

For each model, we use the same prompt contain-
ing the entire rubric, along with either 5 or 10 ex-
ample responses annotated in an XML-like format
with the shell category as an attribute (see Figure
1). We use this prompt to elicit span annotations on
our eval set of 102 instances; the model is provided
with the writing prompt and unannotated test-taker
response, and responds with the annotated text in
the same format as the examples. We chose this
format based on its expressivity and convenience
and did not experiment with any additional formats
for now (see §7 for more discussion).

We validate the annotations by trying to auto-
matically parse the XML, checking that there are
no nested tags or task-unrelated tags, and that the
text is unaltered from the original. The rate of
validation failure varies by model. Furthermore,
this failure rate is not necessarily constant for a
given model; responses where annotation failed
on the first round were more likely to also fail
on a second try, suggesting that some examples
are inherently hard to produce valid annotations
for. The most common causes of error were incor-
rectly formatted XML (unclosed tags, nested tags
or non-task-related tags) and missing sentences or
phrases. Notably, we found almost no cases where
the generated annotated text included unwanted
“corrections” of grammatical or typographical er-
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(c) Multiclass shell labeling (B and C categories excluded).

Figure 2: Token-level F1 for three shell annotation tasks.
Reasoning models outperform non-reasoning models,
and the ensembles improve slightly over the best individ-
ual models. Exclusion of B and C categories improves
micro-averaged F1 for all models.

rors in the original test-taker response, with the
exception of whitespace errors such as replacing
multiple spaces with a single space or inserting a
missing space after sentence-final punctuation. For
purposes of evaluation, we automatically resolved
these whitespace errors by editing all annotated
versions of a text to match the original (to ensure

A B C D E F O
Predicted

A
B

C
D

E
F

O
Tr

ue

372 139 9 5 31 0 41

15 1166 19 0 0 0 214

6 8 379 0 0 0 372

0 23 0 19 0 0 9

12 71 12 0 528 0 32

0 2 0 0 0 0 17

37 310 60 5 51 0 5559

0

101

102

103

Figure 3: Confusion matrix for all-ensemble.

tokenization was compatible) before comparing an-
notations. For our provider of DeepSeek-R1, a
significant fraction of long responses were cut off
prematurely, increasing the error rate beyond what
was attributable to formatting errors. Table 1 com-
pares the LLMs by the fraction of responses that
passed validation with a single request.

4.2 Results

Next, we compute token-level metrics for the LLM
annotations using the curated human labels as the
gold standard, and compare to the inter-annotator
agreement for the human annotators. Figure 2
shows results for binary (shell vs non-shell) and
multiclass evaluation.

We present the confusion matrix for the all-
model ensemble in Figure 3 as a relatively rep-
resentative example of the errors made by all mod-
els. The counts represent individual token counts.
The confusion matrix provides insight into specific
pairs of categories often confused; for example, we
see that categories D and E have few false positives,
i.e. they are rarely predicted when the true label is
another category. We also observe that B and C are
the categories with the most errors (both because
they have high true token counts and because they
require the most subjective decisions). For this rea-
son, we also include F1 results considering only a
subset of shell category labels (all except B and C)
in Figure 2.
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Model Prompt tokens Completion Tokens Total cost
DeepSeek-R1 431,316 127.414 $2.19
DeepSeek-V3 431,737 15,566 $0.56

GPT-4o 430,290 15,859 $1.06
o1 425,061 257,592 $20.28

o3-mini 431,234 492,148 $2.54

Table 2: Comparing prompt tokens, completion tokens, and total cost when annotating our curated evaluation set of
102 responses using various LLMs.

4.3 Costs

Our method of shell annotation with large language
models requires a lengthy rubric and several exam-
ple texts to be provided in the prompt for every
instance. This is a relatively costly approach. In
addition, our use of reasoning models leads to high
completion token counts.

In order to provide a useful comparison of model
costs, Table 2 shows prompt/completion token
counts and costs when annotating our curated eval-
uation set of 102 responses using the same set of
LLMs we used in §4. Note that we do not retry any
incorrectly formatted annotations for this specific
set, so the error rates reported in Table 1 should
also be considered when comparing these costs.

In addition, one would expect to incur significant
upfront costs iterating and validating the annotation
scheme and rubrics. In our case, we spent a total
of $3,665.45 across all experiments.

5 Supervised Learning to Detect Shell

In this section, we attempt to distill a large number
of LLM-based annotations into a BERT variant,
ModernBERT (Warner et al., 2024). There are sev-
eral advantages to this approach: BERT models are
cheaper, can be run locally (avoiding dependence
on external APIs) and can directly produce per-
token labels rather than generating the annotated
text, removing a potential source of errors.

Based on the results in §4, we choose OpenAI’s
o1 model as the best single model for the task. Us-
ing the same approach as previously described, we
prompt o1 to annotate 7100 additional test-taker
responses, and split the resulting dataset into a train-
ing set (6500 responses) and a validation set (600
responses). We then convert the annotations into
BIO format (Ramshaw and Marcus, 1999) and fine-
tune ModernBERT on three training samples with
different sizes: 500, 1000, and the full 6500. For
all finetuning runs, we set the batch size to 12 and
learning rate to 7e−05 and train for 10 epochs with
early stopping based on the performance on the
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Figure 4: ModernBERT F1 for each task on the human-
labeled test set (102 examples). Notably, multiclass
labeling performance is actually higher than binary la-
beling performance on equal data sizes.
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Figure 5: ModernBERT F1 for each task on the o1-
labeled dev set (600 examples). Performance is signif-
icantly higher than on the human-labeled test set, sug-
gesting that the BERT model has learned o1-generated
patterns that are misaligned to human raters.

validation set.2

We finetune and evaluate ModernBERT on three
tasks: binary shell labeling, binary shell labeling
with B and C categories excluded, and multiclass
labeling (see Figure 4). ModernBERT substan-
tially under-performs the LLM used to train it (o1
with 5 examples) on the human-labeled test set,
never surpassing 0.6 F1 even for the easiest task.
However, on the o1-labeled validation set, Modern-
BERT trained on 6500 examples surpasses 0.75 F1
for multiclass labeling (Figure 5).

2Learning rate was chosen based on a search over the
validation set when training on 500 responses.
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6 Discussion

6.1 o1 error analysis

Shell labeling is a difficult and to some extent sub-
jective task. In this section, we present a qualita-
tive analysis of the differences between the best-
performing single LLM (o1) and curated human
annotations, along with examples. To improve
readability, we use <X>. . . </X> as a shorthand for
<shell category="X">. . . </shell>.

The most common error categories in the con-
fusion matrix in Figure 3 are missing tokens of
categories B (general statements) and C (topic re-
statement), and various non-B tokens labeled as
B. We observe a similar pattern when looking at
whole-span errors3. The most common cases of
whole-span errors are B-spans applied to O and A
text. O spans applied to C text (i.e. missed C labels)
are also common. This is perhaps to be expected
given the rubric; B and C are the most contextual
and nuanced categories, requiring consideration of
what is specific to the prompt vs generic and what
is restatement vs original.

In the following example, the model identified
most of the sentence as B, possibly due to the posi-
tive emphasis ("outstanding", "wide knowledge")
which is often seen in B spans.

Curated O vs. LLM B
<A>First of all</A> <E>it is true
that</E> college and university can
serve as an outstanding place to gaing
wide knowledge and contact as you can
meet with like minded individuals
<A>First of all</A> <E>it is true
that</E> <B>college and university can
serve as an outstanding place to gaing
wide knowledge and contact as you can
meet with like minded individuals</B>

In another case, a partial reference to the prompt
(“the second part of the statement”) was mistakenly
treated as a restatement of the prompt, as shown
below. This may be a case where o1 talked itself
into an otherwise unlikely error.

3Whole-span errors occur when a predicted span has no
overlap with a human-annotated span of the same category.
Boundary errors, by contrast, involve partial overlap but incor-
rect span length.

Curated O vs. LLM C
<E>I storngly prefer</E> the second
part of the statement <A>for many
reasons</A>.
<E>I storngly prefer</E> <C>the second
part of the statement</C> <A>for many
reasons</A>.

Below we considered this declaration of "heated
debate" to be an instance of B, but o1 did not:

Curated B vs. LLM O
<C>intercultural communication can be
a valuable learning experience</C>
<B>has sparked a heated debate.</B>
<C>intercultural communication can be
a valuable learning experience</C> has
sparked a heated debate.

A common boundary error involved commas.
During manual annotation, we settled on a
convention of excluding trailing commas from
shell spans but did not explicitly specify this in the
rubric. O1 frequently took the opposite approach
as shown below, causing a 1-token error.

Curated vs. LLM
<A>To sum up</A>, . . .
<A>To sum up,</A> . . .

<A>For my experience</A>, ...
<A>For my experience,</A> ...

Finally, we excluded mentions of topics or entities
from the prompt from annotations in sentences
that were otherwise B. This was attested in a few
examples, but not made explicit in the rubric, and
o1 tended to include them, leading to boundary
errors, as the example shows.

Curated vs. LLM
<B>A serious amount of worldwide
attention has been drawn to</B> the
intercultural communication. <B>Beacuse
of the existence of evidencen in favour
of as well as against the approval
of</B> intercultural communication.
<B>A serious amount of worldwide
attention has been drawn to the
intercultural communication.</B>
<B>Beacuse of the existence of
evidencen in favour of as well as
against the approval of intercultural
communication.</B>
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6.2 Interpretation

Many error types above are consistent and system-
atic, which is a promising sign for improving the
accuracy of automatic shell annotation. In a few
cases, o1’s annotations were arguably more consis-
tent with the intent of the rubric than the curated
human annotations. For example, some spans of
A and E were missed by human annotators, cat-
egories which were fairly reliably marked by o1.
In other cases, o1 marked statements that broadly
paraphrased statements from the prompt as C when
human annotators judged the paraphrase as original
in form, though not content.

As expected, the two step training procedure in
§5 results in a model that suffers from two sources
of errors: errors between o1 and human annotators,
and errors between ModernBERT and o1. In fact, it
seems that ModernBERT does not learn to correct
any significant portion of o1’s errors, as the total
error rate is not much better than if the two sources
of error were entirely independent: we observe
0.559F1 for the largest ModernBERT model for
multiclass labeling, vs. 0.531 expected (0.7 o1 F1

× 0.752 ModernBERT F1 on o1’s labels). This is
consistent with LLMs consistently diverging from
human annotations; ModernBERT is learning to
imitate systematic error, rather than guessing in
response to random noise.

7 Related work

The work most closely related to ours and the one
we build upon is that of Madnani et al. (2012).
However, there are also salient differences between
our work and theirs. They rely on a small set of
human annotations to train a binary, feature-based,
discriminative classifier for shell language whereas
we use a small, curated set of human annotations to
bootstrap LLM-generated annotations at scale, and
then distill them into an end-to-end transformer
model used for finer-grained, multi-class, shell
span classification. Additionally, while they do
not share any information about their annotation
process, we share a detailed rubric along with ex-
amples for each shell category. Bejar et al. (2013)
apply the shell model developed by Madnani et al.
(2012) to GRE essays to evaluate whether it agrees
with expert raters’ judgments and whether the pres-
ence of shell language has an effect on the essay
scores. Du et al. (2014) devise an unsupervised

HMM-LDA topic model for shell language and ap-
ply it to posts from online debate forums. Similarly,
Ó Séaghdha and Teufel (2014) use a topic model to
capture words & constructs used to express rhetori-
cal function in scientific papers.

LLMs have been extensively used for a wide
range of linguistic analysis tasks. Some of these
tasks are fairly straightforward. For example, Hao
et al. (2024) use ChatGPT to annotate conversation
chat turns in a collaborative problem solving set-
ting with a pre-defined set of labels. However, the
decoder-only framework for text generation makes
it difficult to represent more complex linguistic
structures such as spans or dependency relations
and their relationships to the annotated text, and, to
our knowledge, there has been no consensus on the
format to use for span annotation with LLMs (re-
gardless of the particular application). Blevins et al.
(2022) experimented with LLMs for sequence tag-
ging tasks, including multi-token spans for chunk-
ing and NER. They framed the task as BIO tag-
ging at the word level, regenerating the text with
labels following each word. Since our spans are
frequently even longer than syntactic chunks, and
rarely as short as single words, we opt for a format
that abstracts away from individual word labels.

More recently, Kasner et al. (2025) experimented
with span annotation for evaluation of generated
text by using structured decoding to get a list of
spans with category labels in JSON format. This
has the advantage of not requiring re-generation
of the full input text. However, our application
does not require full category names for individual
annotations (only a single-character label) and we
expect to label relatively densely (such that a sig-
nificant fraction of the text would have to be copied
in the output anyway). Future work should directly
compare these output formats on a single task (or
multiple tasks) and investigate the effects of output
format on overall performance and error types.

8 Conclusions and Next Steps

We have shown that LLMs can be used for scalable
span annotation and that reasoning models have
a distinct advantage at the task of labeling shell
text. However, both the original LLM annotation
process and training a smaller model to imitate
an LLM’s annotations remain error-prone. Based
on the consistency of certain error types (§6), we
believe that refinements to the annotation rubric
could significantly improve the accuracy of LLM
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annotation. For example, the distinction between a
clear restatement of the prompt and its paraphrase
is a bit subtle and can be made clearer to ensure a
more consistent interpretation. Other directions for
future work include:

• a more thorough hyperparameter search to
improve supervised learning,

• finetuning a reasoning LLM either directly on
the curated human data or a combination of
human and LLM-annotated data (given the
small size of the human data), and

• experimenting with other output formats from
related work such as structured decoding for
greater consistency.

While our supervised shell detection results cer-
tainly leave room for improvement, we hope that
the work done in this paper can still serve as a
source of useful information to other researchers
working on shell language detection and, more
broadly, LLM-based span annotation. We believe
that the workflow proposed in this paper can be
applied to other types of non-overlapping span-
labeling tasks, assuming a rubric with clearly de-
fined categories and reliable human-human agree-
ment.
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Limitations

There are several limitations of this work. Most
significantly, while the two-step annotation pro-
cedure we describe yields promising results, the
resulting error rate of the final ModernBERT model
may limit its application without additional refine-
ments to the rubric and/or the training procedure
(including improved hyperparameter tuning). For
our LLM experiments, we compared several dif-
ferent models in §4 and found that an ensemble
of multiple models performed best. However, our
budget and time constraints limited the number of
compared models, and, in the end, we had to pick
the best single model (o1) to produce training data
for ModernBERT instead of the ensemble. Due to
limited space, our error analysis only covers errors
made by o1, and does not show the extent to which
the same patterns may be shared by other LLMs or

ModernBERT. Finally, our results are limited to the
specific choice of span annotation format that we
chose. As mentioned in §7, other formats may have
different tradeoffs, which we hope future work will
explore.
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Abstract

Large language models (LLMs) hold great
promise for educational applications, partic-
ularly in intelligent tutoring systems. How-
ever, effective tutoring requires alignment
with pedagogical strategies – something cur-
rent LLMs lack without task-specific adapta-
tion. In this work, we explore whether fine-
grained annotation of teacher intents can im-
prove the quality of LLM-generated tutoring
responses. We focus on MathDial, a dialog
dataset for math instruction, and apply an au-
tomated annotation framework to re-annotate
a portion of the dataset using a detailed tax-
onomy of eleven pedagogical intents. We
then fine-tune an LLM using these new anno-
tations and compare its performance to mod-
els trained on the original four-category tax-
onomy. Both automatic and qualitative eval-
uations show that the fine-grained model pro-
duces more pedagogically aligned and effec-
tive responses. Our findings highlight the value
of intent specificity for controlled text gener-
ation in educational settings, and we release
our annotated data and code to facilitate further
research: https://github.com/Kpetyxova/
autoTree/tree/main/mathdial

1 Introduction

Human tutoring is a cornerstone of educational
development, playing a vital role in empowering
learners and fostering societal progress. One-on-
one tutoring has long been recognized as highly
effective (Bloom, 1984); however, its widespread
implementation is constrained by the limited avail-
ability of qualified tutors. Recent advancements
in LLMs have shown great promise in educational
contexts (Wang et al., 2024; Gan et al., 2023), lead-
ing to the emergence of LLM-powered intelligent
tutoring systems (ITS) (Pal Chowdhury et al., 2024;
Liu et al., 2024) and the use of LLMs as tutors via
advanced prompting strategies (Denny et al., 2024;
Mollick and Mollick, 2024). These AI tutors serve

a range of educational objectives (Wollny et al.,
2021), with one of the most prominent being the
remediation of student mistakes and confusion – an
area that continues to drive the development of AI
tutoring systems (Macina et al., 2023; Wang et al.,
2023).

While LLMs do well both at generating human-
like conversations and at addressing various rea-
soning tasks, such as commonsense reasoning and
basic mathematical reasoning (Achiam et al., 2023;
Kojima et al., 2022; Laskar et al., 2023; Yang et al.,
2024), they cannot be directly deployed in educa-
tional systems without significant adaptation. Ef-
fective tutoring requires more than fluent conver-
sation – it involves guiding learners to discover
answers on their own. Rather than simply provid-
ing solutions, a good tutor employs strategies such
as giving hints, asking questions in a Socratic di-
alog (Carey and Mullan, 2004), and encouraging
active problem-solving. As such, LLM-based tu-
tors should ideally align with human tutoring strate-
gies (Nye et al., 2014) and active learning practices
shown to enhance student outcomes (Freeman et al.,
2014).

In order to have such models, we need dialog
tutoring datasets. MathDial (Macina et al., 2023)
is one such dataset, comprising tutor-student di-
alogs centered around math reasoning tasks. Each
teacher utterance is labeled with one of four ped-
agogical move types from Macina et al. (2023):
Focus (guiding task progress), Probing (encour-
aging conceptual exploration), Telling (providing
help when students are stuck), or Generic (non-
pedagogical conversational turns). These annota-
tions were provided by teachers during data collec-
tion to better scaffold student learning. While this
four-category taxonomy offers a helpful high-level
structure, it lacks the fine-grained detail needed
for advanced applications such as controlled re-
sponse generation, pedagogical analysis, and be-
havior modeling in AI tutors. At the same time,
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finer-grained annotations may enable better inter-
pretability, improved pedagogical alignment, and
greater flexibility in guiding student learning expe-
riences.

Although MathDial’s original taxonomy in-
cludes only four broad categories, the authors also
provide an expanded set of eleven fine-grained in-
tents, which could offer greater control and va-
riety in AI-generated tutoring responses. Build-
ing on this, in this work, we apply a fully au-
tomated framework for conversational discourse
annotation (Petukhova and Kochmar, 2025) to re-
annotate a portion of the MathDial dataset using
the finer-grained eleven-intent taxonomy. This
annotation framework uses LLMs to automatically
construct a decision tree from the taxonomy and
use it to label utterances, providing a scalable al-
ternative to manual annotation. This approach has
demonstrated superior performance compared to
crowdworkers in annotating dialog with speech
functions taxonomy (Eggins and Slade, 2004).

Our goal in this work is to assess whether
such more detailed annotations can improve
the quality of LLM-based tutoring through
fine-tuning models on both the original and
re-annotated data. Specifically, we fine-tune
Mistral-7B-Instruct on the original coarse-
grained as well as the new fine-grained annotation,
and compare the generated tutor responses using
automatic metrics and human evaluation. Our re-
sults demonstrate that the fine-grained model pro-
duces more pedagogically aligned and effective
responses. To facilitate further research and devel-
opment, we release a public repository containing
both the code and the re-annotated dataset.1

2 Background & Related work

2.1 The MathDial Dataset

We build on the foundational work of Macina et al.
(2023), whose dataset provide an invaluable basis
for advancing pedagogically aligned dialog sys-
tems. MathDial is a large-scale, high-quality di-
alog tutoring dataset focused on multi-step math
reasoning problems. Unlike previous datasets that
suffer from low pedagogical quality, small size,
or lack of grounding, MathDial provides rich an-
notations grounded in realistic student confusions
and pedagogical strategies. The authors introduce
a novel semi-synthetic data collection framework

1Available at https://github.com/Kpetyxova/
autoTree/tree/main/mathdial.

that pairs expert human teachers with LLMs simu-
lating students and their errors, enabling scalable
and controlled creation of educational dialogs that
closely mimic authentic tutoring scenarios. This
approach effectively addresses privacy concerns
and quality issues associated with crowdsourcing
or classroom recordings.

The authors’ methodology consists of a Wizard-
of-Oz-inspired framework (Kelley, 1984), where
expert teachers engage in one-on-one tutoring di-
alogs with LLMs acting as students. These student
models are carefully prompted with student pro-
files and frequently occurring conceptual errors
generated using temperature sampling over diverse
reasoning paths produced by LLMs. The math
word problems (MWPs) used are sourced from
GSM8K (Cobbe et al., 2021). Teachers are in-
structed to scaffold student understanding using
a taxonomy of four pedagogical moves: Focus,
Probing, Telling, and Generic, with additional fine-
grained intents (see Table 1).

Crucially, before writing a response, teachers
must annotate the pedagogical move being em-
ployed, encouraging more intentional strategy use.
The dialogs are also grounded in metadata, includ-
ing the specific confusion, full problem, step-by-
step solutions, and whether the confusion was re-
solved, thus offering rich signals for training AI
tutors.

Empirical evaluation demonstrates that models
fine-tuned on MathDial significantly outperform
both zero-shot and instruction-tuned larger LLMs
like ChatGPT in terms of correctness and equitable
tutoring (Macina et al., 2023). Notably, fine-tuned
open-source models achieved similar rates of stu-
dent problem-solving success while reducing the
incidence of “telling” – prematurely giving away
solutions. Human evaluations confirmed that these
fine-tuned models were more coherent, correct, and
pedagogically effective than large prompted mod-
els.

2.2 Annotation Framework
While manual discourse annotation is costly and
time-consuming, advances in LLM-based annota-
tion present a promising alternative with demon-
strated improvements in speed, consistency, and
cost-effectiveness (Gilardi et al., 2023; Hao et al.,
2024). Petukhova and Kochmar (2025) have
recently proposed an open-source pipeline for
fully automated discourse annotation using LLMs.
Specifically, this pipeline automates the construc-
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Category Intent Example

Focus
Seek Strategy So what should you do next?
Guiding Student Focus Can you calculate . . . ?
Recall Relevant Information Can you reread the question and tell me what is . . . ?

Probing

Asking for Explanation Why do you think you need to add these numbers?
Seeking Self Correction Are you sure you need to add here?
Perturbing the Question How would things change if they had . . . items instead?
Seeking World Knowledge How do you calculate the perimeter of a square?

Telling Revealing Strategy You need to add . . . to . . . to get your answer.
Revealing Answer No, he had . . . items.

Generic Greeting/Farewell Hi . . . , how are you doing with the word problem? Good Job! Is there anything else I can
help with?

General Inquiry Can you go walk me through your solution?

Table 1: Teacher moves with examples of utterances and their intents from MathDial (Macina et al., 2023).

tion of hierarchical tree annotation schemes and
the annotation of utterances within dialogs, making
it a promising and scalable approach for enriching
the MathDial dataset with more detailed teacher
intent annotations.

Petukhova and Kochmar (2025) explore multi-
ple configurations for tree construction and anno-
tation, including binary and non-binary structures,
frequency-based grouping, and optimal split strate-
gies, and report that the frequency-guided optimal
split selection using GPT-4o outperforms crowd-
workers on dialog annotation tasks based on the
taxonomy of speech functions (Eggins and Slade,
2004), while reducing total annotation time from
over 30 hours to under 1.5 hours. Therefore, in
our work, we adopt this configuration using the
publicly available implementation.2

2.3 Controlled Generation

Controlled text generation (CTG) aims to direct
language models to produce outputs that adhere
to specific attributes or constraints, such as senti-
ment, style, or intent. A prevalent method in CTG
involves fine-tuning models with prompts that in-
clude explicit intent labels, enabling the generation
of text aligned with desired behaviors (Liang et al.,
2024).

Instruction fine-tuning has emerged as an effec-
tive strategy for this purpose. By training models
on datasets where prompts are augmented with nat-
ural language instructions or intent labels, models
learn to condition their outputs accordingly. For
instance, the InstructCTG framework demonstrates
how conditioning on natural language descriptions
and demonstrations of constraints allows models
to generate text that satisfies various requirements
without altering the decoding process (Zhou et al.,
2023).

2https://github.com/Kpetyxova/autoTree

This approach is particularly beneficial in edu-
cational contexts, where aligning generated con-
tent with pedagogical strategies is crucial. By fine-
tuning models with prompts that specify instruc-
tional intents, AI tutors can provide more effective
and tailored support to learners (Jia et al., 2025).

3 Re-annotating the MathDial Dataset

3.1 Tree Creation

To construct a tree for the extended taxonomy pro-
posed in MathDial, we used the best framework
configuration from Petukhova and Kochmar (2025)
– frequency-guided optimal split selection and back-
tracking. This method iteratively selects among the
candidate splits by scoring them and choosing the
highest-ranked one, with backtracking employed
if a viable partition cannot be formed. Addition-
ally, the approach biases the tree construction to-
ward more frequent classes, making them quicker
to reach and producing trees that better reflect real-
world class distributions. The tree was generated
based on eleven intent names and their correspond-
ing examples (see Table 1). The resulting tree,
presented in textual form in Figure 1, has a depth
of two with five branches emerging from the root
node.

Interestingly, most intents are grouped accord-
ing to high-level categories defined in Macina et al.
(2023), except for the Probing intents, which are
split into two separate groups: (1) Asking for Ex-
planation and Seeking Self-Correction, and (2) Per-
turbing the Question and Seeking World Knowl-
edge. While this split was not predefined, it is
interpretable: the first group centers on prompt-
ing students to reflect on and assess their reason-
ing, whereas the second group encourages them to
explore broader or external concepts beyond the
immediate problem.
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Does the dialog utterance involve the tutor asking the student to perform an action, or does it involve the tutor revealing
information or asking the student to explain their reasoning?
├── The dialog utterance involves the tutor asking a question that perturbs the original problem or seeks world knowledge.
│   └── Is the dialog utterance asking a hypothetical question or seeking factual or general knowledge?
│       ├── The dialog utterance is asking a hypothetical question.
│       │   └── Perturbing the Question (probing)
│       └── The dialog utterance is seeking factual or general knowledge.
│           └── Seeking World Knowledge (probing)
├── The dialog utterance involves the tutor asking the student to explain their reasoning or correct their own mistakes.
│   └── Is the tutor asking the student to provide an explanation or to reconsider their own statement or action?
│       ├── The tutor is asking the student to provide an explanation.
│       │   └── Asking for Explanation (probing)
│       └── The tutor is asking the student to reconsider their own statement or action.
│           └── Seeking Self Correction (probing)
├── The dialog utterance involves the tutor asking the student to perform an action.
│   └── Is the dialog utterance asking the student to perform a specific task, recall a certain piece of information, or guiding
their attention towards a specific part of the problem?
│       ├── The utterance is asking the student to perform a specific task.
│       │   └── Seek Strategy (focus)
│       ├── The utterance is asking the student to recall a certain piece of information.
│       │   └── Recall Relevant Information (focus)
│       └── The utterance is guiding the student's attention towards a specific part of the problem.
│           └── Guiding Student Focus (focus)
├── The dialog utterance involves the tutor greeting or saying farewell to the student, or making a general inquiry.
│   └── Is the dialog utterance used to initiate or conclude a conversation, or is it used to seek an explanation or clarification?
│       ├── The dialog utterance is used to initiate or conclude a conversation.
│       │   └── Greeting/Fairwell (generic)
│       └── The dialog utterance is used to seek an explanation or clarification.
│           └── General Inquiry (generic)
└── The dialog utterance involves the tutor revealing information or answers.
    └── Is the tutor's intent in the dialog utterance to guide the student towards the solution or to directly provide the solution?
        ├── The tutor's intent is to directly provide the solution.
        │   └── Revealing Answer (telling)
        └── The tutor's intent is to guide the student towards the solution.
            └── Revealing Strategy (telling)

Figure 1: Tree created for the extended taxonomy of the MathDial dataset using the framework from Petukhova
and Kochmar (2025). Questions corresponding to tree nodes are in bold, possible answers that represent branches
are in italics, and leaf nodes, representing the eleven intents, are in purple bold.

3.2 Annotation

Data Preprocessing Out of 2,861 dialogs, we
randomly selected 500 dialogs for training, 100 for
validation, and 100 for testing.

An example of the original tutor intent annota-
tion in MathDial is shown in Figure 2. A single
label is applied to each teacher utterance in the
original annotation, which, while effective for high-
level analysis, may limit flexibility in downstream
applications requiring finer-grained control. For
instance, an utterance [I see.]1 [But we’re deal-
ing with individual pies here, rather than slices.]2
[If you had a birthday cake, and lots of guests at
your party, you couldn’t just keep producing slices
of cake.]3 [Can you think of another way to fig-
ure out how everyone gets a piece?]4 in MathDial
is annotated as Probing. However, this utterance
comprises several discourse units with distinct func-
tions: segment [1] appears to be Generic, segment
[2] aligns with Focus (specifically, Guiding Student
Focus) as it redirects the student’s attention, seg-
ment [3] fits the Probing category, and segment
[4] corresponds to Focus (Seek Strategy) because

it prompts the student to think of an alternative
solution.

In contrast, in other cases, the assigned label
appears to follow the final part of the utterance.
For example, the utterance [But there are always 4
slices in a shepherd’s pie, so using the total number
of slices might not be helpful.]1 [Are there any
other quantities you could use to divide by the slices
in the pie?]2 is labeled as Focus. Here, while Focus
applies to the second sentence [2], it would be more
appropriate to label the first sentence [1] as Telling.
This inconsistency – where labels are sometimes
based on the first segment and other times on the
last – underscores the potential benefits of a more
fine-grained and consistent annotation approach for
certain downstream tasks.

Ideally, annotation should be performed at the el-
ementary discourse units (EDUs) level rather than
entire utterances. EDUs are segments of text that
typically correspond to clauses (Jurafsky and Mar-
tin). Therefore, in this work, we preprocess the
data by first splitting teacher utterances into EDUs.

Since no state-of-the-art method currently ex-
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Teacher
Hi Alejandra, could you please outline your approach to this solution?

Student

Sure, I started by calculating the number of slices of each type of pie. For shepherd's pie, ...

Teacher
I see. But we're dealing with individual pies here, rather than slices.  If you had a birthday cake, and lots of guests at your party,
you couldn't just keep producing slices of cake.  Can you think of another way to figure out how everyone gets a piece?

Student

Yes, I could count the number of slices of each type of pie and then divide ...

Teacher
But there are always 4 slices in a shepherd's pie, so using the total number of slices might not be helpful.  Are there are any
other quantities you could use to divide by the slices in the pie?|

Intent: generic

Intent: probing

Intent: focus

Student

Yes, I could use the number of customers that ordered each type of pie. For shepherd's pie, ...

Teacher
Yes, that's the correct solution!  Well done for changing the way you approached that problem.

Intent: probing

Figure 2: An example of teacher utterances and their annotated intents from MathDial.

ists for automatically dividing the text into EDUs,
we use the following strategy: (1) Punctuation Re-
moval: first, we remove all punctuation from the
utterances; (2) Punctuation Restoration: next, we
restore the punctuation using a model trained for
this task;3 (3) Comparison and Segmentation: fi-
nally, we compare the original utterance with the
punctuation-restored version. If the restored punc-
tuation replaces a comma in the original text with
a period, question mark, or exclamation mark, we
split the utterance at that comma, thereby creating
separate EDUs. By default, we also split differ-
ent sentences into separate EDUs. Each EDU that
resulted from the original utterance through this
process inherits the original label assigned to the
full utterance in MathDial (i.e., one of the four
high-level categories).

After the data is split into EDUs, the number
of resulting teacher utterances in the train split is
5,174. The validation and test sets are similarly
segmented into EDUs and limited to 100 teacher
utterances each.

Annotation Using the generated tree, a GPT-4o-
based annotation pipeline from Petukhova and
Kochmar (2025) is applied. Since the tree’s struc-
ture aligns with the hierarchical intent relationships

3https://huggingface.co/oliverguhr/
fullstop-punctuation-multilang-large

proposed by the authors of MathDial, we can rea-
sonably expect that annotation based on this tree
will reflect those relationships. For instance, if the
annotation using the tree assigns the label Perturb-
ing the Question, the original annotation should
correspondingly contain Probing, and so on. Based
on this alignment, we can evaluate the annotation
quality, at least in terms of consistency with the
original higher-level annotations.

Table 2 presents weighted precision (Pw), re-
call (Rw), and F1 (F1w) as well as macro F1 (F1)
scores when comparing lower-level intent annota-
tions on the training set to the original high-level
teacher move categories. The low scores are ex-
pected, given that the original teacher utterances
were split into EDUs while retaining the same la-
bel. As discussed earlier, different EDUs within
the same utterance would often be of distinct types,
which was not accounted for in the original annota-
tion in MathDial.

Pw Rw F1w F1
0.40 0.38 0.36 0.27

Table 2: Evaluation of 11-label annotation on the train-
ing set, comparing the new alignment with the original
4-label annotation from MathDial, using the annotation
framework from Petukhova and Kochmar (2025).

Among the 5,174 teacher utterances, 1,319 re-
mained unchanged from the original dataset, as
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they originally consisted of a single EDU. Anno-
tation results for these utterances are presented in
Table 3. While these metrics are higher than those
in Table 2, they still indicate relatively poor perfor-
mance.

Pw Rw F1w F1
0.48 0.45 0.43 0.31

Table 3: Evaluation of 11-label annotation on the
training set utterances that remained unchanged (i.e.,
originally consisted of a single EDU), comparing the
new alignment with the original 4-label annotation
from MathDial, using the annotation framework from
Petukhova and Kochmar (2025).

However, a manual analysis revealed significant
inconsistencies in the original annotation. Consider
the following illustrative examples:

• A student initially identifies 14 as the correct
final answer to the task. However, during the
discussion, the student incorrectly restates the
final solution as 10 + 10 + 4 = 24. The teacher
responds, Is that 14? — referring back to the
earlier moment when 14 was correctly iden-
tified as the expected answer (see the full di-
alog in Appendix A). The tree-based annota-
tion classifies this teacher utterance as Seek-
ing Self-Correction, corresponding to Probing.
However, in the original dataset, it is labeled
as Telling, which we believe is not accurate.

• The tutor says, You need to add brackets to (8-
2) and remember the order of operations. The
student responds, Yes, I understand now. The
correct equation should be 6 + (8 + 8) - 2 =
22 new books. The teacher replies, No, I said
it’s 8-2, not 8+8. Although the tree-based
annotation assigns this utterance to Reveal-
ing Answer (Telling), the original annotation
labels it as Generic, possibly reflecting a dif-
ferent interpretation or contextual judgment.

• A student states, 6 + 8 + (8 - 2) = 22. The
teacher responds, Please explain how you got
22. The tree-based annotation categorizes this
utterance as Asking for Explanation, which
corresponds to Probing. However, in the orig-
inal dataset, it is labeled as Generic, which
does not align well with the intent of the utter-
ance.

Given the prevalence of such unclear or ambigu-
ous cases in the original annotation of the dataset,

we cannot conclude that the tree-based annotation
is inaccurate. Instead, these inconsistencies in the
original annotation suggest that the discrepancies
in the evaluation metrics may be due, at least in
part, to ambiguities in the original dataset.

The distribution of the eleven predicted intents
across all dataset splits (train, validation, and test)
is shown in Figure 3.

4 Controlled Generation

To demonstrate the benefits of an extended taxon-
omy with annotations collected using the frame-
work from Petukhova and Kochmar (2025), we
fine-tune an LLM to predict the next teacher ut-
terance. The model is trained using the math task
description, its gold solution, the student’s solution,
the dialog history, and the teacher’s next utterance
intent as predicted by the annotation framework.

Additionally, we fine-tune a second version of
the same model using the original four-intent anno-
tation. We then compare the performance of these
two fine-tuned models with each other, as well as
with the same LLM in its zero-shot setting.

Model We use Mistral-7B-Instruct as the
base model for fine-tuning, specifically its 4-bit
quantized version from Hugging Face.4 The max-
imum sequence length is set to 1,600. We fine-
tune the model using QLoRA (Quantized Low-
Rank Adaptation) (Hu et al., 2022), a parameter-
efficient method that applies low-rank adapters
with quantization to reduce memory and compute
costs. We use a rank of r = 32 and scaling factor
α = 32. Fine-tuning is conducted for one epoch
with a learning rate of 2e−5, batch size 8, and gra-
dient accumulation of 4. We employ the AdamW
optimizer (Loshchilov and Hutter, 2019), linear
scheduling with a warmup (0.1), weight decay of
0.1, and evaluate every 50 steps using SACRE-
BLEU (Post, 2018).

Data Preprocessing We convert the annotated
samples into pairs of prompts and gold outputs,
where each prompt consists of an instruction, the
math task, the gold solution for the task, the stu-
dent’s solution, the dialog history, and the intent
of the following teacher utterance (which is avail-
able from the annotated data). While the intent is
available as an annotation during both training and
evaluation – since we have access to the gold next

4https://huggingface.co/unsloth/
mistral-7b-instruct-v0.3-bnb-4bit
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Figure 3: Overall distribution of the eleven predicted intents in the re-annotated dataset.

teacher utterance and can classify its intent – for
real-world applications this intent would need to
be predicted by a separate model as part of a con-
trolled generation pipeline. The prompt template is
shown in Appendix B.

Evaluation We conduct an automatic evalua-
tion of generated outputs using reference-based
metrics, including CHRF++ (character n-gram F -
score) (Popović, 2017), SACREBLEU (a weighted
geometric mean of n-gram precision scores), and
ROUGE-1, ROUGE-2, and ROUGE-L (recall-
oriented measures of n-gram overlap) (Lin, 2004).
In addition, we conduct a small-scale human evalu-
ation.

Results Table 4 presents the generation results
for both zero-shot and fine-tuning settings, com-
paring two annotation schemes: the original four
teacher intents provided in the MathDial dataset
and the extended set of eleven intents. As ex-
pected, the fine-tuned LLM outperforms the zero-
shot baseline, and the model trained on the more
fine-grained, eleven-intent annotation consistently
achieves higher scores across all metrics.

In addition to automated metrics, we conducted
a human evaluation with four annotators, each hold-
ing at least a Master’s degree in Natural Language
Processing. We randomly selected seven dialogs
from the test set, resulting in 30 response pairs –
one from the model fine-tuned on four intents and
one from the model fine-tuned on eleven intents.
Each annotator was shown these pairs and asked
to decide which response was better or whether

both were equally good or poor (see Figure 4).
Based on majority voting, responses from the FT-
11 model were preferred in 56.7% of cases.5 The
inter-annotator agreement, measured using Fleiss’
Kappa, is κ = 0.33, indicating fair agreement.

Figure 4: Results of human evaluation. Four annotators
were asked to choose the better response or indicate if
both were equally good or bad. Final decisions were
determined via a majority vote.

Manual analysis (see Figure 5) indicates that the
responses generated by the model fine-tuned on
eleven intents (FT-11) are superior to those from
the model fine-tuned on four intents (FT-4), based
on the following observations:

• FT-11 consistently demonstrates a deeper un-
derstanding of conversational strategies, such

5There were no ties in the majority votes – each example
received a clear decision.
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Configuration CHRF++ SACREBLEU ROUGE-1 ROUGE-2 ROUGE-L
Zero-Shot, 4 intents 16.50 0.93 8.93 2.19 7.10
Zero-Shot, 11 intents 17.11 0.73 8.72 1.95 6.87
Fine-Tuning, 4 intents 16.82 2.67 17.13 5.61 15.95
Fine-Tuning, 11 intents 18.06 4.59 20.73 7.39 19.28

Table 4: Evaluation of controlled generation on the test set from MathDial in a zero-shot setting and with fine-
tuned Mistral, comparing using the original four intents from MathDial with eleven intents annotated using the
framework from Petukhova and Kochmar (2025).

as using more effective questioning tech-
niques. For instance, when addressing the
incorrect prom couples calculation (see the
first example in Figure 5), FT-11 explicitly
prompts the student to reconsider the original
conditions (So, if we know that there were 123
students at the prom, how many couples were
there?). In contrast, FT-4 merely restates the
incorrect scenario (So, if we have 120 cou-
ples, how many students attended the prom?),
which is less effective in guiding the student
to realize their mistake.

• FT-11 more directly addresses student mis-
conceptions. In the second example in Fig-
ure 5, FT-11 directly questions the student’s
arbitrary assumption (How did you get 100
cows?), aligning closely with the teacher’s
gold standard (Claire, why did you assume
that the farmer had 100 cows?). FT-4 is less
focused, requesting the student to explain cal-
culations instead of addressing the root cause
of misunderstanding.

• FT-11 responses tend to be concise yet rele-
vant, prompting students to reflect critically on
their reasoning rather than reiterating previous
statements. For example, in the third scenario
in Figure 5, FT-11 succinctly acknowledges
correctness (Correct.), aligning well with the
actual teacher response (That’s right.), while
FT-4 unnecessarily repeats previous questions,
demonstrating less effective dialog manage-
ment.

5 Conclusions

In this work, we examined the impact of fine-
grained annotation on controlled response genera-
tion in the MathDial dataset. By expanding the
original taxonomy of teacher moves from four
broad categories to eleven more specific intents
and using the framework for automated tree cre-
ation and annotation from Petukhova and Kochmar

(2025), we demonstrated that this approach en-
hances the performance of a fine-tuned LLM in
generating meaningful responses.

The results confirm that fine-tuning on a dataset
with high-granularity labels leads to better align-
ment with expected teacher responses, outperform-
ing both the zero-shot setting and fine-tuning on the
original four-category annotation. This suggests
that the specificity of intent labels is crucial for
enhancing the model’s ability to generate targeted
and effective tutoring responses.

Furthermore, the manual analysis of the annota-
tion process revealed inconsistencies in the original
dataset, highlighting the importance of high-quality,
well-structured intent annotation. The tree-based
annotation framework proposed in Petukhova and
Kochmar (2025) provides a systematic way to re-
fine such datasets, making them more suitable for
training controllable generation models.

Limitations

Due to resource constraints, we re-annotate only a
subset of the MathDial dataset and utilize a small
language model for fine-tuning.

These limitations suggest several directions for
future work: (1) re-annotating the entire dataset to
enable training of higher-quality models, and (2)
exploring larger open-source models for improved
fine-tuning performance.

In addition, we acknowledge that our conclu-
sions are based on the use of automated metrics and
small-scale human evaluation. In order to demon-
strate the real-world impact of these findings and
assess the pedagogical value of the generated tutor
interventions, future work should consider veri-
fying these conclusions with actual teachers and
students.

Ethical Considerations

As this work is exploratory and the outputs of the
models used in this research have not been tested
with real students, we do not anticipate any sig-
nificant risks associated with this work or the use
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Task Student's Incorrect Solution Dialog

Chalktown High
School had their
prom last
weekend. There
were 123
students who
attended. If 3
students
attended on their
own, how many
couples came to
the prom?

Let's call the number of couples
that attended the prom \"c\".
We know that there were 123
students total, and that 3 of them
attended on their own. This
means that the rest of the
students attended as couples.
So we can set up the equation:
couples + 3 = 123
Subtracting 3 from both sides:
couples = 120
So there were 120 couples that
attended the prom.
120

Teacher: Hey Heidi, do you know what a couple is?
Student: Yes, a couple is two people who are together, usually a romantic couple.
Teacher: So if we had 120 couples attending the prom, how many students would
that be in total?
Student: 120 couples would be 240 students in total, since each couple is made up
of two people.
Teacher: Great.
Teacher: would you like to check your solution again, bearing in mind what youve
just told me, please?
Student: Sure. So if we have 120 couples, that would mean there are 240 students
in total. We know that 3 students attended on their own, so if we subtract 3 from
240, we get 237. So there were 120 couples and 237 students in total at the prom.
Teacher: We need to read the question again.
Teacher: the question tells us how many people were at the prom.

Next Teacher Utterance:
Gold: lets start over from the beginning and ill help you if needed.
FT-4 (focus): So, if we have 120 couples, how many students attended the prom?
FT-11 (Seek Strategy): So, if we know that there were 123 students at the prom,
how many couples were there?

40% of a
farmer's cattle
are males. The
rest are females.
If a female cow
produces 2
gallons of milk a
day, how much
milk will the
farmer get a day
if he has 50 male
cows?

If 40% of the cattle are males,
then 100% - 40% = 60% are
females.
Let's say the farmer has a total of
100 cows, then 40% of 100 = 40
cows are males.
So 60 cows are females.
If each female cow produces 2
gallons of milk a day, then 60 x 2
= 120 gallons of milk will be
produced a day.
Since the farmer has 50 male
cows, they don't produce milk, so
the total milk produced a day is
120 gallons.

Teacher: Hi, could you please walk me through your solution?
Student: Sure. I started by figuring out that 40% of the cattle were males, so 100%
- 40% = 60% were females. Then I assumed that the farmer had a total of 100
cows, so 40% of 100 = 40 cows were males and 60 cows were females. I then
multiplied the number of female cows (60) by 2 gallons of milk a day to get 120
gallons of milk produced a day. Since the farmer only has 50 male cows, they don't
produce any milk, so the total milk produced a day is 120 gallons.

Next Teacher Utterance:
Gold: Claire, why did you assume that the farmer had 100 cows?
FT-4 (generic): Hi, could you please explain how you got 120 gallons of milk from
60 cows?
FT-11 (Seek Strategy): How did you get 100 cows?

It takes 3 men
an hour to
complete a job. If
they are hired to
work on 5 such
similar jobs by a
company that
pays each of
them $10 per
hour, calculate
the total amount
of money the
three will earn
when they
complete the
jobs?

It takes 3 men an hour to
complete a job, so it will take
them 3 x 5 = 15 hours to
complete the 5 jobs.
If they are paid $10 per hour, the
total amount of money each of
them will earn when they
complete the jobs is $10 x 15 =
$150.
Therefore, the total amount of
money the three will earn when
they complete the jobs is $150 x 3
= $450.

Teacher: Hi Brenda.
Teacher: lets take this step by step.
Teacher: How much would one man earn for one job?
Student: Hi, one man would earn $10 for one job.
Teacher: How many jobs are there?
Student: There are 5 jobs.
Teacher: How much would one man doing the 5 jobs earn?
Student: One man doing the 5 jobs would earn $10 x 5 = $50.
Teacher: Great, How many men are there?
Student: There are 3 men.
Teacher: So each man is paid 50 total for the 5 jobs and there are 3 men.
Teacher: so how much is the total for the 3 men?
Student: The total for the 3 men is $50 x 3 = $150.

Next Teacher Utterance:
Gold: Thats right.
FT-4 (generic): So how much is the total for the 3 men?
FT-11 (Revealing Answer): Correct.

Figure 5: Examples of responses generated by a model fine-tuned on the original four-intent annotation set (FT-4)
and by a model fine-tuned on data annotated with eleven intents using the framework from Petukhova and Kochmar
(2025) (FT-11), alongside actual responses from teachers (Gold).

of the re-annotated dataset. At the same time, we
acknowledge that this work uses LLMs, and such
models may present risks when applied in real-
life educational scenarios, as they may generate
outputs that, despite being plausible, are factually
inaccurate or nonsensical, which in turn may lead
to misguided decision making and propagation of
biases. While we do not foresee any immediate
risks associated with the research presented in our
paper, if future work based on this research ap-

plies presented approaches to real-life scenarios,
appropriate safeguards should be applied.
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A Output of the Tree Creation Step

Task: Harry decided to buy some balloons for his friend's birthday party. One balloon costs $0.5, and a pack of 10 balloons is
cheaper and costs only $3. Finally, Harry wants to bring to the party exactly 14 balloons. How much did he need to pay for
them?

Correct Solution: To buy 14 balloons, Harry should buy one pack of 10, and 14 - 10 = 4 separate balloons.
The price of 4 balloons is 4 * 0.5 = $2.
In total, the pack and separate balloons would cost Harry in total 3 + 2 = $5.
5

Student's incorrect answer: Harry needs to buy 2 packs of 10 balloons, which will give him 20 balloons in total. He will then
need to buy 4 more individual balloons to get to 14.
2 packs of 10 balloons cost 2 x $3 = $6.
4 individual balloons cost 4 x $0.5 = $2.
Therefore, Harry needed to pay $6 + $2 = $8 for 14 balloons.
8

Dialog: 
Teacher: (generic)Hi Michael, could you please walk me through your solution?
Student: Sure. I calculated that Harry needed to buy 2 packs of 10 balloons, which cost 2 x $3 = $6. Then, he needed to buy 4
individual balloons, which cost 4 x $0.5 = $2. So, the total cost was $6 + $2 = $8.
Teacher: (focus)So can you please tell me why he needs two packs of 10 (which is 20) and another 4 on top? What's 20 +4?
Student: Harry needs two packs of 10 balloons because each pack costs $3 and buying two packs is cheaper than buying 20
individual balloons. Then, he needs to buy 4 more individual balloons to get to 14 balloons in total. 20 + 4 = 24, so Harry has
enough balloons for the party.
Teacher: (focus)Please could you tell me how many balloons Harry requires in the math problem.
Student: Harry needs 14 balloons for the party.
Teacher: (focus)So is that 24?|EOM|Student: No, 14. He needs two packs of 10 balloons and 4 individual balloons, which
gives him a total of 24 balloons, but he only needs 14.
Teacher: (focus)So how many packs of 10, plus single balloons does he really need to equal 14?
Student: Harry needs two packs of 10 balloons and 4 individual balloons to equal 14.
Teacher: (probing)so what's 10+10+4?
Student: 10+10+4 = 24.
Teacher: (telling)Is that 14?
Student: No, 24 is not 14. Harry needs two packs of 10 balloons and 4 individual balloons, which gives him a total of 24
balloons, but he only needs 14.
Teacher: (telling)So Harry needs one pack of 10, which equals $3. Plus he needs four separate balloons at $0.5 each, can you
tell me how much he needs to spend?
Student: Harry needs to spend $3 for one pack of 10 balloons and $2 for four individual balloons, so the total cost is $3 + $2 =
$5.
Teacher: (generic)Brilliant, can you see where you were duplicating the packs of 10
Student: Yes, I was calculating that Harry needed to buy two packs of 10 balloons, which cost 2 x $3 = $6. Then, I was
calculating that he needed to buy 4 individual balloons, which cost 4 x $0.5 = $2. So, the total cost was $6 + $2 = $8, which
was incorrect because I was duplicating the packs of 10.

Figure 6: An example dialog from the MathDial dataset.
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B The Prompt Template used for Fine-tuning

[INST]
You are a math tutor. You will receive a task, a correct ("gold") solution, a student's
incorrect solution, and an ongoing dialog between the student and the tutor.
Your objective is to generate the next tutor response based on the given intent.

Task:  
{task}

Gold Solution:  
{gold_solution}

Student's Incorrect Solution:  
{student_incorrect_solution}

Dialog:  
{dialog}

Intent for the Next Tutor Utterance:  
{intent}

[/INST]
### Tutor: 

Figure 7: The prompt template used for fine-tuning on MathDial.
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Abstract
Large Language Models (LLMs) offer excit-
ing potential as educational tutors, and much
research explores this potential. Unfortunately,
there’s little research in understanding the base-
line behavioral pattern differences that LLM
tutors exhibit, in contrast to human tutors. We
conduct a preliminary study of these differ-
ences with the CIMA dataset and three state-
of-the-art LLMs (GPT-4o, Gemini Pro 1.5, and
LLaMA 3.1 450B). Our results reveal system-
atic deviations in these baseline patterns, par-
ticulary in the tutoring actions selected, com-
plexity of responses, and even within different
LLMs.

This research brings forward some early results
in understanding how LLMs when deployed
as tutors exhibit systematic differences, which
has implications for educational technology
design and deployment. We note that while
LLMs enable more powerful and fluid interac-
tion than previous systems, they simultaneously
develop characteristic patterns distinct from hu-
man teaching. Understanding these differences
can inform better integration of AI in educa-
tional settings.

1 Introduction

Large Language Models (LLMs) offer unprece-
dented capabilities for creating educational tech-
nologies that can interact with students. Unlike tra-
ditional intelligent tutoring systems (ITS), which
were often limited by constrained interfaces and
rigid interaction patterns (Alkhatlan and Kalita,
2019; Mousavinasab et al., 2021), LLMs provide
natural-language interactions that draw on exten-
sive linguistic and contextual training (Brown et al.,
2020; Bommasani et al., 2022). This allows LLMs
to respond to learner inputs in ways that more
closely resemble human tutors, presenting new pos-
sibilities for personalized learning experiences.

Despite their potential, important questions re-
main about how closely LLM tutoring interactions

align with human tutoring practices. Existing lit-
erature on human tutoring and ITSs emphasize
strategies such as scaffolding, immediate feed-
back, and adaptive questioning to meet the learners’
needs (Chi et al., 2001; VanLehn, 2011). However,
the conversational and pedagogical behaviors of
LLMs in tutoring scenarios remain underexplored.

The current work addresses this research gap.
Utilizing the CIMA dataset of language teaching
dialogues (Stasaski et al., 2020), which contains
multiple responses of human tutors to the same
students in an Italian language learning context, we
systematically examine and compare the structural
pedagogical patterns of human tutors and several
state-of-the-art language models, GPT-4o (OpenAI
et al., 2024), Gemini Pro 1.5 (Team et al., 2024),
and LLaMA 3.1 405B (Grattafiori et al., 2024).
We identify and characterize behavioral patterns of
LLM tutors and human tutors, focusing on action
preferences and response complexity.

Our analysis reveals several key findings:

1. Both human and AI tutors show similar high-
level preferences in action selection, with
hints comprising approximately 45% of all
tutoring actions.

2. Human tutors strongly prefer single-action re-
sponses (approximately 72% of interactions),
while LLM tutors consistently combine multi-
ple pedagogical actions in their responses.

3. Each LLM exhibits its own characteristic pat-
tern, highlighting the need for LLM-specific
tailoring.

As these systems continue to evolve and be de-
ployed in diverse learning contexts, recognizing
their distinctive behavioral patterns becomes in-
creasingly important—not to eliminate differences,
but to use them more effectively in creating educa-
tional experiences that complement human instruc-
tion.
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2 Related Work

2.1 Evolution of Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) have evolved
significantly over decades, from rule-based systems
with limited interaction capabilities to increasingly
sophisticated architectures. Traditional ITS plat-
forms like Cognitive Tutors (Anderson et al., 1995)
and knowledge-based tutors (Akkila et al., 2019)
demonstrated effectiveness in specific domains but
were constrained by rigid interaction patterns and
limited adaptability. These systems typically oper-
ated within carefully engineered knowledge frame-
works, making them powerful but inflexible (Van-
Lehn, 2011; Ma et al., 2014).

The field has progressively sought more natu-
ral and adaptive educational technologies. Dialog-
based tutoring systems (Graesser et al., 1999; Rus
et al., 2013) attempted to incorporate conversa-
tional elements but remained limited by predefined
pathways. Recent advances in NLP have enabled
more sophisticated systems capable of processing
and generating natural language interactions (Rus
et al., 2013; Nye et al., 2014), setting the stage for
the current generation of LLM-based educational
tools.

2.2 Language Models in Educational
Applications

Large Language Models represent a fundamental
shift in educational technology, offering unprece-
dented fluidity in natural language interaction cou-
pled with broad knowledge coverage. Recent re-
search has explored various applications of LLMs
in education, including personalized learning (Park
et al., 2024), assessment (Wang et al., 2024), and
tutoring (Kumar et al., 2024).

Studies have demonstrated LLMs’ potential to
support complex learning processes through adap-
tive dialogue (Schmucker et al., 2023) and to gener-
ate contextually relevant explanations (Naik et al.,
2024). LLMs’ performance as educational tools
has primarily been studied through various metrics
such as learning gain (Pardos and Bhandari, 2023)
or through assessing the quality or correctness of
LLM responses (Kumar et al., 2024).

However, while these systems enable more nat-
ural interaction, they simultaneously operate ac-
cording to statistical patterns learned during train-
ing rather than pedagogical principles explicitly
encoded by designers (Brown et al., 2020; Bom-
masani et al., 2022). This tension between fluid

interfaces and underlying fixed statistical patterns
remains underexplored in educational applications
of LLMs.

2.3 Tutoring Patterns and Behaviors

Research on human tutoring has extensively doc-
umented the patterns that characterize effective
teaching interactions. Chi et al. (2001) identi-
fied interactive patterns like scaffolding and feed-
back loops that support student learning. VanLehn
(2011) further explored the balance between dif-
ferent pedagogical moves, noting that expert tutors
dynamically adjust their approach based on student
needs. Feedback, specifically, has been widely
studied, with Hattie and Timperley (2007) empha-
sizing its critical role in facilitating student learning
through targeted interventions.

In comparing AI and human tutoring behaviors,
early work by Graesser et al. (1999) examined dif-
ferences between human tutors and AutoTutor, find-
ing systematic differences in questioning strategies
and elaboration patterns. More recent work by
Stasaski et al. (2020) with the CIMA dataset high-
lighted the diversity of valid teaching approaches
human tutors employ, noting the low agreement
rate (18.1%) between different tutors responding
to the same student input. This underscores the
complexity of establishing normative patterns for
tutoring behavior.

2.4 Interaction Patterns in Language Models

Research on conversational behavior and dialogue
generation in LLMs has identified patterns related
to turn-taking, conversational coherence, and re-
sponse complexity (Sandler et al., 2024; Shaikh
et al., 2023). These studies highlight that while
LLMs produce coherent interactions, the underly-
ing statistical nature can lead to repetitive patterns
and superficial dialogues – this behavior has, in
part, also led to LLMs being labeled as “stochastic
parrots” (Bender et al., 2021).

The few studies that have examined instructional
patterns in AI systems have typically focused on
direct comparisons of specific responses rather than
population-level analysis of behavioral distribu-
tions (Puech et al., 2024). These findings empha-
size the need to systematically analyze LLM in-
teraction patterns to better understand their educa-
tional utility and identify areas for improvement.

874



2.5 Research Gap

Our research addresses the need to systematically
analyze LLM interaction patterns by conducting a
detailed comparison of human and LLM tutoring
patterns across multiple dimensions of analysis, fo-
cusing on action distributions, response complexity,
and teaching dynamics. This population-level ap-
proach provides a new perspective on how LLMs
function in educational contexts compared to hu-
man tutors, with implications for both educational
technology design and pedagogical theory.

3 Methodology

3.1 Research Questions

This study investigates differences between how
language models and humans approach the tutoring
task. We examine the underlying patterns in how
these systems engage with learners compared to
human tutors. This focus can be broken down into
specific questions in light of ITS and AI:

1. How do artificial tutoring systems function
when given the same context as human tutors?

2. What systematic differences emerge in how
AI and human tutors structure their teaching
interactions?

These questions address core theoretical inter-
ests about the nature of LLMs as ITS while avoid-
ing assumptions about what constitutes “correct”
or “effective” tutoring. By focusing on behavioral
patterns rather than performance metrics, we aim
to understand fundamental differences in how arti-
ficial and human tutors approach the teaching task.

3.2 Design Principles

Our methodology is shaped by several key princi-
ples:

Population-Level Analysis: Rather than at-
tempting direct turn-by-turn comparisons between
human and LLM responses, we focus on analyz-
ing aggregate behavioral patterns across the entire
dataset. This approach is particularly important
given the low agreement rate (18.1%) observed
between human tutors in the CIMA dataset.

Reference Distribution Approach: We aggre-
gate human tutor responses to create reference dis-
tributions that capture the characteristic patterns of
human tutoring behavior. These distributions serve
as a baseline for comparative analysis.

Model Comparison: We maintain separate dis-
tributions for different LLM configurations, en-
abling us to distinguish between model-specific
behaviors and general LLM characteristics.

This approach reorients our research question
from “Does this LLM respond like a human tutor
would?” to “Does this LLM’s pattern of action
choices align with the patterns we observe in hu-
man tutors?”.

3.3 Dataset

Our analysis utilizes the CIMA (Conversational
Instruction with Multi-responses and Actions)
dataset (Stasaski et al., 2020), which provides tu-
toring dialogues focused on teaching Italian prepo-
sitional phrases to English speakers. The dataset
is particularly valuable for our study as it captures
multiple valid tutoring responses for each student
interaction, reflecting the reality that there is rarely
one “correct” way to respond in a tutoring context.

Key features of the dataset include:

• Multiple Valid Approaches: For each stu-
dent utterance, three different tutors provide
responses, showing distinct but equally valid
tutoring strategies.

• Action Labeling: Each response is annotated
with pedagogical actions (Hint, Question, Cor-
rection, Confirmation, Other).

• Progressive Learning: The dataset captures
how concepts build across exercises.

The dataset contains 391 completed exercises
across 77 students, with each exercise grounded in
both visual and conceptual representations. The
mean response lengths (6.82 words for students,
9.99 words for tutors) indicate substantive interac-
tions. This richness, combined with explicit action
labeling, provides a strong foundation for analyz-
ing how different tutors structure their teaching
interventions.

3.4 Dataset Enhancement with AI Tutors

To enable direct comparison between human and
artificial tutoring patterns, we enhanced the CIMA
dataset by generating parallel responses from state-
of-the-art language models. We selected three ad-
vanced instruction-tuned models:

• GPT-4o 2024-08-06 (OpenAI) (OpenAI et al.,
2024)
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• Gemini Pro 1.5 (Google) (Team et al., 2024).

• LLaMA 3.1 405B instruct nitro
(Meta) (Grattafiori et al., 2024)

This selection from different providers, each
with distinct architectural choices and training ap-
proaches, allows us to distinguish between behav-
iors fundamental to language models in general
versus those specific to particular implementations.

For response generation, we developed a struc-
tured prompting system that provides each model
with equivalent context to what human tutors re-
ceived in the original dataset. Each interaction uses
a prompt template that specifies:

You are a language tutor teaching Italian. Avail-
able actions:

• Question: Ask student for clarification or to
elaborate

• Hint: Provide indirect guidance
• Correction: Point out and fix errors
• Confirmation: Acknowledge correct re-

sponses
• Other: Any other type of response

Context:

• Target phrase (IT): {target_phrase[’it’]}
• Target phrase (EN): {target_phrase[’en’]}
• Grammar rules: {grammar_rules}
• Conversation history: {conversa-

tion_history}

Please provide a response as a tutor to the stu-
dent’s last message. Respond in JSON format
with: { "response": "your response text", "ac-
tions": ["your action types"] }

This approach ensures consistent action catego-
rization and response formats across all interac-
tions.

3.5 Analysis Framework

Our analysis examines two key dimensions of tu-
toring behavior:

• Action Distribution Analysis: We examine
the relative frequency of fundamental tutor-
ing actions across different populations. This
analysis compares the baseline distribution
derived from human tutors against Language
Model behavior, identifying systematic pref-
erences or avoidances in action selection.

• Action Combination Analysis: We investi-
gate patterns in how actions are combined
within individual responses, including the
typical number of actions per response and
the balance between single-action and multi-
action responses.

3.6 Methodological Limitations
Our analysis framework operates within several
important constraints:

• Dataset Characteristics: The study utilizes a
dataset limited to Italian preposition instruc-
tion with crowdsourced rather than profes-
sional tutors.

• Structural Constraints: The prescribed
JSON response format may influence natural
interaction patterns, and the restricted action
vocabulary limits expressive range.

• Model Implementation: Analysis is limited
to three model variants with a single prompt
template approach and no model fine-tuning.

• Scope of Conclusions: While we can identify
alignment or deviation from human behavioral
patterns, we cannot evaluate the optimality
of tutoring choices or assess the quality of
specific responses.

Our focus on action distributions represents a
deliberate methodological choice, prioritizing the
analysis of strategic-level behavioral alignment
over response-level quality assessment.

4 Analysis

Our analysis revealed systematic differences in how
language models and human tutors approach the
educational task, with patterns emerging across
multiple dimensions of analysis.

4.1 Action Distributions
Both human and AI tutors demonstrate a strong
preference for hints as their primary teaching ac-
tion, with hints comprising approximately 45% of
all actions across both human and LLM sessions
(Figure 1). This suggests fundamental alignment
in basic tutoring strategy, possibly reflecting the
effectiveness of scaffolded guidance over direct
instruction.

However, examining the broader action distri-
butions reveals key differences in pedagogical ap-
proaches. Human tutors show a more balanced
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Figure 1: Distribution of actions by different tutors,
showing the relative frequency of different pedagogical
strategies.

distribution between corrections (20.3%) and ques-
tions (21.5%), suggesting a diverse approach. In
contrast, AI systems exhibit model-specific pat-
terns - while all maintain the primacy of hints, they
differ in secondary strategies. GPT-4o and Gemini
Pro 1.5 demonstrate a stronger tendency toward cor-
rections (28.7% and 29.4% respectively) compared
to questions (7.3% and 6.8%), while LLaMA 3.1
maintains a more balanced profile closer to human
tutors.

Statistical analysis confirmed that the observed
differences in action distributions between human
and AI tutors were significant (χ2 = 495.17, p <
.001, Cramer’s V = 0.124), indicating a weak to
moderate effect size. This suggests an interest-
ing pattern: while there is fundamental alignment
in primary teaching strategies (the preference for
hints), significant differences emerge in how sec-
ondary strategies are deployed. This nuanced find-
ing reveals that LLMs have captured core aspects
of tutoring behavior while diverging in other di-
mensions.

4.2 Response Complexity

The most striking difference between human and
AI tutors emerges in response complexity (Figure
2). Human tutors demonstrate a strong and con-
sistent pattern for single-action responses, with ap-
proximately 71.8% of responses containing just
one action, 24.6% containing two actions, and only
3.6% containing three or more. This pattern sug-

gests a teaching strategy focused on clear, targeted
interventions.

Figure 2: Distribution of the number of pedagogical
actions per response in tutoring sessions.

In contrast, AI tutors consistently combine mul-
tiple actions in their responses, though with inter-
esting variations between systems. LLaMA shows
the strongest preference for dual-action responses
(82.3%), while GPT-4o and Gemini Pro display a
more balanced distribution. GPT-4o uses single
actions in about 31.5% of responses and dual ac-
tions in 64.7%, while Gemini Pro shows a more
even split between single (42.8%) and dual actions
(54.9%).

A Kruskal-Wallis test revealed significant differ-
ences in the number of actions per response across
the four tutor types (human and three LLMs) (H =
1507.37, p < .001). Post-hoc pairwise comparisons
with Bonferroni correction showed significant dif-
ferences between humans and each LLM (p < .001
for all comparisons), as well as between all pairs
of LLMs (p < .001). This confirms that not only
do AI tutors differ from human tutors in response
complexity, but each AI model exhibits its own
statistically distinct pattern in how it structures re-
sponses.

5 Discussion

5.1 Summary of Research Findings
Our study provides a comparative population-level
view of how LLM tutors and human tutors ap-
proach the teaching task.

Our first finding is that both human tutors and
LLM tutors share a high-level strategy, where hints
are the main tutoring action (approximately 45%
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of all actions each). This suggests that LLMs have
learned to prioritize guidance much like human
experts. The secondary actions show some differ-
ences. Human tutors use a somewhat balanced
mix of questions and corrections in the interac-
tions (roughly 20% each), indicating an approach
that alternates between direct feedback and prompt-
ing student thinking. For the secondary actions,
LLM tutors show skewed distributions; for exam-
ple, GPT-4o and Gemini 1.5 rely more heavily on
corrections, whereas LLaMa 3.1 maintained a more
human-like balance.

These differences in action preference suggest
that while LLMs have captured the primary tactic
of hinting, they diverge in how they follow up,
either by explaining or correcting or by probing the
learner.

The second finding is the strong contrast in
response complexity between human tutors and
LLMs. Human tutors strongly prefer a concise,
single-action response (roughly 70% of human tu-
tor responses in the dataset had only one pedagogi-
cal action). In comparison, LLM tutors frequently
combine multiple actions in a single response; the
difference was the strongest for LLaMa 3.1, where
over 80% of the responses had two actions). Sta-
tistical tests confirmed that these differences in re-
sponse complexity are significant.

The third finding is that LLMs have unique be-
havioral signatures. Although the three evaluated
LLMs have been trained with large masses of data,
each had their distinct tutoring style. This high-
lights that the way how an LLM interacts reflects
the model’s design choices or fine-tuning. These
results extend the prior observations by Graesser
et al. (1999), who noted systematic differences in
tutoring style between a classical ITS (AutoTutor)
and human tutors. We find that LLM-based tutors
likewise deviate from human tutors.

5.2 Pedagogical and Practical Implications
The differences identified in our analysis have im-
plications for educational practice and the design of
AI tutoring systems. First, the alignment of primary
strategy in terms of heavy use of hints highlights
that LLMs have converged on a generally effec-
tive tutoring practice. This is encouraging from a
pedagogical point of view, as hints are known to fa-
cilitate learning by prompting student thinking (Chi
et al., 2001).

However, the way how LLM tutors use sec-
ondary strategies could affect learning in subtle

ways. For example, the LLMs were more likely
to provide corrections, and asked prompting ques-
tions less frequently than human tutors. Asking
questions is often used to encourage active learning
– if an LLM tutor predominantly gives corrections,
the student might become more passive in the learn-
ing process.

On the other hand, providing rapid corrections
can be also be beneficial, depending on the sce-
nario. The pedagogical implication is that LLM
tutors should be tailored to the contexts and objec-
tives: if the objective is to foster student reasoning,
LLMs should be tweaked to ask more open-ended
questions rather than providing quick fixes. Further-
more, compound responses might overwhelm the
learner, and to avoid this, LLMs should be adapted
to match the user competences. That is, there is
room for improvement in the pedagogical quality
and ability of LLM-driven tutors.

Broadly speaking, our results emphasize that
LLM tutors, despite the fluent dialogue, have em-
bedded biases in how they tutor. This resonates
with the tension noted by Horvitz between fluid
and natural interfaces and the rigid patterns of au-
tomated systems (Horvitz, 1999).

5.3 Limitations
Our work comes with a set of limitations, which
we acknowledge. Firstly, our study focuses on a
single dataset and domain, i.e. the CIMA dataset of
Italian language learning dialogues (Stasaski et al.,
2020). The tutoring patterns that we focused on
(for both humans and LLMs) may be specific to
language teaching or even to particular prompts and
tasks in CIMA, and it is possible that the balance of
actions and complexity would be different to other
datasets. This means that the generalizability of the
results should be assessed with additional contexts
and datasets.

Secondly, our analysis focused on population-
level comparisons, but it does not capture how a
tutor might adapt over a tutoring session. Human
tutors often dynamically adjust their strategy based
on students’ progress, but we do not know to what
extent this holds for LLM tutors, and our current
analysis misses these dynamics.

Thirdly, our annotation strategy was automatic,
and relied on the existing categories in the CIMA
dataset. It is possible that LLM (or human) actions
do not always neatly fall into specific categories.
We sought to mitigate this by using clear defini-
tions, but acknowledge the presence of noise. Ad-
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ditionally, we relied on LLMs’ self-reported action
classifications without manual validation. While
our population-level patterns are robust to some
classification noise, future work should validate the
accuracy of these self-classifications. Furthermore,
our analysis does not capture subtler nuances in
responses; as an example, a human tutor might pro-
vide a more encouraging response than an LLM,
even if both responses are categorized as hints.

Additionally, as the CIMA dataset was released
in 2020 and our tested LLMs were trained on data
through 2023-2024, it is possible that the dataset
appeared in their training corpora. While this does
not invalidate our behavioral analysis—the patterns
we observe reflect how these models approach tu-
toring tasks regardless of prior exposure—it should
be considered when interpreting the alignment be-
tween LLM and human tutoring strategies.

Finally, we cannot deduce the efficiency of the
tutoring. This is a limitation of the practical signifi-
cance of the work. Despite these issues, our work
fills a gap by systematically comparing the baseline
behaviors of human and LLM tutors.

6 Conclusion

In this paper, we studied LLM-based tutors differ
from human tutors in their interaction patterns, con-
ducting a population-level analysis using the CIMA
tutoring dataset. Our focus was on the behavioral
structure of the tutoring, composed of what actions
the tutors take and how they deliver them.

By generating parallel tutoring responses using
three state-of-the-art LLMs and comparing them
against human tutor responses, we observe the fol-
lowing: (1) LLM tutors and human tutors have
similar high-level tactics with a shared emphasis
on giving hints, which indicates that current LLMs
have learned or been tuned to adopt some of the ex-
isting practices of humans; (2) When going beyond
the high-level tactics, there are significant differ-
ences in how LLM tutors balance their actions and
in how complex the responses are; (3) The differ-
ences are not uniform across the LLM tutors, which
highlights that each LLM has its own “personal”
style of tutoring. These findings were made possi-
ble by analyzing the aggregate patterns over many
tutoring responses, moving beyond anecdotal or
one-to-one comparisons.

Recognizing and understanding these patterns
is important when seeking to make informed de-
cisions on how to effectively integrate LLMs into

learning environments. The differences that we
highlight suggest areas where LLM tutors might
benefit from additional tailoring (e.g. tailoring
LLMs to the context and objectives, and to match
the user competences).

In conclusion, we present a foundation for treat-
ing behavioral patterns of LLM tutors as a subject
of study by its own right, parallel to how one might
study different teaching styles among human tutors.
We have also shown how to quantitatively character-
ize how an LLM “teaches”. Such a characterization
can help in aligning LLM tutor behavior towards
educational best practices, while also benefiting
from the existing capacities such as consistency
and breadth.
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Abstract

Large Language Models (LLMs) have shown
impressive performance in mathematical rea-
soning tasks when guided by Chain-of-Thought
(CoT) prompting. However, they tend to pro-
duce highly confident yet incorrect outputs,
which poses significant risks in domains like
education, where users may lack the expertise
to assess reasoning steps. To address this, we
propose a structured framework that models
stepwise confidence as a temporal signal and
evaluates it using Signal Temporal Logic (STL).
In particular, we define formal STL-based con-
straints to capture desirable temporal properties
and compute robustness scores that serve as
structured, interpretable confidence estimates.
Our approach also introduces a set of uncer-
tainty reshaping strategies to enforce smooth-
ness, monotonicity, and causal consistency
across the reasoning trajectory. Experiments
show that our approach consistently improves
calibration metrics and provides more reliable
uncertainty estimates than conventional confi-
dence aggregation and post-hoc calibration.

1 Introduction

Large language models (LLMs) are increasingly
applied in educational contexts such as concept ex-
planation, question answering, and personalized
tutoring, especially in STEM domains like mathe-
matics (Kasneci et al., 2023). These models exhibit
strong capabilities in solving complex problems;
however, they also tend to produce answers that are
fluent and seemingly confident, yet factually incor-
rect. In educational settings, such outputs can be
particularly problematic, as students may lack the
expertise to distinguish between correct and incor-
rect reasoning (Polyxeni Paulina Kastania, 2024),
and may be misled by responses that appear trust-
worthy. This mismatch between confidence and
correctness raises critical concerns about the reli-
ability of LLM-generated answers and highlights

the importance of integrating uncertainty estima-
tion into educational AI systems.

Although prior work has explored various uncer-
tainty estimation techniques, such as predictive en-
tropy, sampling-based variance, and confidence cal-
ibration, most studies focus on general NLP tasks
rather than educational scenarios (Zhao et al., 2021;
Jiang et al., 2021). In educational contexts like
mathematics learning, well-calibrated uncertainty
can be especially useful for guiding student atten-
tion, supporting teacher oversight, and improving
feedback systems. However, existing uncertainty
metrics often show poor alignment with actual cor-
rectness (Zhu et al., 2025).

In this work, we address this challenge by
proposing a novel approach to estimate uncer-
tainty in LLM-based chain-of-thought (CoT) rea-
soning for high school mathematics problems. Our
method models the sequence of reasoning steps
as a temporal confidence signal and evaluates its
structural properties using Signal Temporal Logic
(STL) (Fainekos and Pappas, 2006). Instead of
modifying the LLM or directly penalizing its out-
puts, we quantify undesirable confidence behaviors,
such as abrupt increases following uncertain steps,
by computing robustness scores against formal STL
constraints. This yields a constraint-aware aggre-
gation scheme that captures how confidence is ex-
pected to evolve over time, offering a structured and
interpretable view of the reasoning process while
improving calibration. We evaluate our method
on a curated dataset of Chinese Gaokao mathemat-
ics multiple-choice questions (Zhang et al., 2023).
Experimental results show that our method signif-
icantly improves calibration, reducing Expected
Calibration Error (ECE) compared to baseline un-
certainty aggregation methods.

This paper’s contributions are: (1) a novel per-
spective that treats stepwise confidence in chain-of-
thought reasoning as a temporal signal amenable
to formal analysis, (2) a constraint-aware modeling
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approach that reshapes confidence trajectories and
quantifies their structural quality using STL robust-
ness and (3) empirical validation of our method’s ef-
fectiveness on Chinese Gaokao mathematics. Fig 1
provides an overview of our pipeline: starting from
stepwise CoT confidence, we apply uncertainty
reshaping followed by STL-based temporal logic
evaluation. This transformation results in inter-
pretable, structure-aware confidence scores.

2 Related Work

Applications of LLMs in Education: LLMs have
been widely adopted in educational settings for
tasks such as grammar correction, content gener-
ation, problem explanation, and intelligent tutor-
ing. Prior studies highlight their potential to sup-
port learners across domains like language writ-
ing (Kasneci et al., 2023), mathematics (Gan et al.,
2023), and personalized feedback (Zhou et al.,
2025; Wang et al., 2024). For instance, LLMs like
MathGPT and Khanmigo have been used to gen-
erate step-by-step math explanations aligned with
curriculum standards (Shah et al., 2024), while
ChatGPT has shown promise in automated feed-
back for student essays and short answers (Kasneci
et al., 2023). Despite these advances, concerns
remain around academic integrity, hallucinated out-
puts, and students over-relying on unverified re-
sponses (Benítez et al., 2024). Moreover, few
works explicitly quantify how reliable these educa-
tional outputs are, or how uncertainty signals can
be used to guide learners or inform teachers. As
LLMs become integral to education technology, re-
cent surveys have called for deeper investigations
into trust, transparency, and uncertainty in educa-
tional applications (Idris et al., 2024).

Uncertainty in LLMs: LLMs exhibit remarkable
fluency across diverse NLP tasks, yet their outputs
often suffer from overconfidence and miscalibra-
tion (Kadavath et al., 2022), especially in impact-
sensitive domains such as education. Existing work
has explored various uncertainty estimation tech-
niques, including entropy-based methods like pre-
dictive entropy and confidence gaps (Zhu et al.,
2025), as well as sampling consistency across out-
puts (Lyu et al., 2025). Confidence calibration is
another active area, revealing that LLMs tend to
be overconfident, particularly in zero-shot or out-
of-domain tasks (Desai and Durrett, 2020; Zhao
et al., 2021). Recent studies also propose using
uncertainty signals to guide reasoning, such as

Uncertainty-Guided CoT prompting (Zhu et al.,
2025), active prompting for data selection, and
consistency-based calibration (Diao et al., 2023;
Lyu et al., 2025). However, most of these methods
have been evaluated on general NLP or code gener-
ation tasks, with limited attention to structured edu-
cational settings like math problem solving, where
reliable uncertainty estimates can help students as-
sess model-generated reasoning and assist teachers
in diagnosing student understanding..

CoT and STL: Recent advances in CoT prompt-
ing have significantly improved the multi-step rea-
soning ability of LLMs, yet they also introduce
new layers of uncertainty, such as error propaga-
tion across intermediate steps and unfaithful ex-
planations (Zhang et al., 2022; Wang et al., 2022;
Tanneru et al., 2024). In this work, we propose
a novel perspective that treats CoT steps as dis-
crete temporal signals, enabling the use of STL
to formally specify and evaluate reasoning quality
over time (Rescher and Urquhart, 2012). STL al-
lows for expressive specifications like eventually
correct or always consistent, and provides quan-
titative robustness scores that capture the degree
of satisfaction or violation (Fainekos and Pappas,
2006). This formalism has been successfully ap-
plied in domains such as motion planning (van Hui-
jgevoort et al., 2024), reinforcement learning (Li
et al., 2017), and control synthesis, and offers a
promising path toward interpretable and rigorous
evaluation of LLM-generated reasoning trajecto-
ries. Applying STL to CoT would not only enable
structured detection of flawed reasoning patterns
but also facilitate the development of confidence-
aware feedback and scoring systems in education
and other applications.

3 STL-Guided Confidence Estimation

Our approach consists of three stages: (1) generat-
ing a stepwise confidence signal via CoT prompt-
ing, (2) applying uncertainty reshaping strategies to
promote temporal consistency, and (3) evaluating
the reshaped sequence using STL. This pipeline
is illustrated in Fig 1(b), showing how each re-
shaping strategy transforms a sample confidence
trajectory. Compared to the original signal, our
smoothing strategies effectively suppress abrupt
spikes and produce a more temporally coherent
confidence trajectory, while preserving the overall
trend of reasoning. This behavior is crucial for
downstream STL-based evaluation, which benefits
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(a) Normal Test
Given vectors a=(2,3) and 
b=(x,6),determine whether the 
condition “x>−9” is a sufficient and/or 
necessary condition for
“the angle between a and b is acute”.

sufficient and/or necessary condition

Logit-based Confidence

Problem Solving Process: We 
are given two vectors: a=(2,3),
b=(x,6),We are asked …

   0.912
Normalized Logit Score

(b)     STL-based CoT Confidence 

Step 1: When is the angle 
between two vectors acute?

Necessary and sufficient

Self Evaluaction Confidence

   0.790
Self Evaluaction Score

Process 
Analysis

Internal-based Confidence by analyzing the 
logical consistency, multipath consistency or 
rewrite frequency of the solving process.

   0.540
       Analysis Score

Given vectors a=(2,3) and 
b=(x,6),determine whether the 
condition “x>−9” is a sufficient and/or 
necessary condition for
“the angle between a and b is acute”.

+
Chain of Thought 
(CoT) prompting

Step 2: Compute the dot 
product aᐧb

Step 3: Find when   aᐧb > 0

Step 4: Is x>−9 a necessary 
condition?

Step 5: Is x>−9 a sufficient 
condition?

sufficient and/or necessary condition

0.8

1.0

0.9

0.9

0.9

Temporal Signal

Signal Reshaping

STL Robustness

STL-based CoT 
Confidence

Figure 1: (a) Conventional methods output global confidence via logit, self-evaluation, or internal analysis. (b) Our
method models step-wise CoT confidence as a temporal signal, applies signal reshaping, and evaluates robustness
using STL to obtain a temporally consistent confidence score.

from smoother and more causally consistent input
signals.

3.1 Problem Setup

We model LLMs as autonomous agents tasked with
solving high school mathematics problems. Given
an input question q ∈ Q, the agent generates a
final answer a ∈ A along with a scalar uncertainty
score u ∈ [0, 1], representing its confidence in the
answer. Ideally, high confidence should correspond
to high correctness probability, and vice versa (Guo
et al., 2017).

To evaluate calibration, we employ the Expected
Calibration Error (ECE) (Naeini et al., 2015; De-
sai and Durrett, 2020), a widely-used metric that
quantifies the mismatch between confidence and ac-
curacy. Formally, we partition predictions into M
bins based on their confidence values and compute:

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)| , (1)

where Bm denotes the set of predictions falling into
the m-th confidence bin, acc(Bm) is the empirical
accuracy defined as

acc(Bm) =
1

|Bm|
∑

i∈Bm

1[âi = ai], (2)

and conf(Bm) is the average predicted confidence.
Here, n is the total number of examples, and 1[·]
is the indicator function that returns 1 if the predic-
tion is correct, and 0 otherwise. Since the task is
formulated as multiple-choice classification, both
model predictions and ground-truth answers are
represented as one of a finite set of discrete options
(e.g., A, B, C, D). This allows correctness to be
determined via exact match of the selected option
label, avoiding ambiguities arising from natural
language variation. rect, and 0 otherwise.

In addition to ECE, we also report the Brier
Score (BS) as a complementary calibration metric.
The Brier Score measures the mean squared error
between predicted confidence and ground-truth cor-
rectness, defined as:

BS =
1

n

n∑

i=1

(ci − yi)
2, (3)

where ci ∈ [0, 1] is the model’s predicted confi-
dence for example i, and yi ∈ {0, 1} is the binary
correctness label. Lower Brier Scores indicate bet-
ter calibrated and more reliable confidence esti-
mates.

Unlike conventional classification tasks, reason-
ing in LLMs often unfolds over multiple steps (Wei
et al., 2022). This raises an additional challenge:
confidence should not only be calibrated across
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Question Logit Self-Eval Internal
Given vectors a = (2, 3) and b = (x, 6). Determine whether the condition “x > −9”
is a sufficient and/or necessary condition for “the angle between a and b is acute.”
Options: A. Sufficient but not necessary B. Necessary but not sufficient C. Sufficient
and necessary D. Neither sufficient nor necessary
Model answer: C (incorrect), True answer: B

0.99 0.98 0.99

Set parabola C : y2 = 4x. The focus is F . A line passes through (−2, 0) with slope 2
3

,
intersecting C at points M and N . Compute ⃗FM · F⃗N .
Options: A. 5 B. 6 C. 7 D. 8 (correct)
Model answer: D (correct)

0.98 0.95 0.97

Table 1: Examples of high school mathematics questions and confidence scores from three estimation strategies:
Logit-based, Self-evaluation, and Internal consistency. While the model is highly confident in all three views, the
first question is incorrectly answered, leading to significant miscalibration. The Expected Calibration Error
(ECE) for Logit, Self-Eval, and Internal confidences are 0.485, 0.465, and 0.480, respectively.

examples, but also evolve smoothly and consis-
tently over the reasoning trajectory (Zhu et al.,
2025). Hence, the problem extends to gener-
ating temporally coherent uncertainty sequences
that reflect both local confidence (per step) and
global correctness (final answer). Our objective
is thus to design a framework where uncertainty
estimates are not only well-calibrated across ex-
amples, but also evolve in a temporally consistent
manner—exhibiting properties such as smooth pro-
gression, causal coherence, and alignment with the
underlying reasoning process.

3.2 Uncertainty Reshaping Strategies

To model reasoning-time uncertainty, we use CoT
prompting to elicit a sequence of intermediate rea-
soning steps {s1, . . . , sT }, each associated with
a confidence score ct ∈ [0, 1]. We treat the re-
sulting confidence sequence c = {c1, . . . , cT } as
a temporal signal (Rescher and Urquhart, 2012).
However, due to the inherent causal nature of rea-
soning, abrupt increases in confidence, especially
after initially low-confidence steps, can be mislead-
ing (Zhu et al., 2025). To take advantage of this
insight, we propose several signal reshaping func-
tions that induce smoother and causally consistent
confidence evolution. While some of these strate-
gies are conceptually related to smoothing methods
in time-series analysis, they are, to the best of our
knowledge, novel in the context of modeling step-
wise confidence in LLM-based reasoning.

• Causal Minimum Smoothing (CMS): Lim-
its future confidence based on past minimum
values plus a small fixed margin δ:

c̃t = min

(
ct,min

i<t
ci + δ

)

• Exponential Decay Smoothing (EDS): Ap-
plies exponential smoothing by blending the
current value with the average of past values:

c̃t = α · ct + (1− α) · 1
t

t−1∑

i=1

ci

• Monotonic Penalty Smoothing (MPS):
Dampens confidence spikes if the previous
step is below a fixed threshold τ . This focuses
on upward spikes, which are more likely to
mislead following uncertain steps:

c̃t =





ct−1 + ct
2

if ct−1 < τ and ct > ct−1

ct otherwise

• Guarded Smoothing (GS): Caps sudden
jumps beyond threshold τ plus tolerance ϵ:

c̃t =

{
τ + ϵ, if ct−1 < τ and ct > τ + ϵ

ct, otherwise

The reshaped sequence c̃ = {c̃1, . . . , c̃T } is
passed to a formal temporal logic evaluation mod-
ule described next as shown in Fig. 1(b).

3.3 STL-Based Temporal Evaluation
Rather than relying solely on the final-step con-
fidence cT or averaging all stepwise confidences,
we propose a STL-based framework to evaluate
the temporal structure of the confidence trajectory
c̃ = {c̃1, . . . , c̃T } (Fainekos and Pappas, 2006).
STL enables formal specification of desired tempo-
ral properties of confidence during reasoning, such
as smooth progression or eventual certainty.

Each STL formula encodes a specific tempo-
ral pattern, and its associated robustness score
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Figure 2: Visualization examples of stepwise confidence signals before and after applying different uncertainty
reshaping strategies. Each subplot compares the original confidence trajectory (yellow) against a smoothed version
(orange) using one of the following methods: (left to right) Causal Minimum Smoothing (CMS), Exponential Decay
Smoothing (EDS), Monotonic Penalty Smoothing (MPS), and Guarded Smoothing (GS). These transformations
produce smoother and more temporally consistent confidence profiles while preserving the overall trend.

ρi = ρ(c̃,STL) ∈ R quantifies how well the re-
shaped signal satisfies that property (Donzé and
Maler, 2010). A positive score indicates the satis-
faction margin, while a negative score represents
the magnitude of a violation.

We define three STL specifications, each yield-
ing a separate confidence score:

• Eventually Confident: Confidence should
eventually rise above a threshold τ :

STL1 = 3[t1,t2](c̃(t) > τ)

• Always Stable or Increasing: Confidence
should not drop abruptly:

∆c̃(t) = c̃(t)− c̃(t− 1)

STL2 = 2[t1, t2]

(
∆c̃(t) ≥ −ϵ

)

• Local Smoothness: Confidence should not
change too much between steps:

STL3 = 2[t1, t2]

(
|∆c̃(t)| ≤ δ

)

Each resulting score ĉ = ReLU(ρ(c̃,STL)) ∈
[0, 1] represents an interpretable, temporally-
informed confidence score derived from logic-
based robustness. These scores can be used in-
dependently for analysis or combined in multi-
dimensional calibration evaluation.

While our STL-based scoring framework does
not require labeled data during reasoning, it does
rely on threshold hyperparameters (e.g., τ, ϵ, δ) that
influence robustness computation. To set them, we
perform a grid search on a held-out validation set.
This makes our approach partially post-hoc in na-
ture: only the STL evaluation stage requires data-
driven tuning, whereas the preceding confidence re-
shaping is fully unsupervised and model-agnostic.

4 Experiments

In Section 4, we present an ablation study and a
comparison against established post-hoc calibra-
tion techniques that investigates the impact of STL
parameterization and compares our method against
established post-hoc calibration techniques such as
Temperature Scaling (Guo et al., 2017) and His-
togram Binning (Zadrozny and Elkan, 2001). Our
results show that STL-based evaluation provides
not only competitive calibration performance but
also interpretable, temporally grounded diagnostics
of reasoning quality.
Experimental Setup: We conduct our experi-
ments using the Qwen-7B language model,1 a high-
performing open-source LLM optimized for Chi-
nese and mathematical reasoning tasks. Our eval-
uation is conducted on all multiple-choice ques-
tions from Chinese national college entrance ex-
ams (Gaokao) spanning 2010 to 2022, totaling
12 years of official high school mathematics prob-
lems. These questions are drawn from GAOKAO-
Bench (Zhang et al., 2023), to assess LLMs’ lan-
guage understanding and symbolic reasoning capa-
bilities using real-world exam data. Table 1 illus-
trates representative examples.

To prevent the model from relying on surface-
level pattern matching or memorized templates, we
augment the dataset following strategies inspired
by GSM-Symbolic (Mirzadeh et al., 2024), which
shows that LLMs often fail when symbols, num-
bers, or phrasing are changed. We use a more
advanced reasoning model – OpenAI’s o1 API
to perform all paraphrasing operations in a con-
trolled and semantically faithful manner. Specifi-
cally, each original problem is rewritten to preserve
logical structure and correct answer while vary-
ing lexical expressions (e.g., transforming "find

1https://huggingface.co/Qwen/Qwen-7B
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Figure 3: ECE comparison of four confidence estimation methods. (1) Final-step confidence; (2) average confidence
over CoT steps; (3) CoT confidence after applying Uncertainty Reshaping Strategies; and (4) STL-based CoT
confidence, which combines Uncertainty Reshaping Strategies with the STL1 formula (Eventually Confident:
confidence should eventually exceed a threshold τ ). The STL1-enhanced method achieves the best calibration (ECE
= 5.5).

the intersection of sets A and B" into
"determine the elements shared by both A
and B"). We further introduce linguistic variation
through backtranslation, translating problems into
a pivot language (such as French) and then back
to English, thereby injecting natural noise with-
out changing semantics. Additionally, symbolic
formulations are diversified using template-based
transformations—for example, the set expression
“A ∩B” may be rephrased as “x ∈ Z,

√
x ≤ 4” or

“B = {x ∈ Z | x2 ≤ 16}”. These augmentations
collectively evaluate the model’s robustness to para-
phrasing, symbol rewriting, and structural variation,
ensuring assessment focuses on genuine reason-
ing rather than memorized syntax. The correct an-
swer for each augmented sample is inherited from
the corresponding original Gaokao-Bench problem,
since paraphrasing and symbolic transformations
preserve semantic and logical equivalence. In to-
tal, the original 432 questions are each rewritten
twice, resulting in a final dataset of 1,296 problem
instances for evaluation.

Quantitative Results and Analysis: To illustrate
how different estimation methods affect calibra-
tion behavior, Figure 3 shows an example confi-
dence histogram under four representative strate-
gies. While it only reflects a single problem in-
stance and one STL constraint (STL1), the figure
demonstrates how reshaping and temporal logic
evaluation yield more aligned and interpretable
confidence estimates. We now turn to aggregate
results across the full test set. All scores are aver-
aged over three runs, and± denotes standard devia-
tion caused by the randomness introduced through

temperature-controlled decoding, which affects the
variability and creativity of LLM outputs. Table 2
presents the Expected Calibration Error (ECE) for
various estimation strategies across three types of
uncertainty sources: logits-based, self-evaluation-
based, and internal-based. Table 3 complements
this with Brier Scores, which jointly capture cali-
bration and sharpness of probabilistic estimates.

From the ECE results, we observe that tradi-
tional post-hoc calibration methods such as Tem-
perature Scaling (Guo et al., 2017) and Histogram
Binning (Zadrozny and Elkan, 2001) reduce mis-
calibration compared to raw one-step uncertainty.
For example, Histogram Binning achieves an ECE
of 0.139 on logits-based predictions, improving
substantially over the one-step baseline (0.324).
However, these methods operate globally and do
not account for the multi-step nature of reasoning
in LLMs.

In contrast, CoT-based methods yield stronger
performance, especially when combined with our
proposed Uncertainty Reshaping Strategies. Sim-
ply averaging confidence across CoT steps reduces
ECE across all sources, and applying smoothing
techniques such as Causal Minimum Smoothing
(CMS) or Exponential Decay Smoothing (EDS)
brings further gains. For instance, CMS reduces
logits-based ECE to 0.107, the lowest among all
non-STL methods.

STL-based temporal evaluation further improves
calibration. By enforcing high-level temporal con-
straints like Eventually Confident (STL1), Always
Stable (STL2), and Locally Smooth (STL3), the
model’s confidence trajectory becomes more inter-
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Method Reshaping Strategy Logits-based ↓ Self-evaluation-based ↓ Internal-based ↓
1-step Uncertainty - 0.324± 0.045 0.692± 0.035 0.694± 0.033

Temperature Scaling - 0.246± 0.061 0.158± 0.033 0.173± 0.046
Histogram Binning - 0.139± 0.004 0.095± 0.069 0.185± 0.129

CoT Average

- 0.141± 0.062 0.542± 0.039 0.603± 0.037
CMS 0.107 ± 0.048 0.486± 0.040 0.579± 0.041
EDS 0.126± 0.022 0.502± 0.036 0.573± 0.039
MPS 0.129± 0.063 0.530± 0.037 0.602± 0.038
GS 0.140± 0.060 0.538± 0.038 0.579± 0.021

STL1 (Eventually Confident)

- 0.174± 0.019 0.082± 0.021 0.102± 0.055
CMS 0.250± 0.198 0.136± 0.006 0.119± 0.023
EDS 0.236± 0.064 0.098± 0.012 0.500± 0.497
MPS 0.211± 0.019 0.080± 0.017 0.100± 0.046
GS 0.212± 0.026 0.077± 0.018 0.096± 0.035

STL2 (Always Stable)

- 0.170± 0.071 0.113± 0.011 0.075± 0.040
CMS 0.153± 0.021 0.126± 0.013 0.074± 0.030
EDS 0.114± 0.063 0.114± 0.015 0.056 ± 0.028
MPS 0.188± 0.009 0.118± 0.015 0.063± 0.013
GS 0.164± 0.074 0.111± 0.013 0.070± 0.039

STL3 (Locally Smooth)

- 0.184± 0.021 0.154± 0.015 0.099± 0.031
CMS 0.122± 0.018 0.081± 0.037 0.084± 0.030
EDS 0.149± 0.008 0.076 ± 0.040 0.083± 0.034
MPS 0.171± 0.025 0.151± 0.030 0.083± 0.046
GS 0.180± 0.017 0.118± 0.006 0.091± 0.043

Table 2: Expected Calibration Error (ECE) comparison across confidence sources and estimation strategies. STL-
based methods, particularly STL1–STL3 combined with Uncertainty Reshaping (CMS, EDS), consistently yield
better calibration than traditional techniques.

pretable and aligned with reasoning quality. STL1
combined with GS achieves an ECE of 0.077
on self-evaluation-based confidence and 0.096 on
internal-based, outperforming all other approaches.
Notably, STL2 with EDS reaches an ECE of
0.056 on internal-based confidence—the best re-
sult across all settings.

The Brier Score analysis mirrors this trend.
STL methods consistently produce lower scores
than CoT average or standard post-hoc techniques.
STL1 with CMS achieves the best self-evaluation-
based Brier Score (0.234), while STL2 with EDS
offers the best internal-based score (0.056). These
results confirm that applying STL logic not only
improves calibration error but also leads to sharper,
more reliable probability estimates.

Overall, STL-based confidence estimation out-
performs traditional calibration and CoT-only base-
lines, particularly when paired with CMS or EDS.
These findings highlight the value of structured
temporal logic as a calibration framework for LLM-
based reasoning, offering both theoretical guaran-
tees and empirical gains.

5 Conclusion

This paper presents a structured approach to confi-
dence estimation for LLM-based mathematical rea-
soning. By modeling stepwise confidence as a tem-

poral signal and evaluating its quality using STL,
our method addresses limitations in traditional cali-
bration and step-level aggregation techniques. We
introduce a suite of uncertainty reshaping strate-
gies and STL-based robustness constraints that en-
force desirable properties such as eventual certainty,
monotonic progression, and local smoothness.

Experimental results on GAOKAO-Bench
demonstrate that our STL-based evaluation, partic-
ularly when paired with smoothing strategies like
CMS and EDS, consistently achieves lower ECE
and Brier Scores compared to standard baselines.
Beyond quantitative improvements, the framework
provides a principled, interpretable method for di-
agnosing and enhancing reasoning quality in edu-
cational LLM applications.

6 Limitations

While our method improves calibration and inter-
pretability, it is currently limited to high school-
level multiple-choice math problems. Extending
the framework to open-ended questions, formal
proofs, or multi-modal reasoning is a promising
direction. Since all experiments are conducted on
Qwen-7B, generalization to other models remains
uncertain. Testing on models like Gemma 3, Llama
3.2, or DeepSeek would help assess robustness
across architectures.
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Method Reshaping Strategy Logits-based ↓ Self-evaluation-based ↓ Internal-based ↓
1-step Uncertainty - 0.339± 0.019 0.677± 0.032 0.678± 0.032

Temperature Scaling - 0.263± 0.040 0.255± 0.018 0.276± 0.018
Histogram Binning - 0.284± 0.002 0.263± 0.020 0.259± 0.021

CoT Average

- 0.225± 0.033 0.498± 0.023 0.564± 0.028
CMS 0.218± 0.032 0.442± 0.019 0.537± 0.029
EDS 0.219± 0.032 0.455± 0.017 0.530± 0.027
MPS 0.219± 0.033 0.483± 0.022 0.563± 0.028
GS 0.222± 0.033 0.493± 0.022 0.536± 0.037

STL1 (Eventually Confident)

- 0.223± 0.003 0.244± 0.001 0.246± 0.001
CMS 0.218 ± 0.005 0.234 ± 0.000 0.240± 0.000
EDS 0.219± 0.003 0.238± 0.001 0.241± 0.001
MPS 0.221± 0.000 0.243± 0.002 0.246± 0.001
GS 0.223± 0.004 0.243± 0.002 0.239± 0.001

STL2 (Always Stable)

- 0.238± 0.008 0.252± 0.005 0.254± 0.002
CMS 0.239± 0.009 0.246± 0.002 0.249± 0.001
EDS 0.243± 0.004 0.253± 0.003 0.253± 0.001
MPS 0.239± 0.006 0.252± 0.004 0.254± 0.002
GS 0.238± 0.008 0.252± 0.004 0.257± 0.005

STL3 (Locally Smooth)

- 0.232± 0.011 0.236± 0.002 0.240± 0.001
CMS 0.237± 0.008 0.241± 0.002 0.242± 0.001
EDS 0.239± 0.006 0.242± 0.001 0.244± 0.000
MPS 0.236± 0.010 0.236± 0.003 0.238 ± 0.002
GS 0.233± 0.011 0.235± 0.001 0.249± 0.002

Table 3: Brier Score comparison across methods. Lower scores indicate better-calibrated and sharper probabilistic
predictions. STL-based temporal constraints further improve performance beyond CoT averaging and post-hoc
calibration.

Both the reshaping strategies and STL specifi-
cations are manually defined. Future work could
explore learning them dynamically via reinforce-
ment learning or differentiable logic, enabling more
adaptive and data-driven calibration beyond man-
ual tuning.

This paper focuses on linear chain-of-thought
reasoning. More complex prompting paradigms,
such as tree-of-thought (Yao et al., 2023), intro-
duce branching and cyclic structures that pose new
challenges for temporal modeling. Extending our
evaluation to computation tree logic (CTL) to ac-
commodate such structures would broaden its ap-
plicability to richer and more realistic cognitive
processes.

Finally, our method is post-hoc and does not in-
fluence model inference. Integrating uncertainty
feedback into real-time tutoring systems could en-
able dynamic intervention, hinting, and early error
detection.
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Abstract

This paper presents an automated scoring ap-
proach for a formative assessment tool aimed at
helping learner physicians enhance their com-
munication skills through simulated patient in-
teractions. The system evaluates transcribed
learner responses by detecting key communica-
tive behaviors, such as acknowledgment, em-
pathy, and clarity. Built on an adapted version
of the ACTA scoring framework, the model
achieves a mean binary F1 score of 0.94 across
8 clinical scenarios. A central contribution of
this work is the investigation of how to bal-
ance scoring accuracy with scalability. We
demonstrate that synthetic training data offers
a promising path toward reducing reliance on
large, annotated datasets—making automated
scoring more accurate and scalable.

1 Introduction

The ability to automatically evaluate free-text re-
sponses has become one of the most impactful ap-
plications of natural language processing (NLP)
in education. Traditionally, research in this area
has focused on automated short-answer grading
(ASAG) (Haller et al., 2022; Suen et al., 2023;
Clauser et al., 2024) and essay scoring (Klebanov
and Madnani, 2022). Recently, the scope has ex-
panded to scoring clinical patient notes written
by medical students, which involves determining
whether critical medical concepts outlined in a
scoring rubric are accurately addressed (Sarker
et al., 2019; Harik et al., 2023; Yaneva et al., 2024).
While traditional ASAG approaches focus on eval-
uating factual correctness or content coverage in
student responses, our work extends this paradigm
to assess the quality of interpersonal communica-
tion skills—a domain where responses are more
nuanced and context-dependent than typical short-
answer assessments.

In this paper, we further extend NLP-based scor-
ing in medical education by introducing a new task:

automated scoring of communication skills in a
learning tool for physician-patient interactions. Our
work is part of the Communication Learning As-
sessment (CLA) framework (White et al., 2024), a
structured educational program that helps medical
learners practice communication skills through real-
istic patient interactions. In a typical CLA scenario,
learners watch a brief video of a patient expressing
concerns, seeking clarification about their diagno-
sis, or struggling with treatment adherence, among
other examples. They then respond verbally to that
scenario (their response can be up to one minute
long), aiming to demonstrate key communication
behaviors pertinent to the situation. In CLA, these
expected behaviors are called learning points (LPs).
For example, the LP "Praise patient’s weight loss
efforts" might be demonstrated by a learner saying,
"I’m really proud of you for sticking with it." Eval-
uating these responses involves identifying specific
spans of speech from the learner response that align
with LPs from the scoring rubric of the scenario.

The primary contribution of this work is three-
fold: (1) we investigate the application of au-
tomated approaches for scoring communication
skills; (2) we evaluate various techniques aimed
at improving model performance; and (3) we con-
sider the scalability of these techniques in practical
deployment scenarios. While strategies such as in-
creasing the volume of human-annotated data can
enhance performance, they are inherently limited
by resource constraints and thus do not support
scalable solutions. To address this, we focus on
approaches such as data augmentation, few-shot
learning, and automated generation of training data
— methods that hold promise for improving model
performance while maintaining scalability.

2 Dataset and Annotation

The dataset used in this study consists of tran-
scribed learner responses collected from simu-
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Case ID Total #Positive #Negative #LPs

174 162 91 71 3
175 120 71 49 2
176 162 80 82 3
177 236 164 72 4
178 138 55 82 3
180 165 99 66 3
182 232 171 61 4
192 236 134 102 4

Table 1: Summary statistics per case. #Positive refers
to the number of responses that reflect a learning point
(LP). #Negative refers to the number of responses con-
structed without any such reflection (i.e., the learner did
not address the LP). #LPs denotes the number of distinct
LPs associated with each case.

lated physician-patient interactions across 8 clinical
cases (see Table 1). Each case contains between
120 and 236 learner responses. The learners were
3rd and 4th year US medical students who passed
the USMLE® Step 1 exam1. Recruitment was car-
ried out by NBME.

Annotations were guided by a detailed rubric
capturing key communication behaviors essential
for effective physician-patient interactions, such as
acknowledgment of patient concerns, provision of
clear explanations, demonstration of empathy, and
reinforcement of positive behaviors. This rubric
included 26 unique Learning Points (LPs), each as-
sociated exclusively with one of the 8 clinical cases,
with each case containing between 2 and 4 distinct
LPs. Annotators were instructed to precisely iden-
tify reflective text spans corresponding to each LP
by providing exact character-level indices within
learner responses. Negative samples for each LP
were systematically derived by listing all learner
responses from the same clinical case that were not
annotated as reflecting that specific LP, ensuring
comprehensive negative examples.

Annotations were performed by NBME staff
members who were trained domain experts in clin-
ical communication. For each case, 60 responses
were randomly selected for annotation develop-
ment. Initially, five responses per case were inde-
pendently annotated by three senior and two junior
annotators, producing a total of 25 annotations. An-
notators then discussed these annotations to resolve
disagreements and establish consensus. Following
this consensus-building step, annotators indepen-
dently annotated seven additional responses each,

1A high-stakes US medical licensure exam, https://www.
usmle.org/

resulting in 35 annotated responses per case. Fi-
nally, a senior annotator reviewed and finalized
annotations for all 60 responses per case to ensure
consistency and annotation quality. On average,
each LP received approximately 45 annotations,
with the exact count ranging from 20 to 80 per LP.
Overall, approximately 60% of annotations explic-
itly reflected the targeted LPs. Table 1 summarizes
detailed annotation statistics by clinical case.

3 Model Adaptation and Training

We base our automated scoring on ACTA (Yaneva
et al., 2024), which uses a DeBERTa-large archi-
tecture as a sequence-level classifier for identifying
exact spans that reflect targeted Learning Points
(LPs) in learner responses. Instead of predicting
per-token labels, ACTA is trained to output the
character-level start and end of the span correspond-
ing to the LP, given the response and LP description
as inputs. Training uses cross-entropy loss over all
possible spans.

The original LP descriptions in our rubric were
intentionally concise for human annotators (e.g.,
"Risks of MRI"), but this brevity posed challenges
for ACTA’s sequence classification architecture,
which relies on semantic relationships between LP
descriptions and response text. Terse descriptions
lack the contextual cues necessary for distinguish-
ing between superficially similar content and actual
demonstrations of the targeted behavior. To ad-
dress this limitation, we expanded LP descriptions
to include specific behavioral indicators. For exam-
ple, "Risks of MRI" became "Risks of MRI: Avoid
unnecessary, costly, and risky tests," providing ex-
plicit guidance about the communication goal and
enabling DeBERTa’s attention mechanism to better
identify relevant response segments.

We explored two approaches for generating these
expanded LP descriptions:

• ACTA-M (Manual Summaries): Domain ex-
perts manually created enhanced descriptions
for LPs with fewer than 20 positive annota-
tions, incorporating clinical expertise to cap-
ture nuanced communication behaviors.

• ACTA-A (Automated Summaries): We
used Qwen2.5-32B-instruct (4-bit) (Bai et al.,
2024) to automatically generate augmented
LP descriptions by synthesizing patterns from
aggregated positive annotations, providing a
scalable alternative to manual expansion.
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One model per case One model for all cases LLM scoring

Case ID Original LPs ACTA-A ACTA-M Original LPs ACTA-A ACTA-M Qwen GPT

174 0.905 0.896 0.899 0.894 0.915 0.917 0.835 0.858
175 0.949 0.966 0.949 0.917 0.966 0.966 0.912 0.931
176 0.861 0.865 0.883 0.897 0.886 0.893 0.890 0.849
177 0.927 0.944 0.943 0.930 0.936 0.953 0.936 0.915
178 0.883 0.930 0.930 0.930 0.930 0.930 0.848 0.852
180 0.928 0.939 0.955 0.933 0.956 0.934 0.974 0.942
182 0.976 0.928 0.969 0.983 0.972 0.976 0.931 0.880
192 0.931 0.948 0.934 0.945 0.948 0.943 0.922 0.820

Average 0.920 0.927 0.933 0.929 0.938 0.939 0.906 0.881

Table 2: Comparison of binary F1 scores for ACTA with original and augmented learning point descriptions
(ACTA-A and ACTA-M), and LLM-based scoring (i.e., a few-shot approach).

For evaluation, we employed 5-fold cross-
validation at the case level, distributing the 8 clin-
ical cases such that each fold used 6-7 cases for
training and 1-2 cases for testing. This ensures
the model is evaluated on entirely unseen clini-
cal scenarios. We fine-tuned2 DeBERTa-large on
each fold’s training data. For automated summaries
(ACTA-A), descriptions were generated separately
for each fold using only that fold’s training annota-
tions to prevent information leakage.

In addition to these two augmented versions of
ACTA, we evaluated two other methods:

• LLM scoring: a few-shot scoring approach
using large language models (LLMs) to de-
tect learning points directly from learner re-
sponses.To evaluate whether few-shot classi-
fication could serve as an effective alterna-
tive or complement to ACTA without fine-
tuning, we experimented with two large lan-
guage models: Qwen2.5-32B-instruct (4-bit)
and GPT-4o (OpenAI, 2024). Qwen was se-
lected due to its instruction-tuning and demon-
strated effectiveness in similar instructional
tasks. GPT-4o was chosen based on its ad-
vanced reasoning capabilities and broad ap-
plicability to instructional scenarios (Brown
et al., 2020; Wei et al., 2022). These choices
align with established best practices in lever-
aging instruction-tuned language models for
few-shot classification tasks. For each Learn-
ing Point (LP), the models were prompted
with detailed task instructions alongside five
positive and five negative examples, follow-
ing a structured few-shot format designed to
encourage consistent performance.

2epochs=10, batch_size=8, learning_rate=2e-5,
max_length=256

• Synthetic responses: To investigate whether
synthetic data can effectively address lower
scoring accuracy for Learning Points (LPs)
with limited annotations, we supplemented
our dataset using synthetic learner re-
sponses generated by the Qwen2.5-32B-
instruct model. For each LP with sparse an-
notations, we prompted the LLM with task-
specific instructions, definitions of the target
LP, and selected positive examples from real
learner data. The model then generated re-
alistic synthetic responses explicitly demon-
strating the targeted LP. This synthetic dataset
augmentation enabled us to expand training
data without the cost and time constraints of
additional student data collection or manual
annotation.

Model evaluation was performed using binary F1
score, measuring accuracy in detecting the presence
or absence of communication behaviors.

4 Results

Table 2 summarizes the performance of ACTA us-
ing the original learning points compared with aug-
mented descriptions (ACTA-A and ACTA-M) us-
ing five-fold cross-validation, as well as results
from the few-shot approach using LLM scoring
and the use of synthetic responses. Manual sum-
maries (ACTA-M) achieved the highest average
binary F1 scores (0.933 for the one-model-per-case
setting and 0.939 for the one-model-for-all-cases
setting), highlighting the moderate effectiveness of
human-crafted augmentation. The automated aug-
mentation approach (ACTA-A) also yielded mod-
erate improvements, indicating its potential as a
scalable alternative. LLM-based scoring alone did
not improve performance, but it produced results
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that were nearly comparable to ACTA (e.g., 0.90
vs. 0.933). We note that this was achieved without
the need for extensive data collection or human
annotation, aside from the need for annotated data
for evaluation purposes.

Finally, the use of synthetic responses led to sub-
stantial improvements in scalability. Table 3 shows
that training ACTA solely on synthetic data (50 gen-
erated examples per case-LP pair) provided only
moderate performance gains compared to a sim-
ple baseline (0.757 vs. 0.723 average binary F1).
However, combining a small amount of real anno-
tated data (15 encounters per case) with synthetic
responses significantly improved results (0.878 av-
erage binary F1), clearly outperforming models
trained only on limited real data (0.793 average
binary F1). These results indicate that synthetic re-
sponses can effectively reduce the need for human
annotation without sacrificing performance.

Performance varied across clinical cases, sug-
gesting the benefit of tailoring augmentation strate-
gies to specific learning point characteristics. We
also note the comparability of results from using
one model for all cases compared to using one
model per case.

5 Error Analysis

We conducted an error analysis to understand the
limitations and inform future scoring improve-
ments. The analysis focuses on three perspectives:
(1) the relationship between annotation quantity
and model performance, (2) specific learning points
with low model performance, and (3) cases that
showed consistently low performance.

First, we observe a clear relationship between the
number of positive annotations per LP and binary
F1 scores (see Figure 1). LPs with more than 30 an-
notations generally achieve binary F1 scores above
0.87, indicating that sufficient annotation quantity
is critical for model performance. This threshold is
empirically derived by examining the distribution
in Figure 1, where performance plateaus become
apparent.

Second, to understand LPs with low binary F1
scores (< 0.85), we perform both quantitative and
qualitative analyses. A systematic human review
is conducted where three annotators independently
examine 37 false negatives (instances where ACTA
failed to identify an originally annotated LP) and
81 false positives. Among the 35 false negatives
with complete reviews, only 51.4% were confirmed
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Figure 1: Relationship between the number of positive
annotations per learning point and binary F1 score. LPs
with more annotations generally achieve higher binary
F1 scores. This indicates that sufficient annotations are
important for accurate automated scoring.

as true model errors by majority vote, while 48.6%
were retrospectively deemed correct predictions by
ACTA. This finding reveals that nearly half of ap-
parent model “errors” may actually reflect annota-
tion inconsistencies rather than model failures. The
analysis identified three primary factors contribut-
ing to lower performance: (1) insufficient positive
training examples limiting the model’s exposure
to representative spans, (2) inherently ambiguous
LP definitions leading to inconsistent interpreta-
tions, and (3) the intrinsic subjectivity in identify-
ing nuanced communication behaviors despite our
rigorous annotation process.

Third, cases 174 and 176 demonstrated con-
sistently lower performance across multiple LPs.
This pattern suggests these cases contain inherently
more challenging communication scenarios or LPs
that are particularly difficult to identify consistently.
This finding emphasizes the need for targeted anno-
tation efforts and potentially refined LP definitions
for such challenging cases.

Overall, the error analysis reveals that identi-
fying physician communication behaviors (PCBs)
is highly subjective and complex. While our an-
notation process included consensus-building and
final adjudication by senior annotators, the nu-
anced nature of communication skills—such as
distinguishing between implicit and explicit empa-
thy—introduces unavoidable interpretive variation.
These findings underscore the importance of suffi-
cient annotation volume and suggest that enhanced
annotation guidelines with stricter quality control
would be valuable for future iterations.
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Case ID Baseline 50 Synthetic 5 Real + 50 Synthetic 15 Real 15 Real + 50 Synthetic

174 0.712 0.754 0.770 0.763 0.828
175 0.734 0.817 0.855 0.852 0.905
176 0.649 0.684 0.810 0.638 0.861
177 0.813 0.826 0.830 0.900 0.894
178 0.577 0.580 0.732 0.843 0.842
180 0.739 0.812 0.848 0.900 0.909
182 0.841 0.812 0.893 0.743 0.926
192 0.718 0.773 0.823 0.704 0.858

Average 0.723 0.757 0.820 0.793 0.878

Table 3: Binary F1 scores across different training scenarios. Baseline assumes every learning point is present (i.e.,
full recall). 5/15 Real uses 5 or 15 real annotated encounters per case. Synthetic refers to LLM-generated responses
(50 per case-LP pair) created using Qwen32B-4bit. Performance is evaluated on real learner responses.

6 Discussion

This study contributes to the ongoing conversation
on improving NLP-driven assessment by examin-
ing whether data augmentation, few-shot learning,
and synthetic data can mitigate the scalability chal-
lenges of manual annotation.

Our experiments yielded mixed results. Nei-
ther manual (ACTA-M) nor automated (ACTA-A)
data augmentation methods showed substantial im-
provements over the baseline model. Similarly, the
few-shot learning models did not outperform the
ACTA model. However, the few-shot approach per-
formed almost comparably to the baseline model
without the need for extensive data collection or
human annotation, which is a significant advantage
in scenarios where resources for annotation are lim-
ited. A potential explanation for these findings is
the relatively small sample size of cases and anno-
tations used, which may have limited the diversity
and complexity of the learning points. Moreover,
our baseline model—a DeBERTa-based classifier
trained with the available annotated data—had al-
ready achieved strong F1 scores, reducing the room
for significant improvement via augmentation or
alternative training strategies.

A key contribution for improving scalability
were the synthetic data experiments. Training
ACTA exclusively on synthetic responses (gen-
erated using Qwen32B-4bit) provided moderate
improvements over a naive baseline, indicating
synthetic responses alone may be a viable initial
training strategy in low-resource settings. How-
ever, combining a relatively small set of human-
annotated responses with synthetic data signifi-
cantly increased model performance (average bi-
nary F1 from 0.793 to 0.878), clearly demonstrat-
ing that synthetic responses can meaningfully re-
duce the need for extensive manual annotation.

These results suggest that synthetic data is a practi-
cal and scalable approach to addressing annotation
bottlenecks without sacrificing model accuracy.

Analysis of annotation density (Figure 1) fur-
ther reaffirmed that performance improves with an
increasing number of positive annotations per LP,
highlighting the importance of targeted annotation
efforts. Additionally, the comparable results from
case-specific models and general models suggest
that unified modeling strategies may be viable.

7 Limitations

Some limitations of this research stem from the
small sample size of annotated responses, and
the small number of vignettes. Additionally, re-
source constraints prevented all responses from
being double-rated. While the scoring method
remains interpretable by linking LPs to specific
phrases in the responses, the neural models used
to define phrase boundaries operate as black boxes
and require careful evaluation for potential bias.

Although the few-shot LLM-based scoring
approach demonstrates promising generalization
without explicit fine-tuning, it shows limitations
compared to ACTA models. Specifically, few-shot
methods heavily depend on prompt quality and the
selection of examples provided, making their per-
formance less consistent and potentially sensitive to
minor changes in prompt design. Furthermore, few-
shot predictions inherently offer lower interpretabil-
ity than token-level classifiers like ACTA, as LLM
decisions emerge directly from prompt condition-
ing without explicit textual evidence or intermedi-
ate classification steps. This reduced transparency
can limit their practical usefulness, especially in
educational contexts where detailed feedback and
justification of model predictions are often neces-
sary. Further research is needed to investigate the
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varying levels of risk that the lower explainability
of few-shot learning models presents across differ-
ent assessment domains. These risks can be better
understood and mitigated through additional evalu-
ation studies that provide more evidence on how to
address potential concerns.

Likewise, the addition of synthetic data for train-
ing purposes needs to be carefully evaluated using
a high-quality dataset of carefully annotated real
learner responses. We note that while synthetic
data can meaningfully reduce the need for data
collection and human annotation, it cannot fully re-
place that need as such data will always be needed
for a robust evaluation of any scoring system.

8 Ethical Considerations

Like many other products, automated scoring tools
function as socio-technical systems, where their im-
pact depends not only on their technical capabilities
but also on how they are used and how their outputs
are interpreted. Below, we outline specific aspects
of the use of this system in different contexts that
merit discussion of ethical implications.

In a summative assessment context, the models
outlined here are designed as hybrid systems, en-
suring that responses from examinees who are bor-
derline or below the passing threshold are always
reviewed by human raters. In a formative setting,
it is essential to closely analyze how the system’s
implementation affects learning outcomes, offering
critical validity evidence. This includes determin-
ing whether automated feedback aids or obstructs
skill development, how examinees engage with the
feedback, and whether the reliance on automated
scoring impacts learning strategies over time. In
the case of formative assessment, which is the pri-
mary purpose of the CLA tool, a possible negative
consequence could also be "washback"—a focus
on developing only the skills directly addressed by
the tool. It is also crucial to evaluate whether spe-
cific learner groups benefit more than others and
to identify any unintended effects, such as over-
dependence on the system or reinforcement of ex-
isting biases. A comprehensive exploration of these
factors will help ensure that automated scoring sys-
tems function as valuable educational tools, rather
than mechanical evaluation devices.

The scores provided by the automated scoring
engine are currently in their raw form and have not
yet been converted into feedback for students or
faculty. This transformation into actionable feed-

back is a crucial step because raw scores alone do
not provide the necessary context or guidance for
improving performance. For students, feedback is
essential to understand their strengths and weak-
nesses, guiding them on how to improve and which
areas to focus on. Without clear, specific feedback,
students may struggle to make meaningful improve-
ments, as they may not fully understand the impli-
cations of their scores or how to address their per-
formance gaps. For faculty, the feedback generated
from the automated scores can provide valuable
insights into student progress, helping instructors
identify areas where students may be struggling,
and informing instructional adjustments. This step
also allows faculty to engage with the results in a
more meaningful way, facilitating a deeper under-
standing of the learning process and ensuring that
the assessment tools align with educational goals.
Therefore, transforming raw scores into detailed,
constructive feedback is vital to ensure that the
automated scoring system contributes effectively
to the learning process and supports both student
development and instructional improvements.
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Abstract

This study presents a computational analy-
sis to classify actionability in teacher feed-
back. We fine-tuned a RoBERTa model on 662
manually annotated feedback examples from
West African classrooms, achieving strong
classification performance (accuracy = 0.94,
precision = 0.90, recall = 0.96, f1 = 0.93).
This enabled classification of over 12,000 feed-
back instances. A comparison of linguistic fea-
tures indicated that actionable feedback was as-
sociated with lower word count but higher read-
ability, greater lexical diversity, and more mod-
ifier usage. These findings suggest that concise,
accessible language with precise descriptive
terms may be more actionable for teachers. Our
results support focusing on clarity in teacher
observation protocols while demonstrating the
potential of computational approaches in ana-
lyzing educational feedback at scale.

1 Introduction

Classroom observation plays a crucial role in evalu-
ating and enhancing instructional quality (Adelman
and Walker, 1975; Wragg, 2011). By offering a
direct perspective on teaching in authentic settings,
it provides insights into how educators engage with
students and structure their instruction (Millman
and Darling-Hammond, 1990; Putnam and Borko,
2000). It also serves as a vital link between teach-
ing practices and student learning outcomes, thus
creating the foundation for teacher professional
development (Kane and Staiger, 2012).

Given this significance, the quality of feedback
derived from classroom observations is essential
(Lazarev and Newman, 2015). While various char-
acteristics contribute to effective feedback, includ-
ing constructive tone and clarity, research empha-
sizes that specificity and actionability are partic-
ularly crucial for enhancing teacher performance
(Archer et al., 2016). Truly actionable feedback
provides specific recommendations and clear di-

rection, establishing concrete performance expec-
tations and supporting professional growth (Can-
non and Witherspoon, 2005). By focusing on ob-
servable teaching behaviors rather than personal
attributes, such feedback enables meaningful in-
structional improvements (Archer et al., 2016).

Although research on actionable feedback orig-
inated largely outside education, its principles
have proven directly applicable to classroom con-
texts. In organizational psychology, Cannon and
Witherspoon (2005) identified key elements of ac-
tionable feedback: specificity, balanced positive
and constructive components, and clear connec-
tions between observed behaviors and suggested
improvements. This aligned with Kluger and
DeNisi (1996)’s comprehensive meta-analysis of
over 3,000 feedback interventions, which found
that feedback effectiveness varies dramatically
based on specificity and delivery characteristics.
Within education-specific research, multiple stud-
ies have confirmed and extended these general prin-
ciples. For example, Allen et al. (2011) demon-
strated that structured feedback systems yield mea-
surable improvements in teaching quality. Simi-
larly, Thurlings et al. (2013) found that effective
teacher feedback typically contains explicit behav-
ioral descriptions, rationales for suggested changes,
and concrete examples of alternative approaches.
Quantitative evidence from Steinberg and Sartain
(2015)’s analysis of over 12,000 teacher observa-
tion records showed that feedback incorporating
concrete examples and precise language led to mea-
surable gains in subsequent evaluations. In a simi-
lar way, Hill et al. (2012) established that feedback
quality directly correlates with improvements in
instructional practice, particularly when including
specific action steps. In fact, Darling-Hammond
et al. (2017)’s work on professional development
systems reinforces the critical role of actionable
feedback as a bridge between observation and im-
plementation.
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Despite the importance of actionable feedback,
classroom observers often struggle to provide guid-
ance that teachers can readily implement (Kraft
et al., 2018). This implementation gap stems from
inconsistent understanding of what constitutes ac-
tionable feedback and the absence of systematic
approaches to analyze feedback quality at scale.
Computational approaches offer promising avenues
for analyzing observation feedback and identifying
patterns in actionable feedback. However, applying
these methods to classroom observation requires
addressing how actionability can be computation-
ally defined and recognized. Our research bridges
educational theory and computational methods to
develop methods that can meaningfully evaluate
the actionability of teacher feedback.

2 Prior Work

While we were not able to identify any exist-
ing studies specifically focused on using NLP ap-
proaches to identify actionable teacher feedback,
adjacent educational research provides relevant
context for our work. In the domain of classroom
observation, Demszky et al. (2021) analyzed lin-
guistic features in teacher speech to evaluate in-
structional effectiveness. Similarly, Suresh et al.
(2019) examined different dimensions of teacher
feedback, though their work did not address ac-
tionability specifically. Beyond teacher-focused re-
search, computational analyses of student-centered
feedback have shown promising results. Leeman-
Munk et al. (2014) developed methods to evalu-
ate student writing and identify improvement ar-
eas, while Madnani et al. (2017) created models
for standardized writing assessments that demon-
strated reliability comparable to human raters.

The emergence of large language models
(LLMs) has also sparked interest in their potential
for educational annotation and classification tasks.
However, Wang et al. (2023) found that models
like GPT struggled to accurately classify nuanced
educational distinctions. This aligns with Hardy
(2025)’s assertion that classroom settings represent
“out-of-distribution” data for LLMs, which are pri-
marily trained on broad internet crawls. Addition-
ally, concerns about data privacy, environmental
impact, and the ethics of automated educational as-
sessments complicate their use in education. In con-
trast, specialized transformer-based models offer
more promising results for educational applications.
Research indicates that models such as BERT (De-

vlin et al., 2019) and RoBERTa (Liu et al., 2019),
when properly trained on educational data, can out-
perform larger LLMs in classifying teacher-student
interactions (Wang et al., 2023). Zhang and Lit-
man (2021) demonstrated that these models can
be trained on modest amounts of annotated educa-
tional data while maintaining strong performance,
making them more practical for applications where
annotated data may be limited.

Our Study

Despite substantial research on the importance
of actionable feedback, computational approaches
for identifying actionability in teacher observation
feedback remain largely unexplored. This gap ap-
pears to exist primarily because of: (1) the lack of
clear, consensus definitions of “actionability” in
educational contexts; and (2) the scarcity of anno-
tated datasets, as creating these typically requires
time-consuming and resource-intensive manual an-
notation by educational experts (Shah and Pabel,
2019; Shaik et al., 2022).

Our study addresses these gaps through a novel
approach where we first established a training
dataset by annotation of approximately 660 in-
stances of classroom observation feedback as either
actionable or vague. Using this annotated corpus,
we fine-tuned RoBERTa to extend this classifica-
tion to a much larger dataset of over 12,000 feed-
back instances. With this comprehensive dataset,
we conducted an examination of the linguistic fea-
tures associated with actionability. These find-
ings hold potential to inform the training of class-
room observers, guide the development of auto-
mated feedback assessment tools, and help improve
teacher professional development.

3 Data

This study utilized a large-scale dataset collected
from classrooms in Sierra Leone, Liberia, and
Ghana by Rising Academies during 2023-2025.
The dataset includes N = 13,118 classroom obser-
vation records, each documenting teacher feedback
provided by trained observers. Descriptive statis-
tics on the schools, grades and subjects from which
these observations were sourced are presented in
Table 1. As shown, the observations come from
273 schools (approx. 48 observations/school) and
were recorded by 76 observers (approx. 173 obser-
vations/observer).

Each observation was recorded using a struc-
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Category Value (Percentage)

Observers
Number of Observers 76
Avg. Observations/Observer 172.6

Schools
Number of Schools Observed 273
Avg. Observations/School 48.1

School Categories
Top performing 481 (3.7%)
High Impact 2327 (17.7%)
Middle performing 580 (4.4%)
Moderate 4443 (33.9%)
Developing 3198 (24.4%)
Challenging 501 (3.8%)
Critical 507 (3.9%)
N/A 1081 (8.2%)

Grades
Grade 1 2393 (18.2%)
Grade 2 2621 (20.0%)
Grade 3 2562 (19.5%)
Grade 4 2949 (22.5%)
Grade 5 1470 (11.2%)
Grade 6 1123 (8.6%)

Subjects
Math 5201 (39.6%)
Faster Math 1978 (15.1%)
Reading 2806 (21.4%)
Faster Reading 3133 (23.9%)

Table 1: Descriptive statistics on observations. Note.
For the purposes of this study, data from Grades 1-6
and 4 subjects: Reading, Math, Faster Reading, and
Faster Math, were selected. Faster Reading and Faster
Math are accelerated learning programs designed to
supplement regular school curricula (N = 13118)

tured two-column format that included: (1) What
Went Well (WWW) statements, which highlighted
teacher strengths or effective strategies, and (2)
Even Better If (EBI) suggestions, aimed at guiding
improvements in teaching practices. As shown in
the distribution in Figure 1, the average feedback
length was 16.95 words (SD = 10.83). While the
feedback length was relatively short, there was sig-
nificant variation in its detail and clarity, ranging
from broad praise/criticism to more specific rec-
ommendations. Due to the short length, no textual
preprocessing was applied.

4 Methods

We organized our study into five sequential phases
(visualized in Figure 2):

Figure 1: Probability density distribution of feedback
length (in words; N = 13118)

Phase 1: Annotation and rubric development

In this phase, we developed a training dataset for
fine-tuning RoBERTa through a rigorous annota-
tion process. A stratified subsample of 750 com-
ments was selected across multiple dimensions
(school categories, grade levels, and subject ar-
eas) to ensure representativeness. Two indepen-
dent researchers annotated each observation feed-
back according to a standardized rubric derived
from established literature (see Appendix A for de-
tails), classifying comments as either “actionable”
or “vague.” This dual-annotation approach facili-
tated the calculation of inter-rater reliability using
Cohen’s Kappa (κ), yielding a coefficient of 0.60,
which indicated moderate agreement.

Discrepancies were methodically resolved
through iterative analytical discussions, which si-
multaneously informed the refinement of our anno-
tation protocol, culminating in the revised rubric
presented in Appendix A. The operationalization
of “actionable” feedback centered on the presence
of concrete, specific suggestions with explicit guid-
ance on both implementation targets and mecha-
nisms. For instance, the comment “The teacher did
great grouping learners and made them pick one
word on a flash card where the group later leads
in learning the new word. It would be better if the
teacher completed the lesson in one hour to allow
time for other lessons” exemplified actionable feed-
back due to its specific temporal recommendation
and clear rationale. Conversely, feedback was clas-
sified as “vague” when it lacked implementation
specificity, regardless of the presence of ostensibly
directive phrases such as “even better if ” or “could
have.” The comment “Giving more energy to make
the class exciting was absolutely missing” illus-
trates this classification, as it presents an evaluative
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Figure 2: Flow chart for the study

statement without concrete behavioral specifica-
tions for improvement. We also excluded instances
lacking sufficient evaluative clarity, resulting in a
final annotated corpus of 662 comments (reduced
from the initial 750). This dataset served as the
training corpus for the next phase.

Phase 2: Fine-tuning RoBERTa on the
annotated dataset

Model Specification
We fine-tuned RoBERTa (Liu et al., 2019)

(using Hugging Face’s roberta-base1) on our
annotated dataset. An input token length of 512
was selected for the textual embeddings, with
truncation and padding applied as needed. This
vector was thresholded using threshold=0.6
to produce the output vector. We chose this
value to prioritize precision over recall, as
our context requires high-confidence predic-
tions of actionability rather than maximizing the
identification of all potentially actionable feedback.

Training
The model was trained on a T4 GPU

via Google Colab2 using adam optimizer with
learning_rate=2e-5 with linear_decay of
0.01. For training, a batch_size=16 was cho-

1Available at https://huggingface.co/FacebookAI/roberta-
base

2Available at https://colab.research.google.com/

sen, while batch_size=32 was chosen for eval-
uation, keeping in mind compute bandwidths. We
trained the model for 5 epochs and reported results
from epoch 3 as the final epoch because model
performance degraded afterward. The standard
cross-entropy loss function was chosen (default for
roberta-base).

Evaluation
To evaluate the model’s performance, we used a

held-out test set comprising 20% of the total dataset.
The assessment was based on standard classifica-
tion metrics: accuracy, precision, recall, and
f1-score.

Phase 3: SHAP analysis

To gain deeper insights into the textual features
driving our model’s decisions, we employed SHap-
ley Additive exPlanations (SHAP) analysis (Lund-
berg and Lee, 2017). This model-agnostic tech-
nique provides interpretability by attributing pre-
diction outcomes to specific input features; in this
study, words and phrases within the observation
comments.

Recent work by Benslimane et al. (2024) val-
idated SHAP’s effectiveness for analyzing short,
informal texts, demonstrating its reliability in iden-
tifying semantic patterns including emotional tone,
gender references, and political language. Building
on this empirical evidence, we applied SHAP to
analyze 500 teacher feedback instances (250 ac-
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tionable, 250 vague) and quantified each token’s
influence on model classification decisions. To
identify consistent patterns, we aggregated SHAP
values by unique tokens, calculated mean impor-
tance scores across all samples, and ranked terms
according to their average contribution to classifi-
cation outcomes.

Phase 4: Application of fine-tuned RoBERTa to
the complete dataset
We utilized our fine-tuned RoBERTa model to cat-
egorize the rest of the observations as “vague” or
“actionable.” The model from the best-performing
cross-validation fold was selected and used to make
these predictions. A custom PyTorch Dataset
class was implemented, which tokenized input text
using the RoBERTa tokenizer with a maximum
sequence length of 512. Tokenized inputs were
converted into tensors with appropriate attention
masks. To ensure computational efficiency, batch
predictions (with batch_size=32) were performed
using PyTorch’s DataLoader. For each batch, in-
put tensors were used to extract logits. From these
logits, class predictions were obtained using the
argmax function, and class probabilities using the
softmax function. Instances with softmax proba-
bilities less than 0.90 were classified as “low prob-
ability” instances and removed from the dataset.

Phase 5: Differential Analysis of Actionable
and Vague Feedback
In this step, we extracted several linguistic features
known to be associated with text clarity, specificity,
and directiveness. These features were selected
to potentially distinguish actionable observations
from vague observations classified in the last step:

1. Word Count: We calculated the total num-
ber of words in each observation using NLTK’s
word tokenization. Previous research suggests
that actionable feedback tends to be more de-
tailed, which could potentially result in higher
word counts that provide implementable infor-
mation (Winstone et al., 2016).

2. Reading Ease: We calculated Flesch read-
ing ease using textstat. In this metric, the
readability of the observation was scored on a
100-point scale, with higher scores indicating
easier reading (Flesch, 1948). More accessi-
ble language may correlate with feedback that
can be readily understood and implemented.
Previous work has demonstrated that Flesch

Reading Ease can be effectively used with
short-form textual data such as tweets, and
can enable robust analysis of readability even
in brief, informal text (Davenport and DeLine,
2014).

3. Lexical Diversity: This was calculated us-
ing NLTK’s word tokenization as the ratio of
unique words to total words in the observation
text. Higher lexical diversity may indicate
more specific feedback, potentially offering
clearer guidance for action. Conversely, ex-
cessive diversity might introduce complexity
that reduces actionability.

4. Modifier Count: This was calculated by
counting modifiers (adjectives and adverbs)
in the observations using spaCy’s POS tagger.
Higher modifier counts might indicate more
descriptive or qualifying language, which
could potentially correlate with either action-
ability.

We ran a logistic regression model that included
the linguistic features as predictors and feedback
category as the outcome to examine the odds ratio
for the categories.

The code used in the study is available on a
publicly accessible GitHub repository.

5 Results and Discussion

In this section, we present results from Phases 2-5,
as Phase 1 has already been described completely
in the Methods section.

Phase 2: Fine-tuning RoBERTa on the
annotated dataset
Fine-tuned RoBERTa demonstrated strong and
stable performance in distinguishing actionable
from vague teacher feedback. Using stratified 5-
fold cross-validation on 662 annotated examples,
the model achieved a mean accuracy of 0.94,
precision of 0.90, recall of 0.96, and f1 of
0.93 across folds, with an F1 standard deviation
of 0.03. These metrics reflect performance on held-
out validation sets and suggest the model gener-
alizes well despite the modest dataset size. This
aligns with findings by Zhang and Litman (2021)
that well-curated educational data, even in small
quantities, can yield high-performing models when
paired with appropriate architectures.

Overfitting was monitored via 5-fold cross-
validation and early stopping. The model showed
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consistently high validation performance (mean F1
= 0.93, SD = 0.03), with no signs of overfitting.

Phase 3: SHAP analysis

Table 2 presents the top 20 most influential words
for actionable and vague feedback based on SHAP
analysis (positive values indicate features associ-
ated with “actionable” class, while negative val-
ues indicate association with “vague” class). The
results provide mixed evidence without clear-cut
patterns. While some action verbs and specific in-
structional behaviors (e.g., “struggled,” “checks,”
“encourages,” “provide”) appear in the actionable
feedback category, and certain comparative and
conditional terms (“whether,” “enough,” “instead”)
appear in the vague feedback category, the overall
linguistic distinctions lack sufficient consistency to
draw definitive conclusions. The absence of strong
patterns suggests that actionability may be deter-
mined by relationship between words rather than
individual word choices alone.

Actionable Feedback Vague Feedback

Word SHAP Value Word SHAP Value

struggled 0.055 sa -0.051
checks 0.052 equal -0.025
genders 0.044 whether -0.025
sentences 0.033 needed -0.025
tried 0.030 called -0.023
encourages 0.029 easier -0.019
improv 0.029 25 -0.018
introduced 0.027 avoid -0.017
achers 0.026 kick -0.017
provide 0.026 8 -0.016
helpful 0.026 enough -0.016
stage 0.026 q -0.015
minutes 0.026 arus -0.015
excellent 0.024 had -0.015
teaches 0.023 name -0.015
helped 0.023 creative -0.014
pared 0.023 instead -0.014
rew 0.023 enable -0.013
creat 0.022 supposed -0.013
days 0.022 note -0.012

Table 2: Top 20 most important words for feedback
classification with their SHAP values.

Phase 4: Application of fine-tuned RoBERTa to
the complete dataset

“Low probability” predictions constituted about
329 observations (2.5%) of the total data. After
their removal, distribution in the complete dataset
was as follows: 52.7% (or n = 6741) classified as
“vague”, and 47.3% (or n = 6048) as “actionable.”

Phase 5: Differential Analysis of Actionable
and Vague Feedback

Logistic regression analysis (Table 3 and Figure
3) revealed several significant associations be-
tween linguistic features and feedback actionability.
Word count showed a strong negative relationship
with actionability (-16.637, p < .001), indicating
shorter feedback was more likely classified as ac-
tionable, contrary to our proposed hypothesis.

Flesch Reading Ease demonstrated a strong pos-
itive association with actionability (11.751, p <
.001), suggesting more readable feedback was
more likely to be actionable, aligning with our hy-
pothesis about language complexity.

Lexical diversity showed a moderate positive as-
sociation (0.418, p < .001, odds ratio = 1.52), with
more varied vocabulary correlating with action-
ability. Similarly, modifier count had a significant
positive relationship (0.187, p < .001, odds ratio =
1.21), suggesting adjectives and adverbs may help
describe teaching behaviors with needed precision.

Overall, the model showed a pseudo R² of 0.159,
accuracy of 0.68, precision of 0.70 (actionable),
recall of 0.58, F1-score of 0.63, and an AUC-ROC
of 0.76.

6 Conclusion

Our study provides empirical support for computa-
tional approaches to analyzing actionable teacher
feedback. The high performance of our fine-tuned
RoBERTa model (accuracy = 0.94, precision =
0.90, recall = 0.96, f1 = 0.93) demonstrates that
RoBERTa can effectively distinguish between ac-
tionable and vague feedback, even with a relatively
modest training dataset of 662 annotated examples.

The SHAP analysis revealed several interesting
patterns in the linguistic features associated with ac-
tionable feedback. Action verbs (e.g., “struggled,”
“checks,” “encourages”) and specific instructional
behaviors appeared more frequently in actionable
feedback, while comparative and conditional lan-
guage (e.g., “whether,” “enough,” “instead”) was
more characteristic of vague feedback. However,
these patterns were not uniformly consistent, sug-
gesting that actionability may be determined more
by the relationships between words and phrases
rather than by individual word choices alone.

An analysis of linguistic features suggested that
contrary to our initial expectations, word count
showed a significant negative relationship with ac-
tionability, indicating that shorter feedback was
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Feature Coefficient Std Error Odds Ratio
Word Count -16.637*** 1.510 5.95×10−8

Flesch Reading Ease 11.751*** 1.013 1.3×105

Lexical Diversity 0.418*** 0.029 1.52
Modifier Count 0.187*** 0.033 1.21

Table 3: Results of logistic regression predicting feedback actionability (*** p < .001)

Figure 3: Odds ratios for predictors of actionable feedback

more likely to be classified as actionable. This find-
ing challenges the common assumption that more
detailed feedback is necessarily more actionable.
It suggests that concision may actually enhance
clarity and implementability—verbose feedback
might obscure key action points with extraneous
information.

The positive association between Flesch Reading
Ease and actionability aligns with our hypothesis
that more readable feedback is more actionable.
This finding indicates that accessible language is
crucial for feedback that can be readily understood
and implemented.

Our findings suggest three practical implications
for teacher professional development. First, our
study suggests that concise, readable feedback with
precise descriptive language could enhance action-
ability of feedback given by observers. Second,
training programs for classroom observers could
benefit from incorporating linguistic guidelines that
emphasize readability, appropriate lexical diversity,
and effective use of modifiers to enhance feedback
actionability. Third, computational approaches like
our RoBERTa model could serve as supportive
tools for observers to assess and potentially im-
prove the actionability of their feedback before

sharing it with teachers, though such applications
should complement rather than replace human judg-
ment.

7 Limitations and Future Work

This study has several limitations that point to di-
rections for future research. While our RoBERTa
model performed strongly even with 662 anno-
tated examples, the relatively small training set still
poses challenges for generalizability. Its success
reflects the effectiveness of fine-tuning on well-
curated educational data, but broader representa-
tion across feedback styles, school contexts, and
observer types would strengthen model robustness
and reduce the risk of overfitting.

Second, the scope of this study was limited
to early primary classrooms (Grades 1–6) and
core subjects (English and Math) in a specific cul-
tural setting. Findings may not fully generalize
to other grade levels, subjects, or educational sys-
tems. Additionally, because the model was trained
on English-language feedback, linguistic and cul-
tural differences in how actionability is expressed
remain underexplored.

Third, while SHAP analysis revealed some use-
ful patterns, many influential words, especially
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in vague feedback, were ambiguous or context-
dependent, highlighting the challenge of capturing
actionability through isolated word-level features.

Finally, our binary classification approach, while
practical, likely oversimplifies the feedback qual-
ity spectrum. Actionability may be better un-
derstood as a continuum (from highly vague to
highly specific). A multi-point ordinal scale (e.g.,
5–7 categories) could offer more granular insights,
especially for training observers or improving
vague feedback. Moving to such a framework
would require more complex annotation proto-
cols, higher inter-rater alignment, and substantially
larger datasets—but the added nuance may justify
this investment by producing models that offer not
just detection, but actionable guidance.

Future work should: (1) expand annotations
across more diverse educational contexts, (2) test
cross-cultural variation in feedback actionability,
and (3) explore methods for refining or rewriting
vague comments into actionable ones to support
professional development more directly.
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A Appendix

Feedback Type Rubric

Actionable
• Provides clear and specific suggestions for improvement (Archer

et al., 2016; Cannon and Witherspoon, 2005)
• Offers explicit guidance on:

– What the teacher should do next
– How the suggested change can be implemented

• Focuses on observable behaviors rather than personality traits
(Archer et al., 2016)

• Establishes clear connections between observed behaviors and
suggested improvements (Cannon and Witherspoon, 2005)

• Provides balanced positive and constructive components (Cannon
and Witherspoon, 2005)

• May or may not contain indicative phrases (e.g., “even better if,”
“could have”); presence of such phrases is not required

• Includes concrete examples of alternative approaches

Vague
• Lacks concrete or specific suggestions for improvement (Archer

et al., 2016)
• Fails to provide clear guidance on implementation steps (Kraft

et al., 2018)
• May focus on general impressions rather than specific teaching

behaviors (Archer et al., 2016)
• Lacks explicit connection between observation and suggested

change (Cannon and Witherspoon, 2005)
• Provides limited or no concrete examples of alternative approaches
• May use evaluative language without actionable direction (Allen

et al., 2011)
• May include general phrases (e.g., “even better if,” “could have”),

but their presence does not ensure clarity; feedback is considered
vague if the intended action or direction remains ambiguous or
insufficiently specified
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Abstract

This paper presents EduCSW, a novel
pipeline for generating Mandarin-English code-
switched text to support AI-powered educa-
tional tools that adapt computer science in-
struction to learners’ language proficiency
through mixed-language delivery. To address
the scarcity of code-mixed datasets, we pro-
pose an encoder-decoder architecture that gen-
erates natural code-switched text using only
minimal existing code-mixed examples and par-
allel corpora. Evaluated on a corpus curated for
computer science education, human annotators
rated 60–64% of our model’s outputs as natu-
ral, significantly outperforming both a baseline
fine-tuned neural machine translation (NMT)
model (22–24%) and the DeepSeek-R1 model
(34–44%). The generated text achieves a Code-
Mixing Index (CMI) of 25.28%, aligning with
patterns observed in spontaneous Mandarin-
English code-switching. Designed to be gen-
eralizable across language pairs and domains,
this pipeline lays the groundwork for generat-
ing training data to support the development of
educational tools with dynamic code-switching
capabilities.

1 Introduction

Code-switching (CSW), the practice of alternating
between two or more languages within an utter-
ance or conversation, is prevalent across diverse
settings and multilingual communities (Gardner-
Chloros, 2009; Poplack, 2001). Prior research has
shown that CSW enables language learners to ex-
press their perspectives, convey culturally specific
ideas, and build social relationships (Bhatia and
Ritchie, 2006). In educational contexts, CSW has
been found to enhance student engagement and
help teachers clarify complex concepts, making
it a valuable pedagogical strategy in multilingual
classrooms (Sakaria and Priyana, 2018).

∗Equal contribution.

Despite its demonstrated benefits, support for
code-mixing in educational tools remains limited
(Yong et al., 2023). This gap is particularly pro-
nounced in computer science education, where
much of the terminology originates in English
(Foote, 2023). For English-as-a-second-language
learners, especially Chinese students pursuing stud-
ies abroad, this creates a dual challenge: mastering
both general English and domain-specific vocabu-
lary needed to comprehend technical content and
participate in academic discourse.

Recent advances in large language models
(LLMs) and speech recognition have shown po-
tential in addressing challenges in CSW research
(Giattino et al., 2023). While efforts have been
made in speech translation for code-switched recog-
nition (Alastruey et al., 2023; Wang and Li, 2023)
and decoding code-mixed text (Sterner and Teufel,
2023), progress remains hindered by several is-
sues. Studies reveal that even advanced multi-
lingual LLMs struggle to produce natural code-
switched text, often defaulting to full translation
instead of authentically mixing languages (Kaji and
Shah, 2023). This limitation stems from training
predominantly on monolingual datasets, rather than
natural code-switched corpora (Zhang et al., 2023).
Moreover, challenges such as limited availability of
code-mixed textual data, grammatical complexity,
and domain mismatch further restrict development
(Hussein et al., 2023). In particular, the lack of
publicly available Mandarin-English code-mixed
datasets impedes the creation of LLM-powered ed-
ucational tools that support CSW.

To address these challenges, our work makes two
primary contributions to CSW research. First, we
introduce a generalizable pipeline for code-mixed
data generation that can be adapted to various lan-
guage pairs and subject domains. Second, we
demonstrate its effectiveness by curating a domain-
specific dataset for computer science education,
focused on Chinese students studying at English-
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medium universities. This implementation lays the
foundation for developing AI-powered tutoring sys-
tems that dynamically incorporate code-switching
to support learners’ acquisition of English technical
language.

2 Related Work

2.1 Code-switching Background

CSW research has a relatively long history, dat-
ing back to the early 1900s (Winata et al., 2023).
As the field evolved, advancements in machine
learning, particularly deep learning (Gupta et al.,
2020), have enabled more effective methods for
both curating CSW datasets and managing various
CSW tasks (Yong et al., 2023). However, the field
faces considerable challenges, notably the scarcity
of publicly available CSW datasets (Pratapa et al.,
2018; Winata et al., 2023). Additionally, formal
records of CSW texts are limited, and a significant
portion of existing data is private or restricted, mak-
ing it difficult to evaluate models and expand CSW
research into new languages and contexts. These
limitations hinder the diversification of CSW tasks
and slow progress in generating comprehensive
multilingual datasets.

Studies have attempted to identify key linguis-
tic features in CSW with the goal of generating
synthetic CSW data to address various challenges.
Prior research has highlighted the Equivalence
Constraint theory, which suggests that CSW oc-
curs when the grammatical rules of all involved
languages are maintained in a given sentence
(Winata et al., 2023; Deuchar, 2020). Other works
have identified the Matrix Language Frame (MLF)
model (Myers-Scotton, 2001), which posits the ex-
istence of a dominant “matrix” language provid-
ing the grammatical structure, while the “embed-
ded” language contributes additional content. This
model has been proven successful in preserving
syntactic features and grammatical structures from
the matrix language (Callahan, 2002; Deuchar,
2006; Rahimi and Dabaghi, 2013).

2.2 Code-switching in Education

Most of the research has focused on the use of
CSW in bilingual-classroom settings, suggesting its
potential in enhancing instruction across subjects
and improving classroom engagement. Sakaria
and Priyana have identified that the use of code-
switched instructional language can increase the
efficiency in delivering lesson objectives and pro-

vide a theoretical framework (Sakaria and Priyana,
2018). Meanwhile, Milroy et al. also proposed
that the use of code-switching can help teachers
shape classroom culture, fostering different teacher-
student relationships in the classroom environment
(Milroy and Muysken, 1995). For instance, when
teachers use the students’ first language in instruc-
tion, it creates a playful and less formal environ-
ment. When the teachers switch back to the lan-
guage the students are learning in that session, they
reassert their authority and thus redefine the situa-
tion to be more formal.

These studies reveal the multifaceted benefits of
code-switching, providing greater motivation for
us to empower education by addressing the data
scarcity issues in this field.

2.3 Algorithmic Solutions to Generating
Code-mixed Data

Prior studies have adopted various linguistic theo-
ries and advanced language models to address the
challenges in generating code-mixed texts, each
reflecting distinct emphases.

For instance, Pratapa et al. (Pratapa et al., 2018)
employed equivalence constraint theory, focusing
on syntactic compatibility at switch points where
language structures coincide. They used projec-
tions of parallel monolingual sentences to gen-
erate grammatically valid code-mixed sentences.
Gupta et al. (Gupta et al., 2020) applied the Ma-
trix Language Frame (MLF) theory, emphasizing
the role of a dominant language in structuring
code-mixed sentences. Tarunesh et al. (Tarunesh
et al., 2021) utilized the Embedded Matrix The-
ory (EMT), a variation of MLF, applying clause
substitution methods to create code-mixed text that
satisfies Hindi-English grammatical structures.

For code-mixed data evaluation, prior scholars
have proved the efficiency in various methods when
assessing the naturalness of code-mixed data. Prat-
apa et al. (Pratapa et al., 2018) primarily assessed
perplexity reductions on real code-mixed test sets
using their RNN language model, which was
trained on various combinations of monolingual,
synthetic, and real code-mixed data. In contrast,
Gupta et al. (Gupta et al., 2020) employed more
direct metrics such as BiLingual Evaluation Under-
study (BLEU) (Papineni et al., 2001), ROUGE (Lin
and Hovy, 2002), and METEOR (Lavie and Agar-
wal, 2007), along with human evaluation to assess
the syntactic and semantic correctness, and natural-
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ness of the generated code-mixed sentences. These
diverse approaches guided our team in developing
appropriate validation methods for our generated
synthetic texts.

3 Method

This section outlines the data source utilized for this
project and then presents the generalizable code-
switched generation pipeline (see Appendix A.1 for
more details). The repository is publicly available1.

3.1 Data
A representative Mandarin-English code-mixed
dataset for computer science education must pos-
sess two essential characteristics.

First, the dataset should accurately represent in-
structional language and encompass educational
materials in computer science. This provides a
domain-specific context that can shape the gen-
erated code-mixed corpus to offer effective and
specific support for computer science instruction.

Second, the corpus should align with how bilin-
gual users naturally develop and use code-mixed
content in educational and daily contexts. This
naturalness is critical as it ensures the code-mixed
text authentically reflects the language patterns ob-
served in real-world bilingual educational settings.

Accordingly, we utilize two datasets that satisfy
the above criteria in our project: a Mandarin dataset
capturing domain-specific computer science in-
structional content, and a second dataset reflect-
ing spontaneous code-mixing patterns in Mandarin-
English speakers’ daily communication.

3.1.1 Computer Science Instruction Dataset
This study incorporates the Hugging Face dataset
2imi9/llama2_7B_data_10G, which contains ten
gigabytes of bilingual text data sourced from
Hugging Face and the Chinese Software Devel-
oper Network (CSDN), covering technical instruc-
tions in computer science. The dataset was care-
fully curated to support the development of AI-
powered educational tools for personalized learn-
ing in Shenzhen University’s University Computer
course. It includes a column of conceptual ques-
tions (“Instruction”) and serves as the primary in-
put for generating code-mixed representations in
this study. Due to computational constraints, we
used a subset of this dataset containing 744 tech-
nical instructions for computer science (file name:

1https://github.com/RuishiCh-git/EduCSW/tree/
main

data_alpaca_standardized_data), which cap-
tures common questions and explanations of key
computer science terminology.

Instruction

什么是计算机?

(what is computer?)

如何解释人工智能在不同领域（如医疗、金融、教
育）中的应用及其带来的影响？

(How to explain the application of artificial in-
telligence in various fields (such as healthcare,
finance, education) and the impacts it brings?)

Table 1: Sample Data Entries (The parentheses contain
translations, not part of the data.）

3.1.2 Spontaneous Mandarin-English
Code-Mixed Dataset

To train our model on real CSW data, we incorpo-
rated the speech transcription dataset CAiRE/AS-
CEND (Lovenia et al., 2022)2 into our pipeline. We
filtered the original training dataset to retain only
code-mixed text, resulting in 2,739 code-mixed ut-
terances used in this study. This subset provides a
Mandarin-English code-switching corpus that re-
flects authentic code-switched language patterns
in bilingual speakers’ habits. Sample code-mixed
transcriptions from this dataset are shown in Ta-
ble 2.

Code-mixed Data in ASCEND

快快要期末考试了他可能觉得非常stress非常nervous

(It’s getting close to the final exam. He might
feel very stressed and nervous.)

放在剧情上的focus on the script but not the action but
not the特效

(Focus on the script rather than the action or the
special effects.)

Table 2: Sample Mandarin-English code-mixed data
(The parentheses contain translations, not part of the
data.)

3.2 Pipeline
Overall, the code-mixed text generation included
three key stages: the Preparation stage, the Code-
mixed generation stage, and the Evaluation stage.

2ASCEND (A Spontaneous Chinese-English Dataset) is a
spontaneous multi-turn conversational dialogue recorded in
Hong Kong.
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3.2.1 Preparation Stage

The preparation stage includes three major steps:
parallel corpus preparation, language alignment,
and hard-coded code-mixed data generation.

Firstly, the machine translation model Helsinki-
NLP/opus-mt-zh-en (Tiedemann and Thottingal,
2020)3 was used to obtain the corresponding En-
glish corpus for the Mandarin computer science
instruction dataset.

Secondly, the word aligner awesome-align (Dou
and Neubig, 2021) was employed to create an align-
ment matrix for the parallel corpus. The input con-
sists of parallel sentences separated by “|||”, and
the output is in the i-j Pharaoh format. A pair i-j
indicates that the i-th word (zero-indexed) of the
source sentence (Mandarin) is aligned to the j-th
word of the target sentence (English). An example
is shown in Appendix A.2.

Thirdly, a BERT-based Named Entity model and
the jieba module were used to tokenize and ex-
tract linguistic features and tags from English and
Mandarin corpus. The Matrix Language Frame
(MLF)4 was followed to generate code-switched
text (Myers-Scotton, 2002). In this study, Man-
darin serves as the matrix language dominating
the sentence, while English is the embedded lan-
guage inserted into the sentence. Named entities
(NE), noun phrases (NP), and adjectives (ADJ) in
the English sentence were identified as candidate
words/phrases for insertion into the Chinese sen-
tence.

For each candidate word/phrase, the language
switch-point was determined based on the POS tag
and position in the sentence. Insertion probabilities
were set to 20% - 30% to achieve an observed
code-mixing index (CMI) consistent with natural
code-mixed utterances, based on prior literature (Li
et al., 2012). If a switch was decided, the English
word/phrase was inserted into the corresponding
position in the Mandarin sentence. The resulting
dataset was used as the first round of “hard-coded”
CSW data.

3This model was developed by the Language Technology
Research Group at the University of Helsinki and is designed
to translate from Chinese (source language) to English (target
language).

4MLF, proposed by Myers-Scotton, introduced the “asym-
metry principle,” where the language providing the mor-
phosyntactic structure is the “matrix language,” while the
“embedded language” contributes elements that switch into the
matrix language (Myers-Scotton, 2002)

3.2.2 Code-Mixed Generation Model
We experimented with three approaches for code-
mixed data generation. The first approach extends
a neural machine translation (NMT) model, serving
as a baseline for comparison. The second uses the
DeepSeek-R1 model to establish a benchmark per-
formance. The third, and our primary contribution,
is a custom encoder-decoder architecture designed
specifically for generating natural code-switched
text.

Approach 1: Fine-tuning NMT For the Neural
Machine Translation (NMT) fine-tuning approach,
we used the Helsinki-NLP/opus-mt-zh-en
model5, originally designed for Chinese-to-English
translation. This model served as our baseline
for generating code-switched text. It consists of
approximately 77 million parameters and features
an architecture with 6 encoder layers and 6 decoder
layers, offering a robust foundation for capturing
the complexities of both Chinese and English, as
well as the nuances of code-switching patterns.

To adapt the model to our specific task, we
used two primary sources of training data: the first
round of “hard-coded” CSW data and code-mixed
transcriptions from the ASCEND dataset (Lovenia
et al., 2022). This combination was selected to bal-
ance domain-specific accuracy with the naturalness
of authentic code-switching.

The model was fine-tuned over 3 epochs, using
a learning rate of 2e-5 and a batch size of 16 per
device. These parameters were chosen to ensure ad-
equate adaptation to the code-switching task while
minimizing the risk of overfitting. The fine-tuning
concluded with a final training loss of 0.709, in-
dicating a solid trade-off between specialization
and generalization. The resulting model is publicly
available6.

Approach 2: DeepSeek-R1 Benchmark To
benchmark our code-mixed text generation pipeline
against a strong pre-trained baseline, we utilized
Distilled DeepSeek-R1 7B, based on Qwen—a
large language model trained on both Chinese and
English corpora (DeepSeek-AI, 2025). DeepSeek
has demonstrated remarkable performance across
a range of Chinese natural language understanding
and generation tasks, making it a valuable refer-
ence point for evaluating code-switching capabili-

5https://huggingface.co/Helsinki-NLP/
opus-mt-zh-en

6https://huggingface.co/yl31/
code-mixed-cs-edu-model
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ties. Although DeepSeek is not explicitly trained
for code-switching, it offers insight into how well
general-purpose, state-of-the-art language models
can handle code-mixing in the absence of domain-
specific supervision. As such, this benchmark
serves as a reasonable point of comparison for our
customized generation pipeline.

We adopted a few-shot prompting strategy
to guide DeepSeek toward producing Mandarin-
English code-switched output. Each prompt in-
cluded two illustrative examples demonstrating
how to naturally integrate English computer sci-
ence terminology into Mandarin instructional sen-
tences. These examples showcased both noun
phrase-level and verb-level switches—patterns
commonly observed in bilingual academic dis-
course. The complete prompt is provided in Ap-
pendix A.5. This prompt was applied to all 744
Mandarin instructional sentences in our dataset.
Model outputs were collected without any post-
processing to preserve their authenticity for subse-
quent evaluation.

Approach 3: Encoder-Decoder Architecture
For the encoder-decoder architecture model, the
rationale is to use the encoder to provide context
while the decoder generates target sequences with
a copy mechanism, improving model performance
through a combination of translation and copying
from input text.

We first leverage transfer learning to initi-
ate our code-mixed generation model. This ap-
proach aims to reduce the required training data
for code-mixed generation while ensuring high-
quality bilingual representations essential for nat-
ural code-switching data generation. Specifically,
we fine-tune the neural machine translation model
Helsinki-NLP/opus-mt-zh-en on our curated par-
allel corpus of computer science educational con-
tent and dialogue. The fine-tuning process enables
the model to capture language-specific features, in-
cluding domain-specific terminology and language
patterns unique to computer science education in
both Mandarin and English, as well as cross-lingual
mappings, such as semantic equivalences and con-
textual relationships between the language pairs.

The weights learned during this fine-tuning
phase provide monolingual understanding and cap-
ture cross-lingual feature characteristics. The next
step is to use an encoder-decoder architecture
that builds on the fine-tuned weights to integrate
additional components extracted from the prelimi-

nary code-mixed dataset to build the code-mixed
text generation model.

The encoder, built on the transformer layers of
the MarianMTModel, processes the sequences of
tokens in Chinese texts to produce hidden states
that capture sequential dependencies and generate
contextual representations for the sentences. These
representations are then received by the attention
mechanism in the decoder, allowing the model to
have more focused access to relevant source in-
formation. This enables the preservation of both
language-specific features and cross-lingual rela-
tionships.

Subsequently, the decoder uses a processing
mechanism to adopt a standard decoder path for
translation logits and a dedicated gate mechanism
for copy probability calculation. With the attention
mechanism, the encoder’s representations are pro-
cessed to produce hidden states, which inform both
generation and copying decisions. When copying
from the input texts is decided, the model com-
putes copy probabilities for the input tokens. Sub-
sequently, the model expands input tokens to align
with the target sequence length and then maps the
tokens into the known vocabulary space using scat-
ter operations, locating the vocabulary tokens in
the input text. Such a mechanism is important to
preserve technical terminology for conversational
corpus related to Computer Science, where many
words tend to co-occur for domain-specific mean-
ings. For example, with the term ’neural network,’
the model can directly copy these tokens rather
than regenerate words for "network" or "neural" to
maintain precise technical accuracy.

With the encoder-decoder architecture built, we
optimize our operation with a specialized loss func-
tion that combines loss with a mixing ratio penalty.
In particular, we incorporate a Code-Mixing Loss
function to calculate the ratio of Chinese to English
tokens and penalize the outputs that deviate from a
ratio of 0.5 (set for a minimal mixing ratio). This
approach preserves semantic accuracy within the
code-mixed dataset while encouraging the model
to learn from the trained dataset and generate bal-
anced code-mixing data.

During training, the model processes both the
hard-coded CSW data and the transcriptions from
the ASCEND dataset (Lovenia et al., 2022). The
training setup uses parallel data: the original Man-
darin text serves as input, while the correspond-
ing code-mixed versions (both hard-coded and AS-
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CEND transcripts) serve as the target outputs. The
generation strategy employs beam search with a
beam width of 5, meaning it maintains the top 5
most probable sequences at each decoding step.
Then, the model uses a 2-gram prevention strategy
to prevent two consecutive tokens from appearing
more than once in the generated sequence. These
parameters were chosen to maintain output diver-
sity and technical accuracy while preventing com-
mon generation issues like repetitive text.

4 Results and Evaluation

4.1 Description of Generated CSW Data
The 744 Mandarin text entries from the
2imi9/llama2_7B_data_10G dataset were
used as input for all three of our code-mixed
generation models: the fine-tuned NMT approach,
DeepSeek-R1, and the encoder-decoder archi-
tecture. This parallel processing enabled the
generation of three distinct sets of code-switched
(CSW) data, facilitating a comparative analysis
across methods.

The generated CSW text preserves the educa-
tional content and structure of the original Man-
darin entries while incorporating English elements
in a way that reflects natural code-switching pat-
terns commonly observed in bilingual educational
contexts.

4.2 Evaluation
4.2.1 Code-Mixing Index
The Code-Mixing Index (CMI) (Das and Gam-
bäck, 2014) is a widely used metric for measuring
the complexity of code-mixed text (Srivastava and
Singh, 2021). It quantifies the fraction of tokens or
words that differ from the matrix language7. In our
study, we calculated the sentence-level CMI 8 by
dividing the number of English tokens by the total
word count in each CSW sentence.

The overall CMI for each generated CSW dataset
was computed as the average of all sentence-level
CMIs within that dataset. As presented in Table 3,
the CMI for the hard-coded first round of gener-
ated CSW data is 26.98%. The CMIs for the NMT
fine-tuning, DeepSeek-R1, and encoder-decoder
approaches are 23.05%, 9.95%, and 25.28%, re-
spectively.

Notably, the CMIs for most of our generated
CSW datasets fall within the 20% to 30% range,

7https://tech.skit.ai/Code-Mixing-Metrics/
8See Appendix A.4 for CMI formula.

Method Matrix
Lang.

CMI

Hard Code / 26.89%
NMT Fine-tuning Chinese 23.05%
Deepseek R1 Chinese 9.95%
Encoder/Decoder Chinese 25.28%

Table 3: CMIs for Different Methods

which aligns with values observed in spontaneous
Chinese-English code-switching utterances from
prior studies (see Appendix A.3). This suggests
that our generated CSW data—excluding the out-
put from DeepSeek-R1—closely mirrors natural
code-mixing patterns, reinforcing the credibility
and authenticity of the synthetic text. The substan-
tially lower CMI of DeepSeek-R1 (9.95%) indi-
cates limited code-switching behavior, which may
reduce its effectiveness for simulating natural bilin-
gual communication.

4.2.2 Human Labeling

To comprehensively evaluate the quality of the
generated data, we recruited two bilingual anno-
tators to label the CSW outputs from the NMT
model, DeepSeek-R1, and the encoder-decoder
framework. Both annotators were proficient in
Mandarin-English code-mixing and had familiarity
with domain-specific computer science terminol-
ogy. They were instructed to rate the naturalness of
each sentence using a standardized 3-point Likert
scale (Joshi et al., 2015): unnatural (1), acceptable
(2), and natural (3). If a sentence contained nonsen-
sical segments that severely disrupted its meaning,
annotators could label it as “wrong,” in which case
it was excluded from the naturalness evaluation.

Each annotator labeled 50 entries from each of
the three models. These entries were derived from
50 randomly sampled Chinese input sentences. To
assess annotation consistency, we calculated inter-
rater reliability using Cohen’s kappa coefficient
(Blackman and Koval, 2000). The resulting κ val-
ues were 0.6739 for the fine-tuned NMT model,
0.6793 for the encoder-decoder model, and 0.7622
for DeepSeek-R1—indicating moderate to strong
agreement between annotators.

We then compared the performance of the three
models in generating natural CSW outputs. Table 4
presents the percentage of outputs rated as natural.
The encoder-decoder approach significantly outper-
formed both the fine-tuned NMT and DeepSeek-R1
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models. Annotators consistently rated a higher pro-
portion of encoder-decoder outputs as natural (64%
and 60%) compared to those from the NMT model
(22% and 24%) and DeepSeek-R1 (34% and 44%).

Labeler Fine-tuned DeepSeek Encoder
NMT R1-Distill Decoder

1 22% 44% 64%
2 24% 34% 60%

Table 4: Comparison of Natural Output Percentages by
Annotators

Sentences annotated as natural typically demon-
strated preservation of the grammatical rules of the
matrix language (Mandarin) and exhibited switches
at technical terms and language-sensitive words
(words more commonly used in English). For in-
stance, in the example shown in Table 5, the techni-
cal terms “自然语言处理” and “机器学习” in the
input Mandarin sentence were switched to English
expressions “language processing” and “machine
learning” respectively, and the resulting sentence
was labeled as natural.

Conversely, sentences labeled as unnatural often
disobeyed Mandarin grammar and displayed issues
such as incomplete semantic segments, mistransla-
tions, or unbalanced proportions of Mandarin and
English segments. Examples of such cases are also
provided in Table 5.

4.2.3 Qualitative Evaluation
To further assess the quality of the generated code-
switched text, we conducted a qualitative evalua-
tion of outputs from the fine-tuned NMT approach,
DeepSeek-R1, and the encoder-decoder framework.
This analysis revealed clear differences in code-
switching quality among the three methods.

The encoder-decoder framework demonstrated
a superior ability to generate natural and coherent
code-switched text. As shown in Appendix A.6,
its outputs exhibit several favorable characteristics.
The code-switched segments primarily consist of
noun phrases and computer science-related terms
in English, reflecting authentic bilingual speech
patterns. Language switch points appear more nat-
ural and intuitive, and grammatical structures in
both languages are better preserved, resulting in
higher overall linguistic quality.

In contrast, the fine-tuned NMT model showed
notable limitations. As illustrated in Appendix A.6,
its outputs often exhibit grammatical inconsisten-
cies when transitioning between English and Chi-

Input Output and Label

在自然语言处
理(NLP)中，如
何利用机器学
习进行情感分
析？请描述其
过程和应用场
景。

(In NLP, how to
utilize machine
learning for sen-
timent analysis?
Please describe
the process
and application
scenarios.)

在language process-
ing(nlp)中, 如 何 利
用machine learning进
行emotional analysis?
请 描 述 其 过 程and
application场景.

(In NLP, how can
machine learning be
utilized for emotional
analysis? Please de-
scribe the process and
application scenarios.)

Natural

在language process-
ing(nlp)中, 如 何
用machine learn-
ing进analysis? please
deplecation of中
的processing and
application processing.

(In NLP, how can we
use machine learning
for analysis? Please
clarify the meanings
of “processing” and
“application processing”
in “depletion of”.)

Unnatural

Table 5: Comparison of Natural and Unnatural Labels
(The parentheses contain translations, not part of the
data.)

nese. Additionally, it occasionally produces non-
sensical or incoherent English terms (e.g., “con-
verence,” “protology,” “diploration”), leading to
awkward transitions and a lower degree of natural-
ness compared to the encoder-decoder output.

DeepSeek-R1, a large language model trained
on Chinese text, also displayed weaknesses in gen-
erating natural code-switching. Many outputs de-
faulted to full English translations rather than pro-
ducing genuine code-switched language, result-
ing in a low Code-Mixing Index (CMI) and lim-
ited alignment with real-world bilingual discourse.
While DeepSeek-R1 occasionally produced natural-
sounding examples, its performance was incon-
sistent, and it was outperformed overall by the
encoder-decoder framework.

In summary, the qualitative evaluation shows
that the encoder-decoder model consistently gener-
ates more natural, coherent, and contextually appro-
priate code-switched text than both the fine-tuned
NMT and DeepSeek-R1 approaches. Its outputs
closely mimic authentic bilingual communication,
particularly in technical domains, and exhibit a
balanced and grammatically sound integration of
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English terminology.

5 Discussion & Conclusion

In this study, we developed a comprehensive, effec-
tive, and reusable pipeline for generating synthetic
code-mixed data, with the goal of supporting the
training of human-centered tutoring large language
models (LLMs) and chatbots that communicate us-
ing a code-mixed approach. This work is motivated
by the pedagogical value of code-mixed instruction
for bilingual learners adapting to second-language
environments. At the same time, existing publicly
available LLMs show limited proficiency in han-
dling code-switching, often focusing narrowly on
topic-related nouns (Yong et al., 2023). In addi-
tion to proposing a general pipeline, we apply it
to create a Mandarin-English code-mixed dataset
specifically curated for computer science educa-
tion.

We accomplished two key objectives:
First, we successfully developed a generalizable

pipeline for generating code-mixed data across lan-
guage pairs (with English as one of the languages).
The pipeline consists of three main steps: (1) gener-
ating preliminary synthetic code-switched data us-
ing the Matrix Language Frame (MLF) theory and
BERT-based Named Entity Recognition to prepare
the non-English monolingual data; (2) passing the
text through an encoder-decoder architecture initial-
ized with weights from an NMT model fine-tuned
on a parallel corpus, and training it using both the
synthetically generated and real code-mixed data;
and (3) iteratively annotating and retraining to en-
hance the naturalness of the generated outputs.

To adapt the pipeline for other language pairs,
users only need to modify two components: (1) the
Matrix Language Frame to match the grammatical
structure of the target language, and (2) the code-
switched speech transcription dataset, which is of-
ten more readily available than textual resources.
With these changes, users can input their own
monolingual data and generate suitable code-mixed
datasets for downstream tasks.

Second, we successfully curated a domain-
specific code-mixed dataset for computer science
education that can support downstream training
of LLMs or chatbots. This dataset was vali-
dated through three evaluation methods: the Code-
Mixing Index (CMI), human ratings, and qualita-
tive analysis. Across all measures, our encoder-
decoder architecture outperformed both the state-

of-the-art DeepSeek LLM and a traditional fine-
tuned neural machine translation model in generat-
ing natural code-switched text.

We offer two suggestions based on our findings.
First, given the success of our pipeline in the com-
puter science domain, we recommend applying this
approach in other STEM fields where technical vo-
cabulary creates challenges for bilingual learners
(Bhatia and Ritchie, 2006). Second, we encourage
the development of interactive tutoring systems and
LLM-powered chatbots using our curated dataset
and pipeline, with the capacity to dynamically ad-
just the degree of code-mixing based on learners’
language proficiency. As supported by prior work
(Milroy and Muysken, 1995), flexible language use
in educational settings can greatly enhance learner
engagement and comprehension.

5.1 Limitation and Future Work

We identify two limitations in this study.
First, although we use transcriptions from a code-

mixed audio dataset to fine-tune the naturalness of
our model’s outputs, the ASCEND training dataset
occasionally contains spelling errors, incomplete
sentences, and casual conversational utterances.
These issues may affect the quality of the gen-
erated code-mixed text. Future researchers may
improve results by further cleaning and curating a
high-quality subset of the transcription data or by
sourcing data from more professional or domain-
relevant contexts.

Second, due to the nature of the fine-tuned NMT
model being primarily designed for translation
tasks, it occasionally produces fully translated En-
glish output. This indicates that the model’s con-
trol over the language mixing ratio is not yet op-
timal. Future work could explore increasing the
number of training iterations and implementing a
feedback loop to monitor and dynamically adjust
the language balance during generation, thereby
enhancing the consistency and naturalness of code-
switching.

6 Ethical Consideration

Our primary data source, the Mandarin instruc-
tional dataset for computer science learning, is
open-sourced on Hugging Face and explicitly de-
signed to improve AI model performance in edu-
cational settings. Our use aligns with this stated
purpose, and we have properly cited the source.
Similarly, the ASCEND dataset, used for code-
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mixing patterns, is open-sourced and appropriately
cited. For annotation, we engaged voluntary partic-
ipants, ensuring ethical practices in data labeling.

The primary application of our work is develop-
ing AI-powered tutoring chat bots for personalized
computer science learning, bridging the gap for
bilingual learners transitioning from Mandarin to
English-language education. We acknowledge the
need to preserve language integrity, respect cul-
tural nuances, and avoid exacerbating educational
disparities.
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A Appendix

A.1 Pipeline Flowchart

Note: The pipeline flowchart shown on the next
page ( Appendix: 1) illustrates our overall ap-
proach.

A.2 Example of input and output for word
alignment using awesome-align

Type Content

Input
我喜欢吃苹果 (zh) |||
I like to eat apples (en)

Output 0-0 1-1 2-3 2-4

A.3 Reference CMI values from literature

Reference Matrix Language CMI
(Li et al., 2012) Chinese 21.15%

(Lyu et al., 2010) Chinese 25%

A.4 CMI Formula

The CMI is calculated using the following formula:

CMI = 100 ∗
(
1− max(wi)

n− u

)
if n > u (1)

where wi is the number of words in language i
(English), n is the total number of words, and u is
the number of language-independent words.
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Appendix A.1: Overall Pipeline. This flowchart shows the steps involved in the code-mixed generation model.

A.5 DeepSeek Prompt Template

Prompt

<system>
You are a helpful assistant. Your job is to
convert Mandarin computer science ques-
tions into Mandarin-English code-switched
sentences that sound natural to bilingual
learners.
Only output the sentence. Do not explain or
comment.
<user>
Input: 在深度学习中，如何训练卷积神
经网络？
Output: 在deep learning中，如何train con-
volutional neural network?
Input: 什么是计算机网络的拓扑结构？
Output: 什么是computer network的 topol-
ogy结构?
Now process the following:
Input: {text}
Output:
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A.6 Comparison of Encoder-Decoder and
NMT Generated Outputs (The
parentheses contain translations, not part
of the data.)

Output Label
Encoder-Decoder Generated

什么是data consistence? (What is

data consistence?)

Natural

深度learning 中curly network
(cnn) 如何实现image 分类and
对 象 检 测? 请 详 细 解 释
其working principles and tech-
nologies. (How does the curly net-

work (CNN) in deep learning achieve im-

age classification and object detection?

Please elaborate on its working princi-

ples and technologies.)

Natural

Fine-tuned NMT Generated
什么是data converence? (What is

data converence?)

Wrong

深度学习中的blough network
(CNN) 如何实现image diaga-
tion and operation processing?
please process processing work
chrinkings and key processings.
(How does the blough network (CNN)

in deep learning achieve image diffusion

and operation processing? please pro-

cess processing work chrinkings and key

processings.)

Acceptable

DeepSeek-R1-Distill
什么是data consistency? (What is

data consistency?)

Natural

How to train a deep learning
model to recognize cats and dogs
in images?

Wrong
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Abstract

The advent of artificial intelligence (AI) has
marked a transformative era in educational mea-
surement and evaluation, particularly in the de-
velopment of assessment items. Large language
models (LLMs) have emerged as promising
tools for scalable automatic item generation
(AIG), yet concerns remain about the valid-
ity of AI-generated items in various domains.
To address this issue, we propose STAIR-AIG
(Systematic Tool for Assessment Item Review in
Automatic Item Generation), a human-in-the-
loop framework that integrates expert judgment
to optimize the quality of AIG items. To ex-
plore the functionality of the tool, AIG items
were generated in the domain of critical think-
ing. Subsequently, the human expert and four
OpenAI LLMs conducted a review of the AIG
items. The results show that while the LLMs
demonstrated high consistency in their rating
of the AIG items, they exhibited a tendency
towards leniency. In contrast, the human expert
provided more variable and strict evaluations,
identifying issues such as the irrelevance of the
construct and cultural insensitivity. These find-
ings highlight the viability of STAIR-AIG as
a structured human-AI collaboration approach
that facilitates rigorous item review, thus opti-
mizing the quality of AIG items. Furthermore,
STAIR-AIG enables iterative review processes
and accumulates human feedback, facilitating
the refinement of models and prompts. This, in
turn, would establish a more reliable and com-
prehensive pipeline to improve AIG practices.

1 Introduction

Recent advances in natural language processing
(NLP) and generative artificial intelligence (AI),
particularly large language models (LLMs), have
transformed educational measurement from rel-
atively labor-intensive processes to more auto-
mated, scalable, and efficient approaches (Srini-

*Corresponding author: hshinedu@sogang.ac.kr

vasan, 2022; Wang et al., 2024). Prominent ex-
amples include automated scoring (Latif and Zhai,
2024; Lee et al., 2024; Luchini et al., 2025) and
automated feedback generation (Hahn et al., 2021;
Chan et al., 2025), which substantially improve ef-
ficiency by reducing human labor while ensuring
relatively valid and consistent outcomes.

Among these innovations, automatic item gen-
eration (AIG) has emerged as a particularly perti-
nent application of LLM for the rapid and effec-
tive development of assessment items (Gierl and
Lai, 2013; Kurdi et al., 2020). Traditional AIG
approaches generated new items by replacing dif-
ferent numbers or words in predefined models or
templates, aiming to assess the same underlying
construct. With the advent of LLMs, AIG has
now entered a new phase, enabling educational
researchers and practitioners to generate numerous
items with minimal programming expertise. How-
ever, regardless of the AIG model used, the quality,
appropriateness, and validity of AI-generated items
still remain questionable. Consequently, the incor-
poration of quality assurance processes and human
participation is deemed inevitable to ensure that
AIG systems are generating content as intended
(von Davier and Burstein, 2024).

In particular, it is important to ensure that the
assessment items are aligned with target measure-
ment constructs, as poorly defined constructs and
superficially designed items can undermine the va-
lidity and reliability of the assessment (Liu et al.,
2016). Consequently, a robust human-AI collabora-
tion (HAIC) (Fragiadakis et al., 2025) is essential
not only to leverage the scalability and efficiency of
the AIG process, but also to ensure overall quality
and safeguard the validity of AI-generated assess-
ment items (Hao et al., 2024). Nevertheless, prior
literature reveals a lack of empirical studies validat-
ing the appropriateness of AI-generated items for
assessing cognitive skills within human–AI collab-
orative contexts.
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To address this gap, the present study introduces
STAIR-AIG (Systematic Tool for Assessment Item
Review in Automatic Item Generation), an item
review tool that supports systematic and efficient
human review of AI-generated assessment items.
We illustrate its potential as both a practical tool
and a conceptual AIG framework by applying it to
the domain of critical thinking (CT), a higher-order
cognitive skill widely recognized as an essential
21st-century core competency (World Economic
Forum, 2015). In complex cognitive domains, such
as CT, the expert review by the human is particu-
larly important in that defining the measurement
structures and developing the assessment items are
quite challenging (Shin et al., 2025).

By leveraging NLP techniques, our tool provides
a comprehensive linguistic feature analysis of items.
This empowers human reviewers to integrate their
domain knowledge in a more effective way. Fur-
thermore, the evaluations of AIG items by human
experts are stored as data, so they continuously con-
tribute to the improvement and refinement of the
internal LLMs within the AIG pipeline. In contrast
to conventional methods, which generally rely ex-
clusively on human review as a final gatekeeping
measure in a linear fashion, STAIR-AIG incorpo-
rates multiple structured touch-points for expert
judgment at each stage. This facilitates continuous
evaluation, targeted refinement of AI-generated ele-
ments, and ongoing enhancement of LLMs for AIG
through structured human feedback and prompt op-
timization in a dynamic manner.

In the following, we illustrate the use of the
STAIR-AIG tool as a human-in-the-loop AIG pro-
cess. We review the relevant literature on AIG
and the traditional item review process. Then, we
present a case study that demonstrates the use of the
STAIR-AIG tool in the CT domain. Subsequently,
we compare the evaluations performed by a human
expert with those generated by the LLM to identify
discrepancies and examine the implications of their
collaboration for enhancing the AIG process.

2 Related Works

2.1 Automatic Item Generation

With the growing interest in AIG to build reliable
computer-based assessments by stably and effi-
ciently feeding items into the item bank, the num-
ber of publications on AIG has recently increased
(Kurdi et al., 2020). Before the advent of LLMs,
the techniques of AIG studies were based on syntax

or templates that harness computational power to
reduce human labor, such as employing grammar
correction programs and developing templates to
build software programs (Bejar, 1996, 2002; Sin-
gley and Bennett, 2002). In contrast, the recent
rise of LLMs in the AI research field has enabled
AIG researchers to generate items without exten-
sive software engineering, while empowering item
developers to effectively realize their nuanced in-
tentions within the generation process (Attali et al.,
2022; Bezirhan and von Davier, 2023).

In line with current research trends in AIG based
on LLMs, this study utilizes CT items developed
through a structured AIG procedure (Shin et al.,
2025). This approach leverages prompt engineer-
ing techniques using LLM and is structured into
three distinct modules—passage, question, and
choices statements—to support systematic genera-
tion and monitoring. Within each module, detailed
prompts are provided to the LLM to generate com-
ponents of items intended to assess CT skills. The
modules are executed sequentially to form a com-
plete item, which is then finalized through expert
review and revision. Psychometric analyses of the
pilot-study data confirmed that the generated items
were functioning as intended (Shin et al., 2025).

2.2 Assessment Item Review Procedure
Traditionally, the development and validation of
assessment items have relied heavily on expert-
driven review procedures to ensure validity, cog-
nitive alignment, and fairness (Haladyna and Ro-
driguez, 2013). Guidelines from organizations such
as the National Council on Measurement in Edu-
cation (NCME) and the International Test Com-
mission (ITC) emphasize the need for refinements
guided by expert judgment to avoid common er-
rors in the writing of items and to secure the va-
lidity of the construct (Haladyna and Rodriguez,
2013; Commission and of Test Publishers, 2022).
However, this systematic review process, while
essential, is highly time-consuming, especially in
large-scale assessment contexts.

To overcome these challenges and efficiently
support assessments at scale, hybrid frameworks
integrating automation with human supervision are
increasingly adopted. An innovative example is the
Item Factory developed for the Duolingo English
Test (DET), an item review system that incorpo-
rates human-in-the-loop processes, particularly for
the development of high-stakes international DET
items (von Davier et al., 2024). The Item Factory
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Figure 1: Pipeline of STAIR-AIG workflow

facilitates asynchronous collaboration between sub-
ject matter experts, supports reviewer calibration,
and provides a structured audit trail of editorial de-
cisions (von Davier et al., 2024). This approach
not only maintains rigorous educational standards
and test fairness, but also exemplifies how scalable
and automated processes complemented by human
oversight can enhance the quality and efficiency of
assessment item review.

Item review tools, including Item Factory, are
likely to be designed according to the types of items
that are closely related to measurement constructs.
To our knowledge, no open-source tool yet facil-
itates AIG item review for higher-order thinking
skills. In the following, we present the STAIR-AIG
tool and workflow as a human-in-the-loop proce-
dure to review and optimize AIG items for CT.

3 Development of STAIR-AIG

3.1 STAIR-AIG Workflow

STAIR-AIG is developed as an iterative HAIC
framework that goes beyond the static and unidirec-
tional AIG process by continuously incorporating
human reviewers’ feedback to refine LLM behav-
ior. By providing supplementary NLP features to
human reviewers, human experts are expected to
integrate their domain knowledge more effectively.
In addition, it envisions the advancement of an
AIG pipeline by automatically converting human
reviews into training data for LLMs. These evalu-
ations and human expert insights are then used to
iteratively improve both AIG models through rein-
forcement learning from human feedback (RLHF)
(Christiano et al., 2017; Ziegler et al., 2020) and
optimize their associated prompts (Lin et al., 2024),

ultimately reducing the human effort required to
develop and review items that target complex cog-
nitive constructs such as CT.

Figure 1 represents a comprehensive pipeline
of the STAIR-AIG workflow. As seen in the fig-
ure, the STAIR-AIG workflow is organized as a
multistage iterative loop. Preliminary items gener-
ated through prompt engineering by LLMs undergo
initial evaluation and review via automated analyt-
ics, where LLMs function as auxiliary reviewers.
Human reviewers then assess each item based on
qualitative criteria, including content validity, ap-
propriateness, and cognitive alignment using the
STAIR-AIG tool. Importantly, reviewers provide
both three-point scale ratings and open-ended feed-
back, and in many cases, they can directly edit the
content of items. These structured data, comments,
scores, and editorial changes are saved as review
metadata and would be utilized to refine and en-
hance the performance of the AIG models.

What distinguishes STAIR-AIG is its integration
of these human-generated review signals into both
upstream and downstream optimization processes.
On the one hand, reviewer feedback is used for
prompt optimization (Lin et al., 2024), improving
future item generation by refining how prompts
are constructed. On the other hand, the accumu-
lated data from reviews and edits serves as training
data for RLHF (Christiano et al., 2017), fine-tuning
the LLM to produce items that better align with
expert judgment and the intended assessment ob-
jectives. As shown in Figure 2, this feedback loop
system, inspired by the HAIC framework presented
in Huang (2019), exemplifies a HAIC-based work-
flow designed to optimize the quality of AIG items.
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Figure 2: HAIC workflow in AIG

3.2 STAIR-AIG Modules
The STAIR-AIG system comprises two central
modules designed to systematically evaluate and
continuously improve the AIG process.

3.2.1 Item Analysis Module
The item analysis module operates as the prelimi-
nary review stage. Items undergo automated anal-
ysis based on quantitative linguistic metrics. The
metrics include traditional NLP features, including
type-token ratio, sentence length, and readability
indices such as Flesch-Kincaid grade level, ensur-
ing that the items are written clearly for the tar-
get age groups (Collins-Thompson, 2014). These
metrics are selected to capture linguistic features
that influence item clarity, cognitive load, and ap-
propriateness, and to support early-stage quality
screening for human review.

• Type-Token Ratio (TTR): A common mea-
sure of lexical diversity, defined as

TTR =
|V |
|W | (1)

where |V | is the number of unique types and
|W | is the total number of tokens.

• Average Sentence Length (ASL): A measure
of syntactic complexity, defined as

ASL =
Nw

Ns
(2)

where Nw is the total words count and Ns is
the total number of sentences.

• Average Syllables per Word (ASW): A mea-
sure of word complexity, defined as

ASW =
Nsyll

Nw
(3)

where Nsyll is the total number of syllables
and Nw is the total number of words.

• Flesch-Kincaid Grade Level: A readability
index that estimates the school grade level
required to understand a given text (Kincaid
et al., 1975), calculated as

FKGL = 0.39 · ASL + 11.8 · ASW− 15.59
(4)

We compute linguistic features by applying an
XLM-RoBERTa tokenizer as a text preprocessing
step (Conneau et al., 2020). Leveraging these lin-
guistic features, the module automatically evaluates
text difficulty, grade-level appropriateness, and lexi-
cal diversity metrics, which significantly reduce the
workload placed upon human reviewers, thereby
enhancing review efficiency and providing human
reviewer with detailed item specification informa-
tion to facilitate effective and timely review.

3.2.2 Item Review Module
Central to the STAIR-AIG system is the item
review module, a structured interface that en-
ables human experts to systematically evaluate AI-
generated items. Items approved by the initial auto-
mated analysis are presented through this module
interface. This module segments each item into
specific components, such as passages, questions,
and answer choices, allowing reviewers to provide
detailed evaluations of each component.

Expert reviewers evaluate each component using
a three-point quality scale that serves as the basis
for determining whether an item would be accepted,
revised, or discarded. Reviewer feedback serves
a dual purpose. Qualitative comments contribute
to improving the item generation prompts, while
direct revision suggestions help finalize the item
for operational use and also support future model
refinement. Through this human-in-the-loop iter-
ative process, STAIR-AIG continuously improves
the quality and validity of the items. Once finalized,
high-quality items generated by AI and modified
by human experts are stored in an item bank for
operational deployment. Item review module as an
interface of STAIR-AIG is shown in Figure 3.

4 Empirical Research

In this empirical study, only the first round review
was performed within the STAIR-AIG workflow.
This initial implementation served to examine the
utility of the tool and to investigate the discrepan-
cies of review results between the human reviewer
and LLM judges at the early stage of the proposed
STAIR-AIG workflow.
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Figure 3: STAIR-AIG interface

4.1 Data

The items that were reviewed through STAIR-AIG
in this study were developed by a MACAT, spe-
cializing in CT frameworks and evaluation solu-
tions. They are based on a framework that mea-
sures and assesses CT competencies across six
subdomains—Problem solving, Analysis, Creative
thinking, Interpretation, Evaluation, and Reasoning
(PACIER) (MACAT, 2025; Shin et al., 2025).

In this round, a total of 24 AI-generated items
were reviewed, comprising multiple choice (MC)
and fill-in-the-blank (FIB) types. Specifically, the
assessment included 18 MC items (3 per PACIER
domain) and 6 FIB items (1 per PACIER domain).
Although actual CT assessment typically employs
4 choices for MC items and 3 choices for FIB items,
the initial AIG items were deliberately prompted to
generate 10 and 6 choices respectively, to promote
a rigorous quality review without being forced to
choose from all the bad choices. As for an exam-
ple, an operating sample item for MACAT’s CT
assessment is illustrated in Figure 4.

Figure 4: Sample item of CT assessment.

4.2 Item Review by Human Expert

The key review process for the 24 AIG items was
conducted by a human expert who specialized in

CT domain. The human expert reviewed each item
systematically following the instructions and steps
using the STAIR-AIG tool, indicating the quality
of the items and their components on three-point
rating scales.

• Dissatisfied: Fundamentally flawed or inap-
propriate item for CT assessment, and thus
should be discarded. (Score: 1)

• Neutral: Requires revisions to improve clar-
ity and relevance or modification of difficulty
level. (Score: 2)

• Satisfied: Suitable for immediate use or re-
quires minimal edits. (Score: 3)

Specifically, the expert provided ratings and com-
ments on each of the item components, including
passages, questions, choices, and overall quality
of the items, referencing the analytic information
provided by the item analysis module. Revision
suggestions were also written directly by the expert
in the open text field when necessary. Items that
were rated as neutral or satisfied received detailed
revision suggestions to support iterative refinement.
After the review, all data including evaluations, re-
visions, and edits were provisionally stored as a
CSV file for future model fine-tuning.

4.3 Item Quality Review by LLMs

In parallel to the human review, four OpenAI LLMs
(GPT-4o, GPT-4.5-preview, o1-mini, and o3-mini)
performed independent quality assessments using
the LLM-as-a-judge methodology (Zheng et al.,
2023). Although prior work has shown that LLM-
as-a-judge is closely aligned with human prefer-
ences on a variety of tasks (Zheng et al., 2023; Gu
et al., 2025), there is a lack of prior research ex-
ploring its applicability in the context of complex
cognitive skills, specifically in the evaluation of
the quality of the AIG items. Therefore, we ex-
plored the possibility of using LLM-as-a-judge as
an additional reviewer.

Each model evaluated the AIG items based on
the same criteria and the same interface used by hu-
man reviewers. The prompts were carefully aligned
and mirrored with the human evaluation guidelines
to ensure methodological consistency. To main-
tain independence between human and LLM eval-
uations, we adopted zero-shot learning as an in-
context learning approach in which models relied
solely on their pre-trained knowledge without being

924



provided with any task-specific examples (Brown
et al., 2020). This prevents potential contamination
between evaluation sources while utilizing LLM’s
generalized reasoning capabilities, distinct from hu-
man influence. The evaluations by LLMs were then
compared with human review. Detailed prompts
are provided in the Appendix A.

5 Results

5.1 Quantitative Results

5.1.1 Comparison of Human Reviews with
LLM-generated Reviews

Analysis of 18 MC and 6 FIB items reveals differ-
ences in rating patterns between the human expert
and LLM judges. The descriptive statistics for both
item types are reported in Table 1, indicating that a
human expert tends to assign lower scores overall
and exhibits greater variability across all items.

In contrast, LLM judges consistently delivered
higher scores across all evaluated dimensions with
lower standard deviations. The o3-mini model, in
particular, demonstrated extreme uniformity, as-
signing perfect or near-perfect scores with minimal
variance. Specifically, even among LLMs, there
is a subtle stratification that GPT-4.5-preview and
GPT-4o exhibited slightly more variation and lower
means than o3-mini. Also, in MC evaluations, the
scores of the o1-mini model were closer to those
of the human expert, especially in question quality.

Concretely, as illustrated in Figure 5 and Fig-
ure 6, LLMs tend to be consistently generous in
their evaluations, while the human expert demon-
strated a more critical and sensitive attitude marked
by greater variability. A particularly notable pattern
emerges in the ‘Question Rating’ category for FIB
items, that the human expert consistently assigned
the highest score to the 6 items. This uniformity
is not coincidental. Since all FIB items had an
identical question format, a consistent rating is jus-
tifiable and is an expected result, whereas some
LLMs failed to reflect this.

5.1.2 Distribution of Ratings across
Evaluators

Table 2 further illuminates the contrasting behav-
iors of human expert and LLM judges in evaluating
the quality of AIG items. A notable pattern is the
relatively frequent use of the lowest rating Dissatis-
fied (score of 1) by the human expert. Rather than
indicating inconsistency, this tendency may reflect
the human expert’s awareness of the qualitative

Figure 5: Rating patterns by evaluators for MC items

Figure 6: Rating patterns by evaluators for FIB item

aspects of the content of the item. This indicates
that contextual appropriateness, coherence, and ed-
ucational validity are often more readily detected
through human expert, whereas automated systems
may overlook such nuanced deficiencies.

In comparison, LLMs rarely gave the lowest rat-
ing of Dissatisfied. For example, o3-mini gave
100% Satisfied (score of 3) ratings in nearly every
category. In the human rater effect study, this can
be interpreted as a leniency or generosity (Wolfe,
2004). Even more conservative models such as
o1-mini and GPT-4o showed minimal to zero use
of the lowest category across MC and FIB items.

Furthermore, the human evaluator showed a
more frequent use of the Neutral category (score of
2), which accounts for most of the responses. This
middle-ground positioning can be interpreted as a
nuanced case-by-case approach by the human eval-
uator, in contrast to the strong tendency of LLMs
to assign the highest rating across most items.

5.2 Qualitative Feedback from Human Expert

To closely examine the reviews provided by the
human expert, we performed a qualitative analy-
sis of the reviewer’s written comments. Table 3
lists four themes that categorize and summarize the
feedback. The human expert specialized in the as-
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Table 1: Descriptive statistics for MC and FIB item reviews by evaluators

Item Type Evaluator Overall Quality Score Passage Rating Question Rating Item Choices Rating

Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

MC

Human 2.22 0.65 1 3 2.39 0.70 1 3 2.11 0.58 1 3 2.70 0.29 2 3
GPT-4.5-preview 2.61 0.50 2 3 2.78 0.43 2 3 2.61 0.50 2 3 2.80 0.30 2 3
GPT-4o 2.56 0.51 2 3 2.67 0.49 2 3 2.61 0.50 2 3 2.60 0.54 1 3
o1-mini 2.28 0.46 2 3 2.78 0.43 2 3 2.11 0.58 1 3 2.81 0.35 2 3
o3-mini 2.82 0.39 2 3 2.94 0.24 2 3 2.89 0.32 2 3 3.00 0.00 3 3

FIB

Human 2.17 0.41 2 3 1.67 1.03 1 3 3.00 0.00 3 3 2.19 0.41 1 3
GPT-4.5-preview 3.00 0.00 3 3 3.00 0.00 3 3 3.00 0.00 3 3 2.86 0.22 2 3
GPT-4o 2.67 0.52 2 3 2.83 0.41 2 3 2.83 0.41 2 3 3.00 0.00 3 3
o1-mini 2.17 0.41 2 3 2.83 0.41 2 3 2.17 0.41 2 3 3.00 0.00 3 3
o3-mini 3.00 0.00 3 3 3.00 0.00 3 3 3.00 0.00 3 3 2.97 0.07 2 3

Table 2: Rating frequency and proportion for MC and FIB item reviews by evaluators

Item Type Evaluator Overall Quality Passage Question Item Choice
Dissatisfied Neutral Satisfied Dissatisfied Neutral Satisfied Dissatisfied Neutral Satisfied Dissatisfied Neutral Satisfied

MC

Human 2 (11%) 10 (56%) 6 (33%) 2 (11%) 7 (39%) 9 (50%) 2 (11%) 12 (67%) 4 (22%) 4 (2%) 46 (26%) 130 (72%)
GPT-4.5 0 (0%) 7 (39%) 11 (61%) 0 (0%) 4 (22%) 14 (78%) 0 (0%) 7 (39%) 11 (61%) 3 (2%) 30 (17%) 147 (82%)
GPT-4o 0 (0%) 8 (44%) 10 (56%) 0 (0%) 6 (33%) 12 (67%) 0 (0%) 7 (39%) 11 (61%) 28 (16%) 9 (5%) 143 (79%)
o1-mini 0 (0%) 13 (72%) 5 (28%) 0 (0%) 4 (22%) 14 (78%) 2 (11%) 12 (67%) 4 (22%) 15 (8%) 15 (8%) 150 (83%)
o3-mini 0 (0%) 3 (17%) 15 (83%) 0 (0%) 1 (6%) 17 (94%) 0 (0%) 2 (11%) 16 (89%) 0 (0%) 0 (0%) 180 (100%)

FIB

Human 0 (0%) 5 (83%) 1 (17%) 4 (67%) 0 (0%) 2 (33%) 0 (0%) 0 (0%) 6 (100%) 10 (28%) 9 (25%) 17 (47%)
GPT-4.5 0 (0%) 0 (0%) 6 (100%) 0 (0%) 0 (0%) 6 (100%) 0 (0%) 0 (0%) 6 (100%) 0 (0%) 5 (14%) 31 (86%)
GPT-4o 0 (0%) 2 (33%) 4 (67%) 0 (0%) 1 (17%) 5 (83%) 0 (0%) 1 (17%) 5 (83%) 0 (0%) 0 (0%) 36 (100%)
o1-mini 0 (0%) 5 (83%) 1 (17%) 0 (0%) 1 (17%) 5 (83%) 0 (0%) 5 (83%) 1 (17%) 0 (0%) 0 (0%) 36 (100%)
o3-mini 0 (0%) 0 (0%) 6 (100%) 0 (0%) 0 (0%) 6 (100%) 0 (0%) 0 (0%) 6 (100%) 0 (0%) 1 (3%) 35 (97%)

sessment of CT skills provided detailed comments,
such as concerns about vague terminology, overly
obvious item structure, conceptual inconsistencies,
and cultural bias, which were often overlooked by
LLM judges. These qualitative insights are stored
as data and will play an instrumental role in shap-
ing the future STAIR-AIG protocol, particularly in
optimizing the prompts used for AIG and in sys-
tematizing the rubrics for the LLM-based review.

It is also worth noting that the human expert
raised the issue of the content validity of some AIG
items. Specifically, some items were on the bor-
derline of assessing CT or reading comprehension.
In such cases, the human expert not only provided
a detailed explanation of their reasoning but also
directly revised the wording of the items to better
align with the intended purpose of the assessment.
Such feedback can also be saved as data and used to
fine-tune the LLMs, ultimately supporting the de-
velopment of more valid and reliable AIG-powered
assessment content.

6 Conclusions & Implications

6.1 Conclusions
This study introduces STAIR-AIG, a structured,
human-in-the-loop framework designed to improve
the quality and validity of AI-generated assessment
items. Using the STAIR-AIG tool, we collected
and compared item reviews from a human expert

and four OpenAI LLMs. Our quantitative and qual-
itative analyses revealed that, while LLM’s evalua-
tions demonstrated high consistency, their feedback
was generally superficial and overly lenient. Often,
LLMs neglected critical issues such as ambiguous
terminology, cultural insensitivity, and insufficient
cognitive depth. In contrast, the human expert pro-
vided more critical and nuanced feedback, effec-
tively identifying subtle yet significant flaws.

The two core modules of STAIR-AIG signifi-
cantly support human reviewers in conducting rig-
orous, systematic evaluations aligned with the test-
taker’s background and the assessment goals, en-
hancing review efficiency. Notably, the discrepan-
cies observed between human reviewers and LLM
judges underscore the importance of a human-in-
the-loop framework and an iterative review process.
Ultimately, the data collected through these struc-
tured reviews is expected to improve the quality of
AIG items and facilitate the development of more
robust and refined assessment items.

6.2 Implications

As an example of a human-in-the-loop approach
to AIG, this study sets the groundwork for ex-
tending STAIR-AIG into a comprehensive, full-
cycle framework encompassing AIG, collaborative
human-AI review, iterative refinement, pilot test-
ing, psychometric validation, and model retrain-
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Feedback Category Review Comments

Terminology & Language Use
Vague, overly technical, and struc-
turally complex, which makes it mis-
aligned with the assessment’s purpose.

- "Do not use so many different words for the same meaning."
- "(...) is a difficult formulation for not-so-strong readers."
- "(...) is unnecessarily vague scientific jargon."
- "The term (...) might be too technical for many students and may lead to incorrect
interpretations."

Item Construction & Clue Issues
Wording or structure that makes an-
swers too obvious or misleads test-
takers.

- "When mentioning acronym, use full name, and in all further mentions, use acronym."
- "Change order to avoid misinterpretation."
- "Answer appears verbatim in the passage."
- "Too simple and easy to see the answer."
- "Why use the term (...) whereas in all statements you use the term (...)? Be consistent."

Conceptual Accuracy & Fit
Inaccurate or inconsistent statements,
which make it unsuitable for valid as-
sessment.

- "I have read some publications about (...), but the definition that is used here does
not really fit very well."
- "Biased or misleading conclusion."
- "(...) and (...) depends on interpretation."

Cultural Sensitivity
Culturally biased, which offers a lim-
ited perspective and potentially dis-
advantaging test-takers from diverse
backgrounds.

- "The concept of the (...) varies by culture and perspective."
- "(...) might be ideal in some contexts, while (...) may carry a clearer negative
connotation."
- "(...) portrayed in a one-sided positive light."
- "(...) is culturally or ethically biased."

Table 3: Categorization of reviewer feedback and representative comments

ing. The human-generated reviews collected in
this study would serve as a valuable resource for
the first round of LLM refinement. Drawing on
this empirical data, future work would focus on
optimizing LLM prompting strategies and apply-
ing RLHF to improve both the quality and validity
of AI-generated items. This process will help es-
tablish a more data-driven and feedback-informed
basis for optimizing AIG systems.

In addition, this research contributes to the
emerging field of HAIC-based test design and ad-
ministration, where prior work remains limited. By
demonstrating the utility of structured human re-
views in guiding both AIG prompting and model
fine-tuning, the study highlights a scalable pathway
for the application of AI to educational measure-
ment. Similar to how the Item Factory is used
for DET, the proposed STAIR-AIG tool is being
implemented for MACAT’s CT assessment. The
number of CT assessment items has rapidly dou-
bled with the STAIR-AIG process, and the tool is
being fully implemented to create an item bank of
human-authored items alongside AIG for the CT
assessment (Shin et al., 2024). This HAIC-driven
approach showcases the increasing potential for the
scholarly and sustainable use of AI in education.

6.3 Limitations
Despite its promise, this study has several limita-
tions. First, the study was confined to an initial
review by a human expert and four OpenAI LLMs,

followed by a comparative analysis of their ratings.
The end-to-end STAIR-AIG workflow process, par-
ticularly the integration and refinement of the AIG
model through iterative review, has yet to be real-
ized. Future work will involve more comprehensive
testing of the entire STAIR-AIG pipeline.

Second, although the STAIR-AIG framework is
designed to support multiple rounds of review, the
current study only included one round of review by
one expert reviewer. Consequently, the results may
not reflect the full potential of iterative refinement,
thereby limiting the framework’s generalizability.
Future research should explore the point at which
discrepancies between LLMs and expert ratings
converge. This will help us understand how LLMs
behave when judging higher-order thinking skills,
as well as inform the optimal stage for finalizing
items for operational use and determining the max-
imum number of review cycles.

Third, while the item-review module was helpful
to human reviewers, it could only analyze superfi-
cial metrics, such as TTR, ASL, and conventional
readability indices. In the present study, grade-level
suitability was judged solely based on these read-
ability measures. Moving forward, the review mod-
ule will integrate additional linguistic indicators
that capture semantic dimensions in order to pro-
vide reviewers with more comprehensive support.
Similarly, we did not directly measure whether the
module substantially reduced the time reviewers
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needed to complete their tasks. Therefore, future
research would evaluate the practical effectiveness
of STAIR-AIG by determining the degree to which
it aids item review and the amount of time it saves
compared to standard, tool-free review procedures.

Lastly, LLMs were given instructions that
closely mirrored those provided to the human re-
viewer, yet their evaluations consistently exhibited
leniency. To achieve a more harmonious integra-
tion of human and LLM ratings, future work should
consider various prompt engineering techniques to
calibrate LLM judgments more closely with the
human evaluation standard in the CT domain. Fur-
thermore, optimizing prompts accompanied by the
psychometric results of the test data is expected to
improve AIG models’ ability to accurately generate
and evaluate item difficulty and distractor plausibil-
ity. This would, in turn, strengthen the efficiency
and validity of human-AI collaboration in test de-
velopment.
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A Appendix

A.1 Prompt for Item Review by LLMs

The following is an excerpt of the prompt used to
instruct the LLMs in reviewing the quality of CT
items. The prompt defines the evaluation criteria,
output structure, and PACIER framework to assess
item quality.

Listing 1: System prompt
You are a Critical Thinking Assessment's **Item Review

Expert** with extensive experience in educational
evaluation and test design, specializing in critical
thinking.

Your role is to systematically evaluate the quality of test
items based on established frameworks, ensuring
fairness, reliability, and alignment with learning
objectives.

Listing 2: User prompt: Review Context
## Review Context
- The exam items are designed for Grade 7~8 learners.
- Each item consists of a Passage, a Question, and 6 Answer

Choices (each with an Explanation).
- Your task is to rigorously evaluate the quality of each

component and provide structured feedback.

## PACIER Framework (Cognitive Process Dimensions)
The PACIER framework categorizes cognitive processes into six

distinct levels:
- **Problem-Solving (P):** (...)
- **Creative Thinking (C):** (...)
- **Interpretation (I):** (...)
- **Evaluation (E):** (...)
- **Reasoning (R):** (...)
Each test item should align with at least one PACIER

category, ensuring it assesses critical thinking skills
effectively.

Listing 3: User prompt: Review Methods
## Evaluation Methodology
1. Assessment Criteria

- Passage: Relevance, clarity, and cognitive demand.
- Question: Alignment with passage, clarity, and ability

to assess critical thinking.
- Answer Choices: Plausibility of distractors, clarity,

and correctness of explanations.

2. Comparative Judgment
- Evaluate each component relative to high-quality

reference items to ensure consistency.

3. Rating Scale
- Dissatisfied: Fundamentally flawed or inappropriate for

assessment and thus discarded without revision
suggestions.

- Neutral: Requires revisions to improve clarity,
relevance, or difficulty. You should provide detailed
feedback and specific revision recommendations.

- Satisfied: Suitable for immediate use or required
minimal edits. You could directly accept these items or
suggest minor enhancements.

4. Actionable Feedback
- Provide concise but specific feedback justifying each

rating.

5. Final Output Format (Plain Key-Value Pairs, CSV-Ready)
Output only concise final results in plain key-value pairs

(one per line) using the following CSV column structure:

Item Number, Type, Topic, Subtopic, PACIER, Difficulty,
Overall Quality Score, Overall Comment,

Passage Comment, Passage Rating, Passage Revision,
Question Comment, Question Rating, Question Revision,

Item_1_Choice_1 Review, Item_1_Choice_1 Rating,
Item_1_Choice_1 Revision Suggestion, ... (repeat for
Choices 2 through 10)

## Additional Guidelines
- Ensure alignment with cognitive and linguistic proficiency

standards.
- **Maintain consistency** across evaluations to avoid bias.
- Do not include markdown, bullet points, or additional

explanations.
- Return only key-value pairs as output.

930



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 931–936
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

UPSC2M: Benchmarking Adaptive Learning
from Two Million MCQ Attempts

Kevin Shi, Karttikeya Mangalam

SigIQ.ai
Correspondence: kevin@sigiq.ai

Abstract

We present UPSC2M, a large-scale dataset
comprising two million multiple-choice ques-
tion attempts from over 46,000 students, span-
ning nearly 9,000 questions across seven sub-
ject areas. The questions are drawn from the
Union Public Service Commission (UPSC) ex-
amination, one of India’s most competitive and
high-stakes assessments. Each attempt includes
both response correctness and time taken, en-
abling fine-grained analysis of learner behavior
and question characteristics. Over this dataset,
we define two core benchmark tasks: question
difficulty estimation and student performance
prediction. The first task involves predicting
empirical correctness rates using only question
text. The second task focuses on predicting the
likelihood of a correct response based on prior
interactions. We evaluate simple baseline mod-
els on both tasks to demonstrate feasibility and
establish reference points. Together, the dataset
and benchmarks offer a strong foundation for
building scalable, personalized educational sys-
tems. We release the dataset and code to sup-
port further research at the intersection of con-
tent understanding, learner modeling, and adap-
tive assessment: github.com/kevins-hi/upsc2m.

1 Introduction

As digital learning platforms become increasingly
central to education, there is growing demand for
intelligent systems that can adapt to individual
learners, curate relevant content, and deliver tar-
geted assessments. At the heart of such systems
lie two fundamental modeling tasks: estimating
the difficulty of educational content and predicting
student performance. These capabilities underpin
a wide range of applications—from personalized
question selection to real-time learner diagnostics.
When combined, they serve as the foundation for
fully automated adaptive learning systems that dy-
namically tailor instruction based on both content
complexity and learner proficiency.

Figure 1: UPSC2M visualized as a list of students, each
associated with a set of question attempts. Each attempt
records the student ID, question ID, selected answer,
whether it was correct, and the time taken to answer.

Statistic Count
Unique Students 46,235
Unique Questions 8,973
Total Interactions 1,962,573

Table 1: Summary statistics for the UPSC2M dataset.

Much of the existing work in educational model-
ing has relied on small-scale classroom data or nar-
row subject domains, limiting the development of
models for real-world settings. To bridge this gap,
we introduce UPSC2M, a large-scale dataset of
1,962,573 question attempts from aspirants prepar-
ing for the Union Public Service Commission
(UPSC) examination—one of India’s most compet-
itive standardized tests. Spanning 8,973 questions
across seven subjects, UPSC2M includes correct-
ness and timing data from 46,235 students.

We propose two core tasks supported by this
dataset. The first is Question Difficulty Estimation,
where models predict empirical difficulty from
question text alone. The second is Student Perfor-
mance Prediction, where models forecast whether
a student will answer a question correctly, given
their prior interactions. These tasks reflect key
challenges in real-world adaptivity and serve as
modular building blocks for intelligent tutoring and
assessment systems.
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Figure 2: Illustration of the two benchmark tasks: ques-
tion difficulty estimation (top) and student performance
prediction (bottom). In the first task, the goal is to esti-
mate the difficulty of a question—defined as one minus
the empirical probability of a correct response—based
solely on its text. In the second task, given a student’s
prior question attempts, predict whether the student will
correctly answer a new, unseen question.

Our contributions are threefold: (1) We release
UPSC2M, a large-scale dataset capturing both ques-
tion content and behavioral interaction data in a
high-stakes, multi-subject testing context. (2) We
define two core prediction tasks that capture key
challenges in adaptive education. (3) We establish
baselines and outline directions for future work.
Together, UPSC2M and its benchmark tasks pro-
vide a robust foundation for research in scalable
personalized education. By supporting more ac-
curate models of question difficulty and student
performance, this work lays the groundwork for ed-
ucational platforms that adapt to individual needs
at scale, expanding access to high-quality, personal-
ized learning for students regardless of background.

2 Related Work

Large-scale Interaction Datasets A number of
publicly available datasets have driven progress in
student modeling and adaptive learning. The PSLC
DataShop repository provides tens of thousands
of student–problem interactions across diverse do-
mains (Stamper et al., 2011), and the ASSISTments
dataset offers fine-grained logs of middle-school
mathematics practice. More recently, EdNet—a
hierarchical dataset of over 130 million interac-
tions from an online tutoring platform—has en-
abled deep sequence models at unprecedented scale
(Choi et al., 2020). Our dataset, UPSC2M, comple-
ments these by focusing on a highly competitive,
multi-subject exam context, capturing both correct-
ness and response-time signals for UPSC aspirants.

Question Difficulty Estimation Classical item
response theory (IRT) models difficulty as a latent

parameter estimated from response patterns (Lord,
1980), but they rely solely on interaction counts.
Recent work has explored textual and semantic fea-
tures to predict question difficulty directly from
content (Blum and Corter, 2014). By pairing a
large, annotated UPSC question bank with empiri-
cal accuracy rates, UPSC2M supports both purely
content-based difficulty regression and hybrid ap-
proaches that integrate behavioral priors.

Student Performance Prediction Predicting
learner outcomes has a long history in educational
data mining. Bayesian Knowledge Tracing (BKT)
(Corbett and Anderson, 1994) and Performance
Factor Analysis (PFA) (Pavlik Jr et al., 2009) estab-
lished early probabilistic frameworks for tracking
mastery. The advent of neural methods—e.g. Deep
Knowledge Tracing (DKT) (Piech et al., 2015) has
further improved sequence-based prediction. The
UPSC2M dataset, with its detailed question con-
tent, student attempt outcomes, and rich temporal
metadata, offers a new testbed for benchmarking
such models on high-stakes exam data.

Applications for Adaptive Testing Adaptive
testing algorithms—such as computerized adap-
tive testing (CAT) (Weiss, 2011)—depend critically
on calibrated item difficulties and real-time perfor-
mance estimates. Datasets that combine content
features with large-scale attempt logs enable more
responsive and personalized CAT systems. We an-
ticipate that UPSC2M will spur advances in adap-
tive exam design, question selection strategies, and
real-time learner diagnostics.

3 Proposed Dataset

3.1 Motivation and Collection

The UPSC exam is among the most competitive
and high-stakes assessments in India, attracting
over one million aspirants annually. The exam be-
gins with Paper 1, a 2-hour, 100-question multiple-
choice test that spans a broad spectrum of subjects,
including history, polity, economy, science, geog-
raphy, environment, and current affairs. Questions
are carefully crafted to assess not only factual re-
call, but also higher-order reasoning, elimination
strategies, and nuanced interpretive understanding
under strict time constraints.

This examination offers a rich environment for
studying educational modeling tasks. In particu-
lar, Paper 1 presents a uniquely challenging setting:
questions span multiple knowledge domains, often
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Students per Question Questions per Student
Subject Question Count Mean Median Max Mean Median Max
Current Affairs 1793 127.79 112 3576 20.13 5 1502
Polity 1487 348.00 79 3284 19.31 5 1425
History 1449 259.72 77 2559 20.94 5 1227
Economy 1111 183.86 72 1728 20.17 5 1069
Science 1094 139.81 19 2869 11.48 5 1008
Environment 1022 181.63 104 2801 11.70 4 913
Geography 1017 291.82 145 3055 19.93 5 956
Overall 8973 218.72 91 3576 42.45 8 6553

Table 2: Per-subject statistics in the UPSC2M dataset, including the number of questions and summary statistics for
student and question engagement—measured as students per question and questions per student.

require implicit reasoning, and are attempted by a
large student body interacting with a shared ques-
tion bank. These characteristics make it an ideal
testbed for developing, benchmarking, and evaluat-
ing adaptive educational technologies at scale.

To support research on adaptive learning algo-
rithms, we deployed a custom learning platform
targeting UPSC aspirants. Students engaged with
a curated bank of 8,973 multiple-choice questions.
Over a 2-year period, we collected interaction data
from 46,235 students, totaling 1,962,573 question
attempts. The resulting dataset has been rigor-
ously cleaned and anonymized to ensure student
privacy while retaining the signals necessary for
downstream modeling tasks.

3.2 Dataset Schema

UPSC2M is a large-scale dataset comprising two
components: an attempts dataset and a questions
dataset. Each row in the attempts dataset repre-
sents a single interaction between a student and a
question, capturing key fields including user_id,
question_id, user_answer, user_correct, and
time_taken. The accompanying questions dataset
provides metadata for each question, including
its id, subject, question stem, multiple-choice
options, and the correct answer. While no student
metadata is included, the dataset enables rich be-
havioral analysis: the user_answer field supports
investigations into distractor effectiveness and com-
mon misconceptions, while the time_taken field—
measured in seconds—offers a proxy for question
engagement and fluency under time pressure. Each
question is constrained to a 60-second limit, mir-
roring the real-world pacing of the UPSC exam.

3.3 Dataset Statistics
UPSC2M exhibits substantial scale and diversity
in learner behavior across content categories. As
shown in Table 2, each question is attempted by
an average of 219 students, with some questions
receiving over 3,000 attempts. This breadth of
coverage stems from both the temporal dynam-
ics of question exposure—where older or more
prominently featured questions accumulate more
interactions—and varying levels of learner interest
across subject areas. Such variation necessitates
models capable of generalizing across both high-
frequency and low-frequency questions.

The average student attempted 42 questions,
with the most active student answering over 6,500.
This long-tailed distribution, typical of open educa-
tional platforms, supports modeling across a wide
range of engagement levels. However, the low me-
dian number of questions per student indicates that
many students engage only briefly, emphasizing
the need for models that are robust to cold-start
scenarios and sparse interaction histories.

4 Question Difficulty Estimation

4.1 Problem Formulation
We propose a task to estimate the empirical diffi-
culty of a multiple-choice question using only its
textual content. Each question is represented as a
tuple (id, subject, stem, options, answer),
where stem denotes the question prompt, options
is a list of four candidate choices, and answer spec-
ifies the index of the correct option.

The empirical difficulty of a question is defined
as 1 − pcorrect, rounded to two decimal places,
where pcorrect denotes the proportion of students
in UPSC2M who answered the question correctly
among those who attempted it. This definition re-
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Method RMSE MAE R2

Training Mean 0.2057 0.1699 -0.0001
Text Embedding 0.1910 0.1543 0.1375

Table 3: Test set performance of regression models
for question difficulty estimation. The Training Mean
baseline predicts the mean difficulty for all training
samples.

flects the intuition that more difficult questions are
associated with lower observed accuracy.

Setup To support reproducible evaluation, the
questions dataset includes a predefined split field
designating train, validation, and test partitions in
a 70/15/15 split. Each question is also annotated
with a precomputed difficulty score based on
the formulation above.

4.2 Text Embedding Regression

As a baseline for question difficulty estimation, we
adopt a simple regression approach. Specifically,
we encode the question using a frozen pretrained
text encoder and train a small MLP to predict the
associated difficulty.

Each question is serialized as a single string com-
bining the stem and options, which is then passed
through OpenAI’s text-embedding-3-large
model—a general-purpose text embedding model.
The resulting fixed-dimensional embedding serves
as input to an MLP trained to minimize mean
squared error against ground-truth difficulty scores.
This approach offers a lightweight text-to-score
mapping that sets a lower bound for models
leveraging richer representations.

4.3 Results and Discussion

Our baseline achieves modest gains over a dummy
regressor, reducing RMSE by 7.1% and MAE by
9.2%. While this demonstrates that semantic fea-
tures carry some signal, the limited improvement
underscores the difficulty of estimating question
difficulty from text alone. These results motivate
the incorporation of richer features—such as be-
havioral priors and structural cues.

Beyond benchmarking, automatic estimation of
question difficulty has broad value in educational
applications, enabling adaptive learning systems to
personalize content to learner proficiency and main-
tain engagement. It also aids large-scale content
management by facilitating question bank auditing,
difficulty calibration, and the efficient construction

of balanced assessments with minimal manual ef-
fort. In generative settings, difficulty estimation
models can act as verifiers to ensure that newly cre-
ated questions meet predefined pedagogical goals.
As educational platforms scale across diverse cur-
ricula and learner populations, automated question
difficulty estimation will become a cornerstone of
personalized adaptive learning infrastructure.

5 Student Performance Prediction

5.1 Problem Formulation

We propose a task to predict whether a student
will answer a given multiple-choice question cor-
rectly, based on their prior interaction history. Each
row in the attempts dataset represents a single in-
teraction and is formatted as a tuple (user_id,
question_id, user_answer, user_correct,
time_taken), where user_correct is a binary la-
bel indicating whether the response was correct.

For evaluation, the fields user_answer,
user_correct, and time_taken are treated
as target variables—models may access them
during training but must not use them as input
features at inference time. At test time, each
example is defined solely by the pair (user_id,
question_id), and the model must predict
whether the student answers the question correctly.

Formally, this task involves estimating the condi-
tional probability that a student answers a question
correctly, given their historical behavior. This for-
mulation mirrors real-world scenarios in adaptive
learning systems, where predicting a learner’s per-
formance is essential.

Setup To facilitate reproducible evaluation, the
attempts dataset includes a predefined split field
that assigns each interaction to the training, valida-
tion, or test set, following an 80/10/10 ratio. The
split is randomized at the interaction level, with
post-processing to ensure that all students and ques-
tions in the validation and test sets also appear in
the training set. This constraint ensures that models
are evaluated on their ability to generalize to new
interactions, rather than on cold-start cases with
unseen students or questions.

5.2 Baselines

To contextualize the performance of more sophisti-
cated models, we evaluate several simple baselines
for this task.
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Random and Zero Predictors As naive refer-
ence points, we consider two trivial classifiers. The
Random baseline predicts correctness by sampling
from the empirical label distribution in the training
set, which shows a slight class imbalance (59.81%
incorrect). The Zero Predictor always predicts the
majority class (0 for incorrect), thereby serving
as a worst-case lower bound on accuracy and cali-
bration. While uninformative, these baselines are
useful for verifying that more complex models ex-
ploit meaningful structure in the data.

Difficulty-Based Heuristic As a simple yet infor-
mative baseline, we ignore the student’s interaction
history and estimate the probability of a correct
response based solely on the difficulty of the target
question. Specifically, we compute the predicted
probability as 1− d, where d denotes the difficulty
score of the question, defined in Section 4.1. This
formulation assumes that all students have an equal
chance of answering a question correctly, modu-
lated only by how empirically difficult the question
is for the population.

Despite its simplicity, this baseline captures
coarse priors over questions and highlights the in-
fluence of item difficulty on student performance.
Comparing it to history-aware models underscores
the value of incorporating personalized signals.

5.3 Collaborative Filtering

To assess the utility of standard recommender sys-
tem techniques for modeling student performance,
we evaluate several collaborative filtering (CF) (Su
and Khoshgoftaar, 2009) methods that treat the
task as a matrix completion problem. The student-
question interaction matrix is constructed from ob-
served correctness labels, and models are trained
to predict whether a student will answer a given
question correctly.

We include matrix factorization methods such
as Singular Value Decomposition (SVD) and Non-
negative Matrix Factorization (NMF), which learn
low-dimensional embeddings for students and ques-
tions based on historical responses. We also eval-
uate a bias-only model that estimates correctness
using additive student and item biases, as well as
a K-nearest neighbors (KNN) approach that ag-
gregates correctness labels from similar students.
Together, these methods span a spectrum of per-
sonalization strategies, from global baselines to
fine-grained models that exploit relational structure
in the data.

Method Accuracy AUC Brier
Random 0.5204 0.5000 0.2400
Zero Predictor 0.6002 0.5000 0.3998
Heuristic 0.6698 0.7118 0.2080
KNN CF 0.6429 0.6461 0.2330
SVD CF 0.6755 0.7133 0.2076
NMF CF 0.6757 0.7157 0.2100
Bias Only CF 0.6788 0.7210 0.2051

Table 4: Test set performance of baseline methods on
the student performance prediction task. CF denotes
collaborative filtering.

These models serve as a classical baseline for
student performance prediction, illustrating how
much signal can be captured from past interactions
alone, without access to question content.

5.4 Results and Discussion

Table 4 reports the performance of all baseline mod-
els on the student performance prediction task. The
Heuristic model substantially outperforms trivial
baselines, demonstrating that question difficulty
alone provides a strong prior for estimating student
success. This suggests that well-estimated item-
level difficulty can serve as a meaningful signal,
even without any personalization.

Among collaborative filtering methods, Bias
Only yields the highest overall performance, while
more expressive models such as SVD, NMF, and
KNN fail to produce significant gains in accuracy.
The high sparsity of the student-question matrix
(99.62%) likely inhibits the ability of these mod-
els to learn effective representations or student
neighborhoods, constraining their ability to cap-
ture student-specific patterns beyond simple item
and student-level tendencies.

Predicting student performance is vital to adap-
tive educational systems, enabling personalized
question selection, targeted review, and adaptive
pacing to support diverse learners. When paired
with difficulty estimation, it lays the groundwork
for fully automated instruction by combining item-
level insights with behavioral modeling. As educa-
tional platforms scale, these predictive capabilities
are key to delivering truly individualized learning—
ensuring each student receives the right content
at the right time. Together, these tasks form the
backbone of scalable, data-driven education.
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Limitations

Our question difficulty estimation labels are based
solely on correctness rates and ignore temporal or
student-specific variation; future work may rede-
fine difficulty through joint modeling of student
and item characteristics, potentially incorporating
response times. Our collaborative filtering models
are likely hindered by the high prevalence of low-
activity learners—the median questions attempted
per student is just 8—which may limit generaliza-
tion and overall performance. None of our current
models incorporate response time features, which
could offer valuable signals related to fluency or
hesitation. Finally, while UPSC2M is large and
diverse, its focus on one high-stakes exam context
may limit direct transferability to other educational
domains. Despite these limitations, we view our
dataset and task formulations as a strong founda-
tion for building more expressive, interpretable,
and personalized models of learner behavior.
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Abstract

Despite recent advances in AI detection meth-
ods, their practical application, especially in
education, remains limited. Educators need
functional tools pointing to AI indicators within
texts, rather than merely estimating whether AI
was used. GPTZero’s new AI Vocabulary fea-
ture, which highlights parts of a text likely to
be AI-generated based on frequent words and
phrases from LLM-generated texts, offers a po-
tential solution. However, its effectiveness has
not yet been empirically validated.

In this study, we examine whether GPTZero’s
AI Vocabulary can effectively distinguish be-
tween LLM-generated and student-written es-
says. We analyze the AI Vocabulary lists pub-
lished from October 2024 to March 2025 and
evaluate them on a subset of the Ghostbuster
dataset, which includes student and LLM es-
says. We train multiple Bag-of-Words classi-
fiers using GPTZero’s AI Vocabulary terms as
features and examine their individual contribu-
tions to classification.

Our findings show that simply checking for
the presence, not the frequency, of specific
AI terms yields the best results, particularly
with ChatGPT-generated essays. However,
performance drops to near-random when ap-
plied to Claude-generated essays, indicating
that GPTZero’s AI Vocabulary may not general-
ize well to texts generated by LLMs other than
ChatGPT. Additionally, all classifiers based on
GPTZero’s AI Vocabulary significantly under-
perform compared to Bag-of-Words classifiers
trained directly on the full dataset vocabulary.
These findings suggest that fixed vocabularies
based solely on lexical features, despite their in-
terpretability, have limited effectiveness across
different LLMs and educational writing con-
texts.

1 Introduction

Recently, the introduction of user-friendly inter-
faces such as ChatGPT (OpenAI, 2023) has made

a significant impact on education. An increasing
number of students are using large language mod-
els (LLMs) to write essays (among other things),
and this creates new challenges for educators to
assess various skills and ensure academic integrity
(Cotton et al., 2024). Even experienced teachers
and those familiar with LLMs often struggle to tell
apart student-written essays from those created by
LLMs, as studies have shown (Fleckenstein et al.,
2024; Waltzer et al., 2024; Perkins et al., 2024).

To address these challenges, numerous AI de-
tection methods and tools have been developed
(see Wu et al. 2025 for a review). However, as
highlighted by Weber-Wulff et al. (2023), most de-
tection tools in the market lack robustness with stu-
dent texts and interpretability for non-expert users
such as teachers. GPTZero (Tian and Cui, 2025),
a popular AI detection tool, aims to offer a more
transparent and interpretable solution. It analyzes
texts for patterns, vocabulary and styles that are
more common in AI-generated writing than in hu-
man writing, aiming to assist educators in verifying
the authenticity of student work.

In October 2024, GPTZero introduced a new
AI Vocabulary1 feature (Figure 1), which high-
lights text parts that are likely to be AI-generated.
This feature includes a list of the 50 words and
phrases most commonly used by LLMs (Con-
stantino, 2024), which can be interpreted as AI
indicators, and is updated monthly. Each term is
assigned a weight, indicating its frequency in AI-
generated texts relative to human-written ones, and
is accompanied by a contextual example. Since De-
cember 2024, the list has been expanded to include
the top 100 words and phrases commonly used
by AI. A key question, however, is whether this
feature can be used to effectively distinguish LLM-
generated essays from student-written ones. In
this paper, we address this question by conducting

1https://gptzero.me/ai-vocabulary
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Figure 1: Screenshot of GPTZero’s AI Vocabulary Released on October 7, 2024.

the first systematic study that assesses GPTZero’s
AI Vocabulary feature in detecting LLM-generated
content from educational contexts. Specifically,
we integrate the AI Vocabulary lists (from October
2024 to March 2025) within supervised Bag-of-
Words (BoW) classification models, namely two
Naive Bayes classifiers trained on a subset of the
Ghostbuster detector dataset (Verma et al., 2024),
containing student and LLM-generated essays from
ChatGPT (OpenAI, 2023) and Claude (Anthropic,
2023). We selected these models for their inter-
pretability, as they allow us to inspect the contri-
bution of each feature, namely the AI Vocabulary
terms, to classification decisions. We position our
work as a step toward evaluating the real-world util-
ity of interpretable detection tools in educational
contexts, where the use of AI is becoming increas-
ingly widespread and, therefore, both reliable and
efficient solutions are needed.

2 Background

Being able to differentiate between human-written
and LLM-generated texts has recently become a
much-discussed research topic, especially in aca-
demic and educational contexts. However, current
AI detection methods present two main issues: (i)
they often rely on non-transparent features, abstract
and difficult for the average person to interpret and
(ii) they have limited applicability for texts writ-
ten by students, who are underrepresented in the
training data.

Several current AI detection methods and sys-

tems prioritize model-based statistical metrics over
basic linguistic features, such as perplexity (Vasi-
latos et al., 2023) and burstiness (Tian and Cui,
2025), log-probability (Solaiman et al., 2021) and
high-dimensional neural representations (Guo et al.,
2024). While highly performative, these methods
do not offer interpretable justifications for their
predictions, making it difficult for educators to re-
liably use and understand their outcomes (Ji et al.,
2024). The underrepresentation of student texts
in the detectors’ training sets represents another
significant challenge. Student writing can exhibit
lower fluency, formulaic phrasing or genre-specific
traits that differ from both typical human and LLM-
generated outputs. This mismatch can lead to high
false positive rates, as observed in recent evalua-
tions (Weber-Wulff et al., 2023; Liang et al., 2023;
Perkins et al., 2024), as well as numerous false
negatives, particularly when texts undergo simple
adversarial modifications to evade the detectors
(Weber-Wulff et al., 2023; Perkins et al., 2024).

In response to these AI detectors’ transparency
issues, interpretable alternatives focusing on word
frequency, n-gram patterns and stylometric indica-
tors (Opara, 2024; Ciccarelli et al., 2024; Muñoz-
Ortiz et al., 2024) have emerged to offer more trans-
parent and pedagogically useful solutions. How-
ever, these methods are often less robust when ap-
plied to domain shifts or with LLM-generated texts
modified to become less detectable. A hybrid detec-
tion tool, GPTZero (Tian and Cui, 2025), combines
statistical features, such as perplexity and bursti-
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ness, with more interpretable metrics, including
readability, text complexity and average sentence
length. Although it does not fully disclose the ra-
tionale behind its classifications, GPTZero claims
to be “the top AI detector for teachers” (Tian and
Cui, 2025). As such, it has recently introduced AI
Vocabulary lists that highlight in text terms dispro-
portionately used by LLMs compared to human
authors, as a way to enhance interpretability and
better support educational use among teachers.

Beyond AI detection models, some studies have
recently emerged that focus on quantifying and an-
alyzing a significant increase in the use of certain
words and phrases, especially in scientific writing,
after the introduction of LLMs. Kobak et al. (2024)
employed large-scale corpus analysis of medical
abstracts to track excess word usage and revealed
a sharp rise in usually less frequent terms such as
“delve” and “intricacies”. Juzek and Ward (2025)
used model testing methods and human evaluators
to explore why LLMs overrepresent certain terms,
focusing on 21 “focal words”. However, their re-
sults turned out to be inconclusive. Mingmeng and
Roberto (2024) quantitatively compared academic
texts before and after the spread of LLMs, docu-
menting a general trend towards producing more
complex and abstract texts. Liang et al. (2024) an-
alyzed textual features and metadata from papers
across different domains, linking higher rates of
LLMs use with texts whose first authors published
more preprints, shorter papers or in more popular
research fields.

While these studies provide interesting insights
into possible LLM-influenced term choices, they
mostly remain focused on quantitative and compar-
ative vocabulary studies that analyze the language
of scientific publications and do not directly extend
to student writing or educational contexts. More-
over, to the best of our knowledge, no existing
works have systematically leveraged terms more
frequently used by LLMs to build and evaluate
AI detection models focused on the educational do-
main, where they would currently be highly needed.
This highlights a critical research gap, in which
to explore whether vocabulary-based AI detection
methods could be applied to distinguish student-
written texts from LLM-generated ones, supporting
educators in a more interpretable and linguistically
justified manner. To address this gap, in this pa-
per we evaluate for the first time GPTZero’s AI
Vocabulary lists as a promising way to detect LLM-
generated essays among student-written ones. To

the best of our knowledge, these are the only pub-
licly available, extensive AI-vocabulary lists de-
rived from a significant number of documents that
go beyond scientific publications and likely include
student-written texts, given GPTZero’s commit-
ment to teachers and educational contexts 2. More-
over, they also provide data concerning the differ-
ent word and phrase frequencies found in human-
authored and LLM-generated texts (see Figure 1),
further increasing their relevance. Starting with this
study we aim to work towards developing a more
transparent AI detection methodology applicable
in educational contexts, reliable and better aligned
with educators’ needs.

3 Method

3.1 GPTZero’s AI Vocabulary Lists
We collected the AI Vocabulary lists published on
the GPTZero website between October 2024 and
March 2025.3 Each month, we gathered a list of
words and phrases together with their frequency
estimates (see Appendix A), which had been esti-
mated on 3.3 million texts (Tian and Cui, 2025).
The October 2024 list featured the 50 most fre-
quent AI-related terms, including single words and
multi-word expressions. In November 2024, the
same list (“Updated October 2024”) remained on-
line. In December 2024, a new list (“Updated
November 2024”), now including 99 items, was
published.4 However, this updated list contained
some errors, such as missing words, duplicate en-
tries, and phrase variations. Subsequently, a cor-
rected list with 100 items was published later on
in December, 2024. This one still contained du-
plicates, so we removed exact double entries for
the purpose of our experiments. In January 2025, a
new list (“Updated January 2025”) with 100 unique
phrases was published. No new list was published
in February 2025; instead, the January 2025 list
remained online for that month. The March 2025
list was labeled as “updated”, but it was identical
to the January and February lists. As a result, there
were only three distinct AI Vocabulary lists that
we could use in our experiments: (a) the October
2024 list, (b) the November/December 2024 list,
and (c) the January/February/March 2025 list. In
addition, we constructed a combined list (“All”)

2https://gptzero.me/educators
3The reader can retrieve these lists using https://web.

archive.org/.
4https://web.archive.org/web/20241208223132/

https://gptzero.me/ai-vocabulary
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that merged all unique words and phrases from
these three sources.

3.2 Data
To detect LLM-generated essays using GPTZero’s
AI Vocabulary, we used a subset of the data initially
employed to train the Ghostbuster detector (Verma
et al., 2024). This dataset originally contained
21,000 documents, including articles, creative writ-
ing pieces and student essays. For our experiments,
we focus on a subset of 1,000 university student
essays sourced from IvyPanda (IvyPanda, 2025), a
platform where users can submit essays from high
school and university levels concerning various top-
ics and subjects, and 2,000 LLM-generated essays.
To obtain the latter, Verma et al. (2024) used Chat-
GPT to generate the prompts corresponding to the
unique 1,000 assignments based on which the stu-
dent texts were written. These prompts were then
used to generate 1,000 essays with ChatGPT and
1,000 essays with Claude. The desired essay length
was also specified in them to match the human-
written texts. The resulting median word count was
661 for student essays, 536 for ChatGPT-generated
essays and 456 for Claude-generated essays. For
the rest of the paper, we will refer to this subset of
essays as the Ghostbuster corpus.

3.3 Models
We experimented with three classification models,
each trained to predict whether an essay is written
by a student or by (a) an LLM, (b) Claude, or (c)
ChatGPT. To this end, we performed binary classi-
fication (using only the binary labels “AI” and “hu-
man”) on different dataset partitions: 1,000 student
essays with (a) all 2,000 LLM-generated essays, (b)
1,000 essays generated by Claude, or (c) 1,000 es-
says generated by ChatGPT. We used scikit-learn
(Pedregosa et al., 2011) to implement and train
these classification models.

For each of these three classifiers, we estimated
separate models for each of the four AI Vocabulary
lists (monthly or combined), computing different
feature vectors for the words and phrases in the
list. For each list, we counted the occurrences of its
items in the corpus using a Bag-of-Words (BoW)
approach. Each AI word or phrase was treated as
a distinct feature. Since the vocabulary included
multi-word units (i.e., AI phrases), we employed
an n-gram vectorization strategy to capture these
phrases, setting n to range from 1 token up to the
maximum number of tokens found in the longest

phrase in the list.5

We integrated the BoW features in a binary
Naive Bayes classifier

P (c|w1, ..., wn) ∝ P (c)
n∏

i=1

P (wi|c) (1)

to predict the class c, namely whether an essay is
generated by an AI (positive class) or written by
a student (negative class). The models assumed
independence between each word/phrase w and
always used a uniform prior, assuming an equal
chance (50%) that an essay belonged to one of the
two6 classes.

We experimented with two types of feature vec-
tors: (a) a Multinomial feature vector indicating
the counts of the words and phrases in the essay,
and (b) a Bernoulli feature vector indicating the
presence or absence of the words and phrases in
the essay.

For comparison, we also trained binary Naive
Bayes classifiers – using either Multinomial or
Bernoulli feature vectors – based on an alterna-
tive Bag-of-Words approach. In this configura-
tion, the vocabulary comprised all unigram word
types found in the Ghostbuster dataset, which were
used to construct the feature vectors. These models
served as a baseline to assess the effect of using the
curated vocabulary lists in contrast to the default
vocabulary derived directly from the training data.

3.4 Experiments

We trained a total of 24 classification models (3 AI
x 4 lists x 2 features) using GPTZero AI Vocabu-
lary lists, along with 6 reference models (3 AI x 2
features) based on the vocabulary derived from the
Ghostbuster training data. To ensure an exhaustive
evaluation, all models were trained and tested using
leave-one-out cross-validation.

3.5 Metrics

We evaluated the classifiers’ performance using ac-
curacy, (binary) precision, (binary) recall, (binary)
F1-score, MCC (Matthews correlation coefficient)
and AUROC (Area Under the Receiver Operating
Characteristic curve) computed with scikit-learn

5This was implemented using CountVectorizer, with the
ngram_range parameter set to (1, max_phrase_length).

6It is important to reiterate that we did not perform any mul-
ticlass classification between the different LLMs in the dataset.
We always compared LLM-generated to student-written, or
Claude-generated to student-written, or GPT-generated to
student-written (cf., supra).

940



(Pedregosa et al., 2011). Precision, recall and F1
score were computed for the positive class only
(LLM-generated essays).

4 Results

4.1 GPTZero’s AI Vocabulary terms’
distribution in Ghostbuster

Table 1 lists the terms from GPTZero’s AI Vocab-
ulary found in the Ghostbusters dataset. Of the
245 distinct words and phrases published between
October 2024 and March 2025, only 98 appeared
in the entire dataset, 53 in the Claude subset and
91 in the ChatGPT subset. These low and different
distributions suggest that many AI-specific vocab-
ulary terms identified by GPTZero as salient AI
indicators, such as “left an indelible mark” (ranked
8th in Table 7 but only found 9 times in our cor-
pus), “a rich tapestry” (ranked 18th in Table 7 but
only found 6 times in our corpus), “offers valuable
insights” (ranked 9th in Table 7 but only found 7
times in our corpus), “despite facing ” (ranked 3rd
in Table 5 but only found 6 times in our corpus)
and “study aims to explore” (ranked 6th in Table 5
but only found twice in our corpus) may not be
frequently used in educational LLM-generated es-
says, in particular by models other than ChatGPT
for most of the cases.

To assess the alignment between GPTZero’s
AI Vocabulary rankings and their usage in LLM-
generated essays, we calculated Spearman rank
correlations between each term’s rank in the AI
Vocabulary lists and its rank based on frequency
of usage in LLM-generated texts (Claude and/or
GPT). Our results (see Table 9) indicate generally
weak or negative correlations between AI Vocab-
ulary rankings and their occurrence across LLM-
generated texts. There was, however, a significant
positive correlation between the terms’ ranks in the
October lists and their usage in Claude-generated
texts (ρ = 0.501, p < .001), as well as between
the terms’ ranks in the January-March lists and
their usage in Claude-generated texts (ρ = 0.476,
p < .001). In contrast, correlations with ChatGPT-
generated texts remained low or negative, except
for a modest positive correlation (ρ = 0.211,
p = .053) with the November/December AI Vo-
cabulary list 7. Based on these findings, it is still

7These different correlation values suggest that while
higher-ranked AI Vocabulary words tend to be relatively
more frequent in Claude-generated essays compared to lower-
ranked terms, their overall presence in such texts remains
sparse.

unclear whether the actual ranks of the AI Vocabu-
lary words and phrases in the list are informative
and could consequently be used for AI text detec-
tion in education.

4.2 Classification performance with
GPTZero’s AI Vocabulary lists

In our experiments, we evaluated two types of
Naive Bayes classifiers, one using a Bernoulli fea-
ture vector and one using a Multinomial feature
vector, based on GPTZero’s AI Vocabulary lists
(from October 2024 to March 2025). We tested the
classifiers in detecting AI-generated essays both
individually, with each monthly AI Vocabulary list,
and with a combined list containing 245 AI Vocab-
ulary terms from all months. We evaluated both the
full Ghostbuster essays corpus and subsets specific
to Claude- and ChatGPT-generated texts.

Overall, classification results were close to ran-
dom, with accuracy ranging from 0.363 to 0.755
for Bernoulli models and 0.363 to 0.729 for Multi-
nomial models (see Table 2) using the different AI
Vocabulary lists. However, we found more promis-
ing results when focusing specifically on ChatGPT-
generated texts using the combined GPTZero’s AI
Vocabulary lists of all months. Here, the Bernoulli
model achieved the highest accuracy (0.755), high
precision (0.882), moderate recall (0.588) and
an F1 score of 0.705, which indicates good per-
formance in identifying LLM-generated texts, al-
though it might have missed some positive cases.
The high precision score signals that the model
does not make numerous false predictions causing
it to mislabel student texts as AI-generated (a sig-
nificant risk in educational contexts as highlighted
by Liang et al. 2023). However, the moderate recall
also indicates that the model’s sensitivity should in-
crease in order to avoid some LLM-generated texts
to go undetected (also particularly relevant in edu-
cational contexts as stressed by Fleckenstein et al.
2024; Weber-Wulff et al. 2023; Perkins et al. 2024).
An MCC score of 0.541 supports our interpretation
and an AUROC of 0.595 suggests that the model,
despite being better than random, may struggle in
more ambiguous cases. The Multinomial model,
using the same feature set, yielded higher precision
(0.884) and AUROC (0.705), indicating higher sen-
sitivity to ChatGPT-generated content and a more
balanced classification ability. This may be due to
an overrepresentation of ChatGPT-generated texts
in the datasets used by GPTZero to compile the AI
Vocabulary lists. However, this model also reached
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All C G All C G

add an extra layer 1 0 1 meticulous attention to 4 0 4
add depth to 1 0 1 meticulously crafted 2 1 1
address issues like 1 1 0 navigate challenges 2 2 0
advancements 204 42 189 navigate the complex 6 0 6
aiding 19 3 18 offer valuable insights 8 0 8
aim to explore 1 1 0 offers numerous benefits 3 0 3
aims to enhance 3 1 2 offers valuable 12 1 12
aligns 78 25 66 offers valuable insights 7 0 7
an unwavering commitment 1 0 1 potentially leading 15 0 15
commitment to excellence 2 0 2 prioritize 247 39 227
consider factors like 1 1 0 prioritizing 71 17 62
continue to inspire 4 0 4 provide an insight 1 1 1
contribute to understanding 1 0 1 provide valuable insights 20 5 17
crucial role in shaping 34 1 33 provided valuable 6 3 3
crucial role in understanding 1 0 1 provided valuable insights 4 2 2
delve deeper 4 1 4 provides valuable 36 10 28
delve deeper into 4 1 4 provides valuable insights 24 5 20
despite facing 6 4 2 providing insights 2 1 2
emphasize the need 7 2 7 relentless pursuit 4 0 4
enduring legacy 3 0 3 remarked 3 3 2
ensure long term success 2 0 2 researchers aim 1 1 0
essential to recognize 19 0 19 researchers aimed 3 0 3
explores themes 3 0 3 rich tapestry 6 0 6
findings shed 1 0 1 sense of camaraderie 8 0 8
findings shed light 1 0 1 showcasing 52 8 49
fostering 249 23 236 significant advancements 8 1 8
fostering sense 23 0 23 sparking 5 1 4
gain comprehensive understanding 10 1 9 standout 7 1 7
gain deeper 32 5 27 stark reminder 9 1 8
gain deeper insights 1 0 1 struggles faced 15 0 15
gain deeper understanding 28 5 23 study aims to explore 2 2 0
gain valuable 23 6 17 study highlights the importance 1 1 0
gain valuable insights 17 1 16 study provides valuable 2 0 2
garnered significant 1 0 1 study sheds 1 0 1
highlight the need 3 1 2 study sheds light 1 0 1
highlight the potential 1 0 1 surpassing 9 6 7
highlight the significance 7 0 7 the complex interplay 8 7 1
highlighting the need 3 2 1 the multifaceted nature 12 1 11
hindering 47 7 47 the potential to revolutionize 10 0 10
holds significant 10 1 9 the relentless pursuit 1 0 1
impacting 62 31 45 the transformative power 9 2 7
indelible mark 11 0 11 tragically 6 4 4
indicating potential 1 0 1 underscore the importance 1 0 1
intricate relationship 3 0 3 understand the behavior 1 0 1
left an indelible mark 9 0 9 understand the complexity 2 0 2
left lasting 11 4 7 unwavering commitment 2 0 2
let delve 7 0 7 unwavering support 1 1 1
making it challenging 14 2 14 valuable insights 115 21 99
marked significant 4 0 4 vital role in shaping 9 0 9

Table 1: GPTZero’s AI words/phrases with their counts in Ghostbusters (All), Claude (C), and GPT (G) subsets.
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Features LLM Vocabulary Accuracy Precision Recall F1 MCC AUROC

Bernoulli All GPTZero List: All 0.532 0.884 0.343 0.494 0.272 0.362
GPTZero List: Oct 0.503 0.877 0.296 0.443 0.240 0.292
GPTZero List: Nov/Dec 0.416 0.996 0.129 0.228 0.199 0.135
GPTZero List: Jan/Feb/Mar 0.363 0.969 0.046 0.089 0.117 0.050

Ghostbuster BoW 0.871 0.846 0.986 0.911 0.711 0.948

Claude GPTZero List: All 0.522 0.657 0.09 0.158 0.085 0.156
GPTZero List: Oct 0.502 0.501 0.968 0.660 0.011 0.107
GPTZero List: Nov/Dec 0.508 0.786 0.022 0.043 0.068 0.033
GPTZero List: Jan/Feb/Mar 0.503 1.0 0.007 0.014 0.059 0.017

Ghostbuster BoW 0.889 0.825 0.987 0.899 0.793 0.975

GPT GPTZero List: All 0.755 0.882 0.588 0.705 0.541 0.595
GPTZero List: Oct 0.703 0.853 0.49 0.622 0.448 0.495
GPTZero List: Nov/Dec 0.616 0.964 0.242 0.386 0.351 0.250
GPTZero List: Jan/Feb/Mar 0.544 0.968 0.092 0.167 0.209 0.102

Ghostbuster BoW 0.929 0.892 0.977 0.933 0.862 0.990

Multinomial All GPTZero List: All 0.517 0.891 0.314 0.464 0.263 0.604
GPTZero List: Oct 0.452 0.910 0.197 0.324 0.212 0.550
GPTZero List: Nov/Dec 0.410 0.968 0.119 0.213 0.191 0.549
GPTZero List: Jan/Feb/Mar 0.363 0.969 0.046 0.089 0.117 0.518

Ghostbuster BoW 0.901 0.955 0.893 0.923 0.787 0.957

Claude GPTZero List: All 0.518 0.673 0.072 0.130 0.082 0.517
GPTZero List: Oct 0.504 0.538 0.064 0.114 0.019 0.506
GPTZero List: Nov/Dec 0.508 0.786 0.022 0.043 0.068 0.509
GPTZero List: Jan/Feb/Mar 0.503 1.0 0.007 0.014 0.059 0.503

Ghostbuster BoW 0.964 0.976 0.951 0.964 0.928 0.991

GPT GPTZero List: All 0.729 0.884 0.527 0.660 0.501 0.705
GPTZero List: Oct 0.654 0.895 0.350 0.503 0.390 0.597
GPTZero List: Nov/Dec 0.604 0.964 0.216 0.353 0.330 0.589
GPTZero List: Jan/Feb/Mar 0.539 0.964 0.081 0.149 0.194 0.530

Ghostbuster BoW 0.912 0.942 0.877 0.909 0.825 0.953

Table 2: Performance of classifiers on leave-one-out cross-validation. The highest accuracy values are indicated in
boldface.

lower accuracy (0.729) and F1 score (0.660), mak-
ing it less reliable.

These results suggest that binary-feature BoW
models like Bernoulli may be more effective at de-
tecting ChatGPT-generated texts based solely on
AI-related terms’ presence, while frequency-based
models like Multinomial may be better at identify-
ing subtler vocabulary usage patterns. Finally, both
Naive Bayes classifiers were significantly outper-
formed by a baseline Multinomial BoW classifier
trained on the full vocabulary of the Ghostbuster
dataset. This model achieved a maximum accu-
racy of 0.964 and an AUROC score of 0.991 (see
Table 2) with Claude texts - differing from the pre-
vious highest results for ChatGPT-generated essays
using the AI Vocabulary lists, possibly more ef-
fective given the absence or scarcity of Claude’s
generated data for the compilation of the AI Vo-

cabulary lists 8. This highlights the limitations of
relying on fixed AI Vocabulary lists for AI detec-
tion, which might not reflect the language found in
educational essays written by different LLMs and
students.

4.3 AI Vocabulary terms contribution to
classification

To better understand which specific AI Vocabulary
terms influenced classification, we analyzed their
log probabilities under our best-performing Naive
Bayes models, namely the Bernoulli and Multino-
mial variants that achieved the highest classifica-
tion results. These models were trained using the
subset of ChatGPT-generated texts from the Ghost-
buster corpus and the full combined AI Vocabulary
list (with 245 terms from October 2024 to March

8See GPTZero’s support article https://support.
gptzero.me/hc/en-us/articles/15129377479959 for
more
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2025).

Phrase Rank Freq. Count OR LP

fostering 245 9 236 11.88 -2.15
prioritize 238 11 227 8.54 -2.22
advancements 243 9 189 3.91 -2.65
valuable in-
sights

19 230 99 5.53 -2.93

prioritizing 241 9 62 2.71 -3.43
aligns 234 17 66 2.19 -3.48
showcasing 232 21 49 4.31 -3.62
hindering 242 9 47 2.64 -3.74
crucial role
in shaping

37 155 33 10.53 -3.83

impacting 237 12 45 2.07 -3.89
gain deeper 86 98 27 5.39 -3.97
provides
valuable

117 86 28 2.28 -4.00

gain deeper
understand-
ing

50 131 23 2.82 -4.13

provides
valuable
insights

4 464 20 1.33 -4.27

essential to
recognize

213 48 19 6.56 -4.27

fostering
sense

45 138 23 2.11 -4.27

gain valu-
able

100 92 17 1.99 -4.43

gain
valuable
insights

175 59 16 1.64 -4.49

potentially
leading

231 43 15 5.81 -4.55

aiding 244 9 18 3.28 -4.55
provide
valuable
insights

7 332 17 1.32 -4.62

struggles
faced

224 46 15 5.93 -4.70

making it
challenging

142 74 14 3.00 -4.70

indelible
mark

11 275 11 2.33 -4.78

the po-
tential to
revolution-
ize

123 83 10 4.34 -4.86

offers valu-
able

128 81 12 1.23 -4.96

Table 3: Top 25 phrases contributing to LLM-generated
text detection, ordered by log-probability from the best
Bernoulli Naive Bayes classifier using all AI Vocabu-
lary lists on ChatGPT-generated essays. The Rank and
Frequency columns relate to the combined GPTZero’s
AI Vocabulary lists (245 phrases from October 2024 to
March 2025), Count refers to the frequency in ChatGPT-
generated texts, OR refers to the odds ratio in LLM-
generated vs. human-authored texts and LP represents
log probability of the phrase contribution to classifica-
tion.

For both models, Bernoulli and Multinomial, the
top 25 terms that contributed the most to classifi-

Phrase Rank Freq. Count OR LP

fostering 245 9 236 7.49 -2.00
prioritize 238 11 227 5.49 -2.08
advancements 243 9 189 2.44 -2.33
valuable in-
sights

19 230 99 4.76 -2.87

prioritizing 241 9 62 2.75 -3.42
aligns 234 17 66 2.05 -3.44
showcasing 232 21 49 4.14 -3.62
hindering 242 9 47 2.59 -3.71
crucial role
in shaping

37 155 33 9.57 -3.90

impacting 237 12 45 2.13 -3.96
gain deeper 86 98 27 5.33 -4.09
provides
valuable

117 86 28 2.36 -4.13

fostering
sense

45 138 23 1.95 -4.25

gain deeper
understand-
ing

50 131 23 2.81 -4.25

essential to
recognize

213 48 19 6.38 -4.43

provides
valuable
insights

4 464 20 1.31 -4.43

gain valuable 100 92 17 1.92 -4.54
aiding 244 9 18 3.15 -4.59
gain valuable
insights

175 59 16 1.68 -4.59

provide valu-
able insights

7 332 17 1.22 -4.65

potentially
leading

231 43 15 5.58 -4.65

struggles
faced

224 46 15 5.41 -4.65

making it
challenging

142 74 14 3.02 -4.86

offers valu-
able

128 81 12 1.28 -4.94

indelible
mark

11 275 11 2.27 -4.94

the mul-
tifaceted
nature

98 92 11 3.12 -4.94

Table 4: Top 25 phrases contributing to LLM-generated
text detection, ordered by log-probability from the best
Multinomial Naive Bayes classifier using all AI Vocab-
ulary lists on ChatGPT-generated essays. The Rank and
Frequency columns relate to the combined GPTZero’s
AI Vocabulary lists (245 phrases from October 2024 to
March 2025), Count refers to the frequency in ChatGPT-
generated texts, OR refers to the odds ratio in LLM-
generated vs. human-authored texts and LP represents
log probability of the phrase contribution to classifica-
tion.

cation were largely the same, although in slightly
different order (see Table 3 and Table 4). Each table
includes the terms’ original Rank and Frequency
in the combined AI Vocabulary list, their Count in
ChatGPT-generated texts, the OR (indicating their
relative likelihood in LLM vs. human text based

944



on odds ratios) and the models’ log probabilities,
LP (reflecting the terms’ contribution to the model
decision; lower values imply weaker impact).

We noticed in the Bernoulli and Multinomial
classifiers that several words and phrases found in
numerous ChatGPT-generated texts, such as “fos-
tering” (counted 236 times), “prioritize” (227), “ad-
vancements” (62), “aligns” (66) and “showcasing”
(49), despite being found more frequently in Ghost-
buster’s texts than in GPTZero’s ranking lists, were
less effective in distinguishing AI-generated from
student-authored essays given their low log prob-
abilities. Similarly, when considering terms that
were highly ranked and common in AI Vocabulary
lists, such as “provides valuable” (4th), “provides
valuable insights” (7th), “indelible mark”(11th) and
“valuable insights” (19th), we observed also low log
probabilities, apart from recurring phrases, mean-
ing that they did not significantly contribute to clas-
sification.

We decided to maintain separate entries for mor-
phological variants rather than indexing them to-
gether to investigate whether certain preferences
exist in LLM-generated texts. In this way, we could
check if verb tense, number, or grammatical per-
son can also influence AI-generated text detection.
By maintaining distinctions such as “provide” vs.
“provides” (valuable insights) and “study shed” vs.
“study sheds” we can evaluate whether specific vari-
ants display distributional biases in LLM-generated
texts compared to student-authored essays. How-
ever, if these differences prove insignificant, as
seems to be the case in our experiments, in future
works we could consider lemmatization or stem-
ming.

Our findings are in line with our previous ob-
servations, provided in Section 4.1, where term
rankings and frequencies did not seem to notably
support classification. They, nevertheless, confirm
our classification results described in Section 4.2,
highlighting the strengths of the BoW Bernoulli
model over the Multinomial one, accounting for
the terms’ presence only, rather than for their fre-
quency, to better distinguish LLM-generated texts
from student-written ones.

5 Conclusion

In this study, we presented the first empirical eval-
uation of GPTZero’s AI Vocabulary lists as a way
to detect AI-generated texts in educational settings.
Our findings show that these precompiled vocabu-

lary lists, despite being transparent and easily inter-
pretable for educators, have limited effectiveness
in detecting LLM-generated texts among educa-
tional essays, especially beyond ChatGPT. Even
for ChatGPT-generated texts, the classification per-
formance of our Naive Bayes models based on AI
Vocabulary lists was modest and only improved
when using a combined list of 245 terms. We
achieved better results with BoW models that used
the full Ghostbuster dataset vocabulary, suggest-
ing that broader language patterns may be more
effective for AI detection with different LLMs.

Future research should focus on a deeper, more
domain-specific analysis and comparison between
student and LLM-generated texts in educational do-
mains, including more diverse student samples and
LLM-generated texts. Vocabulary-based AI detec-
tors could benefit from the inclusion of additional
functional and structural features, considering each
term and phrase as linguistic constructions that re-
flect users’ language more in detail.

Overall, although our results might not come
close to state-of-the-art detectors, with this work
we addressed a key research gap. To the best of
our knowledge, no prior study has evaluated pre-
compiled AI Vocabulary lists, publicly available
and derived from a diverse set of texts beyond sci-
entific articles, for AI detection in education. Our
findings offer practical and detailed insights into
the utility and accuracy of transparent linguistic
features, such as AI Vocabulary lists, that can sup-
port educators in distinguishing LLM-generated
and student-written texts. By doing so, this work
contributes to the ongoing efforts to improve AI
detection systems and lays a foundation for fur-
ther investigation and refinement in educational
contexts.

Limitations

Although our work provides useful evidence in the
analysis of GPTZero’s AI Vocabulary lists for AI
detection, there are several limitations that need to
be accounted for. First, we only tested two Bag-
of-Words classifiers (Bernoulli and Multinomial)
using a Naive Bayes approach. These are rela-
tively simple models. More advanced machine
learning and neural approaches could help to ex-
pand the testing framework and potentially improve
detection accuracy. Second, the dataset used in
this study, the Ghostbuster essay subcorpus, rep-
resents outputs from older versions of ChatGPT
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and Claude models. As new model versions are
released, the vocabulary patterns of current AI sys-
tems may differ significantly. Moreover, due to the
lack of metadata, we assume students to be native
English speakers. Future studies should examine
L2 students, who may rely more on LLMs and
for whom current detectors might be less effective.
Third, as LLMs continue to evolve, their outputs
become closer to human language, making fixed
vocabulary lists less effective over time. To remain
useful, these AI Vocabulary lists would need to be
updated more frequently and adapted across differ-
ent writing domains, to reflect changes in language
use.
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A GPTZero’s AI Vocabulary Lists

This appendix contains lists of the top AI words
and phrases from GPTZero, spanning from October
2024 to March 2025. Each monthly list includes
frequently used AI-related terms, along with their
frequency estimates. The November list was ini-
tially identical to the October list with 50 entries,
but an update appeared in December with 99 en-
tries. However, this updated version contained er-
rors such as missing determiners and prepositions
(e.g., crucial role understanding instead of a cru-
cial role in understanding) and incongruencies, in-
cluding duplicate entries (e.g., 4) provide valuable
insights - 464 and 84) provide valuable insights -
86). This list also contains numerous variations of
the same phrase (e.g., 13) plays a crucial role in
understanding - 247 and 14) play a crucial role
in understanding- 242) and longer phrases that are
part of other shorter phrases, also appearing in the
list (e.g., 24) plays a crucial role in shaping - 178
and 26) crucial role in shaping - 171). The Jan-
uary, February and March lists were identical, so
we report them in the same table. The frequency es-
timates indicate how many times more frequently
a term appears in AI-written texts compared to
human-written texts. For example, a term with a
frequency estimate of 10 means it is ten times more
common in AI texts than in human texts, based on
a collection of 3.3 million documents (Tian and
Cui, 2025).

Phrase Freq.

1 objective study aimed 269
2 research needed to understand 235
3 despite facing 209
4 play significant role shaping 182
5 crucial role in shaping 155
6 study aims to explore 144
7 notable works include 121
8 consider factors like 121
9 today’s fast paced world 107

10 expressed excitement 93
11 highlights importance considering 89
12 emphasizing importance 74
13 making it challenging 74
14 aims to enhance 72
15 study sheds light 69
16 emphasizing need 68
17 today’s digital age 68
18 explores themes 66
19 address issues like 65
20 highlighting the need 63
21 study introduce 60
22 notable figures 59
23 gain valuable insights 59
24 showing promising results 59
25 media plays a significant role 57
26 shared insights 56
27 ensure long term success 55
28 make a positive impact on the world 55
29 facing criticism 52
30 providing insights 49
31 emphasized importance 48
32 indicating potential 47
33 struggles faced 46
34 secured win 46
35 secure win 44
36 potentially leading 43
37 showcasing 21
38 remarked 18
39 aligns 17
40 surpassing 12
41 tragically 12
42 impacting 12
43 prioritize 11
44 sparking 11
45 standout 11
46 prioritizing 9
47 hindering 9
48 advancements 9
49 aiding 9
50 fostering 9

Table 5: GPTZero’s Top AI Words and Phrases for
October 2024
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# Phrase Freq. # Phrase Freq.

1 provided valuable insights 902 51 provided valuable insights 113
2 gain valuable insights 739 52 mix fear 109
3 casting long shadows 561 53 crucial role maintaining 106
4 provides valuable insights 464 54 serves reminder 106
5 gain comprehensive understanding 355 55 voice dripping 106
6 study provides valuable 340 56 gain deeper insights 104
7 provide valuable insights 332 57 insights potential 101
8 left indelible mark 319 58 significant advancement 100
9 offers valuable insights 298 59 researchers aimed 100
10 indelible mark 275 60 significant advancements 98
11 unwavering commitment 256 61 gain deeper 98
12 play crucial role shaping 250 62 began voice 98
13 plays crucial role understanding 247 63 findings shed 97
14 played significant role shaping 239 64 study provide valuable 96
15 left indelible 231 65 plays crucial role regulating 96
16 valuable insights 230 66 left lasting 96
17 rich tapestry 227 67 sense camaraderie 94
18 offer valuable insights 207 68 potential revolutionize 94
19 opens new avenues 206 69 navigate challenges 94
20 help feel sense 197 70 voice surprisingly 92
21 adds layer complexity 194 71 gain valuable 92
22 significant contributions field 188 72 understanding behavior 91
23 plays crucial role shaping 178 73 delve deeper 91
24 research needed explore 171 74 plays crucial role ensuring 91
25 crucial role shaping 171 75 relentless pursuit 90
26 intricate relationship 165 76 significant role shaping 88
27 findings contribute 157 77 researchers aim 88
28 continue inspire 152 78 meticulously crafted 88
29 stark reminder 151 79 study shed light 87
30 hung heavy 147 80 dripping sarcasm 87
31 crucial role understanding 139 81 aims shed light 87
32 fostering sense 138 82 voice rising 87
33 significant attention recent years 136 83 provides valuable 86
34 needed fully understand 133 84 play significant role shaping 85
35 pivotal role shaping 131 85 renewed sense purpose 85
36 gain deeper understanding 131 86 marked significant 85
37 study sheds light 130 87 enduring legacy 84
38 continues inspire 129 88 offers numerous benefits 84
39 implications various 129 89 commitment excellence 83
40 highlights importance considering 124 90 study shed 83
41 let delve 123 91 plays crucial role determining 83
42 holds significant 121 92 significant attention recent 83
43 study sheds 120 93 offers valuable 81
44 garnered significant 120 94 plays significant role shaping 79
45 advancing understanding 119 95 play crucial role determining 78
46 voice dripping sarcasm 119 96 despite chaos 78
47 conclusion study provides 117 97 paving way future 77
48 findings shed light 116 98 highlights significance 77
49 commitment public service 116 99 locals visitors alike 77

Table 6: GPTZero’s Top AI Words and Phrases for November 2024 (first version with repetitions and errors)
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# Phrase Freq. # Phrase Freq.

1 provided valuable insights 902 51 provided valuable 113
2 gain valuable insights 739 52 mix the fear 109
3 casting long shadows 561 53 crucial role in maintaining 106
4 provides valuable insights 464 54 serves a reminder 106
5 gain comprehensive understanding 355 55 voice is dripping 106
6 study provides valuable 340 56 gain a deeper insights 104
7 provide valuable insights 332 57 insights into the potential 101
8 left an indelible mark 319 58 a significant advancement 100
9 offers valuable insights 298 59 the researchers aimed 100
10 an indelible mark 275 60 significant advancements 98
11 an unwavering commitment 256 61 gain a deeper 98
12 play a crucial role in shaping 250 62 began to voice 98
13 plays a crucial role in understanding 247 63 findings shed light on 97
14 play a crucial role in understanding 242 64 study provides valuable 96
15 played a significant role in shaping 239 65 plays a crucial role in regulating 96
16 left an indelible 231 66 left a lasting 96
17 valuable insights 230 67 sense of camaraderie 94
18 a rich tapestry 227 68 potential to revolutionize 94
19 offer valuable insights 207 69 navigate the challenges 94
20 opens new avenues 206 70 the voice surprisingly 92
21 help to feel a sense 197 71 gain a valuable 92
22 adds a layer of complexity 194 72 understanding the behavior 91
23 significant contributions to the field 188 73 delve deeper into 91
24 plays a crucial role in shaping 178 74 plays a crucial role in ensuring 91
25 research needed to explore 171 75 relentless pursuit 90
26 crucial role in shaping 171 76 significant role in shaping 88
27 the intricate relationship 165 77 researchers aim to 88
28 findings contribute to 157 78 meticulously crafted 88
29 continue to inspire 152 79 study shed light on 87
30 a stark reminder 151 80 dripping with sarcasm 87
31 hung heavy 147 81 aims to shed light 87
32 crucial role in understanding 139 82 voice is rising 87
33 fostering sense 138 83 provides valuable insights 86
34 significant attention in recent years 136 84 play a significant role in shaping 85
35 needed to fully understand 133 85 renewed sense of purpose 85
36 pivotal role in shaping 131 86 marked a significant 85
37 gain a deeper understanding 131 87 an enduring legacy 84
38 study sheds light on 130 88 offers numerous benefits 84
39 continues to inspire 129 89 commitment to excellence 83
40 implications of various 129 90 study shed light 83
41 highlights the importance of considering 124 91 plays a crucial role in determining 83
42 let us delve 123 92 significant attention in recent 83
43 holds a significant 121 93 offers a valuable 81
44 study sheds light on 120 94 plays a significant role in shaping 79
45 garnered significant 120 95 play a crucial role in determining 78
46 advancing the understanding 119 96 despite the chaos 78
47 voice dripping with sarcasm 119 97 paving the way for the future 77
48 conclusion of the study provides 117 98 highlights the significance 77
49 findings shed light on 116 99 locals and visitors alike 77
50 commitment to public service 116

Table 7: GPTZero’s Top AI Words and Phrases for November 2024 (corrected version published in December 2024)
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# Phrase Freq. # Phrase Freq.

1 provide a valuable insight 468 51 understand the behavior 61
2 left an indelible mark 317 52 broad implications 61
3 play a significant role in shaping 207 53 a prominent figure 61
4 an unwavering commitment 202 54 study highlights the importance 60
5 open a new avenue 174 55 a significant turning point 60
6 a stark reminder 166 56 curiosity piques 59
7 play a crucial role in determining 151 57 today in the digital age 59
8 finding a contribution 139 58 implication to understand 59
9 crucial role in understanding 135 59 a beacon of hope 58
10 finding a shed light 121 60 pave the way for the future 58
11 gain a comprehensive understanding 120 61 finding an important implication 57
12 conclusion of the study provides 119 62 understand the complexity 57
13 a nuanced understanding 115 63 meticulous attention to 57
14 hold a significant 114 64 add a layer 57
15 gain significant attention 107 65 the legacy of life 56
16 continue to inspire 105 66 identify the area of improvement 56
17 provide a comprehensive overview 104 67 aim to explore 56
18 finding the highlight the importance 99 68 highlight the need 55
19 endure a legacy 99 69 provide the text 55
20 mark a significant 96 70 conclusion of the study demonstrates 55
21 gain a deeper understanding 95 71 a multifaceted approach 55
22 the multifaceted nature 92 72 provide a framework to understand 55
23 the complex interplay 89 73 present a unique challenge 55
24 study shed light on 89 74 highlight the significance 54
25 need to fully understand 88 75 add depth to 54
26 navigate the complex 87 76 a significant stride 53
27 a serf reminder 85 77 gain an insight 53
28 the potential to revolutionize 83 78 underscore the need 52
29 the relentless pursuit 79 79 the importance to consider 52
30 offer a valuable 77 80 offer a unique perspective 52
31 underscore the importance 76 81 contribute to understanding 52
32 a complex multifaceted 74 82 a significant implication 52
33 the transformative power 74 83 despite the challenge faced 52
34 today the fast pace of the world 74 84 enhances the understanding 51
35 a significant milestone 73 85 make an informed decision in regard to 50
36 delve deeper into 72 86 the target intervention 50
37 provide an insight 71 87 require a careful consideration 49
38 navigate the challenge 71 88 essential to recognize 48
39 highlight the potential 69 89 validate the finding 48
40 pose a significant challenge 69 90 vital role in shaping 47
41 a unique blend 68 91 sense of camaraderie 47
42 a crucial development 68 92 influence various factors 47
43 various fields include 67 93 make a challenge 46
44 commitment to excellence 65 94 unwavering support 46
45 sent shockwaves through 65 95 importance of the address 46
46 emphasize the need 65 96 a significant step forward 46
47 despite the face 65 97 add an extra layer 45
48 understanding the fundamental 64 98 address the root cause 44
49 leave a lasting 63 99 a profound implication 44
50 gain a valuable 62 100 contributes to understanding 44

Table 8: GPTZero’s Top AI Words and Phrases from January 2025 to March 2025
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B Spearman ranking correlation

In this appendix, we present the Spearman rank cor-
relations between the term rankings in each AI Vo-
cabulary list (October, Nov/Dec, Jan/Feb/Mar and
All) and the rankings of the same terms based on
their frequency in the Ghostbuster corpus, consider-
ing the ChatGPT (GPT) and Claude (Claude) sub-
sets separately, as well as the entire dataset (All).

AI Vocabulary LLM ρ p

All All -0.064 0.316
Oct All -0.149 0.299

Nov/Dec All 0.065 0.529
Jan/Feb/Mar All 0.124 0.219

All Claude -0.170 0.007
Oct Claude 0.501 0.000

Nov/Dec Claude 0.045 0.660
Jan/Feb/Mar Claude 0.476 0.000

All GPT -0.095 0.135
Oct GPT -0.243 0.088

Nov/Dec GPT 0.211 0.039
Jan/Feb/Mar GPT -0.010 0.914

Table 9: Spearman ranking correlation coefficients and
p-values between GPTZero’s AI Vocabulary terms and
the odds ratios of those terms in LLM-generated terms
from the Ghostbuster dataset (All, Claude or GPT only).
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Abstract

We present a case study on building task-
specific models for grammatical error correc-
tion and explanation generation tailored to
learners of Estonian. Our approach handles
whole paragraphs instead of sentences and
leverages prompting proprietary large language
models for generating synthetic training data,
addressing the limited availability of error cor-
rection data and the complete absence of cor-
rection justification/explanation data in Esto-
nian. We describe the chosen approach and
pipeline and provide technical details for the
experimental part. The final outcome is a set of
open-weight models, which are released with
a permissive license along with the generated
synthetic error correction and explanation data.

1 Introduction

Language models with emergent abilities are in-
creasingly showing capacity for performing natural
language processing tasks via prompting (OpenAI
et al., 2024; Grattafiori et al., 2024; DeepSeek-AI
et al., 2025, etc.). However, it has been shown
that targeted effort can result in surpassing the
most advanced proprietary models with more task-
oriented models, e.g., for grammatical error cor-
rection (Luhtaru et al., 2024a). Furthermore, hy-
brid combinations of large language model (LLM)
prompting and tuning for synthetic data generation,
as well as tuning for the final task, show even more
promise (Luhtaru et al., 2024b).

Here we present a case study on the develop-
ment of grammatical error correction (GEC) and
grammatical error explanation (GEE) generation
for learners of Estonian. The overall goal is to cre-
ate task-specific models reliable enough to correct
learners’ grammar and justify the corrections. Most
importantly, while we use proprietary LLMs in this
work for data generation, the final result consists of
independent open-weight models that can be used
for both research and commercial purposes.

The central theme of all the presented work is
dealing with data scarcity. The amount of train-
ing data for GEC has recently improved but still
shows imbalance between English and other lan-
guages (Masciolini et al., 2025b) and Estonian is
no exception. More specifically, there is a mod-
est amount of Estonian GEC data but no data for
GEE. We address both data deficiencies by util-
ising synthetic data, obtained by prompting Ope-
nAI LLMs (detailed later in the paper) to either
introduce grammatical errors into correct texts, in
a manner characteristic for language learners (for
GEC), or by generating and filtering explanations
of gold-standard corrections (for GEE).

Below we describe the developed pipeline and
details of generating the data and training the final
models in Section 3. Then we present a comprehen-
sive qualitative and quantitative evaluation of the
results in Section 4. Finally, Section 5 describes
the user feedback, collected from two groups of
users: teachers and learners of Estonian as a sec-
ond language (L2). Since the presented project is
an ongoing effort, we finish with a brief description
of lessons learned and future work in Conclusion 6.

2 Related Work

2.1 Grammatical Error Correction

The task of grammatical error correction (GEC) is
to automatically detect and correct erroneous text.
Bryant et al. (2023) argue that although the denom-
ination of the task refers to grammatical errors, the
scope of the task is not strictly limited to grammat-
ical errors but other types of errors as well, such as
spelling and fluency errors.

Recent approaches have moved from neural MT
(Yuan and Briscoe, 2016) to LLM-based (Masci-
olini et al., 2025a). Even without downstream fine-
tuning, LLMs have shown to generate grammati-
cally correct text as an emergent ability (Cao et al.,
2023; Coyne et al., 2023), but the edits tend to be
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fluency edits as opposed to minimal edits (Fang
et al., 2023; Davis et al., 2024).

Automatic error generation (AEG) is a widely
applied approach in GEC, consisting of injecting
automatically generated errors into correct sen-
tences in order to generate synthetic GEC data.
Approaches to AEG include rule-based (Sidorov
et al., 2013; Ma et al., 2022), statistical methods
(Felice and Yuan, 2014; Kasewa et al., 2018), and
neural networks-based work (Grundkiewicz et al.,
2019; Bout et al., 2023).

Korotkova et al. (2019) used neural MT for GEC
for Estonian. Luhtaru et al. (2024b) used fine-tuned
LLMs for both artificial error generation and correc-
tion. They used L2 essays for generating errors and
evaluated the results on the Estonian learner lan-
guage (EstGEC-L2) corpus1. They concluded that
using Llama-2-based fine-tuned models gave the
most human-like distribution of generated errors.
Another dataset, the EKI error-annotated L2 (EKI-
L2) corpus2, was released in 2024. The two corpora
are included in the MultiGEC-2025 shared task
(Masciolini et al., 2025b). The best results were
achieved by the multilingual LLM based model of
Staruch (2025), providing the whole essay at once
for correction. Most GEC approaches and evalu-
ation methods are sentence-based (Bryant et al.,
2023), including previous work in Estonian GEC,
which limits the system’s access to the broader
context necessary for correctly detecting and cor-
recting paragraph- or document-level errors.

2.2 Grammatical Error Explanation

Alongside GEC, the task of grammatical error ex-
planation (GEE) has received increasing attention.
Providing a reason for each correction helps lan-
guage learners and other users to understand and
learn from their errors.

Chen et al. (2017) extracted grammar patterns
from a reference corpus to assist L2 learners of
English in academic writing. E.g., the correction
chance for giving → chance to give would be ex-
plained by the edit pattern chance: N for -ing → N
to v. Lai and Chang (2019) also detected problem
words co-occurring with grammar edits. They for-
mulated feedback templates depending on the error
type, classified by ERRANT (Bryant et al., 2017).

Another enhanced GEC system by Kaneko et al.
(2022) presents related language examples based

1https://github.com/tlu-dt-nlp/EstGEC-L2-Corpus/
2https://doi.org/10.15155/27bh-ny83

on k-nearest-neighbour machine translation trained
with incorrect-correct sentence pairs from English
learner corpora. However, GEE-specific datasets
allow to train models that give more detailed re-
sponses. Hanawa et al. (2021) experimented with
neural retrieval and generation methods using L2
English essays manually annotated with feedback
comments. Fei et al. (2023) introduced a dataset
with error type and problem word annotations, us-
ing it for BERT-based token classification and error
class prediction.

While it is costly to produce human-annotated or
carefully engineered corpus-induced training data,
the prompting of LLMs can offer a more accessible
solution for GEE. Maity et al. (2024) prompted
various LLMs in one-shot mode to correct erro-
neous Bengali sentences and obtain a brief expla-
nation of each error. Song et al. (2024) achieved a
better GEE performance with a two-step pipeline
for explaining German and Chinese error correc-
tions. First, they prompted and fine-tuned LLMs
to extract atomic edits (insert, delete, replace, re-
locate). Then, explanations were generated by
few-shot prompting GPT-4. This significantly im-
proved the results compared to using only sentence
pairs as input. Kaneko and Okazaki (2024) and
Ye et al. (2025) similarly leveraged the in-context
learning capabilities of the GPT models to synthe-
size English and Chinese error explanation data,
respectively. Ye et al. (2025) used their dataset to
fine-tune open-source LLMs both in a pipeline and
multi-task setting, integrating GEC and GEE.

We adopt the LLM-based pipeline approach and
include error types in addition to atomic edits. As a
novel contribution, we provide each edit with two
explanations of different detail levels: 1) a brief
overview of the error cause and 2) a more compre-
hensive reasoning mainly aimed at advanced learn-
ers and teachers. We create synthetic data with both
types of explanations by few-shot prompting GPT-
4o and fine-tune a Llama-2-based LLM adapted for
Estonian.

3 System Development

The system development consisted of data gener-
ation and fine-tuning for GEC and GEE. The re-
sulting system pipeline consists of three steps: 1)
grammatical error correction, 2) error tagging and
3) error explanation. The models, alongside the
generated synthetic training datasets, are public
and have a permissive license.

954



UI input GEC
M1

Sentence
alignment

Error detection
& tagging

M2

Split by
error

GEE
M3

UI output

Figure 1: A high-level overview of the system. Each M
denotes a model fine-tuned for the given task.

Figure 1 gives a high-level overview of the sys-
tem (see a detailed example in Appedix A). The
user’s input text, i.e., a paragraph, is passed to the
first model M1 as a whole, which then outputs the
corrected text.3 The input and corrected text are
split into sentences and aligned with the sentence
aligner, resulting in input-output sentence pairs. If
the input sentence is not equal to the output sen-
tence, thus an error was corrected, the pair is passed
to the second model M2, which outputs a list of
tagged error corrections for each sentence pair.4 If
input and output are equal, the following models
are skipped. Otherwise, the sentence pair and the
list of tagged errors are passed to the third model
M3 error by error, which explains the error correc-
tion.5

Next, we discuss these steps in detail. Fine-
tuning is elaborated in Subsection 3.1. Subsections
3.2 and 3.3 delve into GEC and GEE model de-
velopment, which involves experiments for data
generation and finally generating the final datasets
and fine-tuning the models. Although the GEC
model works on paragraph level, GEE was per-
formed on the sentence level due to context window
limitations; to that extent, we performed sentence
alignment, details of which are given in Subsection
3.4.

3https://huggingface.co/tartuNLP/Llammas-base-p1-
GPT-4o-human-error-mix-paragraph-GEC

4https://huggingface.co/tartuNLP/Llammas-base-p1-
GPT-4o-human-error-pseudo-m2

5https://huggingface.co/tartuNLP/Llammas-base-p1-
GPT-4o-human-error-explain-from-pseudo-m2

3.1 Fine-tuning details

Base model For the base model we chose
Llammas-base, which is a Llama 2 7B model that
has been trained on Estonian texts in continued
pre-training setting (Kuulmets et al., 2024) and has
shown SOTA results by fine-tuning for Estonian
sentence-level GEC (Luhtaru et al., 2024b).

Training parameters Apart from the maximum
sequence length, which was 4096, 2048 and 4096
for M1, M2 and M3, we used the same parameters
as Luhtaru et al. (2024b) for all three models. For
prompts, see Appendix B.

Hardware The models were trained on 2 AMD
MI250X GPUs in the LUMI supercomputer,6

which totals 4 GPUS because AMD MI250X GPU
is considered as two GPUs from both hardware and
software perspectives in LUMI, each having access
to 64 GB of memory.

3.2 Error correction and error type detection

For human-annotated training data, we used the
EKI-L2 GEC corpus, which is part of MultiGEC-
2025 (Masciolini et al., 2025b). It consists of 1,503
learner essays and 17,361 sentences, nearly 3/4 of
which include at least one grammatical error. The
dataset includes both minimal and fluency edits, we
used the part with minimal corrections. Similarly to
EstGEC-L2, its annotation follows the M2 format
and ERRANT error classification (Bryant et al.,
2017) adapted for Estonian.

To increase the amount of pre-training data, we
also generated synthetic data for Estonian. More-
over, as Luhtaru et al. (2024b) show that inserting
errors into out-of-domain texts can actually hurt
performance, we compare synthetic error addition
to the original GEC data (corrected essays in EKI-
L2), similar-domain human texts and synthetically
generated texts. Human data from the similar do-
main consists of similar-sized excerpts of fiction,
extracted from the Estonian National Corpus7).

We used OpenAI’s GPT-4o8 to generate essays
based on EKI-L2. For each original corrected es-
say, we gave it as a 1-shot sample and prompted
the model to generate a similar, correctly written
essay given the original proficiency level. With
temperature 1 the generated essays followed the
argumentative structure of the sample with a new

6https://www.lumi-supercomputer.eu/
7https://doi.org/10.15155/3-00-0000-0000-0000-08D17L
8https://platform.openai.com/docs/models/gpt-4o
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topic, at higher temperature levels the amount of
noise rose sharply, so the essays were generated at
1.1. While we filtered out most of the noise, a few
generated essays did include some grammatical
errors.

GPT-4o few-shot prompting (at temperature 1.0)
was then used to generate errors in these texts,
sentence-by-sentence, given 5 randomly picked
corrected-mistaken sentence pair samples from the
original EKI-L2 corpus. Each of the four datasets
was used as error correction training data to fine-
tune a Llammas-base (Kuulmets et al., 2024) model
for 3 epochs, which was then tested on 141 essays
of the development set of EstGEC-L2 corpus (lev-
els A2–C1).9 For training details, see Subsection
3.1. As some grammatical errors can only be de-
tected when considering the context, the error cor-
rection models were given the whole essay as input,
splitting only if the essay was too long to fit into the
context window. The results can be seen in Table
1.

P R F0.5

Human errors
EKI-L2 76.64 40.35 64.95
Synthetic errors
EKI-L2 71.40 41.45 62.39
Fiction excerpts 70.55 46.55 63.96
Generated essays 69.70 49.19 64.33

Table 1: Error correction precision (P), recall (R) and F-
score (F0.5) after 3 epochs of training on different genres.
Scores of the model trained on human errors versus
models trained on synthetic errors generated into the
listed datasets. EKI-L2 synthetic errors were generated
into the target sentences, leaving with synthetic source
sentences.

As automatically generated essays proved to
yield good results compared to other training cor-
pora, we 1) generated a 10 times larger set of
essays, 2) introduced artificial errors to the gen-
erated essays and 3) employed a two-stage fine-
tuning procedure for GEC. We first fine-tuned
Llammas-base on a randomly shuffled 10:1 mix-
ture of synthetic-human data. We then fine-tuned
the best-performing checkpoint from the first stage
on EKI-L2 human dataset. The checkpoint with the
highest F0.5 score on the development set served as
the base model for the second stage of the fine-
tuning, which was fine-tuning the model again
on the human dataset. The optimizer state was

9Originally 102 essays; longer essays were split.

reinitialized and the hyperparameters remained the
same as in the first stage of fine-tuning. The third
checkpoint of the final model served as the GEC
model M1 in the workflow.

For error detection and classification, we trans-
formed EKI-L2 M2 edits into simplified atomic
edits with error type information, to be given as
input for GEE. We fine-tuned a Llammas-base on
the EKI-L2 set with atomic edits, resulting in the
error tagging model M2 in the workflow.

3.3 Error explanation
To generate training examples for GEE, we evalu-
ated three approaches using OpenAI’s GPT models:
1) single-prompt parallel input, where the model
was given original and corrected sentence pairs; 2)
single-prompt error-tagged input, which provided
correction edits and error-type information; and 3)
prompt chaining with parallel input, which iden-
tified and explained corrections through separate
prompts. These approaches were assessed using
zero-shot and few-shot prompting.

The evaluation was based on 40 random sentence
pairs from the EstGEC-L2 development set, includ-
ing 10 pairs per proficiency level (A2–C1). In case
of multiple error annotations, the first version was
chosen. For each error, we requested either a single
explanation or paired explanations: one brief and
one more comprehensive. We rated their quality
using colour codes based on traffic lights, so that
green indicates good, yellow fair and red poor ex-
planations. More precisely, green represents clear
and sufficient information. Yellow denotes partial
or nonfluent information that may still be helpful
and does not mislead the user. Red explanations
contain incorrect statements and terms, or simply
describe the correction, but do not offer a justifica-
tion. The explanation accuracy was defined as the
percentage of good and fair explanations.

Annotators were three research group members
with a linguistic background and previous expe-
rience in L2 error annotation. There was one an-
notator per each explanation. The annotation was
reviewed by an L2 teaching expert participating in
our project. The expert-guided evaluation princi-
ples were jointly discussed and specified through-
out the evaluation process.

Initial experiments used Estonian and English
zero-shot prompts and compared the performance
of GPT-4o, GPT-4, and GPT-3.5 Turbo with Mi-
crosoft Azure’s default settings (temperature 0.7,
top p 0.95) and reduced variability (lowering ei-
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ther of the parameters). GPT-4o with default set-
tings outperformed other models, producing fewer
factual or logical errors, particularly in detecting
Estonian case forms and sentence interpretation.
Notably, Estonian prompts yielded more precise
and fluent explanations. Requesting paired expla-
nations provided higher-quality responses. In par-
ticular, comprehensive explanations could be con-
sidered more accurate and informative compared
to single ones. Brief explanations were more prob-
lematic, often describing corrections (e.g., word x
should be y) without any additional context.

The results generally improved by first generat-
ing the longer explanation instead of the shorter
one. This way, the accuracy of long explanations
increased from 29% to 64% with single-prompt
parallel input and from 62.5% to 83% with error-
tagged input. Brief explanation accuracy went from
0% to 18% with single-prompt parallel input and
dropped from 54% to 48% with error-tagged input.

Adopting the paired explanation approach, we re-
fined the best Estonian prompts to avoid redundant
or insufficient information. For few-shot prompt-
ing, we constructed examples based on eight Esto-
nian learner sentences, representing the 12 main er-
ror types and some combined errors (see (1) for an
example of explanation input and output, translated
into English). The single-prompt approach proved
more effective with the few-shot method, whereas
the prompt chaining did not yield better results. Its
long explanation accuracy decreased from 58% to
36% and brief explanation accuracy from 56% to
44% compared to the zero-shot method. The main
limitation was detecting atomic edits despite the
few-shot examples. In a test where GPT-4o had to
identify GEC edits three times per sentence pair
and select the correct answer, it chose the right
output for 28 out of 40 sentence pairs.

(1) Source sentence: Head aega.
Target sentence: Head aega! (‘Goodbye!’)
Correction(s):
1. incorrect punctuation: . -> !

Explanation 1: . -> !
Long: In Estonian, a greeting sentence
ends with an exclamation mark, e.g., “Tere
hommikust!” (‘Good morning!’), “Head
uut aastat!” (‘Happy new year!’).
Brief: An exclamation mark is used after a
greeting or wish.
Error type: incorrect punctuation

Since the error-tagged input provided full align-
ment with actual edits and error types, we decided
to use it for training data generation. In addition,
this approach lead to significantly higher accuracy
in longer explanations (91% compared to 65% with
parallel input). The accuracy of brief explanations
was lower, equally 52%, mostly due to merely de-
scriptive explanations. Therefore, we further im-
proved the prompt to provide more meaningful
clarifications. We synthesized error explanations
based on the EKI L2 corpus from Subsection 3.2,
using the 12,580 sentences that contain the atomic
edits. We fine-tuned a Llammas-base model to gen-
erate explanations error-by-error on the synthesized
dataset, resulting in model M3 in the workflow.

3.4 Sentence alignment
As the error explanation model required input on
sentence level, the essay from model M1 error cor-
rection output had to be aligned with its input on
sentence level. The same need came up when eval-
uating M1 output. Complications rose when a sen-
tence was split into several or several sentences
joined as part of the correction, also when the M1

model hallucinated new sentences, such as a greet-
ing to start a letter. Sometimes a mismatch was
caused by the sentence tokenizer mistaking the sen-
tence boundaries in uncorrected text.

To solve this problem, we developed a simple
many-to-many sentence aligner based on the Lev-
enshtein distance. When aligning the gold standard
and output essays during evaluation we considered
the distance between corrected sentences of both
essays, merging the gold M2 representations as
necessary. Testing on 400 essays of the training
corpus, this rule-based aligner found correct align-
ments for 98% of the original sentences.

4 System Evaluation

4.1 Error correction performance
Error correction scores were automatically evalu-
ated on the EstGEC-L2 development set using a
modified version10 of the M2 scorer (Dahlmeier
and Ng, 2012). This yields error-level F-score com-
paring the output sentence with all given gold cor-
rections, as well as a broad statistics of recall by
error type. The modified version also takes into ac-
count that the word order error type (R:WO) used
in train and test corpora can encompass other er-
rors, as word order in Estonian tends to be rather

10https://github.com/TartuNLP/estgec/
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free and the scope of that error type may include
a large part of the sentence. The results on the de-
velopment set of EstGEC-L2 corpus can be seen in
Table 2, comparing the models trained on smaller
or larger datasets of synthetic essays, and the lat-
ter model post-fine-tuned on human errors. While
using a large number of generated essays did signif-
icantly raise recall, it is surprising that additional
fine-tuning on human errors brought it down with-
out much increase in precision. This may be partly
due to the larger training set containing human er-
rors already contributing to higher precision.

P R F0.5

GPT-4o 69.56 54.13 65.81
SynthS 69.70 49.19 64.33
SynthL-EKI-L2 Mix 75.61 45.68 66.85
+ EKI-L2 FT 76.45 42.45 65.90

Table 2: Scores of models trained on datasets with
synthetic errors, based on the best F0.5 score across
3 epochs, compared to prompting GPT-4o at tempera-
ture 1 for GEC in a 1-shot setting (see Appendix B for
details). SynthS was trained on 1,503 generated essays
with synthetic errors, while SynthL-EKI-L2 Mix was
trained on a dataset 10× larger, mixing synthetic and
EKI-L2 errors. SynthL-EKI-L2 Mix was also post-fine-
tuned on EKI-L2.

While our F0.5 score is notably higher than the
49.44 reported by Staruch (2025), theirs was a
multilingual system tested on a smaller subset of
the EstGEC-L2 corpus. GPT-4o achieves a higher
recall but a lower precision, resulting in a lower
F0.5 score. We incorporated the EKI-L2 fine-tuned
SynthL-EKI-L2 Mix model trained for 3 epochs
in our workflow as the final M1 model, although
its F0.5 score was better after epoch 1, recall was
highest after 3 epochs.

The modified M2 scorer shows recall by error
type even if M1 does not assign types. Considering
the results (see Figure 2), the most difficult type by
far is word order, mostly because the correction is
considered accurate only if all possible encompass-
ing errors are corrected as well. E.g., the phrase
’raamat loen ma’ (‘book-nom read I’) should be
corrected not only as ’ma loen raamat’ (‘I read
book-nom’), but also with the correct case ’ma loen
raamatut’ (‘I read book-part’). Note that the error
correction model does not assign an error type, so
even if it detects an error in the same scope as a
nominal form error, it might try to replace or erase
the whole word.

Leaving word order aside, the more difficult
types to correct are word and punctuation choice
(R:LEX, R:PUNCT), although missing punctuation
marks (M:PUNCT) tend to be rather easy. This
is somewhat expected as the choice of words for
replacing an unsuitable one is rather large and not
all suitable words are listed in human corrections.
Inserting missing punctuation marks, correcting
the capitalization (R:CASE) or whitespace, i.e.,
compounding errors (R:WS) as well as picking
the right nominal or verb form (R:NOM:FORM,
R:VERB:FORM) are all handled with slightly
higher recall, as could be expected from a strong
language model. As was seen from the evaluation
scores, adding synthetic data helped raise recall.
This seems to be mostly due to better detection
of word order and compounding errors. The final
model also detects capitalization errors noticeably
better than the one trained on human errors, but if
we consider corrections, then they are around the
same level, as the model has trouble providing cor-
rect replacements. If we consider what may have
contributed to the drop of precision in the final
model, then most noticeable bottlenecks are de-
tecting unnecessary words (U:LEX) and correcting
complex errors where there are several mistakes in
one word (e.g., wrong verb form with a spelling
mistake – R:VERB:FORM:SPELL).

Figure 2: Recall by type for the 11 most frequent error
types in the test corpus. Number of errors of each type
present in test corpus is shown in columns for reference.

The test dataset has essays from proficiency lev-
els A2–C1, whereas C1 was not present in the train-
ing corpus that contains K-12 student essays. When
comparing error correction performance of the fine-
tuned model across language proficiency levels (see
Table 3), the results are quite uniform. The scores
are a little better for A2, possibly because the sen-
tences used are still rather simple. Recall is no-
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P R F0.5

A2 74.12 48.99 67.22
B1 71.48 48.13 65.16
B2 74.00 43.32 64.82
C1 71.43 47.23 64.79
All 72.91 46.58 65.51

Table 3: GEC scores by language proficiency level.

ticeably lower for B2. The drop is most clear for
two error types: word order and wrong punctuation
mark. Out of 26 cases of wrongly chosen punctu-
ation marks in B2 texts, none received the correct
replacement, although a mistake was detected in
more than third of these. B2 texts had more word
order mistakes (196, compared to 127 in B1 texts
and less than 100 on other levels), but even the
recall of partial scope overlap was lower than for
other levels: 32% compared to 47% or more. The
distribution of more common error types and their
detection rate can be seen in Figure 3. As for other
proficiency levels, the model has relatively more
difficulties detecting missing words in A2 texts,
missing punctuation in B1 texts, and wrong capital-
isation in C1 texts, although in the last case there
were only 4 such mistakes present, which may be
too few to draw conclusions.

4.2 Qualitative analysis of system output

For qualitative assessment of the three system com-
ponents — corrector, error detector/classifier, and
explainer — we randomly selected 40 sentences
from the EstGEC-L2 test corpus, balanced for pro-
ficiency level (A2–C1). We compared two settings:
a uniform 0.7 temperature and a varied higher tem-
perature (1.0 for M1, 0.8 for M2, 0.9 for M3) to
encourage creativity.

In comparison with golden edits, we distin-
guished four correction types: necessary and suit-
able, necessary but incorrect, unnecessary but suit-
able, and unnecessary and incorrect. We calcu-
lated precision based on both types of suitable edits.
The macro-averaged precision of error classifica-
tion was assessed according to proposed changes,
even if incorrect. Explanations were graded as
good, fair, or poor, as described in section 3.2 (see
translated examples in Appendix D). We separately
evaluated explanations for necessary suitable cor-
rections, since it is challenging or even futile to
explain unnecessary or incorrect edits.

Lower temperature entailed higher correction

precision (89% vs. 76%) and fewer edits (63 vs.
71), while the number of suitable corrections was
similar (56 vs. 54). The 0.7 setting also resulted
in a greater overlap with reference edits (60% vs.
46%). However, the correction model then failed
to detect word order errors. We suggest using an
intermediate temperature for GEC. The average
precision of error classification was comparable in
the two conditions: 84% with higher and 87% with
lower temperature.

The quality of explanations was generally better
at the 0.7 temperature (see Table 4). Long expla-
nations were more likely to be rated good or fair
compared to the 0.9 temperature both in case of
necessary corrections and all corrections, including
optional and unjustified edits. Necessary brief ex-
planations followed a different trend, being more
accurate at the higher temperature. Nonetheless,
when considering all system corrections, the pro-
portion of good and fair explanations remained sim-
ilar in the 0.7 setting, whereas radically dropping
in the 0.9 setting. This refers to a better capability
to justify optional edits at the lower temperature.

Temp 0.7 Temp 0.9
Long explanations
Necessary: good 51% 37%
Necessary: good/fair 66% 48%
All: good 51% 27%
All: good/fair 63.5% 37%
Brief explanations
Necessary: good 45% 50%
Necessary: good/fair 70% 76%
All: good 46% 34%
All: good/fair 67% 51%

Table 4: GEE quality with two temperature settings.

In terms of GEE, our results can be compared
with Maity et al. (2024) and Ye et al. (2025),
who reported accuracy over 60%, and outperform
Hanawa et al. (2021), who reached 40%–50% ac-
curacy in explaining preposition errors and below
40% with various error types. One shortcoming
was the inaccuracy of linguistic terms, such as
using an existing term in a wrong context (e.g.,
false association of nominal case and word form)
or forming a nonexistent term. This concerned 24%
of long and 3% of brief explanations in the lower
temperature setting. Furthermore, the prompt could
be improved to explain context-dependent errors
like grammatical form or word choice errors.
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Figure 3: Error detection recall by language proficiency level for more common error types, considering at least
partial overlap in scope.

5 User Feedback

5.1 Participants and questionnaire

The user test involved six learners and five teachers
and/or testing experts of Estonian as L2. Volunteers
were recruited using snowball sampling, consider-
ing their experience of learning and teaching at
different proficiency levels. The teachers’ exper-
tise covered the whole range from pre-A1 to C1
level. Three teachers had taught adults and stu-
dents from pre-A1- or A1- to C1-level. One had
focused on adult learners with diverse backgrounds
at levels A1 and A2. One had assessed exams at all
tested levels but primarily at B2 and C1, prepared
exam and screening test tasks, and briefly taught
language courses. Three of the teachers were native
Estonian speakers, one an Estonian-Russian bilin-
gual and one a native Russian speaker who uses
Estonian at home, at work and in daily life. The
learners were Russian- and Ukrainian-speaking and
bilingual (Ukrainian-Russian or Russian-Estonian).
Three of them had lived in Estonia for many years
or most of their lives and rated their language level
as B2 and C1. The others reported their level to be
A2 or B1, having spent 2.5–5.5 years in Estonia.
Their exposure to Estonian ranged from rare use in
lessons or grocery store to everyday use at work.

We used Google Forms to gather feedback
through a semi-structured questionnaire. The re-
spondents were given the option to answer the sur-

vey in English. We developed a demo application
for testing (see Appendix C). First, we asked the
users to assess the output for a sample B1-level
text fragment. Repeated analysis of the same text
may give varying results, so we presented a pre-
given version of five corrections and explanations
as screenshots to ensure response comparability.
Subsequently, users interacted with the tool directly,
correcting their own text or a student’s writing,
commenting on each correction and explanation
and their general experience.

5.2 Results

Both teachers and learners found that the system
makes most of the needed corrections and the ma-
jority of explanations could be useful in existing
form or with some changes. 10 out of 11 test users
considered the corrections somewhat useful or use-
ful (corresponding to 4–5 on a 5-point Likert scale).
Explanations were rated similarly by nine respon-
dents. Three teachers and learners noted their plan
to use the application in the future, one teacher
and two learners would probably use it and one
respondent from each group was not sure about it.

All corrections in the provided sample were con-
sidered appropriate, although two teachers noted
that a lexical choice correction was not strictly
necessary. Each explanation was rated on a three-
point scale: useful – somewhat useful – not useful.
Depending on the correction, long explanations
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were found useful by 5–9 and brief explanations by
5–10 test users, averaging to 2/3 of the respondents.
About 1/3 and 1/4 of the users, respectively, consid-
ered long and brief explanations somewhat useful.
On average, one user did not think the shorter ex-
planation was useful. The respondents agreed to
defined error types, except for the case where word
order and nominal form error occurred together but
only the former was detected.

As expected, analysing user texts revealed more
issues because these texts were generally longer
than the sample and the system made more correc-
tions in them. Teachers found an average of 82%
and the learners 87% of corrections relevant. Both
groups considered about 70% of long explanations
at least somewhat useful, whereas brief explana-
tions seemed useful to more than half of the learn-
ers and 3/4 of the teachers. Fixing and explaining
structural errors in long complex sentences that
contained numerous errors turned out to be chal-
lenging. The tool also had some trouble identifying
and explaining combined errors. While our aim
was to classify and explain all co-occurring error
types, only one type may be detected and covered
in the explanations (e.g., a spelling error is ignored
alongside the choice of correct word form).

The explanations were said to give a compre-
hensive overview of the errors and help language
learners notice errors they might be making sys-
tematically. Long explanations were rated higher
in terms of content and wording, although there
were also instances of complex language use or no
added value compared to the shorter version. Users
claimed that long explanations should complement
short ones, while short explanations should still
be informative. In some cases, two explanation
layers may not be needed. Both teachers and learn-
ers recommended to put more emphasis on sim-
ple language comprehensible for A2- and B1-level
learners, especially in brief explanations. Some
suggestions were made to generalise or specify er-
ror classification and improve the user interface,
however, the overall assessment was positive in
both respects.

6 Conclusion

We trained a workflow of three fine-tuned models
for GEC and GEE. Using synthesized L2 texts with
introduced errors seems promising, but a larger
training set might be necessary. Our first model
corrects errors at the paragraph level and performs

well on L2 texts with a proficiency level not present
in training data. The model yields higher precision
with similar recall at lower temperatures but then
struggles with word order errors, so we suggest
using medium temperature.

We achieved better quality explanations in GEE
by incorporating error types in addition to atomic
edits in input and requesting two explanations
(longer and shorter) for each error. This could be
further improved as both LLM prompting and our
fine-tuned model have low recall on detecting error
types. It is also necessary to filter out low-quality
explanations, such as including nonexistent nomi-
nal cases, by possibly using LLMs to evaluate the
quality of a given explanation.

While our GEC model was paragraph-based, we
used a sentence-based approach due to model lim-
itations. In future work, we will apply a new
methodology to preserve context and fit within
hardware limits with the context window size. For
each sentence in the essay, we will split essays into
tuples of N consecutive sentences up to the given
sentence. The new methodology could allow us to
combine GEC and GEE into one model. In future
work, we will also explore reversing the pipeline
for fine-tuning for AEG.
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Limitations

Although our GEC system is based on paragraphs,
the GEE pipeline, including both error detection
and explanation, is based on sentence level due to
context window limitations, limiting the model’s
capability to explain errors at the document level.
Future work needs to classify and explain errors
with context, as well as combine related errors for
explanation.

The GEE pipeline relies on atomic edits with
error-type information, which we found necessary
for reasonable explanations. However, atomic edits
are based on M2, thus making it costly to obtain
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new data. Future work should explore the auto-
matic generation of atomic edits.

Additionally, GEC scores rely highly on the sen-
tence alignment method since the M2 scorer works
on the sentence level. Poor sentence alignment
affects the scores negatively.
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A System Overview

Figure 6 gives a detailed overview of the system
with an example. The input paragraph translates
to “I very much like classical music. We earlier
bought the tickets. Sometimes already in January.”
The explanations translate to “The correct spelling
is “väga” (very)”, “Instead of the word “klassikat”
(“classic” in the wrong case form), the word “klas-
sikaline” should be used to show that the music is
of classical type”, “In Estonian, the verb is gener-
ally before the adverb (adverb of time), for exam-
ple, “ostsime piletid” (we bought the tickets) and
“varem” (earlier). The original word order “varem
ostsime piletid” is wrong.”

B Prompts

Tables 5, 6 and 7 display the prompts used for
fine-tuning M1, M2 and M3. The prompt format is
from Luhtaru et al. (2024b), which in turn is loosely
based on Alpaca (Taori et al., 2023) format. Table
8 shows the prompt used for GPT-4o for GEC.

C Demo application

For user testing, we developed a demo application11

based on the Writing Evaluator proofreading tool
of an Estonian language learning and analysis envi-
ronment (Allkivi et al., 2024). The demo reuses ex-
isting interface components, such as approving or
rejecting corrections and grouping errors by type.

After the user inserts their text, the back-end re-
turns the corrected sentences along with error anno-
tations, including error type and two accompanying

11https://elle.tlu.ee/corrector-test

explanations. Users can interact with corrections in
two ways: inline view — moving the cursor over
a highlighted segment in the text triggers a popup
displaying a short explanation and options to ac-
cept or reject the correction (See Figure 4); sidebar
view — on the right side of the interface, correc-
tions are grouped by type (see Figure 5). Clicking
on a category reveals a list of related corrections
with longer explanations.

Figure 4: Popup view with a short explanation when
hovering over a highlighted correction.

Figure 5: Sidebar displaying error categories and longer
explanations under selected corrections.

D Example explanations

We rated the quality of system error explanations on
the following scale: good — clearly presented and
sufficient information; fair — partial or nonfluent
but correct information; poor — use of incorrect
statements and terms or edit description without
additional context. Example (2) demonstrates a
comprehensive and brief explanation annotated as
good. Example (3) includes a brief explanation
rated as fair and a longer explanation rated as poor.
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### Instruction:
Reply with a corrected version of the input essay in Estonian with all grammatical and spelling errors fixed. If there
are no errors, reply with a copy of the original essay.

### Input:
{input}

### Response:
{correction}

Table 5: The GEC model M1 fine-tuning prompt. The GEC instruction is a modification of the prompt by Coyne
et al. (2023).

### Instruction:
Sa võrdled kahte eestikeelset lauset: keeleõppija kirjutatud algne lause ja parandatud lause. Genereeri vea kaupa
paranduste loend, kus on vealiik, algne tekst ja parandatud tekst.

### Input:
Algne lause: {original sentence}

Parandatud lause: {corrected sentence}

### Response:
Parandused: {list of atomic edits}

Table 6: The error detection and classification model M2 fine-tuning prompt.

The correct word “terrassil” is in the adessive case
form, not inessive, although both express location
in Estonian. The brief explanation only considers
the nominal form error, disregarding the spelling
error (the base form is “terrass”, not “terras”).

(2) Source sentence: Pärast kontserdi me
otsustasime juua kohvi restoranis ja koju
minna jalgsi.
Target sentence: Pärast kontserti me
otsustasime juua kohvi restoranis ja koju
minna jala.
(‘After the concert, we decided to drink
coffee in a restaurant and walk home.’)

Explanation: kontserdi -> kontserti
Long: The word “pärast” (‘after’) requires
the partitive case, so the correct form is
“kontserti”. The form “kontserdi” is in the
genitive case and is not appropriate here.
Brief: The word “pärast” (‘after’) requires
the partitive form “kontserti”.
Error type: nominal form

(3) Source sentence: Linnas ma istun terras ja
joon siider.
Target sentence: Linnas ma istun terrassil
ja joon siidrit.
(‘In the city, I sit on a terrace and drink

cider.’)

Explanation: terras -> terrassil
Long: The inessive case form of the word
“terrass” is “terrassil”. It expresses location
(where?).
Brief: The correct case form is “terrassil”
(where?).
Error type: nominal form
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### Instruction:
Sa võrdled kahte eestikeelset lauset: keeleõppija kirjutatud algne lause ja parandatud lause. Sulle antakse paranduste
loend, kus on vealiik, algne tekst ja parandatud tekst. Su ülesanne on selgitada ühte parandust. Selgita seda
parandust, mis järgneb sõnale ’Selgitus’. Esiteks too välja põhjalikum selgitus, miks parandust vaja on. Teiseks
anna lühike selgitus lihtsamas keeles. Pärast selgitust nimeta vealiik. Mitu vealiiki võivad kokku langeda. Omavahel
seotud parandusi (näiteks sõnaühend, kus muutub mõlema sõna vorm) selgita koos. Sõnajärje parandusega kattuvaid
muid parandusi selgita eraldi.

### Input:
{sentence pair, list of errors and input error to explain}

### Response:
{explanation for input error}

Table 7: The GEE model M3 fine-tuning prompt.

Reply with a corrected version of the input text in Estonian with all grammatical and spelling errors fixed. If there
are no errors, reply with a copy of the input text. There is one example of the task.

Input text: {example input paragraph}
Corrected: {example corrected paragraph}

Input text: {input paragraph}
Corrected:

Table 8: The 1-shot prompt used for GEC with GPT-4o. The example was randomly sampled from the EKI-L2 set.
The GEC instruction is a modification of the prompt by Coyne et al. (2023).
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


Mulle vaga meeldib klassikat
muusika. Me varem ostsime
piletid. Mõnikord juba jaanuaris.




UI input

M1

GEC 


Mulle väga meeldib klassikaline
muusika. Me ostsime piletid
varem. Mõnikord juba jaanuaris.




[
Mulle vaga meeldib klassikat muusika.
Mulle väga meeldib klassikaline muusika.

]

[
Me varem ostsime piletid.
Me ostsime piletid varem.

]

[
Mõnikord juba jaanuaris.
Mõnikord juba jaanuaris.

]

M2

and tagging
Error detection

[
1. Spelling: vaga -> väga;
2. Word choice: klassikat -> klassikaline

]

[
1. Word order: varem ostsime piletid ->
ostsime piletid varem

]




Mulle vaga meeldib klassikat muusika.
Mulle väga meeldib klassikaline muusika.
[List of errors]. Explain:
1. Spelling: vaga -> väga







Mulle vaga meeldib klassikat muusika.
Mulle väga meeldib klassikaline muusika.
[List of errors]. Explain:
2. Word choice: klassikat -> klassikaline







Me varem ostsime piletid.
Me ostsime piletid varem.
[List of errors]. Explain:
1. Word order: varem ostsime piletid ->
ostsime piletid varem




M3

GEE

[
Õige kirjutusviis on “väga”.

]




Sõna "klassikat" asemel tuleks kasutada
sõna "klassikaline", et näidata, et
muusika on klassikalist laadi.







Eesti keeles on üldjuhul kõigepealt
tegusõna, millele järgneb tegusõna määrsõna
(ajamäärus), näiteks "ostsime piletid" ja "varem".
Algne sõnajärg "varem ostsime piletid" on vale.




UI output

Sentence alignment

Split by error

Figure 6: A detailed overview of the grammatical error correction and explanation system with an example. M
denotes model.
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Abstract

Automated item generation (AIG) is a key en-
abler for scaling language proficiency assess-
ments. We present an end-to-end methodol-
ogy for automated generation, annotation, and
integration of adaptive writing items for the
EF Standard English Test (EFSET), leverag-
ing recent advances in large language models
(LLMs). Our pipeline uses few-shot prompting
with state-of-the-art LLMs to generate diverse,
proficiency-aligned prompts, rigorously vali-
dated by expert reviewers. For robust scoring,
we construct a synthetic response dataset via
majority-vote LLM annotation and fine-tune
a LLaMA 3.1 (8B) model. For each writing
item, a range of proficiency-aligned synthetic
responses, designed to emulate authentic stu-
dent work, are produced for model training and
evaluation. These results demonstrate substan-
tial gains in scalability and validity, offering a
replicable framework for next-generation adap-
tive language testing.

1 Introduction

The demand for scalable, authentic, and adap-
tive English proficiency assessments has grown
rapidly in recent years, as language learning ex-
pands across global and digital platforms. This
surge has compelled test developers to explore ad-
vanced Natural Language Processing (NLP) and
Machine Learning (ML) solutions that can deliver
reliable and fair measurement at scale. The EF
Standard English Test (EFSET)1 exemplifies re-
cent innovation in this space, having introduced
performance-based Writing and Speaking tasks that
leverage state-of-the-art NLP and ML methods for
both test delivery and automated scoring (Nebhi
and Szaszák, 2023; Williams et al., 2022).

Despite these advances, item generation remains
a major challenge for adaptive assessment. Cre-
ating high-quality prompts that are valid across a

1https://www.efset.org/en/

range of topics, calibrated for all proficiency levels,
and secure from test exposure is both resource-
intensive and psychometrically complex (Zhang
et al., 2022; Brown, 2023; Gierl and Haladyna,
2012). As the development and deployment of
adaptive language tests like EFSET increases, scal-
able and robust methods for generating, validat-
ing, and securing writing assessment items are
crucial for the advancement of fair and accurate
proficiency measurement.

To address this issue, we present a novel pipeline
for generating and incorporating new items into the
EFSET writing assessment scoring process. Our
method uses Large Language Models in Automatic
Item Generation (AIG) and Synthetic Data Gener-
ation for Student Responses for scalable adaptive
writing assessment. First, we generate new assess-
ment items using a few-shot learning strategy ap-
plied to LLMs, systematically exploring multiple
prompting combinations. Human evaluators then
verify item quality, ensuring appropriate difficulty,
clarity, and topic relevance.

In order to then integrate these validated, newly
generated items into our existing automated assess-
ment pipeline, we fine-tune a LlaMa-3.1 8B model
via ORPO (Optimized Reward Preference Opti-
mization) (Hong et al., 2024) to generate realistic
student-like responses for these items across differ-
ent proficiency levels. The fine-tuning relies on real
test data combined with systematically generated
synthetic annotations obtained via consensus anno-
tation (majority vote) from three distinct LLM an-
notators. These item-response pairs then allow use
to train our existing RoBERTa-based Transformer
model for proficiency scoring on these new writ-
ing prompts. This synthetic annotation approach
ensures scalable yet reliable response-label assign-
ment without intensive human labor.

A summary of the main contributions of this pa-
per is as follows: (1) we introduce an automated
item generation (AIG) pipeline for adaptive writ-
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ing assessment that leverages state-of-the-art large
language models and few-shot prompting to create
high-quality, proficiency-aligned prompts; (2) we
propose and validate a synthetic data augmentation
process based on fine-tuned LLMs and consensus
annotation via majority voting, resulting in robust
and reliable datasets for model training; and (3) we
develop and empirically evaluate a fully automated
scoring framework based on Transformer models
(RoBERTa), demonstrating significant gains in ac-
curacy and consistency through extensive testing
on EFSET items and a carefully calibrated valida-
tion set.

In the following sections, we first review the
state of the art in automated writing assessment and
item generation. We then detail our methodology
for prompt generation, dataset construction, and
automated evaluation. Next, we present empirical
results illustrating the validity and reliability of
our approach on both the EFSET validation set
and a dedicated calibration dataset. Finally, we
discuss the implications and potential extensions
of this framework for scalable, adaptive language
proficiency assessment.

2 Related Work

This section synthesizes two key developments in
recent research on automated language assessment.
First, we review state-of-the-art approaches to item
generation that leverage large language models
(LLMs), prompt engineering, and few-shot learn-
ing to efficiently produce diverse and high-quality
assessment prompts. Second, we examine emerg-
ing methods for synthetic data annotation, with a
particular focus on the use of LLMs to simulate
candidate responses and facilitate reliable labeling
at scale for proficiency scoring tasks.

2.1 Automated Item Generation with LLMs
and Prompting

The automated generation of test items, especially
for language assessment, has evolved considerably
in recent years. Early systems used template-based
approaches, in which test developers designed fixed
“item shells” and populated them with variable lin-
guistic elements—such as word lists or grammati-
cal forms—to produce items at scale (Bejar et al.,
2003). For example, thousands of cloze items, ex-
ercises where words are removed from a passage
for the student to fill in the gaps, could be created
programmatically by instantiating such templates

with preselected vocabularies and distractors, pro-
viding structural consistency and psychometric con-
trol. However, content diversity and authenticity
remained limited by the template bank, and exten-
sive manual authoring was needed to cover new
topics or scales. These constraints have since led to
the exploration of more flexible, data-driven meth-
ods, most notably involving large language models
(LLMs).

The advent of large pre-trained language mod-
els (LLMs) has fundamentally shifted automated
item generation toward more data-driven, scalable,
and flexible paradigms. Models such as GPT-3 and
GPT-4 have been shown to generate diverse assess-
ment items—including reading, writing, and cloze
tasks—by leveraging few-shot prompting, where
only a handful of examples guide the model’s
output (Brown et al., 2020). Educational evalu-
ation shows that LLM-generated items are closely
aligned to human-authored items, with Zhang et al.
(2022) reporting that over 80% of reading com-
prehension questions automatically generated by
GPT-3 were rated as valid by expert reviewers,
and prompt appropriateness and difficulty levels
closely aligned to human-authored items. Simi-
larly, Kurdi (2023) found that LLMs could create
contextually relevant language assessment prompts,
achieving human-likeness scores above 4/5 on stan-
dard rubrics. Research by Brown (2023) and Zhai
et al. (2023) supports that such approaches not only
accelerate item production and reduce costs, but
also enable rapid adaptation to new topics and test
formats, with acceptance rates for LLM-generated
prompts ranging from 60–95% after light expert
editing.

However, even high-performing LLM-generated
items require careful evaluation and annotation be-
fore they can be reliably used in machine learning-
based assessment pipelines to ensure that they are
well-calibrated and capable of distinguishing stu-
dent ability. Recent work has shown that using
synthetic annotation, consensus labeling strategies
(e.g., majority voting among multiple LLMs), or
semi-automatic calibration processes significantly
improves dataset consistency and psychometric va-
lidity (Liu, 2023; Mai, 2022; Clark, 2021; Yao et al.,
2024).

2.2 Synthetic Data Annotation for Language
Assessment

A persistent challenge in automated educational as-
sessment is the limited availability of high-quality
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annotated data required to train and validate mod-
ern NLP models for predicting student proficiency.
Recent advances have addressed this by not only
generating novel assessment prompts, but also
leveraging LLMs to simulate candidate responses
and assign linguistic proficiency or accuracy labels
at scale (Yao et al., 2024; Wang et al., 2024; Brown,
2023).

For instance, Clark (2021) showed that the
scarcity of labeled data for language tasks can
be mitigated by generating synthetic examples,
improving model robustness and generalization.
Moreover, ensemble annotation methods—where
multiple LLMs independently label each sample
and a majority vote is used—have demonstrated
increased labeling reliability, especially when com-
pared to standard human annotation benchmarks
(Liu, 2023). These synthetic annotation strategies
make it possible to rapidly construct large, diverse,
and reliable datasets matched to newly generated
items.

Integrating both automated item generation and
synthetic annotation creates a complete pipeline
for adaptively expanding and enhancing machine
learning-based scoring systems. Not only does this
combination facilitate the inclusion of new item
types without costly manual labeling, but it also
supports the continual improvement of model ac-
curacy, as shown by transformer-based scoring sys-
tems trained on such enriched datasets (Mayfield
and Black, 2020; Mai, 2022). This integrated ap-
proach forms the basis for recent innovations in
fully automated and scalable assessment frame-
works.

3 Proposed Approach

This section presents our integrated pipeline for
adaptive writing assessment, encompassing au-
tomated item generation, synthetic training data
creation, LLM-based response simulation, and
transformer-based scoring. Our approach is de-
signed to efficiently generate, validate, and psycho-
metrically calibrate novel test items, ensuring both
robustness and scalability for deployment in real-
world language proficiency testing environments.

3.1 Overview of the Integrated Pipeline
Approach

Figure 3.1 presents the end-to-end pipeline devel-
oped for adaptive writing assessment. The process
begins with the generation of new writing prompts,

using prompt engineering and few-shot learning
with a single LLM (GPT-4o) to produce candidate
items focused on specific topics and proficiency
levels. All generated prompts undergo human ex-
pert review, where only validated items are retained
for integration into the assessment bank.

We fine-tune a LLaMA 3.1 (8B)
model—leveraging ORPO optimization—on
a custom instruction dataset to generate synthetic
student responses for each validated item reflecting
varying proficiency levels. This instruction dataset
is created by collecting real candidate answers,
prompting several LLMs to annotate each response
for accuracy using the few-shot paradigm, and
applying a majority voting scheme to select the
final label. Only samples with strong inter-model
agreement are retained, ensuring high label
reliability and calibration.

The resulting synthetic dataset, containing ap-
proximately 200 responses per new item, is then
used to further train and fine-tune a RoBERTa-
based transformer scoring model. This updated
scoring engine is evaluated both on existing and
new items to ensure seamless integration and con-
sistency. Throughout the pipeline, quality is main-
tained through a combination of automated filter-
ing and targeted human-in-the-loop validation, en-
abling scalable, reliable item generation and robust
scoring for real-world proficiency assessment.

3.2 Phase 1: Automated Creation and
Validation of Writing Items

The aim of this first phase is to automate the gen-
eration of writing prompts intended for students to
write an essay about, each of which is targeted at a
specific proficiency level and topic. We leveraged a
large language model (LLM)–specifically, GPT-4o
(OpenAI, 2024)– to achieve this. To ensure that the
generated writing prompts were tailored to adap-
tive assessments, we provided the LLM with a set
of representative triplets of writing prompt, profi-
ciency level, and topic. We then guided the LLM
to generate new writing items with the intended
form, content scope, and level-appropriateness by
few-shot prompting the LLM with examples of
the target structure and the level of complexity re-
quired.

In order to guide the LLM, we first carefully
curated a small set of ≈ 20 examples explicitly
designed to match the communicative demands of
English writing proficiency tests. Each writing
example consisted of a proficiency level and a suc-
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Figure 1: Pipeline for automated item and synthetic answer generation in the adaptive writing assessment

cinct writing prompt (no more than 25 words). To
augment these examples with the topic as further
context in the few-shot prompt, GPT-4o was ap-
plied to generate the topic for these hand-picked
examples. The resulting triplets of example writing
prompt, proficiency level and topic constituted our
set of few-shot examples.

To generate a new writing item, we specified the
desired topic(s) and proficiency level as part of the
input for the LLM. A few semantically similar but
diverse set of examples were chosen from our man-
ually curated collection using LangChain’s Max-
MarginalRelevanceExampleSelector (LangChain,
2025). These chosen examples were then passed
into the LLM as a part of the input prompt to gen-
erate a new item based on the requested topic and
proficiency level, as shown in Figure 2.

We ensured a wide coverage of content and lin-
guistic complexity across all proficiency bands by
systematically generating new items across multi-
ple combinations of topic and proficiency level.

Five language assessment experts were asked to
judge a sample of 100 prompts based on appropri-
ateness for assessment regarding the following met-
rics: clarity, curriculum fit, and difficulty level. In
addition, to further evaluate item quality, we com-

pared expert annotations on both difficulty level
and topic with GPT-4o’s predictions, finding a cor-
relation of nearly 0.9. This high level of agreement
suggests that GPT-4o is able to closely approximate
expert judgment in these qualitative aspects.

The use of LLMs and enabled rapid and scalable
item generation, whilst retaining strict quality con-
trol through expert review, allowing the assessment
to expand to new topics and levels efficiently and
reliably, as recommended in recent work on few-
shot prompting in language assessment contexts
(insert citation).

3.3 Phase 2: Synthetic Generation of Training
Data

In this phase, the aim was to generate a high-quality
training set to generate responses for the new items
produced in Phase 1. The use of ORPO in the
next stage requires pairs of good and bad student
responses for each item, and hence we require a
way to assess the quality of generated responses
to produce these pairs of examples. To do so, we
first evaluated several available LLMs of different
architectures and sizes for its ability to rate student
responses. Each model was assessed for its con-
sistency and reliability in assigning grammatical
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Prompt:
Imagine you are a language teacher writing essay question prompts for an English
level written test. Given the level and topic, write a short prompt (max 25 words)
for the student. The prompt should be succinct and appropriate.

Examples:
Topic: Daily life
Level: 4
Prompt: Describe your daily routine.

Topic: Work, Company policies
Level: 6
Prompt: Your boss has asked for your help with the office dress code policy.
What rules do you suggest?
...

Figure 2: Illustration of a few-shot prompting template used for automated writing prompt generation.

accuracy scores to (item, response) pairs using a
calibration set drawn from real test data. We mea-
sured agreement between each model and expert
human annotations using Cohen’s Kappa statistic.
Based on these preliminary experiments, we then
selected the three LLMs that demonstrated the high-
est inter-annotator agreement with human raters as
well as amongst themselves to perform a majority
vote over the quality of the synthetic student re-
sponse. This enabled us to then produce a larger
dataset of pairs of student responses that can be
used in the next phase of response generation.

For the annotation process, each selected LLM
was first provided with a few-shot prompt compris-
ing the grammatical accuracy scale (0–4) and mul-
tiple labeled examples. Each model independently
assigned an accuracy score to every response, lever-
aging the internalized patterns from the few-shot
instruction. Majority voting was then applied to the
three scores produced for each sample, retaining
the class most frequently assigned as the final label.

To ensure the highest possible data quality, we fil-
tered the resulting dataset to retain only the samples
where annotator agreement was strongest—either
full consensus or clear majority among the three
LLMs. This approach allowed us to construct
a robust, reliable, and well-calibrated instruction
dataset for producing realistic student responses
via subsequent model fine-tuning and evaluation.

To evaluate the quality and reliability of the an-
notation process, we created an evaluation set (gold
standard) consisting of approximately 200 (item,
response) pairs. Each of these samples was inde-
pendently annotated for grammatical accuracy, on a
scale from 0 to 4, by five expert human raters. Only
those samples with an inter-annotator agreement

above 70% were retained, ensuring a high level of
reliability in the ground truth annotations.

This gold standard dataset was then used to
benchmark each candidate LLM’s annotation per-
formance. For the comparison, we calculated the
Cohen’s Kappa score between the accuracy levels
assigned by each LLM and the ground truth estab-
lished by human annotations. The LLMs evaluated
in this process included Llama 3.3 70B (Touvron
et al., 2024), Nova Pro and Nova Small (AWS pro-
prietary models2), Mistral Small and Mistral Large
(Jiang et al., 2023), Claude Opus (Anthropic, 2024),
and GPT-4o (OpenAI, 2024).

This systematic comparison enabled us to iden-
tify the models with the highest alignment to expert
human judgments, guiding the selection of annota-
tors for the synthetic data generation pipeline.

LLM Candidate CK
LLaMA 33 70B 0.86
GPT-4o 0.87
Nova Pro 0.78
Mistral Small 0.18
Mistral Large -0.01
Claude Opus -0.08
Ensemble 0.89

Table 1: Cohen’s Kappa agreement between each LLM
and gold standard human annotation

We selected the three best-performing LLMs,
LLaMA 33 70B, GPT-4o, and Nova Pro as shown
in Table 1, to form an ensemble for the major-
ity voting procedure. Notably, this combination
achieved a Cohen’s Kappa of 0.89 with the human-
annotated gold standard, outperforming any indi-
vidual model. This result demonstrates that major-

2Technical details available in the AWS Bedrock documen-
tation: https://docs.aws.amazon.com/bedrock/latest/
userguide/model-parameters-nova.html.
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ity voting among top-performing models further
increases annotation reliability and brings machine
annotation closer to human-level agreement.

Finally, we generated our synthetic dataset of
20,000 pairs of responses, employing our ensemble
of LLMs for the rating process to ensure that each
pair consisted of one higher accuracy response and
one lower accuracy response with the associated
grammatical accuracy and proficiency level.

3.4 Phase 3: Fine-tuning of LLM-Based
Response Generator

In this phase, we focused on enhancing the qual-
ity and proficiency alignment of synthetically gen-
erated responses by fine-tuning a large language
model. We selected LLaMA 3.1 (8B parameters)
as the base model for fine-tuning, utilizing the Op-
timized Reward Preference Optimization (ORPO)
technique. The training data comprised approxi-
mately 20,000 synthetic samples generated during
Phase 2, each annotated for grammatical accuracy
and proficiency level.

Fine-tuning was conducted using a distributed
training setup on the SageMaker infrastructure, em-
ploying the following configuration:

• Instance type: ml.g5.12xlarge

• Environment: PyTorch 2.5.1, GPU, CUDA
12.4, Ubuntu 22.04

• Batch size: 8 per device

• Gradient accumulation steps: 1

• Learning rate: 2× 10−4

• Number of epochs: 3

• LoRA settings: r = 8, α = 16, dropout=0.1

• Seed: 42 (for reproducibility)

Model training was orchestrated with distributed
computing support (Torchrun) to fully leverage
available GPU resources, and checkpointing mech-
anisms were in place to ensure reliability.

Through this fine-tuning process, the LLaMA 3.1
model was adapted to generate candidate responses
at specific proficiency levels, closely mimicking
real student outputs in both accuracy and variety.
The resulting model serves as a robust response
generator for subsequent scoring model develop-
ment and evaluation within the adaptive writing
assessment pipeline.

3.5 Phase 4: Training Adaptive
Transformer-Based Scoring Model

In the final phase, we aimed to robustly integrate
the newly generated writing items into our auto-
mated scoring pipeline. To achieve this, we focused
on the domain of education, and manually com-
posed approximately thirty new writing prompts
covering a broad range of proficiency levels, as
generated during Phase 1.

For each prompt, the fine-tuned LLaMA 3.1
(8B) response generator was used to synthesize
approximately 200 sample answers at varying pro-
ficiency levels. This resulted in a substantial and
well-stratified dataset representing a wide spectrum
of student abilities.

We then fine-tuned our RoBERTa-based trans-
former scoring model, training it on a combination
of both initial (pre-existing) and newly generated
items and responses. This approach was designed
to ensure a smooth integration of new items into
the scoring system while maintaining performance
on established items.

The model was trained using the following
hyperparameters with the TrainingArguments
setup:

• Evaluation and save strategy: every 200
steps

• Batch size: 16 per device

• Learning rate: 2× 10−5

• Warmup ratio: 0.1

• Epochs: 6

• Weight decay: 0.01

• Learning rate scheduler: linear

• Mixed precision training: enabled (fp16)

This fine-tuning procedure enables the scoring
model to generalize to new adaptive items and profi-
ciency levels while ensuring reliable and consistent
automated assessment performance.

4 Experiment

4.1 Psychometric Analysis

4.1.1 Dataset
We constructed a dataset containing 500 responses
to approximately 50 different writing prompts, with
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Level Prompt Synthetic Response Label (proficiency)
2 What activities do you do at school? I am studying english at university. I love

english and talk with my friend, we share
knowledge.

1

3 Describe your teaching style. I like to teach students about english and use
example and video for help them learn easy.

1

3 What do you think makes a good
teacher?

A good teacher possesses patience, empathy,
and effective communication skills. They
foster a supportive environment, encourage
critical thinking, and adapt teaching methods
to cater to diverse learning styles, promoting
academic growth and personal development
in their students.

4

5 Explain the importance of extracur-
ricular activities in a student’s over-
all development.

Ggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 0

5 Describe a typical school day, in-
cluding your classes, activities, and
any special events you participate in.

My school day starts at 8am with class. I
join clubs after and do volunteer work. Math
is my favorite.

3

Table 2: Examples of synthetically generated items and responses on the topic of education, illustrating different
levels of language proficiency.

an equal split between human-generated and au-
tomatically generated answers (250 each). Each
response is scored on an ordinal scale from 0 to
4, providing a rich basis for psychometric analy-
sis. This dual-sourced dataset enables us to directly
compare human performance and large language
model (LLM) behavior under similar assessment
conditions.

4.1.2 Evaluation
To better understand the scoring dynamics and
the comparability between synthetic and authentic
responses, we conducted an Item Response The-
ory (IRT) analysis. Figure 4.1.2 presents average
Item Characteristic Curves (ICCs) derived from
the dataset, shown separately for human and LLM-
generated responses. Each curve reflects the proba-
bility of achieving at least a given score threshold as
a function of modeled proficiency, averaged across
all items.

The ICCs for both human and synthetic re-
sponses reveal similar shapes and threshold spac-
ing, indicating that LLM-generated answers closely
emulate the probability distributions observed in
real student performance. This suggests that syn-
thetic responses can serve as effective proxies for
actual learner data in calibrating and evaluating
automated scoring models.

4.2 Pre-piloting Study

To validate the integration and quality of the newly
generated items, a pre-piloting study was con-
ducted with approximately 250 participants in
Rwanda. The main objective of this phase was

to compare the performance and acceptability of
the newly generated items. Participants completed
a test composed of a balanced mix of traditional
(previously validated) items and automatically gen-
erated new items. The distribution of items was
designed to ensure diversity in both content and
difficulty levels.

4.2.1 Comparative Analysis
To assess the effectiveness of the automatically gen-
erated items, we conducted a comparative analysis
of success rates between old and newly generated
items using statistical significance testing. For each
item, we computed the difference in success rates
and tested for significance using a z-test for pro-
portions. To ensure a sufficient number of items
per analysis group, we grouped the original 16
difficulty levels into 6 broader categories, thereby
increasing the number of items per test group for
more robust statistical analysis.

Table 3: Statistical Comparison: z-test and p-value for
Each Item Level

Item-Level Group z-score p-value
1 4.35 0.001∗

2 1.33 0.182
3 0.99 0.323
4 1.08 0.285
5 -1.96 0.056
6 -1.86 0.060
∗ Statistically significant at p < 0.05.

The results presented in Table 3 show that al-
though most items did not show significant dif-
ferences, the only statistically significant effects
(p < 0.05) were observed between items in dif-
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Figure 3: Average Item Characteristic Curves from IRT analysis of human and synthetic responses.

ficulty group 1 (the easiest items). For items be-
longing to difficulty group 5, p-values were close
to the significance threshold, indicating borderline
significance. These observations underscore the im-
portance of careful quality control, particularly at
both extremes of item difficulty, when integrating
automatically generated items into assessments.

4.2.2 Item Characteristic Curve Analysis
To further assess the psychometric properties of
both traditional and automatically generated items,
we performed an Item Characteristic Curve (ICC)
analysis using the Two-Parameter Logistic (2PL)
model from Item Response Theory (IRT) (Baker
and Kim, 2004). The 2PL model estimates two
main parameters for each item: the difficulty pa-
rameter (indicating the level of ability required for
a 50% probability of a correct response) and the
discrimination parameter (reflecting how well the
item differentiates between participants of differing
ability levels).

For each item, we fitted the 2PL model using the
participants’ response data. T

Figure 4 displays the ICCs for three representa-
tive synthetic items extracted from the assessment.
Each curve presents the probability of a correct
response (P (θ)) as a function of participant ability
(θ), and the items were chosen to illustrate a range
of difficulty and discrimination parameters.

• Easy item: This item is answered correctly
by participants even at lower ability levels.
The steep, less rounded shape of the ICC indi-
cates a high discrimination parameter, mean-
ing the item sharply differentiates between
participants just below and just above its diffi-
culty threshold.

• Medium item: This item requires a higher
ability level for a 50% probability of a correct
answer, suggesting moderate difficulty. It also

exhibits high discrimination, as seen in the
sharp transition.

• Difficult item: This item is considerably
harder and is only likely to be answered cor-
rectly by participants with the highest abilities.
The more gradual slope of its ICC suggests a
lower discrimination parameter compared to
the other items.

These three examples demonstrate both the
range of difficulty present in the test and the varia-
tion in item discrimination. Such diversity ensures
that the assessment can reliably differentiate partic-
ipants across a broad spectrum of ability levels.

Figure 4: Item Characteristic Curves for 3 synthetic
items.

4.3 Scoring Model Evaluation

4.3.1 Dataset
To assess the impact of synthetic items on model
training, we conducted controlled experiments us-
ing both authentic and synthetic data. The evalua-
tion was performed on a fixed test set of 800 sam-
ples that included a balanced selection of prompts
and responses, covering all proficiency levels and
a wide range of topics.
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4.3.2 Evaluation
We evaluated the proficiency classification task us-
ing three distinct transformer-based models, each
fine-tuned on our training data. First, we included
two widely used traditional encoders: BERT-base-
uncased (Devlin et al., 2018) and RoBERTa-base
(Liu et al., 2019). Both are pre-trained bidirectional
transformers and have served as robust baselines
for a range of NLP classification tasks. Second,
we fine-tuned Flan-T5 Base (Longpre et al., 2023),
an instruction-tuned sequence-to-sequence model
with strong generalization abilities for text-to-text
tasks, adapting it specifically for multi-class classi-
fication by framing the label prediction as sequence
generation.

Table 4 summarizes the precision, recall, and F1-
scores obtained by each model, macro-averaged
across proficiency levels. RoBERTa shows the
strongest overall performance (macro F1-score
of 0.82), illustrating the benefits of its more ad-
vanced pre-training. BERT achieves good results
but slightly lower than RoBERTa, consistent with
prior findings in classification tasks. Notably, Flan-
T5 Base also provides competitive performance
(macro F1-score of 0.80), demonstrating the viabil-
ity of adapting generative models to classification
through prompt engineering and sequence-based
fine-tuning.

Model Precision Recall F1-score
BERT-base-uncased 0.80 0.77 0.78

Flan-T5 Base 0.81 0.80 0.80
RoBERTa-base 0.83 0.81 0.82

Table 4: Macro-averaged precision, recall, and F1-score
for each fine-tuned model on proficiency classification.

5 Conclusion

In this work, we introduced an end-to-end auto-
mated pipeline for adaptive English writing assess-
ment, leveraging recent advancements in large lan-
guage models for both item generation and syn-
thetic data annotation. Our methodology utilizes
few-shot prompting, robust majority-vote labeling,
and transformer-based scoring to efficiently gener-
ate, calibrate, and evaluate new writing tasks within
a psychometrically-sound framework. Extensive
experiments demonstrate that the proposed system
achieves high agreement with expert evaluations,
ensuring both the validity and scalability required
for operational proficiency testing. We anticipate
that this approach will provide a solid foundation

for future research on data-driven adaptive assess-
ment and the broader application of LLMs in lan-
guage testing.

Limitations

Automated scoring models risk perpetuating biases,
particularly across demographic groups, language
proficiencies, or socio-cultural contexts. The use
of synthetic data and automated generation may
also introduce or reinforce unintended patterns, po-
tentially affecting educational fairness. To miti-
gate these risks, it is vital to incorporate diverse
training data, implement human-in-the-loop eval-
uations, and regularly audit system performance.
We regularly monitor test quality through ongoing
psychometric analyses and expert human evalua-
tion. This process ensures that both automated item
generation and scoring maintain high standards of
validity and reliability over time.

Furthermore, the introduction of a substantial
number of new items into the assessment pool
needs large-scale psychometric analysis to fully
evaluate their functioning and impact. We acknowl-
edge this as an essential next step, and plan to con-
duct comprehensive studies to further validate the
psychometric properties of these newly introduced
items across diverse populations and contexts.
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Abstract

Communicative practice is critical for second
language development, yet learners often lack
targeted, engaging opportunities to use new
grammar structures. While large language
models (LLMs) can offer coherent interactions,
they are not inherently aligned with pedagog-
ical goals or proficiency levels. In this pa-
per, we explore how LLMs can be integrated
into a structured framework for enabling goal-
oriented, grammar-focused interaction, build-
ing on an existing dialogue system. Through
controlled simulations, we evaluate five LLMs
across 75 A2-level tasks under two conditions:
(i) grammar-targeted, task-anchored prompt-
ing and (ii) the addition of a lightweight post-
generation validation pipeline using a grammar
annotator. Our findings show that template-
based prompting alone substantially increases
target-form coverage up to 91.4% for LLaMA
3.1-70B-Instruct, while reducing overly ad-
vanced grammar usage. The validation pipeline
provides an additional boost in form-focused
tasks, raising coverage to 96.3% without signif-
icantly degrading appropriateness.

1 Introduction

Second language acquisition (SLA) is driven by
frequent and meaningful language use (Behrens,
2009; Ellis, 2002; Canale and Swain, 1980). While
second language (L2) learners develop comprehen-
sion skills through input-rich activities, many strug-
gle to find opportunities outside of the classroom
to meaningfully produce what they’ve learned, es-
pecially in the early stages (Ortega and DeKeyser,
2007). This is particularly true for A2-level learn-
ers, who are using the L2 in social interaction more
consistently, as described by the Common Euro-
pean Framework of Reference Companion Volume
(CEFR; Council of Europe, 2020).

Grammar often represents an obstacle in L2 pro-
duction, with certain forms proving persistently

difficult to master (Ellis, 2017). As a result, learn-
ers tend to avoid challenging forms in spontaneous
communication, where conveying meaning quickly
takes priority (Lyster and Sato, 2013). To mitigate
this issue, research emphasizes the importance of
communicative practice that targets learners’ spe-
cific needs and occurs iteratively, rather than rely-
ing on decontextualized drills. Without such tar-
geted support, many A2 learners tend to plateau,
struggling to transfer classroom grammar knowl-
edge to real-life communication (Richards, 2008;
Mirzaei et al., 2017; Lightbown, 2007).

Conversational agents, or chatbots, have been
proposed as a way to offer students language pro-
duction opportunities (Sydorenko et al., 2018).
Early rule-based systems enabled predictable, level-
appropriate dialogues, but their design was labor-
intensive and resulted in rigid, limited interac-
tions (Bibauw et al., 2022). More recently, LLMs
have emerged as a promising alternative, as they
are capable of generating coherent and fluent lan-
guage without the need for manual scripting. How-
ever, their stochastic nature often leads to incon-
sistent pedagogical alignment (Zhou et al., 2023;
Benedetto et al., 2025).

While several studies have explored the use
of out-of-the-box LLMs for educational purposes,
such as linguistic feedback, role play, and adaptiv-
ity (Borchers and Shou, 2025; Gervás et al., 2025;
Fincham and Alvarez, 2024), their inherent un-
predictability poses challenges for aligning output
with pedagogical frameworks, adaptive logic, and
real-world scalability. In the absence of a system-
atic mechanism for constraining both communica-
tive context and grammatical targets, learners may
engage in practice that lacks the individualization
and progression necessary for effective develop-
ment (Ruiz et al., 2023).

To bridge this gap, we introduce a paramet-
ric framework for goal-oriented, CEFR-aligned
grammar practice through LLM-mediated dialogue.
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Building on AISLA, a rule-based system developed
for grammar instruction among German seventh-
graders (Chen et al., 2022), this A2-level extension
links each task to the English Grammar Profile
(EGP; O’Keeffe and Mark, 2017). EGP targets
are embedded into dynamically generated prompt
templates that pair specific grammatical forms with
communicative scenarios, enabling repeated prac-
tice of the same structure across varied, context-
rich tasks. This approach aims to maintain peda-
gogical consistency while leveraging the flexibility
and fluency of LLMs.

In this paper, we investigate the effectiveness
of our approach by asking the following research
questions:

1. Can out-of-the-box LLMs generate goal-
oriented dialogues that spontaneously target
specific grammatical structures?

2. How effective is task-supported prompting in
guiding LLMs to produce multi-turn, A2-level
outputs aligned with target grammar?

3. To what extent can LLMs of different
sizes maintain coherence and target specific
grammatical structures in task-supported dia-
logues?

4. Does incorporating a grammar validation com-
ponent improve target structure usage and
CEFR alignment?

2 Goal-oriented Grammar Practice

While theoretical perspectives in SLA vary, many
contemporary approaches increasingly view gram-
mar as a functional and adaptive component of lan-
guage use, rather than a fixed body of rules (Diessel,
2019; Dik, 1981). Larsen-Freeman (2003) advo-
cates for the reframing of grammar as a dynamic
skill encompassing three interrelated dimensions:
(i) form, structural features of language; (ii) mean-
ing, the semantic or propositional content these
forms convey; and (iii) use, the pragmatic and dis-
course functions that guide when and why particu-
lar forms are selected in context.

To support this dynamic view of grammar, in-
structional design should align the learning environ-
ment with real communicative demands. Transfer-
appropriate processing (TAP; Lightbown, 2007) re-
inforces this idea, suggesting that learning is most
effective when the cognitive processes involved

during learning mirror those required during re-
trieval and use. Grammar practice then should not
be decontextualized, rather, learners need iterative
opportunities to use target structures in activities
that closely resemble authentic language use.

Furthermore, research shows that specific gram-
mar structures are best acquired through activi-
ties that naturally elicit their use (Loschky and
Bley-Vroman, 1993; Faitaki and Murphy, 2019;
Lyster and Sato, 2013). Frameworks such as Task-
Based Language Teaching (TBLT; Nunan, 2004)
and Task-Supported Language Teaching (TSLT;
Ellis, 2024) operationalize this idea by embed-
ding language practice within communicative tasks.
In TSLT, for example, the syllabus is organized
around specific linguistic units, which are prac-
ticed through meaning-oriented tasks: activities in
which language is used to achieve a non-linguistic
goal, such as comparing options or making plans.
Unlike traditional drills, such tasks promote inter-
action in which the target structure is functionally
relevant. Our system builds on this approach, using
task templates that integrate grammar targets with
communicative goals (Bear et al., 2024).

3 Controlled Text Generation

To integrate a multidimensional view of grammar
into LLM-based applications, developers must find
ways to control the output of these models in or-
der to deliver scaffolded, targeted practice without
sacrificing meaning or use. Although emerging ap-
proaches offer potential solutions, such as prompt-
ing techniques and finetuning techniques, they typ-
ically lack explicit goal orientation and have not
been systematically applied to grammar-focused
learning tasks.

In the context of open-ended dialogue, some
approaches have aimed to implicitly steer LLMs to-
ward producing predetermined grammatical struc-
tures. For instance, Okano et al. (2023) compare
reinforcement learning-based fine-tuning of Di-
aloGPT with few-shot prompting of GPT-3, finding
that both methods can enable grammatical con-
trol, with reinforcement learning achieving greater
precision. Similarly, Glandorf et al. (2025) evalu-
ate prompting, fine-tuning and decoding strategies
for the inclusion of predermined EGP structures
during open-ended chat, showing that grammar-
controlled decoding with LLaMA 3.3 effectively
targets specific forms, albeit with a slight reduction
in response quality. However, both studies focus
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exclusively on the inclusion of target structures in
the next response only, not evaluating model per-
formance across multi-turn interactions.

Engaging LLMs in multi-turn conversations in-
troduces additional challenges, as the model must
track and integrate longer contextual information
to maintain coherence and relevance across turns
(Yi et al., 2024). This challenge becomes more
complex when there is a pedagogical task to ad-
here to and a grammar structure to target. While
some recent work explores different applications
of LLM-mediated language learning (Tyen et al.;
Méndez and Bautista, 2025), no approach, to our
knowledge, has attempted to integrate LLMs within
goal-oriented dialogue systems for systematic, tar-
geted grammar practice.

Our work therefore intends to move to-
wards bridging these divides by integrating a
CEFR-aligned proficiency framework, generating
task-based dialogue data and embedding real-time
grammar scaffolding into an LLM-powered dia-
logue system. In doing so, we aim at combin-
ing the naturalness of large-scale language mod-
els, with the pedagogical basis of goal-oriented,
task-supported instruction.

4 Implementation

4.1 System Description

The AISLA system was built using a Java-based
backend with a PostgreSQL1 database and an
Android-based frontend 2. Its backend follows a
modular, service-oriented design for functionali-
ties such as text-to-speech and automatic speech
recognition. The chatbot functionality is handled
via AWS Lex 3, a slot-filling dialogue management
service, which requires manual dialogue scripting.
Although effective for rule-based interactions, espe-
cially in school contexts, where content control is a
priority (Wilske, 2015), this configuration presents
limitations for the integration of personalized and
adaptive features.

To support the requirements of this research, sev-
eral major architectural changes were introduced.
First, the following changes were made to accom-
modate LLM-based interactions: AWS Lex was
replaced by LLM APIs, and a DialogueManager
class was added to orchestrate prompt chaining and
dialogue state management. Second, the Android

1https://www.postgresql.org/
2https://www.android.com/
3https://aws.amazon.com/lex/

frontend was replaced with an Ionic4 one to ensure
broader accessibility across platforms, thereby in-
creasing inclusivity in participant recruitment and
usage scenarios. Additionally, the EGP was inte-
grated in the grammar task design.

4.2 Task Bank

To support modularity and future scalability, a task
bank was implemented as a database table. Each
entry is linked to a target grammar structure and a
communicative purpose, including fields such as
the EGP structure’s guideword, can-do statement,
the name and format of the task and its instructions.
Task names refer to real-life situations where gram-
mar structures are employed for communicative
purposes, for instance, "Discussing cultural differ-
ences between two countries", "Telling someone
about a historical monument" or "Picking between
two places to go to".

The task design is based on the Grammaring
framework (Larsen-Freeman, 2003), accounting
for the three dimensions of grammar. Accordingly,
three task types were developed:

Q&A (form-focused): These tasks are meant to
provide high-frequency exposure to a target
grammar structure in each of the model’s turns.
It aims to use and elicit the structure in short
question-answer exchanges (e.g. answering
questions about one’s daily routine with fre-
quency adverbs).

Information gap (meaning-focused): These tasks
emphasize the meaningful application of
grammar structures, encouraging learners to
make decisions about where and how to use
the target structure in context, usually leverag-
ing external resources like tables, charts and
images (e.g. reporting on what was said in
an interview with reported speech, explaining
what someone looks like using adjectives).

Role play (use-focused): These tasks situate gram-
mar practice in realistic scenarios (e.g. giv-
ing a friend advice with modal verbs, ask-
ing for directions with prepositions). They
are designed to simulate real-life situations
where the structure must be used appropriately
within a given social or functional context.

4https://ionicframework.com/
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4.3 Dialogue management

When a task is initiated by the student, information
from the task bank is dynamically retrieved from
the database and inserted into a template-based
LLM prompt. An example prompt schema can be
found in Appendix A. Task duration is currently
managed via turn count. This means that each dia-
log task spans a predetermined number of turns by
default, after which the learner is given the option
to either conclude the task or continue practicing.

5 Method

Since the purpose of this study was to evaluate how
well different LLMs perform in task-supported di-
alogues, conducting a user study was considered
premature. Instead, to simulate varied learner inter-
actions, each model was paired with ChatGPT-4o,
using a temperature setting of 0.5 to introduce some
content variability on the student side.

To test the robustness of the model acting as the
tutor, three learner behavior patterns were imple-
mented in every task: (1) in the first run, the model
was instructed to make grammatical mistakes; (2)
in the second run, a hard-coded clarification request
("What does that mean?") was injected; and (3) in
the third run, a misunderstanding was introduced
via the phrase "I don’t know" at the second turn (c.f.
Appendix F for snippets of different runs and task
type). Each task was limited to 10 turns to ensure
comparability across conditions.

We selected 75 tasks targeting 15 grammar super-
categories drawn from the EGP, namely, adjectives,
adverbs, clauses, determiners, future, modality, pas-
sives, past, prepositions, present, pronouns, verbs,
questions, negation, and reported speech. The tasks
were equally divided into Q&A, information gap,
and role play formats. To account for output vari-
ability, each task was run five times, resulting in
375 dialogues, and 1875 messages per model 5.

5.1 Experiment 1

We evaluated five large language models (LLMs)
spanning a wide parameter range: Llama 3.1 8B-
Instruct, Mistral-Small 3.1 24B-Instruct (Mistral
AI, 2024), Llama 3.3 70B-Instruct (Meta, 2024),
DeepSeek-V3 685B (DeepSeek AI, 2024), and
GPT-4o (OpenAI, 2024), whose exact parameter
count is undisclosed. Each model acted as the tu-

5All experiments and data mentioned in this work can
be found in https://github.com/luisards/grammar-practice-
framework

tor in the 75 tasks. The decoding temperature was
fixed at 0.0 for decreased variability.

To isolate the effect of explicit grammatical scaf-
folding (RQ1), we first used task-only prompting,
satisfying the TSLT requirement of a clear non-
linguistic goal. In this setting, the prompt contained
only the task name plus minimal instructions, with
no mention of the target grammar structure (c.f.
Appendix B).

The second part of Experiment 1 introduced our
template-based prompt that embeds the commu-
nicative goal together with A2-level grammar cues.
We ask whether this prompt improves alignment
and whether model size modulates any gain (RQ2-
RQ3).

5.2 Experiment 2
Experiment 2 adds a lightweight control pipeline.
We integrated POLKE (Sagirov and Chen, 2025),
an EGP-based grammar annotator, as a post-
generation validator. For every tutor turn, POLKE
tagged all grammar structures and their CEFR level;
a one-shot rephrase is triggered when (i) any struc-
ture above B1 is present (Appendix C) or (ii) in
Q&A tasks, the required target structure is miss-
ing (c.f. Appendix D). Only one rewrite pass is
allowed to bound latency and prevent loops. The
control loop was applied only to the three best-
performing models from Experiment 1 (Llama 3.3
70B, DeepSeek V3, GPT-4o).

6 Evaluation

We combine two quantitative metrics, obtained via
POLKE annotations, with one qualitative metric
obtained from human ratings.

Target structure presence A binary metric
which measures whether the tutor turn
contains the grammar form specified in the
task (crucial for Q&A).

Proficiency alignment Defined here as the use of
grammar within the target CEFR range. This
metric refers to the proportion of structures
above the B1 ceiling (i.e. B2, C1, C2).

Response quality Appropriateness on a 5-point
scale (factual accuracy + contextual coher-
ence). Fifteen native or near-native English
speakers recruited through Prolific6 rated six
dialogues per model (450 tutor turns). The
rubric and anchors appear in Appendix E.

6https://www.prolific.com
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To probe rubric interpretability, GPT-4o scored
the same 30 dialogues. Its item-level scores corre-
late moderately with the human mean (Spearman
ρ = .49, p < .01) and reproduce the system rank
order (ρ = .67). A separate GPT-4o pass over the
full 75-task set is released for replication in the
shared repository.

7 Results

In this section, we report the results of three exper-
imental conditions: baseline task-only (B), prompt
+ grammar scaffold (P) and prompt + scaffold +
validation (P+V), distributed by metric.

7.1 Dialogue-quality ratings

Table 1 shows the mean human appropriateness
ratings. Larger models outperform smaller ones
across all conditions. Prompting incurs a small
drop for every model (max 0.6 points for Mistral-
Small). Validation restores or slightly improves
quality for the top systems. Inter-rater agreement
was found to be moderate (Krippendorff αordinal =
.42; rises to .45 with GPT-4o added).

Smaller models were excluded on the basis of
a post-hoc, exploratory cutoff: any model whose
mean human appropriateness rating fell below 4.0,
corresponding to the “somewhat appropriate” an-
chor on our 5-point rubric was deemed pedagogi-
cally unviable and therefore did not get included in
experiment 2.

Model B P P+V

Llama 3.1 3.9 3.6 –
Mistral-Small 3.5 3.3 –
Llama 3.3 4.9 4.3 4.7
DeepSeek V3 4.7 4.4 4.4
GPT-4o 4.5 4.5 4.6

Table 1: Mean human appropriateness ratings (1-5).

7.2 Proficiency alignment

Table 2 reports the share of grammar at or below B1.
At baseline, a chi-square test across the five models
is significant (χ2 = 59.4, df = 4, p < 10−11)
but the practical effect is small (Cramér V = .04).
Prompting pushes every model above 98% basic
grammar; validation halves the residual advanced
usage.

7.3 Target-structure coverage (form-practice
tasks)

Prompting boosts target-structure inclusion from
roughly 30% to 70-91% (Table 3). Validation
yields a further 5-11-point gain (96.3 % for Llama
3.3 70B, 95.0% for DeepSeek V3, 91.5% for GPT-
4o). A Pearson chi-square on the Q&A subset con-
firms significant model differences at the prompt
stage (χ2(2, N = 1,875) = 33.1, p < 10−7, V =
.13). After validation the gap narrows but remains
significant (χ2 = 19.5, p < .001, V = .10).

8 Discussion

Our findings reveal that while large language mod-
els (LLMs) are capable of generating fluent, goal-
oriented dialogues, they do not reliably produce the
intended grammatical structures without explicit
guidance. Answering RQ1, at baseline, models
demonstrated stronger appropriateness, with big-
ger models reaching average ratings between 4.5
and 4.8, but the presence of the target grammatical
structure was limited, appearing in only 28-39% of
tutor turns in form-practice tasks.

RQ3 explored how model size influence the abil-
ity to maintain coherence and grammatical focus
in task-supported dialogues. Our findings sug-
gest that model capacity matters. Larger models
(70B-685B) retained higher appropriateness (4.3
- 4.7) and needed fewer rewrites, confirming that
scale confers stronger control. Yet the scaffolded
prompt significantly narrowed the grammar gap,
even though their final appropriateness remained
lower (≈ 3.6 - 3.3). This trade-off invites a cost-
benefit choice: institutions with limited resources
may be able to achieve near-large-model grammar
fidelity at a fraction of the compute cost, accepting
a decrease in perceived dialogue polish.

Concerning RQ4, a post-hoc validation pass
halved the residual advanced grammar usage
(χ2(2) = 35.1, V = .10), confirming its value
as a safety net when level control is non-negotiable.
However, quality gains plateau once a strong
prompt is in place, suggesting diminishing returns
for additional automated checks.

Finally, it is important to acknowledge the fact
that strict structure enforcement must be balanced
against the spontaneity of genuine dialogue: real
learners will redirect, clarify and digress. Design-
ing tasks that preserve communicative authenticity
while guaranteeing exposure to a focal form re-
mains an open challenge, especially at higher or
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Model B P P+V

≤B1 >B1 ≤B1 >B1 ≤B1 >B1

Llama 3.1 92.4 7.6 98.6 1.4 – –
Mistral-Small 93.6 6.4 92.8 7.2 – –
Llama 3.3 93.0 7.0 98.6 1.4 99.4 0.6
DeepSeek V3 91.5 8.5 98.2 1.8 99.1 0.9
GPT-4o 92.4 7.6 98.9 1.1 99.4 0.6

Table 2: Percentage of grammar structures at or below B1 (≤B1 ) and above B1 (>B1 ).

Model B P P+V

Llama 3.1 39.0 78.4 –
Mistral-Small 28.0 69.4 –
Llama 3.3 37.0 91.4 96.3
DeepSeek V3 34.2 87.8 95.0
GPT-4o 35.5 80.5 91.5

Table 3: Tutor turns that contain the requested grammar
structure (25 form-practice tasks).

lower CEFR targets where our A2-centric template
may not directly transfer.

9 Conclusion and Outlook

This paper explores the integration of LLMs into a
goal-oriented dialogue system for A2-level gram-
mar practice. Our results suggest that when di-
alogues are grounded in pedagogically designed
prompts, proficiency alignment converges across
models of different sizes. While these findings are
promising, they remain preliminary and based on
controlled simulation rather than real learner input.

Larger models (e.g., LLaMA 3.3 70B, GPT-4o,
DeepSeek V3) maintained grammatical focus and
dialogue coherence more reliably, particularly un-
der conversational pressure. However, prompting
alone was sufficient to bring smaller models (e.g.,
Mistral-Small) closer to the target structure usage
rates observed in larger systems. This indicates
that instructional framing, not just model capac-
ity, plays a critical role in shaping output toward
pedagogical goals.

We also explored the impact of a lightweight
post-generation validation step using POLKE, an
EGP-based grammar annotator. While this step
did not significantly alter overall CEFR alignment
(which was already high under prompt conditions),
it provided additional gains in target-form inclu-
sion, particularly in Q&A tasks, where an increase

of approximately 10% was observed. These find-
ings highlight validation as a useful safeguard for
scenarios where structure-specific exposure is ped-
agogically important.

Taken together, our findings point toward two
tentative design guidelines for developers of intel-
ligent tutoring systems that incorporate LLMs: (i)
Combining pedagogically-grounded prompts with
CEFR-based post-generation validation may offer
a feasible path toward controllable, targeted gram-
mar practice; (ii) Model scaling should be guided
by observable convergence in dialogue coherence
and target-form density, which, based on our ex-
ploratory experiments, occurred at around 70 bil-
lion parameters.

Furthermore, because our evaluation relies on
open CEFR descriptors and a publicly available
annotator, the method remains applicable as new
models are released. To support continued re-
evaluation, we release all core components of our
setup: the selected task bank, template prompt, and
scoring script.

Beyond targeting grammatical forms, our re-
sults underscore the value of contextual control:
grammar structures should appear not only accu-
rately, but also in varied, goal-relevant settings.
Our template-based prompting framework sets to
achieve this by scaffolding interaction around com-
municative goals, potentially making it easier to
support iterative practice, interest-driven adaptation
and integration of learner modeling.

In future work, we intend to perform user stud-
ies and log learner use of support tools (e.g., on-
demand L1 translation), engagement with differ-
ent contexts and its interactional with learning out-
comes. Finally, over time, interaction data col-
lected from users will allow for the creation of au-
thentic data, enabling LLM fine-tuning grounded
in authentic learner behavior.

983



Limitations

While our framework demonstrates the potential
of LLMs for proficiency-aligned grammar prac-
tice, several limitations must be acknowledged.
First, our grammar validation relies on an auto-
matic annotator, the robustness and coverage of
which varies across structures. In experiment 2, the
same annotator was also used for both controlling
and evaluating the output, which could introduce
bias into the results.

In addition, the system currently does not per-
form a formal grammar accuracy check beyond tar-
get form detection, meaning that in case the LLMs
make errors, those may go unnoticed. Similarly,
vocabulary control, although implicitly restricted
through task design, is not externally validated
against level-specific lexicons, which may impact
lexical appropriateness for A2 learners.

Lastly, our evaluation remains system-focused
and has not included learner interaction data. With-
out a user study, we cannot yet assess the pedagog-
ical effectiveness, learner engagement or practical
impact of the system in real-world settings. These
areas will be addressed as the next step in this
project.
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exercise. You are a [system_role]. [sys-
tem_instructions]. Please keep your messages short
and use easy words. Output only your next turn."

B Baseline Condition Prompt

"You are a friendly English tutor. I want to practice
by [task name]. Please use direct, short and simple
sentences and easy words. Output only your next
turn."

C Simplification Rephrase Prompt

"The learning objective is [task name] (e.g., [ex-
amples]). Simplify ONLY the advanced grammar
constructs while carefully preserving the learning
objective in the following text. Advanced grammar
to simplify: [advanced structure] IN [sentence]
Text to rephrase: [advanced response] Please pro-
vide only the rephrased text without explanations."

D Target Structure Inclusion Rephrase
Prompt

"The student is practicing [task name] (e.g., [ex-
amples]) through dialogue. Please rephrase the
following response to contain that grammar struc-
ture while keeping the meaning: [sentence]"

E Response Appropriateness Rubric

1. Completely inappropriate: Off-topic and inco-
herent throughout

2. Mostly inappropriate: Some relevance, but
major issues in logic or coherence

3. Somewhat appropriate: Largely on-topic, but
difficult to follow due to coherence issues

4. Appropriate: On-topic and generally clear,
with minor coherence issues

5. Fully appropriate: Clear, coherent, and consis-
tently on-topic

F Dialogue Snippets

Figure 1: Example output from GPT-4o acting as the tu-
tor under the template-based prompt condition. The
Q&A task shown is "Talking about common habits
in your country." This snippet is from the second run,
which includes an injected clarification request. Blue
bubbles indicate tutor messages.
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Figure 2: Example output from Deepseek-V3 acting as
the tutor, under the template-based prompt condition.
The role-play task shown is "Giving a friend advice
about school". This is a snippet from the first task run,
in which grammar errors are instructed. Blue bubbles
indicate tutor messages.

Figure 3: Example output from LLaMa 3.3-70B-Instruct
acting as the tutor, under the template-based prompt con-
dition. The information-gap task is "Playing a guessing
game about famous scientists". This is a snippet from
the third task run, in which a misunderstanding indica-
tion is injected. Blue bubbles indicate tutor messages.
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Abstract

Large Language Models (LLMs) are increas-
ingly used as proxy students in the development
of Intelligent Tutoring Systems (ITSs) and in
piloting test questions. However, to what ex-
tent these proxy students accurately emulate the
behavior and characteristics of real students
remains an open question. To investigate this,
we collected a dataset of 489 items from the
National Assessment of Educational Progress
(NAEP), covering mathematics and reading
comprehension in grades 4, 8, and 12. We then
apply an Item Response Theory (IRT) model to
position 11 diverse and state-of-the-art LLMs
on the same ability scale as real student popu-
lations. Our findings reveal that, without guid-
ance, strong general-purpose models consis-
tently outperform the average student at every
grade, while weaker or domain-mismatched
models may align incidentally. Using grade-
enforcement prompts changes models’ perfor-
mance, but whether they align with the average
grade-level student remains highly model- and
prompt-specific: no evaluated model–prompt
pair fits the bill across subjects and grades, un-
derscoring the need for new training and eval-
uation strategies. We conclude by providing
guidelines for the selection of viable proxies
based on our findings.1

1 Introduction

Large language models (LLMs) are capable of gen-
erating fluent and coherent text and excelling at
many complex tasks (Chang et al., 2024; Zhao
et al., 2024). Their rise offers new opportunities for
educational technology, notably in (i) intelligent
tutoring systems (ITS; Wang et al., 2024) and (ii)
piloting assessments before they go live (Liu et al.,
2025; Grohs et al., 2024). ITS provides targeted
feedback and adaptive instruction, while reliable

1All related code and data is available at
https://github.com/kvadityasrivatsa/IRT-for-LLMs-as-
Students

Sample NAEP Question
( Mathematics | Grade 8 )

Question: By how much would 217 be increased if the
digit 1 were replaced by a digit 5?

Options:
    (A) 4
    (B) 40
    (C) 44
    (D) 400

Correct Option: (B)

Cumulative Student Performance:

Option
(A) (B) (C) (D) Omitted

30

60

%
 o

f S
tu

de
nt

s

11.7%

72.2%

11.3%
3.5% 1.2%

Figure 1: Sample NAEP question from grade 8 mathe-
matics.

assessments track learning without bias. Yet both
require understanding how real students would in-
teract with them, which is extremely challenging
to verify.

Ideally, tutors and test forms should be vetted on
representative student samples across skill levels.
This, however, is resource-intensive, especially in
regions already short on teachers and infrastructure
(UNESCO, 2023; Woolf et al., 2013). Teacher-led
evaluations (e.g., Macina et al., 2023) and static
logs similarly fail to scale or capture the dynamics
of new items and adaptive strategies (Belz et al.,
2023; U.S. Department of Education, 2023). These
constraints motivate alternatives that enable rigor-
ous, equitable evaluation at scale.

An emerging approach is for simulate students
with LLMs (Mollick et al., 2024; Sonkar et al.,
2024). Proxy models can be conditioned on at-
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tributes such as grade level, offering fast, repeatable
tests of tutor features or item quality. However, cur-
rent evaluations are based on an expert judgment of
plausibility (Macina et al., 2023), leaving open the
question of how closely such proxies match real
student performance. Similarly, in psychometrics,
LLMs have been used as synthetic examinees: e.g.,
Liu et al. (2025) show that GPT-3.5/4 answer sets
yield item statistics that mirror a 50-student pilot,
and Grohs et al. (2024) demonstrate that ChatGPT
can pre-flag weak or biased items. However, these
studies treat LLMs as single test-takers and do not
look into whether persona prompts can tie their
abilities to specific grade bands.

Our approach: We apply IRT (Baker, 2001) to
measure how 11 diverse LLMs and real students
perform on the same grade-level questions. Using
data from the National Assessment of Educational
Progress (NAEP) (National Center for Education
Statistics, 2022) for mathematics and reading in
grades 4, 8, 12, we evaluate whether the LLM re-
sponses (both generic and grade-conditioned) align
with authentic student response patterns. Specifi-
cally, we address the following research questions:
RQ1 – Under standard prompting, how do LLMs
compare with real students across grades and sub-
jects? RQ2 – When asked to act as an average
student in a given grade: How does LLM perfor-
mance change? (RQ2.1) Does the shift match real
grade-level patterns? (RQ2.2)

The main contributions of our work are as fol-
lows:

• We compile and release a dataset2 sourced
from NAEP of real student responses to
subject-specific, grade-targeted questions,
covering two subjects (mathematics and read-
ing assessment) and three grade levels (4, 8
and 12).

• We adapt Item Response Theory (IRT) to as-
sess the alignment between LLM-generated
responses and actual student performance pat-
terns.

• We conduct an evaluation of 11 diverse LLMs,
examining how well they approximate student
responses under both unenforced (generic)
and grade-enforced prompts.

2https://github.com/kvadityasrivatsa/IRT-for-LLMs-as-
Students

2 Related Work

Simulated Students in Intelligent Tutoring Sys-
tems Early simulated-student work relied on pro-
duction rule apprentices that learn from worked
examples and then reproduce step-level behav-
ior inside an ITS. The SimStudent / Apprentice-
Learner family shows that such models can gener-
ate realistic error types and serve as policy learn-
ers to hint (Matsuda et al., 2023; Smith et al.,
2024). More recent studies graft LLMs onto this
pipeline: it has been shown that GPT-4 “think-
aloud” traces improve bug-library discovery and
fine-grained skill tagging, while LLM agents at
dialogue level can populate entire synthetic class-
room cohorts (Mollick et al., 2024). These ap-
proaches demonstrate that generative text can com-
plement symbolic learner models, yet they rarely
test whether the ability distribution of synthetic
learners matches that of real students – a gap we
address through our analysis.

LLM-Generated Responses for Item Calibra-
tion Psychometric studies have begun to treat
LLM outputs as synthetic examinee responses. Liu
et al. (2025) show that the GPT-3.5/4 answer sets
yield 3PL item statistics that match a 50-student
baseline, reducing the pretest costs. Grohs et al.
(2024) use ChatGPT to filter out low information
or biased items. He-Yueya et al. (2024) further
adapt IRT to align LLM and human response pat-
terns, while Zelikman et al. (2023) simulate K-12
students. However, these works produce only ag-
gregate correlations; they do not examine whether
an LLM’s latent ability aligns with a particular
grade band or whether persona prompts shift that
ability in predictable ways. Our work closes this
gap with an IRT model that maps LLM perfor-
mance to grade-level performance.

Persona-Conditioned Prompting and Alignment
Prompting a model with an explicit role (e.g., “You
are a 4th-grade student”) can change both reason-
ing depth and surface style. Benedetto et al. (2024)
find that a one-sentence student-level prompt lets
GPT-4 imitate weak, average, and strong test-takers
across subjects, although adherence to the target
level is uneven. Broader evaluations such as Char-
acterEval (Tu et al., 2024) measure persona consis-
tency in dialogues, while Kim et al. (2024) show
that role prompts can either help or hurt accu-
racy depending on task characteristics. None of
these efforts connect persona adherence to quan-
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titative grade-level ability estimates, nor do they
compare default and persona-conditioned ability
curves within a unified IRT framework.

Together, these strands indicate that (i) LLMs
are already employed as simulated students and
psychometric stand-ins, and (ii) persona prompts
shift model behaviour without a principled link
to grade-level metrics. Our study unifies the two
directions by applying an IRT model to quantify
how default and persona-conditioned LLM outputs
align with average student performance at grades
4, 8, and 12.

3 NAEP Data

3.1 Source and Composition

We prepared our dataset using publicly avail-
able items and student response data from the
National Assessment of Educational Progress
(NAEP) (National Center for Education Statistics,
2022),3 a large-scale assessment program adminis-
tered by the National Center for Education Statis-
tics (NCES). NAEP periodically assesses student
achievement across the United States in key subject
areas, including mathematics and reading. These
assessments are conducted in grades 4, 8, and 12,
offering a cross-sectional perspective on student
proficiency throughout K–12 education.

3.2 Coverage and Educational Context

We source questions from both the mathematics
and reading comprehension assessments at the
three grade levels, capturing a broad spectrum of
student performance and cognitive development
throughout different educational stages. We focus
on these two subjects for two reasons: (1) numer-
acy and literacy are considered fundamental skills
(e.g., Williams, 2003); and (2) NAEP data cover
three grades for these subjects, while many other
subjects only cover one or two grades. Math ques-
tions span topics such as measurement, algebra,
geometry, and probability and statistics, with over-
all difficulty scaling with grade level. Reading
comprehension items are based on passages whose
average length increases with grade. The corre-
sponding questions shift from direct factual queries
in lower grades to those requiring interpretation
and reflection at higher levels.

Each record contains the original question, mul-
tiple choice options, the correct annotated answer,

3https://nces.ed.gov/nationsreportcard/

and anonymized aggregate response patterns. For
each item, the dataset reports the percentage of
students who selected each option or omitted the
question. Figures 1 and 4 show representative ex-
amples from the grade-8 mathematics and grade-12
reading subsets, respectively.

Since NAEP is a continually administered as-
sessment, this dataset can be periodically updated
with newly released items. This makes it a dy-
namic resource that can evolve along with changes
in educational standards and student performance
distributions, offering long-term utility for evaluat-
ing automated student proxies and similar tasks.

3.3 Preprocessing and Filtering Criteria
NAEP assessments encompass a variety of question
types, modalities, and response formats. Given that
this is a preliminary effort to develop a quantitative
and interpretable framework for aligning LLM per-
formance with real student behavior, the inclusion
of diverse modalities can introduce confounding
factors that obscure analysis. For example, items
that involve images, diagrams, or tables introduce
the additional variable of visual comprehension,
making it difficult to isolate language understand-
ing as the primary factor in model performance.
Similarly, free-form responses present evaluation
challenges: gold-standard answers are often lim-
ited in number and may not capture the full range
of acceptable responses. Assessing these reliably
often requires expert judgment, which undermines
the feasibility of scalable, LLM-based evaluation.

In contrast, multiple choice questions offer
clearly defined answer sets, enabling a more
straightforward and objective evaluation, which
is crucial for both quantitative benchmarking and
interpretability via Item Response Theory (IRT).
Consequently, we apply two main filtering criteria
when constructing our dataset.

• Text-only content: We exclude any items that
involve diagrams, tables, or multimedia ele-
ments, retaining only questions and instruc-
tions presented in text.

• Multiple-choice format: We include only mul-
tiple choice questions (MCQs), which support
standardized evaluation and facilitate down-
stream processing, such as answer extraction
and IRT-based analysis.

After filtering, our final dataset consists of 489
multiple-choice items in English: 249 from mathe-
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Figure 2: Distribution of question-level accuracy in
NAEP assessments across grades and subjects. KS
statistics and corresponding p-values are reported to
assess normality; distributions with p > 0.05 are consid-
ered consistent with a normal distribution.

matics and 240 from reading. Table 3 summarizes
key statistics from the dataset. Figure 2 shows the
distribution of questions answered by students with
varying accuracy for each subject and grade. We
calculate the Kolmogorov-Smirnov (KS) statistic
for each distribution to test for normality, and all
subsets sufficiently (p-value > 0.05) follow a nor-
mal distribution.

4 Proposed Methodology

Our goal is to evaluate LLMs alongside human
students recorded in the NAEP dataset by estimat-
ing their answering ability on a shared scale. To
do this, we draw on Item Response Theory (IRT;
Baker (2001)), a well-established framework in ed-
ucational measurement. IRT enables us to jointly
model the ability of test takers and the difficulty of
individual test items using probabilistic principles.

4.1 Estimating Student (LLM) Ability
We begin with the Rasch model (Rasch, 1960), a
widely used and interpretable form of IRT. It as-
sumes that the probability of a correct response
depends only on the difference between a partici-
pant’s ability and an item’s difficulty. This model
uses a single parameter per item, that is, difficulty
bi, and one ability parameter θi per participant.

The Rasch model defines the probability that
participant i correctly answers item j as:

P (Xij = 1) =
eθi−bj

1 + eθi−bj
, (1)

where θi ∈ R is the ability of the participant i,
bj ∈ R is the difficulty of item j, and R is the
common scale of difficulty or ability.

To estimate bj , we use the empirical proportion
pj of correct responses for each item in the popula-
tion. A simple approximation is:

bj ≈ log

(
1− pj
pj

)
, (2)

which reflects that the harder items (with lower pj)
have higher difficulty values (Bond and Fox, 2015).
Once the item difficulties are known, the ability of
each participant θi can be estimated using marginal
maximum likelihood or Bayesian inference based
on their response pattern.

4.2 Grade-Alignment Prompting

Our first research question (RQ1) investigates how
an LLM’s problem-solving ability compares to that
of average students at different grade levels, specifi-
cally grades 4, 8 and 12, based on the NAEP dataset.
To measure this, we begin with a minimal zero-shot
prompt, which we refer to as UNENFORCED (see
Appendix Figures 5 and 9 for exact prompt tem-
plates). This prompt simply presents the question
to the model without any added instructions or per-
sona guidance.

Our second research question (RQ2) explores
whether LLMs can align their responses with the
answering patterns and performance levels of stu-
dents in specific grades. To probe this, we design a
set of increasingly guided zero-shot prompts that
aim to steer the model toward grade-level reason-
ing.

1. GRADEENFORCEDMINIMAL: Identical to
the Unenforced prompt, but with the added
instruction that the model should act as an
average student from a specific grade (4, 8,
or 12). The exact prompts are presented in
Appendix Figures 6 and 10.

2. GRADEENFORCEDBASICCOT: Builds on
the minimal version by prompting the model
to consider what an average student at the
specified grade would likely choose and why.
This prompt encourages brief, grade-aware
reasoning and reflects the student’s typical
reasoning ability and common error patterns.
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See Figures 7 and 11 in the Appendix for the
exact prompts.

3. GRADEENFORCEDFULLCOT: Adds further
scaffolding by dividing the reasoning process
into two steps. First, the model is instructed
to reflect on whether an average student at the
given grade level would be likely to answer
the question correctly. Second, based on that
reflection, the model either justifies a correct
answer or, if the student is unlikely to suc-
ceed, selects and explains the most plausible
incorrect answer. See Figures 8 and 12 in the
Appendix for the exact prompts.

The design of the GRADEENFORCEDBASIC-
COT and GRADEENFORCEDFULLCOT prompts
is inspired by Benedetto et al. (2024), who devel-
oped similar prompts to simulate student reasoning
across skill levels on exam-style questions of vary-
ing difficulty. Their work informed our decision to
incorporate reasoning about the ability of a student
and the likelihood of error into our prompt design.

Our aim is not to claim these are optimal prompts
or to exhaustively search for the best possible for-
mulations. Instead, we adopt straightforward, rep-
resentative prompting strategies aligned with popu-
lar practices to focus our investigation on whether
such methods meaningfully promote grade-level
alignment in model behavior. This may limit the
scope of our findings, but it allows us to isolate
and evaluate the effects of targeted prompting on
grade-sensitive reasoning.

5 Experimental Setup

5.1 Task Setup
We design our experiments based on the framework
described in Section 4. The evaluation is conducted
in two phases:

1. Problem-Solving: LLMs answer questions
in a standard problem solving setting, without
specific instructions on how to mimic human
behavior. Their performance is compared to
that of average students in different grade lev-
els.

2. Grade-Level Mimicking: LLMs are explic-
itly instructed to emulate an average student
of a specific grade level and respond as such.

In both phases, we apply a Rasch model to
assess performance. Each question is treated as

an individual item j, and each LLM is treated
as an in-distribution test-taker i. The binary re-
sponse of LLM i to the question j is represented
as sij ∈ {0, 1}, where sij = 1 indicates a correct
answer.

LLM Open
Source?

Parameter
Count

Fine-
Tuned?

Benchmark Scores

GSM8K (%) MMLU (%)

LLaMA2-13B (Touvron et al., 2023) ✓ 13B ✗ 28.7 54.8

LLaMA2-70B (Touvron et al., 2023) ✓ 70B ✗ 56.8 68.9

LLaMA3.1-8B (Touvron et al., 2023) ✓ 8B ✗ 84.5 73.0

LLaMA3.1-70B ✓ 70B ✗ 95.1 86.0

Mistral-7B (Jiang et al., 2023) ✓ 7B ✗ 52.1 60.1

Qwen2.5-7B (Yang et al., 2024) ✓ 7B ✗ 85.4 74.2

Qwen2.5-Math (Yang et al., 2024) ✓ 7B ✓ 91.6 67.8

GPT-3.5-Turbo (OpenAI, 2023) ✗ – ✗ 57.1 70.0

o3-Mini (OpenAI, 2025) ✗ – ✗ 89.9 85.2

SocraticLM (Liu et al., 2024) ✓ 7B ✓ 60.6 –

LearnLM-1.5-Pro ✗ – ✓ – –
(Modi and the LearnLM Team, 2024)

Table 1: List of LLMs evaluated in our study, along with
key descriptors about each model, i.e., open source avail-
ability, parameter size, whether the model is fine-tuned
(as opposed to pretrained or instruction-tuned), and
scores on reasoning and comprehension benchmarks
GSM8K and MMLU (we omit scores that have not been
released publicly by the respective model’s paper or
technical report).

5.2 Models
We select a diverse set of 11 LLMs (see Table 1)
to ensure broad coverage across access types (open
vs. closed), model sizes and training paradigms
(pretrained vs. domain-finetuned). Our goal is to
capture a range of capabilities relevant to reasoning
and comprehension, as reflected in benchmarks like
GSM8K (Cobbe et al., 2021) and MMLU (Hendrycks
et al., 2020). We include both general-purpose
models and those finetuned to specific domains.
GPT-3.5-Turbo is included based on Benedetto
et al. (2024), who suggest that it can adapt re-
sponses to the levels of student ability instructed.
SocraticLM and LearnLM-1.5-Pro are fine-tuned
on pedagogical data; therefore, they might have
more accurate insights into the performance of stu-
dents at different grade levels.

5.3 Evaluation
Measuring Problem-Solving Correctness All
problems in our dataset are multiple choice ques-
tions (MCQs), which simplifies the evaluation of
correctness: a model’s response is considered cor-
rect if the selected option matches the correct an-
swer provided with the dataset. This binary dis-
tinction between correct and incorrect responses
makes the data well-suited for dichotomous (i.e.,
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the answer can only be correct or incorrect) Item
Response Theory (IRT) models. We found that
model responses vary in structure and require a
unified follow-up prompt to extract the predicted
choice from each model response (see Figure 13 in
the Appendix).

Estimating Grade-Level Alignment To address
both research questions, we estimate how closely
a model’s performance aligns with that of an av-
erage student at a given grade level. To pin the
origin and unit of the Rasch ability scale during
marginal maximum-likelihood estimation, we fol-
low the standard convention of treating examinee
abilities as standard-normal, θ ∼ N (0, 1). Al-
though not theoretically necessary, Embretson and
Reise (2000) note that this assumption is a reason-
able way to identify the latent trait because it fixes
the zero point and variance without constraining
the shape of the data.

Therefore, the average student has an ability pa-
rameter of zero (θavg = 0).

The estimated ability parameter θi for a model
i can be interpreted in relation to this benchmark.
The closer θi is to zero, the more the model’s per-
formance aligns with that of the average student.
We can also express this alignment using the per-
centile rank, computed via the cumulative distribu-
tion function (CDF) of the standard normal distri-
bution, denoted by Φ(θ):

Percentile Rank = Φ(θ)× 100 (3)

A percentile rank of 50 corresponds to the aver-
age student. Higher percentile ranks indicate higher
levels of ability relative to the population. We use
percentile rank as our main metric to measure LLM
or student ability, as it has a fixed range (0-100 and
is centered at 50), which allows for easier compar-
ison of LLM alignment across subjects and grade
levels.

6 Results & Discussion

In Table 2, we report each LLM’s percentile rank
in grade-level mathematics and reading compre-
hension questions under three conditions: unen-
forced prompting (PU ), grade-enforced prompting
(PE) and their difference (∆). We report PU for
the best prompt for each LLM per subject (see
Table 5 in the Appendix for the best prompts for
each setting) which maximizes grade alignment,
i.e., when percentile rank is closest to 50 (average).

Avg. Deviation records the mean absolute devi-
ation from P = 50 for the corresponding prompt
settings. The baseline Random Choice reports the
percentile scores achieved with a randomized op-
tion chosen for each problem. This setup allows us
to:

• address RQ1 by comparing model percentiles
to the student mean (50th percentile) across
grades and subjects, and

• address RQ2 by (i) quantifying the effect
of grade enforcement on LLM performance
(RQ2.1) and (ii) evaluating whether these
shifts mirror human student response patterns
(RQ2.2).

For further context, Table 4 presents the accuracy
of each LLM under the unenforced condition.

6.1 RQ1: Alignment under Unenforced
Prompting

We ask whether the unenforced problem solving
prompt generates outputs that align with that of the
average student in each grade (PU ).

Mathematics. Most models, especially those
scoring well on GSM8K, e.g., LLaMA3.1-70B,
Qwen2.5-Math, o3-Mini, andSocraticLM,
achieve high percentiles in every grade, overshoot-
ing all benchmarks and showing no alignment with
any specific grade. This is also reflected in the high
average deviation of 40.5, 35.0, and 32.9 percentile
points, respectively, from the optimal P=50 mark.
In contrast, smaller models with relatively poorer
benchmark performance, such as LLaMA2-13B and
Mistral-7B, exhibit lower percentiles and show
better alignment between grades.

Reading. Similar to mathematics, the models
demonstrate high average percentile scores in read-
ing for grades 4 and 8, proving unsuitable for
faithful student mimicking. The models in our
pool align better with grade 12, with relatively
lower average PU values. Fine-tuned models (not
tuned for grade-alignment), e.g., Qwen2.5-Math,
SocraticLM – Qwen2.5-Math further tuned on
pedagogical data, have a poorer overall perfor-
mance, resulting in better alignment across grades.

Across grades and subjects, all models score
well above the Random Choice baseline. Without
enforced instructions, LLMs rarely self-calibrate
to grade difficulty. They overshoot when capacity
is high and align only when under-powered or off-
domain.
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Mathematics Reading

Question Grade 4 Question Grade 8 Question Grade 12 Question Grade 4 Question Grade 8 Question Grade 12LLM
PU PE ∆ PU PE ∆ PU PE ∆ PU PE ∆ PU PE ∆ PU PE ∆

LLaMA2-13B 63.7 66.1 +2.4 52.6 50.8 -1.8 48.6 66.5 +17.9 99.7 95.5 -4.2 94.9 87.6 -7.3 80.9 58.7 -22.3

LLaMA2-70B 85.5 33.5 -52.0 23.9 31.6 +7.6 42.4 57.8 +15.4 88.6 79.8 -8.8 72.3 69.1 -3.2 71.6 58.7 -12.9

LLaMA3.1-8B 96.8 85.5 -11.3 85.2 60.0 -25.2 79.5 69.3 -10.2 99.7 77.9 -21.8 96.7 92.7 -4.0 86.7 83.9 -2.8

LLaMA3.1-70B 99.6 97.6 -2.0 98.9 98.0 -0.9 96.1 97.0 +0.9 99.9 99.9 0.0 96.7 92.7 -4.0 83.9 80.9 -3.0

Mistral-7B 63.7 58.9 -4.8 43.5 49.0 +5.4 63.7 57.8 -5.9 94.3 67.9 -26.4 84.8 69.1 -15.7 83.9 55.5 -28.4

Qwen2.5-7B 99.6 18.5 -81.2 99.3 22.5 -76.7 96.1 30.3 -65.8 98.2 5.2 -93.1 98.2 7.8 -90.4 77.9 30.2 -47.7

Qwen2.5-Math 99.8 70.7 -29.1 98.5 96.1 -2.4 97.8 97.8 0.0 72.0 69.9 -2.0 36.5 29.4 -7.1 43.4 43.4 0.0

GPT-3.5_Turbo 89.0 44.7 -44.3 70.8 11.7 -59.1 79.5 45.5 -34.0 99.7 61.8 -37.8 98.2 65.9 -32.3 68.3 43.4 -24.9

o3-Mini 98.9 98.3 -0.6 98.5 99.5 +1.0 95.1 99.3 +4.2 99.3 99.9 +0.6 99.1 98.2 -0.9 86.7 86.8 +0.1

SocraticLM 99.3 96.8 -2.6 99.7 99.3 -0.5 97.0 98.4 +1.4 59.8 63.9 +4.1 34.0 39.1 +5.0 32.6 49.3 +16.7

LearnLM-1.5-Pro 99.8 75.3 -24.6 99.7 93.6 -6.2 98.9 98.4 -0.5 99.9 24.5 -75.4 94.9 53.3 -41.6 65.1 58.7 -6.4

Avg. Deviation 40.5 27.5 -13.0 35.0 30.2 -4.8 32.9 28.8 -4.2 41.9 30.6 -11.3 37.8 27.5 -10.3 25.4 15.2 -10.2

Random Choice 6.1 1.4 6.7 4.12 4 0.9

Table 2: LLM percentile scores on grade-level questions from mathematics and reading without grade enforcement
(PU – shaded blue), with grade enforcement (PE – shaded green), and their difference (∆ = PU - PE – shaded
yellow). Darker hues for PU and PE denote closer alignment to the average score of 50 and larger absolute change
in ∆. Boldface highlights the best model (i.e., closest to 50) in each setting. Avg. Deviation records the mean
absolute deviation from P=50 for corresponding prompt settings. The Random Choice baseline reports the percentile
scores attained with a randomized option chosen for each problem.

6.2 RQ2.1: Effect of Grade-Level Prompts

We test whether prompting a model to “think like
an average grade g student” changes its perfor-
mance (∆ in Table 2), regardless of the resultant
alignment.

Drops: Overall, we note that upon prompting
models to mimic the average student of grades 4,
8, or 12, percentile scores generally drop (see Avg.
Deviation ∆ in Table 2), with a greater drop for a
lower target grade. Qwen2.5-7B records the highest
drop of 93.1 percentile points for reading grade 4
as well as the greatest average drop.

Gains: We observe that grade-specific prompting
can also increase model performance. For example,
several settings with LLaMA2-13B/70B for mathe-
matics and all grade settings with SocraticLM for
reading result in higher PE than PU .

Stable: Some models, such as LLaMA3.1-70B
and o3-Mini for subjects and SocraticLM for math-
ematics, show little to no change between their val-
ues of PU and PE values, despite their respective
PU values having a high deviation from the target
P=50.

Prompt Strength: Among the three grade en-
forcement prompts, the most detailed GRADEEN-
FORCEDFULLCOT prompt (with explicit instruc-

tion to consider the probability that an average stu-
dent of the target grade will get the given problem
right) causes the largest changes (Figure 3a). This
shows that grade-level cues can markedly increase
or lower scores depending on the model and prompt
strength, although a few models remain robust.

6.3 RQ2.2: Alignment Under Enforced
Prompts

We investigate whether grade-specific prompts
move the model performance closer to the aver-
age student (ideal P = 50). We find that the results
are spread across the following categories:

(1) Aligned PU and aligned PE: Some models
that are close to the 50th percentile without grade-
specific prompting maintain good alignment after
prompting (for example, LLaMA2-13B / 70B for
mathematics and SocraticLM for reading). These
models can act as “proxy students” out of the box
for particular pairs of subjects’ grades.

(2) Misaligned PU and misaligned PE: Other
models’ percentile scores can range far above or
below the median despite grade-specific prompting
(for example, PU s and PEs for o3-Mini across
subjects and grades stay far above 50). We did not
observe any model that consistently scored below
the median percentile.
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(3) Misaligned PU and aligned PE: In some
cases, prompting can help induce grade alignment
(PE) when unenforced alignment is poor (PU ). For
example, Mistral-7B’s percentile range on read-
ing problems moves from PU ∈ [83.9 − 94.3] to
PE=[55.5− 69.1]; GPT-3.5-Turbo shows similar
gains in most tasks. Such cases demonstrate the
desired effect of grade-specific prompting.

(4) Aligned PU and misaligned PE: In contrast,
grade-specific prompting can cause models to over-
shoot. Qwen2.5-7B in grade 4 reading drops from
98.2 to 5.2 (∆=−93.1), overshooting the target.

Prompt design matters. Figure 3b shows
that the GRADEENFORCEDFULLCOT template
changes scores the most. However, it is not al-
ways the most optimal prompt setting to achieve
better grade alignment (lower percentile deviation
from 50).

Fine-tuned models. Pedagogically tuned mod-
els (LearnLM-1.5-Pro, and SocraticLM) are
not better aligned than general LLMs (such as
Mistral-7B), with or without prompts, indicating
that faithful grade-level emulation probably needs
explicit alignment objectives.

Thus, grade alignment is model-prompt spe-
cific; no single prompt works everywhere. Reliable
grade-level emulation will require tailored prompt-
ing that does not ensure generalization to other
grades or subjects.

6.4 Guidelines for Selecting Viable LLM
“Proxy Students”

Our experiments confirm that no single
model–prompt pair reliably matches average
student performance in every grade and subject.
Before an LLM can stand in for real students, e.g.,
to trial new test items or train a model for an ITS,
it should pass the following baseline checks:

1. Grade alignment. The model’s ability esti-
mate (θn) in a representative item set must fall
within the normative band of the grade: core
average ±1 logit (percentile: 15.9 to 84.1),
extended ±1.5, outlier ≥ ±2 (Bond and
Fox, 2015). Models such as GPT-3.5-Turbo
stayed in the core range with appropriate
prompts for most grades.

2. Developmental ordering. Ability should rise
monotonically with grade, mirroring trends in
NAEP reading (217, 262, and 285 according

9.3

4.3 4

1.5
2.7

76.9

3.4

5.6

2.3

5
6.7

32

18.9
17.3

32

24.7

20.8

Mathematics – Grade 4

Mathematics – Grade 8

Mathematics – Grade 12

Reading – Grade 4

Reading – Grade 8

Reading – Grade 12

0

5

10

15

20

25

30

Minimal
Basic CoT
Full CoT

Subject and Question Grade Pair

A
vg

. 
A
bs

ol
ut

e 
Δ

(a) On ∆

37.7

31.6 32.3

41.3

38.5

24.4

37.7 37.1

33.8

43.1

37.6

29.8

32.8

38.2

34

28.2
30.2

19.9

Mathematics – Grade 4

Mathematics – Grade 8

Mathematics – Grade 12

Reading – Grade 4

Reading – Grade 8

Reading – Grade 12

0

5

10

15

20

25

30

35

40

45 Minimal
Basic CoT
Full CoT

Subject and Question Grade Pair

M
ea

n 
A
bs

ol
ut

e 
D

ev
ia

ti
on

 f
ro

m
 5

0

(b) On grade-alignment. We report mean absolute deviation
from an average grade-level student’s percentile score (i.e.,
50). Thus, greater the deviation, poorer the average alignment.

Figure 3: Impact of grade-enforcing prompting

to NAEP’s own cumulative scoring scale for
grades 4, 8, 12 respectively; National Center
for Education Statistics, 2022). Several pairs
violated this; e.g., Mistral-7B’s PU was 38.3,
17.0, 40.5 for the same grades.

3. Prompt stability. Grade-enforcing prompts
can improve or harm performance. An unen-
forced prompt should be used if the model is
already aligned; otherwise, one should verify
that enforcement is equally accurate across all
grades.

These criteria are necessary, but not sufficient.
We believe that more accurate guidelines for faith-
ful student mimicking will emerge with richer eval-
uation datasets.

7 Conclusion

In this paper, we investigate whether LLMs’ regu-
lar problem-solving performance aligns with that
of an average student of a given grade, and whether
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explicit prompting to act like the average student
makes a difference and improves this alignment.
We conduct a thorough analysis of 11 diverse mod-
els on mathematics and reading questions from
K-12 grades 4, 8, and 12 sourced from the NAEP
database. Our IRT-based analysis reveals that in
the regular (unenforced) setting, stronger models
score far better than the average students of any
grade and weaker models may align well inciden-
tally. Though explicit (grade-enforced) prompting
causes a change in model performance, the align-
ment with the desired grade-level average varies
substantially across model and prompt combina-
tions, with no single model-prompt pair producing
average performance across grades or subjects. We
provide a set of necessary guidelines to select vi-
able student-proxies for future work and highlight
the need for dedicated model finetuning for faithful
grade adherence.

Limitations

While the results of our experiments lead to certain
conclusions and provide us with novel insights, we
acknowledge that these are necessarily limited in a
number of ways.

Limited number of samples and subjects con-
sidered: Getting access to publicly available stu-
dent answering data is challenging. The NAEP
(National Center for Education Statistics, 2022)
database offers a valuable resource in that regard.
However, the database is not naturally designed
to provide data for performing analysis over au-
tomated models at scale, therefore, the available
subjects and the number of questions in the col-
lected dataset are limited.

Text-based questions only: In this study, we
have restricted our analysis to text-only questions,
omitting questions that involve visual interpreta-
tion. We admit that this is not completely faithful
to student assessments, as visual cues may also
elicit key reasoning abilities. We plan to expand
our study to more modalities in the future.

MCQ format: Evaluation of LLM responses is
a key challenge, especially for free-form answer-
ing style. To mitigate this challenge, in this work,
we focus on MCQ-type questions only. This also
makes modeling the items within the IRT frame-
work easier. As models vary in their response struc-
ture, we find that simple rule-based extraction is
not reliable enough, and we have to use a follow-up

prompt to extract the final option selected by the
model. We plan to develop more robust evaluation
strategies to allow for more varied question types
in the future.

No data for cross-grade performance used: A
key point to note is that NAEP only reports the
performance of students at a particular grade level
on questions from the same grade. Though this is
adequate for assessing student learning trends, for
determining cross-grade viability of proxy students,
we would require real students’ performance on
questions from different grades.

Use of prompting methods only: We focus our
study solely on prompt-based methods to enforce
grade-level alignment, as this is one of the most ac-
cessible ways in which models are used in this
context, as demonstrated by previous work. A
more in-depth analysis is needed to assess whether
in-context learning and finetuning strategies can
also play a role in improving the quality of proxy-
students, in addition to appropriately sized student
demonstration data for tuning. We also highlight
that prompt engineering (i.e., designing the most
optimal prompts for the models) was outside the
scope of this study, and the prompts that we used
are inspired by previous work in this domain.

Experiments with specific models: Last but not
least, we acknowledge that our findings apply to a
specific set of models considered in this study. We
highlight that our choice was motivated by consid-
erations around the diversity of the model pool.

Ethical Considerations

This study relies exclusively on cumulative, de-
identified statistics drawn from student response
data supplied by the National Assessment of Ed-
ucational Progress (NAEP). No record contains
direct or indirect identifiers, and at no stage were
individual-level student data accessed, stored, or
analyzed. All analytic procedures conformed to the
NAEP Data Confidentiality and Disclosure Policy
as well as the privacy protections required under
the Family Educational Rights and Privacy Act
(FERPA). Consequently, the research poses no risk
to the privacy or well-being of individual students.
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A Dataset Details

Table 3 presents the distribution of the questions
extracted from NAEP by subject and grade levels.
Figure 4 shows an example NAEP question from
grade 12 reading. We use data that is publicly
available on the NAEP website.

Subject Grade Number of Questions Percentage Share

Mathematics

4 82 32.93

8 106 42.57

12 61 24.50

Total 249 100.00

Reading

4 101 42.08

8 72 30.00

12 67 27.92

Total 240 100.00

Table 3: Dataset statistics: Number of Questions across
Subjects and Grade-Levels

B Prompt Templates

Figures 5 to 12 show the different solution genera-
tion prompts for mathematics and reading. Figure
13 shows the prompt used to extract the final option
from the generated solution.

C Querying Setup

All models were queried with the following
hyperparameters: temperature=0, top_p=0.95,
and max_tokens=2048. LLaMA3.1 models were
queried using the Google Cloud (Vertex) API,
o3-Mini was queried using the OpenAI API, and
LearnLM-1.5-Pro was queried using Google’s AI
Studio API. All other models were imported from
HunggingFace and queried locally using vLLM
on a single NVIDIA A100 GPU. Each round of
querying took less than one hour.

D Model Ability (θn) Estimation
Algorithm

Algorithm 1 captures the steps required to fit the
Rasch model as described in §4.

E Analyses Details

Table 4 lists LLMs’ accuracy on mathematics and
reading problems from different grade levels with
the unenforced prompt setting. Table 5 records
the best prompt out of the four possible settings,
depending on the closeness of the corresponding
percentile values to 50.
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Algorithm 1 Estimating LLM Ability and Percentile Rank Using the Rasch Model

Require: p = {pj}Ij=1 ▷ Proportion of correct responses for item j across students
Require: s = {sij}M,I

i=1,j=1 ▷ Binary correctness matrix: LLM i’s response to item j

Ensure: θ = {θi}Mi=1 ▷ Estimated ability (logit scale) for each LLM
Ensure: π = {πi}Mi=1 ▷ Percentile rank of each LLM

Step 1: Estimate item difficulties using student response proportions
1: for j = 1 to I do
2: bj ← log

(
1−pj
pj

)
▷ Item difficulty via inverse of the Rasch probability function

3: end for
Step 2: Estimate LLM abilities via maximum likelihood using the Rasch model

4: for i = 1 to M do
5: Define likelihood function:

L(θi) =
I∑

j=1

sij · log
(

1

1 + e−(θi−bj)

)
+ (1− sij) · log

(
1− 1

1 + e−(θi−bj)

)

6: Estimate θi = argmaxθ L(θ) ▷ MLE for the Rasch model
7: end for

Step 3: Compute LLM percentile ranks w.r.t. student ability distribution
8: Let Φ(θ) be the cumulative distribution function (CDF) of student abilities
9: for i = 1 to M do

10: πi ← Φ(θi)× 100) ▷ Percentile rank of LLM i
11: end for

LLM Mathematics Reading

4 8 12 4 8 12

LLaMA2-13B 78.05 43.40 41.67 85.15 80.56 77.61

LLaMA2-70B 65.85 59.43 45.00 96.04 91.67 82.09

LLaMA3.1-8B 87.80 77.36 63.33 96.04 93.06 85.07

LLaMA3.1-70B 93.90 91.51 80.00 98.02 93.06 83.58

Mistral-7B 65.85 54.72 53.33 89.11 86.11 83.58

Qwen2.5-7B 93.90 92.45 80.00 93.07 94.44 80.60

Qwen2.5-Math 95.12 90.57 83.33 76.24 63.89 64.18

GPT-3.5_Turbo 80.49 68.87 63.33 96.04 94.44 76.12

o3-Mini 91.46 90.57 78.33 95.05 95.83 85.07

SocraticLM 92.68 94.34 81.67 70.30 62.50 58.21

LearnLM-1.5-Pro 95.12 94.34 86.67 97.03 91.67 74.63

Average 78.69 72.13 64.06 83.01 79.60 71.90

Table 4: LLM accuracy scores (i.e., accuracy in solving
the tasks) for different grade levels in mathematics and
reading under the unenforced prompt setting.

Sample NAEP Question
( Reading | Grade 12 )

Passage:
FUN 

by Suzanne Britt Jordan

Fun is hard to have. Fun is a rare jewel. Somewhere
along
...
me deeply regretful that I had to grow up. It was fun.

Question: What is the author's point about big
occasions like holidays?

Options:
    (A) They go by too quickly to be enjoyed.
    (B) They are not as much fun as people expect them to be.
    (C) They have become too centered around money.
    (D) They help us to appreciate the important events in life.

Correct Option: (B)

Cumulative Student Performance:

Option
(A) (B) (C) (D) Omitted

30

60

%
 o

f S
tu

de
nt

s

10.6%

66.5%

7.1%
15.4%

0.0%

Figure 4: Sample NAEP question from grade 12 read-
ing.
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Figure 5: UNENFORCED Prompt Template for Mathe-
matics

Figure 6: GRADEENFORCEDMINIMAL Prompt Tem-
plate for Mathematics

Figure 7: GRADEENFORCEDBASICCOT Prompt Tem-
plate for Mathematics

Figure 8: GRADEENFORCEDFULLCOT Prompt Tem-
plate for Mathematics

Figure 9: UNENFORCED Prompt Template for Reading

Figure 10: GRADEENFORCEDMINIMAL Prompt Tem-
plate for Reading

Figure 11: GRADEENFORCEDBASICCOT Prompt Tem-
plate for Reading

LLM Best Prompt for Mathematics Best Prompt for Reading

LLaMA2-13B GRADEENFORCEDMINIMAL GRADEENFORCEDMINIMAL

LLaMA2-70B GRADEENFORCEDBASICCOT GRADEENFORCEDFULLCOT

LLaMA3.1-8B GRADEENFORCEDMINIMAL GRADEENFORCEDFULLCOT

LLaMA3.1-70B GRADEENFORCEDBASICCOT GRADEENFORCEDMINIMAL

Mistral-7B GRADEENFORCEDMINIMAL GRADEENFORCEDFULLCOT

Qwen2.5-7B GRADEENFORCEDFULLCOT GRADEENFORCEDFULLCOT

Qwen2.5-Math GRADEENFORCEDFULLCOT GRADEENFORCEDMINIMAL

GPT-3.5-Turbo GRADEENFORCEDFULLCOT GRADEENFORCEDFULLCOT

o3-Mini GRADEENFORCEDFULLCOT GRADEENFORCEDFULLCOT

SocraticLM GRADEENFORCEDFULLCOT GRADEENFORCEDFULLCOT

LearnLM-1.5-Pro GRADEENFORCEDFULLCOT GRADEENFORCEDFULLCOT

Table 5: Best prompts for LLM in each subject. We pick
the best prompt based on the closest average percentile
rank to 50, i.e., the desired average performance.
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Figure 12: GRADEENFORCEDFULLCOT Prompt Tem-
plate for Reading

Figure 13: Option Extraction Prompt

1001



Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 1002–1010
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

LLM-Assisted, Iterative Curriculum Writing: A Human-Centered AI
Approach in Finnish Higher Education

Leo Huovinen
Metropolia University
of Applied Sciences

Helsinki, Finland
leoeinari.huovinen

@metropolia.fi

Mika Hämäläinen
Metropolia University
of Applied Sciences

Helsinki, Finland
mika.hamalainen
@metropolia.fi

Abstract
This paper presents a Large Language Model
(LLM)-based system designed to support
curriculum development, iteratively refined
through extensive user testing and deployed
within a major Finnish higher education insti-
tution over the past two years. Distinct from
typical content generation tools, our system fa-
cilitates iterative human-AI collaboration by
providing structured suggestions and analyzing
course descriptions for alignment with institu-
tional goals, accreditation requirements, and
competency frameworks. We investigate how
such a tool can reduce educators’ cognitive load
while preserving human expertise, detailing
the system’s technical architecture and iterative
development grounded in a human-centered
design approach. This involved prototyping,
workshops, and user testing with curriculum
coordinators and faculty across diverse depart-
ments. We present detailed findings, including
quantitative metrics, qualitative feedback, and
user quotes, demonstrating the system’s evolv-
ing reception and potential to support complex
educational planning tasks.

1 Introduction

Curriculum development in higher education
presents a significant challenge, demanding align-
ment with diverse stakeholder needs, estab-
lished competency frameworks, and stringent
quality-assurance standards (Barnett and Coate,
2005; Knight, 2001). Educators face increasing
pressure to design curricula that satisfy institutional
mandates and accreditation criteria while catering
to the evolving requirements of diverse student pop-
ulations (Teixeira et al., 2019; Oliver and Hyun,
2011). This complex task often results in consid-
erable cognitive load, compounded by fragmented
information systems and administrative hurdles
(Woelert, 2023).

While artificial-intelligence (AI) tools for writ-
ing assistance have advanced rapidly (Strobl et al.,

2021), generic AI systems often lack the speci-
ficity required for effective curriculum develop-
ment. Key aspects such as alignment with com-
petency frameworks, nuanced assessment design,
and adherence to regulatory compliance are fre-
quently inadequately addressed (Zawacki-Richter
et al., 2019). Early applications of language mod-
els in education predominantly focused on content
generation, rather than supporting the inherently it-
erative and collaborative nature of curriculum writ-
ing (Roll and Wylie, 2016; Huang et al., 2023),
often failing to alleviate the core challenges faced
by educators.

In response to these limitations, we developed
an LLM-based curriculum-development system
designed as an interactive collaborator. Our ap-
proach emphasises maintaining human expertise
and agency throughout the writing process, shift-
ing the focus from mere automation to synergistic
human-AI partnership (Holstein et al., 2019; Ka-
mar, 2016; Wilson and Daugherty, 2018). This
system has been iteratively developed and tested
over 18 months at a multi-disciplinary university
of applied sciences in Finland. Figure 1 shows the
deployed system in active use, analyzing a nurs-
ing science master’s degree curriculum against UN
SDGs, illustrating the practical application of our
iterative design process.

This study explores several critical aspects
through the lens of our development and de-
ployment experience. We investigate how an
LLM-assisted tool can reduce the cognitive load on
educators during curriculum development, present-
ing evidence from user testing. We examine how
such a tool can effectively support the alignment of
curriculum content with institutional goals, accredi-
tation standards (e.g. UN Sustainable Development
Goals), and competency frameworks, reporting on
user experiences with these features. Additionally,
we consider how the system design, informed by
user feedback, accommodates varying levels of AI
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Figure 1: The deployed curriculum writing tool interface showing analysis of a Master’s Degree Programme in
Development and Leadership of Nursing degree program. The left panel displays the curriculum structure with
courses organized by specialization tracks. The center shows automated LLM analysis mapping course content to
UN Sustainable Development Goals through bar charts and pie visualization. The right panel provides detailed
SDG alignment feedback, demonstrating the system’s capability to analyze curriculum content against institutional
frameworks and provide structured guidance to educators.

literacy among faculty members. Finally, we detail
how an iterative, human-centred design process,
combining user tests and workshops, effectively
refined the tool for practical integration into institu-
tional workflows.

2 Related Work

2.1 Curriculum Development Challenges and
Educator Needs

Curriculum development is a cornerstone of edu-
cational practice, demanding alignment across di-
verse requirements such as institutional goals, ped-
agogical principles, accreditation standards, and
learner needs (Barnett and Coate, 2005; Knight,
2001). Educators tasked with this complex endeav-
our often face significant cognitive load (Sweller,
1988). Existing digital tools frequently fall short,
hampered by usability issues, poor integration, and
failure to streamline workflows (Woelert, 2023;
Fernández-Cerero et al., 2024). This can lead to
frustration among educators who find such tools
increase administrative burden rather than reduce
it (Blaich and Wise, 2018; Sjöberg and Lilja, 2019;
Duarte and Vardasca, 2023). Introducing AI there-
fore necessitates building trust; educator adoption

hinges on understanding how AI functions and per-
ceiving it as a supportive partner that complements
their expertise (Nazaretsky et al., 2022). Address-
ing these usability, workflow, and trust challenges
for educators is paramount.

2.2 NLP Applications for Curriculum
Analysis and Related Tasks

Applying Natural Language Processing in edu-
cation has often involved building specialised
pipelines for narrow analytical tasks, frequently re-
quiring substantial feature engineering. Areas such
as automated essay scoring, grammatical-error cor-
rection (Bryant et al., 2019), and readability as-
sessment (Aluisio et al., 2010) have seen dedicated
development, yet applying NLP effectively to cur-
riculum development presents unique challenges.

A central task is ensuring semantic alignment be-
tween components like learning outcomes, course
content, and assessments, and verifying coverage
of external competency frameworks. Early NLP ap-
proaches tackled this via greedy similarity metrics
(Rus and Lintean, 2012) or by constructing educa-
tional knowledge graphs through concept linkage
(Dang et al., 2021). Analysing curriculum structure
is another key requirement. Techniques for extract-
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ing prerequisite relations increasingly model course
networks as graphs; recent work employs heteroge-
neous graph neural networks to infer prerequisite
links from course-sequence data (Roy et al., 2019).

While effective for specific goals, these exam-
ples illustrate a trend towards fragmentation: dis-
tinct models, feature sets, and separate tools were
developed for semantic similarity, structural rela-
tions, quality attributes, or content generation. Sup-
porting the holistic process of curriculum writing;
integrating multiple analyses and feedback remains
difficult with such pipeline-based approaches.

2.3 Human-Centred Design: Bridging NLP
Power and Educator Usability

NLP’s analytical power only translates into impact
when integrated via human-centred design (HCD).
Educational settings involve diverse users (Gulba-
har, 2008), and the cognitive load of complex tools
is a major barrier (Sweller, 1988; Paas et al., 2003).
Iterative HCD-workshops, prototyping and usabil-
ity testing is essential for creating educational tech-
nology that educators find intuitive, trustworthy,
and supportive (Druin, 2002; Quintana et al., 2004).
For AI tools, transparency and user control are vital
(Nazaretsky et al., 2022). Designing AI systems as
collaborative partners that augment educator capa-
bilities (Holstein et al., 2019) is therefore central to
our methodology.

2.4 Prompt Engineering for Curriculum
Development

Large foundation models such as PaLM-21 offer a
shift away from fragmented pipelines. Effectively
using these general-purpose models for specialised
educational tasks relies on prompt engineering.
While fine-tuning adapts models (Touvron et al.,
2023), carefully crafted prompts can steer an LLM
(Brown et al., 2020). Chain-of-thought prompt-
ing encourages structured reasoning suitable for
alignment checks (Wei et al., 2022). Prompting for
structured output (e.g. JSON) permits automatic
parsing and presentation to educators, bridging the
gap between raw LLM output and usable assistance
(Ouyang et al., 2022).

2.5 Our Contribution: An Integrated,
Human-Centred LLM Application

We present an LLM-assisted system co-designed
as a collaborative partner for curriculum writing.

1https://ai.google/discover/palm2/

Our contribution lies in a rigorous HCD process
and a system architecture that prioritises educator
usability, cognitive-load reduction, and integrated
support for curriculum alignment. We move be-
yond fragmented individual NLP tools, such as se-
mantic similarity analysis (Rus and Lintean, 2012;
Dang et al., 2021), prerequisite extraction (Roy
et al., 2019), readability (Aluisio et al., 2010) and
error detection (Leacock et al., 2014), to leverage
a single foundation model (PaLM-2). Carefully
engineered prompts and a transparent UI provide
unified support for alignment, quality checks, and
structured suggestions.

3 Methodology

Our methodology employed a human-centered de-
sign (HCD) approach over an 18-month period, fo-
cusing on iterative development informed by con-
tinuous user feedback from the target end-users
within a major Finnish university of applied sci-
ences.

3.1 User-Centered Development Activities

We engaged curriculum coordinators and faculty
members from diverse disciplines including Health-
care, Architecture, Therapeutic Studies, Engineer-
ing, and Business. Our development activities in-
volved several key interactions. One-on-one us-
ability testing occurred in January-February 2024
with 5 curriculum coordinators using early proto-
types. These sessions involved participants per-
forming domain-specific tasks, such as analyzing
their 2024 curriculum against UN SDGs, institu-
tional goals, and workplace requirements, while us-
ing a think-aloud protocol. Sessions were observed
and recorded for qualitative analysis. Additionally,
two major workshops were conducted as qualita-
tive feedback sessions. The first, on June 6th, 2024,
brought together 12 participants from five faculties
for a demo presentation followed by hands-on test-
ing and group discussions with casual Q&A. The
second workshop, held on November 8, 2024, in a
hybrid format, included 14 participants (both previ-
ous and new users) and followed a similar format
of demo presentation, testing, and discussion, fo-
cusing on gathering requirements for features and
integration priorities. Separately from these work-
shops, the demo tool was made publicly available
via the institution’s internal staff website, allow-
ing independent access and usage. Throughout
this process, feedback was collected via multiple
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channels: interview notes, observation logs dur-
ing testing, workshop discussions, and open-ended
survey questions provided qualitative data from
the interactive workshop sessions, while quantita-
tive data was collected through a System Usability
Scale (SUS)-inspired online feedback form com-
pleted by curriculum coordinators and faculty who
accessed and used the demo tool independently via
the internal website. This multi-faceted approach
allowed us to identify usability requirements, cog-
nitive load points, and evolving user needs, partic-
ularly regarding varying levels of AI literacy and
integration with existing workflows.

3.2 Technical Architecture and System
Implementation

The system was developed with a focus on modular-
ity, scalability, and integration capabilities, employ-
ing a specific technical stack. The backend was
implemented in Python2 using the Flask3 frame-
work, deployed with uWSGI4 behind an Nginx5

reverse proxy on Debian/Ubuntu6 Linux servers
hosted within the institution’s infrastructure; basic
HTTP authentication via Nginx provided access
control. For data persistence, MongoDB7 (v. 7.0.1,
initially with access control disabled during early
development) served as the NoSQL database, stor-
ing curriculum data in a queryable format from
the organization’s curriculum database, organized
by year (e.g., 2023, 2024, 2025), and recording
document update timestamps. The frontend was
a single-page application (SPA) built with React8,
utilizing React’s Context API and hooks for state
management, and communicating with the backend
via RESTful API calls secured with CORS config-
uration. AI integration leveraged Google’s Vertex
AI9 platform, specifically accessing the multilin-
gual PaLM-2 foundation model through predefined
prompt templates engineered to request structured
JSON output, enabling reliable parsing and presen-
tation of targeted feedback within the user interface
in both Finnish and English. Security and logging
included Nginx handling HTTPS encryption via
SSL/TLS certificates and maintaining basic Nginx

2https://www.python.org/
3https://flask.palletsprojects.com/
4https://uwsgi-docs.readthedocs.io/
5https://nginx.org/
6Debian: https://www.debian.org/, Ubuntu: https://ubuntu.

com/
7https://www.mongodb.com/
8https://react.dev/
9https://cloud.google.com/vertex-ai

access logs with a 14-day rotation; application-
level user interaction logging was minimal to pri-
oritize privacy, which limited retrospective usage
analysis but showed approximately 5 unique IP ad-
dresses accessing the API during a representative
14-day testing period. This architecture allowed for
iterative updates to components like the LLM or
UI while maintaining core functionality.

3.3 Iterative, Human-Centered Design
Process

The 18-month development cycle unfolded follow-
ing HCD principles across three main stages. The
first stage focused on initial prototyping and testing,
involving one-on-one tests (Jan-Feb 2024) for core
concept validation and identifying fundamental us-
ability issues, with feedback primarily concern-
ing navigation and initial orientation. The second
stage incorporated this feedback into a more robust
prototype presented at the June 2024 workshop;
this phase highlighted user needs for clearer guid-
ance and workflow structuring to reduce cognitive
load. The third stage addressed feedback from the
first workshop and gathered requirements for more
sophisticated functionality during the November
2024 workshop. In this final stage, user requests
shifted towards advanced capabilities such as in-
tegration with the Peppi student information sys-
tem, import features for existing drafts, quality con-
trol mechanisms, and enhanced multilingual and
domain-specific support. Throughout this entire
process, both qualitative and quantitative user feed-
back continuously informed design adjustments,
feature prioritization, and refinement of the AI in-
teraction model.

4 Results and Evolution of User Feedback

The iterative HCD process yielded rich insights into
user needs and the system’s effectiveness, revealing
a clear evolution in feedback as the tool matured
and users gained familiarity.

4.1 Initial Usability Testing (Jan-Feb 2024)
One-on-one sessions with 5 curriculum coordina-
tors using early prototypes highlighted fundamental
usability challenges and cognitive load concerns.

Orientation and Guidance: Users frequently
expressed confusion upon first use:

"There is no clarification here, I wouldn’t
know what this is. It wouldn’t hurt to
have a tool guide."

1005

https://www.python.org/
https://flask.palletsprojects.com/
https://uwsgi-docs.readthedocs.io/
https://nginx.org/
https://www.debian.org/
https://ubuntu.com/
https://ubuntu.com/
https://www.mongodb.com/
https://react.dev/
https://cloud.google.com/vertex-ai


Figure 2: Screenshot of the prototype interface. The left panel shows course topics and learning outcomes;
colour highlights indicate segments automatically matched by the LLM. The right panel lists the UN Sustainable
Development Goals (SDGs) with the corresponding curriculum fragments, illustrating the tool’s alignment-analysis
feature.

"Computer tools are not my favorite
thing to deal with. I would like a guar-
anteed clarification of what I need to do
with just a glance..."

Several users failed to notice key interface elements
like year selection buttons, indicating issues with
visual hierarchy. As one coordinator noted, "I
didn’t even see the year button. Maybe it could
be larger or pointed out to me with some kind of
guide?".

Cognitive Load from System Fragmentation:
Users expressed frustration with managing infor-
mation across multiple existing institutional tools.

"There is a huge amount of information
in different databases and tools in this
house, but it is always difficult to find...
it always takes a long time to find what I
need."

"It is frustrating to fill all kinds of on-
line sticky notes with these goals, and
then not have the time or coordination
to apply these goals anywhere within the
actual teaching."

Another user lamented the typical workflow: "Ev-
ery year we have to jump between Peppi, Excel
sheets, Teams files, and meeting notes. It’s exhaust-
ing and error-prone." This highlighted the need for
better integration and workflow streamlining, espe-
cially among faculties such as healthcare, which are

burdened by need to align with several additional
national and institutional standards (?).

Observational Data: During these sessions, ob-
servers noted consistent patterns: initial hesitation,
significant time spent exploring menus before start-
ing tasks, and a tendency to restart tasks rather than
troubleshoot upon encountering errors. However,
users showed visible positive reactions (surprise,
verbal approval) when seeing the structured anal-
ysis generated by the AI, recognizing its potential
time-saving benefits.

4.2 Workshop Feedback Evolution

First Workshop (June 6, 2024): With 12 partici-
pants from 5 faculties, this session confirmed per-
sistent issues with navigation and cognitive load.
The primary feedback emphasized the need for
much clearer step-by-step guidance within the tool
to structure the writing process itself, moving be-
yond simple text generation towards active work-
flow support.

Later Workshop (November 8, 2024): This
session with 14 participants (hybrid format)
showed a distinct shift. Having addressed basic
usability, requests focused on advanced function-
alities. Key demands emerged, such as a strong
need for importing existing draft curriculum texts
for LLM analysis and revision. Repeated requests
were made for seamless integration with the insti-
tutional Peppi student information system to avoid
redundant data entry. There was also a clear need
expressed for better handling of discipline-specific
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terminology and requirements, particularly voiced
by Healthcare and Engineering faculty coordina-
tors; one noted, "Within our healthcare domain...
there are specific training hours and certain areas
of expertise that the students must meet," while an-
other expressed concern about nuance: "AI is not
able to detect all the ’weak signals’... I can recog-
nize teaching-related problems... that I’m not sure
AI would catch". Finally, users expressed a desire
for features ensuring quality control and alignment
with institutional standards and competency frame-
works.

Participants consistently reiterated the impor-
tance of the AI acting as a collaborator. One from
healthcare faculty stated, "I hope we can spend the
most time on industry-specific goals... I’d like the
easiest available tool for these general overhead
tasks... We can then focus on our own expertise."

Experiences with Generic LLMs: Users who
had tried generic tools like ChatGPT for curriculum
tasks reported difficulties:

"I have used AI (ChatGPT)... I tried to
ask the AI to integrate the principles of
sustainable development into this course,
but what came out was difficult to use. I
had to ask over and over to get the result
I need."

This highlighted the value of our tool’s structured
approach and tailored prompts.

4.3 Quantitative Evaluation
Following the qualitative feedback, a modified
SUS-style questionnaire focused on problem re-
porting was administered to participants familiar
with the refined system. Due to its targeted nature,
the sample size was small (n=4). The results (Table
1) indicate strong perceived utility for finding infor-
mation (M=4.2) and content review (M=4.1), and
high potential transferability (M=4.3). Interface us-
ability (M=3.5) and learning curve (M=2.3, inverse
scale) showed higher variability (SD=1.1, 1.2 re-
spectively), supporting qualitative feedback about
differing experiences based on user background
and the need for continued ease-of-use improve-
ments. Technical reliability was rated reasonably
well (M=2.0, inverse scale).

Users also requested clearer visual feedback on
standards coverage. Figure 2 illustrates the final UI
that emerged from these iterations, showing colour-
coded curriculum fragments mapped to specific
SDGs.

5 Discussion

Our study demonstrates the potential for a carefully
designed LLM-assisted tool, developed through an
iterative, human-centered process, to effectively
support the complex task of curriculum develop-
ment in higher education. The detailed results from
user testing (Section 4) provide concrete evidence
addressing our core research questions.

The significant reduction in cognitive load was
a key goal. Initial feedback highlighting confu-
sion ("no clarification here...") and frustration with
fragmented systems ("jump between Peppi, Excel
sheets...") directly informed design iterations fo-
cused on providing clearer guidance and structured
workflows. While full integration remains a chal-
lenge, the positive reception of the AI’s structured
analysis capabilities and the high rating for "Utility
for content review" (M=4.1, see Table 1) suggest
the tool successfully offloads some analytical bur-
den. The shift in later feedback towards requesting
deeper integration further indicates users perceived
the tool’s potential to streamline their work.

The system’s ability to support alignment with
institutional goals, accreditation standards (like UN
SDGs), and competency frameworks was validated
by user tasks during testing and the specific re-
quests for enhanced quality control features in later
workshops. The technical choice to use PaLM-2
via Vertex AI with structured JSON output proved
crucial, enabling the system to provide targeted
analysis rather than generic text, addressing the
shortcomings users experienced with tools like
ChatGPT ("had to ask over and over...").

Preserving human expertise was paramount.
User quotes consistently emphasized the need for
the AI to be a collaborator, handling "general over-
head tasks" so educators could "focus on our own
expertise" and address domain-specific nuances or
"weak signals". The iterative design allowed us
to balance automated assistance with user control,
ensuring the tool augmented rather than replaced
pedagogical judgment (Holstein et al., 2019; Ka-
mar, 2016).

Accommodating varying AI literacy was implic-
itly addressed through the iterative process. Initial
focus on fundamental usability ("guaranteed clari-
fication... with just a glance") catered to less tech-
savvy users, while later feature requests (import, ad-
vanced analysis) reflected the growing confidence
and demands of users becoming more familiar with
AI capabilities. The quantitative results showing
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Table 1: Teacher Feedback (5-point Likert scale, n=4)
Items use inverse scale where lower scores indicate better performance.

Curriculum design task helpfulness criteria Mean Score Std. Dev.

Finding up-to-date degree info 4.2 0.8
Interface usability 3.5 1.1
Clarity of instructions 3.8 0.9
Learning curve (1=Easy, 5=Hard)* 2.3 1.2
Utility for content review 4.1 0.7
Technical reliability (1=Reliable, 5=Unreliable)* 2.0 0.7
Interface readability 3.9 0.5
Output and transferability of results 4.3 0.6

variance in usability and learning curve scores (Ta-
ble 1) reinforce the need for continued attention to
accessibility for all users.

The technical architecture (Section 3) sup-
ported this iterative development. The modular
Flask/React stack and the use of a managed AI ser-
vice (Vertex AI) facilitated relatively rapid proto-
typing and incorporation of feedback. The specific
backend choices (Python, MongoDB, uWSGI, Ng-
inx on Linux) represent a pragmatic and common
stack for such institutional tools.

Challenges remain, particularly the significant
technical and administrative hurdles of deep inte-
gration with complex systems (Brown et al., 2015;
Sholeh et al., 2025). Supporting highly specialized
disciplinary nuances and extending robust support
for specific Finnish academic language or poten-
tially underrepresented languages require ongoing
effort. However, the positive trajectory of user
feedback validates the HCD methodology and the
potential of specialized LLM tools for complex
educational planning.

6 Limitations and Future Work

While the HCD process yielded valuable insights
and a functional tool, several limitations exist. The
18-month development timeline, driven by institu-
tional curriculum renewal cycles, meant full inte-
gration with systems like Peppi was not achieved,
limiting immediate efficiency gains highlighted as
desirable by users ("jump between Peppi, Excel
sheets..."). The automated analysis criteria were ini-
tially based on available institutional frameworks
and UN SDGs; refining these for deeper discipline-
specific requirements needs further work, as noted
by users concerned about healthcare standards or
engineering "weak signals."

The quantitative evaluation presented (Table 1)
is based on a small sample size (n=4), limiting
generalizability; it primarily served to corrobo-
rate qualitative findings during the iterative pro-
cess. While the PaLM-2 model offers multilingual
capabilities, dedicated fine-tuning or prompt opti-
mization for specific Finnish academic contexts or
other languages (e.g., Sámi languages) was beyond
the scope of this phase.

While our approach relies on prompt engineer-
ing to adapt the general-purpose PaLM-2 model for
curriculum development tasks, this may be insuffi-
cient for optimal performance in highly specialized
domains. Effective prompts can improve output
quality and structure, but cannot fully compensate
for potential gaps in domain-specific training data
or the nuanced understanding that dedicated fine-
tuning or domain adaptation might provide. For
instance, highly technical healthcare curriculum re-
quirements or engineering accreditation standards
may benefit from models specifically trained on
educational content within those disciplines. Fu-
ture work should explore whether fine-tuning ap-
proaches or domain-adapted models would signifi-
cantly improve alignment accuracy and reduce the
need for extensive prompt iteration.

The evaluation focused heavily on usability and
perceived usefulness during development. Longi-
tudinal studies are crucial to assess the tool’s sus-
tained impact on actual curriculum quality, align-
ment consistency across departments, and measur-
able changes in educator workload and satisfaction
over time. Systematically evaluating effectiveness
across a wider range of disciplines is also neces-
sary. The minimal application-level logging, while
prioritizing privacy, restricts retrospective analysis
of feature adoption and user pathways.

Future work will prioritize tackling the Peppi
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integration challenge to enhance workflow automa-
tion. We plan to collaborate further with faculty to
refine domain-specific analysis capabilities and ex-
pand language support. Exploring mechanisms for
secure sharing of curriculum components or best
practices across departments or potentially institu-
tions represents another avenue. Rigorous, long-
term evaluations measuring impact on curriculum
outcomes and educator efficiency are essential next
steps to guide continued refinement and demon-
strate long-term value. Improving backend logging
for anonymized usage patterns, while respecting
privacy, would also aid future development.

7 Conclusion

This paper detailed the design, development, and
user-centered evaluation of an LLM-assisted cur-
riculum writing tool deployed at a major Finnish
university of applied sciences. Through an 18-
month iterative HCD process involving extensive
user testing with curriculum coordinators and fac-
ulty, we created a system intended as a collabora-
tive partner, aiming to reduce cognitive load and
enhance alignment with standards, rather than sim-
ply automating writing. We presented specific tech-
nical details of the system (Python/Flask backend,
React frontend, MongoDB, Vertex AI/PaLM-2 in-
tegration) and rich qualitative and quantitative data
from user tests and workshops. The evolution of
user feedback, from initial usability concerns ("no
clarification here...") to demands for advanced fea-
tures like Peppi integration and sophisticated anal-
ysis, strongly validates the iterative methodology.
Our findings indicate that specialized LLM tools,
co-designed with educators and focused on struc-
tured assistance, can effectively support complex
educational planning tasks while preserving human
expertise. While challenges in integration and do-
main specificity persist, this work offers a practical
case study and valuable insights into developing
human-centered AI solutions for higher education
workflows.
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Abstract

This shared task has aimed to assess pedagog-
ical abilities of AI tutors powered by large
language models (LLMs), focusing on evalu-
ating the quality of tutor responses aimed at
student’s mistake remediation within educa-
tional dialogues. The task consisted of five
tracks designed to automatically evaluate the
AI tutor’s performance across key dimensions
of mistake identification, precise location of
the mistake, providing guidance, and feedback
actionability, grounded in learning science prin-
ciples that define good and effective tutor re-
sponses, as well as the track focusing on de-
tection of the tutor identity. The task attracted
over 50 international teams across all tracks.
The submitted models were evaluated against
gold-standard human annotations, and the re-
sults, while promising, show that there is still
significant room for improvement in this do-
main: the best results for the four pedagogical
ability assessment tracks range between macro
F1 scores of 58.34 (for providing guidance) and
71.81 (for mistake identification) on three-class
problems, with the best F1 score in the tutor
identification track reaching 96.98 on a 9-class
task. In this paper, we overview the main find-
ings of the shared task, discuss the approaches
taken by the teams, and analyze their perfor-
mance. All resources associated with this task
are made publicly available to support future
research in this critical domain.1

1 Introduction and Motivation

Conversational agents offer promising opportuni-
ties for education as they can fulfill various roles
(e.g., intelligent tutors and service-oriented assis-
tants) and pursue different objectives (e.g., improv-
ing student skills and increasing instructional effi-
ciency) (Wollny et al., 2021), among which serv-
ing as an AI tutor is one of the most prevalent

1https://github.com/kaushal0494/
UnifyingAITutorEvaluation/tree/main/BEA_Shared_
Task_2025_Datasets

tasks (Tack et al., 2023). Recent advances in the
development of large language models (LLMs)
provide our field with promising ways of build-
ing AI-based conversational tutors, which can gen-
erate human-sounding dialogues on the fly. The
key question posed in previous research (Tack and
Piech, 2022; Tack et al., 2023), however, still holds:
How can we test whether state-of-the-art genera-
tive models are good AI teachers, capable of reply-
ing to a student in an educational dialogue?

Evaluating dialogue systems in general presents
a significant challenge. While human evaluation
is still considered the most reliable method for as-
sessing dialogue quality, its high cost and lack of
reproducibility have led to the adaptation of both
reference-based and reference-free automatic met-
rics, originally used in machine translation and
summary evaluation, for dialogue evaluation (Lin,
2004; Popović, 2017; Post, 2018; Gao et al., 2020;
Liu et al., 2023). When it comes to Intelligent
Tutoring Systems (ITSs), which also function as
dialogue systems with the specific role of acting
as tutors, these general metrics are insufficient. In
the educational context, we need to assess complex
pedagogical aspects and abilities of such systems,
ensuring that they provide students with sufficient,
helpful, and factually correct guidance and do not
simply reveal answers when the student makes a
mistake, among other aspects. Therefore, devel-
oping automatic metrics to evaluate these nuanced
aspects is essential for creating effective and help-
ful tutoring systems.

Due to the lack of a standardized evaluation tax-
onomy, previous work has used different criteria for
evaluation. For example, Tack and Piech (2022)
and Tack et al. (2023) evaluated models in terms
of whether they speak like a teacher, understand a
student, and help a student, while in Macina et al.
(2023), responses of models playing roles of tutors
were evaluated by human annotators using coher-
ence, correctness, and equitable tutoring. At the
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same time, Wang et al. (2024) assessed usefulness,
care, and human-likeness, and Daheim et al. (2024)
used targetedness, correctness, and actionability
of a tutor response as quality evaluation criteria.
Such lack of standardization makes it difficult to
compare different systems, and, therefore, defin-
ing evaluation criteria and developing automatic
metrics for them is a crucial task for advancing the
field, which we have aimed to address in this task.

2 Task Description and Goals

Following the successful BEA 2023 Shared Task on
Generating AI Teacher Responses in Educational
Dialogues (Tack et al., 2023), we revisit the ques-
tion of quality assessment of the tutor responses
generated with the AI models (specifically, LLMs)
in the context of educational dialogues. We believe
that (1) the topic is timely and important; (2) LLMs
have significantly advanced in the past couple of
years, making it important to revisit this topic after
the competition run in 2023; and (3) there is a need
to establish a pedagogically motivated benchmark
for this task. In contrast to the BEA 2023 Shared
Task, our focus is not on the generation of educa-
tional dialogues using state-of-the-art LLMs, but
rather on comprehensive evaluation of AI-tutor
responses using a set of pedagogically motivated
metrics.

In this shared task, we have focused on educa-
tional dialogues between a student and a tutor in the
mathematical domain. Specifically, the conversa-
tions are grounded in student mistakes or confusion,
where the AI tutor aims to remediate such mistakes
or confusion. Each dialogue in the datasets pro-
vided in this shared task includes: (i) the context
consisting of several prior turns from both the tu-
tor and the student; (ii) the last utterance(s) from
the student containing a mistake; and (iii) a set of
possible responses to the last student’s utterance(s)
from a range of LLM-based tutors and, where avail-
able, human tutors, aimed at mistake remediation.
The dialogues (parts i-ii) are extracted from two
popular datasets of educational dialogues in the
mathematical domain – MathDial (Macina et al.,
2023) and Bridge (Wang et al., 2024), while the
LLM-based tutor responses are generated by the
shared task organizers using a set of state-of-the-art
LLMs of various sizes and capabilities, including:
GPT-4 (Achiam et al., 2023), Gemini (Reid et al.,
2024), Sonnet (Anthropic, 2024), Mistral (Jiang
et al., 2023), Llama-3.1-8B and Llama-3.1-405B

(Dubey et al., 2024), and Phi-3 (Abdin et al., 2024).
To avoid any biases, the tutor responses in the data
have been shuffled. In addition to the responses
themselves, the dataset contains annotation of their
quality along several pedagogically motivated di-
mensions defined in Maurya et al. (2025). Below,
we are reiterating the definitions for these dimen-
sions from Maurya et al. (2025) for completeness:

• Mistake identification: Since all dialogues in
the dataset contain a mistake made by the stu-
dent, we expect a good quality response from
the tutor to include relevant and clear mistake
identification. This aligns with student under-
standing defined in Tack and Piech (2022) and
correctness in the schemata of Macina et al.
(2023) and Daheim et al. (2024).

• Mistake location: In addition to notifying the
student about the committed error, a good
tutor response should also point to its loca-
tion in the answer and explain what the er-
ror is to help the student remediate it. This
corresponds to targetedness in Daheim et al.
(2024).

• Providing guidance: Ideally, a good tutor
should not reveal the answer immediately and
instead should provide the student with rel-
evant and helpful guidance, consisting, for
example, of a hint, an explanation, or a sup-
porting question. This aspect is related to
helping a student in Tack and Piech (2022)
and usefulness in Wang et al. (2024).

• Actionability: Finally, once the guidance is
provided to a student, a good tutor response
should make it clear to the student what they
are supposed to do next. I.e., the tutor’s re-
sponse should not be vague, unclear, or a
conversation stopper. This aspect directly
corresponds to actionability in Daheim et al.
(2024).

Moreover, the proposed evaluation schema
aligns with the core pedagogical principles de-
rived from learning sciences. Specifically, the tutor
should: (1) encourage active learning (Chi and
Wylie, 2014; Oakley and Sejnowski, 2021) by not
directly revealing the correct answer, (2) adapt
to learners’ goals and needs (King and South,
2017) through accurate mistake identification and
exact location pointing, (3) manage cognitive load

1012



Figure 1: An example on mistake identification
from Maurya et al. (2025)

(Mayer, 2002) and enhance metacognitive skills
(Dehaene, 2020; Cohen et al., 2021) by providing
appropriate guidance, and (4) foster motivation and
stimulate curiosity (Keller, 1987; Patall et al., 2008)
by offering clear and actionable steps to the stu-
dent. Thus, the schema adopted from Maurya et al.
(2025) covers all the relevant aspects of a good
tutor response proposed in previous work (Tack
and Piech, 2022; Macina et al., 2023; Wang et al.,
2024; Daheim et al., 2024), while also being sup-
ported by the learning science principles. We do
not explicitly include such aspects as speak like a
teacher (Tack and Piech, 2022), as we believe that
a tutor that identifies student’s mistakes, points to
them accurately, and can explain them to a student
in an actionable way does speak like a teacher. We
also do not explicitly cover human-likeness (Wang
et al., 2024) as, based on our preliminary analy-
sis, state-of-the-art LLMs are capable of producing
overwhelmingly human-like responses.

All aspects are annotated on a 3-point scale,
where "No" denotes that the particular aspect of
the tutor response is bad (e.g., the mistake is not
identified at all), "Yes" denotes that it is good (e.g.,
the mistake is identified clearly and correctly), and
"To some extent" denotes that the quality of the
response, according to the particular aspect, is
medium (e.g., there are clarity issues with the mis-
take identification). Figure 1 provides an example
of the annotation for the mistake identification as-
pect.

3 Shared Task Structure

This shared task consisted of two major phases:

• Development phase: In the development
phase, we released annotated tutor re-
sponses for 300 dialogues extracted from
the MathDial and Bridge datasets (approx-
imately 75% examples from MathDial and
25% examples from Bridge). For each di-

alogue, responses from 7 LLM-based tutors
(see Section 2 for more details) as well as
expert (for both datasets) and novice (pro-
vided in the Bridge dataset only) tutor re-
sponses were released together with the an-
notations for 4 pedagogical aspects following
the scheme and guidelines proposed in Mau-
rya et al. (2025). This sums up to a total of
2,476 tutor responses. During the develop-
ment phase, participating teams could build
their systems aiming to predict the quality val-
ues for any or all of the pedagogical aspects.

• Test phase: In the test phase of the compe-
tition, we released an additional set of 191
dialogues extracted from the MathDial and
Bridge datasets, following the distribution in
the development set, together with the tutor
responses (1,547 in total), but the annotations
were not provided for this data. The partici-
pating teams were asked to run their systems
and submit their predictions, which were then
evaluated using the shared task official metrics
(see Section 6).2

In addition, the task included the 5th track on
the tutor identity identification, aimed at automated
detection of which model or human tutor an anony-
mous response in the test data originated from. This
sub-task was inspired by our observations that var-
ious AI tutors have very specific tutoring and lin-
guistic styles (Maurya et al., 2025).

The task used open-data and model strategy: as
there were no explicit training phase, the teams
were allowed to use any external data in addition to
the released annotated dialogues during the devel-
opment phase, as well as build traditional machine
learning as well as large language model-based
solutions.

The test phase of the task was hosted on the
CodaBench platform, with a separate track for (1)
Mistake Identification,3 (2) Mistake Location,4(3)
Providing Guidance,5 (4) Actionability,6 and (5)
Tutor Identification.7 Each team was allowed up to
5 submissions in each track.

2Development and test sets are avail-
able at https://github.com/kaushal0494/
UnifyingAITutorEvaluation/tree/main/BEA_Shared_
Task_2025_Datasets

3https://www.codabench.org/competitions/7195/
4https://www.codabench.org/competitions/7200/
5https://www.codabench.org/competitions/7202/
6https://www.codabench.org/competitions/7203/
7https://www.codabench.org/competitions/7206/
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4 Data Description

As described in Section 2, we used the
data from two publicly available datasets –
MathDial (Macina et al., 2023) and Bridge (Wang
et al., 2024). Both datasets allow for adaptation,
modification and (re)sharing without any restric-
tions: MathDial8 is distributed under the Creative
Commons Attribution-ShareAlike 4.0 International
License, while the Bridge9 dataset is licensed un-
der the MIT license.

Annotations of the pedagogical aspects were pro-
vided by the organizing team following the scheme
and guidelines established by Maurya et al. (2025).
Of the 300 development set dialogues, responses
in 200 were doubly-annotated by four annotators,
reaching an average Fleiss’ kappa of 0.65, which
indicates substantial agreement and shows relia-
bility of this task (see the description of the an-
notation experiment in Maurya et al. (2025)). An
additional set of tutor responses for further develop-
ment and test set dialogues were annotated by the
six shared task organizers using the same scheme
and approach. A subset of 83 tutor responses in 10
dialogues were annotated by all six co-organizers,
showing substantial agreement on the use of the
scheme with Fleiss’ kappa of 0.64. After this ini-
tial annotation round, co-organizers discussed and
resolved disagreements before proceeding to anno-
tate the rest of the data.

5 Teams

Over 50 teams participated in the shared task, with
11 teams submitting to all five tracks. The task
attracted participation from all over the world, with
teams from Asia (e.g., Bangladesh, China, India, In-
donesia, Philippines, and South Korea), Australia,
Europe (e.g., France, Germany, and Romania), the
MENA region (e.g., Egypt, Lebanon, and the UAE),
the North (e.g., USA and Canada) as well as South
America (e.g., Chile and Uruguay) taking part in
it. The submissions were distributed as reported
in Table 1.10 The next section briefly summarizes
the main trends in the approaches adopted by the
teams, while more details can be found in the in-
dividual system reports submitted by 26 teams as
well as in Section 6.

8https://github.com/eth-nlped/mathdial
9https://github.com/rosewang2008/bridge

10The official leaderboards can be found in Appendix A.

Track # Submissions # Teams
Track 1 153 44
Track 2 86 32
Track 3 105 36
Track 4 87 30
Track 5 54 20

Table 1: Number of submissions and participating teams
in each track

5.1 Main Trends

Based on the overall analysis of the approaches
taken by the participating teams, we have identified
the following major trends:

• A few teams used LLMs, both commercial
(GPT-4o (Hurst et al., 2024), Gemini (Reid
et al., 2024), Claude (Anthropic, 2024)) and
open-source (Mistral (Jiang et al., 2023),
LLaMa (Dubey et al., 2024), Qwen (Bai et al.,
2023)) extensively. Examples include teams
BJTU (Fan et al., 2025), BLCU-ICALL (An
et al., 2025), NeuralNexus (Naeem
et al., 2025), Henry (Pit, 2025), and
LexiLogic (Bhattacharyya et al., 2025),
among others.

• LoRA-based fine-tuning (Hu et al., 2022)
has also been popular among the partici-
pants, including teams TutorMind (Dekmak
et al., 2025), Archaeology (Ros, u et al.,
2025), Wonderland_EDU@HKU (Wang et al.,
2025), Averroes (Yasser et al., 2025), and
MSA (Hikal et al., 2025).

• Data augmentation and imbalance handling
were used, including methods like synthetic
data generation by TutorMind (Dekmak
et al., 2025) and Henry (Pit, 2025), random
downsampling by BJTU (Fan et al., 2025),
oversampling by Thapar Titans (Dad-
wal et al., 2025) and NLIP (Saha et al.,
2025), and class-weighted loss by Jinan
Smart Education (Chen, 2025) and
SYSUpporter (Chen et al., 2025).

• Ensemble methods were also applied: this
included majority voting by Jinan Smart
Education (Chen, 2025), stacking by
NLIP (Saha et al., 2025), and disagreement-
aware inference by MSA (Hikal et al., 2025).

• Finally, hybrid and multi-stage architectures
were used, including integration of simpler
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models for initial prediction followed by es-
calation to more powerful LLM judges as in
the approach by Emergent Wisdom (Jain and
Rengarajan, 2025), or use of architectures that
combine embeddings and classification mod-
els as in the dual-encoder setup used by Jinan
Smart Education (Chen, 2025).

6 Evaluation, Results, and Summary of
Approaches

Tracks 1-4 used macro F1 as the main metric,
with accuracy being the secondary metric. These
were used in two settings:

• Exact evaluation: predictions submitted by
the teams were evaluated for the exact pre-
diction of the three classes (“Yes", “To some
extent", and “No")

• Lenient evaluation: since for these dimensions
tutor responses annotated as “Yes" and “To
some extent" share a certain amount of qual-
itative value, we considered “Yes" and “To
some extent" as a single class, and evaluated
predictions under the 2-class setting (“Yes +
To some extent" vs. “No")

Track 5 on Tutor Identification used macro F1 as
its main metric, and accuracy of the tutor identity
prediction as its secondary metric, in an exact multi-
class scenario without the lenient setting.

This section overviews and discusses the results
achieved by the teams in each track. For the full
leaderboards, see Appendix A.

6.1 Track 1: Mistake Identification

Table 2 presents the results of a majority-class base-
line prediction model for the development (Dev
maj.) and test (Test maj.) sets. Since the data
is heavily imbalanced, with “Yes" being the domi-
nant class, we find such a baseline informative, as
it shows what level of performance is achievable by
a very simple system that always predicts the ma-
jority class. We report exact (strict) macro F1 (Ex.
F1) and accuracy (Ex. Acc), as well as lenient F1
(Len. F1) and accuracy (Len. Acc).

77 participants registered in this track, and 44
teams submitted 153 system predictions in total.
Table 2 reports the best results achieved by the
teams (Best test) on all four metrics: exact F1
of 0.7181, exact accuracy of 0.8798, lenient F1
of 0.9185, and lenient accuracy of 0.9541. The
winning team in this track, according to the main

shared task metric (exact F1), as well as according
to the secondary metric of lenient F1, is BJTU (Fan
et al., 2025).11 The winners according to exact
accuracy are TutorMind (Dekmak et al., 2025) and
MSA (Hikal et al., 2025), with TutorMind scoring
first in terms of lenient accuracy as well.

Category Ex. F1 Ex. Acc Len. F1 Len. Acc
Dev maj. 0.2922 0.7803 0.4596 0.8506
Test maj. 0.2827 0.7363 0.4522 0.8255
Best test 0.7181(1) 0.8798(12,13) 0.9185(19) 0.9541(35)

Table 2: Results for Track 1: Mistake Identification

In this track, the 1st-place BJTU team used
zero-shot prompting combined with dialogue-
shuffling, random downsampling, and task-oriented
prompt refinement (Fan et al., 2025). The 2nd-
place TutorMind team fine-tuned GPT-4o-mini
and Mistral-7B with LoRA and augmented their
traing data synthetically, significantly improv-
ing model performance (Dekmak et al., 2025).
Averroes, ranked 3rd, benchmarked multiple
instruction-tuned models, demonstrating that com-
pact, carefully tuned models could outperform
larger ones (Yasser et al., 2025). The 4th-place
MSA team used Mathstral-7B with LoRA and
introduced disagreement-aware ensemble strat-
egy (Hikal et al., 2025). Finally, the 5th-place BD
team combined MPNet fine-tuning (Song et al.,
2020) with cross-validation and ensemble vot-
ing (Rohan et al., 2025).

6.2 Track 2: Mistake Location

Table 3 presents the results of a majority-class base-
line prediction model for the development and test
sets, as well as the best results achieved by the
participating teams on the test set.

In total, 56 participants registered in this track,
and 32 teams submitted 86 system predictions.
Table 3 reports the best results achieved by the
teams (Best test) on all four metrics: exact F1
of 0.5983, exact accuracy of 0.7679, lenient F1
of 0.8404, and lenient accuracy of 0.8630. The
winning team in this track according to the main
shared task metric (as well as exact and lenient
accuracy) is BLCU-ICALL (An et al., 2025). The
winner according to lenient F1 is K-NLPers (Park
et al., 2025).

In this track, the 1st-place BLCU-ICALL

11The notation in brackets indicates the place according to
the main (exact F1-based) ranking of the submission showing
the best result for each individual metric.
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Category Ex. F1 Ex. Acc Len. F1 Len. Acc
Dev maj. 0.2560 0.6232 0.4159 0.7120
Test maj. 0.2450 0.5811 0.3974 0.6593
Best test 0.5983(1) 0.7679(1) 0.8404(5) 0.8630(1)

Table 3: Results for Track 2: Mistake Location

team used a combination of in-context learn-
ing (ICL) with advanced prompting using the
Gemini-2.5-pro model, supervised fine-tuning on
large models like Qwen2.5-32B, and reinforcement
learning from human feedback (RLHF) (An et al.,
2025). The 3rd-place K-NLPers used GPT-4.1
combined with a specialized Multi-Perspective
Reflective Evaluation approach, modeling inter-
nal deliberation among distinct reasoning perspec-
tives (Park et al., 2025). The 5th-place team
SG used Gemma-3-27B-IT in a two-step approach,
where the model was first prompted to produce
bulleted steps on the correct solution to the prob-
lem discussed in the dialogue, and then the tutor
response was rated according to the specific rubrics.
Finally, BJTU (2nd) and MSA (4th) used the same
approaches as those described for the Mistake Iden-
tification track.

6.3 Track 3: Providing Guidance

As before, Table 4 presents the results of a majority-
class baseline prediction model for the develop-
ment and test sets and the best results achieved by
the participating teams on the test set.

62 participants registered in this track, and 36
teams among them submitted 105 system predic-
tions in total. Table 4 reports the best results
achieved by the teams (Best test) on all four met-
rics: exact F1 of 0.5833, exact accuracy of 0.7052,
lenient F1 of 0.7860, and exact accuracy of 0.8222.
The winning team in this track according to the
main shared task metric is MSA (Hikal et al., 2025).
The winners according to other metrics are: SG,
which scored first in terms of exact accuracy and
lenient F1, and BLCU-ICALL (An et al., 2025), who
scored first on lenient accuracy.

Category Ex. F1 Ex. Acc Len. F1 Len. Acc
Dev maj. 0.2416 0.5683 0.4355 0.7714
Test maj. 0.2313 0.5314 0.3995 0.6652
Best test 0.5834(1) 0.7052(2) 0.7860(2) 0.8222(6)

Table 4: Results for Track 3: Providing Guidance

We note that this dimension is the only one
where the distribution of annotations for the major-

ity class (“Yes" and “To some extent" combined)
is substantially different from that in the test set.
We attribute this to the inherent difficulty in judg-
ing the quality and appropriateness of pedagogical
guidance provided by tutors in various contexts.

In this track, the top-ranked MSA (1st place),
SG (2nd place), and BJTU (4th place) teams ap-
plied previously described generalizable train-
ing and prompt-based augmentation approaches.
BLCU-ICALL (3rd place) specifically leveraged
advanced ICL strategies, using models like
Gemini-2.5-pro to excel in more open-ended in-
structional tasks. Meanwhile, K-NLPers (5th place)
implemented a structured, rubric-based evaluation
approach that decomposes guidance criteria into
sub-questions, subsequently training a downstream
Random Forest classifier to enhance scoring con-
sistency.

6.4 Track 4: Actionability
In Table 5, we present the results of a majority-class
baseline prediction model for the development and
test sets and the best results achieved by the partic-
ipating teams on the test set.

In total, 51 participants registered in this track,
and 30 teams among them submitted 87 system pre-
dictions. Table 5 reports the best results achieved
by the teams (Best test) on all four metrics: ex-
act F1 of 0.7085, exact accuracy of 0.7557, lenient
F1 of 0.8659, and lenient accuracy of 0.8940. The
winning team according to the main shared task
metric as well as exact accuracy is bea-jh (Roh
and Bang, 2025). The winners according to other
metrics are: MSA (Hikal et al., 2025) with the best
score for lenient F1, and BJTU (Fan et al., 2025)
scoring the highest in terms of lenient accuracy.

Category Ex. F1 Ex. Acc Len. F1 Len. Acc
Dev maj. 0.2307 0.5291 0.4041 0.6781
Test maj. 0.2198 0.4919 0.4095 0.6936
Best test 0.7085(1) 0.7557(2) 0.8659(4) 0.8940(3)

Table 5: Results for Track 4: Actionability

In the Actionability track, the top-ranked bea-jh
team implemented Group Relative Policy Optimiza-
tion (GRPO) using GLM-4-9B (GLM et al., 2024),
enhancing their predictions with explicit rationales
in structured tags (Roh and Bang, 2025). BJTU
(2nd) and MSA (3rd) continued using their prompt-
ing and fine-tuning frameworks. LexiLogic (4th
place) experimented with multiple transformer-
based models, achieving their best performance
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with the Phi model (Bhattacharyya et al., 2025).
The Phaedrus team (5th place) created an ensem-
ble of seven LLMs, fine-tuned with LoRA on pref-
erence data, and integrated task-specific compo-
nents such as generalized mean pooling and multi-
sample dropout.

6.5 Track 5: Tutor Identification

Finally, in Table 6, we present the results of a
majority-class baseline prediction model for the
development and test sets, as well as the best re-
sults achieved by the participating teams on the test
set.

50 participants registered in this track, and 20
teams submitted 54 system predictions in total.
Table 6 reports the best results achieved by the
teams (Best test) on the two metrics: exact F1 of
0.9698, and exact accuracy of 0.9664. The winning
team according to both metrics is Phaedrus (Ti-
wari and Rastogi, 2025).

Category Ex. F1 Ex. Acc
Dev maj. 0.0240 0.1212
Test maj. 0.0244 0.1235
Best test 0.9698(1) 0.9664(1)

Table 6: Results for Track 5: Tutor Identification

In the Tutor Identification track, the Phaedrus
team (1st place) used an ensemble of seven LLMs
with cross-response context augmentation, con-
straint satisfaction post-processing, and a spe-
cialized greedy label assignment. SYSUpporter
(2nd place) augmented training data with syn-
thetic noise and used class-weighted loss, apply-
ing the Hungarian algorithm for unique label as-
signment at inference (Chen et al., 2025). Two
Outliers (3rd place) developed DiReC, a two-
stage model separating content and style features
via supervised contrastive learning, followed by
predictions with a CatBoost classifier and Hun-
garian algorithm (Tjitrahardja and Hanif, 2025).
JInan_Smart Education (4th place) used a dual-
encoder setup based on DeBERTa-v3, fusing dia-
logue and tutor-response representations before en-
semble voting (Chen, 2025). Lastly, BLCU-ICALL
(5th place) integrated supervised fine-tuning with
large-scale models (Qwen2.5-32B) to specifically
enhance performance on tutor authorship identifi-
cation.

6.6 Best Teams across Tracks

Teams BJTU (Fan et al., 2025), MSA (Hikal et al.,
2025), and BLCU-ICALL (An et al., 2025) emerged
as the top-performing teams among those that par-
ticipated in at least four out of five tracks, each
achieving an average ranking within the top five.
Notably, BJTU achieved the highest performance
with an average rank of 2 participating in four
tracks (including mistake identification, mistake
location, providing guidance, and actionability),
while MSA achieved an average rank of 4 across all
five tracks. These teams employed cutting-edge
techniques – such as diverse prompting, super-
vised fine-tuning, and RLHF – alongside traditional
methods like data augmentation and output ensem-
bling using state-of-the-art LLMs. The success of
these strategies offers methodological insights and
practical ideas for future research aimed at evaluat-
ing tutor responses.

6.7 Most Generalizable Approaches across
Tracks

Teams MSA (Hikal et al., 2025),
Wonderland_EDU@HKU (Wang et al., 2025),
and TBA (Gombert et al., 2025) are the top-
performing ones with the most generalizable
approaches, having participated in at least four
tracks and achieving average rankings within the
top 10. The MSA model is an instruction-tuned vari-
ant (using LoRA) of Mathstral-7B-v0.1 (Mistral
AI Team, 2024). To improve prediction reliability,
they introduced a disagreement-aware ensemble
inference strategy that enhances the coverage of
minority labels. Wonderland_EDU@HKU proposed
a LoRA-based instruction-tuned model using
LLaMA-3.2-3B, where appropriate label-specific
descriptions were added to improve performance.
Finally, TBA fine-tuned FLAN-T5-xl models on
each evaluation dimension separately, then merged
them using the DARE-TIES algorithm (Yu et al.,
2024) to exploit task interdependencies. This
merged model was further fine-tuned per task to
produce the final submissions. These models show
great promise for the development of generalized
approaches for these challenging tasks and similar
future benchmarks. For more details, please refer
to Appendix B.

7 Analysis and Discussion

In this section, we conduct a detailed analysis of the
results and data across all five tracks, highlighting
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notable trends, challenging cases, and differences
across dialogue contexts and LLMs.

Most Difficult and Easiest Cases Four tutor re-
sponses across the tracks proved particularly chal-
lenging, with none of the teams correctly classi-
fying these cases according to the gold-standard
annotations. Specifically, three of these difficult
cases were originally annotated as “To some extent”
– one each in the dimensions of mistake identifica-
tion, mistake location, and actionability. Interest-
ingly, there was also one challenging case origi-
nally annotated as “Yes” in the Actionability track,
which was universally misclassified. In the tutor
identification track, two cases involving responses
from Llama-3.1-8B and Llama-3.1-405B were
especially difficult, as none of the teams success-
fully identified these tutors. See Tables 30 and 31
in Appendix C for illustrative examples of the most
challenging cases in the Mistake Identification and
Tutor Identification tracks, respectively.

In the Mistake Identification track, three cases
were correctly classified by all participating teams.
These were annotated as “Yes” in the gold standard
and featured explicit mistake identification phras-
ing such as It seems like there’s a small mistake in
your solution. Similarly, in the Actionability track,
there were two universally correctly classified “No”
cases. One involved the tutor response That was
a very good try!, which lacked any guidance. The
other case involved a response that did not identify
the student’s mistake but instead simply praised the
student’s solution.

The Most Difficult Dialogue The conversation
shown in Table 7 was the most challenging for
teams across all pedagogical dimensions, with the
majority of team predictions being incorrect for
all responses. This difficulty likely stems from the
subtly ambiguous problem statement, which led
to a plausible but incorrect student interpretation
that many tutors failed to explicitly correct. Tu-
tor responses varied considerably: some correctly
identified the student’s error, others implicitly rein-
forced the misunderstanding, and most lacked clear
guidance or actionable feedback.

Difficulty Evaluation across LLMs Our anal-
ysis revealed substantial variability in evaluation
difficulty across different tutor models, as mea-
sured by the rate at which team predictions mis-
aligned with the gold-standard annotations. Re-
sponses from models like Llama-3.1-8B (42.35%

misalignment) and Gemini (40.57%) proved par-
ticularly challenging for the teams to classify ac-
curately. Even Expert responses exhibited a high
misalignment rate (37.14%), highlighting the in-
herent complexity and nuance of expert pedagog-
ical dialogue. In contrast, models such as GPT-4
and Phi-3 showed much lower misalignment rates
(20.45% and 17.72%, respectively), suggesting
more consistent and predictable styles.

Difficulty Evaluation across Subsets and Tracks
Table 8 shows aggregate performance across tracks
and subsets. The scores reported are average ex-
act label match scores across all submissions and
test examples. Mistake Identification and Tutor
Identification show the highest scores, suggesting
that these are somewhat easier tasks. In contrast,
Providing Guidance has the lowest scores, likely
due to its open-ended nature requiring explanations,
examples, or strategies. Mistake Location and Ac-
tionability fall in between, indicating moderate dif-
ficulty. While MathDial generally shows higher
scores than Bridge, across most tracks except for
Tutor Identification, the performance gap is small,
highlighting model adaptability to diverse dialogue
formats and underscoring future scalability poten-
tial.

Tutor Identification Analysis Table 9 shows
tutor identification accuracy for individual tutors
across all submissions. Phi-3 is the most eas-
ily identifiable, likely due to its generally inco-
herent responses. Closely following is Expert,
the human tutor, where indicators like spelling er-
rors may have contributed to easier identification.
Llama-3.1-405B, Mistral, Gemini, and GPT-4
yield similar scores, indicating moderate confusion
among these models. In contrast, Llama-3.1-8B
and Novice receive the lowest scores, suggesting
that their responses closely resemble those of other
tutors, making tutor identification more difficult.

8 Conclusions

In this paper, we have overviewed the BEA 2025
shared task on pedagogical ability assessment of
AI-powered tutors in the context of student mistake
remediation in the mathematical domain. Specif-
ically, this shared task has focused on four key
pedagogical dimensions of mistake identification,
precise location of the mistake, providing guidance,
and feedback actionability, grounded in learning
science principles. In addition, a separate track has
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Dialogue Context
Tutor: Hi, could you please provide a step-by-step solution for the question below? The question is: Pat is having a picnic with
her family. She has 42 cookies. She also has 63 pieces of candy and 21 brownies. There are 7 people in her family. If each
person gets the same number of each dessert, how much will each person get?
Student: The total number of desserts is 42 + 63 + 21 = 126. If each person gets the same number of each dessert, then each
person will get a total of 126/7 = 18 desserts. Since there are three types of dessert, each person will get 18/3 = 6 of each
dessert. Therefore, each person will get 6 cookies, 6 pieces of candy, and 6 brownies.
Tutor: I think you were confused by this question. Please talk me through your solution.
Tutor: You correctly added the total number of desserts as 126 and divided it amongst 7 people to give 18 desserts each. What
would happen if you calculated each dessert separately?
Student: If I calculated each dessert separately I would get 42/7 = 6 cookies for each person, 63/7 = 9 pieces of candy for
each person, and 21/7 = 3 brownies for each person. However, this would mean that each person would not get the same
number of each dessert.
Tutor Tutor Response Mistake Id. Mistake

Loc.
Guidance Actionable

Llama-3.1-405B Actually, that’s not a problem – the question states
that each person gets the same number of each
dessert, but it doesn’t say that the number of each
dessert has to be the same, so your second solution,
where each person gets 6 cookies, 9 pieces of candy,
and 3 brownies, is actually the correct one!

No No No No

Llama-3.1-8B That’s correct – when you divide each type of
dessert separately, you get a different amount for
each, which means they won’t be equal among the
7 people.

No No No No

Expert Ok, the question is confusing you. They just have
to have a share each. The answer should be 18.

To some ex-
tent

Yes No No

GPT-4 That’s correct! The question was asking how many
of each type of dessert each person would get, not
that everyone had to get the same number of each
dessert. So, each person will get 6 cookies, 9 pieces
of candy, and 3 brownies. Good job!

No No No No

Sonnet Great job on calculating each dessert separately –
that’s actually the correct approach here, as the ques-
tion asks for each person to get the same number of
each type of dessert, not the same total number of
desserts.

No No No No

Gemini You’re right, that would mean everyone doesn’t get
the same amount of each type of dessert! Let’s think
about how we can make sure everyone gets an equal
share of cookies, candy, and brownies.

To some ex-
tent

No No No

Mistral It seems there was a misunderstanding in the ques-
tion; it’s asking for each person to get the same
number of each type of dessert, not the same total
number of desserts.

Yes No No No

Phi-3 To ensure each student receives an equal number of
cookies, divide the total number of cookies by the
number of students.

To some ex-
tent

No No No

Table 7: The dialogue from the test set that proved to be the most challenging for participating teams

Tracks Bridge MathDial

Mistake Identification 80.36 81.17
Mistake Location 63.97 67.48
Providing Guidance 56.16 59.29
Actionability 64.84 65.70
Tutor Identification 78.54 76.43

Table 8: Aggregate submission performance across
tracks and subsets. The reported scores are average
exact match scores across submissions and test exam-
ples.

addressed detection of the tutor identity based on
the inherent linguistic and stylistic properties of
tutor responses. Over 50 international teams have

Tutor Accuracy (in %) Tutor Accuracy (in %)
Llama-3.1-8B 61.4 GPT-4 70.9
Novice 66.5 Sonnet 74.5
Llama-3.1-405B 68.8 Expert 79.1
Mistral 69.1 Phi-3 79.5
Gemini 69.4 - -

Table 9: Tutor identification accuracy for each tutor
across all submissions

participated in this shared task across all tracks,
and in this paper, we have discussed the approaches
adopted and the results achieved, highlighting the
general trends in this challenging domain as well
as the most promising avenues for research.
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Limitations

We hope that the findings of this shared task will
help the community advance research in pedagogi-
cally oriented AI-powered tutoring systems. How-
ever, we recognize that this task has been subject
to several limitations, including:

Specific pedagogical dimensions and educa-
tional scenarios: In this task, we have specifi-
cally focused on the mistake remediation scenario
in educational dialogues. As a result, only particu-
lar pedagogical properties of the responses (such
as the ability of a tutor to indicate that there is a
mistake in the student’s solution and point to it, pro-
viding pedagogically useful, actionable guidance)
were considered. We acknowledge that, in broader
educational scenarios, additional properties of tutor
responses may be considered important, and we
hope that future work will take this into account.

Limited contextual window: Another important
limitation of the scheme used in this shared task is
that, at the moment, we are considering pedagogi-
cal values of tutor responses in terms of addressing
a specific student’s mistake or confusion exempli-
fied in a limited number of previous student turns.
Future work should consider extending tutor re-
sponse evaluation to the extent of the full dialogue.

Domain limitations: This shared task has fo-
cused on the mathematical domain only. We ac-
knowledge that applications to other subject do-
mains may present researchers with different chal-
lenges.

Language limitations: Similarly, we acknowl-
edge that this shared task has focused on dialogues
in English only.

Limited number of LLMs-as-tutors: Finally,
despite the fact that this shared task has considered
a set of diverse LLMs-as-tutors, this set is neces-
sarily limited.

Ethics Statement

Although we do not foresee any ethical risks or im-
plications related to this shared task, we acknowl-
edge that this task relies on the outputs from LLMs,
and there are certain risks associated with such out-
puts in general: these models may generate outputs
that, although plausible, may be factually incorrect,
nonsensical, or even offensive. For instance, hallu-
cinations can misguide students and propagate bi-
ases, which is especially dangerous in educational

settings. Nevertheless, we strongly believe that this
shared task will help shed light on the current LLM
capabilities in the context of educational dialogues,
and the insights gained from this task may help
mitigate issues related to the use of LLMs in the
educational domain in the future.
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A Leaderboards

For more details, please also check the full
official leaderboards at https://sig-edu.org/
sharedtask/2025#results.

A.1 Track 1: Mistake Identification
The main leaderboard is presented by Table 10.
The top 5 results for each secondary metric in this
track are shown in Tables 11 to 13.

A.2 Track 2: Mistake Location
The main leaderboard is presented by Table 14.
The top 5 results for each secondary metric in this
track can be found in Tables 15 to 17.

A.3 Track 3: Providing Guidance
Table 18 presents the main leaderboard, while the
top 5 results for each secondary metric in this track
can be found in Tables 19 to 21.

A.4 Track 4: Actionability
Table 22 presents the main leaderboard, while Ta-
bles 23 to 25 report on the top 5 results for each
secondary metric in this track.

A.5 Track 5: Tutor Identification
Tables 26 and 27 present the main leaderboard and
the top 5 results for the secondary metric, respec-
tively.

B Analysis of the Approaches

Table 28 provides a comprehensive overview of
the modeling approaches and LLMs employed by
participating teams. Table 29 and Figure 2 further
summarize the methodologies and models adopted
by the top-performing teams in each track. No-
tably, Table 29 highlights the highest-scoring teams
across tracks. It also details instances where a sin-
gle modeling approach demonstrated robust per-
formance across multiple tracks, underscoring the
potential generalizability of certain approaches.

C Examples of Particularly Challenging
Cases

Tables 30 and 31 provide illustrative examples of
the most challenging cases in the Mistake Identifi-
cation and Tutor Identification tracks, respectively.
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Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 BJTU 0.7181 0.8623 0.8957 0.9457
2 TutorMind 0.7163 0.8759 0.9108 0.9528
3 Averroes 0.7155 0.8675 0.8997 0.9425
4 MSA 0.7154 0.8759 0.9152 0.9535
5 BD 0.7110 0.8772 0.8966 0.9412
6 Gooby-Snoob Guysz 0.7105 0.8481 0.8901 0.9373
7 Wonderland_EDU@HKU 0.6983 0.8675 0.9109 0.9496
8 Archaeology 0.6976 0.8675 0.8959 0.9405
9 test 0.6948 0.8400 0.8947 0.9451
10 Someone 0.6926 0.8520 0.8964 0.9438
11 TBA 0.6858 0.8740 0.9060 0.9476
12 BLCU-ICALL 0.6822 0.8578 0.8909 0.9418
13 bea-jh 0.6802 0.8708 0.9069 0.9457
14 JiNan_Smart Education 0.6790 0.8688 0.9052 0.9470
15 jeez 0.6735 0.8623 0.8957 0.9418
16 MT-NLP 0.6677 0.8636 0.8885 0.9354
17 K-NLPers 0.6669 0.8113 0.8671 0.9270
18 Thapar Titan/s 0.6647 0.8520 0.8840 0.9328
19 Squirrel Ai Learning 0.6646 0.8539 0.8748 0.9315
20 SmolLab_SEU 0.6617 0.8397 0.8782 0.9315
21 bnl 0.6578 0.8494 0.8806 0.9302
22 LexiLogic 0.6549 0.8487 0.8806 0.9302
23 Retuyt-InCo 0.6535 0.8449 0.8395 0.9192
24 777 0.6534 0.8526 0.8731 0.9283
25 CU 0.6514 0.8701 0.8957 0.9425
26 NLP Group 7 0.6499 0.8462 0.8605 0.9276
27 NLIP 0.6438 0.8546 0.8723 0.9257
28 ALA 0.6361 0.8423 0.8493 0.9140
29 mucai 0.6285 0.8067 0.8354 0.8985
30 AGS 0.6251 0.8390 0.8640 0.9211
31 Tutorify 0.6247 0.8261 0.8502 0.9173
32 Promptly Educated 0.6196 0.7104 0.8479 0.9224
33 wyn 0.6184 0.8384 0.8434 0.9095
34 Emergent Wisdom 0.6100 0.8546 0.8799 0.9321
35 Georgia Tech EDU 0.6049 0.8171 0.8386 0.9102
36 SG 0.5896 0.7919 0.8258 0.8875
37 NeuralNexus 0.5840 0.8268 0.8142 0.8972
38 presidency 0.5807 0.7570 0.8070 0.8804
39 NLP_UNH 0.5708 0.8358 0.8358 0.9089
40 letstea 0.5376 0.6593 0.8109 0.8681
41 Patriots 0.5345 0.8028 0.7923 0.8921
42 AUST_NLP 0.4819 0.7085 0.6929 0.7576
43 WhyIamHere 0.4562 0.7931 0.7126 0.8824
44 RAGthoven 0.2949 0.4350 0.4349 0.5365

Table 10: Official leaderboard for Track 1: Mistake Identification
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Rank Team Ex. Acc
1 TutorMind 0.8798

MSA
2 BD 0.8772
3 BJTU 0.8765
4 Archaeology 0.8746
5 TBA 0.8740

Table 11: Top 5 results according to exact accuracy for Track 1: Mistake Identification

Rank Team Len. F1
1 BJTU 0.9185
2 MSA 0.9152
3 TutorMind 0.9143
4 BLCU-ICALL 0.9110
5 Wonderland_EDU@HKU 0.9109

Table 12: Top 5 results according to lenient F1 for Track 1: Mistake Identification

Rank Team Len. Acc
1 TutorMind 0.9541
2 MSA 0.9535

BJTU
3 BLCU-ICALL 0.9515
4 Wonderland_EDU@HKU 0.9496
5 TBA 0.9476

Table 13: Top 5 results according to lenient accuracy for Track 1: Mistake Identification
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Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 BLCU-ICALL 0.5983 0.7679 0.8386 0.8630
2 BJTU 0.5940 0.7330 0.7848 0.8261
3 K-NLPers 0.5880 0.7641 0.8404 0.8610
4 MSA 0.5743 0.6975 0.7848 0.8209
5 SG 0.5692 0.7602 0.8118 0.8416
6 bea-jh 0.5658 0.6723 0.7792 0.8197
7 bd 0.5543 0.7143 0.7699 0.8054
8 TBA 0.5490 0.7091 0.7702 0.8035
9 Wonderland_EDU@HKU 0.5450 0.7104 0.7649 0.8003
10 Averroes 0.5366 0.6348 0.7587 0.7822
11 Whyamher 0.5325 0.6910 0.7370 0.7802
12 NLIP 0.5319 0.6878 0.7495 0.7951

Archaeology 0.5319 0.6568 0.7558 0.8009
13 JiNan_Smart Education 0.5274 0.6968 0.7502 0.7809
14 Squirrel Ai Learning 0.5272 0.6904 0.7306 0.7692
15 Thapar Titans 0.5215 0.6943 0.7374 0.7796
16 jeez 0.5187 0.6833 0.7416 0.7854
17 CU 0.5148 0.6807 0.7358 0.7789
18 777 0.5114 0.6710 0.7195 0.7486
19 Someone 0.5009 0.7208 0.7590 0.8074
20 Retuyt-InCo 0.4959 0.5863 0.7200 0.7608
21 NLP Group 7 0.4936 0.6348 0.6944 0.7524
22 SmolLab_SEU 0.4935 0.6057 0.7051 0.7401
23 lexilogic 0.4844 0.6548 0.7138 0.7447
24 mucai 0.4828 0.5495 0.7086 0.7343
25 Emergent Wisdom 0.4773 0.7188 0.7436 0.7893
26 2 0.4749 0.7279 0.7397 0.8003
27 Promptly Educated 0.4717 0.6432 0.6900 0.7337
28 Tutorify 0.4666 0.6626 0.7116 0.7447
29 NLP_UNH 0.4515 0.6994 0.6962 0.7725
30 Patriots 0.4450 0.6328 0.6548 0.7007
31 AUST_NLP 0.3044 0.4163 0.4759 0.4848

Table 14: Official leaderboard for Track 2: Mistake Location

Rank Team Ex. Acc
1 BLCU-ICALL 0.7679
2 K-NLPers 0.7641
3 SG 0.7602
4 bea-jh 0.7389
5 BJTU 0.7330

Table 15: Top 5 results according to exact accuracy for Track 2: Mistake Location

Rank Team Len. F1
1 K-NLPers 0.8404
2 BLCU-ICALL 0.8386
3 SG 0.8118
4 BJTU 0.7861
5 bea-jh 0.7851

Table 16: Top 5 results according to lenient F1 for Track 2: Mistake Location
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Rank Team Len. Acc
1 BLCU-ICALL 0.8630
2 K-NLPers 0.8610
3 SG 0.8416
4 BJTU 0.8274
5 bea-jh 0.8268

Table 17: Top 5 results according to lenient accuracy for Track 2: Mistake Location

Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 MSA 0.5834 0.6613 0.7798 0.8190
2 SG 0.5785 0.7052 0.7860 0.8216
3 BLCU-ICALL 0.5741 0.6716 0.7487 0.8061
4 BJTU 0.5725 0.6490 0.7445 0.8100
5 K-NLPers 0.5606 0.6270 0.7446 0.8003
6 bea-jh 0.5451 0.6387 0.7253 0.7977
7 Wonderland_EDU@HKU 0.5416 0.6464 0.7456 0.7886
8 IALab UC 0.5369 0.6244 0.7379 0.7822
9 JiNan_Smart Education 0.5275 0.6432 0.7336 0.7893
10 Henry 0.5265 0.6238 0.7196 0.7744
11 TBA 0.5212 0.6219 0.7299 0.7906
12 MT-NLP 0.5211 0.6141 0.7142 0.7699
13 Archaeology 0.5208 0.5734 0.7171 0.7770
14 Averroes 0.5134 0.6309 0.7095 0.7751
15 Squirrel Ai Learning 0.5087 0.6005 0.7059 0.7763
16 jeez 0.5071 0.5831 0.7234 0.7763

bd 0.5071 0.5831 0.7234 0.7763
17 Retuyt-InCo 0.5049 0.5947 0.7057 0.7751
18 woaiyuanshen 0.4974 0.5798 0.7034 0.7841
19 SmolLab_SEU 0.4933 0.5695 0.6990 0.7608
20 CU 0.4926 0.5850 0.7031 0.7692
21 Emergent Wisdom 0.4903 0.6102 0.6919 0.7725
22 NLIP 0.4888 0.6025 0.6927 0.7647
23 batikbabu 0.4873 0.6147 0.7001 0.7615
24 Whyiamhere 0.4856 0.6231 0.6880 0.7738
25 isistanNiem 0.4805 0.5844 0.6715 0.7589
26 Thapar Titans 0.4777 0.5624 0.6846 0.7479
27 DLSU 0.4776 0.5669 0.6755 0.7382
28 Tutorify 0.4731 0.5753 0.6709 0.7511
29 777 0.4711 0.6432 0.7075 0.7725
30 Promptly Educated 0.4674 0.6102 0.6785 0.7647
31 lexiLogic 0.4656 0.5869 0.6803 0.7473
32 GGEZ Lab 0.4596 0.5714 0.6652 0.7492
33 Patriots 0.4508 0.5663 0.6422 0.7311
34 NLP_UNH 0.4301 0.6380 0.6895 0.7692
35 AUST_NLP 0.4045 0.5973 0.6094 0.7259

Table 18: Official leaderboard for Track 3: Providing Guidance

Rank Team Ex. Acc
1 SG 0.7052
2 BLCU-ICALL 0.7007
3 MSA 0.6729
4 bea-jh 0.6703
5 TBA 0.6652

Table 19: Top 5 results according to exact accuracy for Track 3: Providing Guidance
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Rank Team Len. F1
1 SG 0.7860
2 MSA 0.7798
3 BLCU-ICALL 0.7699
4 K-NLPers 0.7483
5 Wonderland_EDU@HKU 0.7456

Table 20: Top 5 results according to lenient F1 for Track 3: Providing Guidance

Rank Team Len. Acc
1 BLCU-ICALL 0.8222
2 SG 0.8216
3 MSA 0.8190
4 BJTU 0.8100
5 TBA 0.8035

Table 21: Top 5 results according to lenient accuracy for Track 3: Providing Guidance

Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 bea-jh 0.7085 0.7298 0.8527 0.8837
2 BJTU 0.6992 0.7363 0.8633 0.8940
3 MSA 0.6984 0.7537 0.8659 0.8908
4 lexiLogic 0.6930 0.7162 0.8393 0.8675
5 Phaedrus 0.6907 0.7298 0.8346 0.8656
6 Wonderland_EDU@HKU 0.6843 0.7285 0.8613 0.8888
7 Archaeology 0.6776 0.7214 0.8302 0.8565
8 BLCU-ICALL 0.6735 0.7363 0.8596 0.8856
9 TBA 0.6671 0.7324 0.8499 0.8752
10 4 0.6668 0.7033 0.8160 0.8520

JiNan_Smart Education 0.6668 0.7033 0.8160 0.8520
11 bnl 0.6655 0.6813 0.8172 0.8597
12 woaiyuanshen 0.6651 0.7124 0.8191 0.8533
13 love-peace 0.6562 0.6839 0.8051 0.8352
14 bd 0.6554 0.7182 0.8461 0.8707
15 Thapar Titans 0.6324 0.6774 0.7936 0.8248
16 SmolLab_SEU 0.6284 0.6955 0.8223 0.8565
17 Retuyt-InCo 0.6129 0.7033 0.8272 0.8559
18 NLIP 0.6055 0.6897 0.8205 0.8468
19 Squirrel Ai Learning 0.5954 0.6516 0.7639 0.8022
20 Tutorify 0.5681 0.6425 0.7749 0.8190
21 K-NLPers 0.5664 0.5773 0.7346 0.8061
22 Emergent Wisdom 0.5661 0.6645 0.7782 0.8054
23 SG 0.5465 0.6341 0.7545 0.7725
24 SAI 0.5398 0.6277 0.7564 0.8022
25 DLSU 0.5294 0.6089 0.7351 0.7738
26 Patriots 0.4630 0.5727 0.6943 0.7537
27 whyiamhere 0.4306 0.6044 0.7143 0.7938
28 AUST_NLP 0.4196 0.5262 0.6077 0.6833
29 NLP_UNH 0.3798 0.5546 0.6530 0.7524

Table 22: Official leaderboard for Track 4: Actionability
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Rank Team Ex. Acc
1 bea-jh 0.7557
2 MSA 0.7537
3 BJTU 0.7363

BLCU-ICALL
4 TBA 0.7324
5 Phaedrus 0.7298

Table 23: Top 5 results according to exact accuracy for Track 4: Actionability

Rank Team Len. F1
1 MSA 0.8659
2 BJTU 0.8633
3 Wonderland_EDU@HKU 0.8613
4 bea-jh 0.8609
5 BLCU-ICALL 0.8596

Table 24: Top 5 results according to lenient F1 for Track 4: Actionability

Rank Team Len. Acc
1 BJTU 0.8940
2 MSA 0.8908
3 Wonderland_EDU@HKU 0.8888
4 bea-jh 0.8875
5 BLCU-ICALL 0.8856

Table 25: Top 5 results according to lenient accuracy for Track 4: Actionability

Rank Team Ex. F1 Ex. Acc
1 Phaedrus 0.9698 0.9664
2 SYSUpporter 0.9692 0.9657
3 Two Outliers 0.9172 0.9412
4 JInan_Smart Education 0.8965 0.8940
5 BLCU-ICALL 0.8930 0.8908
6 Archaeology 0.8866 0.8882
7 Wonderland_EDU@HKU 0.8795 0.8778
8 MSA 0.8697 0.8649
9 SmolLab_SEU 0.8621 0.8604
10 mucai 0.8602 0.8675
11 Squirrel Ai Learning 0.8432 0.8390
12 Retuyt-InCo 0.8385 0.8475
13 whyiamhere 0.8356 0.8345
14 bnl 0.8247 0.8216
15 Tutorify 0.8212 0.8100
16 LexiLogic 0.8207 0.8145
17 Georgia Tech EDU 0.6468 0.6296
18 DLSU 0.6420 0.6231
19 letstea 0.1749 0.1635
20 zet-epsilon 0.1140 0.1965

Table 26: Official leaderboard for Track 5: Tutor Identification
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Rank Team Ex. Acc
1 Phaedrus 0.9664
2 SYSUpporter 0.9657
3 Two Outliers 0.9412
4 JInan_Smart Education 0.8940
5 BLCU-ICALL 0.8908

Table 27: Top 5 results according to exact accuracy for Track 5: Tutor Identification
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Effective Modeling
Approaches

Prompting

1. Zero-shot
2. Few-shot
3. Multi-step
4. COT
5. Task--aware
6. Thinking-based

Fine-Tuning 

   1. Instruction tuning (LoRA)
   2. Fine-tuning (LoRA)
   3. SFT 
   4. RLHF
   5. Modified reward             
       optimization

Data-Based

1. Data augmentation
2. Label imbalance mitigation
3. Binary-to-multiclass phase-wise
training
4. Class-weighting
5. Multi-task learning

Representation and Feature
Engineering

1. Input representation
2. Representation fusion
3. Feature engineering
4. Routing

Ensembling and Hybrid
Methods

1. Ensembling
2. LLM Judge
3. CalBoost
4. Hungarian algorithm

Statistical & Traditional
Learning Methods

1. Fitting statistical classifiers
2. Supervised contrastive
learning

BJTU Tutor MindAverroes

MSABD

Mistake Identification

 

Mistake Location

 

Providing Guidance

 

Actionability

 

Tutor identification

 BLCU-
ICALL BJTU K-NLPers

MSA  SG

MSA SG BLCU-ICALL

BJTU K-NLPers

bea-jh BJTU MSA

lexiLogic Phaedrus

Phaedrus SYSUpporter Two Outliers

JInan_Smart Education BLCU-ICALL

Figure 2: Overview of the effective modeling approaches adopted by top-performing teams for each track
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Team Keywords of the Approach Models / LLMs
BJTU (Fan et al., 2025) Zero-shot prompting, data augmentation, task-aware

prompting
Unspecified

TutorMind (Dekmak et al., 2025) Instruction tuning (LoRA), data augmentation GPT-4o-mini, LLaMA-3.1-8B, Mistral-7B
Averroes (Yasser et al., 2025) Instruction tuning (LoRA) GTE-ModernBERT-Base, GTE-Qwen2-1.5B,

Qwen2.5-0.5B, Qwen2.5-1.5B,
Qwen2.5-Math-1.5B

MSA (Hikal et al., 2025) Instruction tuning (LoRA), ensembling Mathstral-7B-v0.1

BD (Rohan et al., 2025) SFT, class weighting, ensembling MPNet

Wonderland_EDU@HKU
(Wang et al., 2025)

Instruction tuning (LoRA) LLaMA-3.2-3B

Archaeology (Ros, u et al., 2025) SFT, fine-tuning (LoRA), binary-to-multiclass phase-
wise training, fitting statistical classifiers

Logistic Regression, LightGBM,
String-Kernel-SVM, RoBERTa, DeBERTa,
ModernBERT, GritLM, GPT2-XL, Mistral-7B,
XGBoost

TBA (Gombert et al., 2025) SFT, DARE-TIES algorithm FLAN-T5-XL

BLCU-ICALL (An et al., 2025) SFT, few-shot prompting, RLHF GPT-4o, GPT-o3-mini, Gemini-2.5-pro,
Grok-3, Deepseek-R1, Claude-3.7,
LLaMA-3.1-8B, QwQ-32B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-32B

bea-jh (Roh and Bang, 2025) GRPO, thinking-based model GLM-4-9B

JiNan_Smart Education (Chen,
2025)

Input representation, representation fusion, ensem-
bling

DeBERTa-v3

K-NLPers (Park et al., 2025) Chain-of-thought prompting, multi-strategy ensem-
bling, input representation

GPT-4.1

Thapar Titan/s (Dadwal et al.,
2025)

Data augmentation, weighted loss, SFT BERT, DeBERTa, RoBERTa

SmolLab_SEU (Rahman et al.,
2025)

SFT DeBERTa-V3, EduBERT, RoBERTa-Large,
SciBERT

LexiLogic (Bhattacharyya et al.,
2025)

SFT, zero-shot prompting, few-shot prompting Flan-T5, Llama-3.2-3B,
Llama-3-8B, ModernBERT,
MathBERT, Phi-4-mini-instruct,
Qwen2.5-7B-Instruct

Retuyt-InCo (Góngora et al.,
2025)

Input representation, SFT, fitting statistical classifiers Random Forest, SVC, k-NN,
Qwen2.5-0.5B-Instruct, XGBoost,
DistilBERT, BERT

CU (Lyu, 2025) SFT, data augmentation, label imbalance mitigation BERT, GPT-4.1
NLIP (Saha et al., 2025) SFT, data augmentation, multi-task learning, ensem-

bling
RoBERTa, DeBERTa

ALA* SFT BERT

Emergent Wisdom (Jain and Ren-
garajan, 2025)

Input representation, feature engineering, routing, fit-
ting statistical classifiers, multi-step prompting, LLM
judge

XGBoost, T5

SG* Multi-step prompting Gemma-3-27B-IT

NeuralNexus (Naeem et al.,
2025)

RAG, few-shot prompting, fitting statistical classi-
fiers

k-NN, GPT-4o

IALab UC (Busquets et al., 2025) Zero-shot prompting, feature engineering, pedagogi-
cal theory, fitting statistical classifiers

LearnLM-1.5, Random Forest

Henry (Pit, 2025) Zero-shot prompting, GRPO, fine-tuning (LoRA),
modified reward optimization

GPT-4o, Claude 2.7 Sonnet, Phi-3.5-mini
Instruct, MLP

DLSU (Manlises et al., 2025) Input representation, fitting statistical classifiers gte-modernbert-base,
all-MiniLM-L12-v2, MLP

Phaedrus (Tiwari and Rastogi,
2025)

Zero-shot prompting, instruction tuning (LoRA), en-
sembling

DeBERTa-v3-large, DeBERTa-v3-base,
DeBERTa-v3-small,
Longformer-base-4096,
BigBird-RoBERTa-large, Qwen-2.5-0.5B,
Zephyr-7B-alpha

SYSUpporter (Chen et al., 2025) Data augmentation, class weighting, ensembling,
Hungarian algorithm

Logistic Regression, Random Forest,
Extra Trees, XGBoost, DeBERTa

Two Outliers (Tjitrahardja and
Hanif, 2025)

Input representation, supervised contrastive learning,
ensembling, CalBoost, Hungarian algorithm

DeBERTa

Gooby-Snoob Guysz* Prompt optimization, failure-driven prompting OpenAI’s O1, GPT-4o

Table 28: Keywords and models associated with the approaches adopted by participating teams across all tracks. SFT =
Supervised Fine-Tuning, RAG = Retrieval-Augmented Generation, RLHF = Reinforcement Learning from Human Feedback,
MLP = Multilayer Perceptron, GRPO = Guided Reward Prompt Optimization. *Details are obtained via email correspondence.
Statistical classifiers include traditional models such as Random Forest (RF), XGBoost, etc.
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Track/Criteria Teams Keywords for Approaches Model/LLMs
*Mistake Identification BJTU, Tutor Mind, Averroes,

BD, MSA
Zero-shot prompting, data augmentation, task-aware
prompting, instruction tuning (LoRA), ensembling,
SFT, class weighting

GPT-4o-mini, LLaMA-3.1-8B, Mistral-7B,
GTE-ModernBERT-Base, GTE-Qwen2-1.5B,
Qwen2.5-0.5B, Qwen2.5-1.5B,
Qwen2.5-Math-1.5B, Mathstral-7B-v0.1,
MPNet

*Mistake Location BLCU-ICALL, BJTU, K-NLPers,
MSA, SG

SFT, few-shot prompting, RLHF, zero-shot prompt-
ing, data augmentation, task-aware prompting, chain-
of-thought prompting, multi-step prompting, multi-
strategy ensembling, input representation

GPT-4o, GPT-o3-mini, Gemini-2.5-pro,
Grok-3, Deepseek-R1, Claude-3.7,
LLaMA-3.1-8B, QwQ-32B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-32B, GPT-4.1,
Mathstral-7B-v0.1, Gemma-3-27B-IT

*Providing Guidance MSA, SG, BLCU-ICALL, BJTU,
K-NLPers

SFT, few-shot prompting, RLHF, zero-shot prompt-
ing, data augmentation, task-aware prompting, chain-
of-thought prompting, multi-step prompting, multi-
strategy ensembling, input representation

GPT-4o, GPT-o3-mini, Gemini-2.5-pro,
Grok-3, Deepseek-R1, Claude-3.7,
LLaMA-3.1-8B, QwQ-32B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-32B, GPT-4.1,
Mathstral-7B-v0.1, Gemma-3-27B-IT

*Actionability bea-jh, BJTU, MSA, lexiLogic,
Phaedrus

GRPO, thinking-based model, zero-shot prompting,
data augmentation, task-aware prompting, instruction
tuning (LoRA), ensembling, SFT, few-shot prompt-
ing

GLM-4-9B, Mathstral-7B-v0.1,
Flan-T5, ModernBERT,
MathBERT, Phi-4-mini-instruct,
Qwen2.5-7B-Instruct DeBERTa-v3-large,
DeBERTa-v3-base, DeBERTa-v3-small,
Longformer-base-4096,
BigBird-RoBERTa-large, Qwen-2.5-0.5B,
Zephyr-7B-alpha

*Tutor Identification Phaedrus, SYSUpporter,
Two Outliers, JInan_Smart
Education, BLCU-ICALL

SFT, few-shot prompting, RLHF, zero-shot prompt-
ing, instruction tuning (LoRA), ensembling, data aug-
mentation, class weighting, input representation, su-
pervised contrastive learning, CalBoost, Hungarian
algorithm, representation fusion

DeBERTa-v3-large, DeBERTa-v3-base,
DeBERTa-v3-small,
Longformer-base-4096,
BigBird-RoBERTa-large, Qwen-2.5-0.5B,
Zephyr-7B-alpha, GPT-4o, GPT-o3-mini,
Gemini-2.5-pro, Grok-3, Deepseek-R1,
Claude-3.7, LLaMA-3.1-8B, QwQ-32B,
Qwen2.5-7B, Qwen2.5-14B, Qwen2.5-32B

**Best Teams Across Tracks BJTU, MSA, BLCU-ICALL Zero-shot prompting, data augmentation, task-aware
prompting, SFT, few-shot prompting, RLHF, instruc-
tion tuning (LoRA), ensembling

Mathstral-7B-v0.1, GPT-4o, GPT-o3-mini,
Gemini-2.5-pro, Grok-3, Deepseek-R1,
Claude-3.7, LLaMA-3.1-8B, QwQ-32B,
Qwen2.5, Qwen2.5-7B, Qwen2.5-14B,
Qwen2.5-32B

***Best Generalizable Models Across Tracks MSA, Wonderland_EDU@HKU, TBA Instruction tuning (LoRA), ensembling, SFT, DARE-
TIES algorithm

Mathstral-7B-v0.1, LLaMA-3.2-3B,
FLAN-T5-XL

Table 29: *Indicates Summary of top-5 team approaches and the models used per evaluation track. **Indicates teams with an
average rank within the top 5 and participation in at least four tracks. ***Indicates teams that applied a generalized approach
across at least four tracks and achieved an average rank of 10 or higher.

Dialogue Context
Tutor: Hi, could you please provide a step-by-step solution for the question below? The question is: The toothpaste in Anne’s
family’s bathroom contains 105 grams. Anne’s dad uses 3 grams at each brushing, her mom uses 2 grams, Anne and her brother
use 1 gram each. Each member of the family brushes their teeth three times a day. How many days will it take for the toothpaste
to run out?
Student: Each family member uses a total of 3+2+1+1 = 7 grams of toothpaste per day. For the whole family, they use 7 x 4 =
28 grams of toothpaste per day. Therefore, the toothpaste will last for 105/28 = 3.75 days. Since they can’t use a partial day of
toothpaste, the toothpaste will last for 3 days. 3
Tutor: Hello, Luca! Can you walk me through your solution?
Student: Sure! I calculated that each family member uses 7 grams of toothpaste per day. So for the whole family, they use
28 grams of toothpaste per day. Then I divided 105 by 28 to get 3.75 days. Since they can’t use a partial day of toothpaste, I
concluded that the toothpaste will last for 3 days.
Tutor Tutor Response Mistake Identification
Gemini That’s a great start, Luca! It looks like you’ve correctly calculated the daily

usage, but remember each family member brushes three times a day, so you
need to account for that in your total daily usage.

To some extent

Table 30: This case from the test set in the Mistake Identification track was the most challenging for participating
teams. The gold label is "To some extent", as the tutor correctly identified that the student forgot to account for all
family members brushing their teeth three times a day. This captures one part of the student’s mistake. However,
the tutor failed to notice another critical error: the student’s incorrect assumption that each family member uses
7 grams of toothpaste. Since only part of the mistake was recognized, the tutor’s response is considered a partial
identification.

Tutor Tutor Response
Llama-3.1-405B Great job on calculating how many beads Caitlin has left after making one bracelet - now, let’s think

about how many bracelets she can make before she runs out of small beads.
Llama-3.1-8B Now, can you multiply 80 by 2?

Table 31: These responses were the most challenging for participating teams in the Tutor Identification track – none
of the teams correctly identified the tutor identities. The first response was frequently misclassified as coming from
Sonnet, while the second was often labeled as Mistral or Expert.
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Abstract

With the rapid development of smart education,
educational conversation systems have become
an important means to support personalized
learning. Identifying tutors and understanding
their unique teaching style are crucial to opti-
mizing teaching quality. However, accurately
identifying tutors from multi-round educational
conversation faces great challenges due to com-
plex contextual semantics, long-term dependen-
cies, and implicit pragmatic relationships. This
paper proposes a dual-tower encoding architec-
ture to model the conversation history and tutor
responses separately, and enhances semantic
fusion through four feature interaction mecha-
nisms. To further improve the robustness, this
paper adopts a model ensemble voting strat-
egy based on five-fold cross-validation. Exper-
iments on the BEA 2025 shared task dataset
show that our method achieves 89.65% Marco-
F1 in tutor identification, ranks fourth among
all teams(4/20), demonstrating its effective-
ness and potential in educational AI applica-
tions. We have made the corresponding code
publicly accessible at https://github.com/
leibnizchen/Dual-Encoder.

1 Introduction

This paper will introduce in detail the methods and
experiments on mentor identification in the BEA
2025 shared task (Ekaterina et al., 2025).

Different teachers show unique language char-
acteristics and guidance preferences in practice,
including dimensions such as expression methods,
guidance techniques, and feedback patterns. These
differences exist not only in the surface language
form, but also in the information architecture and
semantic logic of the feedback content. If the tu-
tor’s identity can be accurately recognized and their
teaching quality evaluated, it would not only help
analyze and optimize teaching styles but also pro-
vide strong support for improving teaching quality
and instructional methods (Gan et al., 2023).

However, teaching dialogues are highly temporal
dynamics. Semantic evolution, problem progres-
sion, and students’ cognitive trajectories will have
a profound impact on the generation of feedback in
the current round. There are often complex prag-
matic connections between teacher responses and
contexts, which are difficult to model through ex-
plicit rules, which poses a great challenge to iden-
tity recognition. In recent years, natural language
processing technology has shown great potential
in semantic understanding and generation, provid-
ing new ideas for teaching context modeling and
personalized feedback generation. However, to
accurately portray teacher style, there are still prob-
lems such as data scarcity, identity generalization,
and style transfer (Liu et al., 2019; He et al., 2023).

To address the above problems, this paper pro-
poses a dual-tower encoding structure that inte-
grates identity perception and context modeling
capabilities for tutor identity recognition based on
the characteristics of teaching conversation. This
method extracts semantic features from the conver-
sation context and tutor responses respectively, and
designs four feature interaction mechanisms to en-
hance semantic fusion capability. Furthermore, we
propose a voting strategy based on 5-fold cross-
validation, in which the best-performing model
from each fold is selected, and final identity recog-
nition is completed through ensemble voting to
improve the stability and robustness of the model.

The main contributions of this paper are as fol-
lows:

• A dual-tower encoding architecture is pro-
posed to separate the semantic modeling pro-
cesses of conversation context and tutor re-
sponse, enhancing the recognition ability of
personalized teaching styles.

• A Feature Interaction Modeling is designed,
to overcome the limitations of traditional dual-
tower models that rely solely on concatenation
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or similarity measures.

• A model ensemble voting strategy based
on the optimal models from 5-fold cross-
validation is introduced to effectively improve
tutor identification accuracy and the general-
ization ability of the model.

Experimental results on the BEA 2025 Shared
Task 1dataset (Maurya et al., 2025) show that the
proposed method achieves 89.65% Macro-F1 in the
tutor identification task, verifying its effectiveness
and potential for application in smart education.

2 Related Work

2.1 LLM-Powered AI Tutors

Educational conversation teaching systems have
made significant progress in the field of natural lan-
guage processing (NLP). Qiang (2025) proposed
key technologies based on recurrent neural net-
works (Transformers) (Vaswani et al., 2017), rein-
forcement learning, and multimodal learning anal-
ysis, demonstrating the application potential of
these technologies in personalized learning path
recommendation and adaptive content generation.
(Mansur et al., 2019)proposed a personalized learn-
ing model based on deep learning algorithms to
explore the most suitable learning strategies for
students. The model fully considered the key fac-
tors of personalized learning during the construc-
tion and testing process, including adaptability, per-
sonalization, differentiation, and ability-oriented
learning. (Gan et al., 2023)proposed an intelligent
tutoring system based on a large language model
(LLM) to improve students’ performance. (Cain,
2024; Makharia et al., 2024) used advanced prompt
engineering techniques to deploy language models
as intelligent tutors to improve the personalization
and interactivity of teaching.

2.2 Contextual Content Understanding

Context understanding is the core challenge of ef-
fectively modeling long-range dependencies and
capturing subtle semantic relationships in the con-
text. Early methods such as recurrent neural net-
works (RNNs) laid the foundation for sequence
modeling, but often suffered from problems such as
gradient vanishing and limited context preservation
capabilities. The emergence of the Transformer
architecture (Vaswani et al., 2017) introduced the

1https://sig-edu.org/sharedtask/2025

self-attention mechanism, which significantly im-
proved the ability to capture global context infor-
mation. On this basis, pre-trained language models
such as BERT (Devlin et al., 2019) and its vari-
ants (RoBERTa) (Liu et al., 2019), DebertaV3 (He
et al., 2023)) have become standard tools for deep
semantic understanding in a wide range of tasks.
To more effectively handle longer contexts, mod-
els such as Longformer (Beltagy et al., 2020) and
BigBird (Zaheer et al., 2021) adopt sparse attention
mechanisms. To further enhance context modeling,
researchers have incorporated external knowledge
through models like K-BERT, integrated memory
mechanisms such as those used in Memory Net-
works and Transformer-XL (Dai et al., 2019), and
improved coreference resolution with models like
SpanBERT (Joshi et al., 2020). Despite these ad-
vances, several challenges remain, including han-
dling semantic ambiguity, preserving long-range
dependencies, mitigating context truncation, and
enabling complex multi-hop reasoning.

3 Methods

The dual encoder architecture is widely used in
long text information matching. Base on the work
of (Wang et al., 2023; Guo et al., 2024), we pro-
posed a dual encoder architecture for tutor identifi-
cation via Semantic Understanding of Pedagogical
Conversations model, the core structure of which
is shown in Figure 1. The model captures the deep
semantic representation of the conversation history
and tutor responses through independent bidirec-
tional encoders, and adopts a multimodal feature
fusion strategy to achieve fine-grained semantic
interaction modeling.

3.1 Dual encoder architecture
The model uses a dual Transformer encoder struc-
ture with independent parameters, which are de-
fined as history encoder Eh(·) and response en-
coder Eh(·). Given the input sequence (conversa-
tion history) {hi}Li=1 and (tutor response) {rj}Mj=1,
the context-aware semantic representation is ob-
tained through the pre-trained language model:

H = Eh(Emb(h1, ..., hL)) ∈ RL×d (1)

R = Er(Emb(r1, ..., rL)) ∈ RM×d (2)

Where d = 768 is the hidden layer dimension, L
and M represent the length of the conversation
history and the tutor response, respectively, and
Emb(·) represents the word embedding layer. To
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Figure 1: The core structure of Dual Encoder Architec-
ture.

obtain a global semantic representation, we extract
the hidden states from the first layer of DeBertaV3.
This step provides a lightweight yet informative
semantic encoding, which will serve as the founda-
tion for downstream tasks,the formula is as follows:

h = H[:, 0, :] ∈ Rd (3)

r = R[:, 0, :] ∈ Rd (4)

3.2 Feature Interaction Modeling
In order to effectively model the deep semantic as-
sociation between the conversation history and the
tutor’s response, we designed a multi-dimensional
feature fusion mechanism. This mechanism aims
to integrate the conversation context information
and the response representation from multiple se-
mantic perspectives. We found that relying on a
single feature fusion strategy, such as concatena-
tion or addition, has limited performance when
dealing with complex semantic relationships and is
difficult to fully capture potential semantic interac-
tion information. The ablation experiment section
provides proof. To overcome this problem, we con-
structed the following four complementary fusion
strategies from the perspective of information re-
dundancy control and semantic complementarity
enhancement:

• Concatenation Fusion: Concatenation fusion
is a basic and widely used feature integration

method that directly splices the conversation
history vector h with the tutor response vector
r, retaining all the semantic information in the
original representation:

fc = [h; r] ∈ R2d (5)

• Hadamard Product: The Hadamard product
is an effective method for modeling nonlin-
ear interactions between features. The fusion
result retains strong activation only when the
corresponding dimensions of the two feature
vectors have high values:

fm = h⊙ r ∈ Rd (6)

• Additive Fusion: Its main function is to cap-
ture semantic commonality and consistency.
Unlike concatenation and fusion, the addition
operation emphasizes the relative direction
and consistency of two vectors in the seman-
tic space:

fa = h+ r ∈ Rd (7)

• Subtract Fusion: It is used to characterize the
semantic difference between two vectors. In
conversation modeling, difference features of-
ten carry key information to distinguish valid
and invalid responses:

fs = abs(h− r) ∈ Rd (8)

The final joint representation is:

f = [fc; fm; fa; fs] ∈ R5d (9)

3.3 Classifier Design
The feature vector is mapped to dimension reduc-
tion through a cascade of processing modules:

y = W2(LayerNorm(ReLu(W1f + b1))) + b2
(10)

Where W1 ∈ R5d×256,W2 ∈ RC×256, C is the
number of categories. The processing flow is im-
plemented through a three-layer cascaded architec-
ture.

4 Experiment

This section verifies the effectiveness of the model
through systematic experiments, adopts a five-fold
cross-validation strategy to ensure the reliability of
the evaluation, and analyzes the contribution of key
components through ablation experiments.
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Figure 2: 5-fold cross validation model ensemble.

4.1 Dataset
Train set: 300 teaching scenario conversations pro-
vided by BEA 2025 Shared Task(Maurya et al.,
2025). Each teaching scenario Conversation has
at most 9 tutor responses, with a total of 2476 re-
sponses. We randomly divide tutor replies into
training set/validation set at a ratio of 4:1. Test
set: 191 teaching scenario conversations, includ-
ing 1547 responses with unknown tutor identity
information.

4.2 Five-fold Cross Validation Strategy
In order to systematically evaluate the generaliza-
tion performance of the model and effectively sup-
press overfitting, this study adopts a stratified five-
fold cross-validation framework. Cross-validation
process:

• Iterative validation: Each subset is designated
as the validation set in turn, and the remaining
four subsets are merged into the training set to
complete five rounds of independent training
and validation processes.

• Model selection: Continuously monitor the
performance of the validation set during each
round of training, and the model weight pa-
rameters corresponding to the highest Macro-
F1 score are retained.

• Cyclic validation: Through five complete iter-
ations, it is ensured that each sample partici-
pates in the validation process exactly once.

This scheme obtains robust model parameters
through cross-validation, and effectively improves
the accuracy and stability of model prediction by
combining ensemble learning strategies.

fold Macro-F1(%) Accuracy(%)
1 0.8903 0.8891
2 0.9103 0.9023
3 0.9012 0.8993
4 0.8890 0.8922
5 0.8997 0.9013
Average 0.8981± 0.87% 0.8968± 0.59%

Table 1: Results of five-fold cross validation on the
training set/validation set.

4.3 Five-fold Cross Validation Experimental
Results

Our method is stable across training/validation and
final test sets. Table 1 shows the detailed perfor-
mance of the model in the five-fold cross validation.
The experimental results show that the model ex-
hibits strong stability and robustness under differ-
ent data partitions In the five-fold cross validation,
the mean of Macro-F1 reached 0.8981, the stan-
dard deviation was only ±0.87%, and the fluctua-
tion range was controlled within 2.13 percentage
points; the standard deviation of Accuracy was
±0.59%, which further verified the robustness of
the model in dealing with changes in data distribu-
tion. This provides a feasibility basis for the model
integration method.

4.4 Feature Interaction Ablation Experiment

Table 2 shows the ablation experiment results of
the model fusion mechanism, which shows the im-
pact of different fusion strategies on model perfor-
mance (Macro-F1 and Accuracy). It includes both
individual usage and removal of four fundamental
fusion operations: concatenation, Hadamard prod-
uct, addition, and subtraction. As can be seen from
the table: using a single fusion method leads to
slightly lower performance compared to the full
model. Among them, Subtract-only achieved rela-
tively high performance (Macro-F1 0.8849, Accu-
racy 0.8845), showing its effectiveness in capturing
differences. Removing individual fusion methods
also results in performance drops. Among them,
the performance decrease caused by removing the
Hadamard fusion (w/o Hadamard) is more obvious
(Macro-F1 0.8832, Accuracy 0.8815), indicating
that Hadamard plays an important role in capturing
feature interactions. The full model performs best
in all indicators, with Macro-F1 reaching 0.8981,
Accuracy 0.8968, and a small standard deviation,
which verifies that the synergy of each fusion oper-
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fusion methods Dimension Macro-F1(%) Accuracy(%)
Concatenation-only 2d 0.8811 ± 0.67% 0.8891 ± 0.57%
Additive-only 1d 0.8823± 0.83% 0.9003± 0.85%
Subtract-only 1d 0.8849± 0.84% 0.8845± 0.87%
Hadamard-only 1d 0.8822± 0.76% 0.8823± 0.67%
w/o Concatenation 3d 0.8901± 0.84% 0.8812± 0.80%
w/o Additive 4d 0.8873± 0.57% 0.8843± 0.83%
w/o Subtract 4d 0.8845± 0.81% 0.8839± 0.89%
w/o Hadamard 4d 0.8832 ± 0.82% 0.8815± 0.77%
Full model (Proposed) 5d 0.8981± 0.87% 0.8968± 0.59%

Table 2: Ablation Experiment Results of Feature Fusion.

ation has a positive contribution to improving the
robustness and predictive ability of the model.

Overall, the ablation study confirms the effec-
tiveness and necessity of the proposed multi-fusion
mechanism.

Conclusion

This study solves the problem of tutor identification
in educational conversation systems by introducing
a dual encoding framework to effectively model
conversation history and tutor response. By com-
bining advanced feature interaction mechanisms
and integrated voting strategies, the method demon-
strates strong performance and robustness, achiev-
ing 89.65% Macro-F1 on the BEA 2025 shared
task dataset. These results confirm the value of our
approach in capturing personalized teaching styles
and improving semantic consistency in feedback
generation.

Limitations

Although our proposed dual-encoder framework
performs well on the tutor identification task, it still
has some limitations. First, the effectiveness of the
model depends on the availability of labeled data,
which may be limited in real-world educational set-
tings. Second, the current approach assumes the
existence of clear conversational turns and well-
structured dialogues. Third, while the model cap-
tures personalized teaching styles to some extent,
it does not explicitly incorporate speaker-specific
historical profiles, which may further improve the
recognition accuracy. Finally, the generalizability
of the model across different educational domains
and languages remains to be explored.

Ethical Considerations

This study uses de-identified educational conversa-
tion data provided by the BEA 2025 Shared Task
organizers. No personally identifiable information
is included. The task of tutor identification is aimed
at supporting pedagogical analysis and improving
educational tools, not at surveilling or ranking hu-
man educators. All model outputs are intended
for research use only, and ethical guidelines for
educational data processing have been followed.
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Appendix

.1 Other Shared Tasks
We also participated in 4 tasks beyond the tutor
identification task, and achieved the following rank-
ings:

Mistake Identification task: 14/44
Mistake Identification task: 13/32
Providing Guidance task: 9/35
Actionability task: 11/35
The above data is from the official statistics of

BEA workshop at ACL 2025.

.2 Method Details
The above four tasks all adopt a unified method
framework. Specifically, we construct a dual tower
encoder architecture based on the DeBERTaV3 pre
trained model. Unlike the feature interaction mod-
eling strategy introduced in the tutor identification
task, this study did not adopt complex interaction
mechanisms for these four tasks, but simply con-
catenated the feature vectors output by the twin
towers. Subsequently, a routing selection module is
introduced to screen and optimize the concatenated
features, and finally the final category prediction is
completed through a linear layer.
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Abstract

The potential of large language models (LLMs)
as AI tutors to facilitate student learning has
garnered significant interest, with numerous
studies exploring their efficacy in educational
contexts. Notably, Wang and Chen (2025) sug-
gests that the relationship between AI model
performance and educational outcomes may
not always be positively correlated; less accu-
rate AI models can sometimes achieve simi-
lar educational impacts to their more accurate
counterparts if designed into learning activities
appropriately. This underscores the need to
evaluate the pedagogical capabilities of LLMs
across various dimensions, empowering educa-
tors to select appropriate dimensions and LLMs
for specific analyses and instructional activi-
ties. Addressing this imperative, the BEA 2025
workshop initiated a shared task aimed at com-
prehensively assessing the pedagogical poten-
tial of AI-powered tutors.

In this task, our team employed parameter-
efficient fine-tuning (PEFT) on Llama-3.2-3B
to automatically assess the quality of feed-
back generated by LLMs in student-teacher dia-
logues, concentrating on mistake identification,
mistake location, guidance provision, and guid-
ance actionability. The results revealed that the
fine-tuned Llama-3.2-3B demonstrated notable
performance, especially in mistake identifica-
tion, mistake location, and guidance actionabil-
ity, securing a top-ten ranking across all tracks.
These outcomes highlight the robustness and
significant promise of the PEFT method in en-
hancing educational dialogue analysis.

1 Introduction

In sociocultural theory, Vygotsky and Cole (1978)
posits that learning occurs through interactions
within social contexts, where conversation and dia-
logue serve as the primary mediums. During dia-
logues, a series of verbal or text exchanges occur
between individuals, leading to the co-construction
and negotiation of meaning (Tao and Chen, 2023),

which has been found to facilitate individuals’ cog-
nitive development (Mercer and Littleton, 2007).
Consequently, learning scientists and educational
psychologists advocate for educators to harness the
power of dialogue to enhance student learning.

In educational settings, dialogue can take place
between students and teachers, students and their
peers, and students and machines, in both online
and offline environments (Wang et al., 2024b).
These interactions contain rich information perti-
nent to students’ learning. Initially, to provide valu-
able feedback on specific aspects of students’ dia-
logues to improve learning outcomes, researchers
manually analyzed these dialogues using rubrics or
coding schemes (Howe and Abedin, 2013). How-
ever, due to the substantial human and time costs,
this manual approach is not feasible for large-scale
contexts involving numerous dialogues. With the
advent of artificial intelligence (AI), researchers
have explored using conventional machine learn-
ing techniques to automate the analysis of educa-
tional dialogues. This method, however, remains
semi-automatic, as it requires researchers to deter-
mine which linguistic or speech features should
be included as input (Wang et al., 2025a). Fur-
thermore, the performance of this method still has
room for improvement. Subsequently, deep neu-
ral networks emerged, demonstrating exceptional
performance in natural language processing tasks.
Researchers have thus explored using deep learning
techniques to automatically analyze educational di-
alogues (Wang et al., 2024a,b; Shan et al., 2023).
Although this approach achieves remarkable per-
formance, deep learning techniques struggle to gen-
eralize across various educational contexts (Wang
et al., 2025c). When educators wish to analyze
additional dimensions of dialogue information, an-
other round of data collection, annotation, and
model training is necessary (Wang et al., 2025b).

In the past two years, large language mod-
els (LLMs) have emerged, demonstrating impres-
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sive abilities to understand human language. Pre-
trained on vast corpora of texts, LLMs can perform
various language-related tasks and respond in ways
that align with human expectations. Researchers
have accordingly utilized LLMs to analyze educa-
tional dialogues (e.g., Wang and Demszky, 2023;
Wang et al., 2023; Moreau-Pernet et al., 2024). Ad-
ditionally, owing to their interactive nature, LLMs
have also been employed as AI tutors, directly en-
gaging with students to facilitate their learning. For
instance, GPT-3.5 and Llama3 have been used as
AI tutors to detect and correct students’ errors in
their messages (Daheim et al., 2024) and provide
scaffolding help (Phung et al., 2023). Despite their
versatility, LLMs’ performance varies across dif-
ferent dimensions. For example, they may excel
in correcting grammatical errors but struggle with
analyzing reasoning mistakes. Moreover, Wang
and Chen (2025) suggests that more accurate AI
models do not necessarily lead to more effective ed-
ucational outcomes. Sometimes, incorrect answers
from LLMs can prompt students to engage in deep
reflection, thereby positively impacting their learn-
ing. This indicates that even less accurate LLMs
may have practical applications. Therefore, it is
essential to comprehensively evaluate LLMs’ ped-
agogical capabilities when they function as tutors.
Such evaluations can inform the design of AI tutors
in educational practice for optimized outcomes.

To address these issues, BEA 2025 is organizing
a shared task to assess whether LLMs can serve
as effective AI tutors based on four metrics: mis-
take identification, mistake location, guidance pro-
vision, and actionability clarity (Kochmar et al.,
2025). Given educational dialogues between stu-
dents and tutors in the mathematical domain, which
are grounded in student mistakes or confusion,
seven LLMs are tasked with providing feedback on
students’ utterances across these four dimensions.
Following meticulous annotation of LLMs’ ped-
agogical capabilities in these metrics, BEA 2025
provides a development set with annotations and
invites participants to complete the remaining anno-
tations in the test set. To accomplish this task, we
selected a parameter-efficient fine-tuning (PEFT)
technique, namely LoRA (Low-Rank Adaptation),
and fine-tuned an LLM, specifically Llama-3.2-3B.
This decision was motivated by two considerations.
First, PEFT techniques have been shown to enable
LLMs to outperform BERT and RoBERTa in educa-
tional dialogue analysis tasks (e.g., Wang and Chen,
2025; Wang et al., 2025b). Second, unlike the well-

trained BERT and RoBERTa models specialized
for specific tasks and fully fine-tuned LLMs with
performance degradation on other tasks, parameter-
efficiently fine-tuned LLMs not only excel in these
tasks but also retain the ability to perform other
tasks akin to the original LLMs.

2 Method

2.1 Task description

The dataset for the BEA 2025 shared task com-
prises 500 educational dialogues between stu-
dents and tutors within the mathematical domains
(Maurya et al., 2025), specifically from Math-
Dial (Macina et al., 2023) and Bridge (Wang
et al., 2024c). Each dialogue includes multiple
prior exchanges from both the tutor and the stu-
dent, in which in the student’s final utterance con-
tains a mistake. In response to these dialogues,
seven LLMs—namely, GPT-4, Gemini, Sonnet,
Mistral, Llama3.1-8B, Llama3.1-405B, and Phi-
3—generate feedback aimed at identifying and ad-
dressing the mistake (Kochmar et al., 2025). The
responses generated by the LLMs are annotated
according to their quality across the following ped-
agogically motivated dimensions:

• Mistake identification: Since all dialogues in
the dataset contain a mistake made by the stu-
dent, a good quality response from the tutor
should include the relevant mistake identifica-
tion.

• Mistake location: A good tutor response
should not only notify the student of the com-
mitted error, but also point to its location in
the answer and outline what the error is to help
student remediate it in their next response.

• Providing guidance: A good tutor response
should provide the student with relevant and
helpful guidance, such as a hint, an explana-
tion, a supporting question, and the like.

• Actionability: Once the guidance is provided
to a student, it should be clear from a good
tutor response what the student should do next;
in other words, the tutor response should not
be vague, unclear or a conversation stopper.

The BEA 2025 shared task provides a develop-
ment set consisting of 300 educational dialogues
with annotations on these four dimensions and a

1041



Conversation History:
Student: okey
Tutor: Now we have the same dominators so we can subtract the numbers directly.
Tutor: What is 25 minus 18?
Student: 8.

Llama3.1-405B:
Response: That's close, but let's double-check. If we have 25 and subtract 18, wouldn't we actually get 7?
Mistake Identification: Yes,
Mistake Location: Yes,
Providing Guidance: Yes,
Actionability: Yes

......

Conversation History:
Tutor: What is the 12 subtracted by 1?
Student: 12.

Tutor 1:
Response: Actually, if we subtract 1 from 12, we get 11, not 12. Let's try it again together.
Mistake Identification: ?
Mistake Location: ?
Providing Guidance: ?
Actionability: ?

......

Figure 1: Example of dialogues in the development set (blue) and test set (green).

test set containing 200 educational dialogues with-
out annotations on these four dimensions. For each
dimension, the annotations have three labels, re-
spectively Yes, To some extent, and No. Their de-
scription and number can be seen in Table 1. Par-
ticipants are tasked with predicting annotations for
the test set based on the development set, which
involves a three-way classification task for each
metric. An example of a well-annotated dialogue
from the development set and an unannotated di-
alogue from the test set is illustrated in Figure 1.
More detailed description of the BEA 2025 shared
task can be seen in Kochmar et al. (2025).

In addition to the four tracks previously men-
tioned, the BEA 2025 shared task also included
anonymized responses generated by LLMs, as well
as responses produced by both expert and novice
tutors (i.e., Identifying Tutors). We were invited
to predict the source of each response in the test
set. Consequently, this track constitutes a nine-way
classification task.

2.2 PEFT method

We opted for LoRA (Low-Rank Adaptation), a
well-regarded PEFT method, to assess the qual-
ity of LLMs’ pedagogical responses in the test
set. LoRA effectively maintains the pre-existing
weights within LLMs, incorporating trainable low-
rank decomposition matrices into the internal
Transformer framework (Hu et al., 2021). This
technique substantially minimizes the number of

parameters that need training, which is essential
for fine-tuning LLMs in downstream tasks.

In deep neural networks, weight matrices gener-
ally exhibit full rank, indicating they possess the
maximum number of linearly independent rows
or columns. Nonetheless, pre-trained models fre-
quently exhibit low intrinsic dimensionality, sig-
nifying that a low-dimensional reparameterization
can be as effective for fine-tuning as utilizing the
full parameter space (Aghajanyan et al., 2021).
Therefore, it may not be necessary to adjust all
parameters during fine-tuning for a particular down-
stream task. Instead, a lower-dimensional reparam-
eterization can be employed to fine-tune LLMs (Xu
et al., 2023). LoRA accomplishes this by utilizing
two trainable low-rank matrices for the purpose of
weight updates (Hu et al., 2021).

Formally, in the context of full fine-tuning, the
update of an LLM’s weight matrix (denoted as
W0 ∈ Rd×k) can be described by the expression
W0+△W . LoRA represents△W with two lower-
rank trainable weight matrices, Wup ∈ Rd×r and
Wdown ∈ Rr×k, as shown in Equation 1, where the
rank r is much smaller than min(d, k). As a result„
the original weight matrix W0 remains unchanged
during fine-tuning, thereby conserving memory,
while only Wup and Wdown are subject to updates.
Given that r is much smaller than the minimum
value between d and k, the computational demands
of LoRA are markedly lower compared to full fine-
tuning.
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Table 1: The description of labels in each task in the development set.

Labels Description Number

Mistake Identification
Yes The mistake is clearly identified/ recognized in the tutor’s re-

sponse.
1932

No The tutor does not recognize the mistake (e.g., they proceed to
simply provide the answer to the asked question).

370

To some extent The tutor’s response suggests that there may be a mistake, but it
sounds as if the tutor is not certain.

174

Mistake Location
Yes The tutor clearly points to the exact location of a genuine mistake

in the student’s solution.
1543

No The response does not provide any details related to the mistake. 220
To some extent The response demonstrates some awareness of the exact mistake,

but is vague, unclear, or easy to misunderstand.
713

Providing Guidance
Yes The tutor provides guidance that is correct and relevant to the

student’s mistake.
1407

No The tutor’s response does not include any guidance, or the guid-
ance provided is irrelevant to the question or factually incorrect.

503

To some extent Guidance is provided but it is fully or partially incorrect, incom-
plete, or somewhat misleading.

566

Actionability
Yes The response provides clear suggestions on what the student

should do next.
1310

No The response does not suggest any action on the part of the
student (e.g., it simply reveals the final answer).

369

To some extent The response indicates that something needs to be done, but it is
not clear what exactly that is.

797

W0 +△W = W0 +WupWdown (1)

2.3 Fing-tuning

We selected an open-source LLM, Llama-3.2-3B-
Instruct1, to conduct PEFT. Llama-3.2-3B-Instruct,
released by Google in September 2024, is an
instruction-tuned, text-only large model optimized
for multilingual dialogue applications, supporting
eight languages. It surpasses many existing open-
source and proprietary chat models on standard
industry benchmarks.

A critical component of PEFT is the prepara-
tion of a well-annotated dataset. Accordingly, we
meticulously designed a prompt to evaluate the ped-
agogical abilities of LLMs based on their responses
in the development set, incorporating both instruc-
tional and contextual elements. The instruction
was framed as follows: The following dialogue
is a discussion between a student and a tutor in
the mathematical domain, where the last utterance
from the student contains a mistake. Then, an AI
tutor provides a response attempting to remediate
such mistakes. THEN TASK DESCRIPTION. The
description for each task is as follows:

Mistake Identification: Please analyze
whether the AI tutor’s response identifies the

1https://huggingface.co/meta-llama/Llama-3.2-3B-
Instruct

student’ mistake and classify it as Yes, No, or
To some extent.

Mistake Location: Please analyze whether
tutors’ responses accurately point to a gen-
uine mistake and its location in the students’
responses and classify it as Yes, No, or To
some extent.

Providing Guidance: Please analyze
whether tutors’ responses offer correct and
relevant guidance, such as an explanation,
elaboration, hint, examples, and so on and
classify it as Yes, No, or To some extent.

Actionability: Please analyze whether tutors’
feedback is actionable, i.e., it makes it clear
what the student should do next, and classify
it as Yes, No, or To some extent.

The definitions of Yes, No, and To some ex-
tent were provided as context. Subsequently, we
provided the educational dialogue and the LLMs’
response as input. The expected output was the cor-
responding label accompanied by an explanation.
Figure 2 illustrates an example of the prompt for
the task of mistake identification and the expected
answer used to fine-tune Llama-3.2-3B-Instruct.
Examples of prompts for the other three tasks are
available in Figures 3, 4, and 5.

For the Identifying Tutors track, the instruction
and task description are as follows:
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The following dialogue is a discussion between a student and a tutor in the mathematical domain, where the last utterance 
from the student contains a mistake. Then, An AI tutor provides a response trying to remediate such mistakes. Please analyze 
whether the AI tutor's response identifies the student' mistake and classify it as Yes, No, or To some extent.

Yes refers to that the mistake is clearly identified/ recognized in the tutor’s response; No refers to that the tutor does not 
recognize the mistake (e.g., they proceed to simply provide the answer to the asked question); To some extent refers to that 
the tutor’s response suggests that there may be a mistake, but it sounds as if the tutor is not certain.

Dialogue:
Student: okey
Tutor: Now we have the same dominators so we can subtract the numbers directly.
Tutor: What is 25 minus 18?
Student: 8.

And the AI tutor’s response is:
 That's close, but let's double-check. If we have 25 and subtract 18, wouldn't we actually get 7?

Yes, the mistake in the last utterance from the student is clearly identified/ recognized in the tutor’s response.

Prompt

Output

Figure 2: Example of a prompt for the task of mistake identification.

The following dialogue is a discussion between a student and a tutor in the mathematical domain, where the last utterance 
from the student contains a mistake. Then, An AI tutor provides a response trying to remediate such mistakes. Please analyze 
whether tutors’ responses accurately point to a genuine mistake and its location in the students’ responses and classify it as 
Yes, No, or To some extent.

Yes refers to that the tutor clearly points to the exact location of a genuine mistake in the student’s solution; No refers to that 
the response does not provide any details related to the mistake; To some extent refers to that the response demonstrates 
some awareness of the exact mistake, but is vague, unclear, or easy to misunderstand.

Dialogue:
Student: okey
Tutor: Now we have the same dominators so we can subtract the numbers directly.
Tutor: What is 25 minus 18?
Student: 8.

And the AI tutor’s response is:
 That's close, but let's double-check. If we have 25 and subtract 18, wouldn't we actually get 7?
Yes, the tutor clearly points to the exact location of a genuine mistake in the student’s solution.

Prompt

Output

Figure 3: Example of a prompt for the task of mistake location.

“The following dialogue is a discussion between
a student and a tutor in the mathematical domain,
where the student’s last utterance contains a mis-
take. A tutor then provides a response aimed at
remediating the error. Please analyze the response
and classify the origin of the tutor as one of the
following: Novice, Expert, Mistral, Phi, Sonnet,
Llama318B, GPT-4, Gemini, or Llama31405B.”

When employing LoRA for PEFT, we set the r
dimension to 16 and the LoRAalphas to 16. This
configuration was chosen based on our available
GPU resources and the adapter’s representation
capability. The training parameters were set as
follows: the number of epochs was configured to
4, the batch size to 8, the learning rate to 2e-4, and
the optimizer used was AdamW. The fine-tuning
process was executed on an NVIDIA L20 GPU.

3 Results

Table 2 presents the performance outcomes of
the parameter-efficiently fine-tuned Llama-3.2-3B
across five distinct tracks.Among the first four
racks, the organizers of BEA 2025 have utilized

exact macro F1, exact accuracy, lenient macro F1,
and lenient accuracy as evaluation metrics. The ex-
act macro F1 and exact accuracy involve assessing
predictions using three classes: "Yes," "To some
extent," and "No." Conversely, lenient macro F1
and lenient accuracy consolidate "Yes" and "To
some extent" into a single class, thus evaluating pre-
dictions within a two-class framework ("Yes + To
some extent" vs. "No"). For the track of tutor iden-
tification, the evaluation metrics were exact macro
F1 and exact accuracy scores. Specifically, in the
task of mistake identification, our team achieved
an exact macro F1 score of 0.6983 and an exact
accuracy of 0.8675. In the task of actionability, we
attained an exact macro F1 score of 0.6843 and an
exact accuracy of 0.7285. Conversely, the tasks of
mistake location and providing guidance proved to
be more challenging. In mistake location, our team
scored a macro F1 of 0.5450 and an exact accu-
racy of 0.7104, whereas in providing guidance, we
obtained a macro F1 score of 0.5416 and an exact
accuracy of 0.6464. In the task of tutor identifica-
tion, our team achieved an exact macro F1 score of
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The following dialogue is a discussion between a student and a tutor in the mathematical domain, where the last utterance 
from the student contains a mistake. Then, An AI tutor provides a response trying to remediate such mistakes. Please analyze 
whether tutors’ responses offer correct and relevant guidance, such as an explanation, elaboration, hint, examples, and so on 
and classify it as Yes, No, or To some extent.

Yes refers to that the tutor provides guidance that is correct and relevant to the student’s mistake; No refers to that the 
tutor’s response does not include any guidance, or the guidance provided is irrelevant to the question or factually incorrect; 
To some extent refers to that guidance is provided but it is fully or partially incorrect, incomplete, or somewhat misleading.

Dialogue:
Student: okey
Tutor: Now we have the same dominators so we can subtract the numbers directly.
Tutor: What is 25 minus 18?
Student: 8.

And the AI tutor’s response is:
 That's close, but let's double-check. If we have 25 and subtract 18, wouldn't we actually get 7?
Yes, the tutor provides guidance that is correct and relevant to the student’s mistake.

Prompt

Output

Figure 4: Example of a prompt for the task of providing guidance.

The following dialogue is a discussion between a student and a tutor in the mathematical domain, where the last utterance 
from the student contains a mistake. Then, An AI tutor provides a response trying to remediate such mistakes. Please analyze 
whether tutors’ feedback is actionable, i.e., it makes it clear what the student should do next, and classify it as Yes, No, or To 
some extent.

Yes refers to that the response provides clear suggestions on what the student should do next; No refers to that the response 
does not suggest any action on the part of the student (e.g., it simply reveals the final answer); To some extent refers to that 
the response indicates that something needs to be done, but it is not clear what exactly that is.

Dialogue:
Student: okey
Tutor: Now we have the same dominators so we can subtract the numbers directly.
Tutor: What is 25 minus 18?
Student: 8.

And the AI tutor’s response is:
 That's close, but let's double-check. If we have 25 and subtract 18, wouldn't we actually get 7?
Yes, the response provides clear suggestions on what the student should do next.

Prompt

Output

Figure 5: Example of a prompt for the task of actionability.

Table 2: The performance of fine-tuned Llama-3.2-3B in each task in the test set.

Exact macro F1 Exact accuracy Lenient macro F1 Lenient accuracy Ranking
Mistake Identification 0.6983 0.8675 0.9109 0.9496 7/44

Mistake Location 0.5450 0.7104 0.7649 0.8003 9/31
Providing Guidance 0.5416 0.6464 0.7456 0.7886 7/35

Actionability 0.6843 0.7285 0.8613 0.8888 6/29
Tutor Identification 0.8795 0.8778 N.A. N.A. 7/20
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0.8795 and an exact accuracy of 0.8778.
According to the exact macro F1 score, the BEA

2025 organizers ranked all participating teams. Our
team achieved a top 10 ranking in each track,
demonstrating the robustness of the PEFT tech-
nique employed in this report. The ranking fur-
ther illustrates that the fine-tuned Llama-3.2-3B
achieved superior performance in the tasks of mis-
take identification, providing guidance, and action-
ability, ranking 7th out of 44 teams, 7th out of 35
teams, and 6th out of 29 teams, respectively. In
contrast, its performance in the task of mistake lo-
cation was comparatively lower, ranking 9th out of
31 teams.

4 Discussion

Researchers have increasingly employed AI to au-
tomatically analyze educational dialogues (Wang
et al., 2024b), aiming to provide timely feedback
and enhance student learning. Existing studies
predominantly utilize supervised machine learn-
ing techniques to develop models for educational
dialogue analysis, which often suffer from limited
generalizability. Typically, researchers and engi-
neers must collect and annotate data and train AI
models to analyze specific dimensions within dia-
logues. This process needs to be repeated for each
new dimension under investigation or in a new ed-
ucational context (Wang et al., 2023). The advent
of LLMs offers a potential solution to these chal-
lenges, given their general and versatile capabilities
in understanding human language and executing
various natural language processing tasks. Conse-
quently, researchers have begun exploring the use
of LLMs to analyze diverse aspects of educational
dialogues through prompt engineering techniques
(e.g, Wang and Demszky, 2023; Wang et al., 2023).
Additionally, the ability of LLMs to respond to user
queries positions them as potential AI tutors to fa-
cilitate student learning. Thus, assessing whether
LLMs can effectively serve as teachers is a critical
question in educational practice, with numerous
studies examining their impact in various contexts
(Wang and Fan, 2025). Furthermore, Wang and
Chen (2025) suggests that the relationship between
AI model performance and educational outcomes
may not always be positively correlated; less accu-
rate AI models can sometimes achieve similar edu-
cational impacts to their more accurate counterparts
if designed into learning activities appropriately. It
is therefore essential to evaluate the pedagogical

capabilities of LLMs across different dimensions,
enabling educators to determine which versions
of LLMs should be adopted for specific types of
analysis and activities for teachers and students. In
response to this need, the BEA 2025 conference
organized a shared task to comprehensively assess
the pedagogical potential of AI-powered tutors.

In this task, our team applied parameter-efficient
fine-tuning to Llama-3.2-3B to automatically eval-
uate the quality of LLM-generated feedback on
student-teacher dialogues, focusing on mistake
identification, mistake location, guidance provision,
and guidance actionability. The final leaderboards
revealed that the fine-tuned Llama-3.2-3B achieved
notable performance, particularly in the areas of
mistake identification, mistake location, and guid-
ance actionability. Our team ranked within the top
ten across all tracks, underscoring the robustness
and considerable potential of the PEFT method in
educational dialogue analysis.

5 Limitation

While our application of a PEFT technique to fine-
tune a widely recognized LLM yielded notable
performance in this shared task, several limitations
warrant acknowledgment. First, we exclusively
evaluated the Llama-3.2-3B model. The generaliz-
ability of our findings to larger or alternative mod-
els, such as Mistral or Gemma, remains uncertain,
and comparative analyses could reveal performance
variations across LLMs. Second, the investigation
focused solely on a single PEFT method. A broader
exploration of alternative PEFT strategies—as well
as full fine-tuning approaches—could strengthen
the robustness of the proposed method and provide
more comprehensive empirical validation. Third,
the experiments relied on a uniform prompt design.
As previous research, such as Tran et al. (2024), has
demonstrated, the design of prompts significantly
influences LLM performance. Incorporating di-
verse prompting techniques (e.g., chain-of-thought,
role-based instructions) could mitigate bias and im-
prove the reliability of experimental outcomes. To
address these gaps, future work should prioritize (1)
benchmarking across multiple LLM architectures,
(2) systematically evaluating diverse fine-tuning
paradigms, and (3) integrating advanced prompt
engineering strategies, to rigorously assess the po-
tential of LLMs as pedagogical tools.
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Abstract

The growing use of large language models
(LLMs) for AI-powered tutors in education
highlights the need for reliable evaluation of
their pedagogical abilities. In this work, we pro-
pose a reasoning-based evaluation methodol-
ogy that leverages pedagogical domain knowl-
edge to assess LLM-generated feedback in
mathematical dialogues while providing in-
sights into why a particular evaluation is
given. We design structured prompts to invoke
pedagogically-informed reasoning from LLMs
and compare base model candidates selected
for their strengths in reasoning, mathematics,
and overall instruction-following. We employ
Group Relative Policy Optimization (GRPO),
a reinforcement learning method known to im-
prove reasoning performance, to train mod-
els to perform evaluation in four pedagogi-
cally motivated dimensions, Mistake Identi-
fication, Mistake Location, Providing Guid-
ance, and Actionability. Experimental results
show that our GRPO-based models consistently
outperform the base model and GPT-4.1, and
surpass models trained using supervised fine-
tuning in three out of four dimensions. No-
tably, our method achieved top-ranked perfor-
mance in Actionability and competitive per-
formance in two other dimensions in the BEA
2025 Shared Task under the team name bea-jh,
underscoring the value of generating pedagog-
ically grounded rationales for improving the
quality of educational feedback evaluation.

1 Introduction

With the rapid development of large language mod-
els (LLM) and their text generation performance,
research on employing LLM as an evaluation tool,
or LLM-as-a-judge (Zheng et al., 2023), is actively
being conducted. Specifically, LLMs have been
adopted in evaluating overall quality (Gao et al.,
2023), safety (Wang et al., 2024b), factual correct-

*Corresponding author. Email: j_h.bang@samsung.com

ness, and fluency (Jain et al., 2023) of machine-
generated texts. Furthermore, other works have ap-
plied similar methodologies to evaluate and revise
texts from students (Bai and Stede, 2023; Awidi,
2024), and introduced artificial intelligence (AI)
and LLMs into the field of education.

Although studies have shown that LLM-based
feedback can enhance student motivation, evoke
positive emotions (Meyer et al., 2024), and pro-
vide personalized learning experiences (Liu et al.,
2025b), the question of how to evaluate the educa-
tional quality of such feedback remains open (Tack
and Piech, 2022). Without rigorous evaluation, de-
ploying LLM-based AI systems in education may
expose students to biased content, overly simplistic
pedagogical approaches (Angwaomaodoko, 2023),
or confusing and unhelpful feedback (Denny et al.,
2024). However, the educational AI market is
rapidly expanding, with an estimated global value
of 1.63 billion USD and a projected growth rate of
over 30% within the next five years. (Grand View
Research, 2025). This calls for the urgent need
for LLM-generated student feedback evaluation,
starting with defining the evaluation criteria.

Research on automated evaluation of machine-
generated texts has provided some valuable guid-
ance on the criteria, or dimensions, of what makes
a good text, including consistency, relevance, flu-
ency, and coherence (Jain et al., 2023; Liu et al.,
2023; Lee et al., 2023). However, these dimen-
sions are not sufficient when evaluating educational
feedback as they fail to capture pedagogical values
(Maurya et al., 2025), highlighting the need for
domain-specific criteria.

Several studies have proposed pedagogical eval-
uation dimensions based on learning science prin-
ciples (Tack and Piech, 2022; Macina et al., 2023;
Wang et al., 2024a; Daheim et al., 2024). In this
work, we focus on the problem of evaluating the
pedagogical abilities of AI-powered tutors and pro-
pose an LLM-generated feedback evaluation frame-

1049



work based on the criteria defined by Maurya et al.
(2025), which encompass dimensions proposed by
previous approaches. We leverage the reasoning
capabilities of LLMs, where the model generates
not only answers but also the rationales behind
them, for the following reasons. Firstly, reasoning
can help improve the resulting performance, as the
model can make use of its own reasons when gener-
ating the final output (Ke et al., 2025). In addition,
reasoning can produce explainability via natural
language feedback, which is highly important for
AI systems adopted in education (Khosravi et al.,
2022). We employ Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) to improve
LLM’s reasoning performance (Guo et al., 2025).

Our contribution can be summarized as follows.
Firstly, we introduce a state-of-the-art training
methodology for producing explainable evaluations
on LLM-generated feedback. Secondly, we provide
system prompts, engineered based on pedagogical
studies, that were used to train LLMs for evaluation.
Our team, bea-jh, participated in four tracks of the
BEA 2025 Shared Task (Kochmar et al., 2025). Ac-
cording to the official leaderboard of the shared
task1, we ranked 1st in Track Actionability, 6th in
Tracks Mistake Location and Providing Guidance,
and 13th in Track Mistake Identification on the
shared task’s main metric, strict macro-F1.

In the following section, related work, composed
of previous approaches on machine-generated text
evaluation, GRPO, and reward modeling, is intro-
duced. In Section 3, we detail our system prompts,
base model candidates, model selection rationale,
and rewards mechanisms, where the effectiveness
of the models resulting from the proposed approach
is shown in Section 4. Finally, we conclude the pa-
per in Section 5 together with future work.

2 Related Work

2.1 Machine-Generated Text Evaluation
Evaluating machine-generated text has been a cen-
tral focus in natural language processing (NLP),
with common approaches relying on dimensions
such as fluency, coherence, consistency, and rel-
evance (Liu et al., 2023; Kryściński et al., 2019).
Frameworks such as UniEval (Zhong et al., 2022)
provide evaluators for various natural language gen-
eration tasks—such as summarization and dialogue
generation—by focusing on these core dimensions.
However, these general-purpose metrics often fall

1https://sig-edu.org/sharedtask/2025#results

short when applied to domain-specific texts, thus
highlighting the need for more specialized evalua-
tion frameworks.

Mathematical reasoning tasks require evaluation
methods that assess not only the correctness of the
final answer but also the stepwise logic and clar-
ity of explanation. Benchmarks such as MATH2

(Hendrycks et al., 2021), U-MATH3 (Chernyshev
et al., 2024), and GSM8K4 (Cobbe et al., 2021)
have emphasized the need for fine-grained evalu-
ation of intermediate reasoning steps. Recent sur-
veys (Lee and Hockenmaier, 2025) and methods
such as ReasonEval (Xia et al., 2025) further un-
derscore the importance of systematic evaluation
of intermediary reasoning steps in mathematical
problem solving.

In educational settings, machine-generated feed-
back should align with pedagogical principles,
making its evaluation distinct from that of general
text generation. Dimensions such as actionabil-
ity, providing guidance, mistake identification, and
mistake location are critical in determining the ed-
ucational effectiveness of AI-generated feedback
(Maurya et al., 2025). Other studies also empha-
size additional aspects such as the tone (Han et al.,
2024) and human-likeness (Wang et al., 2024a) of
educational feedback.

2.2 Group Relative Policy Optimization

Reinforcement learning (RL) has played a central
role in aligning large language models (LLMs) with
human preferences. A widely adopted framework
is Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017), which fine-tunes
LLMs to produce outputs that are better aligned
with human judgments (Ouyang et al., 2022). The
standard RLHF pipeline consists of three stages:
(1) training a reward model using human prefer-
ence data, (2) generating outputs from the base
model and scoring them with the reward model,
and (3) fine-tuning the policy model via reinforce-
ment learning, often using Proximal Policy Opti-
mization (PPO) algorithm (Schulman et al., 2017).
Despite its effectiveness, RLHF suffers from sev-
eral well-known limitations. These include instabil-
ity during training (Henderson et al., 2018), over-
optimization of the reward model (reward hacking)
(Casper et al., 2024), and sensitivity to biases in

2https://github.com/hendrycks/math/
3https://huggingface.co/datasets/toloka/

u-math
4https://huggingface.co/datasets/openai/gsm8k
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the human-labeled preference data (Barnhart et al.,
2025).

To address these limitations, Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)
has been proposed as an alternative reinforcement
learning approach. Unlike traditional methods that
rely on trained reward models, GRPO can leverage
rule-based reward signals to guide optimization if
correctness can be validated in an objective and
deterministic fashion (Guo et al., 2025). GRPO has
shown particular promise in reasoning-intensive
tasks, such as mathematical problem solving (Shao
et al., 2024).

As GRPO promotes the generation of coherent
and interpretable reasoning chains, models can re-
fer to their own rationales when generating the
final output, thereby guiding themselves towards
more reliable responses (Ke et al., 2025; Wei et al.,
2022). Moreover, since the method does not explic-
itly train the reasoning traces, it enables models to
produce novel rationales that can lead to improved
performance (Guo et al., 2025). Such reasoning
capabilities can also enhance the transparency of
model decisions, offering better interpretability (Jie
et al., 2024).

2.3 Prompt Engineering

Prompt engineering is the practice of strategi-
cally designing task-specific instructions as in-
puts to steer generative AI models towards pro-
ducing desired outputs (Sahoo et al., 2024). Ef-
fective prompts typically incorporate clear instruc-
tions (Lo, 2023), contextual information (Yi et al.,
2022), and relevant reference examples (Schick
and Schütze, 2022). Incorporating domain-specific
knowledge into prompts enhances LLM’s ability to
generate outputs that are not only accurate but also
contextually appropriate, particularly in specialized
fields (Marvin et al., 2023; Liu et al., 2025a), in-
cluding education (Cain, 2024; Chen et al., 2024).

3 Methodology

3.1 Problem Definition

This work aims to evaluate feedback provided by
AI-powered tutors, specifically LLMs, within the
context of educational dialogues in mathematics.
Traditional metrics used in dialogue systems are
often inadequate for capturing pedagogical intent
(Maurya et al., 2025), such as recognizing and lo-
cating students’ misconceptions, guiding learning,
and offering actionable feedback. To address this

limitation, the 2025 BEA (Workshop on Innovative
Use of NLP for Building Educational Applications)
Shared Task5 (Kochmar et al., 2025) proposes a
benchmark for assessing tutor responses using a set
of pedagogically motivated evaluation dimensions.

The evaluation focuses on four key abilities:

• Mistake Identification: whether the tutor cor-
rectly identifies a student’s mistake.

• Mistake Location: whether the tutor correctly
points out where in the student’s response the
mistake occurs.

• Providing Guidance: whether the tutor offers
helpful educational support such as hints or
explanations.

• Actionability: whether the tutor’s feedback
clearly indicates what the student should do
next.

The development dataset consists of 300 multi-
turn dialogues excerpted from two mathematics-
focused datasets, MathDial (Macina et al., 2023)
and Bridge (Wang et al., 2024a), where a mistake
made by a student is included in every dialogue.
Tutor responses from human and LLM sources are
annotated across the four dimensions and catego-
rized into three labels: "Yes", "To some extent",
and "No". Accuracy and macro-F1 scores are used
as core evaluation metrics under both strict and
lenient evaluation settings, where the lenient set-
ting merges "Yes" and "To some extent" as a single
label.

3.2 Prompt Engineering

3.2.1 Prompt Design Principles
To effectively evaluate the pedagogical abilities of
AI-powered tutors, we carefully designed the sys-
tem prompts to encourage models to generate rea-
soning traces before producing final answers. Each
prompt explicitly instructs the model to indicate its
rationales by wrapping them between the follow-
ing tag-like sequences: <think> and </think>,
inspired by Deepseek-r1 (Guo et al., 2025). The
prompt also instructs the model to wrap the final an-
swer between <answer> and </answer> in a simi-
lar fashion. This structure facilitates the generation
of coherent reasoning chains, and allows the final
answer to be easily parsed and evaluated.

5https://sig-edu.org/sharedtask/2025
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Moreover, each prompt includes an example il-
lustrating the expected format of both rationale and
answer. LLMs tend to respond better to the desired
output format when shown examples following the
specific format requirements (OpenAI, 2024). The
following is an example excerpted from the prompt
used for Mistake Identification:

<think>The tutor response offers a follow-up
question that directly targets the
student’s misunderstanding and
encourages deeper thinking. The
question is relevant and accurate,
helping the student make progress.</
think>

<answer>Yes</answer>

In addition to the format considerations, we em-
phasize the importance of incorporating domain-
specific knowledge into the prompts (Marvin et al.,
2023; Liu et al., 2025a; Cain, 2024; Chen et al.,
2024). We embedded the details of the evalua-
tion dimensions and corresponding labels into our
system prompts. By doing so, we aim to focus
the model’s rationales on pedagogical assessment,
rather than general linguistic assessment.

In the following sections, we describe in detail
how the prompts were designed for each evaluation
dimension.

3.2.2 Mistake Identification
Mistake Identification aims to evaluate whether
a tutor has correctly captured the correctness of a
student’s solution. As the task of identifying the
correctness of a mathematical solution is objec-
tive (Macina et al., 2025), we prompted the model
to identify the student’s mistake by itself before
comparing its result with the given feedback. We
also included the label descriptions provided by
the shared task (Kochmar et al., 2025) to guide the
model on where to draw the line between labels.
Here is the corresponding segment excerpted from
the prompt used for evaluating Mistake Identifica-
tion:

Step 1. Identify the student’s mistake in <
CONVERSATION_HISTORY>

Step 2. Assess whether <LAST_TUTOR_RESPONSE>
**recognizes and identifies the
student’s mistake**. Use the criteria
below:

### Evaluation Criteria:
- Yes: In <LAST_TUTOR_RESPONSE>, the mistake

is clearly identified/recognized in
the tutor’s response.

- To some extent: <LAST_TUTOR_RESPONSE>
suggests that there may be a mistake,

but it sounds as if the tutor is not
certain.

- No: In <LAST_TUTOR_RESPONSE>, the tutor
does not recognize the mistake (e.g.,
they proceed to simply provide the
answer to the asked question).

3.2.3 Mistake Location

Mistake Location aims to evaluate whether a tutor
accurately identifies where errors occur in a stu-
dent’s response. In designing the prompt, we incor-
porated the definition of this dimension, along with
explanations on how locating mistakes correctly
can support a student’s learning process (Maurya
et al., 2025). The following paragraphs are drawn
from the prompt employed in the evaluation of
Mistake Location:

Your goal is to assess whether <
LAST_TUTOR_RESPONSE> is **locating
student’s mistake**-that is, whether it
not only notifies the student of the
committed error, but also points to its
location in the answer and outline
what the error is to help student
remediate it in their next response.

Use the following definitions:

- Yes: In <LAST_TUTOR_RESPONSE>, the tutor
clearly points to the exact location of
a genuine mistake in the student’s
solution.

- To some extent: <LAST_TUTOR_RESPONSE>
demonstrates some awareness of the
exact mistake, but is vague, unclear,
or easy to misunderstand.

- No: <LAST_TUTOR_RESPONSE> does not provide
any details related to the mistake.

3.2.4 Providing Guidance

Providing Guidance evaluates a tutor’s ability to of-
fer helpful guidance to students. Similar to Mistake
Location, we adopted the dimension descriptions
from Maurya et al. (2025) as shown below:

Your goal is to assess whether <
LAST_TUTOR_RESPONSE> is **providing
guidance**-that is, whether it provides
the student with relevant and helpful
guidance, such as a hint, an
explanation, a supporting question, and
the like.

Use the following definitions:

- Yes: <LAST_TUTOR_RESPONSE> provides
guidance that is correct and relevant
to the student’s mistake.

- To some extent: Guidance is provided in <
LAST_TUTOR_RESPONSE> but it is fully or
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partially incorrect, incomplete, or
somewhat misleading.

- No: <LAST_TUTOR_RESPONSE> does not include
any guidance, or the guidance provided
is irrelevant to the question or
factually incorrect.

3.2.5 Actionability
Actionability aims to evaluate whether the tutor’s
feedback provides clear guidance on what students
should do next, rather than simply giving away the
answer. The description of the dimension from
Maurya et al. (2025) was also incorporated in the
prompt as shown below:

Your goal is to assess whether <
LAST_TUTOR_RESPONSE> is **actionable**-
that is, whether it provides clear
guidance on what the student should do
next to improve or correct their work.

Use the following definitions:

- Yes: <LAST_TUTOR_RESPONSE> provides clear
suggestions on what the student should
do next.

- To some extent: <LAST_TUTOR_RESPONSE>
indicates that something needs to be
done, but it is not clear what exactly
that is.

- No: <LAST_TUTOR_RESPONSE> does not suggest
any action on the part of the student
(e.g., it simply reveals the final
answer)

Furthermore, we explicitly guided the model
throughout the reasoning process using the follow-
ing criteria and references. Feedback must be (1)
useful and (2) clear, (3) make students want to re-
ceive further similar feedback (Broos et al., 2017),
and (4) make students feel like they know what to
do next (Maurya et al., 2025) for it to be action-
able. Accordingly, the prompt is augmented with
the following paragraph:

In your thinking process, imagine yourself
being a student.

When you listen to the tutor’s response
(1) Do you find this information useful?
(2) Do you find this information clear?
(3) After hearing this information, would

you like to receive more of this type
of information?

(4) Do you feel like you know what to do
next?

Overall, a good feedback should be clear
about what the student should do next,
should not be vague, unclear or a
conversation stopper.

3.3 Base Models

In this paper, we employ three open-source LLMs,
GLM-4-9B, GLM-Z1-9B (Zeng et al., 2024), and
Qwen2.5 14B Instruct (Yang et al., 2024b) as base
model candidates. These models were selected as
our candidates for their strengths, which will be
described in the following subsections. Note that
models with more than 14B parameters were ex-
cluded for faster iteration of experiments. Brief de-
scriptions and strengths of the models are detailed
in the following subsections. Performance of each
base model and the selected model are presented in
Subsection 4.2.

3.3.1 GLM-4-9B
GLM-4-9B (Zeng et al., 2024) is a powerful lan-
guage model trained on over 10 trillion multilin-
gual tokens. Its technical report shows that the
model outperforms well-known foundation models,
including Llama-3-8B (Grattafiori et al., 2024), in
various tasks, including mathematical question an-
swering. Specifically, the latest version released on
April 14, 20256 is used in this work.

3.3.2 GLM-Z1-9B
GLM-Z1-9B (Zeng et al., 2024) is a reasoning
model, which was trained on top of GLM-4-9B
using reinforcement learning. The model was also
further trained on datasets covering mathematics,
code, and other logical domains. Specifically, it has
demonstrated excellent capabilities in mathemati-
cal reasoning (THUDM, 2025). As with GLM-4-
9B, we employed the latest version of GLM-Z1-9B
released on April 14, 20257 as our candidate base
model.

3.3.3 Qwen2.5 14B Instruct
Qwen2.5 14B Instruct (Yang et al., 2024b) is a
powerful instruction-tuned model trained on 18 tril-
lion tokens. Upon its release, it was reported to
outperform other models of similar or even larger
sizes (Qwen Team, 2024). Furthermore, compared
to previously released Qwen2 (Yang et al., 2024a),
Qwen2.5 demonstrated substantial improvements
in mathematics and instruction-following capabili-
ties (Yang et al., 2024b).

3.4 Reward Design

The reward or penalty terms used to train base
models via GRPO in this work can be categorized

6https://huggingface.co/THUDM/GLM-4-9B-0414
7https://huggingface.co/THUDM/GLM-Z1-9B-0414
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into two groups. The first group consists of penalty
(negative reward) terms that encourage the model
to generate outputs in the expected format. This
group includes the following terms:

• Penalty for not generating a rationale.

• Penalty for not generating an answer.

• Penalty for generating neither a rationale nor
an answer.

• Penalty for producing an unexpected answer
(other than "Yes", "To some extent", and
"No").

The relative value assigned to each penalty term
was defined according to its importance. For ex-
ample, the penalty term for missing a rationale is
lower than that of missing an answer since the lat-
ter is critical for obtaining the final classification
result.

The second group consists of reward and penalty
terms that encourage the model to produce cor-
rect classification results, assuming the output is
in the expected format. A positive reward is as-
signed when the model correctly predicts the target
label. Since the evaluation metrics include those
under a lenient setting, we also provide a smaller re-
ward when the model confuses "Yes" and "To some
extent," which are considered to be qualitatively
similar. In contrast, the model receives a negative
reward for any other incorrect predictions.

To help the model recognize the ordinal relation-
ship among the labels, we conducted experiments
in which a smaller penalty was applied for confus-
ing "To some extent" with "No" than for confusing
"Yes" with "No". However, this setup led the mod-
els to converge to a conservative solution, in which
most examples were classified as "To some extent."

4 Experiments

4.1 Experiment Settings
We conducted all experiments using trl library8

(von Werra et al., 2020) for training and vllm li-
brary9 (Kwon et al., 2023) for serving a reference
model for GRPO. We fine-tuned all models for 7
epochs using AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 1e-5 and a
cosine learning rate scheduler (Loshchilov and Hut-
ter, 2022) with 128 examples in each training step.

8https://github.com/huggingface/trl
9https://github.com/vllm-project/vllm

Since the test dataset is not open to public and sub-
mission attempts were limited, reported results are
obtained using either the official test set or the eval-
uation set split from the development set. Details
on the dataset used in each experiment are provided
in the caption of each table.

4.2 Experiment Results

4.2.1 Base Model Selection
For the selection of the base model, we randomly
selected a task to compare the performance of the
candidate base models. Table 1 presents the results
of the base models on the selected task, Mistake
Location. GLM-4-9B was selected as our base
model as it outperformed other two candidates.
Note that the subpar performance of GLM-4-Z1-
9B was primarily due to its failure to follow the
required formatting guidelines—such as generat-
ing labels outside the set "Yes", "No", "To some
extent", or omitting the final decision altogether.

We further compared the performance scores
of the models trained on top of GLM-4-9B and
Qwen2.5 14B Instruct on another randomly sam-
pled task, Actionability, to examine the base
model’s generalizability. As shown in Table 2, the
model fine-tuned from GLM-4-9B outperformed
that from Qwen2.5 14B Instruct in three out of four
metrics, and demonstrated a comparable level of
strict macro-F1 score.

4.2.2 Group Relative Policy Optimization and
Reasoning

To examine the effectiveness of the proposed ap-
proach, we compared our method with a recently
released state-of-the-art proprietary LLM, GPT 4.1
(OpenAI, 2025), released on April 14, 2025. We
further compared our approach with conventional
supervised fine-tuning (SFT) without rationale out-
puts. The results are shown in Table 3.

In Actionability, our GRPO-trained model out-
performs all other baselines, including GPT-4.1 and
conventional SFT-based model, achieving the best
scores in all four metrics. In Providing Guidance,
our method also achieves the best macro-F1 and
accuracy in the lenient setting and the best accuracy
in the strict setting, and shows competitive perfor-
mance in strict macro-F1 as well. A similar trend
is observed for Mistake Location, where the pro-
posed method achieves the best strict macro-F1, le-
nient macro-F1, and accuracy. However, the model
trained with conventional SFT performs strongly
in Mistake Identification, calling for the need of
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Base model
Strict Lenient

Macro-F1 Accuracy Macro-F1 Accuracy
GLM-4-9B 0.273 0.380 0.384 0.566

GLM-Z1-9B 0.095 0.133 0.131 0.162
Qwen2.5 14B Instruct 0.194 0.232 0.338 0.443

Table 1: Initial performance of base model candidates on Mistake Location, obtained on the entire development set.
Best score for each metric is marked in bold.

Base model
Strict Lenient

Macro-F1 Accuracy Macro-F1 Accuracy
GLM-4-9B 0.701 0.756 0.861 0.888

Qwen2.5 14B Instruct 0.709 0.730 0.853 0.884

Table 2: Performance of different base models on Actionability, obtained on the official test set. Best score for each
metric is marked in bold.

Methods Mistake Identification Mistake Location
GPT 4.1 0.410 / 0.528 / 0.699 / 0.806 0.342 / 0.355 / 0.639 / 0.673

Base model 0.393 / 0.548 / 0.634 / 0.746 0.390 / 0.468 / 0.582 / 0.641
SFT 0.715 / 0.899 / 0.900 / 0.952 0.481 / 0.726 / 0.757 / 0.819

GRPO (ours) 0.564 / 0.867 / 0.805 / 0.919 0.569 / 0.669 / 0.768 / 0.823
Methods Providing Guidance Actionability
GPT 4.1 0.532 / 0.613 / 0.704 / 0.790 0.567 / 0.581 / 0.827 / 0.847

Base model 0.409 / 0.516 / 0.583 / 0.738 0.417 / 0.440 / 0.697 / 0.710
SFT 0.593 / 0.617 / 0.731 / 0.815 0.542 / 0.661 / 0.730 / 0.738

GRPO (ours) 0.571 / 0.649 / 0.764 / 0.859 0.664 / 0.758 / 0.854 / 0.875

Table 3: Performance of different models, obtained on the evaluation set split from the development set. Each cell is
composed of strict macro-F1 / accuracy / lenient macro-f1 / accuracy scores. Best score for each metric is marked in
bold.

further investigation on different characteristics of
each dimension. Overall, GRPO-based models con-
sistently outperform the base model and GPT 4.1
across all dimensions, while achieving better per-
formance than SFT-based models in three dimen-
sions, indicating that training a model to produce
pedagogically-informed rationales contributes to
better evaluation performance.

4.3 Shared Task Leaderboard
The resulting models from experiments, which
were submitted under the team name of bea-jh,
demonstrated strong performance compared to
other 2025 BEA Shared Task contestants (Kochmar
et al., 2025). Our model ranked 1st in Actionabil-
ity, and 6th in Mistake Location and Providing
Guidance in the shared task’s official main met-
ric, strict macro-F1 scores. Models trained on top
of both GLM-4-9B and Qwen 2.5 14B Instruct
achieved better performance than those of other
contestants, demonstrating the generalizability of

the effectiveness of the proposed prompting and
training strategy.

On the other hand, in Mistake Identification, the
SFT-based model ranked 13th while the GRPO-
based model would have ranked 37th out of 44
contestants. Aforementioned results are summa-
rized in Table 4 along with scores and rankings on
the shared task’s secondary metrics.

5 Conclusion

In this paper, we proposed a methodology for eval-
uating the pedagogical abilities of AI-powered tu-
tors in providing helpful feedback across four key
dimensions. System prompts were designed to
incorporate pedagogical domain knowledge and
the base model was selected based on its initial
performance to generate rationale-supported eval-
uation. The selected model was then trained with
the system prompts using Group Relative Policy
Optimization (GRPO), a state-of-the-art method
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Metric
Mistake

Identification
Mistake
Location

Providing
Guidance Actionability

Strict Macro-F1
Score 0.5873 (0.6802∗) 0.5658 0.5451 0.7010 (0.7085†)

Ranking 37 / 44 (13 / 44∗) 6 / 32 6 / 36 1 / 30 (1 / 30†)

Strict Accuracy
Score 0.8449 (0.8707∗) 0.7389 0.6703 0.7557

Ranking 28 / 44 (9 / 44∗) 4 / 32 4 / 36 1 / 30

Lenient Macro-F1
Score 0.8494 (0.9069∗) 0.7851 0.7324 0.8609

Ranking 32 / 44 (6 / 44∗) 5 / 32 10 / 36 4 / 30

Lenient Accuracy
Score 0.9270 (0.9457∗) 0.8268 0.8003 0.8875

Ranking 28 / 44 (11 / 44∗) 5 / 32 7 / 36 4 / 30

Table 4: Final scores and rankings on the official test set. Scores are shown to four decimal places, following the
official leaderboard format. Along with the scores and rankings for Mistake Location and Actionability obtained by
evaluating the proposed approach on the official test dataset and reranked based on the official leaderboard, officially
recorded scores and rankings under the team name bea-jh that are not obtained by the proposed approach are
presented inside the parentheses. ∗: score and ranking in the official Mistake Identification leaderboard, obtained
by training GLM-4-9B via supervised fine-tuning. †: macro-F1 score and ranking in the official Actionability
leaderboard, obtained by training Qwen2.5 14B Instruct via our proposed approach.

for optimizing reasoning capabilities in LLMs. As
a result, our models demonstrated competitive per-
formance in the BEA 2025 Shared Task, achieving
the first place in the Actionability dimension.

However, the proposed approach exhibits vary-
ing performance across different evaluation dimen-
sions. These discrepancies suggest that each di-
mension may require tailored modeling strategies
that reflect its underlying pedagogical definitions.
Future work could involve an in-depth pedagogy-
based analysis of each dimension to identify how
to design a high-quality evaluator. Furthermore,
since our approach generates explicit rationales
through reasoning, these rationales could poten-
tially be leveraged not only for evaluation, but as a
basis for improving the AI tutor’s feedback.

Limitations

We believe this study proposes an effective method-
ology for evaluating the pedagogical abilities of
AI-powered tutors. However, the following limita-
tions highlight areas for future investigation.

Thorough investigation of prompt engineer-
ing Since system prompts serve as instructions to
LLMs, variations in prompt design can lead to dif-
ferent outputs and rationales. While our prompts
incorporated pedagogical domain knowledge, fur-
ther investigation into how each component of a
prompt influences the reasoning process could lead
to more effective prompt engineering strategies for
evaluation tasks.

Analysis of dimension-specific characteristics
Although the proposed method achieved strong per-

formance in certain evaluation dimensions, it per-
formed relatively poorly in a particular dimension.
This discrepancy may stem from intrinsic differ-
ences among dimensions, such as varying levels
of subjectivity or difficulty. Analyzing why the
method performs better in some dimensions could
open the way to the development of evaluation
strategies tailored to each dimension.

Analysis of rationale truthfulness Generat-
ing rationales provides insights into how models
"think", and the rationales generated by an evalu-
ation model may inspire ways to improve the sys-
tems under evaluation. However, it remains an
open question whether these rationales truly reflect
the model’s internal decision-making process. Fu-
ture work could involve further analysis to assess
the stability and truthfulness of generated ratio-
nales, enabling a more qualitative understanding of
reasoning-based evaluation.
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Abstract

Automatic evaluation of AI tutor responses
in educational dialogues is a challenging task,
requiring accurate identification of mistakes
and provision of pedagogically effective guid-
ance. In this paper, we propose a classifica-
tion model based on BERT, enhanced with a
cross-attention mechanism that explicitly mod-
els the interaction between the tutor’s response
and preceding dialogue turns. This design en-
ables better alignment between context and re-
sponse, supporting more accurate assessment
along the educational dimensions defined in
the BEA 2025 Shared Task. To address the
substantial class imbalance in the dataset, we
employ data augmentation techniques for mi-
nority classes. Our system consistently outper-
forms baseline models across all tracks. How-
ever, performance on underrepresented labels
remains limited, particularly when distinguish-
ing between semantically similar cases. This
suggests room for improvement in both model
expressiveness and data coverage, motivating
future work with stronger decoder-only model
and auxiliary information from systems like
GPT-4.1. Overall, our findings offer insights
into the potential and limitations of LLM-based
approaches for pedagogical feedback evalua-
tion.

1 Introduction

Recent progress in large language models (LLMs)
like GPT-4, Gemini(Team et al., 2023), and
LLaMA(Grattafiori et al., 2024) has rapidly im-
proved AI conversational agents, especially in ed-
ucation. AI tutors, for example, can now offer
students real-time, interactive feedback to boost en-
gagement and learning(Lin et al., 2023). However,
while these models generate fluent, human-like re-
sponses, evaluating the real educational value of
their feedback remains challenging(Ou et al., 2023).
Standard metrics such as BLEU and ROUGE fail
to capture important aspects of educational dia-

logue—like identifying student mistakes or provid-
ing helpful guidance—which highlights the need
for more fine-grained, pedagogically meaningful
evaluation frameworks.

To address this gap, the BEA 2025 Shared Task
goes a step further than previous tasks(Tack et al.,
2023) by shifting the focus from dialogue gener-
ation to evaluating how LLMs assess educational
dialogues. Evaluation is based on four key dimen-
sions(Maurya et al., 2025): (1) Mistake Identifi-
cation(Tack and Piech, 2022; Macina et al., 2023;
Daheim et al., 2024), (2) Mistake Location(Daheim
et al., 2024), (3) Providing Guidance(Tack and
Piech, 2022; Liu et al., 2023), and (4) Actionabil-
ity(Daheim et al., 2024). These dimensions capture
what truly matters in educational feedback, moving
beyond surface-level fluency. For more details on
the task and evaluation setup, please refer to the
official report(Kochmar et al., 2025).

In this paper, we present our submission to the
BEA 2025 Shared Task, focusing on three evalu-
ation tracks: Mistake Identification, Mistake Lo-
cation, and Providing Guidance. Our approach
enhances standard LLM classifiers with a cross-
attention layer to better capture the relationship be-
tween student-tutor dialogue context and the tutor’s
response. Experimental results demonstrate that
our method achieves strong performance across
all tracks, validating the effectiveness of cross-
attention for modeling educational feedback. Our
team, CU, ranked 25th out of 44 in Track 1, 17th
out of 31 in Track 2, and 20th out of 35 in Track 3.

2 Related Work

2.1 Early Work on Educational Feedback

Early research in educational psychology laid the
theoretical foundation for understanding effective
teaching practices. Hattie and Timperley (2007)
proposed a widely adopted model of feedback fo-
cused on learning goals, progress monitoring, and
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actionable guidance, demonstrating its critical role
in student achievement. The AutoTutor system
(Graesser et al., 2005) formalized key tutoring
strategies—such as identifying misconceptions and
prompting elaboration—within an intelligent tutor-
ing framework. Boyer et al. (2011) introduced a
data-driven approach by modeling dialogue struc-
tures using hidden Markov models to predict learn-
ing gains. Wolfe et al. (2013) and Rus et al. (2017)
analyzed tutor-student dialogues to assess the qual-
ity of instructional moves using semantic similarity
and discourse act classification.

2.2 LLMs for Educational Dialogue
Evaluation

Recent advances in LLMs have reshaped how we
engage with language and text—transforming not
only natural language processing(NLP) research
but also the evaluation of educational dialogues. A
growing body of research explores how LLMs can
be used to assess or enhance educational feedback.
For example, Balse et al. (2023) investigated the
ability of GPT-3.5 to explain logical programming
errors, finding that while explanations were often
imperfect, they reliably identified key issues. Lee
et al. (2024) improved LLM-based classification
accuracy by structuring prompts to encode error
relationships. Molina et al. (2024) showed that
LLM tutors improve accessibility for non-native
English speakers, while Xu et al. (2025) built a
virtual AI tutor capable of analyzing student drafts
and generating error-specific feedback. Reinforce-
ment learning approaches such as that of Scarlatos
et al. (2025) have further enhanced LLM tutors by
optimizing pedagogical reward functions. Kakarla
et al. (2024) demonstrated the potential of LLMs
in evaluating human tutor responses, highlighting
both strengths and limitations.

2.3 BERT for Dialogue and Tutoring Systems

Parallel to LLM advancements, BERT-based archi-
tectures have also proven effective for educational
dialogue modeling and intelligent tutoring systems
(ITS). In the domain of dialogue understanding,
DialogueBERT (Zhang et al., 2021) and DialBERT
(Li et al.) incorporate hierarchical context and
speaker-role awareness to improve performance on
tasks such as disentanglement, emotion recognition,
and intent detection. CS-BERT (Wang et al., 2021),
trained on domain-specific customer service dia-
logues, introduces masked speaker prediction and
turn-level segment embeddings, yielding robust re-

sults in low-resource scenarios. Within ITS appli-
cations, BERT has been adapted for various ped-
agogical tasks. LBKT (Li et al., 2024) combines
BERT and LSTM with Rasch-based embeddings
for long-sequence knowledge tracing, improving
interpretability and accuracy. Tutor-KD (Kim et al.,
2022) introduces tutor-guided difficulty adaptation
in knowledge distillation, enhancing BERT’s gener-
alization. Wang et al. (2024) compare BERT with
ChatGPT for dialogic pedagogy support and note
that, while BERT performs well in structured anal-
ysis, it lacks the interactive fluency teachers often
prefer.

3 Research Gap

Despite progress in educational theory and NLP,
evaluating the pedagogical quality of AI tutor re-
sponses remains difficult. Traditional methods
emphasize structured feedback but rely on man-
ual annotation and lack scalability, while LLMs
offer fluency yet often miss deeper educational
goals like mistake identification and guidance. Al-
though some work proposes education-driven met-
rics, most automated approaches fail to effectively
model dialogue context. BERT-based models show
potential in educational settings but are still un-
derused for evaluating tutor responses within full
dialogue history.

To address this, we introduce a BERT-based clas-
sifier with a cross-attention mechanism that explic-
itly models tutor–dialogue interactions, enabling
more accurate and context-aware evaluation across
multiple pedagogical dimensions.

4 Methodology

In this section, we present the model architecture,
including the data processing, BERT-based repre-
sentation generation, and the cross-attention and
classification layers. An overview of the model is
illustrated in Figure 1. First, The conversation his-
tory and tutor response are preprocessed separately,
with special tokens inserted at the beginning of
each utterance to indicate their order. These inputs
are then encoded using a pretrained BERT model
to obtain high-dimensional representation. They
are passed into a cross-attention layer, where the
response serves as the query and the conversation
history as the key and value. Finally, the cross-
attended representation is fed into a classification
layer that predicts one of three labels: Yes, No, or
To some extent.
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Figure 1: Overview of the proposed model architecture.

4.1 Data Preprocessing and Representation
Generation

Data Augmentation. By examining the label dis-
tribution of the shared task dataset, we observed
a significant imbalance between the Yes, No, and
To some extent labels (see Table 1). Also, the Yes
and To some extent labels are semantically simi-
lar, which may require the model to make finer
distinctions. To address this issue without substan-
tially altering the data distribution, we applied data
augmentation only to the training set. Specifically,
we used GPT-4.1 to rephrase all instances with mi-
nority labels once, thereby augmenting the dataset
across all three tracks. This results in a simple
2:1 ratio between augmented and original samples
for the minority classes. The ratio was determined
heuristically rather than through systematic tuning,
with the aim of increasing class diversity while
preserving the overall label distribution. This aug-
mentation strategy led to improved F1 scores in
our subsequent experiments. The prompt used for
rephrasing is provided in Appendix A.

Track 1 Label Before Aug After Aug
Yes 1932 1932
No 370 666
To some extent 174 313

Track 2 Label Before Aug After Aug
Yes 1543 1543
No 713 1283
To some extent 220 396

Track 3 Label Before Aug After Aug
Yes 1407 1932
No 566 1018
To some extent 503 905

Table 1: Comparison of label counts before and after
data augmentation across the three tracks.

Input Labeling. To preserve the contextual
meaning and sequential order of the conversation
history, we manually insert order indicators (e.g.,
[TURNx]) at the beginning of each utterance and
mark the tutor’s response with a [RESPONSE] to-
ken. Compared to the insertion of turn and role em-
beddings in DialogBERT (Zhang et al., 2021), this
simple modification is easier to implement while
still demonstrating effectiveness.

Representation Generation. Given BERT’s
strong performance and widespread success across
various NLP tasks (Devlin et al., 2019), we retain
its original architecture and use its encoder only as
a representation generator. Specifically, BERT first
generates three types of embeddings from the in-
put: token embeddings, segment embeddings, and
position embeddings. These embeddings are added
and then fed into the Transformer’s self-attention
layers(Vaswani et al., 2017), which consist of mul-
tiple attention heads and stacked layers that com-
pute contextualized representations for each token.
After processing through these layers, the BERT
encoder produces high-dimensional vectors as the
final hidden states for both the conversation history
and the tutor response. The input representation
process is illustrated in Figure 2.

4.2 Cross-Attention and Classification Layer
After obtaining token-level representations of the
tutor’s response and the conversation history using
a BERT encoder, we combine them using a cross-
attention mechanism to model the relationship be-
tween the two. Inspired by the decoder structure in
the Transformer architecture, we treat the response
as the query and the conversation history as the
key and value. This allows each token in the re-
sponse to selectively attend to relevant parts of the
dialogue history (Figure 3). Formally, let

• R ∈ Rl×d be the representation matrix of
the tutor’s response, where l is the number of
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Figure 2: Illustration of the input representation pro-
cess in BERT, including embedding generation and self-
attention encoding.

tokens in responses, and d is the hidden size;

• H ∈ Rn×d be the representation matrix of the
conversation history, where n is the number
of tokens in the history.

Weight = softmax(
R ·WQ(H ·WK)⊤√

d
) (1)

Attention(R,H,H) = Weight ·H ·WV (2)

where WQ,WK ,WV ∈ Rd×d are trainable pro-
jection matrices. Here, Weight ∈ Rl×n represents
the attention weights between each token in the
response (R) and each token in the conversation
history (H), where l and n are the number of to-
kens in the response and history, respectively. This
mechanism enables the response to selectively at-
tend to relevant segments of the dialogue context,
producing a contextualized representation that in-
forms the final classification.

After obtaining the cross-attended response rep-
resentations, we extract the hidden state corre-
sponding to the [CLS] token (the first token po-
sition) to serve as the aggregate representation of
the response. This vector is then passed through
a dropout layer for regularization, followed by a
linear classification layer that maps the hidden rep-
resentation to a logits vector of dimension Rd×m,
where d is the hidden size and m = 3 is the number
of classification labels used across all tasks. The
resulting logits are used to compute the weighted
cross-entropy loss during training.

Algorithm 1: Dialogue-level Split with La-
bel Distribution Balancing

Input: Training and validation dialogues
Output: Training and validation splits with

similar label distributions
1 Compute global label distribution ratio from

all dialogues
2 Split dialogues into initial training (80%)

and validation (20%) sets
3 Compute label distribution in both sets
4 for iteration = 1 to max_iters do
5 foreach train dialogue di (sampled

subset) do
6 foreach val dialogue dj (sampled

subset) do
7 Swap di and dj between training

and validation sets
8 Compute new label distributions
9 Compute ratio error in both sets

10 if new error < old error then
11 Accept the swap
12 Update label counts
13 break both loops
14 end
15 end
16 end
17 end

5 Experiments

5.1 Dataset

As the shared task required, we use a development
set and a test set from the MathDial(Macina et al.,
2023) and Bridge(Wang et al., 2023) datasets.

Development Set: Contains 300 dialogues
where students make mistakes or show confusion.
Each dialogue includes the student’s last question
and responses from multiple tutors (LLMs and hu-
mans), with over 2,480 responses labeled for peda-
gogical quality.

Test Set: Contains 200 similar dialogues. Tutor
responses are not labeled and tutor identities are
hidden. The set is intended only for official evalua-
tion and is not available for model development.

Given that all 2,480 responses are associated
with only 300 dialogues, we perform dialogue-level
splitting to ensure that no dialogue appears in both
training and validation sets. This prevents data
leakage and ensures a fair evaluation. Combined
with the label imbalance issue noted in Section 4,

1063



Figure 3: Overview of the cross attention mechanism and classification.

this requires careful design of the data split. First,
we perform an initial 80/20 split of the data into
training and validation sets. Then, to ensure that
the label distributions in both sets are similar, we
iteratively swap samples between them. The pseu-
docode is shown in Algorithm 1.

5.2 Experimental Setup

We fine-tuned all models using the BERT base un-
cased(110M) architecture. Inputs combined the
tutor’s response and dialogue context, with cross-
attention as described in Methodology. The [CLS]
token was used for classification, followed by
dropout and a linear layer. All inputs were tok-
enized using the BERT tokenizer with a maximum
sequence length of 512. Sequences longer than 512
tokens were truncated, and shorter sequences were
padded accordingly.

Training was conducted on a single NVIDIA
RTX 4060 Ti GPU. We used the AdamW optimizer
with a learning rate of 2e-5 and a batch size of 5.
Models were trained for up to 5 epochs with early
stopping based on Macro-F1 score on the validation
set. A cosine learning rate scheduler was used, and
a dropout rate of 0.1 was applied before the final
classification layer. To address class imbalance, we
adopted a log-weighted cross-entropy loss, where
the weight for each class i was computed as wi =

log
(

N
ni

)
, with N the total number of samples and

ni the number of samples in class i. The overall
training procedure is summarized in Algorithm 2.

5.3 Baselines

To provide a reference for zero-shot performance,
we included two LLM baselines: GPT-4.1 and
LLaMA 3.2 1B. For GPT-4.1, we used the Ope-
nAI API and designed a custom prompt to elicit
pedagogical labels (Yes, No, or To some extent) for
each tutor response, given the tutor’s response and

dialogue context. This model was not fine-tuned
on our dataset and operates purely in a zero-shot
setting. The full prompt example is included in
Appendix B. For LLaMA 3.2 1B, we used the open-
source model and ran it locally. Similar to GPT-4.1,
we applied a handcrafted prompt to guide the model
in classifying tutor responses. The LLaMA model
was also evaluated in a zero-shot. The prompt
used is provided in Appendix C. These baselines al-
low us to assess the effectiveness of our fine-tuned
BERT models against general-purpose LLMs with-
out task-specific adaptation.

5.4 Main Results

We now present the results of our fine-tuned BERT-
based models, comparing variants with and with-
out the proposed cross-attention mechanism(CA),
as well as the impact of data augmentation(Aug).
These models are evaluated on all three shared task
tracks and compared with the zero-shot baselines
(Section 5.3). Our team, CU, participated in three
tracks and ranked 25th/44 in Track 1, 17th/31 in
Track 2, and 20th/35 in Track 4. The results are
shown in Table 2.

5.5 Discussion

5.5.1 Improving Track 1 Performance with
Cross-Attention

As shown in Table 2 and Figure 4, incorporating the
cross-attention mechanism substantially improved
the model’s performance on Track 1. The Macro-
F1 score increased from 0.578 to 0.687, and ac-
curacy improved from 0.849 to 0.867. While the
baseline BERT model performed reasonably well
on the majority class Yes, it failed to identify any
instances of the minority class To some extent, as
shown by a complete absence of predictions for
that label in the confusion matrix. This resulted in
a biased classifier with high accuracy but limited
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Algorithm 2: Training procedure for BERT
with Cross-Attention

Input: Training set Dtrain, Validation set
Dval, number of epochs N , batch
size B

Output: Best model parameters θ∗

1 Initialize BERT-based model with
cross-attention, parameters θ ;

2 Initialize AdamW optimizer and cosine
learning rate scheduler ;

3 θ∗ ← θ, best_val_f1← 0;
4 for epoch = 1 to N do
5 for each batch (xdial, xresp, y) in Dtrain

do
6 Forward pass:

z ← Model(xdial, xresp) ;
7 Compute loss:

L← CrossEntropy(z, y) ;
8 Backward pass: update θ via

optimizer ;
9 Update learning rate scheduler ;

10 end
11 Evaluate model on Dval to obtain F1

score;
12 if F1 > best_val_f1 then
13 best_val_f1← F1;
14 θ∗ ← θ // Save best model

15 end
16 end
17 return θ∗

generalization.
In contrast, the BERT+Cross Attention model

significantly reduced this bias. It not only improved
the recall for the No class (from 47 to 55 true posi-
tives), but also successfully predicted 10 instances
of To some extent, a class that the baseline model
could not recognize at all. Although the number
of correct predictions for Yes slightly decreased
(from 413 to 374), this reflects a more balanced
and context-sensitive classification behavior. These
findings suggest that cross-attention enables the
model to better align the tutor’s response with sub-
tle errors in the student’s utterance, resulting in
more robust performance across all categories.

5.5.2 Benefits and Limitations of Data
Augmentation in Track 2 and 3

To quantitatively assess the effect of data aug-
mentation on class-wise performance for Track
2, we compare the classification reports of the

Model Acc. Macro-F1

zero-shot GPT-4.1 0.807 0.557
zero-shot LLaMA 3.2 1B 0.758 0.440
BERT (no CA) 0.849 0.578
BERT + CA 0.870 0.651

(a) Track 1: Mistake Identification

Model Acc. Macro-F1

zero-shot GPT-4.1 0.548 0.472
zero-shot LLaMA 3.2 1B 0.619 0.371
BERT base(no CA) 0.678 0.429
BERT base + CA 0.689 0.504
BERT base + CA + Aug 0.681 0.515

(b) Track 2: Mistake Location

Model Acc. Macro-F1

zero-shot GPT-4.1 0.549 0.403
zero-shot LLaMA 3.2 1B 0.591 0.363
BERT base(no CA) 0.587 0.476
BERT base + CA 0.589 0.484
BERT base + CA + Aug 0.585 0.493

(c) Track 3: Providing Guidance

Table 2: Model performance across three task tracks.

cross-attention model before and after augmen-
tation (see Table 3). Without augmentation, the
model achieves high performance on the majority
class Yes (F1 = 0.77), but almost entirely fails to
recognize the minority class To some extent (F1 =
0.00). With data augmentation, the model’s ability
to identify No and To some extent is significantly
improved, with F1-scores rising from 0.48 to 0.63
and from 0.00 to 0.20, respectively. Although the
recall for Yes decreases slightly (from 0.92 to 0.85),
the overall classification results become more bal-
anced, as indicated by the higher Macro-F1 score.
These results highlight the utility of data augmen-
tation in mitigating class imbalance and promoting
fairer evaluation across all categories.

A similar pattern is observed for Track 3: af-
ter applying data augmentation, overall accuracy
decreases slightly, while Macro-F1 improves only
marginally. This suggests that the benefit of aug-
mentation is consistent but limited when class im-
balance is severe.
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(a) BERT

(b) BERT+CA

Figure 4: Confusion matrix comparison on Track 1.

6 Conclusion

In this paper, we presented a system for evaluating
tutor responses in educational dialogues, with a par-
ticular focus on three pedagogical dimensions as
outlined in the BEA 2025 Shared Task. Leveraging
a BERT-based architecture augmented with a cross-
attention layer, our approach aimed to improve the
model’s ability to capture context and provide more
accurate multi-label classification. Experimental
results demonstrate that our system achieves strong
performance on Track 1, while also revealing chal-
lenges in distinguishing between semantically sim-
ilar categories, such as Yes and To some extent in
Track 2 and 3. Data augmentation techniques were
employed to mitigate class imbalance, resulting
in modest improvements, particularly in minority
classes. Despite these advances, our findings indi-
cate that substantial gaps remain before such sys-
tems can be reliably deployed in real-world educa-

Class Precision Recall F1

No 0.64 0.39 0.48
Yes 0.67 0.92 0.77
To some extent 0.00 0.00 0.00

(a) BERT+CA

Class Precision Recall F1

No 0.67 0.60 0.63
Yes 0.75 0.85 0.79
To some extent 0.27 0.15 0.20

(b) BERT+CA+Aug

Table 3: Class-wise precision, recall, and F1 score for
Track 2 before and after data augmentation. Each class
contains the same number of validation samples (No:
144, Yes: 301, To some extent: 59).

tional settings. Overall, our work contributes new
insights into the application of LLMs for pedagog-
ical evaluation and highlights key challenges for
future research.

7 Future Work

During the training process, we observed that the
number of cross-attention layers may influence
classification accuracy. In future work, we plan to
conduct further experiments with more advanced,
higher-capacity decoder-only models, and system-
atically explore the effect of varying the number
of cross-attention layers. In addition, the current
cross-attention layer still struggles to recognize mi-
nority classes in dialogue. To address this, we aim
to leverage state-of-the-art models as an auxiliary
information. For example, we could use GPT-4.1
to first estimate the probability that each utterance
in the conversation contains a mistake, and then
pass these probabilities as initial attention weights
to the cross-attention layer. This approach may
enable the model to more precisely identify errors
within the dialogue. Furthermore, GPT-4.1 could
be used to perform more sophisticated data prepro-
cessing, such as extracting all potential errors, so
that the classification model only needs to deter-
mine whether the tutor’s response correctly identi-
fies and addresses those errors.

Our current approach is inherently pedagogy-
specific: it is trained on dialogue data annotated
with educational dimensions, and designed to
model the relationship between student language
and tutor feedback. Both the training objective and
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model architecture reflect the goal of evaluating
responses in a pedagogically meaningful way. In
the future, further gains might be achieved by in-
corporating explicit pedagogical constructs, such
as known error types or feedback taxonomies, into
the modeling process. We see this as a promising
direction for enhancing both model performance
and educational relevance.

8 Limitations

Despite the promising results demonstrated by our
system, several limitations remain. First, while the
model achieves strong performance on Track 1, its
accuracy on Track 2 and Track 3 remains below
70%, with Macro-F1 scores falling short of 60%.
This gap suggests that the system is not yet robust
enough for real-world educational deployment. As
shown in Table 3, the model tends to favor the
majority class (Yes) and continues to struggle with
the No and To some extent categories. Notably, To
some extent is semantically close to Yes, and despite
our data augmentation efforts, its precision in Track
2 remains below 30%, indicating substantial room
for improvement in recognizing minority classes.

Second, although BERT has long been a strong
performer in NLP tasks, its encoder-decoder archi-
tecture is increasingly surpassed by newer, decoder-
only models such as LLaMA and Qwen(Yang et al.,
2025). These models are rapidly becoming the
mainstream in LLM research. However, their
substantially larger parameter sizes make them
less accessible for users with limited computa-
tional resources. Furthermore, the additional cross-
attention layer proposed in this work increases com-
putational demands even further. After the shared
task deadline, we experimented with LLaMA 3.2
1B augmented with our cross-attention mechanism
and conducted full fine-tuning. Compared to BERT,
LLaMA 3.2 1B has nearly ten times more parame-
ters, making local training on personal computers
nearly infeasible. This poses an even greater bar-
rier for educators or practitioners who may lack
expertise in machine learning or access to high-
performance hardware.
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A Prompt Used for Rephrasing

<task>
<instruction>

You are a helpful assistant for paraphrasing a target utterance in a dialogue.
Your goal is to rewrite the <target> utterance in a different way while preserving its

original meaning.
The paraphrased version must be natural, fluent, and semantically equivalent.
Make sure the paraphrase fits well within the conversation context, both before and after the

target.

Guidelines:
1. Do NOT simply repeat the original sentence.
2. Maintain the same intention, tone, and meaning.
3. Ensure coherence with <previous_context> and <post_context>.
4. Output only the paraphrased version of the <target>.

Avoid repeating the same phrasing or word order.
</instruction>

<previous_context>
{previous_context}

</previous_context>

<target>
{target}

</target>

<post_context>
{post_context}

</post_context>
</task>

Appendix 1: XML prompt used for paraphrasing minority-class responses

B GPT-4.1 Prompt

We queried GPT-4.1 via the OpenAI API using a two-part prompt. The system message defined the
instruction for each task, and the user message provided the specific conversation and tutor response to be
evaluated.

System Instruction For Track 1

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response recognizes the mistake in the student's
utterance.

Use the following guidelines:

- "Yes": The mistake is clearly identified or recognized in the tutor's response.
- "To some extent": The tutor implies there may be a mistake, but does not state it clearly or seems

uncertain.
- "No": The tutor does not acknowledge the mistake (e.g., simply answers the question without

referencing the error).

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 2: Track 1 system instruction used with GPT-4.1.
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System Instruction For Track 2

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response clearly identifies the mistake and where it
occurs in the student's response.

Use the following guidelines:

- "Yes": The tutor clearly points to the exact location of a genuine mistake in the student's
response.

- "To some extent": The tutor shows some awareness of the mistake, but the reference is vague,
unclear, or easy to misunderstand.

- "No": The tutor does not provide any detail about the mistake or its location.

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 3: Track 2 system instruction used with GPT-4.1.

System Instruction For Track 3

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response provides correct and relevant guidance in
response to the student's mistake.

Use the following guidelines:

- "Yes": The tutor provides guidance that is correct and directly relevant to the student's mistake (
e.g., explanation, elaboration, hint, or examples).

- "To some extent": Some guidance is given, but it is partially incorrect, incomplete, or somewhat
misleading.

- "No": No guidance is provided, or the guidance is irrelevant or factually incorrect.

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 4: Track 3 system instruction used with GPT-4.1.

User Input Template

Conversation history:
{conversation}
Tutor Response:
{response}

Appendix 5: User input format for GPT-4.1 prompting.

C LLaMA 3.2 1B Prompt

We used a locally hosted version of LLaMA 3.2 1B in a zero-shot setting. The full prompt sent to the
model followed the expected chat-style format, including system, user, and assistant messages, as shown
below.
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System Instruction For Track 1

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response recognizes the student's mistake in the conversation.

Classification guidelines:
- "Yes": The tutor clearly identifies or acknowledges the mistake in the student's utterance.
- "To some extent": The tutor implies there may be a mistake, but the identification is vague or

uncertain.
- "No": The tutor does not recognize the mistake (e.g., simply answers the question without

acknowledging any error).
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the final tutor response recognize the student's mistake?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 6: Track 1 full prompt used with LLaMA 3.2 1B for zero-shot classification.

System Instruction For Track 2

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response clearly identifies a genuine mistake and its location in the

student's utterance.

Classification guidelines:
- "Yes": The tutor clearly points to the exact location of a genuine mistake in the student's

response.
- "To some extent": The response shows some awareness of the mistake, but the reference is vague,

unclear, or potentially confusing.
- "No": The response does not mention the mistake or provide any detail about it.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the tutor's response clearly identify the mistake and where it occurs?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 7: Track 2 full prompt used with LLaMA 3.2 1B for zero-shot classification.
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System Instruction For Track 3

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response provides correct and relevant guidance in response to the

student's mistake.

Classification guidelines:
- "Yes": The tutor provides guidance that is correct and directly relevant to the student's mistake (

e.g., explanation, elaboration, hint, or example).
- "To some extent": Guidance is provided, but it is partially incorrect, incomplete, or somewhat

misleading.
- "No": The response lacks guidance, or the guidance is irrelevant or factually incorrect.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the tutor's response provide correct and relevant guidance?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 8: Track 3 full prompt used with LLaMA 3.2 1B for zero-shot classification.
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Abstract

We describe the BJTU submission to the BEA
2025 Shared Task on Evaluating the Pedagogi-
cal Ability of AI Tutors, which focuses on as-
sessing AI-generated math tutoring responses
across four dimensions: Mistake Identification,
Mistake Location, Guidance, and Actionabil-
ity. Our approach leverages a large language
model (LLM) with task-specific prompt tuning
and data augmentation techniques, including
dialogue shuffling and class balancing. The
system achieves strong results across all tracks,
ranking first in Mistake Identification and per-
forming competitively in the others. Our find-
ings underscore the potential of prompt-based
LLMs for pedagogically-aware response eval-
uation and offer insights into the design of AI
tutors with improved educational feedback.

1 Introduction

Recent advances in large language models (LLMs)
have opened up new possibilities in education, with
AI-powered tutoring systems emerging as promis-
ing tools for personalized learning. These systems
simulate teacher-like interactions through natural
language dialogue, offering students real-time feed-
back and instructional support. However, evalu-
ating the teaching capabilities of such AI tutors
remains a significant challenge. On the one hand,
existing evaluation frameworks lack standardiza-
tion. Previous work adopts fragmented criteria,
such as correctness, relevance, and actionability,
making it difficult to compare model performance
between studies.

However, conventional automatic metrics (e.g.
ROUGE, BLEU) fail to capture key educational
goals, such as effective knowledge delivery, error
correction, and cognitive scaffolding. For exam-
ple, Tack (Tack and Piech, 2022) focus on teacher
language style, Macina (Macina et al., 2023) high-
lights the coherence of feedback, while Wang

*Corresponding Author.

(Wang et al., 2024) emphasizes the empathetic tone
of responses. This fragmented landscape hinders
the development of standardized benchmarks for
educational AI.

To address the above challenges, the BEA 2025
Shared Task(Kochmar et al., 2025) on Evaluating
the Pedagogical Ability of AI Tutors introduces
the first multidimensional benchmark centered on
instructional competence. Our team, Team BJTU,
focuses on the context of mathematics education,
particularly the process of error remediation. We
aim to develop automated models that systemat-
ically evaluate five core capabilities of AI tutor-
ing systems: Mistake identification (identifying
whether a student’s response contains a mistake),
mistake location (pointing to the exact location of
the error), guidance (offering effective explanations
or hints) and Actionability (providing responses
that meaningfully guide the student’s next learning
steps).

Our team, BJTU, participated in Tracks 1, 2, 3,
and 4 of the BEA 2025 Shared Task and achieved
strong results, ranking 1st, 2nd, 4th, and 2nd re-
spectively. Our approach leverages state-of-the-
art language models that integrate textual cues to
explore the instructional capabilities of AI tutors
across multiple pedagogical dimensions. This pa-
per outlines our methodology for tackling the task,
discusses the challenges we encountered, and pro-
vides insight into how model design choices impact
the effectiveness of AI-generated feedback in edu-
cational dialogues.

2 Related Work

Recent work has explored the use of large language
models (LLMs) in educational dialogues, with the
aim of assessing their pedagogical effectiveness.
Tack and Piech (Tack and Piech, 2022) proposed
the AI Teacher Test, evaluating models such as
GPT-3 and Blender in three dimensions: speaking
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like a teacher, understanding the student and pro-
viding helpful responses. Their findings showed
that while LLMs produce fluent dialogue, they lack
pedagogical ability.

Building on this, the BEA 2023 Shared Task
(Tack et al., 2023) benchmarked teacher response
generation using the TSCC dataset. Top systems
used models such as GPT-3.5 and GPT-4, employ-
ing prompting and response reranking strategies.
Although some systems achieved high scores, the
task highlighted limitations in existing evaluation
metrics for educational settings.

To address these gaps, Wang (Wang et al., 2024)
introduced Bridge, a framework based on cognitive
task analysis that models expert decision-making
during remediation. Incorporating these decisions
into LLM prompts significantly improved response
quality, suggesting that structured pedagogical rea-
soning enhances LLM performance in tutoring con-
texts.

3 Method

3.1 Preprocessing

During the data preprocessing phase, we organized
the historical dialogues between the Tutor and Stu-
dent into a format suitable for fine-tuning. For each
instance, we constructed prompts such as: The
following is a tutoring dialogue in the domain of
mathematics. Based on the conversation history
above, your task is to evaluate the following Tu-
tor’s Response and determine whether it success-
fully identifies the error in the student’s reasoning,
as illustrated in Figure 1. Using this data, we fine-
tuned a large language model (LLM) to perform
the evaluation task.

In the testing phase, we applied the trained
model to the test set for inference. The LLM was
prompted to generate an evaluation of the given
Tutor response and select one of three categorical
labels—yes, some extent, or no—which was then
recorded as the final output.

However, relying solely on the original training
data risks overfitting the model to specific linguistic
patterns, thereby limiting its generalization ability.
To address this, we incorporated a series of data
augmentation strategies aimed at improving the
model’s robustness and adaptability across diverse
dialogue contexts.

Instruction:The following is a tutoring 
dialogue in the domain of mathematics.         

Tutor:..., Student:...
Evaluate the following Tutor's Response 
and determine whether it successfully 
identifies the error in the student's 
reasoning.Tutor:...} Large Language Model

Yes / To 
some extent / 

No

Figure 1: Prompt Construction.

3.2 Data Augmentation

In the shared task, our team BJTU demonstrated
strong performance across all four tracks, as shown
in table 2. We used the data set released for the
BEA 2025 Shared Task (Maurya et al., 2025),
which is based on a unified taxonomy for assessing
pedagogical ability.

To mitigate the model’s reliance on fixed op-
tion positions and enhance its ability to generalize
in ranking tasks, we adopted a dialogue-shuffling
augmentation strategy. Concretely, we randomly
permuted the sequence of tutor-student interaction
pairs within each dialogue instance. This allows
the model to better learn from the full instructional
process provided by the tutor, rather than becom-
ing overly dependent on a particular response order.
By disrupting positional regularities, the model
is encouraged to attend to the actual content of
the tutor’s guidance. Moreover, since the dataset
comprises tutoring interactions from multiple dis-
tinct AI tutors, shuffling further reduces the risk
of overfitting by limiting memorization of stylistic
patterns.

Example 1 Randomly Reordered

Tutor: How many sacks were in the first harvest?Student: The first yield 
was 20 sacks.Tutor: And if the yield increases by 20% in the second 
harvest, how much is that?Student: That's 4.8 sacks, so the total after the 
second harvest is 28.8.

Random Resort

Tutor: And if the yield increases by 20% in the second harvest, how much 
is that?Student: That's 4.8 sacks, so the total after the second harvest is 
28.8.Tutor: How many sacks were in the first harvest?Student: The first 
yield was 20 sacks.

Figure 2: Randomly reordered method.

To address the issue of class imbalance observed
in the training data, we applied targeted data aug-
mentation strategies to improve model generaliza-
tion. As shown in Table 1, all four subtasks exhibit
a significant skew toward the “Yes” class, with no-
tably fewer examples labeled as “To Some Extent”
or “No.” This imbalance can lead the model to
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overfit to the majority class and hinder its ability to
accurately recognize minority class instances.

Task Yes To Some Extent No

Mistake Identification 1932 174 370
Mistake Location 1543 220 713
Provide Guidance 1407 503 556
Actionability 1310 369 797

Table 1: Label distribution across the four subtasks.

To mitigate this, we implemented random down-
sampling for the “Yes” instances. Specifically, we
randomly sampled half of the ’Yes’ instances, while
all “No” and “To Some Extent” instances were pre-
served. This simple yet effective strategy reduced
the dominance of the majority class and encour-
aged the model to better capture the characteristics
of less frequent classes.

In addition, we introduced a lightweight prompt
engineering strategy to improve the model’s aware-
ness of the task objective. Taking the Mistake Iden-
tification task as an example, where the objective is
to determine whether the tutor’s response success-
fully identifies an error in the student’s reasoning,
we attached an explicit task instruction to the in-
put. Specifically, the complete prompt template
as follows: The student’s last utterance contains
a mistake. The AI tutor responds to this mistake.
Your task is to assess whether the tutor’s response
successfully identifies the mistake made by the stu-
dent........ Your task is to evaluate the following
tutor responsend determine whether it successfully
identifies the error in the student’s reasoning. This
additional context helps guide the momodel’s atten-
tion toelevant reasoning errors in the dialogue. Al-
though the modification is simple, empirical results
suggest that such task-aware prompts can improve
model performance, highlighting the importance
of clear task framing in multi-choice dialogue un-
derstanding tasks.

4 Experiment Results

We employed the Qwen2.5 (Bai et al., 2023) model
series as the backbone and trained our models us-
ing the dataset constructed in the Method section.
Specifically, we conducted training and inference
using four Ascend-910B nodes, each equipped with
eight GPUs. The learning rate was set to 5e-6, the
gradient accumulation steps were configured as
8, and the models were trained for a total of five
epochs.

For Mistake Identification, BJTU secured 1st
place with an exact macro F1 score (Ex. F1) of
0.7181, indicating its effectiveness in accurately
identifying errors in student responses. In the Mis-
take Location track, BJTU ranked 2nd with an Ex.
F1 score of 0.5940, demonstrating its ability to
locate errors in student reasoning. For Providing
Guidance, BJTU placed 4th with an Ex. F1 score
of 0.5725, reflecting its solid performance in select-
ing appropriate guidance responses from multiple
options. In the Actionability track, BJTU again
showed strong results, ranking 2nd with an Ex. F1
score of 0.6992, demonstrating its capability to de-
termine the practical applicability of the responses.
These results highlight the consistency and versatil-
ity of BJTU’s system across different task domains,
proving its robustness in handling various aspects
of educational dialogue systems.

We adopted a unified strategy across all four
tracks, as the tasks share similar objectives centered
on evaluating and improving AI tutor responses.
Instead of building separate models, we applied the
same framework and prompt design to each task,
which simplified our approach and proved effective
across different evaluation aspects.

To further evaluate the effectiveness of different
augmentation strategies, we conducted an ablation
study comparing several variants of the model on
the Codabench. The results are summarized in Ta-
ble 3. Among all configurations, the combination
of task description and dialogue shuffling achieved
the best strict macro F1 score (0.7181), suggesting
that explicitly describing the task helps the model
better align its generation with the intended objec-
tive.

When applying shuffling alone, the model ob-
tained the highest strict accuracy (0.8694), indicat-
ing improved precision in certain classes. However,
its slightly lower F1 score suggests a trade-off in
class coverage. Introducing class balancing on top
of shuffling led to a modest increase in strict F1
(0.7104), but did not produce consistent improve-
ments across all metrics. This aligns with our hy-
pothesis that label distribution reweighting offers
limited benefit when the test set closely mirrors the
training set.

The base model, which only uses prompt con-
struction without augmentation, performed slightly
worse overall but still maintained reasonable robust-
ness. These findings highlight that prompt design
alone plays an important role and that combining
shuffling with task description provides the most

1075



Track Team Ex. F1 Ex. Acc Len. F1 Len. Acc

1. Mistake Identification

BJTU 0.7181 0.8623 0.8957 0.9457
TutorMind 0.7163 0.8759 0.9108 0.9528
Averroes 0.7155 0.8675 0.8997 0.9425
MSA 0.7154 0.8759 0.9152 0.9535
BD 0.7110 0.8772 0.8966 0.9412

2. Mistake Location

BLCU-ICALL 0.5983 0.7679 0.8386 0.8630
BJTU 0.5940 0.7330 0.7848 0.8261
K-NLPers 0.5880 0.7641 0.8404 0.8610
MSA 0.5743 0.6975 0.7848 0.8209
SG 0.5692 0.7602 0.8118 0.8400

3. Providing Guidance

MSA 0.5834 0.6613 0.7798 0.8190
SG 0.5785 0.7052 0.7860 0.8216
BLCU-ICALL 0.5741 0.6716 0.7487 0.8061
BJTU 0.5725 0.6490 0.7445 0.8100
K-NLPers 0.5606 0.6270 0.7446 0.8000

4. Actionability

bea-jh 0.7085 0.7298 0.8527 0.8837
BJTU 0.6992 0.7363 0.8633 0.8940
MSA 0.6984 0.7537 0.8659 0.8908
lexiLogic 0.6930 0.7162 0.8393 0.8675
Phaedrus 0.6907 0.7298 0.8346 0.8650

Table 2: Top-5 system performances for each subtask, ranked by exact macro F1 (Ex. F1). Secondary metrics
include exact accuracy (Ex. Acc), lenient macro F1 (Len. F1), and lenient accuracy (Len. Acc).

Strategy Strict Acc. Lenient Acc. Strict F1 Lenient F1

Base(Only prompt construction) 0.8604 0.9476 0.7030 0.9026
Shuffling + Class Balance 0.8565 0.9483 0.7104 0.9017
Shuffling only 0.8694 0.9444 0.6957 0.8984
Shuffling + Task describe 0.8623 0.9457 0.7181 0.8957

Table 3: Performance of different development runs under strict and lenient matching criteria.

notable gains across evaluation metrics.
These findings suggest that among the augmen-

tation techniques we explored, randomizing the di-
alogue order is particularly effective in improving
the robustness of the model in unseen examples.
However, the benefit of class balancing appears
to depend on whether there is a label distribution
mismatch between training and test sets.

5 Conclusion

In this paper, we presented BJTU’s approach to the
BEA 2025 Shared Task on Evaluating the Ability
of AI Tutors. Focusing on mathematics education,
we designed a system that effectively evaluates tu-
tor responses along four instructional dimensions:
mistake identification, mistake location, guidance,
and actionability. Our method leveraged large lan-

guage models, prompt engineering, and targeted
data augmentation techniques, including dialogue
shuffling and class balancing, to enhance model
generalization and robustness.

Our system achieved strong overall results, rank-
ing within the top four in all tracks, including
first place in Mistake Identification. These out-
comes demonstrate the potential of well-structured
prompting and augmentation strategies to improve
the pedagogical evaluation capabilities of LLMs.

Looking forward, we aim to explore more fine-
grained annotation schemes, incorporate multi-
modal feedback, and develop more interpretable
evaluation models. We hope our findings contribute
to the advancement of standardized and scalable
benchmarks for AI-assisted education.
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Abstract

In this paper, we propose a novel framework for
the tutor identification track of the BEA 2025
shared task (Track 5). Our framework inte-
grates data-algorithm co-design, dynamic class
compensation, and structured prediction opti-
mization. Specifically, our approach employs
noise augmentation, a fine-tuned DeBERTa-v3-
small model with inverse-frequency weighted
loss, and Hungarian algorithm-based label as-
signment to address key challenges, such as
severe class imbalance and variable-length dia-
logue complexity. Our method achieved 0.969
Macro-F1 score on the official test set, secur-
ing second place in this competition. Ablation
studies revealed significant improvements: a
9.4% gain in robustness from data augmen-
tation, a 5.3% boost in minority-class recall
thanks to the weighted loss, and a 2.1% in-
crease in Macro-F1 score through Hungarian
optimization. This work advances the field of
educational AI by providing a solution for tutor
identification, with implications for quality con-
trol in LLM-assisted learning environments.

1 Introduction

The rapid advancement of large language models
(LLMs) has opened new avenues for the develop-
ment of AI-powered tutoring systems, enabling
scalable and personalized learning support through
intelligent conversational agents (Cai et al., 2025;
Li et al., 2025). Contemporary studies demonstrate
that AI-powered tutors can significantly enhance
instructional efficiency (Tack et al., 2023), particu-
larly in math education where adaptive feedback is
crucial (Xu et al., 2025). Nevertheless, this techno-
logical progress introduces a critical challenge in
educational practice: the growing difficulty in dis-
tinguishing LLM-generated tutor responses from
those crafted by human educators. This tutor iden-
tification problem becomes particularly acute when

*These authors contributed equally.
†Corresponding author.

examining nuanced pedagogical behaviors such as
error correction strategies and instructional scaf-
folding (Macina et al., 2023).

The emergence of sophisticated LLM-based tu-
tors has blurred the traditional boundaries between
human and machine-generated educational con-
tent. While existing detection methods (Sanh et al.,
2019; Liu et al., 2019) perform adequately in bi-
nary human-vs-LLM classification scenarios, they
lack the granularity required for educational appli-
cations. Specifically, these approaches fail to differ-
entiate between various state-of-the-art LLM archi-
tectures, distinguish expert versus novice human
instructors, or identify the pedagogical strategies
employed by different tutor types. This limitation
becomes particularly problematic given the demon-
strated variations in educational outcomes based
on tutor quality.

The shared task (Kochmar et al., 2025) of “Peda-
gogical Ability Assessment of AI-powered Tutors”
(Track 5: Tutor Identification) presents three main
technical challenges: 1) Class Imbalance. Severe
class imbalance in the dataset’s sample distribution
across nine tutor categories (Maurya et al., 2025),
2) Complexity of Dialogue Sequences. The com-
plexity of variable-length dialogue sequences that
complicate feature extraction, and 3) Subtle Lin-
guistic Patterns. Minimal lexical differences be-
tween expert humans and advanced LLMs that cre-
ate subtle linguistic patterns. These characteristics
render conventional classification approaches in-
effective, particularly in maintaining performance
across minority classes.

To address class imbalance and enhance classi-
fication performance, we employ a noise injection
strategy for data augmentation, coupled with a two-
stage class weight compensation mechanism. The
model is fine-tuned using weighted cross-entropy
loss with inverse-frequency class weighting to mit-
igate bias toward majority classes. For prediction,
we implement an ensemble approach combining
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multiple pre-trained models, followed by globally
optimal label assignment via the Hungarian algo-
rithm to ensure unique label distribution per di-
alogue group while maximizing prediction confi-
dence (Kuhn, 1955). This comprehensive approach
effectively handles class imbalance while maintain-
ing prediction stability.

Our method achieved 0.969 Macro-F1 on the of-
ficial test set, securing second place in this compe-
tition. Ablation studies1 demonstrate component-
wise improvements: a 5.3% boost in minority-class
recall thanks to the weighted loss, and a 2.1% in-
crease in Macro-F1 score through Hungarian opti-
mization. The remainder of this paper is structured
as follows: Section 2 reviews relevant literature
in LLMs and text detection. Section 3 formally
defines the tutor identification problem and intro-
duces dataset. Section 4 formalizes our technical
approach. Section 5 presents empirical results and
case analyses. Finally, we conclude with broader
implications and future directions in Section 6.

2 Related Work

LLM-generated Text Detection. The prolifera-
tion of large language models (LLMs) has spurred
interest in detecting LLM-generated text. Follow-
ing the emergence of the GPT-2 Output Detector
(Solaiman et al., 2019), which is based on the
RoBERTa pretrained model (Liu et al., 2019) and
achieves up to 88% accuracy on GPT-2 text, nu-
merous detectors have been developed. ? employs
statistical analysis of word probabilities and ranks
for GPT-2 detection. Habibzadeh (2023) initially
used perplexity and burstiness, claiming 88% accu-
racy for human and 72% for AI text. OpenAI’s Text
Classifier2, fine-tuned on diverse models, provides
probabilistic categories for distinguishing human
and AI text, requiring at least 1000 characters. GP-
TKit3 sets up multiple models (including (Sanh
et al., 2019; Liu et al., 2019)). CheckForAI4 com-
bines GPT-2 Output Detector with custom models.
CopyLeaks5 claims 99.12% accuracy across lan-
guages.

In contrast to general LLM-generated text detec-
tors, our work focuses on the more nuanced task

1Ablation studies conducted with simplified validation due
to submission constraints

2https://platform.openai.com/
ai-text-classifier

3https://gptkit.ai/
4https://checkforai.com/
5https://copyleaks.com/

of identifying the specific origin of text within a
defined set of tutors and LLMs. To achieve this,
we leverage DeBERTa (He et al., 2020), which
features disentangled attention and an enhanced
mask decoder. DeBERTa has demonstrated supe-
rior performance in NLP tasks, achieving an accu-
racy of 91.1% on the MNLI benchmark, compared
to RoBERTa-Large’s 90.2%. These results make
DeBERTa a promising approach for our classifica-
tion task.

3 Dataset Analysis

The dataset provided for this shared task (Kochmar
et al., 2025) is sourced from the MathDial (Macina
et al., 2023) and Bridge (Wang et al., 2023) datasets.
The dataset, including instructional annotations de-
veloped by Maurya et al. (2025), was provided by
the shared task organizers in accordance with the
established annotation protocol and guidelines. Out
of 300 dialogues, 200 responses were annotated by
four annotators. The average Fleiss’ Kappa among
the four annotators reached 0.65, indicating sub-
stantial agreement and demonstrating the reliability
of this annotation task. Each dialogue includes the
prior multi-turn interactions between a tutor and a
student, the student’s final utterance containing an
error, and a collection of responses generated by
both seven large language model LLM-based tutors
and human tutors in response to that utterance. The
LLM tutors include: GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2024), Sonnet (Anthropic,
2023), Mistral (Jiang et al., 2023), Llama-3.1-8B
and Llama-3.1-405B (Grattafiori et al., 2024), and
Phi-3 (Abdin et al., 2024). Human tutors are cate-
gorized into two groups: Expert and Novice.

The test set consists of 191 dialogues. These
dialogues include the prior conversational context,
the final incorrect student utterance, and a set of
unannotated tutor responses from the same group
of tutors used in the development set.

For Track 5: tutor identification task, the re-
quired data include the tutor responses and their
corresponding identities. Table 1 presents the dis-
tribution of the dataset.

4 Methodology

As shown in Figure 1, we propose a unified ap-
proach to address class imbalance and enhance
classification performance. It combines noise in-
jection for data augmentation, a two-stage class
weight compensation mechanism. During infer-
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Class Train Set Count Test Set Count
Expert 300 191
Novice 76 19
Sonnet 300 191
Llama3.1-8B 300 191
Llama3.1-405B 300 191
GPT4 300 191
Mistral 300 191
Gemini 300 191
Phi3 300 191
Total 2,476 1,547

Table 1: The statistics of the dataset in track 5.

ence, we employ an ensemble of pre-trained mod-
els and apply the Hungarian algorithm for globally
optimal and unique label assignment within each
dialogue group. This ensures both robustness and
stable prediction under imbalanced conditions.

4.1 Noise Injection for Data Augmentation

We selected several commonly used machine learn-
ing models along with the DeBERTa series for
evaluation. The original training dataset was par-
titioned into training and validation subsets with
an 8:2 ratio to facilitate comparable performance
assessment. We adopted both Macro-F1 score and
accuracy (ACC) as evaluation metrics. Considering
that Macro-F1 demonstrates greater robustness to
class imbalance, it was designated as our primary
evaluation criterion. The comparative results for
both metrics are presented in Table 2. Based on
these experimental findings, we selected DeBERTa-
v3-small for further fine-tuning to enhance its clas-
sification performance.

Model Validation Set

Macro-F1 Score Accuracy

Logistic Regression 0.796 0.811
Random Forest 0.778 0.789
Extra Trees 0.786 0.798
XGBoost 0.736 0.757
DeBERTa-v3-base 0.806 0.821
DeBERTa-v3-small 0.812 0.834

Table 2: Performance comparison of baselins on the
validation set (Macro-F1 Score and Accuracy).

Subsequent analysis of the validation set pre-
dictions revealed a notable discrepancy between
the model’s accuracy and Macro-F1 scores. While
achieving high accuracy, the model exhibited rel-
atively poor performance in terms of Macro-F1,
suggesting inadequate handling of class imbalance.
This observation indicates that the current model

Stage1: Model Training

Stage2: Model Inference

DeBERTa-v3-small Hungarian Algorithm Predicted Label

Response: I appreciate your effort, 

but let's think about this carefully: 

if we divide 10 into 5 equal groups, 

how many would be in each 

group?

Response: That's a good try, but 

actually when we divide 10 by 5, 

we get 2. Remember, division is 

like sharing equally. So if we have 

10 items and share them among 5 

people, each person gets 2 items.

…

Raw Data
Add Noise Augmentation

1.Insert 2.Delete 

3.Replace 4.Swap

Training Data

DeBERTa-v3-small

Training 

Iteration

Question: Here is our first question.

Tutor: What is the value of 10/5?

Student: 50

Figure 1: Overview of our proposed method.

architecture may require modification to better ad-
dress the imbalanced nature of our dataset

Therefore, the original dataset is expanded
through multimodal noise injection to mitigate
overfitting in small-sample scenarios. For each
text sample xi, we generate its noisy variant x̃i as
follows:

x̃i = T (xi),

T ∈ {insert, delete, replace, swap}, (1)

where the noise transformation T is randomly se-
lected with uniform probability from four opera-
tions, with a noise ratio α = 10%. This augmenta-
tion strategy doubles the dataset size from original
N samples to 2N . Crucially, the original labels
remains unaltered during augmentation, preserving
consistency in label distribution.

To address potential amplification of original
class distribution disparities, we implement a two-
stage class weight compensation mechanism:

4.2 Fine-tuning DeBERTa with Weighted
Cross-Entropy Loss Function

To address class imbalance in the training set, we
adopt an inverse-frequency weighting scheme to
compute balanced class weights. Let the training
set consist of C classes, with Nc denoting the num-
ber of samples in class c, and let Ntotal =

∑C
c=1Nc

be the total number of training samples. The weight
for class c is defined as:

wc =
Ntotal

C ·Nc
, c = 1, . . . , C. (2)
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This weighting strategy assigns higher impor-
tance to underrepresented classes, thereby mitigat-
ing the bias toward majority classes during model
training.

Subsequently, the standard cross-entropy loss
is modified by incorporating the computed class
weights. Given a training batch of size B, the
weighted cross-entropy loss is formulated as:

L(θ) = − 1

B

B∑

i=1

wyi log pθ(yi|xi), (3)

where yi denotes the true label of sample xi, and
pθ(yi|xi) represents the predicted probability out-
put by the model parameterized by θ.

By scaling the loss contribution of each sam-
ple according to its class weight, this approach
enhances the gradient contributions from minority
classes while preserving the overall optimization di-
rection. As a result, the classification boundary be-
comes more sensitive to underrepresented classes,
leading to improved generalization performance on
imbalanced datasets.

To ensure the training effectiveness of the model,
we adopt K-fold cross-validation, a robust model
evaluation technique that not only maximizes the
utilization of limited datasets but also reduces the
dependency of evaluation results on data partition-
ing methods (Kohavi et al., 1995), to assess and
optimize the detection model’s performance. The
original training set is randomly divided into K
subsets of approximately equal size. For each it-
eration, one subset is selected as the validation
set, while the remaining K-1 subsets are used as
the training set. The model’s performance is ulti-
mately assessed by aggregating the results from the
K training and validation cycles.

4.3 Prediction via Hungarian Algorithm

Given an input text set X = {x1, x2, . . . , xn}, we
employ k pre-trained models for prediction and
average their output probabilities to mitigate the
limitations of individual models, enhance generaliz-
ability, reduce prediction variance while preventing
overfitting. Each model outputs a probability dis-
tribution matrix Pi ∈ Rn×c, with c denoting the
number of classes. During the ensemble phase, we
compute the average probability across all models:

P̄ =
1

k

k∑

i=1

Pi. (4)

This strategy effectively reduces model bias and
enhances prediction stability. Through further anal-
ysis, we observe that each dialogue group consis-
tently contains 7 AI responses, 1 Expert response,
and randomly features 1 Novice response. Based
on this pattern, we design a Hungarian algorithm-
based prediction method to ensure globally optimal
unique label assignment for each dialogue group.
The detailed procedure is as follows:
Step 1: Cost Matrix Construction For each di-
alogue group G ⊆ X , extract its average prob-
ability matrix P̄G ∈ Rm×c, where m ∈ {8, 9}
represents the number of responses in the group.
When m = 8, we exclude the Novice label (class
9) and adjust the probability matrix to P̄ ′

G ∈ R8×8.
The cost matrix is defined as:

C = − log(P̄G). (5)

This transformation converts the probability maxi-
mization problem into a linear assignment problem
that minimizes negative log probabilities.

Step 2: Optimal Matching Solution The Kuhn-
Munkres (Hungarian) algorithm is applied to solve:

min
m∑

i=1

c′∑

j=1

Ci,j · Zi,j , (6)

subject to the constraints:
∑

i

Zi,j ≤ 1,
∑

j

Zi,j = 1, Zi,j ∈ {0, 1},

(7)
where Z denotes the assignment matrix, and c′ = c
(when m = 9) or c′ = c− 1 (when m = 8).

Step 3: Label Mapping and Confidence Cal-
culation The algorithm returns optimal matching
indices (i, j), mapping column index j back to the
original label (when m = 8, adjustment is needed
to skip the Novice label). The final predicted label
and confidence score are:

label = argmax
j

P̄i,j , confidence = max
j

P̄i,j

(8)
This strategy achieves global optimal assignment

with polynomial time complexity O(m3), ensuring
label uniqueness while maximizing prediction con-
fidence.

5 Main Results

The evaluation results of all models are summa-
rized in Table 3. It is worth noting that the De-
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Model Macro-F1 Score Accuracy

DeBERTa-v3-small 0.812 0.834
+ Augmentation, k=1 0.888 0.888
+ Augmentation, k=5 0.901 0.901
+ Augmentation + Weighted, k=5 0.949 0.963
+ Augmentation + Weighted + Hungarian, k=5 0.969 0.966

Table 3: Performance comparison of DeBERTa-v3-small under different training strategies and ensemble settings.
Among them, Augmentation refers to noise injection for data augmentation techniques, k denotes the number of
candidates averaged during inference, Weighted indicates the use of weighted cross-entropy loss, and Hungarian
refers to prediction via Hungarian algorithm.

BERTa model without noise injection for data aug-
mentation was not submitted to the CodaLab plat-
form. Instead, its performance was evaluated using
a validation set composed of 20% of the original
training data, as described in Section 4.1 on data
pre-processing. The results of the other four mod-
els were obtained using the official test set via the
CodaLab evaluation platform.

The DeBERTa model without any noise injection
for data augmentation reflects the baseline perfor-
mance of the model under the original imbalanced
data distribution. After introducing noise injec-
tion for data augmentation strategies, the Macro-
F1 score improved to 0.888, indicating the initial
effectiveness in mitigating the impact of class im-
balance. Subsequently, we applied 5-fold cross-
validation to the DeBERTa model and selected the
best-performing model across the folds, which fur-
ther increased the Macro-F1 score to 0.901, demon-
strating improved stability and generalization capa-
bility.

Building upon this, the incorporation of a
weighted cross-entropy loss function led to an ad-
ditional improvement in performance, with the
Macro-F1 score reaching 0.949. Finally, by in-
tegrating the Hungarian algorithm for prediction
optimization, the overall Macro-F1 score achieved
a significant improvement, reaching 0.969. This
result confirms the effectiveness of the proposed ap-
proach in addressing complex classification tasks.
Our best-performing model ranked second on the
official leaderboard.

6 Conclusion

In this work, we propose an effective framework for
distinguishing between human-written and LLM-
generated responses in mentor-style answers. Our
method is based on the DeBERTa model and incor-
porates various techniques to enhance its general-

ization and robustness, including data augmenta-
tion strategies, a weighted cross-entropy loss func-
tion design, and a prediction optimization mech-
anism based on the Hungarian algorithm. This
proposed approach effectively addresses the chal-
lenges posed by the rapid development of genera-
tive artificial intelligence in content authentication.

Experiments are conducted on the test set pro-
vided by the Codabench platform, and the results
validate the superior performance of the framework.
Furthermore, this study presents a component anal-
ysis that explores the contribution of each module
to the overall performance, offering valuable in-
sights and directions for future research and im-
provements in related fields.

Limitations

We still have the following limitations: 1) In terms
of generalization, our method is tailored to the tutor
identification task, raising questions about its gen-
eralizability to similar tasks. We plan to address
this issue of generalization in future work. 2) Fur-
thermore, although our method has demonstrated
excellent performance on this competition’s test set,
it has not yet been tested in real-world scenarios.
We plan to apply and evaluate our method in the
educational field and will share our findings when
appropriate.
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Abstract

This paper describes our approaches for the
BEA-2025 Shared Task on assessing pedagog-
ical ability and attributing tutor identities in
AI-powered tutoring systems. We explored
three methodological paradigms: in-context
learning (ICL), supervised fine-tuning (SFT),
and reinforcement learning from human feed-
back (RLHF). Results indicate clear method-
ological strengths: SFT is highly effective for
structured classification tasks such as mistake
identification and feedback actionability, while
ICL with advanced prompting excels at open-
ended tasks involving mistake localization and
instructional guidance. Additionally, fine-tuned
models demonstrated strong performance in
identifying tutor authorship. Our findings high-
light the importance of aligning methodolog-
ical strategy and task structure, providing in-
sights toward more effective evaluations of ed-
ucational AI systems.

1 Introduction

The integration of large language models (LLMs)
into educational technologies has revolutionized
the landscape of AI-powered tutoring systems.
These systems exhibit remarkable capabilities in
generating fluent and contextually relevant re-
sponses, offering personalized learning experiences
across various domains, including mathematics ed-
ucation. However, assessing the pedagogical ef-
fectiveness of these AI tutors extends beyond eval-
uating linguistic fluency or factual correctness; it
necessitates a comprehensive analysis of their in-
structional strategies and their ability to engage
students meaningfully.

To tackle the challenge of evaluating instruc-
tional quality, the 20th Workshop on Innovative
Use of NLP for Building Educational Applications

(BEA 2025) introduced a shared task titled Peda-
gogical Ability Assessment of AI-powered Tutors
(Kochmar et al., 2025). This initiative aims to es-
tablish standardized evaluation criteria for system-
atically assessing the pedagogical effectiveness of
AI-assisted educational dialogues. The task pro-
vides a unified evaluation framework encompassing
four key pedagogical dimensions: mistake identifi-
cation, mistake localization, provision of guidance,
and actionability of feedback. In addition to these
core dimensions, the shared task includes a fifth
track, Guess the Tutor Identity, which focuses on
authorship attribution by determining whether a re-
sponse was generated by a specific language model
or a human tutor—thereby shedding light on the
stylistic signatures of different LLMs. An overview
of the task design is illustrated in Figure 1.

In this paper, we present our comprehensive
approach to the BEA-2025 Shared Task, focus-
ing on both pedagogical ability assessment and
tutor identity attribution in AI-powered tutoring
systems. We explore multiple methodological
paradigms, including in-context learning (ICL),
supervised fine-tuning (SFT), and reinforcement
learning (RLHF), and demonstrate their respective
strengths across task tracks. Our empirical results
show that SFT excels in structured classification
tasks, while ICL, supported by advanced prompt-
ing strategies, proves more effective in open-ended
reasoning settings. Furthermore, we validate the
use of fine-tuned LLM classifiers for authorship at-
tribution, achieving competitive performance even
in black-box conditions. Our findings not only
highlight the importance of methodological align-
ment with task structure but also provide practical
insights into building robust evaluation systems for
educational AI.
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Figure 1: Illustration and Description of the Task for Evaluating Pedagogical Ability. The figure presents a sample
math problem given to a student, along with three distinct responses generated by AI tutors. Each response is
assessed across four pedagogical dimensions: Mistake Identification, Mistake Localization, Guidance Provision, and
Actionability. A green check mark (✓) denotes that the behavior is clearly exhibited (Yes), a red cross (✗) indicates
that it is absent (No), and a black dash (–) signifies that the behavior is only partially present or ambiguously
demonstrated (To some extent).

2 Related Works

This section provides a brief overview of the BEA-
2025 Shared Task and reviews two key methodolog-
ical areas: LLM-as-a-Judge techniques for evaluat-
ing pedagogical quality in the first four tracks, and
authorship attribution methods for identifying tutor
sources in the final track.

2.1 Pedagogical Ability Assessment of
AI-powered Tutors

With rapid advancements in artificial intelligence
(AI) and natural language processing (NLP),
AI-powered tutoring systems—especially those
leveraging large language models (LLMs)—have
demonstrated significant potential in educational
contexts, including mathematics instruction. How-
ever, effectively evaluating the instructional quality
of these systems requires more than simply assess-
ing linguistic fluency or factual accuracy. It de-
mands deeper analysis of their pedagogical strate-
gies and the quality of their interactions with stu-
dents.

To address this need, the 20th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations (BEA 2025) introduced a shared task titled
“Pedagogical Ability Assessment of AI-powered

Tutors.” This task aims to establish standardized
evaluation criteria that systematically measure in-
structional quality in AI-supported educational dia-
logues.

Specifically, the task focuses on mathematics-
based tutor-student dialogues, with special empha-
sis on capturing student errors and misconceptions
that surface during problem-solving interactions.
Task participants are provided dialogue samples
sourced from the MathDial and Bridge datasets,
which include:

Multi-turn interactions between students and AI-
powered tutoring systems; Student utterances con-
taining errors or expressions of uncertainty; Tutor
responses generated by various AI systems based
on different LLMs, as well as select responses from
human tutors. To facilitate comprehensive and con-
sistent evaluation, the organizers propose a unified
taxonomy based on the pedagogical framework in-
troduced by Maurya et al. (2024), comprising four
core dimensions:

• Mistake identification: Evaluating whether the
AI correctly detects a student’s error.

• Mistake location: Identifying the exact position
of the error within a student’s utterance.
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• Providing guidance: Assessing the AI’s abil-
ity to deliver appropriate hints, explanations, or
guiding questions.

• Actionability: Determining whether the pro-
vided feedback clearly points students toward
actionable next steps.

Beyond the primary subtasks focusing on instruc-
tional quality dimensions, the BEA 2025 shared
task also introduces Track 5: Guess the tutor iden-
tity, designed to explore relationships between the
stylistic characteristics of AI tutors and their under-
lying source models. In this subtask, participants
must identify the specific model or human tutor
behind a tutoring system’s response based solely
on text content.

To support research and system development, the
organizers have released the MRBench V3 dataset1,
consisting of 300 development dialogues and 191
test dialogues, encompassing interactions with both
AI and human tutors. Each dialogue is annotated
according to the four pedagogical dimensions. Par-
ticipants are further encouraged to develop auto-
mated evaluation systems to assess the pedagogical
capabilities of AI-generated tutoring interactions
within this structured evaluation framework.

2.2 LLM-as-a-Judge
With the widespread adoption of large language
models (LLMs) in various natural language pro-
cessing tasks, effectively evaluating the quality of
their generated outputs has become a prominent
research area. Traditional automatic evaluation
metrics such as BLEU (2002) and ROUGE (2004)
exhibit limitations in capturing semantic coherence
and contextual relevance in generated texts. To ad-
dress these issues, recent work has proposed the
"LLM-as-a-Judge" approach, which leverages pow-
erful LLMs as evaluators to assess outputs pro-
duced by other models. This method not only en-
hances automation of the evaluation process but
also demonstrates judgment capabilities compara-
ble to human evaluators across various tasks (Liu
et al., 2023).

From an output perspective, existing LLM-as-
Judge implementations can generally be catego-
rized into three frameworks (Li et al., 2024): (a)
Scoring: The most frequently adopted evaluation
paradigm, in which the LLM assigns numerical

1https://github.com/kaushal0494/
UnifyingAITutorEvaluation/tree/main/BEA_Shared_
Task_2025

scores to candidates, enabling quantitative com-
parisons. (b) Ranking: Particularly useful when
establishing a relative ordering among candidates,
allowing for evaluations that do not rely on explicit
scoring scales. (c) Selection: Effective in decision-
making scenarios, enabling the LLM to directly
choose the most suitable output from a set of pro-
vided candidates.

In terms of construction methodologies, ap-
proaches to building reliable LLM-based judges
primarily belong to two categories:

(a) Prompting Strategies: Properly designed
prompting methods and pipelines further en-
hance judgment accuracy and mitigate eval-
uation bias (Gu et al., 2024). Key prompt-
ing approaches include: Position Swapping:
Systematically changing candidates’ positions
in prompts to reduce position-induced biases.
Inclusion of Rubric and Reference Infor-
mation: Directly offering clear rubrics or ref-
erence materials to guide the LLM’s evalua-
tion criteria. Inter-LLM Cooperation: Imple-
menting collaborative processes (e.g., voting
mechanisms, structured debates) among mul-
tiple LLM-based judges, thereby balancing
individual-model biases. In-Context Demon-
strations: Providing relevant examples within
prompts, a method shown to significantly im-
prove evaluation performance via the model’s
in-context learning capabilities.

(b) Tuning-Based Methods: Supervised Fine-
Tuning (SFT) is the predominant strategy,
where LLMs are explicitly trained to judge
based on collected prompt-response evalua-
tion datasets (Zhu et al., 2023). Through su-
pervised training, models gain the capability to
perform nuanced judgments in specific tasks.

By carefully selecting and combining these tun-
ing methods and prompting strategies, robust and
reliable LLM-based judge systems can be effec-
tively constructed, thereby enabling more accurate
evaluation across diverse and complex NLP tasks.

2.3 Authorship Attribution
Authorship Attribution (AA) aims to identify the
authorship of unknown texts by analyzing linguistic
features. The underlying assumption of AA is that
different authors—including humans and large lan-
guage models (LLMs)—exhibit distinct character-
istics in lexical diversity, syntactic structures, and
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discourse styles. Previous authorship attribution
methods predominantly focused on distinguishing
texts produced by various human authors. However,
with the rise and advancement of large language
models, differentiating between human-generated
and LLM-generated texts, as well as identifying
texts produced by specific LLMs, has increasingly
become a focal area of research.

Current authorship attribution methods can be
categorized as follows:

(a) Style-based methods utilize lexical, syntac-
tic, and structural features to capture the dis-
tinct writing styles of authors. For instance,
Kumarage and Liu (2023) extracted lexical,
syntactic, and structural features from texts to
train classifiers for tracing the origin of gener-
ated texts. Nevertheless, these methods tend to
perform poorly when distinguishing between
closely related LLMs, such as Llama-3-8B
and Llama-3-405B.

(b) Probability-based methods hypothesize that
generated texts have a higher generation prob-
ability when evaluated by their original source
model, and thus rely on differences in proba-
bility distributions calculated by various lan-
guage models for the same text. For example,
POGER (Shi et al., 2024) performs attribution
by repeatedly sampling representative tokens
to estimate generation probabilities. However,
these approaches are highly sensitive to text
length, as shorter texts may yield inaccurate
probability estimates.

(c) Partial rewriting methods involve partially
regenerating segments of a text using can-
didate generation models and evaluating the
source by measuring edit distances between
original and regenerated segments. For exam-
ple, DNA-GPT (Yang et al., 2023) uses the
first half of the target text as a prompt and
compares the regenerated latter half with the
original to assess attribution. Despite their util-
ity, these methods require multiple invocations
of models and significantly depend on prompt
design and generation strategies.

(d) Model fine-tuning methods leverage the se-
mantic feature distributions learned from texts
authored by different sources through fine-
tuning language models. Chen et al. (2023),
for instance, fine-tuned the T5 model to cre-

ate T5-Sentinel, achieving effective attribu-
tion across five models including GPT-3.5 and
LLaMA-7B. Similarly, Fu et al. (2025) pro-
posed the FDLLM method based on LoRA
fine-tuning, which effectively detects and dis-
tinguishes texts generated by various LLMs
in multilingual and cross-domain black-box
scenarios. However, these methods typically
require extensive annotated data for training.

3 Data

The BEA-2025 Shared Task is based upon the Mr-
Bench dataset, which primarily incorporates dia-
logue data from two publicly available mathemati-
cal instructional datasets: MathDial (Macina et al.,
2023) and Bridge (Wang et al., 2023).

MathDial Dataset The MathDial dataset con-
sists of approximately 3,000 one-on-one teacher-
student dialogues focusing on multi-step mathe-
matical reasoning problems. These dialogues were
generated by pairing human teachers with a large
language model (LLM) specifically trained to sim-
ulate common student mathematical errors.

Bridge Dataset The Bridge dataset comprises
700 real-world online tutoring dialogues. These
dialogues highlight the challenges novice teach-
ers encounter in addressing student mathematical
errors. Each dialogue is annotated by expert educa-
tors, explicitly identifying student misconceptions,
correction strategies, and underlying instructional
intents.

From these two datasets, the organizing team
generated seven additional LLM-as-tutor responses
for each dialogue, supplementing the original tutor
responses in Bridge and MathDial. All tutor re-
sponses, including both the original and the newly
generated ones, were systematically annotated ac-
cording to the pedagogical effectiveness taxonomy
proposed by Maurya et al. (2024). A development
set of 300 dialogues and a testing set of 191 dia-
logues were constructed from this expanded and
annotated pool. Additionally, a subset of the data
underwent dual annotation by four independent
annotators, yielding an average Fleiss’ Kappa co-
efficient of 0.65. This indicates substantial inter-
annotator agreement, thereby ensuring the reliabil-
ity and robustness of the labeled data for the shared
task.
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3.1 Data Analysis and Statistics

Due to the limited availability of training data,
we plan to expand the current dataset by anno-
tating portions of the MathDial dataset and the
unused data from the Bridge dataset. First, we an-
alyzed how MRBench was created from the two
aforementioned datasets. Specifically, the Math-
Dial dataset includes fields such as ’question’, ’stu-
dent_incorrect_solution,’ and ’conversation,’ which
can be reorganized into the MRBench format as
illustrated below. The MRBench dataset is con-
structed as a sequential dialogue; the only addi-
tional data processing required is labeling each
utterance with the corresponding speaker identity
(Tutor or Student).

Tutor: Hi, could you please provide a step-
by-step solution for the question below? The
question is: {’question’}
Student: {’student_incorrect_solution’}
Tutor: {’conversation’-Tutor[0]}
Student: {’conversation’-Student[0]}
......

Subsequently, we counted the number of re-
sponses present within each dialogue in the dataset,
as shown in Figure 2.

Figure 2: Distribution of Dialogue Response Counts

Finally, we identified which segments of the orig-
inal datasets have already been utilized. Since di-
alogues from the original MathDial and Bridge
datasets were randomly truncated when composing
the MRBench dataset, we uniformly truncated each
original dialogue to a maximum length of four turns
for consistency and processed them into a standard-
ized format. We then calculated the similarities
between dialogues from MathDial and MRBench
(as well as Bridge and MRBench) based on the
BLEU metric. By identifying the dialogue entries

with the highest BLEU scores, we constructed a
mapping list indicating data usage. Table 1 pro-
vides a summary that quantifies the relationships
and overlaps among these three datasets.

MathDial Bridge Total
Development set 224 76 300

Test set 172 19 191

Table 1: Dialogue Counts in Development and Test Sets

3.2 Data Correction and Processing

In the process of aligning MRBench with the two
original datasets, we observed that a small subset
of corresponding instances exhibited significantly
lower BLEU scores than average. Upon deeper
analysis of these instances, we identified certain
issues within the provided datasets that could po-
tentially affect data preprocessing procedures and
subsequent model performance.

Role Label Mismatches In the MathDial
dataset, we found cases where dialogue responses
were mismatched with their corresponding role la-
bels. For example, in the original data: “... on
dog toys.\n 42.00 \n Tutor: Hi Ayisha can you
talk me through your workings? \n Student: Sure!
First I calculated that three full price toys cost 3 x
12.00 =36.00. Then I calculated that one half price
toy costs 12.00/2 =6.00. Finally, I added the two
amounts together ...” was extracted as: “... on dog
toys.\n 42.00 \n Tutor: I added the two amounts
together ...”.

We believe that this issue was introduced by
a comma-based preprocessing heuristic. Specif-
ically, we infer that the task organizers intended
to exclude student names or other personally iden-
tifiable mentions in tutor responses, motivated by
Haim et al.’s (2024) finding that the mention of per-
sonal names might introduce unwanted bias into
large language models. The heuristic presumably
involved removing the segment from the beginning
of the tutor’s response up to the first comma, pre-
suming that the first comma typically delineates the
student’s name from the main message. However,
if a tutor response lacked commas at expected loca-
tions, this strategy inadvertently caused excessive
removals, leading to instances where portions of
students’ answers mistakenly appeared as part of
the tutor responses. Consequently, this may impact
the model’s understanding of the correct answer
and its evaluation of the tutor response.
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Irrelevant Dialogue Openings Within the
Bridge dataset, we identified certain instances
where initial conversational utterances were un-
related or irrelevant to the core mathematical prob-
lems, such as: "Student: okey \n Tutor: Now we
have the same denominators so we can subtract
the numerators directly.”. This issue was likely
introduced through the data-segmentation strategy
applied to real-world dialogue corpora.

Consecutive Utterances To be consistent with
a large language model’s expected conversational
structure of strictly alternating turns between user
and model responses, we merged consecutive re-
sponses from the same speaker within the datasets.

These procedures were conducted through a
combination of automated filtering and manual ver-
ification, with further details provided in Appendix
A.

4 Methodology

In this section, we present an overview of the
three primary approaches explored in the BEA-
2025 shared task: in-context learning (ICL), super-
vised fine-tuning (SFT), and reinforcement learning
(RL).

4.1 In-Context Learning

In-context learning (ICL) enables large language
models (LLMs) to accomplish specific tasks solely
by leveraging input prompts, without the need for
updating model parameters.

As an initial step, we investigate the performance
of leading proprietary (or large-scale parameter)
large language models on instructional ability eval-
uation tasks. We construct our inputs from histori-
cal dialogue contexts, teacher responses, and cor-
responding evaluation dimensions using the MR-
Bench V3 dataset. Models evaluated include GPT-
4o (Hurst et al., 2024), GPT-o3-mini (OpenAI,
2025), Gemini-2.5-pro (DeepMind, 2025), Grok-
3 (xAI, 2025), Deepseek-R1 (DeepSeek-AI et al.,
2025), and Claude-3.7 (Anthropic, 2025). To effec-
tively elicit optimal model performance, mitigate
potential biases, and enhance the robustness of our
evaluation, we employ several prompt engineering
strategies:

(a) Explicit Scoring Criteria: Clearly-defined
evaluation criteria with three distinct perfor-
mance levels are provided within the prompt
to guide model judgments.

(b) Contextual Demonstrations: Relevant illustra-
tive examples are embedded within prompts to
enhance the models’ comprehension of tasks,
assessment dimensions, and rating standards.

(c) Multiple Sampling: Inspired by the self-
consistency property observed in large lan-
guage models, we sample model outputs mul-
tiple times under the same temperature setting
and utilize majority voting to determine final
results.

Moreover, we experiment with various alterna-
tive prompt formulations under each prompting
strategy to identify the most effective configuration.
Detailed descriptions of our prompt construction
methodology can be found in Appendix B.1.

Additionally, we have assessed the performance
of open-source and smaller-scale models, includ-
ing Llama-3.1-8B, QwQ-32B, and the Qwen2.5
series (Yang et al., 2024), to facilitate subsequent
supervised fine-tuning and reinforcement learning
stages.

4.2 Supervised Fine-tuning
Supervised fine-tuning (SFT) refers to adapting a
pretrained language model to a specific task by
training it on labeled data. This process updates
the model parameters to minimize the discrepancy
between model predictions and ground-truth anno-
tations.

In comparison to in-context learning, supervised
fine-tuning explicitly embeds task definitions and
requirements into the model itself through parame-
ter adjustments. To circumvent performance con-
straints that may arise from overly prescriptive
prompt designs, we have streamlined and adjusted
the instruction templates and expected outputs as
shown in Appendix B.1.

As shown above, the model is no longer required
to generate textual feedback; instead, it directly
outputs the designated classification label. This
modification aims to simplify the construction of
the supervised training dataset and mitigates the
risks of overly rigid or overfitted model responses
typically associated with explicitly requesting tex-
tual elaboration.

Based upon the MRBench V3 dataset, we parti-
tion the data into a training-validation split with ra-
tios of 95% and 5%, respectively. We subsequently
conduct supervised fine-tuning of the Qwen 2.5-
14B model across four distinct evaluation dimen-
sions using LLaMA-Factory (Zheng et al., 2024).
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Fine-tuning enables the model to internalize nu-
anced patterns and task-specific subtleties, thereby
significantly improving its performance on evalua-
tion metrics. To enhance computational efficiency
and guard against overfitting, we explore parameter-
efficient fine-tuning methods such as Low-Rank
Adaptation (LoRA). These methods enable selec-
tive updating of specific parameter subsets, sub-
stantially reducing computational demands while
preserving model performance. Detailed specifica-
tions of the exact hyperparameters adopted through-
out the fine-tuning process are presented in Ap-
pendix B.2.

As for Track-5, the task is to identify the source
of anonymized natural language texts, namely at-
tributing texts to their corresponding "mentor" mod-
els. This track comprises nine distinct classes: an
expert mentor, a junior mentor, as well as seven dif-
ferent large language models (LLMs), formulating
a typical multi-class classification scenario. This
setting is especially challenging due to the short na-
ture of test samples, the inclusion of texts generated
by unseen black-box models, and the sophisticated
need to distinguish closely related models, such
as Llama-3-8B and Llama-3-405B. Thus, the task
imposes high demands on the classifier’s general-
ization capability and its ability to capture subtle
stylistic differences among different models.

Inspired by the approach of FDLLM (Finger-
print Detection for LLMs), we propose employ-
ing a large language model-based authorship attri-
bution classifier. More specifically, we leverage
parameter-efficient supervised fine-tuning meth-
ods based on Low-Rank Adaptation (LoRA) with
the pretrained Qwen 2.5-7B model. Through fine-
tuning, the model learns distinct and subtle stylistic
"fingerprints" inherent in texts produced by differ-
ent language models, enabling effective identifica-
tion of the generating model given an anonymized
text input.Details on data construction and model
fine-tuning processes are provided in Appendix
B.3.

4.3 Reinforcement Learning
Reinforcement Learning (RL) provides a training
framework in which models learn to make sequen-
tial decisions by maximizing cumulative rewards.
Typically, RL is utilized to align model outputs with
human preferences, a process known as Reinforce-
ment Learning from Human Feedback (RLHF).

In the educational assessment evaluation task,
it is natural to consider applying RLHF to align

large language models (LLMs) with the evaluation
ratings annotated by human experts. To this end,
we employ RLHF via veRL (Sheng et al., 2024) to
fine-tune Qwen 2.5-7B outputs based on human-
annotated preferences. Specifically, our approach
mainly involves the following two essential steps:

(a) Reward Function: To encourage detailed
thinking within the model-generated textual
feedback, thereby improving its overall per-
formance, we design a reward function to en-
force appropriate response structure and clas-
sification correctness. Concretely, we assign a
0.1 reward for adhering to the prescribed for-
matting structure ("Feedback: . . . [Classifica-
tion] (A/B/C)") and a 1.0 reward when model
predictions correctly match human-annotated
evaluation ratings.

(b) Policy Optimization: We optimize the LLM’s
output strategy by maximizing the predicted
rewards from the reward function. During
this step, we explore optimization algorithms
such as Proximal Policy Optimization (PPO)
and Generalized Reference Policy Optimiza-
tion (GRPO) to enhance both stability and ef-
ficiency during policy updates.

Through the RLHF process, we initially expect
that the model can be guided to generate responses
that are not only accurate but also closely aligned
with human instructional preferences, ultimately
increasing their practical value and instructional
quality in educational dialogue contexts. However,
we observe limited performance improvements fol-
lowing RLHF training, alongside unexpected gen-
eration issues, such as output consisting of repeated
special tokens produced solely to obtain formatting-
related rewards.

5 Results

In this section, we report the performance of our
proposed methods on both the development and
test sets.

5.1 Performance on the Development Set
In-Context Learning Method

As described in Section 3.1, we evaluated sev-
eral advanced large language models on the teach-
ing ability assessment task using the development
set, with results shown in Figure 3. Among these
models, Gemini 2.5-Pro achieved the best results
across all four evaluated dimensions, substantially
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Figure 3: Performance of Proprietary Large Language Models in Pedagogical Ability Assessment

outperforming the other five models. Thus, we
decided against adopting an ensemble approach,
which would involve combining predictions from
diverse heterogeneous models through voting. In-
stead, we opted to increase robustness by conduct-
ing multiple sampling procedures on the outputs
from the Gemini 2.5-Pro model for our final sub-
mission.

Supervised Model Fine-tuning Method We
separately evaluated several smaller-scale open-
source models, including Llama-3.1-8B, QwQ-
32B, Qwen 2.5-32B, and Qwen 2.5-14B. Al-
though QwQ-32B obtained the highest scores over-
all, it has been observed by Kirk et al. (2023)
that reinforcement learning from human feedback
(RLHF) optimization may result in degradation of
model performance during supervised fine-tuning
(SFT), specifically affecting generalization to out-
of-distribution (OOD) data. Motivated by this con-
sideration, we chose to supervise-fine-tune Qwen
2.5-32B and Qwen 2.5-14B—both demonstrating
strong performance and free of RLHF optimiza-
tions—as our base models for the teaching ability
evaluation task.

5.2 Performance on the Test Set

Table 2 summarizes the highest rankings achieved
by our proposed methods in the evaluation phase,
detailed by each evaluation track: Track 1 (Mistake
Identification): 12th out of 44; Track 2 (Mistake
Location): 1st out of 31; Track 3 (Providing Guid-
ance): 3rd out of 35; Track 4 (Actionability): 8th
out of 29, and Track 5 (Guess the Tutor Identity):
5th out of 20.

Additionally, we observed differential strengths
of the two methodological approaches we adopted:
the in-context learning method performed notably
better in Tracks 2 and 3, while the supervised
fine-tuning method exhibited superior performance
specifically in Tracks 1 and 4. Table 3 reports the
highest observed scores for each of the two method-
ologies on the test set.

6 Discussion

Upon further analysis of track-specific perfor-
mance, we find a clear methodological divide be-
tween the strengths of supervised fine-tuning (SFT)
and in-context learning (ICL). We hypothesize that
these performance differences are rooted in the task
structure and cognitive load required for each eval-
uation dimension:

SFT advantages in Track 1 and Track 4: Both
of these tracks can be framed as relatively discrete
classification tasks. Track 1 requires the model to
detect the existence of a mistake, often a binary
or ternary decision. Track 4, similarly, involves
judging whether the tutor’s response provides ac-
tionable next steps—a decision that can be learned
reliably from labeled data with consistent annota-
tion guidelines. SFT excels in such tasks due to
its ability to internalize structured decision bound-
aries from annotated examples, especially when
paired with simplified input formats and explicit
label mappings. Moreover, SFT benefits from pa-
rameter adaptation, allowing it to specialize in sub-
tle categorical distinctions that prompt-based infer-
ence might overlook.

ICL advantages in Track 2 and Track 3: In
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Track Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc

Mistake Identification

1 BJTU 0.7181 0.8623 0.8957 0.9457
...

...
...

...
...

...
12 BLCU-ICALL 0.6822 0.8578 0.8909 0.9418

Mistake Location 1 BLCU-ICALL 0.5983 0.7679 0.8386 0.8630

Providing guidance

1 MSA 0.5834 0.6613 0.7798 0.8190
...

...
...

...
...

...
3 BLCU-ICALL 0.5741 0.6716 0.7487 0.8061

Actionability

1 bea-jh 0.7085 0.7298 0.8527 0.8837
...

...
...

...
...

...
8 BLCU-ICALL 0.6735 0.7363 0.8596 0.8856

Guess the tutor identity

1 Phaedru 0.9698 0.9664 / /
...

...
...

...
...

...
5 BLCU-ICALL 0.8930 0.8908 / /

Table 2: Rankings and Results of BLCU-ICALL in 5 tracks

Track-1 Track-2 Track-3 Track-4
ICL 0.6600 0.5983 0.5741 0.5956
SFT 0.6822 0.5582 0.5446 0.6735

Table 3: Comparison of peak performance across tracks
for in-context learning (ICL) and supervised fine-tuning
(SFT) methods on the test set. Due to time constraints
during the test phase, SFT results for Tracks 2 and 3
were not submitted; instead, italicized scores denote
performance on 5% of the development set.

contrast, Track 2 (locating the specific position
of a student’s error) and Track 3 (generating ped-
agogically appropriate guidance) require deeper
interpretive reasoning and open-ended judgment.
These tasks often lack rigid decision templates and
depend heavily on nuanced understanding of con-
versational context, semantics, and pedagogical
intent. Large-scale proprietary models like Gemini-
2.5-Pro, when supported by advanced prompting
(e.g., rubric-injection and contextual demonstra-
tions), are capable of flexible reasoning and gener-
alization—making ICL a better fit. Notably, these
models benefit from large-scale parameter, broader
pretraining and instruction tuning, allowing them to
leverage latent reasoning abilities not easily trans-
ferred through task-specific fine-tuning alone.

In Track 5 (authorship attribution), our use of
fine-tuned Qwen2.5-based classifiers achieved no-
table success, ranking 5th overall. This validates
the feasibility of using stylistic “fingerprints” for
source model identification even under black-box

constraints. Nevertheless, distinguishing between
highly similar models (e.g., LLaMA variants) re-
mains challenging, especially when input samples
are short or lack distinctive syntactic structures.

7 Conclusion

This paper presents our comprehensive approach
to the BEA-2025 Shared Task, focusing on both
pedagogical ability assessment and tutor identity
attribution in AI-powered tutoring systems. We
explore multiple methodological paradigms, in-
cluding in-context learning (ICL), supervised fine-
tuning (SFT), and reinforcement learning (RLHF),
and demonstrate their respective strengths across
task tracks. Our empirical results show that SFT
excels in structured classification tasks, while
ICL, supported by advanced prompting strategies,
proves more effective in open-ended reasoning set-
tings. Furthermore, we validate the use of fine-
tuned LLM classifiers for authorship attribution,
achieving competitive performance even in black-
box conditions. Our findings not only highlight the
importance of methodological alignment with task
structure but also provide practical insights into
building robust evaluation systems for educational
AI.

Limitations

Our work is subject to several limitations. For the
task of Pedagogical Ability Assessment, different
evaluation dimensions are not independent; rather,
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they are closely interrelated. Utilizing potential
synergies among these evaluation dimensions is a
plausible direction that remains largely unexplored
in this study. Additionally, in Track 5, there is one
particularly crucial piece of information that we
failed to fully exploit: the constraint that each tutor
identity label can appear at most once for the same
dialogue.
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A Data Correction and Processing

We addressed three types of issues in the MRBeach
V3 dataset that may negatively impact the effective-
ness of the pedagogical ability assessment model.

Role Label Mismatches
As mentioned previously, we conducted align-

ment between the MRBeach V3 dataset and the
original MathDial dataset by calculating surface-
level similarity using the BLEU score. Subse-
quently, we corrected erroneous labels through
threshold-based automated filtering combined with
manual annotations. Table 4 below shows the fre-
quency of role-label mismatch errors and their cor-
responding indices in the development and test sets.

Irrelevant Dialogue Openings
The segmentation strategy applied to real-world

conversation data occasionally resulted in seman-
tically unrelated dialogues being grouped into the
same segment, consequently introducing irrelevant
information not directly related to the core mathe-
matical problems. To handle this issue, we identi-
fied dialogues in MRBeach V3 where the student’s
utterance is the initial turn, as many of these cases
exemplified irrelevant conversation openings. A
summary of these cases is provided in Table 5 be-
low.

Consecutive Utterances
To better align the dialogues with the stan-

dard conversational format used by large lan-
guage models—alternating question-answer inter-
actions between two speakers—we identified and
merged consecutive utterances belonging to the
same speaker role within MRBeach V3. Detailed
statistics of this merging process are presented in
Table 6 below.

B Methodology Details

Below are detailed descriptions regarding in-
context learning and supervised fine-tuning meth-
ods for Pedagogical Ability Assessment and Tutor
Identification.

B.1 Prompt Construction Methodology
Details

This section provides the prompt templates which
yielded the best performance for in-context learn-
ing and supervised fine-tuning methods.

ICL Prompt Template

# System Prompt:
You are a critic evaluating a tutor’s interaction
with a student, responsible for providing a
clear and objective single evaluation score
based on specific criteria. Each assessment
must accurately reflect the absolute perfor-
mance standards.

# User Prompt:
## Objective: Evaluate the quality of a
teacher’s latest response within the context
of an ongoing conversation with a student.
Your evaluation must be based solely on the
provided information and result in structured
feedback and a grade classification.

## Inputs:
* **Evaluation Indicators:** “{definition}”
* **Grading Criteria:** {rubric}
* **Conversation History:** “{history}”
* **Teacher’s Latest Reply:** “{response}”

## Instructions:
1. **Analyze**: Carefully review the
**Teacher’s Latest Reply** in the context of
the **Conversation History**.
2. **Evaluate**: Assess the **Teacher’s
Latest Reply** strictly against each point
listed in the **Evaluation Indicators**.
3. **Formulate Feedback**: Write a detailed
feedback statement. This statement must
clearly explain *how* the teacher’s reply per-
forms against the **Evaluation Indicators**,
citing specific examples from the reply or
history where applicable. Your reasoning
should be evident *within* this feedback
structure.
4. **Assign Grade**: Based on your evalua-
tion and the provided **Grading Criteria**,
determine the appropriate classification (A, B,
or C).
5. **Format Output:** Present your response
*only* in the following format, without any
additional introductory or concluding remarks:
‘Feedback: (Your detailed feedback statement
based on evaluation indicators) [Classification]
(A, B, or C)‘
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Dataset Frequency Index

Development set 26
18, 36, 56, 79, 100, 116, 122, 155, 168, 174, 177, 182, 183, 188,
195, 201, 205, 225, 252, 262, 264, 271, 277, 282, 290, 295

Test set 16 4, 28, 31, 33, 37, 42, 51, 61, 94, 98, 99, 108, 120, 129, 172, 183

Table 4: Role Label Mismatches

Dataset Frequency Index

Development set 16
3, 15, 23, 40, 42, 44, 65, 163, 175, 202, 221, 227, 248, 254, 257,
293

Test set 1 115

Table 5: Irrelevant Dialogue Openings

SFT/RL Prompt Template

Track 1: Mistake Identification
## System: You are a Senior Teaching
Supervisor.
## Input: Has the tutor explicitly pointed
out that there was a mistake in a student’s
response?
- A: Yes (The tutor’s response recognizes
there is a mistake, or provides some practical
guidance.)
- B: To some extent
- C: No (The tutor’s response believes that the
question had been completely resolved, or no
connection.)

* Conversation History: “{history}”

* Teacher’s Latest Reply: “{tutor_response}”

Track 2: Mistake Location
## System: You are a Senior Teaching
Supervisor.
## Input: Does the tutor’s response accurately
point to a genuine mistake and its location?
- A: Yes (the tutor clearly points to the exact
location of a genuine mistake in the student’s
solution)
- B: To some extent (the response demonstrates
some awareness of the exact mistake, but is
vague, unclear, or easy to misunderstand)
- C: No (the response does not provide any
details related to the mistake)

* Conversation History: “{history}”

* Teacher’s Latest Reply: “{tutor_response}”

Track 3: Providing Guidance
## System: You are a Senior Teaching
Supervisor.
## Input: Does the tutor offer correct and
relevant guidance, such as an explanation,
elaboration, hint, examples, and so on?
- A: Yes (the tutor provides guidance that is
correct and relevant to the student’s mistake)
- B: To some extent (guidance is provided but
it is fully or partially incorrect, incomplete, or
somewhat misleading)
- C: No (the tutor’s response does not include
any guidance, or the guidance provided is
irrelevant to the question or factually incorrect)

* Conversation History: “{history}”

* Teacher’s Latest Reply: “{tutor_response}”

Track 4: Actionability
## System: You are a Senior Teaching
Supervisor.
## Input: Is it clear from the tutor’s latest reply
what the student should do next?
- A: Yes (the response provides clear sugges-
tions on what the student should do next)
- B: To some extent (the response indicates
that something needs to be done, but it is not
clear what exactly that is)
- C: No (the response does not suggest any
action on the part of the student (e.g., it simply
reveals the final answer))

* Conversation History: “{history}”

* Teacher’s Latest Reply: “{tutor_response}”
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Dataset Role Continuous times Frequency Index

Development set Tutor 2 36

4, 12, 16, 19, 24, 37, 41, 42, 43,
45, 57, 66, 73, 80, 101, 107, 117,
136, 156, 160, 164, 169, 176, 178,
202, 203, 228, 249, 253, 255, 263,
265, 278, 283, 291, 294

Development set Tutor 3 38

3, 10, 14, 18, 20, 31, 35, 38, 49,
64, 71, 77, 82, 92, 110, 111, 122,
124, 135, 138, 151, 157, 174, 200,
212, 215, 231, 232, 239, 252, 260,
264, 270, 273, 275, 290, 292, 299

Development set Student 2 5 104, 175, 196, 222, 258

Test set Tutor 2 18
5, 22, 29, 32, 34, 43, 51, 78, 95,
99, 109, 115, 18, 121, 130, 173,
184, 191

Test set Tutor 3 14
38, 39, 40, 46, 62, 82, 92, 98, 111,
113, 131, 166, 176, 188

Table 6: Consecutive Utterances

B.2 Supervised Fine-tuning Details

To perform supervised LoRA fine-tuning of Qwen
2.5-14B, we utilized two L40S servers, each
equipped with eight GPUs throughout our experi-
ments. For implementation, we employed LLaMA-
Factory, and the key configuration parameters are
detailed as follows:

• finetuning_type: lora

• lora_target: all

• template: qwen

• cutoff_len: 2048

• per_device_train_batch_size: 2

• gradient_accumulation_steps: 4

• lora_dropout: 0.1

• learning_rate: 2.0e-4

• num_train_epochs: 30.0

• lr_scheduler_type: cosine

• warmup_ratio: 0.1

B.3 Tutor Identification Details

We fine-tune the Qwen 2.5-7B model to develop a
large language model-based authorship attribution
classifier for identifying the origin of anonymous

texts. The classifier model takes the instructor’s re-
sponse text as input and outputs the corresponding
instructor identity label. In this section, we present
the format of the instruction dataset and the key
hyperparameters used in fine-tuning.

Track 5: Tutor Identification
## Instruction: Determine which model gener-
ated the following text.
## Input: Here is the generated text: {tu-
tor_response}

• finetuning_type: lora

• lora_target: all

• template: qwen

• cutoff_len: 2048

• per_device_train_batch_size: 2

• gradient_accumulation_steps: 4

• lora_dropout: 0.1

• learning_rate: 5.0e-4

• num_train_epochs: 26.0

• lr_scheduler_type: cosine

• warmup_ratio: 0.1
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Abstract

As Large Language Models (LLMs) are
increasingly deployed in educational envi-
ronments, two critical challenges emerge:
identifying the source of tutoring responses
and evaluating their pedagogical effectiveness.
This paper presents Phaedrus’ comprehensive
approach to the BEA 2025 Shared Task,
addressing both tutor identity classification
(Track 5) and actionability assessment (Track
4) in mathematical tutoring dialogues. For
tutor identity classification, we distinguish
between human tutors (expert/novice) and
seven distinct LLMs using cross-response
context augmentation and ensemble tech-
niques. For actionability assessment, we
evaluate whether responses provide clear
guidance on student next steps using selective
attention masking and instruction-guided
training. Our multi-task approach combines
transformer-based models with innovative
contextual feature engineering, achieving
state-of-the-art performance with a CV macro
F1 score of 0.9596 (test set 0.9698) for
identity classification and 0.655 (test set Strict
F1 0.6906) for actionability assessment. We
were able to score rank 5th in Track 4 and
rank 1st in Track 5. Our analysis reveals that
despite advances in human-like responses,
LLMs maintain detectable fingerprints while
showing varying levels of pedagogical ac-
tionability, with important implications for
educational technology development and
deployment. Our code and implementation
details are publicly available at https:
//github.com/Rajneesh-Tiwari/
BEA_2025_shared_task.

1 Introduction

The integration of Large Language Models
(LLMs) into educational environments has cre-
ated new opportunities and challenges for tutor-
ing systems. As AI-powered tutors become in-
creasingly prevalent, two fundamental questions
emerge: (1) Can we reliably identify the source

of tutoring responses to ensure transparency and
accountability and (2) How effectively do these re-
sponses guide students toward learning objectives
(Kochmar et al., 2022)

The BEA 2025 Shared Task (Kochmar et al.,
2025) addresses these critical questions through
two complementary tracks. Track 5 challenges
participants to classify the source of mathemati-
cal tutoring responses, distinguishing between hu-
man tutors (expert and novice) and seven different
LLMs: Gemini, GPT-4, Llama3-405B, Llama3-
8B, Mistral, Phi3, and Claude Sonnet. Track 4
focuses on evaluating the actionability of these
responses—whether they provide clear guidance
on what students should do next, a crucial factor
in effective pedagogical feedback (Daheim et al.,
2024).

These tasks are inherently related: understand-
ing who generated a response and how actionable
it is provides a comprehensive view of educational
dialogue quality. Our hypothesis is that different
tutors (human or AI) not only leave distinctive lin-
guistic fingerprints but also demonstrate varying
capabilities in providing actionable guidance. This
multi-dimensional analysis offers insights into the
current state of AI tutoring systems and their ped-
agogical effectiveness compared to human tutors.

Our team (Phaedrus) approach leverages
transformer-based models enhanced with task-
specific innovations. For identity classification,
we implement cross-response context augmen-
tation, allowing models to compare different
responses to the same question, and use spe-
cialized attention masking to focus on response
characteristics. For actionability assessment,
we develop instruction-guided training with
selective attention mechanisms that focus on
response-specific features indicating clear guid-
ance. Both tasks benefit from sophisticated
ensemble techniques and constraint satisfaction
post-processing.
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This paper presents our top-ranked systems for
both tracks, describing our unified methodology,
training strategies, and comprehensive analysis of
results. Our findings demonstrate that while LLMs
are becoming increasingly sophisticated in gener-
ating human-like responses, they still exhibit de-
tectable patterns that distinguish them from human
tutors, and they show varying capabilities in pro-
viding actionable pedagogical guidance.

2 Related Work

Recent research in educational dialogue assess-
ment has focused on multiple dimensions of qual-
ity evaluation. Tack and Piech (2022) intro-
duced a framework for evaluating LLM-based tu-
tors across three dimensions: whether they speak
like a teacher, understand a student, and help a stu-
dent. Building on this work, Tack et al. (2023)
organized shared task on generation of teacher re-
sponses in educational dialogues. The goal of the
task was to benchmark the ability of generative
language models to act as AI teachers, replying to
a student in a teacher-student dialogue using exist-
ing automatic metrics (e.g., BERTScore (Zhang*
et al., 2020), DialogRPT (Gao et al., 2020)) and
manual evaluation aligned with the proposed di-
mensions, highlighting ongoing challenges in the
reliable assessment of pedagogical dialogue qual-
ity.

2.1 Tutor Identity and AI Detection

The challenge of distinguishing between hu-
man and AI-generated text has established sev-
eral foundations. Guo et al. (2023) demon-
strated that transformer models effectively iden-
tify LLM-generated text through distinctive lin-
guistic patterns, performing linguistic analysis to
identify patterns between ChatGPT and human ex-
pert responses. In educational contexts specifi-
cally, Chen et al. (2024) introduced Dr.Academy,
a benchmark for evaluating LLMs’ questioning
capabilities across general, humanities, science,
and interdisciplinary educational domains, reveal-
ing that different models demonstrate varying
strengths and distinctive patterns.

Our work extends these approaches by address-
ing a more complex classification problem: dis-
tinguishing not just between human and AI re-
sponses, but between multiple specific AI models
and different types of human tutors in educational
contexts.

2.2 Actionability and Pedagogical
Effectiveness

The assessment of pedagogical effectiveness in
tutoring responses has gained increasing atten-
tion. Macina et al. (2023) introduced MathDial,
a dataset for mathematical tutoring dialogues, and
evaluated tutor responses using coherence, cor-
rectness, and equitable tutoring criteria. Wang
et al. (2024) assessed tutoring responses based on
usefulness, care, and human-likeness, providing
additional dimensions for evaluation.

Most relevant to our actionability assessment,
Daheim et al. (2024) introduced a framework for
evaluating tutoring responses that includes action-
ability as a key criterion, defining it as whether a
response makes it clear what the student should do
next. Their findings suggest that even state-of-the-
art LLMs struggle to consistently provide action-
able guidance in educational contexts.

2.3 Technical Approaches

For student response evaluation, Fateen and Mine
(2023) compared in-context meta-learning and se-
mantic score-based similarity approaches for au-
tomated short answer grading in Arabic, demon-
strating different computational approaches to
evaluating student responses. Additionally, Mau-
rya et al. (2025) developed a comprehensive eval-
uation taxonomy for assessing LLM-powered AI
tutors, highlighting distinctive features in AI-
generated pedagogical interactions.

Our work builds upon these foundations while
introducing novel techniques specifically tailored
to both identity classification and actionability
assessment in educational dialogues, including
cross-response context augmentation, constraint
satisfaction optimization, and instruction-guided
training approaches.

3 Dataset and Task Overview

Both tracks utilize a unified dataset of mathemati-
cal tutoring dialogues (Maurya et al., 2025) com-
bining MathDial (Macina et al., 2023) and Bridge
(Wang et al., 2024) datasets with 300 development
dialogues. Track 5 requires classifying responses
into nine tutor categories (human expert/novice
and seven LLMs), with each conversation contain-
ing unique tutor identifications. Track 4 evalu-
ates response actionability using three categories
(Yes/To some extent/No). Both tasks use exact
macro F1 score as the primary evaluation metric.
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4 Methodology

Our team (Phaedrus) approach combines multi-
ple transformer-based models with task-specific
architectural enhancements and ensemble tech-
niques. We develop a unified framework that
addresses both tutor identity classification and
actionability assessment while leveraging shared
components and complementary innovations.

4.1 Base Model Architecture

The core of our system utilizes several transformer
variants, each selected for specific strengths in ed-
ucational dialogue analysis:

• DeBERTa-v3-large (He et al., 2023): 24 lay-
ers, 1024 hidden size, 304M parameters

• DeBERTa-v3-base (He et al., 2023): 12 lay-
ers, 768 hidden size, 86M parameters

• DeBERTa-v3-small (He et al., 2023): 6 lay-
ers, 768 hidden size, 44M parameters

• Longformer-base-4096 (Beltagy et al.,
2020): 12 layers, 768 hidden size, 149M
parameters, with efficient attention for long
sequences

• BigBird-RoBERTa-large (Zaheer et al.,
2021): 24 layers, 1024 hidden size, 340M pa-
rameters, with block sparse attention

• Qwen-2.5-0.5B (Qwen et al., 2025): 24 lay-
ers, 1024 hidden size, 0.5B parameters, fea-
turing advanced positional embeddings and
multi-query attention

• Zephyr-7B-alpha (Tunstall et al., 2023): 32
layers, 4096 hidden size, 7B parameters,
based on Mistral architecture with sliding
window attention

4.2 Shared Architectural Enhancements

Both tasks benefit from several common architec-
tural innovations:

Response Tokenization and Selective Atten-
tion: We added special tokens [R START] and
[R END] to explicitly mark tutor response bound-
aries. This enables custom attention masking that
zeros out attention weights for tokens beyond the
[R END] marker, forcing models to focus specif-
ically on response content rather than surrounding
context.

Generalized Mean (GeM) Pooling: Instead
of standard mean pooling, we implemented GeM
pooling with a learnable parameter p to compute
sequence-level representations. Given a sequence
of hidden vectors x = {x1, x2, . . . , xn}, where
each xi ∈ Rd is the hidden representation of the i-
th token and n = |x| is the sequence length, GeM
pooling is defined as:

GeM(x) =

(
1

n

n∑

i=1

xpi

)1/p

(1)

Here, the exponentiation and root are applied
element-wise, and p ∈ R is a learnable parameter
that controls the sharpness of the pooling opera-
tion.

Multi-Sample Dropout: Inspired by (Inoue,
2020), we implemented multi-sample dropout
with varying rates (0.2 to 0.27) applied to the same
representation, then averaged the results. This acts
as an implicit ensemble, reducing variance without
additional computational cost.

4.3 Task-Specific Innovations
4.3.1 Track 5: Identity Classification

Enhancements
For tutor identity classification, we developed sev-
eral specialized techniques:

Cross-Response Context Augmentation:
Rather than treating each response in isolation,
we concatenate all available responses to the
same question from different tutors, creating rich
comparative context. This allows models to learn
distinctive patterns by seeing how different tutors
address identical student queries.

Constraint Satisfaction Post-processing: We
formulated the response classification task as a
constraint satisfaction problem to ensure that each
class is assigned at most once per conversation, re-
flecting the assumption that a tutor identity should
not repeat in a single dialogue.

Let c denote a conversation with a set of re-
sponses Rc = {r1, r2, . . . , rn}, and let pr,j rep-
resent the predicted probability that response r ∈
Rc belongs to class j, where j ∈ {0, 1, . . . , 8}.
Total there are 9 classes starting from 0 to 8 where
class ”0” is considered as ”novice”. We define bi-
nary decision variables xr,j ∈ {0, 1} indicating
whether response r is assigned to class j. The ob-
jective is to maximize the total assignment con-
fidence while satisfying the uniqueness constraint
per class within each conversation:
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maximize
∑

c

∑

r∈Rc

8∑

j=0

pr,j · xr,j (2)

subject to
8∑

j=0

xr,j = 1 ∀r ∈ Rc (3)

∑

r∈Rc

xr,j ≤ 1 ∀j ∈ {0, . . . , 8},∀c

(4)

xr,j ∈ {0, 1} (5)

We opted for a greedy algorithm due to its prac-
tical efficiency and implementation simplicity. By
prioritizing responses with the highest prediction
confidence and assigning them the most probable
unassigned class, the method effectively resolves
assignment conflicts with minimal computational
cost. Empirical results show that this approach im-
proves macro F1 scores by 2–3%, highlighting its
effectiveness in enforcing consistent class assign-
ments within conversations.

Algorithm 1 Constraint Satisfaction Algorithm

1: for all conversations c do
2: Ac ← ∅ ▷ Set of already assigned classes

in conversation c
3: Sort responses r ∈ Rc by maxj pr,j in de-

scending order
4: for all response r in sorted order do
5: ĵ ← argmaxj /∈Ac

pr,j ▷ Best
unassigned class

6: Assign class ĵ to response r
7: Ac ← Ac ∪ {ĵ}
8: end for
9: end for

4.3.2 Track 5: Meta-Model Ensemble with
Pseudolabeling

Our Track 5 ensemble combines six transformer
models through a sophisticated meta-modeling
pipeline and was able to achieve 1st position Ta-
ble 1:

1. Base Model Predictions: We collect class
probability outputs from all six transformer
models (54 features total)

2. Feature Enhancement: We augment with
TF-IDF vectors, count vectors, linguistic fea-
tures, and math-specific markers

3. Gradient Boosting: We train LightGBM,
XGBoost, and CatBoost models on combined
features

4. Pseudolabeling: High-confidence test pre-
dictions (probability > 0.85) are added to
training data with constraint satisfaction

5. Voting: Final predictions use weighted vot-
ing across all meta-models

4.3.3 Track 4: Actionability Assessment
Enhancements

For actionability assessment, we implemented
instruction-guided training:

Actionability Criteria Instruction: We incor-
porated explicit actionability assessment criteria
directly into model input:

Instruction: Analyze the tutor’s
response and determine if it
provides actionable guidance to the
student.

Classification Rules:
- Label as "Yes" if the response gives

specific, clear instructions on what
to do next

- Label as "To some extent" if the
response hints at needed action but
lacks specificity

- Label as "No" if the response only
provides the answer without guidance

Remember: Focus on whether the response
guides the student’s next steps, not
just whether it’s correct.

4.3.4 Track 4: Optimized Weighted
Ensemble

For Track 4, we developed a streamlined ensemble
approach:

1. Model-Level Weighting: Global weights for
each model applied to all class probabilities

2. Model-Class Weighting: Individual weights
for each model-class combination (12
weights total)

3. Threshold Optimization: Class-specific
probability thresholds to address class imbal-
ance

4. Hyperparameter Optimization: Optuna-
based optimization using macro F1 as the tar-
get metric
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Table 1: Task 5 Leaderboard: Identity Classification

Rank Team Ex. F1 Ex. Acc
1 Phaedrus 0.9698 0.9664
2 SYSUpporter 0.9692 0.9657
3 Two Outliers 0.9172 0.9412
4 JInan Smart Education 0.8965 0.8940
5 BLCU-ICALL 0.8930 0.8908

4.4 Training Strategy
Our team (Phaedrus) training strategy incorpo-
rated several techniques to maximize performance
across both tasks:

Cross-Validation: We employed 5-fold Strati-
fied Group K-Fold cross-validation, ensuring dia-
logues from the same conversation ID remained in
the same fold to prevent data leakage while main-
taining class distribution.

Hyperparameter Configuration: We used
AdamW optimizer with weight decay of 0.003,
learning rates ranging from 1e-5 to 3e-5 depending
on model size, and OneCycleLR scheduler with
maximum learning rate reached at 30% of training
steps. For larger models, we implemented gradient
accumulation with effective batch sizes of 16-32.

Task-Specific Input Formatting: To maxi-
mize ensemble diversity, we designed distinct in-
put templates for different model architectures,
each optimized for their specific attention mech-
anisms and training paradigms:

BERT-family Models (DeBERTa, Longformer,
BigBird):
[Question] + [SEP] + [R_START] + [

Response] + [R_END] + [SEP] + [
Context]

Structured format with explicit token boundaries
for enhanced attention control

Qwen-2.5 Model:
Track 5: Question: [Question]; Answer: [

Response]; Context: [Context]
Track 4: Question: [Question]; Response:

[Response]

Natural language format optimized for
instruction-following capabilities

Zephyr-7B Model:
Question: [Question]; Answer: [Response]

Parameter-Efficient Fine-tuning: For larger
models, we utilized Low-Rank Adaptation
(LoRA) with model-specific configurations:

Qwen-2.5 used rank=256/alpha=512 (Track 4)
or rank=64/alpha=128 (Track 5), while Zephyr
used rank=16/alpha=32. Models were quantized
to 4-bit or bfloat16 precision to reduce memory
requirements.

Early Stopping and Regularization: We im-
plemented early stopping based on validation
macro F1 score with patience of 3 epochs.
Dropout rates were set to 0.1 for base models, with
multi-sample dropout providing additional regu-
larization through ensemble-like averaging.

5 Experiments and Results

5.1 Experimental Setup

We trained our models using 5-fold cross-
validation with early stopping based on validation
macro F1 score. Each model was trained for 25
epochs using AdamW optimizer with weight de-
cay of 0.003 and OneCycleLR scheduler.

5.2 Track 5: Tutor Identity Classification
Results

Table 2 presents the performance of our identity
classification system.

Our Track 5 system achieved a macro F1 score
of 0.9596, securing rank 1st 1 in the competition
leaderboard. The results demonstrate several key
findings:

1. Cross-Response Context provides the
largest individual contribution, confirming
that comparative information between dif-
ferent tutor responses is highly valuable for
distinguishing tutor identities.

2. Pseudolabeling adds consistent improve-
ment across all classes, with the largest gains
for classes with fewer training examples.

3. Ensemble Diversity proves crucial, as each
model contributes uniquely to final perfor-
mance.
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Model Val Macro F1 Val Accuracy LB Macro F1 LB Accuracy

DeBERTa-v3-base 0.8971 0.8901 NA NA
DeBERTa-v3-large 0.8995 0.8914 NA NA
Longformer-base 0.8945 0.8865 NA NA
BigBird-RoBERTa-large 0.8761 0.8671 NA NA
Qwen-2.5-0.5B 0.8938 0.8869 NA NA
Zephyr-7B-alpha 0.8811 0.8740 NA NA

LightGBM meta-model 0.9226 0.9172 0.9250 0.9263
+ Pseudolabeling 0.9585 0.9547 0.9604 0.9619
Final Ensemble 0.9596 0.9560 0.9698 0.9664

Table 2: Track 5 performance on validation set using 5-fold cross-validation and leaderboard results

Table 3: Task 4 Results: Actionability Assessment

Rank Team Ex. F1 Ex. Acc Len. F1 Len. Acc
1 bea-jh 0.7085 0.7298 0.8527 0.8837
2 BJTU 0.6992 0.7363 0.8633 0.8940
3 MSA 0.6984 0.7537 0.8659 0.8908
4 lexiLogic 0.6930 0.7162 0.8393 0.8675
5 Phaedrus 0.6907 0.7298 0.8346 0.8656

5.3 Track 4: Actionability Assessment
Results

Table 4 presents the performance of our action-
ability assessment system.

Our Track 4 system achieved a macro F1 score
of 0.655, securing 5th Table 3 place on the com-
petition leaderboard. The results reveal:

1. Model-Class Weighting outperforms simple
model-level weighting, suggesting different
models have strengths for different action-
ability categories.

2. Instruction Guidance significantly im-
proves model understanding of actionability
criteria.

3. Middle Category Challenge: The ”To some
extent” category shows lower performance,
reflecting inherent ambiguity in partial ac-
tionability.

5.4 Feature Importance Analysis

Figure 1 shows feature importance from our Track
5 LightGBM meta-model, revealing model-class
specialization patterns.

The analysis reveals that different architectures
excel at detecting specific tutor identities, validat-
ing our multi-model ensemble approach. Each

LLM leaves distinct ”fingerprints” detectable by
specialized transformer architectures.

6 Discussion

Our comprehensive approach to both tutor identity
classification and actionability assessment pro-
vides valuable insights into the current state of AI
tutoring systems and their relationship to human
tutoring effectiveness.

6.1 Cross-Task Insights
The combination of both tasks reveals important
patterns:

1. Identity-Actionability Correlation: Our
analysis suggests that human expert tutors
consistently receive higher actionability rat-
ings than most LLMs, indicating that the
source of a response correlates with its peda-
gogical effectiveness.

2. LLM Differentiation: Different LLMs show
distinct patterns not only in linguistic finger-
prints but also in their ability to provide ac-
tionable guidance. This suggests that model
architecture and training approaches influ-
ence pedagogical capabilities.

3. Detectability vs. Quality: Despite LLMs’
increasing sophistication in generating
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Model Val Macro F1 Val Accuracy LB Macro F1 LB Accuracy

DeBERTa-v3-small 0.6169 0.7124 NA NA
DeBERTa-v3-base 0.6262 0.7161 NA NA
DeBERTa-v3-large 0.6360 0.7112 NA NA
Qwen-2.5-0.5B 0.6387 0.7205 NA NA

Model-level weights opt. 0.6536 0.7387 NA NA
Model-class weights opt. 0.6548 0.7346 0.6836 0.7292
Final Ensemble 0.6551 0.7350 0.6907 0.7298

Table 4: Track 4 performance on validation set using 5-fold cross-validation and leaderboard results

0 0.5 1 1.5 2

·104

Phi3 deberta large
Llama31405B deberta large

Expert deberta large
GPT4 zephyr

Phi3 longformer large
Sonnet qwen

Gemini longformer large
GPT4 deberta large

Mistral deberta large
Llama318B deberta large

Importance Score

Fe
at

ur
e

N
am

e

Top 10 Features by Importance in Track 5 Meta-model

Figure 1: Top 10 feature importance scores showing model-class specialization in tutor identity. Each feature rep-
resents how confident a specific transformer architecture is in predicting a particular tutor identity. For example,
”Phi3 deberta large” indicates the DeBERTa-large model’s probability output for the Phi3 LLM class classifica-
tion.

human-like responses, they remain de-
tectable through subtle patterns while
showing varying quality in educational
effectiveness.

6.2 Technical Contributions
Our methodology contributes several innovations
to educational dialogue assessment:

1. Cross-Response Context Augmentation:
This technique significantly improves iden-
tity classification by providing comparative
information, suggesting that tutor identity is
best understood in relation to alternative re-
sponses.

2. Constraint Satisfaction Integration: The
post-processing approach for enforcing
unique class assignments demonstrates how
task-specific constraints can be integrated
into neural classification systems.

3. Instruction-Guided Training: The explicit
incorporation of assessment criteria into
model input proves effective for actionability
evaluation, suggesting broader applications
for criterion-based classification tasks.

4. Multi-Model Specialization: Our feature
importance analysis confirms that different
transformer architectures capture comple-
mentary aspects of educational dialogues,
supporting diverse ensemble approaches.

6.3 Educational Implications
The findings have significant implications for ed-
ucational technology:

1. Transparency and Accountability: The
ability to reliably identify AI vs. human tu-
toring responses enables better transparency
in educational settings where students may
not be aware of AI involvement.
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2. Quality Assurance: Automated actionabil-
ity assessment can provide real-time feed-
back to improve both human and AI tutoring
responses, potentially enhancing educational
outcomes.

3. AI Development Guidance: The identifica-
tion of specific areas where LLMs fall short
in actionability provides clear targets for im-
proving AI tutoring systems.

4. Hybrid Systems: Understanding the com-
plementary strengths of human and AI tutors
can inform the design of hybrid systems that
leverage the best aspects of both.

6.4 Methodological Insights

Our approach reveals several important method-
ological considerations:

1. Task Complementarity: The combination
of identity classification and quality assess-
ment provides a more comprehensive evalua-
tion framework than either task alone.

2. Context Importance: Both tasks bene-
fit significantly from contextual information,
whether through cross-response comparison
or instruction guidance.

3. Ensemble Effectiveness: Different ensem-
ble strategies (meta-learning vs. weighted
voting) prove optimal for different tasks, sug-
gesting that ensemble design should be tai-
lored to specific problem characteristics.

4. Constraint Integration: The successful in-
tegration of domain constraints (uniqueness)
into neural models demonstrates the value
of combining symbolic and connectionist ap-
proaches.

These findings collectively demonstrate that ef-
fective educational dialogue assessment requires
sophisticated approaches that consider both the
source and quality of responses, with important
implications for the development and deployment
of AI tutoring systems.
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8 Limitations

While our multi-task approach achieved strong
performance on both BEA 2025 Shared Task
(Kochmar et al., 2025) tracks, several limitations
should be noted:

1. Domain Specificity: Our models were
trained and evaluated specifically on mathe-
matical tutoring dialogues. Performance may
not generalize to other educational domains
with different discourse patterns or pedagog-
ical requirements.

2. Language and Cultural Constraints: The
dataset primarily consisted of English-
language dialogues reflecting specific educa-
tional contexts. Performance on multilingual
or cross-cultural tutoring scenarios remains
untested.

3. Temporal Limitations: As LLMs continue
to evolve rapidly, the distinctive patterns
identified by our models may change. Fu-
ture versions of the same LLMs might exhibit
different characteristics, potentially reducing
classification effectiveness.

4. Computational Requirements: Our ap-
proach relies on large transformer models and
sophisticated ensemble techniques, requir-
ing significant computational resources that
may limit practical deployment in resource-
constrained educational environments.

5. Interpretability Challenges: While our
models achieve high classification accuracy,
they provide limited insights into the specific
linguistic or pedagogical features that drive
classification decisions, making it difficult to
extract actionable guidance for improving tu-
toring responses.

6. Category Granularity: The discrete catego-
rization schemes may oversimplify complex
phenomena—tutor identity includes many
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sub-variations within categories, and action-
ability might be better represented as a con-
tinuum rather than discrete classes.

Future work could address these limitations
by expanding to multiple educational domains,
developing more efficient architectures, incor-
porating explainable AI techniques, and explor-
ing the explicit modeling of cross-task relation-
ships. Additionally, longitudinal studies track-
ing LLM evolution and cross-cultural validation
would strengthen the generalizability of these ap-
proaches.
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Abstract

For the BEA 2025 shared task on pedagogi-
cal ability assessment, we introduce LUCERA
(Lexical Understanding for Cue Density–Based
Escalation and Reflective Assessment), a
rubric-grounded evaluation framework for sys-
tematically analyzing tutor responses across
configurable pedagogical dimensions. The ar-
chitecture comprises three core components:
(1) a rubric-guided large language model
(LLM) agent that performs lexical and dialogic
cue extraction in a self-reflective, goal-driven
manner; (2) a cue-complexity assessment and
routing mechanism that sends high-confidence
cases to a fine-tuned T5 classifier and esca-
lates low-confidence or ambiguous cases to
a reasoning-intensive LLM judge; and (3) an
LLM-as-a-judge module that performs struc-
tured, multi-step reasoning: (i) generating a
domain-grounded reference solution, (ii) iden-
tifying conceptual, procedural and cognitive
gaps in student output, (iii) inferring the tutor’s
instructional intent, and (iv) applying the rubric
to produce justification-backed classifications.
Results show that this unique combination of
LLM powered feature engineering, strategic
routing and rubrics for grading, enables com-
petitive performance without sacrificing inter-
pretability and cost effectiveness.

1 Introduction

High-quality formative feedback is a cornerstone of
effective learning: timely, specific guidance helps
learners close knowledge gaps, consolidate cor-
rect mental models, and sustain motivation (An-
derson et al., 1995; Hattie and Timperley, 2007).
Yet providing rich feedback at scale remains diffi-
cult. The BEA-2025 Shared Task (Kochmar et al.,
2025) tackles this challenge by pairing a learning-
science–grounded evaluation taxonomy (Maurya
et al., 2025) with MRBENCH (Maurya et al., 2025),

*Corresponding author: raunak_jain1@intuit.com

a benchmark that fuses math-centric tutoring di-
alogues from MATHDIAL (Macina et al., 2023)
and BRIDGE (Wang et al., 2024b). The compe-
tition assesses four pedagogically salient dimen-
sions—Mistake Identification (MI), Mistake Lo-
cation (ML), Providing Guidance (PG), and Ac-
tionability (ACT)—thereby offering a unified, stan-
dardised test-bed for measuring the pedagogical
competence of AI tutors.

While we participate in the shared task, our
goal extends beyond leader-board performance
(see 7 for more details). We introduce LUCERA
(Lexical Understanding for Cue density–based
Escalation and Reflective Assessment), a novel hy-
brid architecture that unifies fast lexical heuristics,
confidence-aware routing, and reasoning capabili-
ties of large-language-models (LLMs). LUCERA,
positioned as a general research contribution,
demonstrates how an adaptive cascade can de-
liver interpretable, scalable, rubric-faithful evalua-
tion—attributes that matter both inside and outside
competition settings.

Existing approaches to pedagogical-quality as-
sessment occupy two extremes. At one end,
rule-based cue extractors offer transparency and
speed but falter when feedback is implicit or
domain-specific (Lehman et al., 2019; Wang et al.,
2020; Wollny et al., 2021; Macina et al., 2023).
At the other, rubric-grounded LLM judges achieve
broad coverage yet impose high computational cost
and, when used indiscriminately, act as opaque
monoliths that are hard to audit (Liu et al., 2023b;
Maurya et al., 2025; Tack et al., 2023). Bridging
these extremes, stepwise chain-of-thought (CoT)
verification recovers subtle pedagogical intent but
further magnifies latency and cost (Daheim et al.,
2024; Wang et al., 2024b; Jain, 2025).

LUCERA orchestrates these complementary
paradigms in a three-stage pipeline. A lightweight
lexical-cue extractor provides instant, interpretable
signals; a complexity-aware router allocates re-
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sponses to either a heuristic XGBoost scorer, a
fine-tuned T5 classifier, or a reflective CoT judge;
and a final rubric-aligned verdict is produced only
in low confidence scenarios. All LLM-based tasks
in this work were performed using Qwen/Qwen2-
1.5B-Instruct (Yang et al., 2024). This design
achieves a 2.4× throughput gain over blanket LLM
judging on the BEA-2025 dev set while maintain-
ing rubric fidelity. Beyond the task, we argue that
LUCERA offers a principled template for scaling
LLM-based pedagogical quality assessment wher-
ever feedback quality, cost, and transparency must
be balanced.

The remainder of this paper is organised
as follows: Section 2 surveys prior work on
pedagogical-quality assessment, LLM judges, veri-
fication pipelines, and intelligent routing; Section
3 describes LUCERA’s architecture; Section 4 and
Section 5 detail the feature extraction and classifica-
tion components; Section 6 explains the reflective
LLM judge; Section 7 reports empirical results; and
Section 7 concludes with limitations and directions
for future research.

2 Related Works

Surface-level cue extraction. Early work framed
pedagogical quality as a pattern-recognition prob-
lem: if a tutor turn contains directive verbs (try,
consider), contrastive discourse markers (however,
because), or worked-example fragments, it likely
advances learning (Lehman et al., 2019; Wang
et al., 2020). Rule-based and linear classifiers built
on these lexical cues offered millisecond latency
and clear rationales, and they continue to power
production intelligent tutoring systems (Bringula
and Basa, 2018). Nevertheless, large corpus stud-
ies show cue sparsity and STEM-specific jargon
severely degrade their recall and domain transfer-
ability (Wollny et al., 2021; Macina et al., 2023).

LLM-as-a-Judge and Confidence based Cas-
cades. The arrival of GPT-4–class models
sparked a shift to rubric-grounded prompting: an
LLM reads a turn and scores each dimension di-
rectly (Liu et al., 2023b). Frameworks such as
LLM-RUBRIC formalise this practice and report
sizeable gains across open-ended tasks (Xia et al.,
2025). Yet unconditional LLM judging inflates
inference cost (Jung et al., 2025; Schuster et al.,
2022), produces verbose rationales of uneven qual-
ity (Saito et al., 2023; Ohi et al., 2024; Wang et al.,
2024a), and can hallucinate additional rubric cri-

teria (Li et al., 2023). Recent selective evaluation
frameworks provide provable guarantees of human
agreement while maintaining high coverage (Jung
et al., 2024), achieving better human alignment
than monolithic LLM judges while being substan-
tially more cost-effective. These findings strongly
motivate the search for selective depth in LLM-
based evaluation.

Stepwise verification and reflective reasoning.
Recent studies introduce a verification stage in
which an LLM first generates a reference solution
and then aligns it with the learner’s work before
labelling (Daheim et al., 2024; Wang et al., 2024b).
Such chain-of-thought (CoT) pipelines help iden-
tify correct pedagogical strategies by boosting un-
derstanding of student gaps (Jain, 2025). Com-
plementary efforts build testbeds (e.g., TutorGym)
and benchmarks that grade the fidelity of reason-
ing chains (Li et al., 2025; Jacovi et al., 2024).
However, each additional reasoning step multiplies
latency and cost, making blanket deployment im-
practical at classroom scale.

Intelligent routing and hybrid cascades.
Outside education, researchers mitigate the
cost–accuracy trade-off by cascading small and
large models, deferring only hard instances.
Contemporary confidence-tuned cascades (Xu and
McAuley, 2022), cascade-aware training (Zhang
et al., 2024), and calibrated ensemble policies
(Wagner et al., 2024) achieve 1.5–3× speed-ups
without loss of accuracy. Educational NLP,
by contrast, has yet to embrace hybrid routing:
state-of-the-art graders for assignments (Chiang
et al., 2024), short-answer scoring (Chang and
Ginter, 2024), and essay evaluation (Latif and
Zhai, 2024; Jiang and Bosch, 2024) all deploy a
single, monolithic LLM without confidence-based
deferral. Bridging this gap remains an open
opportunity for future assessment systems.

Summary and open gap. The literature thus
presents three partially solved challenges—speed
(cue extractors), depth (CoT verifiers), and trans-
parency (rubric-grounded judging)—addressed in
isolation. No prior system unifies them under a sin-
gle rubric while allocating compute proportionally
to instance difficulty. By integrating cue density,
calibrated confidence, and stepwise verification
into one adaptive cascade, LUCERA fills this gap
and provides the first cost-aware, rubric-consistent
pipeline for tutor-response evaluation.
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3 System Overview

LUCERA is a three-stage pipeline designed to as-
sess the pedagogical quality of tutor responses. The
system processes tutor responses through the fol-
lowing components:

LUCERA - 3-stage, adaptive pedagogical assessment
Extraction

Step 1:
Static cues

Goal Driven
Cue Mining

Contrastive
Mining

Discriminative
Refinement

Step 2:
Refined cues

Cue Repo

Lexical Cue
Mining

Dev set

Classification

T5
Classifier

No

prob > thresh

Cue Repo

Tutor Turns

XGBoost

prob > thresh

Yes

Yes

Return
Prediction

Judgement

Reasoning Steps

Error Line Extraction

Mistake Type
Classification

Skill Gap Extraction

Pedagogical Strategy

Final Classification

Solution Generation

Return
Prediction

Multi-step

Workflow
Self-Reflection

enabled

Rubric driven

Input Data

No

Figure 1: Overview of LUCERA’s three-stage pipeline:
(1) Rubric-Guided, goal driven lexical cue extractor
identifies pedagogical features, (2) XGBoost and T5
based classifiers to solve for feature rich scenarios (3)
Multi-step LLM judge for ambiguous and complex eval-
uation scenarios.

1. Rubric-Guided Lexical Cue Extraction: Iden-
tifies lexical and dialogue cues aligned with
rubric dimensions via a self-reflective LLM
agent. Maps directly to pedagogical criteria,
maintaining interpretability and transparency
throughout the feature extraction process.

2. XGBoost or Seq2Seq based Classification:
Routes cases based on cue density and con-
fidence. Deploys lightweight XGBoost or
T5 models for efficient assessment of high-
confidence cases with clear lexical patterns.

3. Step-wise LLM Judgement: Handles ambigu-
ous or complex cases through multi-step rea-
soning. Generates reference solutions, iden-
tifies student knowledge gaps, and applies
rubric criteria to deliver in-depth pedagogi-
cal analysis.

The rubric schema grounds both the cue extrac-
tor and the LLM judge, providing uniform evalu-
ation criteria. After extracting cues from a tutor

response, the system applies confidence-based rout-
ing: high-certainty cases proceed to a lightweight
T5 classifier, while ambiguous ones are escalated to
a reasoning-intensive LLM judge, conserving com-
putation without sacrificing pedagogical depth.

4 Rubric-Guided Lexical Cue Extraction

We systematically developed a comprehensive fea-
ture taxonomy spanning multiple linguistic lev-
els to classify tutor responses across pedagogical
dimensions (MI, ML, PG, ACT), enabling fine-
grained analysis of pedagogical signals in tutorial
discourse.

4.1 Step 1: Linguistically-Grounded Feature
Engineering

Lexical Cues
These cues provide shallow yet effective insights
into semantic content and form of tutor responses:

• Volumetric Features: Basic text-level met-
rics including word, character, and sentence
counts (Yang, 2024) serve as proxies for re-
sponse depth. Low word counts may nega-
tively correlate with PG and ACT due to in-
sufficient detail.

• Question Words: Presence of interrogatives
(e.g., "what," "why," "how") identified via
counting pre-defined question words (Dem-
szky et al., 2018), hypothesized to positively
correlate with PG and ACT by signaling en-
gagement and elaboration.

• Feedback Words: Terms like "correct,"
"mistake," or "however"—extracted using
sentence-level sentiment or discourse tagging
(Negi and Buitelaar, 2015)—expected to sig-
nal MI by indicating evaluative judgment. For
example, "You’re close, but remember" is a
definite feedback phrase.

• Directive Verbs: Instructional verbs (e.g.,
"calculate," "explain," "solve") extracted us-
ing POS tagging and grammatical mood de-
tection (Cohen et al., 2004), often implying
actionability. For example, "Let’s calculate
that," "can you think of a way to calculate?"
are all instructional phrases.

• Hedging Words: Words like "maybe,"
"might," or "could" introducing nuance or ten-
tativeness, often associated with PG and ACT
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by softening directive tone (Deng et al., 2025).
For example, "I think maybe you need one
more step," "maybe we can use a hundreds
chart or count up" demonstrate this.

• Pronoun Ratios: Ratios of second-person
(you/your) to first-person (I/my) pronouns
indicating student-centeredness or tutor-
centeredness, relevant for PG and ACT
(Qureshi and Strube, 2022). Student-
centeredness refers to responses focusing on
engaging students directly, guiding actions, or
providing feedback, characterized by higher
frequency of second-person pronouns. Tutor-
centeredness reflects tutor’s perspective, ex-
planations, or insights, marked by higher fre-
quency of first-person pronouns. Higher ratio
of second-person to first-person pronouns sug-
gests student-centric approach emphasizing
direct instruction, while lower ratio indicates
tutor-centric approach sharing tutor’s reason-
ing. For example, "but remember your initial
calculation," "but actually, you did add Kylie’s
3 towels" are student-centered responses indi-
cating PG.

4.1.1 Syntactic Complexity
Syntactic complexity is measured via average sen-
tence length and subordinate clause density us-
ing dependency parsing (Crossley and McNamara,
2022). High complexity may hinder comprehen-
sion, potentially impacting PG and ACT despite
informative content.

4.1.2 Pragmatic and Discourse Cues
These features capture pragmatic and contextual
dimensions:

• Discourse Markers: Cues such as "however,"
"for example," or "but" indicating relation-
ships between discourse units, helping differ-
entiate between elaboration for PG and con-
tradiction for MI (Dai and Huang, 2018).

• Conversational Uptake: Semantic alignment
of tutor’s response with preceding turns, com-
puted using pre-trained dialogue embedding
models (Demszky et al., 2021). High uptake
suggests relevance and coherence, especially
for PG.

• Pedagogical Intent: Pre-trained NLI mod-
els capturing latent pedagogical intent beyond

surface features, by computing the 3-way soft-
max probabilities (entailment, contradiction,
neutral) between tutor responses (premise)
and intent descriptions (hypothesis) (Reimers
and Gurevych, 2019). The entailment prob-
ability values [0-1] directly serve as feature
weights, enabling nuanced quantification of
pedagogical intents like supportiveness and
elaboration.

• Dialogue Act (DA) Classification: Re-
sponses categorized into high-level DAs (e.g.,
’Correction,’ ’Hint,’ ’Instruction’) using pre-
trained models (Noble and Maraev, 2021),
serving as semantically rich signals—e.g.,
’Correction’ aligns with MI/ML while ’In-
struction’ relates to PG and ACT.

4.1.3 Feature Encoding Summary
Feature encoding employs a dual representation
strategy: (1) numeric quantification (counts for
volumetric features, pronoun ratios) and (2) TF-
IDF vectorization (Salton and Buckley, 1988)
with category-specific lexicons (feedback, direc-
tive, hedging words, discourse markers). Pedagog-
ical intent features leverage NLI entailment prob-
ability values [0-1] as continuous feature weights.
This complementary approach integrates statisti-
cal surface patterns with semantic-level analysis
to capture both explicit and implicit pedagogical
signals.

4.2 Step 2: LLM-Driven Discriminative
Feature Refinement

Our approach employs a multi-stage pipeline that
transforms initial lexical features into discrimina-
tive, contextually-validated pedagogical indicators.
This process ensures alignment with assessment
rubrics through progressive refinement, as illus-
trated in Figure 1 (Extraction - Refined Cues):

1. Goal-Directed Feature Extraction: LLM an-
alyzes conversation data to identify discrimi-
native features through an iterative, objective-
oriented process guided by the initial seed
features from 4. The extraction process lever-
ages a T5-based (Raffel et al., 2020a) encoder-
decoder framework fine-tuned on pedagogical
conversations.

2. Adversarial Refinement: Features un-
dergo validation against contradictory exam-
ples from other conversations, enabling the
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LLM to eliminate spurious correlations and
strengthen genuinely predictive indicators.

3. Lexical Cue Repository Update: Validated
features are populated back into the cue repos-
itory, and steps 1-3 are repeated until no new
features are found, ensuring a comprehensive
and stable set of pedagogically discriminative
features.

This methodology produces feature sets that tran-
scend mere textual presence to capture pedagogical
quality signals validated against both assessment
criteria and challenging counterexamples.

4.3 Feature EDA Summary

We conducted systematic exploratory data analy-
sis on development set tutor responses to quan-
tify relationships between engineered features and
pedagogical dimensions (MI, ML, PG, ACT) us-
ing Pearson correlation coefficients and distribu-
tional statistics, as detailed in Table 1. Key ab-
breviations include: Vol (Volumetric Features),
Ques (Question Words), Fdbk (Feedback Words),
DV (Directive Verbs), Hed (Hedging Words),
ProR (Pronoun Ratios), Y/N/TSE (Yes/No/To
Some Extent), Read (Readability score based
on flesch_reading_ease (Flesch, 1948)), and
H/M/L (Higher/Medium/Lower correlation trend
across response categories).

4.3.1 Feature Influence based on Pearson
Correlation

Table 1 summarizes key feature influences on ped-
agogical dimensions, where H/L/M indicates High-
/Low/Medium influence for Yes/No/TSE classes
respectively. Analysis of these patterns reveals sev-
eral critical insights:

• Volumetric Features (H/L/L or H/L/H):
Longer responses correlate with effective tu-
toring across dimensions (Chi et al., 2001;
Ward et al., 2011), with verbosity particu-
larly important for actionability where de-
tailed guidance enables student progress (Van-
Lehn, 2011).

• Question Words (variable patterns): Strong
association with ML (H/L/H) shows question-
ing is essential for modeling learning; moder-
ate impact on MI (M/L/H) reveals interroga-
tives’ dual purpose in challenging misconcep-
tions and guiding reflection (Graesser et al.,

2010; VanLehn et al., 2006). TSE pattern (H)
suggests questions create partial pedagogical
value (Chen et al., 2011). Radar analysis (Fig-
ure 3) confirms Question Words heavily influ-
ence ACT while moderately affecting PG and
MI across both TSE and "No" classifications.

• Pronoun Ratios: Reveals dimension-specific
strategies—PG/MI benefit from tutor-centric
language (L/H for "Yes"/"No") where expert
explanation is valued; ACT/ML favor student-
centric approaches (H/L) positioning students
as active participants (Nystrand and Gamoran,
1997; Mercer and Littleton, 2009; Biber and
Gray, 2006). N-gram analysis (Figure 2)
shows distinctive phrases like "looks like you"
and "remember that" strongly correlate with
PG.

• Feedback & Directive Words: Inverse pat-
terns between feedback (L/H/L) and directives
(H/L/M) highlight tension between evaluation
and instruction (Shute, 2008; Hattie and Tim-
perley, 2007). Combined with hedging pat-
terns, this suggests effective tutoring balances
definitive guidance with tentative suggestion
(Rowland, 2002; Mackiewicz and Thompson,
2010). Readability scores and Feedback mark-
ers most heavily influence MI classification as
shown in Figure 3.

• Discourse Context: Discourse markers
strongly influence MI (H/L/L) and ML
(H/L/H) (Fraser, 1999; Sanders et al., 2000).
Contrasting readability patterns (MI: M/L/H
vs. others: M/H/L) suggest misconcep-
tion identification benefits from accessible
language while model learning sometimes
requires complex formulations (McNamara
et al., 2010; Crossley et al., 2017). Action-
oriented phrases ("closer look," "look at")
strongly correlate with ACT dimension (Fig-
ure 2). TSE class presents unique classifica-
tion challenges with subtle linguistic markers
and mixed signals—often providing informa-
tion without prompting direct action.

These patterns reflect pedagogical trade-offs:
correction versus guided discovery (Hmelo-Silver
et al., 2006), authoritative versus collaborative
stance (Scott et al., 2002), and comprehensive ex-
planation versus concise instruction (Wittwer and
Renkl, 2010). Differential patterns validate our
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Figure 2: Word Correlation with Pedagogical Dimen-
sions (Yes)

taxonomy’s ability to capture distinct tutoring as-
pects, while shared patterns highlight fundamental
qualities of effective pedagogical communication.

Feature MI ML PG ACT

Vol H/L/L H/L/H H/L/H H/L/H
Ques M/L/H H/L/H H/L/M H/L/M
Fdbk M/L/L L/H/L L/H/L L/H/L
DV H/L/M M/H/M M/H/M H/L/M
Hed H/L/H M/H/H M/H/M H/L/H
ProR M/H/L L/H/H L/H/M H/L/H
DM H/L/L H/L/H M/L/M M/L/M
Read M/L/H M/H/L M/H/L M/H/L

Table 1: Summary of Feature Influence Based on Cor-
relations (H: High, L: Low, M: Medium) for classes
Yes/No/TSE.

5 Model Cascade, Confidence-Based
Routing, and Task Submission

Based on the extracted refined cues from Section 4,
we first train an XGBoost model as a baseline to
cover cases where lexical coverage is high. Once
we identify lack of lexical coverage, we escalate the
classification process to a T5 transformer architec-
ture with a generative classification task instruction.
We detail the baseline and T5 model architectures,
training methodology etc in the following sections.
The evaluation metrics are: exact macro F1 score
(Ex. F1), exact accuracy (Ex. Acc), lenient macro
F1 score (Len. F1), and lenient accuracy (Len.
Acc).

5.1 Stage 1: XGBoost + Lexical Cues as
Baseline

For a baseline, we train a multi-label (Yes/No/TSE)
multi-class classification model using XG-
Boost (Chen and Guestrin, 2016) with a 70/30
train-val split. Hyperparameter tuning was
performed using cross-validation, focusing on key

Figure 3: Normalized Combined Radar Chart by Feature
Group(TSE)

parameters such as max_depth, learning_rate,
n_estimators, min_child_weight, and
subsample. Table 2 presents the performance on
validation dataset of the best run (XGBoost is
considerably better than all Yes (majority class for
all labels) as a baseline).

Task Ex.Acc Ex.F1 Len.Acc Len.F1

MI 0.71 0.64 0.81 0.73
ML 0.67 0.66 0.85 0.72
PG 0.68 0.66 0.84 0.71
ACT 0.75 0.71 0.81 0.73

Table 2: XGBoost Performance Metrics by Pedagogical
Dimension

5.1.1 Feature Impact and Model Limitations:
While the XGBoost model performed well across
different pedagogical dimensions, several limita-
tions were identified for improvement in subse-
quent iterations:

• Syntactic Complexity and Question-
Related Features: Complex syntactic
structures, such as nested clauses or subordi-
nate sentences, can confuse the model. For
example, "While it seems correct, you might
want to double-check the calculation" may be
misclassified as Yes for MI due to ambiguous
framing. Additionally, interrogative cues are
essential for classifying ACT and PG, but
rhetorical questions can mislead the model.
For instance, "Do you think this is correct?"
could be interpreted as actionable, despite
expressing doubt.
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• Lexical Features and Semantic Nuance:
Lexical cues, such as keyword spotting, can
lead to errors when words appear in unex-
pected contexts. For instance, "You’re do-
ing great! But remember" is encouraging but
points to an approach to guide the student to-
ward the correct answer.

• Pronoun Usage and Intent Ambiguity:
Shifts between tutor-centric ("I/my") and
student-centric ("you/your") language cause
inconsistent classification. A statement like
"You could explain it better" may be classified
as a Yes for ACT, whereas a similar structure
with "I" might be a strong Yes for PG. Detect-
ing perspective shifts remains challenging.

5.2 Stage 2: Instruction-Based Seq2Seq
Classification

Model Setup: We fine-tune T5-Base (approx-
imately 250M parameters) for instruction-based
classification across four pedagogical dimensions:
MI, ML, PG, ACT. Each dimension is specified
using a distinct prompt prefix. This approach lever-
ages T5’s encoder–decoder architecture, with a
512-token context and unified text-to-text pretrain-
ing, facilitating efficient and accurate classification
(Raffel et al., 2020b; Qorib et al., 2024).

Prompt Template: The model generates a single-
token prediction y ∈ {yes, no, maybe}. Each
prompt follows this structure:

[PEDAGOGICAL_DIMENSION]
[LEXICAL_CUES] <lexical cues>
[TUTOR_TURNS] <concatenated tutor turns>
Output: {yes, no, maybe}

Example (Mistake Location):
[Providing Guidance]
[LEXICAL_CUES] let us use, what was
[TUTOR_TURNS] ok let us use the information
to help us what was her gross revenue this week?
Output: maybe

Loss Function and Evaluation Metrics: We
minimize the single-token cross-entropy over our
dataset D:

L(θ) = −
∑

(x,y)∈D
log pθ

(
y | x

)
,

where y is the correct label and decoding is con-
strained to one step (greedy, max_length = 1).

Training Details: We fine-tuned T5-Base via
HuggingFace Transformers on an Apple M3 Mac
(no GPU) using 70%/30% train/eval splits. Prepro-
cessing involved excluding student turns and initial
problem-introduction turns, concatenating remain-
ing tutor turns, and truncating leftmost tokens when
exceeding the 512-token limit. Training used batch
size 8, AdamW optimizer (weight decay 0.01, LR
= 3 × 10−5 with 10% steps linear warmup), and
ran for 5 epochs with early stopping (patience=2,
dropout=0.1). Decoding was performed greedily
with evaluation via dev loss.

Why T5-Base? We selected T5-Base for its em-
pirical and architectural advantages: superior clas-
sification performance, with Flan-T5 variants con-
sistently outperforming decoder-only models on
GLUE, SuperGLUE, and word-sense disambigua-
tion tasks while matching GPT-3.5 in few-shot set-
tings (Papadopoulos et al., 2024; Liu et al., 2023a);
multi-task pre-training on diverse tasks equipping
it with transferable NLP skills that generalize with-
out separate heads (Raffel et al., 2020b; Liu et al.,
2023a); hardware efficiency at 250M parameters,
comfortably running on modest hardware with 512-
token input handling and position embeddings pre-
venting truncation issues (Scao et al., 2022; Hu
et al., 2023); parameter-efficient fine-tuning via
Adapter and LoRA methods matching larger mod-
els on MNLI, QNLI, and SST-2 (Hu et al., 2023);
and low-data robustness requiring fewer labeled ex-
amples to achieve competitive scores compared to
masked-encoder counterparts (Papadopoulos et al.,
2024; Liu et al., 2023a).

5.3 Confidence-Based Routing Strategy

We implement a probability-based cascade to bal-
ance computational efficiency with classification
accuracy. Many tutor utterances lack explicit lex-
ical cues that our XGBoost baseline relies on, ne-
cessitating a dynamic routing approach.

For input x, we define probability vectors:
• XGBoost: pxgb(x) ∈ [0, 1]C (sigmoid activa-

tions)

• T5: pt5(x) ∈ [0, 1]C (softmax over {yes, no,
maybe})

The cascade operates in three stages:
1. Route inputs through XGBoost. Accept pre-

diction if maxc pxgb(x)c ≥ τ1.

2. If maxc pxgb(x)c < τ1, escalate to T5. Accept
if maxc pt5(x)c ≥ τ

(c)
2 for any class c.
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Algorithm 1: Learn class-specific precision
cutoffs & coverage
Input: Validation set V , classes C,
model probabilities pc(x) for each class c,
true labels y(x), target precisions {αc},
start threshold τ0, step size δ,
upper bounds {Uc}
Output: Class-wise thresholds {τ∗c } and

coverages {γ∗c }
foreach class c ∈ C do

Nc ← |{x ∈ V : y(x) = c}|;
τ ← τ0, τ∗c ← Uc, γ∗c ← 0;
while τ ≤ Uc do

S ← {x ∈ V : pc(x) ≥ τ};
if |S| = 0 then

break

prec← |{x ∈ S : y(x) = c}|
|S| ;

if prec ≥ αc then
τ∗c ← τ ;
γ∗c ← |S|/Nc;
τ ← τ + δ;

else
break;

return {(c, τ∗c , γ∗c ) | c ∈ C}

3. If T5’s confidence is insufficient, defer to an
LLM judge.

Thresholds τ1 for XGBoost and τ
(c)
2 for T5

classes are learned on held-out data using Algo-
rithm 1 to guarantee ≥ 95% precision while max-
imizing coverage. In our experiments, stages 1
and 2 combined to produce 65-70% of predictions
with required confidence, with the remaining 30-
35% escalated to the LLM judge (discussed in the
following section). See Table 3 for the learned
thresholds and coverage at each stage.

6 Step-wise LLM-as-a-Judge

When both our lexical + XGBoost baseline and
T5 classifier fall below confidence thresholds, we
escalate to a multi-step "LLM-as-a-Judge" for final
pedagogical-quality classification. In our dev-set
evaluation, 31-34% of conversations across each
dimension were escalated to the judge.

1. Solution Reasoning Pathway Generation:
The judge prompts the LLM to generate a step-
by-step expert solution for the given problem,

Stage Dimension Thresholds Coverage
(Yes/No/TSE) at Stage

XGBoost

ML 0.85 / 0.45 / 0.55 0.38
MI 0.82 / 0.48 / 0.52 0.35
PG 0.88 / 0.42 / 0.58 0.32
ACT 0.86 / 0.45 / 0.55 0.36

T5

ML 0.80 / 0.45 / 0.55 0.86
MI 0.78 / 0.42 / 0.58 0.85
PG 0.82 / 0.48 / 0.52 0.62
ACT 0.81 / 0.45 / 0.55 0.60

Table 3: Learned thresholds for Yes/No/TSE classes and
coverage percentages at each stage for each pedagogical
dimension

establishing a reference reasoning pathway
against which to align the student’s response
(Wei et al., 2022; Daheim et al., 2024; Jain,
2025). This includes parsing the problem,
identifying relevant concepts, applying them
systematically, and verifying the final result.

2. Error Extraction: The judge isolates the pre-
cise span where student reasoning diverges
from the expert chain—this concrete "mis-
take locus" anchors all downstream diagnos-
tic steps (Daheim et al., 2024; Macina et al.,
2023). The goal is solely to extract and local-
ize the deviation.

3. Mistake Classification: The mistake is
mapped to a structured taxonomy enabling
standardized reasoning about pedagogical
strategies (Macina et al., 2023). Categories in-
clude conceptual errors, procedural/arithmetic
errors, misapplied formulas, comprehension
errors, and logical breakdowns in multi-step
reasoning (Macina et al., 2023; Wang et al.,
2024b; Daheim et al., 2024).

4. Skill Gap Mapping: Based on the mistake
classification, the judge infers the underlying
cognitive skill gap (Jain, 2025), referencing
Bloom’s revised taxonomy (Anderson et al.,
2001; Krathwohl, 2002). This includes gaps
in: Remember (recalling facts), Understand
(grasping concepts), Apply (executing proce-
dures), Analyze (breaking down structure),
Evaluate (judging correctness), and Create
(developing alternate methods).

5. Last Tutor Turn Strategy Identification:
Conditioned on the diagnosed cognitive gap,
the judge infers the most probable pedagog-
ically aligned instructional strategy (Macina
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et al., 2023; Wang et al., 2024b) which the last
tutor turn most likely employed. This may
include focus questions, probing questions,
worked examples, hints, or problem simplifi-
cation.

6. Final Classification: Integrating all interme-
diate steps along with the inferred instruc-
tional strategy employed by the tutor’s last
turn, the judge produces a final classification
(Yes/No/TSE) for the last tutor turn accord-
ing to the BEA 2025 Shared Task dimensions
(Kochmar et al., 2025). The turn is evaluated
for each of the following dimensions: (1) Mis-
take Identification, (2) Mistake Location, (3)
Providing Guidance, and (4) Actionability.

Example Judge Output for PG:

Conversation History: Tutor: Hi, could you
please provide a step-by-step solution for the ques-
tion below? Tyson decided to make muffaletta
sandwiches for the big game. Each sandwich
required 1 pound each of meat and cheese and
would serve 4 people. There would be 20 peo-
ple in total watching the game. The meat cost
$7.00 per pound and the cheese cost $3.00 per
pound. How much money would he spend on the
meat and cheese to make enough sandwiches to
serve 20 people? Student: To serve 20 people,
Tyson needs to make 20/4 = 5 sandwiches. Each
sandwich requires 1+1 = 2 pounds of meat and
cheese...

Extracted Error: Each sandwich requires
1+1 = 2 pounds of meat and cheese.

Mistake Type: Right-idea. The student has the
right idea but inaccurately combines meat and
cheese quantities into one, leading to a misapplied
calculation.

Skill Gap: Analyze and decompose independent
components. The student understands facts and
unit costs but fails to reason about meat and
cheese as distinct cost components.

Recommended Strategy: Provide a hint. The tu-
tor asks a guiding question to nudge the student to
recalculate the meat cost independently, prompt-
ing correction without explicit error labeling.

Judge Classification: Yes. The tutor turn offers
appropriate scaffolding to guide the next step in
solving the problem.

6.1 Dev-Set Escalation Impact

Evaluating 30 examples across all rubric dimen-
sions, the LLM Judge reduced classification errors
by 50%–60% compared to our T5 baseline, achiev-
ing Macro F1 scores above 75% in three tracks and
83.3% in one (Table 4).

Extrapolating these results to hybrid system per-
formance with judge escalation on 30%–35% of

low-confidence cases (Hypo-Full column), projec-
tions indicate that selective escalation can substan-
tially bridge the gap to top-performing systems.

Track Top T5-subm Judge-30 Hypo-Full

1 71.81 61.0 83.3 67.69
2 59.8 47.7 76.6 56.37
3 58.3 49.0 73.3 56.29
4 70.9 56.6 76.6 62.6

Table 4: Per-track F1: Top = best shared-task model;
T5-subm = T5 model submitted results; Judge-30 =
LLM on 30 escalated dev cases; Hypo-Full = simulated
performance assuming judge intervention on 30–35%
of cases.

7 Submission Results and Analysis

Our team, Emergent Wisdom, participated in
tracks 1 to 4 based on the architecture described in
3. The metrics and ranking of our best submission,
according to the official leaderboard1, is shown in
Tables 5 and 6, which also contrast our Stage 1–2
(router + encoder–decoder) results on the test set
against the top shared-task systems. ∆ indicates
(Ours – Top).

Top Ours ∆

Tr Acc F1 Acc F1 Rank Acc F1

1 94.6% 89.6 93.2% 88.0 21 −1.4 −1.6
2 86.3% 83.9 78.9% 74.4 15 −7.4 −9.5
3 81.9% 78.0 77.3% 69.2 24 −4.6 −8.8
4 88.4% 85.3 80.5% 77.8 30 −7.8 −7.5

Table 5: Lenient metrics performance (Stages 1–2 on
test set; ∆ = Ours – Top).

Top Ours ∆

Tr Acc F1 Acc F1 Rank Acc F1

1 86.2% 71.8 85.5% 61.0 34 −0.8 −10.8
2 76.8% 59.8 71.9% 47.7 25 −4.9 −12.1
3 66.1% 58.3 61.0% 49.0 21 −5.1 −9.3
4 73.0% 70.9 66.4% 56.6 22 −6.6 −14.3

Table 6: Exact metrics performance (Stages 1–2 on test
set; ∆ = Ours – Top).

As demonstrated in section 6.1, our analysis re-
veals that strategic reliance on the judge compo-
nent for complex cases enables performance within
1-2% macro F1-score of the top-performing sys-
tems without increasing computational needs for
the whole dataset, suggesting the potential for com-
petitive results based on intelligent routing.

1https://sig-edu.org/sharedtask/2025#results
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Limitations

Despite strong performance, our cascade approach
faces several limitations: T5-Base’s 512-token con-
text window restricts processing of longer tutoring
sessions; both models struggle with ambiguous ut-
terances serving multiple pedagogical functions;
performance suffers on underrepresented classes
like the "maybe" classification; confidence-based
routing relies on carefully tuned thresholds; and
analyzing only tutor turns misses important student
context. Future work should explore larger con-
text windows, multi-label classification, and more
sophisticated conversational modeling.
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Abstract

This paper presents the approach and findings
of Averroes Team in the BEA 2025 Shared Task
Track 1: Mistake Identification. Our system
uses the multilingual understanding capabili-
ties of general text embedding models. Our ap-
proach involves full-model fine-tuning, where
both the pre-trained language model and the
classification head are optimized to detect tutor
recognition of student mistakes in educational
dialogues. This end-to-end training enables the
model to better capture subtle pedagogical cues,
leading to improved contextual understanding.
Evaluated on the official test set, our system
achieved an exact macro-F1 score of 0.7155
and an accuracy of 0.8675, securing third place
among the participating teams. These results
underline the effectiveness of task-specific op-
timization in enhancing model sensitivity to er-
ror recognition within interactive learning con-
texts.

1 Introduction

Tutoring has long been recognized as one of the
most effective educational interventions, signifi-
cantly enhancing student learning outcomes. No-
tably, the 2 sigma problem Bloom (1984) illustrates
that students receiving one-on-one tutoring perform
two standard deviations better than those in conven-
tional classroom settings, highlighting the profound
impact of personalized instruction. However, the
scalability of such individualized tutoring remains
a challenge due to resource constraints.

Advancements in deep learning Lin et al. (2023)
and the emergence of large language models
(LLMs) Lieb and Goel (2024); Park et al. (2024)
have paved the way for AI-powered tutors capa-
ble of delivering personalized, on-demand educa-
tional support. These intelligent tutoring systems
leverage natural language processing and machine
learning techniques to adapt to individual learner
needs, providing real-time feedback and tailored

instruction. AI-powered tutors can make quality
education available to more people by offering the
same benefits as one-on-one tutoring, but for many
students at once.

Despite these advancements, evaluating the ped-
agogical effectiveness of AI tutors remains a sig-
nificant problem. Traditional evaluation metrics,
often adapted from domains like machine trans-
lation and summarization, fail to capture the nu-
anced educational interactions between AI tutors
and students. Moreover, while human evaluations
are considered the gold standard, they are time-
consuming, costly, and lack scalability. This high-
light the urgent need for automated, reliable, and
pedagogically-informed evaluation frameworks.

Addressing this gap, the BEA 2025 Shared Task
Kochmar et al. (2025) focuses on the Pedagogical
Ability Assessment of AI-powered Tutors, aiming
to develop standardized evaluation methods for AI
tutor responses. The task includes four main tracks:
Mistake Identification, determining whether the AI
tutor correctly identifies student errors; Mistake
Localization, pinpointing the exact location or na-
ture of the student’s mistake; Guidance Provision,
offering constructive feedback or hints to guide the
student; and Actionability, ensuring the response
leads to a clear next step for the student. These
tracks are intended to measure the tutor’s effective-
ness in supporting student learning and correcting
misunderstandings.

This paper describes our contribution to the BEA
2025 Shared Task, in which we leverage large lan-
guage models (LLMs) to create an automated eval-
uation method for AI tutors, primarily focusing
on the mistake identification track. We investigate
multiple strategies, assess their performance, and
present a comprehensive ablation study, deliver-
ing a scalable, education-focused evaluation frame-
work designed to enhance personalized learning.
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2 Related Work

2.1 AI Tutoring Systems

Early Intelligent Tutoring Systems (ITS), devel-
oped in the late 1970s and 1980s Guo et al. (2021),
employed explicit cognitive or knowledge-tracing
models to monitor learners’ progress and simu-
late personalized instruction . Pioneering systems
like Anderson and Corbett’s Cognitive Tutors An-
derson et al. (1995) utilized model-tracing algo-
rithms to instantly detect deviations from expert
problem-solving pathways, allowing immediate
corrective feedback and error-specific hints. This
approach significantly boosted students’ learning
speed and post-test performance in experimental
settings. However, studies of human expert tu-
tors, such as Hume et al. (1996), suggest a more
effective approach, using indirect prompts such
as Socratic questions or reflective hints to help
students independently identify and correct errors.
This approach encourages deeper learning and self-
reflection, showing a limitation of early ITS.

2.2 Advances in Large Language Models for
Educational Dialogue

Recent advancements in large language models
(LLMs) have significantly improved their capabil-
ities, especially within educational contexts Lieb
and Goel (2024); Kasneci et al. (2023); Nye et al.
(2023). Modern LLMs facilitate personalized, in-
teractive tutoring experiences, creating customized
content such as quizzes and lesson plans tailored
to specific curricula and student proficiency. Fur-
thermore, these models support educators by au-
tomating administrative responsibilities, enabling
teachers to devote more time to direct instruction
and student engagement.

2.3 Evaluation Methods for AI Tutoring
Systems

Evaluating AI tutors in education primarily relies
on human judgment that score responses on dimen-
sions like mistake identification, clarity, and tone.
While expert annotation remains the gold standard,
it suffers from inconsistency and lacks a unified pro-
tocol, prompting studies such as Tack & Piech Tack
and Piech (2022), and Maurya et al.Maurya et al.
(2025) propose standardized taxonomies. Pairwise
comparisons simplify evaluation by focusing on
relative pedagogical effectiveness. However, auto-
matic metrics remain limited: Traditional nautural
language generation metrics such as BLEU Pap-

Figure 1: Model Architecture

ineni et al. (2002) or ROUGE Lin (2004) poorly
reflect pedagogical quality. Recent advances use
reference-free approaches such as trained scorers
(e.g., DialogRPT Gao et al. (2020)) and LLMs like
GPT-4 1 to evaluate tutor responses, though their
reliability depends heavily on prompt design. Hy-
brid evaluation methods that combine LLMs and
correctness checks are emerging to improve consis-
tency and scalability.

3 System Overview

This section presents the complete methodology
adopted for the task. We first formalize the prob-
lem, then detail the shared backbone architecture,
followed by dedicated subsections describing each
experimental variant. Finally, we present our quan-
titative analysis and comparison between different
approaches in 4.3.

3.1 Problem Definition

We address the task of assessing whether an AI tu-
tor’s feedback in a dialogue setting correctly iden-
tifies a student’s mistake. Given a multi-turn con-
versation between a student and an AI tutor, along
with the tutor’s final response, the objective is to
classify that response as correctly identifying the
mistake, to some extent identifying, or failing to do
so. This is formulated as a sequence classification
problem, where a contextual understanding of the
conversation is required for an accurate prediction.

3.2 System Backbone

We employ, as shown in Figure 1, a sequence clas-
sification approach. To effectively capture the con-
textual dependencies in the dialogue, we prepend a
task-specific system prompt to the conversation his-
tory and the tutor’s final turn. The system prompt
is defined as:

1https://openai.com/index/gpt-4
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System Prompt

You are tasked with evaluating a multi-turn
conversation between a math teacher and a
student. The conversation is about a math-
ematical problem and in the form of a dia-
logue aimed at helping the student arrive at
the correct solution.
The student initially provides an incorrect
answer. The teacher then engages in follow-
up exchanges to help the student uncover
and understand the mistake.
You will be given:
- The full conversation up to the stu-
dent’s most recent turn, enclosed within
‘<CONV>‘ tags.
- The math teacher’s immediate next re-
sponse, enclosed within ‘<RESP>‘ tags.
**Your task**:
- Determine whether the teacher’s response
in ‘<RESP>‘ effectively contributes to iden-
tifying or addressing the student’s mistake.
- Explain your reasoning clearly and con-
cisely based on the content of the teacher’s
response and how it relates to the mistake
and the original question. Then, provide
your final judgment.
A teacher’s response is considered a **mis-
take identifier** if it includes:
- A follow-up question, explanation, or
prompt that targets the student’s misunder-
standing or errors in reasoning,
- Or if it guides the student toward re-
evaluating key steps relevant to solving the
original math problem.
You must output one of the following judg-
ments based on the above criteria:
- **A** → If the teacher’s response is
clearly focused on the student’s mistake and
relates directly to the solution steps.
- **B** → If the response is unrelated to
the mistake, irrelevant to the solution steps,
or potentially confusing/misleading.
- **C** → If the response is only par-
tially relevant or offers indirect guidance
that might help the student reflect on the
mistake.
**Put Your Output In The Following For-
mat:** <think>The complete reasoning pro-
cess</think><answer>Your final judgment
from the choices (A, B, or C)</answer>

This input is passed through a decoder, where
the last hidden-state representation is extracted. A
lightweight classification head, implemented as a
feed-forward linear layer, is then applied to predict
how the tutor response identifies the mistake among
three classes (Yes, No, To some extent). This de-
sign leverages the model’s pretrained contextual
embeddings, enhancing its capacity to discern nu-
anced dialogue interactions.

3.3 GTE-based Sequence Classification
Models

We investigate three variants that use the General
Text Embedding (GTE) family to obtain sentence-
level representations, followed by lightweight feed-
forward (FF) classification heads:

1. GTE-MODERNBERT-BASE 2 Zhang et al.
(2024): the gte-modernbert-base encoder
feeds into a single FF layer with a softmax
output for prediction.

2. GTE-QWEN2-1.5B-1FF Li
et al. (2023): embeddings from
gte-qwen2-1.5B-instruct 3 are passed
through one FF layer identical to (1).

3. GTE-QWEN2-1.5B-2FF: the same as in (2)
but followed by a two-layer FF head before
the final softmax output.

Unless otherwise stated, these models are fine-
tuned with the optimization settings described
in §4.2.

3.4 Qwen2.5-based Sequence Classification
Models

We benchmark five instruction-tuned Qwen2.5 lan-
guage models, varying both model size and the
depth of the feed-forward (FF) classification head
that replaces the original causal-LM head:

1. QWEN2.5-7B-1FF Team (2024): 7B param-
eters variant of Qwen2.5 4; a single FF layer
with software output. Fine-tuned via LoRA
adapters Hu et al. (2022) with rank 16 on all
attention and MLP projection layers.

2https://huggingface.co/Alibaba-NLP/gte-modernbert-
base

3https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-
instruct

4https://huggingface.co/Qwen/Qwen2.5-7B
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Figure 2: Class Distribution of the dataset.

2. QWEN2.5-1.5B-2FF: 1.5B parameters 5; a
two-layer FF head preceding the final softmax
layer; full-parameter fine-tuning.

3. QWEN2.5-MATH-1.5B-1FF: math special-
ized 1.5B variant 6; one FF layer; full-
parameter fine-tuning.

4. QWEN2.5-0.5B-1FF: 0.5B parameters; one
FF layer; full-parameter fine-tuning.

5. QWEN2.5-0.5B-2FF: same 0.5B backbone
as (4) but with a two-layer FF head as in (2).

Unless otherwise stated, optimization hyper-
parameters follow the settings in §4.2.

4 Experiments

4.1 Dataset and Metrics

We conduct our experiments on MRBench, an an-
notated collection of 192 multi-turn student-AI
tutor dialogues (1596 tutor responses) released
by Maurya et al. (2025). Each tutor’s response
is labeled to indicate whether the feedback cor-
rectly identifies the student’s error. Figure 2
shows the class distribution in the provided dataset.
For model development, we divide the official
development data into training and validation
splits, retaining 15% of the dataset for valida-
tion during fine-tuning while maintaining the same
class distribution of the train split. We follow
the shared-task protocol and report strict macro-
averaged F1 and strict accuracy over the MISTAKE-
IDENTIFICATION labels of the official test set.

5https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
6https://huggingface.co/Qwen/Qwen2.5-Math-1.5B-

Instruct

4.2 Training Setup

Each model was fine-tuned for no more than ten
epochs using AdamW with a linearly decaying
learning-rate schedule, reaching a maximum of
1× 10−5. We trained with an effective batch size
of 64 in bf16 mixed precision on a single NVIDIA
RTX-A6000 GPU.

4.3 Results and Analysis

Model Accuracy (%) Macro-F1 (%)

GTE-MODERNBERT-BASE 88.17 66.48
GTE-QWEN2-1.5B-1FF 89.78 74.15
GTE-QWEN2-1.5B-2FF 89.25 72.51
QWEN2.5-7B-1FF 85.48 64.06
QWEN2.5-1.5B-2FF 88.44 71.69
QWEN2.5-MATH-1.5B-1FF 88.44 67.95
QWEN2.5-0.5B-1FF 89.25 72.96
QWEN2.5-0.5B-2FF 88.44 71.15

Table 1: Accuracy and Macro-F1 on our validation split.

4.3.1 Full fine-tuning wins
Training the entire decoder-only model
GTE-QWEN2-1.5B with a single feed-forward
head (1FF) achieves the best results on our
validation split at 74.15 macro-F1.

4.3.2 Small-but-efficient models keep pace
The smaller fully fine-tuned QWEN2.5-0.5B-1FF
achieved our second best results at 72.96 macro-F1

with only 1.2 points difference from our best model
while cutting memory and latency.

4.3.3 More head depth is not always better
Adding a second feed-forward layer (2FF) to the
backbone reduces performance.

4.3.4 Domain pre-training helps but not
enough

The math-specialized QWEN2.5-MATH-1.5B-1FF
outperforms the larger variant QWEN2.5-7B- 1FF
by 3.89 F1 with only 20% of its parameter
size. However, increasing parameter count
of non-specialized models surpasses the bene-
fit of domain-specific training. In our case,
QWEN2.5-0.5B-1FF outperforms the trained model
by 5.01, QWEN2.5-1.5B-2FF by 4.74, and
GTE-QWEN2-1.5B-1FF by 6.2.

4.3.5 Size alone isn’t enough
The PEFT-tuned 7B QWEN2.5-7B-1FF achieves 6th

place at 64.06 macro-F1, showing that the tuning
was not effective.
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5 Conclusion

This work benchmarked eight GTE- and Qwen2.5-
based sequence-classification models on the
MISTAKE-IDENTIFICATION task in AI-tutor dia-
logues. Full fine-tuning of a medium-sized decoder-
only backbone (GTE-QWEN2-1.5B-1FF) achieved
the strongest development performance at 74.1
macro-F1, highlighting that carefully tuned 1.5 B
models can outperform much larger 7B LoRA base-
lines.

These findings indicate that compact instruction-
tuned LLMs can rival, or even surpass, their larger
counterparts in pedagogical mistake detection, of-
fering a resource-efficient pathway toward scalable
AI tutors. Future work should expand the dialogue
corpus, diversify subject matter and languages, in-
corporate richer pedagogical labels, and pair auto-
matic metrics with human and learning outcome
evaluations to approach genuinely effective educa-
tional dialogue systems.

Limitations

Our study is constrained by several factors that
temper the generality of its findings. First, the
evaluation corpus, MRBench, comprises only 1596
labelled tutor responses drawn from a single En-
glish, mathematics-focused dataset. Such limited
scale and topical focus may bias the models toward
the annotation style and error distribution specific
to this domain, leaving their behavior untested in
other subjects, proficiency levels, or languages.

Second, the present metrics provide only a par-
tial view of the educational effectiveness. More-
over, we rely exclusively on automatic accuracy
and macro-F1; the absence of human judgments or
learning-gain measurements means that the impact
in real-world scenarios remains uncertain.
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Abstract

The rapid adoption of AI in educational tech-
nology is changing learning settings, making
the thorough evaluation of AI tutor pedagogical
performance is quite important for promoting
student success. This paper describes our so-
lution for the BEA 2025 Shared Task on Ped-
agogical Ability Assessment of AI-powered
tutors, which assesses tutor replies over sev-
eral pedagogical dimensions. We developed
transformer-based approaches for five diverse
tracks: mistake identification, mistake location,
providing guidance, actionability, and tutor
identity prediction using the MRBench dataset
of mathematical dialogues. We evaluated sev-
eral pre-trained models including DeBERTa-
V3, RoBERTa-Large, SciBERT, and EduBERT.
Our approach addressed class imbalance prob-
lems by incorporating strategic fine-tuning with
weighted loss functions. The findings show
that, for all tracks, DeBERTa architectures have
higher performances than the others, and our
models have obtained in the competitive posi-
tions, including 9th of Tutor Identity (Exact F1
of 0.8621), 16th of Actionability (Exact F1 of
0.6284), 19th of Providing Guidance (Exact F1
of 0.4933), 20th of Mistake Identification (Ex-
act F1 of 0.6617) and 22nd of Mistake Location
(Exact F1 of 0.4935). The difference in per-
formance over tracks highlights the difficulty
of automatic pedagogical evaluation, especially
for tasks whose solutions require a deep under-
standing of educational contexts. This work
contributes to ongoing efforts to develop robust
automated tools for assessing.

1 Introduction

In the past few years, the combination of natural
language processing (NLP) and education technol-
ogy has become one of the most popular areas
of study to improve learning, automate feedback,
and assist educators and students. With the expan-
sion of blended and fully online courses, there has

*Authors contributed equally to this work.

been a marked increase in the need for scalable
and sophisticated systems that can process learn-
ers’ responses and tutors’ comments. Such systems
do not deal well with the subtle, context-sensitive
characteristics of educational dialogues. So, assess-
ing the pedagogical effectiveness and a standard
evaluation taxonomy of such systems still remains
a critical challenge.

An example of effective teaching is when an
educator accurately pinpoints a student’s misun-
derstanding, provides appropriate scaffolding to-
wards clear concepts, and gives insightful feed-
back on desk-work that the students need to ac-
complish. Some automating aspects of this feed-
back loop, such as automated essay scoring (Phandi
et al., 2015) and dialogic tutoring systems (Wang
et al., 2024) have been given attention, but there
is not much research that has been done to effec-
tively capture the dynamics of the interplay student
answers, tutor’s engagement, and teaching style
through feedback text’s narrative structure.

While LLMs can generate coherent and contex-
tually relevant responses, their ability to understand
student misconceptions, provide actual guidance,
and create meaningful learning experiences is not
guaranteed. The general, area-independent metrics
for natural language generation (NLG) (Liu et al.,
2023; Gao et al., 2020) do not fit here as the ma-
jority of them lack consideration for pedagogical
values and need gold references, which are seldom
present in online interactions.

In this work, we tackle a comprehensive multi-
track evaluation task designed for the evaluation
of AI-tutor responses using a set of pedagogically
motivated metrics. Building upon the foundations
laid by the BEA 2023 Shared Task (Tack et al.,
2023), which focused on generating AI teacher
responses in educational dialogues, in the BEA
2025 Shared Task (Kochmar et al., 2025) iteration
the focus shifted toward evaluating the quality of
AI tutor responses. Specifically, it introduced a
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taxonomy encompassing four pedagogically moti-
vated dimensions: Mistake Identification, Mistake
Location, Providing Guidance, and Actionability.
Additionally, a fifth track challenged participants to
identify the source of anonymized tutor responses,
distinguishing between various LLMs and human
tutors.

Our key contributions are as follows:

• Developing transformer-based approaches for
comprehensive evaluation of AI-tutor re-
sponses using a set of pedagogically moti-
vated metrics: mistake identification, mistake
location, guidance provision, feedback action-
ability, and tutor identity prediction.

• Evaluated the performance of state-of-the-art
transformer models across five key educa-
tional NLP tasks related to tutoring dialogues.

2 Related Works

Daheim et al. (2024) introduced a framework for
stepwise solution verification for math reasoning,
showing that grounding tutor responses in identi-
fied errors improves feedback accuracy where AI
tutors are evaluated on their ability to identify and
locate mistakes within student responses. Macina
et al. (2023) presented MathDial, a large dataset
of tutoring dialogues where LLMs often struggle
with correct mistake spotting without targeted an-
notations. It includes annotations for mistake lo-
cations in math dialogues. This resource has been
instrumental in training and evaluating models that
can accurately identify and address specific errors
in student solutions. Chen et al. (2024) proposed
VATE, an AI-driven virtual teacher using prompt
engineering and error pools for autonomous mis-
take analysis, achieving high accuracy in real-world
deployment. Lastly, Macina et al. (2024) bench-
marked pedagogical capabilities of LLM tutors,
confirming that subject knowledge alone doesn’t
ensure effective error identification without spe-
cialized pedagogical training. Additionally, Yan
et al. (2024) propose architectures designed to im-
prove error localization in multimodal math tutor-
ing, enhancing the clarity and usefulness of feed-
back. Recent work in intelligent tutoring systems
(ITS) has emphasized the importance of scaffold-
ing and adaptive feedback to enhance student learn-
ing outcomes. Liu et al. (2024) explored multi-
modal tutoring systems powered by large language
models, demonstrating how pedagogical instruc-

tions can improve self-paced learning through struc-
tured scaffolding, evaluated via a seven-dimension
rubric. Complementing this, Kochmar et al. (2020)
showed that automated, personalized feedback us-
ing NLP and machine learning significantly boosts
student performance, highlighting the need for tai-
loring feedback to individual learners. Similarly, Li
et al. (2024) applied NLP-driven adaptive dialogs
informed by the Knowledge Integration framework,
illustrating how guided conversations help students
integrate accurate scientific concepts during instruc-
tion. Together, these studies underline the potential
of adaptive, pedagogically-aware NLP systems in
delivering effective, personalized guidance within
educational contexts. Maniktala et al. (2020) pro-
posed "Assertions," an unsolicited hint mechanism
delivering partially-worked example steps, which
notably increased hint usage and improved learning
outcomes, particularly for lower-proficiency learn-
ers. Blancas-Muñoz et al. Blancas-Muñoz et al.
(2018) further emphasized the importance of action-
able support by comparing task-relevant hints to
distractions in robotic tutoring, finding that direct,
task-specific guidance led to better learner perfor-
mance. Extending this focus to virtual education
settings, Liang Liang (2025) applied NLP-based
Seq2Seq models for automated feedback genera-
tion, achieving high accuracy while enhancing per-
sonalization and actionability of feedback in online
environments. Collectively, these studies highlight
that actionable, timely, and context-aware feedback
mechanisms are essential for effective ITS design.

3 Task and Dataset Description

We competed on the BEA 2025 Shared Task1

(Kochmar et al., 2025) on Pedagogical Ability As-
sessment of AI-powered tutors. The goal of the
work is to assess AI tutor responses in mathemati-
cal dialogues when students make errors or show
uncertainty. The provided dataset, MRBench (Mau-
rya et al., 2025), includes dialogue contexts, the
final student utterance, and corresponding tutor
responses from various LLMs (e.g., GPT-4, Llama-
3.1) and human tutors. The aim is to find the tutor
or predict pedagogical quality in many spheres, in-
cluding mistake identification and guidance.

The organizers provided Development set,
mrbench_v3_devset.json, split into 90% for
training (2,228 Instances) and 10% for validation
(248 Instances). The final evaluation came from

1https://sig-edu.org/sharedtask/2025
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Split Instances Unique Words Total Words
Train 2,228 8,134 512,392
Validation 248 3,833 52,981
Test 1,547 7,057 454,720

Table 1: Dataset statistics across different splits.

the Test set, mrbench_v3_testset.json (1,547
Instances). Table 1 shows the dataset statistics.

4 Methodology

This section outlines our approaches utilized for
Track 1 - Mistake Identification, Track 2 - Mistake
Location, Track 3 - Providing Guidance, Track
4 - Actionability, and Track 5 - Guess the Tutor
Identity. The study evaluated many transformer-
based approaches using hyperparameter optimiza-
tion to improve performance. The architectural
frameworks used for all tasks is illustrated in Fig-
ure 1

Figure 1: Overview of the Pedagogical Ability Assess-
ment Process for AI-powered Tutors

4.1 Data Preprocessing and Feature
Extraction

We processed mrbench_v3_devset.json and
mrbench_v3_testset.json files for all five
tracks. Every distinct tutor response in a con-
versation stood isolated. Using descriptive mark-
ers and newlines, concatenating the “Conversa-
tion History” and “Tutor Response” produced
the input text for models; instances lacking tu-
tor responses were removed. Relevant annotations
(e.g., “Mistake_Identification”) were retrieved for
Tracks 1–4 (Mistake Identification, Mistake Lo-
cation, Providing Guidance, Actionability); their

“Yes,” “To some extent,” “No” labels were mapped
to [0, 1, 2]. Development set tutor identities for
Track 5 (Guess the Tutor Identity) were mapped
to one of nine canonical tutor classes then to
numerical labels [0–8]. Feature extraction used
pre-trained Transformer models (DeBERTa-V3
base/large, RoBERTa-Large, EduBERT, SciBERT).
each model’s particular AutoTokenizer turned in-
put texts into input_ids, attention_mask, and
optionally token_type_ids, Padded or trimmed
to 512 tokens.

4.2 Transformer-Based Models

The methodological foundation for all five tracks of
BEA 2025 Shared Task focuses on the fine-tuning
of pre-trained Transformer models (Vaswani et al.,
2017). These architectures, with their well-known
self-attention mechanisms, are proficient in cap-
turing contextual relationships within text because
of the highly sophisticated contexts and excel at
capturing intricate contextual relationships within
text makes them very suitable for a range of chal-
lenges in Natural Language Processing (NLP) (De-
vlin et al., 2019). Transformer’s ability to model
long-range dependencies is critical given the nu-
anced nature of assessing pedagogical abilities and
identifying distinctive tutor characteristics from
snippets of dialogues. A collection of models
from the Hugging Face Transformers library2 was
chosen, including those pre-trained specifically on
scientific or educational corpora as well as more
general NLU models. SciBERT (Beltagy et al.,
2019) and EduBERT (Clavié and Gal, 2019) are
two, alongside RoBERTa-Large (Liu et al., 2019)
and DeBERTa-V3 base and large configurations
(He et al., 2021). For each task, these pretrained en-
coders were modified by adding a sequence classi-
fication head for each task. This head has a dropout
layer and a linear layer that maps the output rep-
resentation of the encoder associated with the spe-
cial [CLS] token to the logits for the respective
number of classes for each track. All models had
the same input constructed by joining the “Tutor
Response” and “Conversation History”. Model-
specific tokenizers were used according to each
model’s pretraining, with padding and truncation
to 512 tokens.

In Track 1, Mistake Identification, the goal was
a 3-way classification problem determining if a tu-
tor’s response acknowledged a student’s mistake,

2https://huggingface.co/transformers
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with labels “Yes”, “To some extent”, and “No”. For
this track, we experimented with SciBERT, Edu-
BERT, RoBERTa-Large and DeBERTa-V3 base.
SciBERT, which was pretrained on a large cor-
pus of scientific literature, was selected because
it could be expected to perform well with the for-
mal and technical language of mathematics. Edu-
BERT was chosen because it was trained on educa-
tional data, which may enhance understanding in
teaching cases. RoBERTa-Large, a robustly opti-
mized model, served as a strong general-purpose
baseline, while DeBERTa-V3 base offered a more
recent architecture known for its efficiency and
strong performance. As highlighted, class imbal-
ance was tackled by fine-tuning SciBERT mod-
els with weighted CrossEntropy Loss, where the
greater class imbalance was compensated by in-
versely modifying class weights to their occurrence
within the training data, and also Focal Loss (Lin
et al., 2017) (with γ = 2.0 and α = 2.0 in some
configurations of SciBERT) that diminishes the
emphasis on well-classified examples. For estima-
tion smoothing SciBERT’s label smoothing was
set to 0.1 which was designed to counterbalance
overconfidence. EduBERT and RoBERTa-Large
models under this track predominantly applied
weighted CrossEntropy Loss while the DeBERTa-
V3 base model for this track used the standard
Cross Entropy Loss provided by the Hugging Face
sequence classification framework. These models
were trained with the goal of detecting nuanced in-
dications of mistake recognition in tutor responses.

Track 2, Mistake Location, was developed with
similar 3-way classification where response “Yes”,
“To some extent” and “No” were used to capture if a
tutor is precise to the location of the student’s error.
For this track, we primarily utilized the DeBERTa-
V3 base model. With disentangled attention and
the new pre-training objective (ELECTRA-style)
DeBERTa-V3 architecture enhances understand-
ing for relations between tokens and the context
which we believed could prove useful in determin-
ing whether certain parts of the student’s solution
were referred to. Cross Entropy Loss with weights
was implemented for fine-tuning for this track. This
was important considering that the label distribu-
tion for “Mistake Location” was often skewed, and
weighting is known to address underrepresented
classes effectively trying to achieve understanding
if the understanding was indeed accurate and crys-
tal clear.

For Track 3, Providing Guidance, the focus was

on assessing the tutor’s evaluation on whether the
answer provided to the student was useful, rele-
vant, correct, and helpful, once again using 3-class
schema (“Yes,” “To some extent,” “No”). In this
track, we experimented with DeBERTa-V3 base,
RoBERTa-Large, and EduBERT. The selection of
DeBERTa-V3 and RoBERTa-Large was driven by
their proficiency in NLU which is vital when evalu-
ating the guidance provided on whether it is correct
and relevant. EduBERT was included because his
domain-specific pre-training could help identify
pedagogically sound explanations, hints, or sup-
porting questions. As in the last tracks, all these
models were first fine-tuned using weighted Cross
Entropy Loss. This was important for illustrating
how the models adapted to differentiate effective
and partially effective guidance along with ineffec-
tual guidance, all distinct components of instruc-
tional prowess.

Track 4, Actionability, checked if the tutor’s
commentary offered unambiguous next steps by
employing the same 3-way classification labels.
For this track, we trained both DeBERTa-V3 ‘base‘
and ‘large‘ models. The justification for the ‘large‘
variant is to test if additional model size could cap-
ture the more acute interpretative reasoning neces-
sary to assess if a tutor’s remark was adequately
sharp and instructive to enable responsive move-
ment from the student. The larger model, with
more parameters, better at understanding implicit
suggestions or clues regarding the clarity of the an-
ticipated student answer. During training, we uni-
formly used a weighted Cross Entropy Loss for all
layers to constrain the label distribution along this
dimension, hoping that the models could reliably
distinguish non-constructive or minimal responses
for a given prompt from non-informative utterances
and conversational dead ends.

Finally, Track 5, Guess the Tutor Identity, posed
a challenge of 9 classes: who among the tutors
(Expert, Novice, or one of seven LLMs) gave the
response in the anonymized form. For this exer-
cise, we used DeBERTa-V3 base, DeBERTa-V3
large, and RoBERTa-Large. These techniques were
chosen because of their past performance in captur-
ing sophisticated stylistic differences, preferences,
and idiosyncratic features like distinct ‘fingerprints’
for human tutors and LLM systems. The problem
is complex at its core because varying forms or
expressions, such as style fusion, which exist in
different domains like various LLMs or between a
novice human and some LLMs, might deeply over-
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lap. Addressing the multi-class setup with nine
distinct tutor identities was particularly challeng-
ing due to the imbalance in the number of available
examples for each tutor. To mitigate this situation,
we relied heavily on weighted Cross Entropy Loss
which disproportionate class representation miti-
gates imbalance with a more prevailing class in
the data. In turn, this prevented the models from
specializing excessively to the most common types
of tutors.

Throughout all five tracks, there were sev-
eral components that the fine-tuning procedure
shared homogeneous components. We utilized the
AdamW optimizer (Loshchilov and Hutter, 2017),
which integrates weight decay more effectively
than traditional Adam, helping to prevent overfit-
ting. As well as a blended learning rate scheduler
which warms up for the first 10% of the total train-
ing steps. Doing so reinforces training stability
during the early epochs. For example, many SciB-
ERT and RoBERTa-L configurations achieve ef-
fective batch sizes of 16 with a device batch size
of 8 and 2 accumulation steps. This technique
of accumulation helps in training large models on
memory-restricted GPUs while also allowing for
smoother gradient estimates and enhanced model
performance. As shown in Table 2, training con-
tinued until reaching the set maximum number of
epochs. The model for each task was finalized
based on the validation set with the highest macro
F1 score for Tracks 1-4 and accuracy on Track
5. This selection process acts as an implicit early
stopping mechanism. The class weights for the
Cross Entropy Loss were determined by the label’s
corresponding training portion frequency across
the development set, meaning classes who were
less present in the dataset had a greater impact
on loss and as such received more focus from the
model. All experiments were carried out with a
fixed random seed (SEED = 42) in order to ensure
the reproducibility of our results.

5 Result Analysis

This section presents an analysis of the perfor-
mance of various Transformer-based models across
the five tracks of the BEA 2025 Shared Task. The
evaluation metrics, as defined by the shared task
organizers, include exact and lenient accuracy and
macro F1-score for Tracks 1-4, and exact macro
F1-score for Track 5. The performance of our sub-
mitted models is detailed in Table 3.

Model LR WD BS GA EP
Track 1: Mistake Identification

SciBERT 1e-5 0.01 8 2 12
EduBERT 1.5e-5 0.01 8 2 12
RoBERTa-Large 1.5e-5 0.01 8 2 12
DeBERTa-V3-Base 2e-5 0.01 8 1 8

Track 2: Mistake Location
DeBERTa-V3-Base 1.5e-5 0.01 8 2 12

Track 3: Providing Guidance
DeBERTa-V3-Base 1.5e-5 0.01 8 2 12
RoBERTa-Large 1.5e-5 0.01 8 2 12
EduBERT 1.5e-5 0.01 8 2 12

Track 4: Actionability
DeBERTa-V3-Base 1.5e-5 0.01 2 2 12
DeBERTa-V3-Large 1.5e-5 0.01 2 2 12

Track 5: Tutor Identity
DeBERTa-V3-Base 2e-5 0.01 8 2 15
DeBERTa-V3-Large 1.8e-5 0.01 2 2 10
RoBERTa-Large 2e-5 0.01 8 2 15

Table 2: Hyperparameters used across the five tracks.
LR: Learning Rate, WD: Weight Decay, BS: Batch Size,
GA: Gradient Accumulation, EP: Epochs.

Model E-F1 E-Acc L-F1 L-Acc
Track 1: Mistake Identification

RoBERTa Large 0.6339 0.7938 0.8395 0.9043
SciBERT 0.6393 0.8500 0.8545 0.9121
EduBERT 0.6597 0.8429 0.8665 0.9205
DeBERTaV3 Base 0.6617 0.8397 0.8782 0.9315

Track 2: Mistake Location
DeBERTaV3 Base 0.4935 0.6057 0.7051 0.7401

Track 3: Providing Guidance
RoBERTa Large 0.4758 0.5863 0.6997 0.7750
EduBERT 0.4918 0.5785 0.6885 0.7395
DeBERTaV3 Base 0.4933 0.5695 0.6990 0.7608

Track 4: Actionability
DeBERTaV3 Base 0.6117 0.6781 0.8170 0.8500
DeBERTaV3 Large 0.6284 0.6955 0.8223 0.8565

Track 5: Tutor Identity
RoBERTa Large 0.8237 0.8151 - -
DeBERTaV3 Base 0.8618 0.8597 - -
DeBERTaV3 Large 0.8621 0.8621 - -

Table 3: Performance of all models across five tracks.
E-F1: Exact macro F1 score, E-Acc: Exact Accuracy, L-
F1: Lenient macro F1 score, L-Acc: Lenient Accuracy

For Track 1, Mistake Identification, DeBERTa-
V3 Base has achieved the best exact macro F1 score
of 0.6617 achieving the highest exact macro F1
score. This model also demonstrated strong per-
formance with a lenient macro F1 score of 0.8782
and lenient accuracy of 0.9315. EduBERT’s perfor-
mance on exact macro F1 score was just slightly
weaker at 0.6597 while SciBERT had the best ex-
act accuracy of 0.8500. The best exact macro F1
score with DeBERTa-V3 Base seems to suggest
that, even with a standard Cross Entropy Loss, there
are greater architectural advantages in the model
that allow it to grasp the intricacies of 3-way classi-
fication better than other models. The results from
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SciBERT and EduBERT indicate that the use of
weighted loss functions was beneficial in achieving
competitive exact scores and were likely instrumen-
tal in achieving class imbalance resolution.

For Track 2, Mistake Location, our sole entry
was the DeBERTa-V3 Base model which was tuned
with weighted Cross Entropy Loss and achieved
an exact macro F1 score of 0.4935, lenient macro
F1 score of 0.7051. There were no other entries.
Scores suggest that identifying the precise origins
of a mistake’s location is strictly harder than simply
identifying an error. The considerable gap between
the exact macro F1 score and lenient macro F1
scores highlights that while the model could often
recognize some level of mistake location awareness
("To some extent"), achieving definitive localiza-
tion ("Yes") was less frequent.

For Track 3, Providing Guidance, DeBERTa-V3
Base reached the highest exact macro F1 score of
0.4933. EduBERT was a strong contender with
exact macro F1 score of 0.4918, while RoBERTa-
Large scored 0.4758 in exact macro F1 score. The
lenient macro F1 scores were approximately 0.69
for all three models, with RoBERTa-Large and
DeBERTaV3-Base at 0.6997 and 0.6990 respec-
tively. The exact macro F1 scores, marginally sur-
passing 0.50, highlight the challenge posed in auto-
matically evaluating the correctness and relevance
of pedagogical guidance. The imbalances among
the “Yes”, “To some extent”, and “No” categories
for this particular dimension is what prompted the
use of weighted Cross Entropy Loss for this model
causing all of the categories to blend in with the
aim of unifying the discrepancies.

In Track 4, Actionability, DeBERTa-V3 Large
showed the best performance with an exact macro
F1 score of 0.6284 and exact Accuracy of 0.6955.
The DeBERTa-V3 Base model was slightly behind
with an exact macro F1 score of 0.6117. It seems
that the larger sized DeBERTa model boosts with
added features helped with classifying the action-
ability of tutor responses. Both models had em-
ployed Cross Entropy Loss that was helpful for the
other model in achieving such classifiers.

For Track 5, Guess the Tutor Identity, where
exact macro F1-score is the primary metric,
DeBERTa-V3 Large achieved the best exact macro
F1 score of 0.8621. The corresponding exact ac-
curacy for this model was also 0.8621. DeBERTa-
V3 Base also performed robustly with an exact
macro F1 score of 0.8618 and exact accuracy of
0.8597, followed by RoBERTa-Large at 0.8237 (ex-

act macro F1 score) and 0.8151 (exact accuracy).
The strong performance, particularly of the De-
BERTa architectures, indicates their capability to
discern subtle stylistic and content based patterns
distinguishing the nine different tutor identities.
This multi-class problem for which the weighted
Cross Entropy Loss was quite useful for dealing
with was clearly non-trivial.

To summarize, DeBERTa-V3 base and large ar-
chitectures achieved the best results considering the
most important evaluation metric is exact macro F1
score for most tracks. The large showed some ad-
vantages in Tracks 4 and 5 where increased model
complexity might be helpful. The low exact macro
F1 scores, especially for Tracks 2 and 3, suggest
difficulties automatically capturing the intricacies
of assessment within teaching highlight the intrica-
cies involved in evaluating pedagogical features.

6 Conclusion

This paper introduces a system developed for the
UNLP This paper detailed our participation in the
BEA 2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors, presenting systems
built upon fine-tuned Transformer models. We eval-
uated multiple architectures including DeBERTa-
V3, RoBERTa-Large, SciBERT, and EduBERT for
the five distinct tracks of Mistake Identification,
Mistake Location, Providing Guidance, Actionabil-
ity, and Tutor Identity. Throughout the investiga-
tions, DeBERTa-V3 was the top performer across
all tracks based on the primary Exact macro F1
score metric. For Mistake Identification, DeBERTa-
V3 Base achieved the Exact macro F1 score of
0.6617, and for Providing Guidance, 0.4933. For
the other tracks of Actionability and Tutor Iden-
tity, DeBERTa-V3 Large excelled with 0.6284 and
0.8621 Exact macro F1 score respectively. For Mis-
take Location, DeBERTa-V3 Base scored an Exact
macro F1 score of 0.4935. These findings support
the assertion that sophisticated Transformer models
are capable of intricate pedagogical assessments.
The Exact macro F1 scores obtained for Providing
Guidance and Mistake Location depict the chal-
lenges associated with higher-degree classification,
demonstrating the inherent difficulty of the tasks.
Methodological choices, such as strategic hyperpa-
rameter tuning and the application of appropriate
loss functions (e.g., weighted Cross Entropy Loss
or Focal Loss) to manage class imbalances, were
important for optimizing performance. This work
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contributes to the ongoing efforts to develop robust
automated tools for assessing and improving AI
tutor effectiveness in educational dialogues.

Limitations

Our study, while demonstrating the effectiveness
of Transformer models for assessing pedagogical
abilities, has several limitations. First of all, the
performance, especially on exact macro F1-scores
for challenging tasks like Mistake Location and
Providing Guidance, indicates that current mod-
els still find it difficult to have the fine-grained
semantic knowledge needed for these demanding
tests. Second, our method depends on the partic-
ular annotations and definitions given in the MR-
bench dataset; model performance may change de-
pending on alternative educational taxonomies or
data from other fields outside mathematics. More-
over, although weighted loss functions helped us
to solve class imbalance, significant imbalances
for some labels or tutor identities could still in-
fluence generalization. Finally, the computational
resources needed for fine-tuning and experiment-
ing with several big Transformer models can be
significant, therefore perhaps restricting more gen-
eral architectural research or more comprehensive
hyperparameter searches.
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Abstract

In this paper, we present the RETUYT-INCO
participation at the BEA 2025 shared task. Our
participation was characterized by the decision
of using relatively small models, with fewer
than 1B parameters. This self-imposed restric-
tion tries to represent the conditions in which
many research labs or institutions are in the
Global South, where computational power is
not easily accessible due to its prohibitive cost.
Even under this restrictive self-imposed setting,
our models managed to stay competitive with
the rest of teams that participated in the shared
task. According to the exact F1 scores pub-
lished by the organizers, the performance gaps
between our models and the winners were as
follows: 6.46 in Track 1; 10.24 in Track 2; 7.85
in Track 3; 9.56 in Track 4; and 13.13 in Track
5. Considering that the minimum difference
with a winner team is 6.46 points — and the
maximum difference is 13.13 — according to
the exact F1 score, we find that models with
a size smaller than 1B parameters are compet-
itive for these tasks, all of which can be run
on computers with a low-budget GPU or even
without a GPU.

1 Introduction

The remarkable advances in the development of
Large Language Models (LLMs) in recent years
have turned Natural Language Processing into a
discipline with great potential for application in
different domains, and Education is not the excep-
tion (Ignat et al., 2024). However, these techno-
logical advances are not affordable to everyone.
The cost of closed models — which are the most
powerful and are typically considered the State-of-
the-art in NLP — and the expensive infrastructure
required to use large open models, coupled with

† These (corresponding) authors contributed equally to
this work: {sgongora,isastre}@fing.edu.uy

negative effects on the environment, make research
on other methods still essential.

Our RETUYT-INCO team, as a research lab
from South America, is no exception to this reality.
Naturally, we are concerned about these issues and,
consequently, we have focused on experimenting
with open models in recent editions of the BEA
shared tasks. For the 2023 shared task, consisting
in generating teacher responses in educational di-
alogues (Tack et al., 2023), we participated using
open models, obtaining competitive results (Bal-
adón et al., 2023). One of the highlights of our
participation was the “Hello” baseline, a simple
strategy we followed which achieved remarkable re-
sults, unveiling the fragility of BERTScore (Zhang
et al., 2020). More recently, for the 2024 BEA
shared task, consisting in performing simplifica-
tion experiments for different languages (Shardlow
et al., 2024), we mainly focused on fine-tuning
BERT and Mistral models (i.e., open models), even
using synthetic data in some cases (Sastre et al.,
2024).

In this paper, we present the RETUYT-INCO
participation in the five tracks of the BEA 2025
Shared Task: Pedagogical Ability Assessment of AI-
powered Tutors (Kochmar et al., 2025). This year,
in addition to maintaining our restriction of work-
ing with open models, we challenged ourselves
with an extra restriction: to experiment only with
language models of fewer than a billion parameters
and classical machine learning (ML) approaches.
We will call these lightweight models, as they have
to be small enough to run on a low-end GPU or
with no GPU at all. This restriction is related to the
situation many research labs face every day in the
Global South: the lack of minimum resources to
run what other regions consider small models (7B
parameters or more). In our case, we have limited
access to a national computing cluster, which we
can use to fine-tune LLMs up to 7B parameters,
but we do not have resources to host the fine-tuned
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Figure 1: Class balance in our train and dev sets. The columns are coupled according to classes.

LLMs and use them in real applications.
Moreover, this is not the only motivation for

this self-imposed restriction, as one of the research
lines of our lab is the application of NLP tools to aid
teachers in rural areas (Chiruzzo et al., 2022; Rosá
et al., 2025). In such contexts it is very unlikely
to use state-of-the-art LLMs, due to the impossi-
bility of using them through APIs (since children’s
privacy is key, sending private data to third-party
servers is not an option), and the prohibitive cost
of installing capable GPUs in trustworthy servers.

Overall, throughout this paper, we will try to
answer the general research question that motivated
our participation: What is the performance gap
between lightweight models and those state-of-the-
art models, which would naturally have a better
chance of winning the competition?.

2 Dataset

For this edition, the dataset consists of 300 con-
versations (Maurya et al., 2025). Each dialogue is
composed of interactions between a teacher and
a math student. In the final turn of each dialogue
the student shows clear confusion about a concept,
and the dataset includes potential tutor responses
intended to help the student. These responses —
some of them generated by seven LLM-based tu-
tors and others written by human tutors — are also
evaluated by human evaluators (using Yes, No or

To some extent) according to four dimensions of
interest that coincide with the four proposed tracks
in the shared-task: mistake identification, mistake
location, providing guidance and actionability.

Due to the lack of a specific development set,
during the first month we split the official dataset
published by the organizers into two parts: 80%
We decided to do this split focusing on the conver-
sations — and not on the responses — trying to
ensure that each conversation and all its responses
stayed either in the train or the dev set. As a con-
sequence, our train-dev split may not preserve the
class balance of the original set. Figure 1 shows
the class balance for each dimension in our train
and dev partition.

3 Considered approaches

For our experiments we considered classical ML
classification algorithms, BERT-based approaches
and fine-tuning a small autoregressive language
model. Since all the tracks in the shared task are
classification problems, many of the models we
considered were used in more than one track. All of
them were trained (or fine-tuned) using our train
set, running on GoogleColab1 or a national compu-
tational cluster (see Section 3.4.1). At the end of
this section — in Subsection 3.5 — we will show

1https://colab.research.google.com/
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the results we obtained when evaluating them on
the dev set.

3.1 Preliminary experiments

To gain a greater understanding of how challenging
the tracks were, we performed four preliminary
experiments with increasing degree of complexity.

The first and most basic one consisted in an-
swering always yes, what naturally degraded the
F1 macro score, since the No and To some extent
classes were never chosen. Then, we tried using a
random classifier, which consistently yielded accu-
racy values around 33%

Additionally, before imposing ourselves the con-
straint of using lightweight models only, we wanted
to have an informed perception of how well bigger
LLMs could perform in these tracks. Therefore, we
explored both prompting a closed model via an API
and fine-tuning an open model. For prompting, the
model we chose was Gemini Flash 2.0 Lite2, us-
ing the prompt reported in the paper that presented
the dataset (Maurya et al., 2025). For fine-tuning,
we chose Llama 3.1 8B Instruct (AI@Meta,
2024), and used Low Rank Adaptation (LoRA) (Hu
et al., 2022). This experiment follows the same
methodology explained in Section 3.4.

3.2 Classical Machine Learning approaches

Among all the available algorithms in Sklearn3

we tried, those that had the best performance on
the dev set were Random Forest, SVC (Support-
vector classifier) and k-NN (k-Nearest Neighbors).
To represent the input texts we experimented with
Bag of Words and TF-IDF, trying different n-gram
ranges from n = 1 to n = 8.

Since all these algorithms have problems captur-
ing the complexities of long-context dependencies,
after some experimentation we decided to train the
models using the response text only, i.e. without
taking into consideration the full interaction be-
tween the student and the tutor. Those preliminary
experiments we did with the full interaction (i.e.
concatenating the response of the tutor to the con-
versation history) had a notably lower performance.

3.3 BERT-based approaches

We also tried BERT-based approaches. We exper-
imented with fine-tuning them, combining them

2https://deepmind.google/technologies/gemini/
flash-lite/

3https://scikit-learn.org/stable/supervised_learning.html

with classification algorithms and also with some
rules.

3.3.1 BERT for Tracks 1–4
We implemented a simple method by fine-tuning
a simple BERT model for tracks 1 through
4. Specifically, we finetuned the DistilBERT
distilbert-base-uncased variant (Sanh et al.,
2020), a compact and computationally efficient dis-
tillation of BERT with approximately 66 million
parameters.

For this experiment, we only considered the re-
sponse text as input data, without the conversation
history. We fine-tuned the model to predict each of
the target variables (mistake_identification,
mistake_location, providing_guidance,
actionability). We initially tried to fine-tune
the model in a three-class configuration, but our
experiments were unable to predict any value of the
class To some extent whatsoever, so we changed
the approach. We ended up training two-class
models, joining No and To some extent as the
negative class. After fine-tuning, we analyzed the
logit of the positive class and observed that even if
both classes were lumped together during training,
the No values actually got lower logit than the To
some extent values, which allowed us to define
thresholds to separate the three classes.

The hyperparameters in these experiments were
the number of training epochs (from 1 to 3) and
two thresholds to distinguish the frontier between
No and To some extent, and between To some
extent and Yes, which depending on the target
output could vary between -1 and +1. In this round
of experiments, we used Adam optimization with a
learning rate of 5× 10−6.

3.3.2 BERT for Track 5
In our approach to track 5, the objective was to
classify the tutor identity based once again solely
on the provided response text. For fine-tuning, the
following parameters were used: a learning rate
of 2 × 10−5, a weight decay of 0.01, a training
duration of 4 epochs, and batch sizes set to 16.

3.3.3 Sentence Embeddings
In addition to fine-tuning, we explored the use
of BERT-like models to generate sentence embed-
dings (Reimers and Gurevych, 2019), which were
then combined with classical ML methods for clas-
sification.

For tracks 1–4, we used the
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multilingual-e5-large-instruct4 model
(Wang et al., 2024), a multilingual encoder
initialized from xlm-roberta-large (Conneau
et al., 2019) (561M parameters). We generated a
sentence embedding for each example in our train-
ing partition and then used those embeddings as
input to classical classifiers: k-NN and multilayer
perceptron (MLP). For this approach we explored
three different input configurations:

• Response-only: The input consists solely of
the embedding corresponding to the response
to be evaluated.

• Response + conversation history: The input
is formed by concatenating the embedding of
the response with the embedding of the full
conversation history.

• Response + conversation history + LLM
probabilities: The input extends the previous
configuration by appending the probabilities
assigned to the three class labels by the fine-
tuned LLM (see Section 3.4).

For the k-NN classifier, we chose k = 9 based
on the performance on our dev set prior to submit-
ting predictions for the competition’s test set. For
the MLP, we used a simple model with no hidden
layer and trained it until convergence, defined as no
improvement greater than a tolerance of 1× 10−4

for 10 consecutive iterations.
For the mistake identification dimension, due to

the high class imbalance in the training data, we ap-
plied under-sampling by fitting the k-NN classifier
on a perfectly balanced subset. This subset con-
tained an equal number of examples for each class,
matching the count of the least frequent class. As
shown in Section 4, this strategy led to improved
performance. For this classifier, different values
of k for each track were chosen (mistake identi-
fication: 415; mistake location: 540; providing
guidance: 125; actionability: 96).

For track 5, we explored leveraging the Distil-
BERT model that was previously fine-tuned for di-
rect sequence classification (as described in the pre-
vious section). In this setup, the core transformer
layers (the base model, without the classification
head) of this fine-tuned DistilBERT were employed
as a feature extractor. Embeddings were generated
for the "response" texts. These DistilBERT-derived

4https://huggingface.co/intfloat/
multilingual-e5-large-instruct

embeddings were used as input features for an XG-
Boost classifier (Chen and Guestrin, 2016), which
was configured for multiclass classification corre-
sponding to the number of tutor labels.

3.3.4 BERT approach + Educated guess

Another experimental approach we tried for track
5 was to take the predictions of the BERT + XG-
Boost model and, based on the distribution of the
predicted labels, guess some tutor identities. Under
the premise that if the model predicted correctly
the majority of the time the correct tutor for a cer-
tain label, then taking the same prediction for a
label might improve the performance of the model.
Therefore, for this approach we modified the pre-
dictions of BERT + XGBoost forcing to always
classify Tutor9 as “Novice”, Tutor2 as “Mistral”
and Tutor3 as “Llama31405B”.

Unfortunately, this approach turned out to per-
form poorly in comparison to the BERT + XG-
Boost one, denoting that the labels shown in the
test dataset might not have a direct mapping with
the actual classes.

3.4 Fine-tuning autoregressive LM

In addition to using encoder-only transformers
such as BERT, we also experimented with decoder-
only LMs. For these experiments, we only fo-
cused on the first four tracks. Although these
tracks are framed as classification and are there-
fore usually better suited to encoder-only ar-
chitectures, we wanted to compare BERT-style
fine-tuned models with similarly sized, fine-
tuned autoregressive LMs. Specifically, we used
Qwen2.5-0.5B-Instruct5 (Team, 2024; Yang
et al., 2024), which has 494 million parameters
and has undergone instruction tuning.

3.4.1 Training

We performed full fine-tuning on our train partition.
Each example was converted into a prompt follow-
ing the prompt template adopted during the model’s
instruction tuning phase. The prompt (available in
Appendix A) consists of:

• System prompt: We used the same system
prompt reported in the shared-task dataset pa-
per (Maurya et al., 2025), which was also used
for LLM-based evaluation.

5https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct
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• User message: This part contains the conver-
sation history, a task-specific rubric, and the
response to be evaluated. The rubrics are the
same as those used in the dataset paper.

• Assistant message: This consists solely of
the class label corresponding to the example
(Yes / No / To some extent).

We experimented with two different training ap-
proaches:

• Dimension-specific approach: This involves
training four separate models, each dedicated
to one of the four evaluation dimensions (mis-
take identification, mistake location, provid-
ing guidance, and actionability). Each model
is trained only on examples corresponding to
its specific dimension.

• Multi-dimension approach: This involves
training a single model using the combined
training data from all four dimensions. The
model is expected to infer the appropriate eval-
uation criteria based on the scoring rubric in-
cluded in the user message.

The multi-dimension approach may help miti-
gate the class imbalance present in certain dimen-
sions (particularly mistake identification), as the
model is exposed to a more balanced distribution
of the three class labels across different contexts.

The model was trained for three epochs with
a batch size of 8 and a learning rate set to 2 ×
10−4, using a linear scheduler with a warm-up ratio
of 0.03 and weight decay of 0.001. The training
objective was next-token prediction, the same as in
pre-training.

To train these models, we used the ClusterUY
infrastructure (Nesmachnow and Iturriaga, 2019)
with limited (and usually interrupted) access to
NVIDIA A100 and NVIDIA A40 GPUs.

3.4.2 Inference
Once the models are fine-tuned, we perform in-
ference using greedy decoding. The input prompt
includes the system prompt and the user message,
and the model is tasked with generating the assis-
tant message. Since these are classification tasks,
we perform a single forward pass and select the
class label whose first token receives the highest
logit value. Only the three candidate tokens (cor-
responding to the possible class labels) are con-
sidered, and the rest are ignored. This approach

prevents hallucinations by constraining the model
to produce one of the predefined labels.

We observed that with the previous method, the
To some extent label was often under-predicted
in favor of the Yes or No labels. To address this,
we introduced an alternative method using thresh-
olds defined separately for each dimension. We
retrained the multi-dimension model (i.e. a single
model for the first four tracks) on a subset of the
training data and used the remaining examples as
a validation set to tune the thresholds. The train-
ing/validation split was 80/20.

Using the fine-tuned model’s predictions on the
validation set, we computed the average probability
of each class, grouped by the predicted label. Based
on these statistics, we manually defined threshold
rules using only the predicted probabilities for the
Yes and No labels. Table 4 in Appendix B shows
the threshold values we chose.

3.5 Results obtained over the dev set

We evaluated all these models on the dev set and
the results are shown in Table 1.

The first observation we want to do is that even
when classical ML algorithms did not manage to
be the best in any track, they are still competitive.
Some of them even achieved good performances,
sometimes getting closer to the best model in the
track. Secondly, we want to highlight that some
sentence embeddings approaches performed better
than using the fine-tuned Llama3.1 8B that we con-
sidered in the preliminary experiments. Finally, as
expected, neural models performed the best.

Another interesting observation is that the
Llama 3.1 8B LoRA fine-tuning, a model 16
times larger than Qwen and BERT, did not achieve
significantly better results. In some dimensions,
such as providing guidance and actionability, it
even performed worse than the fine-tuned Qwen.

Overall, the best models in each track were as
follows:

• Track 1 (Mistake Identification) – Sentence
Embeddings and k-NN, using the balanced
dataset

• Track 2 (Mistake Location) – Fine-tuning Dis-
tilBERT with thresholds

• Track 3 (Providing Guidance) – Fine-tuning
Qwen using the multi-dimension approach
and thresholds
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Track 1 Track 2 Track 3 Track 4 Track 5
Approach Mistake identification Mistake location Guidance Actionability Tutor identity

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy
Preliminary experiments
Always Yes 30.26 83.13 26.42 65.66 22.98 52.61 22.16 49.80 – –
Random 23.95 33.73 26.94 31.93 30.02 31.33 28.99 30.72 11.75 12.05
Gemini Flash 2.0 Lite 50.74 76.71 48.49 62.25 46.54 55.62 – – – –
Llama 3.1 8B (LoRA) 74.41 92.37 50.68 76.71 51.83 63.25 55.90 72.09 – –
Classical Machine Learning
RandomForest + TF-IDF (1-5)grams 71.46 90.76 47.24 74.10 44.08 60.64 52.00 64.26 70.25 69.68
RandomForest + TF-IDF (1-7)grams 60.14 87.55 40.17 60.64 40.93 52.21 42.00 58.23 69.66 68.47
RandomForest + TF-IDF (1-8)grams 71.04 90.56 46.92 74.30 44.37 60.44 50.19 62.25 68.13 66.87
SVC + TF-IDF (1-2)grams 71.82 91.37 49.26 75.50 43.10 61.04 48.42 65.06 79.16 77.71
SVC + TF-IDF (2-5)grams 60.47 88.96 43.74 73.96 40.68 60.64 40.92 60.04 74.76 73.69
k-NN (k = 7) + TF-IDF (1-2)grams 73.24 91.16 46.82 71.49 49.52 60.64 50.91 59.84 60.11 59.24
Fine-tuning DistilBERT
DistilBERT 58.37 90.76 50.30 76.91 42.24 61.24 57.01 68.47 86.51 85.94
DistilBERT (thresholds) 63.04 88.35 56.30 67.47 52.22 55.22 53.02 66.67 – –
BERT Embeddings + XGBoost – – – – – – – – 87.74 87.14
Sentence Embeddings
e5 (response) k-NN (k = 9) 74.93 91.77 48.06 76.69 47.40 58.84 48.55 58.84 – –
e5 (resp+hist) MLP 72.82 90.96 54.17 75.30 52.51 60.44 56.42 65.06 – –
e5 (resp+hist+llm) MLP 73.54 91.16 54.36 75.30 52.10 59.84 56.51 65.46 – –
e5 (resp) k-NN (balanced) 79.16 92.37 47.82 71.08 52.85 56.83 49.08 50.00 – –
Fine-tuning Qwen
Qwen (dimension-specific) 74.73 92.17 48.30 74.70 52.71 63.05 61.20 73.29 – –
Qwen (multi-dimension) 73.04 91.37 51.96 74.50 53.26 61.45 59.57 68.47 – –
Qwen (thresholds) 65.58 81.33 54.92 64.06 54.18 55.82 55.82 58.84 – –

Table 1: Results for the five tracks over our dev set. In bold, the best results according to each metric for each track.

• Track 4 (Actionability) – Fine-tuning Qwen
using the multi-dimension apporach

• Track 5 (Tutor identification) – BERT embed-
dings and XGBoost

4 Final submissions and experimental
analysis

After evaluating all the previously described mod-
els on our dev set, we chose those which had the
best performance, trying to ensure that at least one
model of each category (Classical machine learn-
ing, Fine-tuning DistilBERT, SentenceEmbeddings
and Fine-tuning Qwen) was used to predict the test
instances in most of the tracks. The classical ML
models were trained from scratch using both our
train and dev set, while the neural models were
only fine-tuned using the train set.

Table 2 shows the performance of our models in
each track, the results we obtained and the result-
ing ranking position (#). To better understand the
performance of our systems, we also considered
quartiles for each track, and they are included in
the table under the “Q” column. Taking a first look
at the quartiles, we can see that none of our models
was competitive enough to climb the rankings and
finish in the first quartile. However, we want to
highlight that in three out of the five tracks (Track1,
Track3 and Track4) our models managed to finish
in Q2.

Overall, as when evaluating on the dev set, this

Submission F1-macro Accuracy # Q
Track 1 - Mistake identification

e5 (resp.) k-NN (balanced) 65.35 84.49 56/153 Q2

Qwen (dimension-specific) 64.94 86.68 62/153 Q2

DistilBERT (thresholds) 64.30 85.20 64/153 Q2

SVC + TF-IDF 59.11 84.81 104/153 Q3

e5 (response) k-NN (k = 9) 58.39 84.36 110/153 Q3

Track 2 - Mistake location
DistilBERT (thresholds) 49.58 58.63 47/86 Q3

Qwen (multi-dimension) 49.52 70.78 49/86 Q3

e5 (resp+hist) MLP 49.40 67.36 51/86 Q3

Qwen (thresholds) 49.13 55.20 54/86 Q3

SVC + TF-IDF 45.85 70.39 72/86 Q4

Track 3 - Providing guidance
Qwen (multi-dimension) 50.49 59.47 36/105 Q2

DistilBERT (thresholds) 49.19 53.85 48/105 Q2

Qwen (thresholds) 47.53 50.36 64/105 Q3

k-NN + TF-IDF 47.41 59.21 66/105 Q3

e5 (resp+hist) MLP 47.14 57.85 71/105 Q3

Track 4 - Actionability
Qwen (dimension-specific) 61.28 70.33 42/87 Q2

Qwen (multi-dimension) 60.54 68.00 46/87 Q3

e5 (resp+hist) MLP 56.37 63.22 60/87 Q3

DistilBERT (thresholds) 52.61 64.12 68/87 Q4

RandomForest + TF-IDF 51.91 62.64 70/87 Q4

Track 5 - Tutor identification
BERT + XGBoost 83.85 84.74 27/54 Q3

DistilBERT 83.85 84.74 28/54 Q3

SVC + TF-IDF 80.44 80.22 39/54 Q3

BERT + Educated guess 68.16 68.65 42/54 Q4

Table 2: Results for the five tracks over the competi-
tion’s test data. The “#” column indicates the position
the system got in the rankings, and the “Q” column in-
dicates the quartile related to that position (splitting in
4 buckets the number of participants in each track).

time the neural models again achieved the best per-
formance among our models. Moreover, something
interesting to observe is that the fine-tuned Qwen
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Track Rank / Total Q ∆ Exact F1 ∆ Exact Accuracy ∆ Lenient F1 ∆ Lenient Accuracy
Track 1 23 / 44 Q3 71.81− 65.35 = 06.46 86.23− 84.49 = 01.74 89.57− 83.95 = 05.62 94.57− 91.92 = 02.65

Track 2 21 / 32 Q3 59.83− 49.59 = 10.24 76.79− 58.63 = 18.16 83.86− 72.00 = 11.86 86.30− 76.08 = 10.22

Track 3 17 / 35 Q3 58.34− 50.49 = 07.85 66.13− 59.47 = 06.66 77.98− 70.57 = 07.41 81.90− 77.51 = 04.39

Track 4 17 / 29 Q3 70.85− 61.29 = 09.56 72.98− 70.33 = 02.65 85.27− 82.72 = 02.55 88.37− 85.59 = 02.78

Track 5 12 / 20 Q3 96.98− 83.85 = 13.13 96.64− 84.75 = 11.89 N/A N/A

Table 3: Performance difference between our best submissions and the winners, for each task. This table was built
based on the team results, so the total number of submissions for each track is always fewer than those considered
in Table 2.

models and the BERT models got similar perfor-
mance. This seems to indicate that the generative
capabilities of Qwen are good enough to also work
as an emergent classifier.

Most of the models we used are not well-suited
for handling long contexts. This led us to ques-
tion how essential the conversation history truly
is for assessing the four evaluation dimensions, or
whether the model’s response alone is enough to
obtain good results. Therefore, we tested training
some models both with and without including the
conversation history as input. In this regard, the
most significant experiments were those using sen-
tence embeddings. These experiments show that
nearly every dimension benefits from the inclusion
of history, except for the mistake identification di-
mension, which performs notably better without it
(i.e. using only the tutor’s response). More broadly,
Qwen-based methods (which incorporate the full
conversation history) achieve the best results in pro-
viding guidance and actionability, and, in contrast,
BERT-based methods (which do not use the conver-
sation history) perform better on mistake location.
This pattern suggests that more subtle dimensions
like guidance and actionability benefit more from
access to the full conversational context. Further
experimentation is required to validate all these
preliminary observations.

Finally, while the DistilBERT with XGBoost
approach seemed to have a good performance on
our dev set, its final performance (on the test set)
was identical to that of the DistilBERT fine-tuning
model (without XGBoost). This was not the only
difference we had between our dev set and the test
set. As can be seen by comparing Tables 1 and 2,
most methods performed noticeably better on our
internal dev set than on the test set. We believe
this performance gap may be due to differences in
the class distributions between the two sets.

Furthermore, the experiment using under-
sampling to balance the classes showed a signif-
icant improvement on the test set, going from

being the worst-performing submission to being
the best one. This further highlights the impact of
class imbalance on model performance.

4.1 How far were these lightweight models
from winning?

Finally, to answer our research question, we
wanted to check how far our lightweight models
went in the shared task. Beyond the ranking posi-
tions, we wanted to focus on how big (according
to the official scores) was the gap between these
models and those that settled the state of the art,
winning the competition. In Table 3 we show the
difference (∆) — for each metric — of our best
predictions with the winner team in each track6.
As a reference, we also include our team’s position
in that track and the correspondent quartile (this
time, based on the number of teams, and not on the
number of submitted systems).

Taking a look at the table, we can see that, ac-
cording to ∆ Exact F1, the closest gap between our
performance and the winning team was 06.46 (in
Track 1), while the biggest gap was 13.13 (in Track
5). We think this difference in performance is very
small considering the restrictions we had.

5 Conclusions

In this paper we presented the RETUYT-INCO
participation at the 2025 BEA shared task, char-
acterized by our self-imposed restriction of only
using models under 1B parameters. Although our
research lab have access to cheap API LLMs and
very limited access to run 7B LLMs on clusters,
we are conscious that this is not the case for other
research labs in the Global South, that usually work

6Since the organizers considered the Exact F1 metric as
the main one, we considered as winning teams those which got
the highest score according to that metric. Therefore, for all
metrics, we calculated the ∆ according to the score achieved
by the winning team in that track. This way, even if a different
team got a better result according to other metric, we still
calculated the ∆ according to the winning team.
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in even deeper under-resourced scenarios. Our self-
imposed restriction tries to represent this scenario.

Overall, we used classical machine learning
models, BERT-based models, and a QWEN 0.5B
LLM. Despite their (very small) size we finished
in mid-ranking positions. Beyond the results in
the rankings, the result we want to highlight is
that the gaps in performance we had with the win-
ning teams were between 6.46 and 13.13 F1 exact
points.

We find that gap surprisingly small, taking into
account that we did not use LLMs bigger than 1B,
nor paid for API access, nor paid for premium
cloud computing, nor needed top-tier resources to
run our experiments. Additionally, following the
environmental concerns that surround the carbon
footprint of state-of-the-art LLMs (Luccioni et al.,
2023; Faiz et al., 2024; Liu and Yin, 2024), we
consider this an interesting tradeoff: to sacrifice
some performance, in order to have models that
do not need extensive training/inference time or
power, but that are still competent. Based on all of
the above, we think research on models that run on
low-cost GPUs — or need no GPU at all — should
definitely go on.

6 Limitations

Throughout the paper we have outlined several lim-
itations we have to run experiments with large mod-
els. These constraints led to our self-imposed re-
striction of using only neural models with fewer
than 1B parameters. Naturally, our work does not
present state-of-the-art results, nor does it intend
to. Furthermore, we prioritized breadth (i.e. trying
many model types) over depth (i.e. optimizing a
single approach or architecture extensively). While
this gives a broader perspective on the diverse pos-
sibilities that lightweight models have to offer, it
may have limited the performance ceiling of indi-
vidual models.

Regarding our methodology, we made the deci-
sion of splitting the full set into two subsets (train
and dev) considering as a priority to keep the con-
versations and their responses in the same subset.
This decision may have introduced some noise and
class imbalance, since we found remarkable differ-
ences in the performance of our models over the
dev set and the final test set (after submission).
Since the fine-tuned models and the thresholds used
were adjusted specifically to our dev set, they may
not generalize well to other similar corpora.

Finally, and related to the previous considera-
tions, we did not systematically perform hyper-
parameter tuning due to both hardware and time
limitations. Additionally, prior to our final submis-
sions, we only trained (from scratch) the classical
ML models on the full set (our train + dev sets).
Since the neural models were our best approaches,
searching better hyperparameters and training them
with more data could have made the performance
gaps a bit smaller.
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A Prompts

This Appendix presents the prompts used for
fine-tuning the decoder-only language models, as
explained in Section 3.4.

System prompt

You are a critic evaluating a tutor's
interaction with a student, responsible
for providing a clear and objective single
evaluation based on specific criteria.
Each assessment must accurately reflect the
absolute performance standards.

User message

# Previous Conversation between Tutor and
Student:
{history}

# Scoring Rubric:
{rubric}

# Tutor Response:
{response}

Mistake identification rubric

[Has the tutor identified a mistake in a
student's response?]
1) Yes
2) To some extent
3) No

Mistake location rubric

[Does the tutor's response accurately point
to a genuine mistake and its location?]
1) Yes
2) To some extent
3) No

Providing guidance rubric

[Does the tutor offer correct and relevant
guidance, such as an explanation, ela-
boration, hint, examples, and so on?]
1) Yes (guidance is correct and relevant
to the mistake)
2) To some extent (guidance is provided but
it is fully or partially incorrect or
incomplete)
3) No

Actionability rubric

[Is it clear from the tutor’s feedback what
the student should do next?]
1) Yes
2) To some extent
3) No

B Qwen Thresholds

Table 4 presents the thresholds used with the Qwen
model, as explained in Section 3.4.

Dimension Yes condition No condition TSE condition
Mistake Identification Yes > 0.90 & No < 0.05 Yes < 0.40 & No > 0.50 Otherwise
Mistake Location Yes > 0.75 & No < 0.15 Yes < 0.42 & No > 0.50 Otherwise
Providing Guidance Yes > 0.65 & No < 0.12 Yes < 0.35 & No > 0.45 Otherwise
Actionability Yes > 0.70 & No < 0.14 Yes < 0.25 & No > 0.65 Otherwise

Table 4: Threshold-based classification rules for each
evaluation dimension using Qwen. TSE = "To some
extent".
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Abstract
This paper presents automatic evaluation sys-
tems for assessing the pedagogical capabili-
ties of LLM-based AI tutors. Drawing from
a shared task, our systems specifically target
four key dimensions of tutor responses: Mis-
take Identification, Mistake Location, Provid-
ing Guidance, and Actionability. These dimen-
sions capture the educational quality of re-
sponses from multiple perspectives, including
the ability to detect student mistakes, accurately
identify error locations, provide effective in-
structional guidance, and offer actionable feed-
back. We propose GPT-4.1-based automatic
evaluation systems, leveraging their strong ca-
pabilities in comprehending diverse linguistic
expressions and complex conversational con-
texts to address the detailed evaluation crite-
ria across these dimensions. Our systems were
quantitatively evaluated based on the official
criteria of each track. In the Mistake Location
track, our evaluation systems achieved an Exact
macro F1 score of 58.80% (ranked in the top
3), and in the Providing Guidance track, they
achieved 56.06% (ranked in the top 5). While
the systems showed mid-range performance in
the remaining tracks, the overall results demon-
strate that our proposed automatic evaluation
systems can effectively assess the quality of
tutor responses, highlighting their potential for
evaluating AI tutor effectiveness.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have significantly enhanced performance
across various tasks in natural language processing
and artificial intelligence (Kim et al., 2025, 2024;
Das et al., 2025). These developments have spurred
interest in applying LLMs within educational set-
tings, aiming to leverage their capabilities for per-
sonalized learning, intelligent tutoring, and edu-
cational assessment (Macina et al., 2023; Cheva-
lier et al., 2024; Wang et al., 2024b; Gan et al.,

* These authors contributed equally to this work.

2023). However, despite these promising develop-
ments, how well LLMs can provide educational
feedback and guidance in authentic tutoring sce-
narios remains underexplored. To address this gap,
there is a growing need for systematic evaluation
methods that can rigorously assess the pedagogical
quality of LLM-generated tutor responses. To ad-
dress this need, we participated in the BEA 2025
Shared Task on Pedagogical Ability Assessment
of AI Tutors (Kochmar et al., 2025), which aims
to systematically evaluate the educational quality
of AI tutor responses across multiple dimensions.
Our system was submitted to four subtasks (Tracks
1–4), each corresponding to the pedagogical evalua-
tion dimensions defined in the shared task: Mistake
Identification, Mistake Location, Providing Guid-
ance, and Actionability.

For this study, we employed prompting tech-
niques using GPT-4.11 model to complete each
evaluation task. GPT-4.1 is well-known for its supe-
rior ability in instruction-following, handling com-
plex contexts, and performing multi-step reason-
ing (OpenAI, 2025). These capabilities, combined
with our prompting strategies, enabled effective
evaluation of tutoring performance. This paper de-
tails the prompting strategies and methodologies
utilized in the evaluation tracks in which we par-
ticipated. Additionally, we analyze and discuss the
performance of our proposed systems, aiming to
provide practical insights for future development
of LLM-based tutoring systems.

2 Methodology

This section introduces the three prompting-based
evaluation systems we developed for the BEA 2025
Shared Task. Each system is designed to align with
the pedagogical goals of different evaluation tracks,
while sharing a common objective of simulating
human-like reasoning in tutoring scenarios.

1gpt-4.1-2025-04-14
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Section 2.1 presents the Chain-of-Thought-
based Pedagogical Evaluation system with Reason-
ing Layers. This approach models the step-by-step
reasoning process of a human tutor, who first an-
alyzes the student’s thinking, constructs a correct
solution, and then evaluates the tutor’s response
in context. This system was applied to Track 1,
which focuses on evaluating whether the tutor suc-
cessfully identifies student mistakes, and Track 4,
which assesses the actionability of the feedback
provided.

Section 2.2 describes the Multi-Perspective Re-
flective Evaluation, developed for Track 2. In-
spired by the reflective feedback behavior of human
tutors, this method simulates internal deliberation
among distinct reasoning perspectives to assess
whether the tutor accurately identifies the location
of a student’s mistake.

Section 2.3 details the Rubric-Based Evaluation
Method, which targets Track 3. This approach de-
composes the Providing Guidance criterion into
multiple rubric-based sub-questions. It extracts
structured features from LLM-generated probabil-
ity distributions and enhances scoring consistency
by using a downstream classifier trained to align
model judgments with human evaluation patterns.

These methodologies establish a comprehensive
framework for evaluating tutor responses, enhanc-
ing interpretability, pedagogical alignment, and ed-
ucational validity in open-ended dialogue settings.

2.1 Chain-of-Thought-based Pedagogical
Evaluation with Reasoning layers

This system is designed to automatically evaluate
the pedagogical appropriateness of a tutor’s final
utterance in a math lesson dialogue. Instead of us-
ing a single prompt or a simple classification-based
approach, we adopted a step-by-step processing
structure that emulates how human tutors inter-
pret student solutions and determine appropriate
feedback. The design of this structure is based on
two key observations: First, large language models
(LLMs) show improved performance on complex
problems when explicitly guided through interme-
diate reasoning steps, a technique known as chain-
of-thought prompting (Wei et al., 2022). Second,
LLMs tend to exhibit conformity bias—favoring
only a single "standard" solution path and strug-
gling to respond appropriately to diverse or alterna-
tive reasoning strategies (Li et al., 2024).

To address these issues, we designed the flow so
that the model first analyzes the student’s reason-

ing process, then generates a correct solution path
based on that reasoning, and finally evaluates the tu-
tor’s utterance in light of the student’s thinking. All
stages are implemented using the GPT-4.1 model,
which was selected for its strong performance in
instruction following, conversational context reten-
tion, and multi-step reasoning. Our proposed sys-
tem is composed of the following four stages:

1. Problem Extraction: Extract the math prob-
lem from the dialogue. The extracted problem
serves as the foundation for all subsequent rea-
soning, and functions as a critical preprocess-
ing step for maintaining contextual coherence
and semantic consistency.

2. Student Reasoning Process Reconstruction:
Based on the student’s response and the flow
of the conversation, reconstruct the reason-
ing path that the student followed to solve the
problem. Even in the absence of explicit ex-
planations, infer a plausible line of reasoning.
This mirrors how a human tutor might infer a
student’s thought process in real instructional
settings to provide targeted feedback.

3. Correct Reasoning Process Generation: Us-
ing the reconstructed student reasoning as a
foundation, generate a correct solution path.
If the student’s approach is partially valid, it is
preserved and only the errors are corrected. If
the approach is fundamentally flawed, a new
solution is generated. This stage serves both
as a reference point for comparison and as a
mechanism to mitigate the conformity bias
described earlier.

4. Tutor Response Evaluation: Finally, the tu-
tor’s final utterance is evaluated using the fol-
lowing four criteria:

- Mistake Identification
- Mistake Location
- Providing Guidance
- Actionability

These criteria, while based on the definitions pro-
vided by the task organizers, are redefined in our
approach to focus on how utterances actually func-
tion within the student’s learning process, moving
beyond simple sentence-level evaluation. Mistake
Identification is judged not merely on whether a
mistake was mentioned, but on whether this recog-
nition was perceptible and significant to the student.
Mistake Location is assessed not by whether the
error’s position is explicitly stated, but by whether
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the student can reasonably infer where the mistake
occurred based on the tutor’s response. Providing
Guidance is assessed not by the mere provision of
a correct answer, but by whether it was a method
that stimulated and broadened student thinking. Ac-
tionability uses as its criterion whether the student
can actually understand and follow the guidance,
rather than the mere presence or absence of a sug-
gested action.

These redefinitions allow the LLM to evaluate
the tutor not as a mere provider of correct answers
(tutor-as-answerer), but as a facilitator of reasoning
and learning (tutor-as-guide). To ensure consistent
scoring across levels, especially for nuanced cat-
egories like "To some extent", concrete judgment
criteria were clearly designed. The specific prompts
corresponding to each criterion, along with detailed
evaluation guidelines, are provided in detail in the
Appendix A.

2.2 Multi-Perspective Reflective Evaluation
Method

To accurately determine whether a tutor’s response
correctly identifies the location of a mistake in a
student’s solution, our system proposes a multi-
perspective reasoning process inspired by how hu-
man tutors approach student feedback. Rather than
relying on static classification, this system simu-
lates a dynamic reasoning process, decomposing
the evaluation into distinct functional perspectives
such as recalling relevant context, analyzing logic,
assessing clarity, and monitoring emotional tone.

2.2.1 Human-Like Multi-Step Reasoning

When human tutors assess a student’s response,
they typically do not evaluate it in a single step.
Instead, they engage in a layered cognitive pro-
cess: understanding the problem, reconstructing
the student’s reasoning, identifying discrepancies,
and delivering feedback that balances correctness
and pedagogical clarity. One recent attempt to em-
ulate this human-like multi-step reasoning within a
single LLM is Solo Performance Prompting (SPP),
which activates diverse personas to facilitate self-
collaboration and mimic human reasoning (Wang
et al., 2024c). Building on this idea, our system
mirrors such behavior by simulating a group of in-
ternal “reasoning participants”, each representing
a specific evaluative function. These participants
collaborate iteratively to reach a decision regarding
the quality of the tutor’s feedback.

2.2.2 Reasoning Process
Given a conversation history, including the original
question, the student’s response, and the tutor’s
follow-up, the system performs the following steps:
• Perspective Initialization: Depending on the

complexity of the student’s reasoning and the
characteristics of the tutor’s feedback, a set of
internal perspectives is dynamically activated.
These perspectives represent distinct reasoning
roles (e.g., logical analysis, memory retrieval,
contextual interpretation).

• Independent Assessment: Each perspective in-
dependently analyzes whether the tutor’s re-
sponse points to the specific step where the mis-
take occurred. The analysis includes not only fac-
tual correctness but also the interpretability and
relevance of the feedback.

• Collaborative Deliberation: After the initial as-
sessments, the perspectives engage in a multi-turn
collaborative discussion. They provide critical
feedback on one another’s reasoning, refine inter-
pretations, and critique or support conclusions.

• Final Decision: Based on this internal collabo-
ration, the system synthesizes a final judgment:
"Yes", "To some extent", or "No", depending on
how clearly and precisely the tutor’s response
identifies the location of the student’s mistake.

2.2.3 Prompting Strategy
We implement the above reasoning process through
a carefully designed prompt that guides the lan-
guage model to simulate human-like evaluation.
Rather than instructing the model to directly re-
spond to a tutor’s utterance, the prompt breaks the
evaluation into distinct reasoning roles. It encour-
ages the model to adopt multiple perspectives. The
prompt explicitly instructs the model to initiate in-
ternal reflection by assigning roles such as logical
analysis, memory recall, and clarity evaluation. It
then simulates a collaborative discussion where
these roles critique and refine one another’s views
before converging on a final judgment. This struc-
tured interaction is carried out entirely within a sin-
gle language model, enabling it to reason through
the task in a self-contained yet multi-faceted man-
ner. By prompting the model to consider both ex-
plicit and implicit forms of feedback, as well as
emotional tone and pedagogical clarity, this design
elicits more interpretable and human-aligned judg-
ments. It ensures the model reflects on why a tutor
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response is effective or not, rather than simply what
label to assign.

2.3 Rubric Based Evaluation Method

In this section, we aim to evaluate whether tu-
tor LLMs provide correct and relevant guidance
within the context of tutoring dialogue. We ap-
ply a method that predicts high-dimensional judg-
ments through item-specific probability distribu-
tions, such as those used in LLM-Rubric (Hashemi
et al., 2024), to assess the educational validity of tu-
tor LLM responses. Specifically, for the prediction
of Providing Guidance, we designed five detailed
questions (Qrubric) and a single comprehensive
question (Qoverall) utilizing statistical information.
For each item, we constructed prompts such that
the LLM outputs the probabilities of "Yes", "To
some extent", "No". However, the evaluation labels
generated by the LLM may not completely align
with the labels of human evaluators. Therefore, we
use the item-wise probability distributions as input
features for a subsequent classifier, aiming to cali-
brate the LLM’s judgments to be more consistent
with human evaluation.

2.3.1 Feature Extraction via Structured
Prompting

The feature extraction step based on structured
prompting consists of two components: rubric-
based evaluation criteria and statistical information.
The prompts used for each task are presented in
Appendix B, and the responses were generated
using the GPT-4.1 model.

Feature Extraction from Rubric-Based Evalu-
ation Criteria The prompt for feature extraction
based on rubric-defined evaluation items consists
of role specification, presentation of dialogue con-
text, definition of label criteria and output format,
and a list of evaluation questions.

• Role specification: By assigning the expert role
of "expert evaluator analyzing a tutor’s response
in a learning dialogue," the model is encouraged
to think critically from the perspective of an eval-
uator rather than as a simple generator.

• Presentation of dialogue context: The dialogue
context is presented sequentially and consists of
the entire conversation between the tutor and stu-
dent, the student’s last utterance, and the tutor’s
response to that utterance. This allows the LLM

to conduct evaluations based on a sufficient un-
derstanding of the context.

• Definition of label criteria and output format:
For each item, the judgment consists of three
options: Yes, To some extent, and No. The defini-
tions of these labels are based on criteria defined
by the annotator. For each item, the model out-
puts the probability value for each of the three
labels in decimal form, based on the rationale for
its judgment. The sum of all probability values is
designed to be 1.0, and these values are used as
input features for the subsequent classifier.

• List of questions: The prompt includes five ques-
tions designed to capture various aspects of the
Providing Guidance criterion. Each question is
constructed to evaluate specific elements of de-
tailed feedback, as follows.

Q1 Did the tutor attempt to provide any expla-
nation, hint, or example?

Q2 Was the guidance factually correct and ap-
propriate given the student’s error?

Q3 Did the tutor’s response directly address the
student’s specific mistake?

Q4 Did the guidance help the student figure out
what to do next, without directly giving the
final answer?

Q5 Was the tutor’s response clear and unlikely
to confuse the student?

This prompt design enables the LLM to con-
sistently perform structured evaluations. The
extracted features serve as inputs for subsequent
classifiers, thereby enhancing the precision and
reliability of the automated evaluation framework.

Feature Extraction Using Statistical Informa-
tion

Antecedent Consequent Support Confidence Lift
ML = Yes MI = Yes 0.6163 0.9889 1.2674
MI = Yes ML = Yes 0.6163 0.7898 1.2674
PG = Yes MI = Yes 0.5399 0.9502 1.2178

Table 1: Results of Association Rule Analysis among
Mistake Identification, Mistake Location, and Providing
Guidance

In the feature extraction step utilizing statistical
information, features were constructed based on
association rules among items analyzed from the
development dataset. To this end, the Apriori al-
gorithm (Agrawal and Srikant, 1994) was applied
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using the label information of the three items: Mis-
take Identification, Mistake Location, and Provid-
ing Guidance. Based on the calculated support and
confidence values, the three most reliable associ-
ation rules were extracted. The main association
rules derived from this analysis are shown in Ta-
ble 1. The top three association rules all exhibit
high confidence values, suggesting that the rela-
tionships between items possess meaningful asso-
ciations beyond mere coincidence. Among these,
the relationship between "Mistake Location = Yes"
and "Mistake Identification = Yes" demonstrates
particularly high confidence, confirming a strong
association between the two items.

To reflect these statistically significant associa-
tions, the following elements were added within
the same prompt structure used in previous tasks:

• Insertion of prior prediction results: Predic-
tions from previous Tracks (Mistake Identifica-
tion and Mistake Location) were included in the
prompt, allowing the LLM to perform evaluations
based on this prior knowledge.

• Provision of statistical associations: Confidence
values derived from association analysis were ex-
plicitly presented in the prompt to numerically il-
lustrate conditional relationships among the three
items. This allows the model to reference the like-
lihood of specific judgments influencing others
during response evaluation.

• Presentation of a single comprehensive ques-
tion: A question designed to elicit an overall as-
sessment of "Providing Guidance" was included.
The model was prompted to holistically assess
whether the response attempted meaningful guid-
ance, based on the given content, prior Track
predictions, and statistical information.

Through this prompt, the model can extract com-
prehensive judgment features for Providing Guid-
ance by simultaneously considering both existing
prediction results and quantitative association in-
formation.

2.3.2 Improving Consistency in LLM
Evaluation Using Classifiers

To calibrate the evaluation results of LLM re-
sponses with human assessors’ judgments, we
adopted an approach utilizing a subsequent clas-
sifier and conducted experiments to select an op-
timal classification model. The features extracted

in Section 2.3.1 consist of probability values for
the three categories—“Yes,” “To some extent,” and
“No”—for each of the six sub-questions(Qrubric

and Qoverall). Each sub-question is represented as
a three-dimensional vector (i.e., three probabilities),
and concatenating these yields an 18-dimensional
real-valued vector (6 questions × 3 classes = 18),
which serves as the input feature for the response
quality classifier. We compared the performance
of three classification models — Random For-
est (Breiman, 2001), Logistic Regression (Cox,
1958), and XGBoost (Chen and Guestrin, 2016) —
using 5-fold cross-validation on the development
dataset.

Classifier Gold Pred w/o Qoverall

F1 Acc F1 Acc F1 Acc
Logistic Regression 0.61 0.71 0.49 0.66 0.49 0.66
Random Forest 0.63 0.70 0.55 0.61 0.54 0.60
XGBoost 0.61 0.69 0.52 0.66 0.50 0.64

Table 2: Comparison of Classifier Performance Ac-
cording to the Use of Qoverall. Gold denotes that
ground-truth labels for Qoverall were supplied, whereas
Pred uses the values predicted by the methods in Sec-
tions 2.1 and 2.2.

Table 2 compares classifier performance across
three experimental conditions. The first condition
inputs gold labels for Mistake Identification and
Mistake Location into Qoverall. The second condi-
tion uses predicted values from previous Tracks
for Qoverall, while the third entirely excludes
Qoverall from input features to analyze its per-
formance impact. Under the gold-label configu-
ration for Qoverall, Random Forest achieved the
highest Macro F1 score of 0.63. This indicates
strong alignment between Qoverall and the final
Providing Guidance label, representing the upper
performance bound of the proposed methodology.
In the simulated test environment using predicted
values for Qoverall, Random Forest maintained su-
perior performance with a Macro F1-score of 0.55,
though lower than the gold-label scenario. This
performance gap underscores the influence of pre-
diction uncertainty in Qoverall and highlights its
critical role in overall accuracy. Experiments ex-
cluding Qoverall resulted in performance degrada-
tion across all models, demonstrating that Qoverall

facilitates comprehensive judgment rather than iso-
lated item assessment, thereby making substantial
contributions to classifier efficacy.

Based on these findings, the study implemented a
system incorporating all Qrubric and Qoverall items
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as input features, with Random Forest selected as
the final classifier for Predicting Providing Guid-
ance labels. This configuration optimizes robust-
ness while maintaining practical applicability in
automated feedback evaluation.

3 Evaluation

In this section, we report and discuss the evalua-
tion results obtained from each of the prompting
methodologies applied to Tracks 1 through 4. The
performance of each proposed method is presented
briefly, highlighting their strengths and identifying
areas for improvement.

3.1 Evaluation Metrics

Our evaluation followed the same metrics defined
by the shared task organizers. Specifically, accuracy
and macro F1 scores were utilized as the primary
metrics for evaluating performance across Tracks
1 through 4. These metrics were computed under
two distinct settings:

• Exact evaluation (Ex.): Predictions were as-
sessed based on the precise classification into
three distinct categories ("Yes," "To some extent,"
and "No").

• Lenient evaluation (Len.): Considering the qual-
itative similarities between responses annotated
as "Yes" and "To some extent," these two classes
were combined into a single category ("Yes + To
some extent"), resulting in a simplified binary
classification ("Yes + To some extent" vs. "No")
for performance evaluation.

3.2 Dataset

We conducted our experiments using the dataset
provided by the shared task organizers. The dataset
consists of 300 dialogues extracted from the Math-
Dial (Macina et al., 2023) and Bridge (Wang et al.,
2024a) datasets, and includes a total of 2,476 tutor
responses annotated for four pedagogical aspects
based on the scheme proposed by Maurya et al.
(2025). These annotated responses were used as
the development set. An additional 1,547 tutor re-
sponses, constructed in the same manner, were used
as the test set.

3.3 Chain-of-Thought-based Pedagogical
Evaluation System with Reasoning layers

To evaluate the effectiveness of the proposed assess-
ment system in section 2.1, we conducted experi-

ments on two models: GPT-4.1 and GPT-4.1-mini2.
The experiments were performed on the entire de-
velopment set. Since the proposed system does
not require a separate training phase, all examples
in the dataset were directly used for evaluation.
To facilitate comparative analysis of the proposed
system’s performance, we also conducted exper-
iments using an alternative baseline prompt (see
Appendix A for details of the baseline prompt),
defined by the following conditions:
• The input consists only of the dialogue history

and the tutor’s final utterance.

• For each evaluation criterion, the original defini-
tions provided by the task organizers were used,
rather than the redefined versions proposed in this
study.

This setup allows us to directly compare how varia-
tions in prompt design and evaluation criteria def-
initions affect final performance, under identical
language model and dataset conditions.

Task Prompt Model Ex. F1 Ex.
Acc

Len.
F1

Len.
Acc

MI
Base

GPT 4.1 mini 0.5566 0.6975 0.8037 0.8958
GPT 4.1 0.5850 0.7383 0.8107 0.9055

Ours
GPT 4.1 mini 0.5699 0.7282 0.7965 0.9079

GPT 4.1 0.6225 0.7993 0.8371 0.9204

ML
Base

GPT 4.1 mini 0.5037 0.5856 0.7447 0.7928
GPT 4.1 0.4642 0.4851 0.7361 0.8029

Ours
GPT 4.1 mini 0.4885 0.5166 0.7581 0.8146

GPT 4.1 0.5238 0.5969 0.7564 0.8154

PG
Base

GPT 4.1 mini 0.5286 0.5428 0.7347 0.8247
GPT 4.1 0.4905 0.4758 0.7374 0.8320

Ours
GPT 4.1 mini 0.5117 0.4956 0.7506 0.8389

GPT 4.1 0.5398 0.5355 0.7583 0.8384

ACT
Base

GPT 4.1 mini 0.4934 0.5141 0.6889 0.7597
GPT 4.1 0.4487 0.4378 0.6975 0.7815

Ours
GPT 4.1 mini 0.5045 0.5250 0.7129 0.7851

GPT 4.1 0.5210 0.5384 0.7253 0.7948

Table 3: Performance comparison across tasks, prompts,
and models. Bold indicates the best performance within
each task, and underline indicates the second-best.

Table 3 presents a performance comparison be-
tween the proposed evaluation system and the base-
line prompt. The proposed approach demonstrates
overall superior results across all four evaluation
criteria compared to the base prompt. Notably,
when using the GPT-4.1 model, improvements in
response quality were observed under both exact
and lenient evaluation metrics.
For Mistake Identification, which measures the
model’s ability to recognize student errors, the pro-
posed system proved more effective in producing

2gpt-4.1-mini-2025-04-14
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clear and convincing judgments.
For Mistake Location, which assesses how well
the tutor’s response pinpoints where the student
made a mistake, the proposed system also showed
better performance when using GPT-4.1. Although
the performance gains were more limited with the
smaller model (GPT-4.1-mini), the proposed sys-
tem helped generate responses with more consis-
tent error localization patterns.
For Providing Guidance, which evaluates whether
the tutor’s response offers not only correct answers
but also instructional support — such as explana-
tions, hints, or examples — the proposed system
was more effective in assessing responses using
this criterion, as it successfully identified a variety
of instructional strategies, including explanations,
hints, and guiding questions. This indicates that
the redefined evaluation criteria were more closely
aligned with authentic pedagogical practices.
For Actionability, which assesses whether the
student can clearly understand what to do next
based on the tutor’s feedback, the proposed sys-
tem demonstrated consistently high performance
in evaluating responses that effectively prompted
concrete next steps. This result likely stems from
the prompt structure and evaluation criteria, which
were explicitly designed to reflect a student-
centered communicative framework.

Taken together, these results demonstrate that
even without fine-tuning, the combination of a
structured prompt chain, evaluation criteria re-
defined from the student’s perspective, and a
reasoning-guided process can enhance both the re-
liability and pedagogical validity of tutor response
evaluation. However, the experimental findings also
imply that distinguishing fine-grained judgment
boundaries—such as between “Yes”, “To some ex-
tent”, and “No”—remains a challenge. This high-
lights the limitation of relying solely on prompt-
based inference, as the model may still struggle to
fully grasp the nuanced intent behind each evalua-
tion category without task-specific training.

Despite these limitations, we applied the pro-
posed system to the official evaluations of Track
1 and Track 4 without any additional training, in
order to see whether it would perform reliably in a
real evaluation setting. As a result, the system main-
tained stable performance on the test set, achieving
Exact macro F1 scores of 0.6669 and 0.5664 for
Track 1 and Track 4, respectively, thereby demon-
strating that the performance observed on the de-
velopment set was consistently replicated in the

official evaluation.

3.4 Multi-Perspective Reflective Evaluation
System

We submitted our system, developed under the
team name K-NLPers, to the Mistake Location
track of the BEA Shared Task. It was built upon our
proposed multi-perspective reasoning framework
and evaluated using the GPT-4.1 model.

Team Ex. F1 Ex. Acc Len. F1 Len. Acc
BLCU-ICALL 0.5983 0.7679 0.8386 0.8630
BJTU 0.5940 0.7330 0.7848 0.8261
K-NLPers 0.5880 0.7641 0.8404 0.8610
MSA 0.5743 0.6975 0.7848 0.8209
SG 0.5692 0.7602 0.8118 0.8416

Table 4: Evaluation Results on the Mistake Location
Track under Multi-Perspective Reflective Evaluation.
Bold indicates the best performance and underline indi-
cates the second-best.

As shown in Table 4, our system achieved com-
petitive results, ranking 3rd overall among partici-
pating teams. In particular, it showed strong perfor-
mance in Exact Accuracy (0.7641), Lenient macro
F1 (0.8404), and Lenient Accuracy (0.8610), with
scores closely comparable to those of the top two
teams. These results suggest that our system pro-
duces predictions with consistent structure and high
lexical accuracy, demonstrating that the proposed
approach can effectively compete with state-of-the-
art systems. However, the Exact macro F1 score
(0.5880) was slightly lower than that of the top-
ranked teams, primarily due to difficulty in distin-
guishing responses labeled as “To Some Extent”.
Despite this, the results confirm that our system is
robust and generalizable, yielding strong overall
performance across evaluation metrics in a compet-
itive setting.

3.5 Rubric Based Evaluation System

This section evaluated the Providing Guidance di-
mension (Track 3) using the rubric-based system
proposed in Section 2.3.

Team Ex. F1 Ex. Acc Len. F1 Len. Acc
BLCU-ICALL 0.5741 0.6716 0.7487 0.8061
BJTU 0.5725 0.6490 0.7445 0.8100
K-NLPers 0.5606 0.6270 0.7446 0.8003
bea-jh 0.5451 0.6387 0.7253 0.7977

Table 5: Performance and ranking of our models in
predicting "Providing Guidance" on the test set.
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Table 5 presents the leaderboard results on the
test set for the final system proposed in Section 2.3.
Our system achieved an Exact macro F1 score of
0.5606 and a Lenient macro F1 score of 0.7446 on
the test set. Despite employing a straightforward
approach that relies solely on prompt-based prob-
ability distribution outputs and a post-processing
classifier, the system demonstrates the capability to
secure a satisfactory level of precision and consis-
tency in real-world settings. Notably, attaining an
Exact macro F1 score of 0.5606—a stringent evalu-
ation criterion—indicates that the structured multi-
dimensional features derived from the rubric-based
items Qrubric and Qoverall effectively capture the
educational validity of tutor responses.

These findings suggest that the prompt-based
multi-dimensional judgment methodology not only
generates responses but also effectively aligns the
evaluation and classification of responses with hu-
man raters. Furthermore, the methodology main-
tains a certain degree of generalization perfor-
mance even on inputs that were not seen during
training, thereby illustrating that evaluations lever-
aging large language models can function as assess-
ments with genuine educational validity.

4 Conclusion

This study proposed a set of prompting-based auto-
matic evaluation methods to assess the pedagogical
quality of AI tutor responses across four key dimen-
sions: Mistake Identification, Mistake Location,
Providing Guidance, and Actionability. Leverag-
ing the capabilities of GPT-4.1, the methods were
designed to emulate human-like reasoning through
chain-of-thought prompting, multi-perspective re-
flection, and rubric-based probability estimation,
aligning large language model outputs with authen-
tic educational feedback standards.

Our approaches demonstrated competitive per-
formance in the BEA 2025 Shared Task across
multiple evaluation tracks. The Multi-Perspective
Reflective Evaluation showed strong performance
in Mistake Location, while the Rubric-Based Eval-
uation validated the effectiveness of structured fea-
ture extraction and post-classification for nuanced
feedback analysis in Providing Guidance. These
findings confirm that prompt engineering—when
guided by educational theory and structured eval-
uation logic—can significantly improve the inter-
pretability and reliability of LLM-based tutor as-
sessments. Although fine-grained distinctions be-

tween evaluation categories remain challenging,
the results underscore the feasibility of using large
language models for scalable, pedagogically sound
evaluation in open-ended educational dialogues.

Future work may explore integrating these meth-
ods into real-time tutoring systems, applying task-
specific fine-tuning to improve classification sen-
sitivity, and extending the framework to multi-
modal or domain-specific educational contexts. Ul-
timately, this line of research contributes to devel-
oping AI systems that are not only linguistically
fluent but also aligned with human learning objec-
tives.

Limitations

As the proposed methods relies on the model’s
internal reasoning to perform evaluations, it may
yield interpret evaluation criteria differently de-
pending on the model. This is especially true for
intermediate categories such as “To some extent”,
where subjective interpretation can lead to ambigu-
ity, indicating a limitation in ensuring the reliability
of automatic assessment.
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A Chain-of-Thought-based Pedagogical Evaluation with Reasoning layers Prompts

This section presents the detailed prompt used in the Chain-of-Thought-based Pedagogical Evaluation
with Reasoning Layers methodology described in Section 2.1. The prompt serves as a core component
of the proposed step-by-step structure, which emulates how human tutors interpret students’ reasoning
and determine appropriate feedback. It guides the model to first reconstruct the student’s reasoning,
then generate a correct solution path, and finally evaluate the pedagogical appropriateness of the tutor’s
response in light of the student’s thinking process.

Promblem Extraction

# Identity

You are an expert in analyzing conversations and extracting specific information precisely from
textual inputs.
Your task is to read through a dialogue transcript carefully and extract a math problem as-is,
without modifying any part of it. The conversation always contains exactly one math problem.

# Instructions

* Read the conversation carefully and identify the one math problem embedded within.
* Copy the entire text of that math problem verbatim, exactly as it appears in the dialogue.
* Do not add any explanation, paraphrasing, or interpretation.
* Output only the extracted math problem and nothing else.

Student Reasoning Process Reconstruction

# Identity

You are an expert in analyzing educational conversations to reconstruct the reasoning
processes behind students’ mathematical answers.
Your task is to read a conversation between a tutor and a student, along with the math problem
discussed. Then, from the student’s point of view, explain the reasoning process the student might
have used to arrive at their final answer.
Your goal is to reconstruct the student’s reasoning path — whether correct or incorrect — as
faithfully and coherently as possible based on the conversation and the problem given.

# Instructions

1. Do not modify, correct, or reinterpret the student’s final answer — even if the answer is
incorrect.

2. Base your reasoning entirely on what was stated in the conversation.

3. If no reasoning was explicitly given by the student, infer a likely and plausible thought process
they could have followed to reach their answer.

4. Ensure that your explanation is logically consistent with the content of the conversation. Avoid
introducing contradictions.

5. Write your reasoning as a clear, step-by-step explanation, emulating how the student may have
thought through the problem.
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Correct Reasoning Process Generation

# Identity

You are a logical reasoning assistant specialized in mathematical thinking and student
misconception analysis.

You are given:

1. A transcript of a conversation between a student and a tutor

2. The math problem discussed in the conversation

3. The student’s reasoning process, which has been reconstructed based on the conversation, not
written directly by the student.

- Parts explicitly mentioned in the dialogue can be trusted as the student’s actual reasoning.
- Parts not mentioned directly have been inferred based on the dialogue and should be treated

as plausible, but not definitive.

Your task is to carefully analyze the student’s reasoning process and perform the following
instructions:

# Instructions

Step 1: Identify Reasoning Errors Review the student’s reasoning. Clearly point out any
logical, mathematical, or conceptual errors. If there are no errors, state that explicitly.

Step 2: Reconstruct the Correct Reasoning (Based on Student’s Thought Process) If the
student made partial progress or had a valid approach but made an error along the way, retain and
respect their original reasoning path. Correct the specific mistakes and continue the reasoning
from where they deviated. If the student’s reasoning is fundamentally flawed from the beginning
or completely irrelevant to the problem, it is acceptable to construct a new, correct reasoning path.

Step 3: Solve the Problem Using the corrected reasoning (rooted in the student’s approach if
applicable), solve the math problem and provide the correct final answer.

Step 4: Output Format Provide your response in the following structure:
- Student Reasoning Error(s): [List and explain]
- Corrected Reasoning (Respecting Student’s Logic): [Step-by-step, rooted in their original

path]
- Final Answer: [Answer]
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Tutor Response Evaluation

# Identity

You are a senior math tutor and tutor coach with expertise in evaluating instructional
quality. You will receive the following inputs:

1. A dialogue between a student and a novice tutor.

2. The math problem discussed in the dialogue.

3. A senior tutor’s analysis of the student’s likely reasoning and a revised correct solution.

4. The final utterance made by the novice tutor.

# Instructions

Evaluation Criteria
- Evaluate the novice tutor’s final utterance, using the following four criteria:
- broader dialogue context, including the student’s previous responses and the progression of

the conversation.
- In other words, evaluate how well the tutor’s final utterance functions as a response within

the instructional flow and in light of the student’s reasoning process.

1. Mistake Identification

- Did the novice tutor demonstrate awareness of a mistake in the student’s reasoning?
- Yes: The tutor reasonably indicates awareness of the student’s mistake or explicitly

suggests the possibility of an error, even if somewhat general.
- To some extent: The tutor vaguely hints at a mistake, but the suggestion is overly

ambiguous or uncertain.
- No: The tutor does not identify or suggest any mistake in the student’s reasoning.

2. Mistake Location

- Did the novice tutor pinpoint where the mistake occurred in the student’s process?
- Yes: The tutor appropriately identifies or indicates the step or area where the student’s

mistake occurred. Exact pinpointing is not required, as long as the general location or
nature of the error is clear.

- To some extent: The tutor provides only a vague or unclear indication of the error’s
location, potentially leading to student confusion.

- No: The tutor does not specify or reference where the student’s error occurred.

3. Pedagogical Guidance

- Did the novice tutor provide helpful explanations, hints, or examples to support student
learning?

- Yes: The tutor provides explanations, hints, or examples that meaningfully support
student understanding. Slight inaccuracies or imperfections are acceptable as long as
the guidance is helpful from the student’s perspective.

- To some extent: The tutor offers guidance, but it contains significant ambiguities,
inaccuracies, or potential misconceptions.

- No: The tutor provides no useful explanation or hints, or the provided guidance is clearly
incorrect or misleading.
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4. Actionability

- Can the student clearly understand what to do next based on the tutor’s response?
- Yes: The tutor reasonably suggests a clear next step or strategy that the student can

readily understand and follow. Explicit instructions are not required as long as the
suggested action is practical and clear enough.

- To some extent: The tutor suggests a next step, but the recommendation is unclear,
confusing, or insufficiently specific.

- No: The tutor does not suggest any actionable next step or strategy for the student.

Output Format (MANDATORY)
- Respond in exactly the following format. Do not change the structure, headings, or indentation.

"Mistake Identification: [Yes / To some extent / No]
Explanation: [...]

Mistake Location: [Yes / To some extent / No]
Explanation: [...]

Pedagogical Guidance: [Yes / To some extent / No]
Explanation: [...]

Actionability: [Yes / To some extent / No]
Explanation: [...]"

You must follow this format strictly. Any deviation will be considered incorrect.
Now, evaluate the novice tutor’s final utterance.
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Basic Prompt

# Identity
You are a senior math tutor and tutor coach with expertise in evaluating instructional quality.
You will receive the following inputs:

1. A dialogue between a student and a novice tutor.

2. The final utterance made by the novice tutor.

# Instructions:

Evaluation Criteria
- Evaluate the novice tutor’s final utterance, using the following four criteria.

1. Mistake Identification

- Detect whether tutors’ responses recognize mistakes in students’ responses. The following
categories are included:

- Yes: The mistake is clearly identified/recognized in the tutor’s response.
- To some extent: The tutor’s response suggests that there may be a mistake, but it sounds

as if the tutor is not certain.
- No: The tutor does not recognize the mistake (e.g., they proceed to simply provide the

answer to the asked question).

2. Mistake Location

- Assess whether tutors’ responses accurately point to a genuine mistake and its location in
the students’ responses. The following categories are included:

- Yes: The tutor clearly points to the exact location of a genuine mistake in the student’s
solution.

- To some extent: The response demonstrates some awareness of the exact mistake, but is
vague, unclear, or easy to misunderstand.

- No: The response does not provide any details related to the mistake.

3. Pedagogical Guidance

- Evaluate whether tutors’ responses offer correct and relevant guidance, such as an explana-
tion, elaboration, hint, examples, and so on. The following categories are included:

- Yes: The tutor provides guidance that is correct and relevant to the student’s mistake.
- To some extent: Guidance is provided but it is fully or partially incorrect, incomplete, or

somewhat misleading.
- No: The tutor’s response does not include any guidance, or the guidance provided is

irrelevant to the question or factually incorrect.

4. Actionability

- Assess whether tutors’ feedback is actionable, i.e., it makes it clear what the student should
do next. The following categories are included:

- Yes: The response provides clear suggestions on what the student should do next.
- To some extent: The response indicates that something needs to be done, but it is not

clear what exactly that is.
- No: The response does not suggest any action on the part of the student (e.g., it simply

reveals the final answer).
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Output Format (MANDATORY)
- Respond in exactly the following format. Do not change the structure, headings, or indentation.

Mistake Identification: [Yes / To some extent / No]
Explanation: [...]

Mistake Location: [Yes / To some extent / No]
Explanation: [...]

Pedagogical Guidance: [Yes / To some extent / No]
Explanation: [...]

Actionability: [Yes / To some extent / No]
Explanation: [...]

You must follow this format strictly. Any deviation will be considered incorrect.
Now, evaluate the novice tutor’s final utterance.
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B Rubric Based Evaluation Method prompt

To evaluate the Providing Guidance dimension, we designed a structured prompt that guides the language
model to simulate expert judgment across six sub-criteria. The prompt first provides the full dialogue
context, the student’s final utterance, and the tutor’s response. It also includes prediction results from other
evaluation dimensions (Mistake Identification and Mistake Location), as well as statistical correlations
observed between them. The model is instructed to assess the tutor’s response based on six specific
questions, each targeting a pedagogically meaningful aspect of guidance. For each item, the model outputs
a brief rationale and assigns probabilities to three labels: Yes, To some extent, and No. The final output
consists of both the explanation and a normalized probability distribution that sums to 1.0. The sixth
question is designed to produce an overall judgment by incorporating both model predictions and prior
statistical informations, providing a holistic measure of guidance quality.

Prompt for Rubric-Based Multidimensional Evaluation

You are an expert evaluator analyzing a tutor’s response in a learning dialogue.

Below is a conversation between a student and a tutor.

[Conversation]
<Full conversation history, if any>

[STUDENT_UTTERANCE]
<Student’s latest input>

[TUTOR_RESPONSE]
<Tutor’s response to be evaluated>

[Prediction Results]
- Mistake Identification: <Predicted label>
- Mistake Location: <Predicted label>

Note: Based on statistical analysis of past data, the following association rules are observed:

- If Providing Guidance is "Yes", then Mistake Identification is also "Yes" with confidence 0.950.
- If Mistake Location is "Yes", then Mistake Identification is "Yes" with confidence 0.989.
- If Mistake Identification is "Yes", then Mistake Location is "Yes" with confidence 0.790.

Use the following definitions when choosing a label:

- Yes: The tutor’s response fully satisfies the criterion. It is accurate, relevant, and helpful.
- To some extent: The response attempts to satisfy the criterion but is partially incomplete, inaccu-

rate, vague, or not directly useful.
- No: The response does not satisfy the criterion at all, or it is misleading, unrelated, or entirely

incorrect.

Please answer the following six questions. For each question, first provide a brief explanation
for your judgment. Then, give the probability (in float format) that the response is: Yes, To some
extent, or No. Ensure all three values sum to exactly 1.0.

Output format:
Q1: <brief explanation>
- Yes: <float>
- To some extent: <float>
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- No: <float>

Questions:
Q1. Did the tutor attempt to provide any explanation, hint, or example?
Q2. Was the guidance factually correct and appropriate given the student’s error?
Q3. Did the tutor’s response directly address the student’s specific mistake?
Q4. Did the guidance help the student figure out what to do next, without directly giving the final
answer?
Q5. Was the tutor’s response clear and unlikely to confuse the student?
Q6. Based on the tutor’s response, the model’s predictions, and the above statistical information,
how likely is it that the tutor attempted to provide meaningful guidance?
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C Analysis of Prediction Results on the
Development Set

This section presents the classification results on
the development set for each of our proposed sys-
tems. Although the overall metrics provide a broad
overview of performance, they do not sufficiently
capture the models’ ability to discriminate fine-
grained categories—particularly ambiguous ones
such as To some extent. Therefore, we provide a
detailed analysis of each system’s predictions ac-
cording to the evaluation track.

C.1 Chain-of-Thought-based Evaluation
System

As shown in Section 3.3, our proposed Chain-of-
Thought-based evaluation system demonstrated ef-
fectiveness in generating evaluations that are both
consistent and pedagogically valid. However, as
previously noted, the model still exhibits limita-
tions in accurately distinguishing between seman-
tically adjacent evaluation categories. To further
investigate this issue, we conducted an analysis of
how such difficulties manifest in actual prediction
outcomes.

Actual / Predict Yes To some extent No Total
Yes 1,657 237 38 1,932
To some extent 63 68 43 174
No 60 56 254 370

Table 6: Confusion matrix of the CoT-based Evaluation
System for the Mistake Identification track.

Table 6 presents the prediction results for the
Mistake Identification track in the form of a con-
fusion matrix. In this track, the model accurately
classified the majority of "Yes" instances (1,657 out
of 1,932), but struggled to distinguish the "To some
extent" category. Specifically, only 68 out of 174
instances were correctly identified, while the re-
maining were misclassified as "Yes" (63 instances)
or "No" (43 instances), indicating persistent chal-
lenges in delineating fine-grained judgment bound-
aries.

Actual / Predict Yes To some extent No Total
Yes 727 547 36 1,310
To some extent 88 245 36 369
No 253 183 361 797

Table 7: Confusion matrix of the CoT-based Evaluation
System for the Actionability track.

A similar pattern is observed in the Actionabil-

ity track, as shown in Table 7. While the model
achieved relatively high true positive counts for
the "Yes" (727 instances) and "No" (361 instances)
categories, “To some extent” cases were frequently
misclassified—most notably, among the actual
“No” instances, 547 were predicted as "Yes" and
183 as "To some extent".

These results indicate that while the proposed
Chain-of-Thought-based evaluation system is ef-
fective in producing consistent judgments based on
explicit criteria, it still faces limitations in clearly
distinguishing semantically adjacent categories. In
particular, the frequent misclassification of am-
biguous labels such as To some extent highlights
the difficulty of inducing fine-grained reasoning
solely through prompts without task-specific train-
ing. This observation suggests the potential need
for improved prompt engineering or subsequent
fine-tuning to enhance the model’s discriminative
precision.

C.2 Multi-Perspective Reflective Evaluation
System

This section presents an analysis of the Multi-
Perspective Reflective Evaluation System’s perfor-
mance on the Mistake Location track. The goal
is to understand how effectively the system distin-
guishes between clearly defined and semantically
adjacent categories within its reflective reasoning
framework.

Actual \ Predicted Yes To some extent No Total
Yes 1,219 140 184 1,543
To some extent 99 33 88 220
No 117 79 517 713

Table 8: Confusion matrix of the Multi-Perspective Re-
flective Evaluation System for the Mistake Location
track.

The analysis of Mistake Location is presented
in Table 8. The results show that although the sys-
tem accurately identifies many instances of "Yes"
(1,219 correct predictions), it struggles to distin-
guish "To some extent" from adjacent categories.
Specifically, only 33 out of 220 "To some extent"
cases were correctly classified, while the majority
were misclassified as either "Yes" (99 instances)
or "No" (88 instances). This analysis supports our
observations in Sections 3.3 and 3.4 that prompt-
based reasoning approaches still face challenges in
making fine-grained categorical distinctions.
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C.3 Rubric Based Evaluation System
To assess the performance of the Rubric Based
Evaluation System in identifying pedagogically
meaningful distinctions, we examine its predictions
on the Providing Guidance track. This allows us to
evaluate the effectiveness of rubric-derived features
in capturing subtle differences between response
categories.

Actual / Predict Yes To some extent No Total
Yes 1,034 266 107 1,407
To some extent 250 179 74 503
No 178 83 305 566

Table 9: Confusion matrix of the Rubric Based Evalua-
tion System for the Providing Guidance track.

Table 9 presents the prediction results of our pro-
posed Rubric Based Evaluation System. The sys-
tem consists of a Random Forest classifier trained
using the Qrubric items and the predicted values
of Qoverall as input features. For the "Yes" class,
1,034 out of 1,407 instances were correctly classi-
fied. For the "No" class, 305 out of 566 instances
were correctly classified. In contrast, for the "To
some extent" class, only 179 out of 503 instances
were correctly classified, with 250 instances mis-
classified as "Yes" and 74 as "No." These results
indicate that the classifier struggled to clearly dis-
tinguish the "To some extent" class from "Yes" and
"No." This suggests that, even when combining
information from Qrubric and Qoverall, additional
feature engineering or refinement may be necessary
to more precisely delineate the boundaries among
the three classes.
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Abstract

Effective AI tutoring hinges on guiding learn-
ers with the right balance of support. In this
work, we introduce CODE (COntextually-
aware Distilled Evaluator), a framework that
harnesses advanced large language models
(i.e., GPT-4o and Claude-2.7) to generate syn-
thetic, context-aware justifications for human-
annotated tutor responses in the BEA 2025
Shared Task. By distilling these justifications
into a smaller open-source model (i.e, Phi-
3.5-mini-instruct) via initial supervised fine-
tuning and then Group Relative Policy Opti-
mization, we achieve substantial gains in la-
bel prediction over direct prompting of pro-
prietary LLMs. Our experiments show that
CODE reliably identifies strong positive and
negative guidance, but like prior work, strug-
gles to distinguish nuanced “middle-ground”
cases where partial hints blur with vagueness.
We argue that overcoming this limitation will
require the development of explicit, feature-
based evaluation metrics that systematically
map latent pedagogical qualities to model out-
puts, enabling more transparent and robust as-
sessment of AI-driven tutoring.

1 Introduction

Large language models (LLMs) have opened a
promising frontier for education, enabling con-
versational agents that deliver personalized and
adaptive guidance calibrated to a learner’s cur-
rent knowledge state and pace (Tack et al., 2023).
Indeed, the main goal of dialectic teaching is to
provoke exploration through carefully timed ques-
tions, hints, or explanations (Clark and Egan,
2015). If the guidance provided is too little, it
frustrates students, while too much erodes learn-
ing opportunities and fosters over-reliance (Le,
2019). Although striking this balance is cen-
tral to effective tutoring, the field still lacks pre-
cise operational definitions and automatic metrics
for “optimal guidance”, making systematic eval-

uation, and therefore progress, very challenging
(Kochmar et al., 2025).

In light of this missing definition, existing as-
sessments rely heavily on individual annotation
by human experts (Maurya et al., 2025). How-
ever, crafting high-quality, question-specific ex-
planations at the scale needed to train or bench-
mark modern transformer models is prohibitively
expensive. To address this bottleneck, we explore
reasoning distillation: using stronger LLMs to
generate reasoning about a tutor’s utterance as to
why it matches the gold label. Our study inves-
tigates (i) whether synthetically contexts capture
meaningful signals of pedagogical quality, and (ii)
how well these signals transfer when smaller, stu-
dent models are trained on them.

As such, our contributions from team Henry are
as follows:

• We propose COntextually-aware Distilled
Evaluator (CODE) framework, a multi-step
finetuning process that distills reasoning from
larger LLMs to train smaller open-sourced
models to better detect what “good guidance”
is. Our method consistently outperforms
state-of-the-art (SOTA) proprietary models
and aligns reasonably well with expert hu-
man judgements.

• We release an enriched dataset with syntheti-
cally generated reasoning based on their gold
labels for each of the tutor’s last utterance
across the entire human-annotated set from
(Maurya et al., 2025).

2 Related Work

2.1 AI Tutor’s Guidance Evaluation

This feature of AI tutor currently lacks a unified
definition, but there has been efforts in this area
to explore it through various perspectives. Tack
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and Piech (2022) in their work evaluates perfor-
mances of AI tutor based on how much they “help
the student” using human participants and expert
annotators. While they don’t provide a formal def-
inition, their approach to evaluation is closely re-
sembled by Daheim et al. (2024)’s ”actionability”
where the AI tutor’s utterance provides sufficient
information for the student to progress the conver-
sation and move closer to the correct answer.

In another work by Wang et al. (2024), this
feature is referred to as “usefulness”, the degree
to which the responses are productive at advanc-
ing the student’s understanding and helping them
learn from their errors, also evaluated through hu-
man judgments. These concepts are also reflected
in the work of Al-Hossami et al. (2023), where
they defined “indirectness”, where an effective tu-
tor asks questions that induce critical thinking and
not reveal the answer.

2.2 Learning via Distillation

Knowledge distillation transfers the knowledge
embedded in large, high-capacity “teacher” mod-
els into smaller, more efficient “student” models
by having the student match the teacher’s softened
probability distributions, known as “soft targets”,
rather than relying solely on hard labels. First in-
troduced by Hinton et al. (2015), this technique
has enabled compact language models to approach
the performance of much larger LLMs while us-
ing reduced architectures and training data (Hsieh
et al., 2023).

More recently, distillation has been extended
to complex reasoning tasks, spawning the field
of reasoning distillation. For example, Li et al.
(2025) present Fault-Aware Distillation via Peer-
Review (FAIR), in which multiple teacher mod-
els critique each other’s reasoning chains to im-
prove fidelity. Likewise, Dai et al. (2024) propose
training student models on key reasoning steps ex-
tracted from dual chain-of-thought explanations.
These innovations not only enhance model inter-
pretability but also substantially boost conceptual
understanding in educational applications.

3 Methods

3.1 Synthetic Context Generation

Data Preprocessing We focus exclusively on
Task 3 of the BEA Shared Task (Kochmar et al.,
2025), and so we process the original dataset
from Maurya et al. (2025) accordingly. From

the provided validation set, we construct a filtered
dataset:

D =
{
(Ci, Ri, Li)

}N
i=1

,

such that for each sample i:

• Ci : conversation history of each original ele-
ment,

• Ri : each tutor’s response,

• Li ∈ {Y es, To Some Extent,No}: the
gold label provided by “Providing Guidance”

In total, we have N = 3, 589.

Generating Reasoning with Labels To enrich
each response label with contextual justification,
we leverage two state-of-the-art models, namely
GPT-4o (OpenAI et al., 2024) and Claude-2.7
Sonnet (Anthropic, 2024). For each model, we
process batches of 10 examples from our original
dataset D1 alongside the system prompt in Ap-
pendix A. Each model then generates a justifica-
tion Ji for sample i, drawing on the provided label
Li, the conversation history Ci, and the latest tutor
response Ri. This yields an expanded dataset

D′ =
{
(Ci, Ri, Li, Ji)

}N
i=1

,

where Ji is the synthetic justification associated
with the ith response.

Selection of Justifications To ensure the quality
and utility of the synthetically generated justifica-
tions, we conduct a manual selection process to
identify the most suitable responses produced by
the two models. The selection criteria are as fol-
lows:

• Non-repetition: Justifications that are re-
peated within the same batch are excluded to
prevent redundant signals, which could lead
to overfitting during downstream model train-
ing.

• Linguistic diversity and specificity: Se-
lected justifications exhibit varied and dis-
tinctive vocabulary, reflecting the natural di-
versity found in human tutor responses. This
diversity will then enhance the generalizabil-
ity of models trained on the data.

1Batch size selected after varying from 1 to 50. We find
that beyond 10 samples, both models tend to hallucinate or
become overly generic and provide low-quality responses.
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• Adequate length and contextual richness:
Justifications are required to provide suffi-
cient explanatory detail to offer meaning-
ful context for the corresponding labeled re-
sponse.

Extracting Critical Tokens For each synthetic
justification Ji, we perform the following prepro-
cessing steps:

1. Convert to lowercase and strip lead-
ing/trailing whitespace.

2. Remove all stopwords.

3. Tokenize the resulting string.

4. Apply stemming and lemmatization to each
token.

Let
Ti = { ti1, ti2, . . . , tiKi}

be the set of remaining tokens for sample i. We
refer to Ti as the context-critical token set, and we
use these tokens as our reward signals. With this,
we now proceed to training our student model.

3.2 Expert Alignment Through
Reinforcement Learning

To best align the student model’s outputs with
those of advanced LLMs, and potentially a hu-
man tutor expert, we introduce the COntextually-
aware Distilled Evaluator (CODE) framework. In
CODE, reasoning is distilled through a multi-step
transfer process, with tailored reward signals that
guide the model to generate contextually relevant
tokens for downstream classification.

3.2.1 Initial Supervised Learning
We begin by performing supervised fine-tuning
(SFT) to teach the student model to generate Ji
given the conversation history Ci and last response
Ri. This initial stage aims to instill the desired
format, tone, and length characteristic of expert-
generated justifications. At this point, emphasis
is placed not on the semantic quality or reasoning
depth of the model’s outputs, but rather on align-
ing the stylistic aspects of the responses to facili-
tate more efficient convergence during subsequent
training phases. We have:

Ji = ( ji,1, ji,2, . . . , ji,Ti ),

where each justification is represented as a to-
ken sequence. Under a standard cross-entropy ob-
jective, the per-sample loss is

ℓi(θ) = −
1

Ti

Ti∑

t=1

log pθ
(
ji,t | Ci, Ri, ji,<t

)
,

where pθ(·) is the student model’s predicted prob-
ability and ji,<t = (ji,1, . . . , ji,t−1). Averaging
over all N samples gives the final SFT loss:

LSFT(θ) =
1

N

N∑

i=1

ℓi(θ)

The system prompt used as part of this instruc-
tion tuning is provided in Appendix C.

3.2.2 Applying GRPO with Semantic
Rewards

After supervised fine-tuning, we now refine the
student model’s output quality via an online
reinforcement-learning algorithm known as Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024). We denote the student’s policy by

πθ(J | Ci, Ri) ,

parameterized by θ, which we adapt efficiently us-
ing low-rank adaptation (LoRA) (Hu et al., 2021)
updates to the transformer weights.

Group sampling and baseline For each train-
ing example (Ci, Ri), the model samples a group
of M candidate justifications:

{ J1
i , J

2
i , . . . , J

M
i } ∼

M∏

j=1

πθ(· | Ci, Ri) .

Each candidate J j
i is scored by a programmable

reward function rji . We then compute the group
baseline as the mean reward:

bi =
1

M

M∑

j=1

rji .

Reward design The total reward rji is a
weighted sum of three components:

rji = wtok r
tok
i (Jj

i ) + wsent r
sent
i (Jj

i ) + wppl r
ppl
i (Jj

i ) ,

where:
rtoki (J) =

∑

t∈Ti

1
{
t appears in J

}
,

rsenti (J) =

{
1 if the sentiment of J matches the gold label,
0 otherwise,

rppli (J) = − 1

|J |

|J|∑

t=1

log pθ0
(
jt | Ci, Ri, j<t

)
.
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Here Ti is the context-critical token set for exam-
ple i. In this reward scheme, we do not punish the
student model arbitrarily for not generating trivial
tokens. Likewise, it is only rewarded if it can gen-
erate the critical tokens that would be informative
for the response’s label based on the context pro-
vided.

Next, the sentiment score is given by a finetuned
transformer based on DistilBERT (Sanh et al.,
2020) (i.e., DistilBERT-based SST-2 classifier).
While sentiment alone is not a reliable indicator of
guidance quality (Wang et al., 2024), it provides a
concrete and readily interpretable signal that can
guide model generation. The inclusion of this
sentiment-based reward facilitates faster conver-
gence of the student model by offering an easier-
to-learn proxy objective compared to directly op-
timizing for alignment with complex gold labels.
Crucially, sentiment is not intended as a hard clas-
sification signal but rather a soft reward, encourag-
ing the generation of justifications whose affective
tone is consistent with the associated label. This
approach helps steer the model’s learning trajec-
tory in a meaningful direction in light of GRPO’s
multiple response generation.

Finally, pθ0 denotes the frozen base model (i.e.,
untrained student model) used to compute per-
plexity. Importantly, the perplexity score is added
such that the trained model does not exploit the
other reward signals by randomly inserting tokens
as part of their outputs. This ensures that the final
responses produced by the trained student model
is still cohesive and human understandable.

Before performing the policy gradient update,
these scores are then normalised to zero mean
and unit variance to prevent their magnitude
from dominating other scores, with the weights
(wtok, wsent, wppl) balancing these signals. 2

3.3 Final Classification

To produce the final label predictions, we append
a trainable classification head atop the trained stu-
dent model. The primary objective of this step is
feature selection. That is, the student model has
been previously trained to generate justifications
containing critical tokens, and as such, this clas-
sification head aims to capture and interpret these
contextual cues, mapping them effectively to the

2We experimented with several weighting schemes but
observed only minor, non-meaningful variations. As such,
for our final implementation we adopted uniform weights, as-
signing a value of 1 to each.

target label space. In this final training stage, the
model is trained to associate its own generated out-
put with the corresponding gold label.

We first map each gold label:

Li ∈ {Yes, To Some Extent, No}
to a categorical target yi ∈ {1, 2, 3}. Let θ∗ de-
note the student model parameters after merging
the LoRA adapters. Here, we freeze all θ∗ and
add a dense feedforward layer with parameters
ϕ = (W, b), where

W ∈ R3×d, b ∈ R3.

However, instead of training it on one forward
pass on each example (Ci, Ri), we first generate
the student model’s full response by

Ĵi = argmax
J

πθ∗(J | Ci, Ri).

We encode this output using the student model’s
tokenizer, and train ϕ using standard cross-entropy
loss on the last token hidden state:

LCE(ϕ) = −
1

N

N∑

i=1

3∑

c=1

1[yi = c] log p̂i,c.

where p̂i,c is the softmax of the classification
head’s predicted labels.

This pooling design choice to use the last to-
ken hidden state as the representation is particu-
larly motivated by the architecture of decoder-only
transformers, which lack a dedicated classification
token such as [CLS] found in encoder-based mod-
els (Fu et al., 2023). The last token in our gen-
erated outputs (i.e., each justification) functions
as a natural summary or conclusion to the token
sequence, providing a meaningful contextual em-
bedding that reflects the entire output. This ap-
proach balances computational efficiency, avoid-
ing the increased complexity of attention-based
pooling, and mitigates the potential noise or di-
lution of critical token signals that may arise with
mean pooling strategies (Suganthan et al., 2025).

External Benchmarking In addition to compar-
ing against gold labels and the CodaBench leader-
board submission, we also evaluate whether our
method could outperform direct prompt-tuning of
the proprietary models. For each example, we
prompt GPT-4o and Claude-2.7 Sonnet to predict
the guidance label without revealing the true la-
bel and recorded their accuracy on the validation
set. The exact prompts used for this experiment
are provided in the Appendix B.
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Model Validation set CodaBench set

Ex. F1 Ex. Acc Len. F1 Len. Acc Ex. F1 Ex. Acc Len. F1 Len. Acc

GPT-4o 56% 69% 75% 83% 49% 58% 70% 75%
Claude-2.7 Sonnet 61% 70% 73% 81% — — — —
CoDE 64% 74% 83% 89% 53% 63% 72% 78%

Table 1: Evaluation of all models across both validation set and the CodaBench test set. Due to the limited nature
of submission on CodaBench set, results from Claude-2.7 Sonnet were not submitted in the competition. All result
reported has been rounded to the nearest percent. The final reported score on the official leaderboard for CoDE is
slightly higher than the reported value in this table, but because the baseline score of GPT-4o is not reported there,
we report the values of CoDE from the unofficial table for consistency.

3.4 Experimental Setup
We used the Unsloth-provided “Phi-3.5-mini-
instruct” (Daniel Han and team, 2023; Abdin et al.,
2024) as our student model. The original valida-
tion set was further split 80/20 into training and
test subsets. All data preprocessing ran on an
NVIDIA L40 GPGPU, with model training and
evaluation performed on an NVIDIA A100 GPU.
In total, preprocessing, training, and evaluation
consumed over 70 GPU-hours. Complete details
on training hyperparameters, such as GRPO and
LoRA parameters, are detailed in the Appendix.

4 Results

As shown in Table 1, CODE consistently out-
performs state-of-the-art baselines, achieving the
tenth position in the final CodaBench ranking. We
attribute this improvement both to the quality of
the synthetic data and to the student model’s abil-
ity to capture hidden features from the extended
context. Our results suggest that existing SOTA
models possess an implicit notion of “good guid-
ance”, and their generated outputs can be effec-
tively transferred to smaller models. This obser-
vation corroborates prior work demonstrating that
large language models can serve as an effective
tutors, offering substantial instructional value, al-
beit not at expert-level proficiency (Wollny et al.,
2021).

Notably, on both the validation set and, to a
lesser extent, the CodaBench benchmark, CODE
exhibits a larger gain when evaluated with lenient
F1 compared to exact F1, with improvements un-
der strict scoring criteria remain modest. This pat-
tern indicates that fine-tuning renders CODE less
sensitive to the ambiguous label that is “To some
extent”. The strong labels, “Yes” or “No”, are
much easier to deduce, with clearer human defini-
tion, but this “middle-ground” is much more nu-

anced, and since finetuning is known to reduce
LLMs’ general reasoning (Luo et al., 2025), this
drop may be inevitable. When pedagogical value
differs only slightly, we see that even among hu-
man experts, these are difficult to discern (Macina
et al., 2023).

5 Conclusion

In this paper, we have investigated the potential
of modern large language models to both gener-
ate and train on synthetic data that emulate expert
human reasoning in educational guidance through
our CODE framework. Across both our valida-
tion and CodaBench test sets, our approach con-
sistently outperforms SOTA baselines and aligns
reasonably well with human judgments. However,
our findings also underscore the persistent chal-
lenge of the absence of a formal, operational def-
inition of this pedagogical quality. In particular,
nuances embodied by the “middle-ground” label
appear too subtle or demand too much data for cur-
rent LLMs to learn reliably.

As future direction, we advocate for the contin-
ued development of explicit metrics that system-
atically map these latent pedagogical features to
models’ outputs. By grounding fine-tuning in a
well-defined, feature-based evaluation framework,
we can move beyond black-box learning of hidden
signals and instead foster more robust, transparent,
and interpretable AI tutoring systems.

Limitations

5.1 Models Faithfulness and Prompt
Sensitivity

The dataset created is not guaranteed to match
reasoning provided by expert tutors. While we
have conducted manual inspections on samples in
the synthetic data to ensure some level of consis-
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tency between reasoning and the label provided,
this cannot be assured.

Furthermore, the SFT prompt used for training
may not be optimal. This was chosen only after a
few iterations of prompt tuning on a sample of the
synthetic data.

5.2 Distillation Cost
Both models used are not open source nor free.
Generating these takes extensive time on paid
models, limiting the number of reasoning re-
sponses to one per sample. Ideally, we would like
to expand this dataset further by generating multi-
ple responses under various prompts to better sim-
ulate the diversity in thinking among real human
tutors.

Ethical Consideration

Our research adheres strictly to ethical standards,
using publicly available datasets as well as follow-
ing distillation restriction carefully. We uphold
the principles of fairness, accountability, and aca-
demic integrity throughout the research process.
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A Synthetic Data Generation Prompt

For both GPT-4o and Claude, we used the follow-
ing prompt to create our dataset:

Data Creation Prompt

You are an expert evaluator of Socratic-
style tutoring dialogs in programming ed-
ucation. Your task is to justify the
human-supplied quality label for the tutor’s
last response You will receive: conversa-
tion history (full transcript up to, but NOT
including, the tutor’s latest reply, and the
speaker turns are prefixed with “Student:”
or “Tutor:”, last response (the tutor’s latest
reply, to be evaluated), and label (one of
Yes, To some extent, No indicating whether
the reply provides adequate, partial, or no
helpful guidance to the student.These la-
bels correspond to:

• Yes: The reply gives sufficient, spe-
cific, actionable guidance or hints that
directly help the student correct their
error or deepen understanding.

• To some extent: Contains some guid-
ance, but it is vague, incomplete, or
only tangentially helpful. Student
would likely still struggle.

• No: Gives the answer outright with-
out guidance, or offers no meaning-
ful help, such as generic reassurance,
topic change, or silence.

Return your result explaining why
the provided label is appropriate
as structured JSON with these keys:
{“label justification”: string}

B Proprietary Model Label Prompt

To produce labels from both GPT-4o and Claude
as our external baselines, we used the following
prompt:
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Data Label Prompt

You are an expert evaluator of Socratic-
style tutoring dialogs in programming ed-
ucation. You will receive: conversa-
tion history (full transcript up to, but NOT
including, the tutor’s latest reply, and the
speaker turns are prefixed with “Student:”
or “Tutor:”, and last response (the tutor’s
latest reply, to be evaluated). Your job is to
provide a label (one of Yes, To some extent,
No indicating whether the reply provides
adequate, partial, or no helpful guidance to
the student. These labels correspond to:

• Yes: The reply gives sufficient, spe-
cific, actionable guidance or hints that
directly help the student correct their
error or deepen understanding.

• To some extent: Contains some guid-
ance, but it is vague, incomplete, or
only tangentially helpful. Student
would likely still struggle.

• No: Gives the answer outright with-
out guidance, or offers no meaning-
ful help, such as generic reassurance,
topic change, or silence.

Return your result explaining why the pro-
vided label is appropriate as structured
JSON with these keys: { “label”: string }

C SFT Training System Prompt

The system prompt used to align the model’s be-
haviour to that of a professional tutor is as follows:

System Prompt

You are a professional tutor. Your goal is to
focus on whether the Last Response from
the example is providing enough guidance
(i.e, explaination, hints, guidance) to the
student to act upon, progressing the con-
versation based on the conversation his-
tory. DO NOT continue the conversation,
and you MUST use the Last Response pro-
vided. Focus on these characteristics:

1. If the Last Response provides spe-
cific, actionable guidance that iden-
tifies exactly where errors occur and

offers clear steps forward, balanc-
ing encouragement with targeted cor-
rection while addressing misconcep-
tions without giving away complete
answers.

2. If the Last Response acknowledges
problems but offer incomplete guid-
ance—they might identify errors
without explaining how to fix them,
use ambiguous language, or address
only part of the misconception, leav-
ing students without clear direction
on how to proceed.

3. If the Last Response fails to pro-
vide meaningful guidance by offering
empty praise without addressing er-
rors, changing the subject, reinforcing
incorrect understanding, giving an-
swers without explanation, or present-
ing completely irrelevant information
that leaves students with no actionable
path forward in solving their problem.

D LoRA Training Arguments

This details the full LoRA training parameters:

• max seq length: 2048

• dtype: cuda

• load in 4bit: False

• device: cuda

• device map: cuda:0

• r: 64

• target modules: {q proj, k proj,
v proj, o proj, gate proj, up proj,
down proj}

• lora alpha: 64

• lora dropout: 0

• bias: none

• use gradient checkpointing:
unsloth

• random state: 42

• use rslora: True

• loftq config: None

1171



E GRPO Training Arguments

This details the full GRPO training arguments:

• use vllm: True

• learning rate: 5× 10−6

• adam beta1: 0.9

• adam beta2: 0.99

• weight decay: 0.1

• warmup ratio: 0.1

• lr scheduler type: cosine

• optim: paged adamw 8bit

• logging steps: 10

• bf16: True

• per device train batch size: 1

• gradient accumulation steps: 1

• num generations: 6

• max prompt length: 2048

• max completion length: 256

• num train epochs: 5

• max steps: −1

• save strategy: steps

• save steps: 250

• max grad norm: 0.1
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Abstract

This paper presents our contribution to the BEA
2025 Shared Task on Pedagogical Ability As-
sessment of AI-Powered Tutors. The objective
of this shared task was to assess the quality
of conversational feedback provided by LLM-
based math tutors to students regarding four
facets: whether the tutors 1) identified mistakes,
2) identified the mistake’s location, 3) provided
guidance, and whether they 4) provided action-
able feedback. To leverage information across
all four labels, we approached the problem with
FLAN-T5 models, which we fit for this task
using a multi-step pipeline involving regular
fine-tuning as well as model merging using the
DARE-TIES algorithm. We can demonstrate
that our pipeline is beneficial to overall model
performance compared to regular fine-tuning.
With results on the test set ranging from 52.1 to
68.6 in F1 scores and 62.2% to 87.4% in accu-
racy, our best models placed 11th of 44 teams
in Track 1, 8th of 31 teams in Track 2, 11th
of 35 teams in Track 3, and 9th of 30 teams
in Track 4. Notably, the classifiers’ recall was
relatively poor for underrepresented classes, in-
dicating even greater potential for the employed
methodology.

1 Introduction

Large language models, such as the ones from the
GPT (Radford et al., 2018) or Llama (Grattafiori
et al., 2024) families, have demonstrated remark-
able capabilities in generating a wide range of tex-
tual content. This has resulted in their quick adop-
tion in the educational space, where they are used
for diverse purposes, such as assessing student-
generated content, providing feedback and guid-
ance, or generating exercise questions, among oth-
ers (Wang et al., 2024). They have also been incor-
porated into intelligent tutoring systems, combin-
ing multiple of these features and capabilities into
a single application (Wang et al., 2025). However,
a core problem with these models is that they do

not guarantee accurate, practical, or focused output
(Xu et al., 2025). As generation is handled through
a combination of autoregression and probabilistic
sampling, it cannot be guaranteed that each produc-
tion of a given model is purposeful and correct.

Importantly, this can be a severe problem in edu-
cational settings. In the European Union, the EU
AI Act (European Parliament and Council of the
European Union, 2024) classifies AI-based systems
in an educational context as high risk. What if a
tutor provides a learner with incorrect feedback
because of a chain of unfortunate random sam-
pling during the corresponding generation process?
What if specific prompt characteristics affect out-
put quality systematically, disadvantaging certain
learner groups (Hofmann et al., 2024; Salikutluk
et al., 2024)? What if a given feedback text is not
actionable, and a learner is left with more ques-
tions? One possibility to address a few, albeit not
all, such problems is to deploy models tailored ex-
plicitly for policing the output of a given model.
What is already an established practice with com-
mercial models, where, for example, the generation
of toxic content is policed, also has enormous po-
tential for the educational sector, where policing by
educational criteria is required.

The BEA 2025 Shared Task on the Pedagogical
Ability Assessment of AI-powered Tutors (Kochmar
et al., 2025) explores this idea for a narrow use
case where the output of LLM tutors when assist-
ing students with simple arithmetic problems is
assessed. In particular, the goal is to assess com-
munication records between students attempting
to solve simple math problems and LLMs that as-
sist them as tutors. The communication records
are classified according to whether the LLM tutor
identified student mistakes, recognised the mistake
location, provided guidance, and whether the pro-
vided guidance is actionable. As highlighted by
Holmes et al. (2022), ethical considerations in AI
in education, despite their crucial impact, are of-
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ten not prioritized. The present shared task, there-
fore, offers the opportunity to address a subset of
vulnerabilities that could otherwise lead to ethical
breaches.

Our submissions to this shared task are based
on variants of FLAN-T5-xl (Chung et al., 2024)
that underwent multiple steps of task-wise fine-
tuning and model merging via DARE-TIES (Yu
et al., 2024). On the shared task leaderboard, based
on macro F1, our systems rank 11th out of 44 teams
in Track 1, 8th out of 31 teams in Track 2, 11th out
of 35 teams in Track 3, and 9th out of 30 teams in
Track 4.

2 Background

2.1 Pedagogical Ability Assessment and
Pedagogical Alignment of LLMs

Using conversational agents in education is not a
novel idea; it has been explored for several years,
e.g., in the form of tutors or assistants (Wollny
et al., 2021). However, following the release of
ChatGPT in 2022 and the resulting surge in re-
search on conversational large language models,
interest in this topic has increased (e.g., Pal Chowd-
hury et al. 2024). Although large language models
have demonstrated remarkable capabilities and pos-
sess significant potential for educational use cases,
their probabilistic nature also presents challenges
that must be addressed before these models can be
safely deployed in pedagogical contexts. Older con-
versational agents are often based on rules, fuzzy
matching against a search space of expected inputs,
information retrieval, and pre-defined answers and
dialogue scripts (Wollny et al., 2021). This makes
it easy to pedagogically align them since all output
they can generate is pre-defined to a certain degree,
or can, in the case of information retrieval, at least
be curated.

For LLMs, this is not the case. While they can
answer and react more dynamically and are better
suited to providing deeply individualised feedback
since they can deal with unforeseen inputs pos-
ing problems to more traditional chatbot designs,
achieving alignment with pedagogical criteria is
harder for these models. On the one hand, this is
due to the well-known hallucination problem (Xu
et al., 2024). On the other hand, even when a model
does not hallucinate and generates correct output,
this does not necessarily imply that what is gen-
erated follows good pedagogical practice1, since

1https://benchmarks.ai-for-education.org/; ac-

these models were never trained with the same in
mind.

For this reason, there has been increased interest
in studying and improving pedagogical alignment
for large language models (LLMs). Sonkar et al.
(2024) compared supervised fine-tuning (SFT) and
learning from human preference (LHP; Christiano
et al., 2017) as training approaches for achieving
pedagogical alignment for LLMs, with the latter
approach achieving overall better downstream re-
sults. Dai et al. (2023) assessed feedback generated
by ChatGPT using the well-known Hattie frame-
work (Hattie and Timperley, 2007) and concluded
that feedback generated by the model was overall
more detailed compared to a human gold standard
with an overall high agreement in terms of what
exact elements from Hattie’s framework were rep-
resented in the feedback texts. Meyer et al. (2024)
found increased motivation and performance on
a revision task as well as more positive feelings
through LLM-generated feedback compared to no
feedback. Tack et al. (2023) hosted a shared task
that benchmarked the overall ability of LLMs to
act as pedagogically sound tutors when fine-tuned
or prompt-tuned for the same purpose. Maurya
et al. (2025) introduced a framework to rate the
qualities of LLM-based tutors using eight different
dimensions, each rated on a three-level scale. Four
of these dimensions form the basis for the dataset
used in this shared task.

2.2 Model Merging

Model merging refers to a growing set of recently
developed methods that combine multiple fine-
tuned models into a single one, sharing all their
strengths. The core idea behind model merging
lies in what is called task arithmetics (Ilharco et al.,
2023). If we interpret the set of all parameters of a
given LLM as one long vector, we can define such
vectors for both a pre-trained model (θ0) as well as
task-specific fine-tuned versions of the same (θt).
By subtracting the initial vector θ0 from the fine-
tuned vector θt, we gain the so-called task vector
θ′t representing the knowledge a model acquired
during a specific fine-tuning instance t. We can
then create merges by combining the resulting task
vectors in various ways and adding the resulting
vector to the original pre-trained model.

A naive approach to recombining task vectors
is to calculate a weighted mean of them. How-

cessed on 2025-05-21
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ever, this comes with several problems that mainly
stem from the nature of stochastic gradient descent,
which can lead to different fine-tuned models con-
verging to distinct local minima in the parameter
space. While two datasets a given model might
be fine-tuned with might be highly related, im-
plying that the respective fine-tuned models will
have learned similar underlying functions by hav-
ing adjusted the weights of a given model similarly,
it is by no means specific that these learned rep-
resentations will be localized in the identical or
corresponding parameters (e.g., polysemanticity).
Colloquially speaking, two different fine-tuning in-
stances might store different knowledge in the same
parameters, resulting in parameter interference and
decreased downstream performance.

For this reason, algorithms such as TIES (Ya-
dav et al., 2023) and DARE-TIES (Yu et al., 2024),
which improves on the previous, have been devel-
oped. While TIES aims at fitting a transformation
matrix that acts as a translation layer between two
different fine-tuning instances and strives to iden-
tify correspondences between the internal represen-
tations of both task vectors, DARE-TIES combines
this with directional averaging and heavy pruning
of the individual task vectors to minimize interfer-
ence during merging. The method can be denoted
in the following way, with t being a given task from
the set of all tasks used for a particular merge T :

θtDARE = DARE(θt, θ0), for t ∈ T (1)

θM = θ0 + λ
T∑

t

TIES(θtDARE, θ0) (2)

For the exact implementation of DARE and TIES,
see Yu et al. (2024) respectively Yadav et al. (2023).

3 Method

3.1 Dataset

The dataset used in the BEA 2025 shared task con-
tains conversation histories between an LLM, func-
tioning as a tutor, and a corresponding human stu-
dent. Each conversation history involves a simple
math problem and reflects a corresponding con-
versation between a student and an LLM. While
the training set includes 300 such conversation his-
tories, the test set contains 191. For each con-
versation, there are up to seven different final re-
sponses that were each generated by a different
model, such as GPT-4 or Mistral (Jiang et al., 2023)

in response to the provided history. Moreover, hu-
man responses from both expert and novice tutors
are provided for each conversation. For each of
the responses, four of the overall eight dimensions
from the framework introduced by Maurya et al.
(2025) are annotated using a three-level scale (no,
to some extent, yes). The dimensions are:

• Mistake Identification: Is the LLM able to
identify the learner mistake in its response?

• Mistake location: Is the location of a given
mistake provided in a response?

• Providing guidance: Does the model pro-
vide appropriate guidance on how to solve the
mistake?

• Actionability: Is what the model answers ac-
tionable?

Each of the four dimensions corresponds to an in-
dividual evaluation track of the shared task. Due to
time constraints and its conceptually distinct goal,
we disregarded the fifth track that was concerned
with identifying the generating LLM.

3.2 System Development

Our system uses FLAN-T5 (Chung et al., 2024)
models to model classification as a sequence-to-
sequence task, where the model is trained to gen-
erate an output sequence containing the correct
label for a given input, which includes the full con-
versation context, including all utterances of both
student and tutor in a given conversation. Con-
cretely, a model receives the following input for
a given datapoint x and assessment dimension d
(mistake location, mistake identification, ...), with
hx denoting the provided conversation history and
rx the provided tutor response:

I(x, d) = d : history : hx response : rx (3)

We did not make any structural modifications to
the models themselves and used the standard im-
plementations provided by the Huggingface Trans-
formers framework (Wolf et al., 2020). The proce-
dure we used to fit these models, however, distin-
guishes this work from other use cases of FLAN-T5
for classification.

It involves three steps, as depicted in Figure 1.
In a first step, the given FLAN-T5 models were fine-
tuned for three epochs, one model for each of the
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FLAN-T5-L/XL

M. Identification

M. Location

Prov. Guidance

Actionability

Merged Model

M. Identification

M. Location

Prov. Guidance

Actionability

1. Fine-tune base model
on one task at a time

3. Fine-tune merged model
on one task at a time

2. Merge resulting
models via DARE-TIES

Figure 1: This figure depicts the overall training process we used during both our pre-experiments as well as for
the final submission. First, FLAN-T5 models are fine-tuned for three epochs for one dimension at a time. The
resulting models are then merged using DARE-TIES. Lastly, the merged model serves as the basis for another round
of task-specific fine-tuning, yielding the four final models.

four assessment dimensions, resulting in four indi-
vidual models for mistake identification, mistake
location, provision of guidance, and actionability.
Fine-tuning was conducted using Adagrad as op-
timiser, a learning rate of 3e-4, and a batch size
of 4. These four models were then merged using
the DARE-TIES (Yu et al., 2024) algorithm imple-
mentation provided by Mergekit (Goddard et al.,
2024), with each model being uniformly weighted
(λ = 0.25). The resulting model was then used
as a basis for another round of fine-tuning, where
we fine-tuned the merged model for each task in-
dividually again, resulting in another quartet of
task-specific models.

The rationale behind this approach is the inher-
ent interconnectedness between the four individ-
ual dimensions. We assumed that, for example, a
mistake location can only reasonably be provided
if a mistake is identified. Moreover, appropriate
guidance can also be provided only if a mistake is
identified. Then, only if guidance was provided at
all can this guidance be actionable. Consequently,
we assume that some of the parameters within mod-
els fine-tuned for one of these specific tasks likely
encode information beneficial to the others.

DARE-TIES (Yu et al., 2024) as an algorithm en-
ables us to exploit this property by merging multi-
ple fine-tuned models into a single one that inherits
the capabilities of all the used base models, with
the possibility of even improving performance in
some cases where the individual tasks are comple-
mentary to each other. This is achieved through the
alignment and directional merging of the specific

Variant MI ML PG AC
Pre-merge 89.20 69.95 71.97 81.34
Merged 84.46 77.17 77.42 73.23
Post-merge 88.48 82.15 82.85 88.49

Table 1: Macro F1 scores for the three model stages
in our pre-experiments. MI = Mistake Identification.
ML = Mistake Location. PG = Providing Guidance.
AC = Actionability.

model parameters.
Initially, we had assumed that the model result-

ing from the DARE-TIES merge would already
be slightly stronger for each assessment dimen-
sion than the dimension-specific models. How-
ever, in our pre-experiments, we could not com-
pletely confirm this hypothesis. Using a 5x5 cross-
validation setup with the complete training set, we
fine-tuned and then merged FLAN-T5-base (Chung
et al., 2024) models, with the result that the merged
models showed a weaker performance for mistake
identification and actionability than the dimension-
specific models from which they were created (see
Table 1), with an improved performance for mis-
take location and providing guidance.

For this reason, as a next step, we explored
whether the resulting merged model would at least
function as a reasonable basis for fine-tuning a
next generation of dimension-specific models. As
Table 1 shows, this was indeed the case, and the
resulting dimension-specific models showed an im-
proved performance over the merged variants as
well as the dimension-specific models fine-tuned
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Metric MI ML PG AC
Macro F1 68.58 54.90 52.12 66.71

Rank 11/44 8/31 11/35 9/30
Accuracy 87.40 73.24 66.52 73.24

Rank 5/44 6/31 5/35 4/30

Table 2: Results from the official shared task
leaderboard. Rank indicates the rank our submis-
sions achieved for the specific dimension and metric.
MI = Mistake Identification. ML = Mistake Location.
PG = Providing Guidance. AC = Actionability.

from FLAN-T5-base, except for mistake location.
For this reason, we went with this procedure for
our final submissions.

With the post-merge fine-tuning stage adding an
epoch of training, performance gains may also have
resulted from improved task-specific fitting rather
than the merging process itself. While tentative ex-
periments did not provide evidence for this, we did
not rule this out through a systematic experiment.

4 Shared Task Submission and
Evaluation

Following the intuition behind the scaling law that,
on average, larger models show an improved down-
stream performance compared to smaller mod-
els when trained on the same data (Kaplan et al.,
2020), we replicated our setup with FLAN-T5-xl
(Chung et al., 2024) for the shared task submission.
Again, we first fine-tuned dimension-specific mod-
els for all four dimensions for three epochs each,
then merged them using DARE-TIES (Yu et al.,
2024), and then used the resulting model as a basis
for fine-tuning for another epoch to acquire again
dimension-specific models (as depicted in Figure
1. Since, in our pre-experiments, the post-merge
models for mistake identification were slightly out-
performed by the pre-merge ones, we submitted
results from both for the final task (since up to five
submissions were allowed per dimension). Here,
contrary to our pre-experiments, the post-merged
version came out on top.

In the context of the shared task, the resulting
models could all achieve upper mid-table results,
going by Macro F1. For Mistake Identification, we
placed 11th of 44 teams. For Mistake Location, we
placed 8th of 31 teams. For Providing Guidance,
we placed 11th of 35 teams. For Actionability,
we placed 9th of 30 teams. For Accuracy, which
served as a secondary evaluation metric, our mod-
els were among the best submissions in the shared

task. Here, we placed 5th, 6th, 5th and 4th for the
respective dimensions.

These results suggest that our approach was over-
all highly successful in modelling the different
dimensions, but, in particular, fell short for the
No category, which was comparably underrepre-
sented in the data. We assume that techniques such
as paraphrased oversampling (Patil et al., 2022)
would likely have helped combat that overall be-
haviour, but were not considered by us since we
implemented our solution within one week under
heavy time pressure. Table 2 shows the correspond-
ing results. Overall, the results suggest that our
approach is reasonable and the use of DARE-TIES
merging allowed us to achieve upper mid-table re-
sults, although our placements suggest, that there
are certainly better solutions for the problem than
what we propose in this paper.

5 Conclusion

In this paper, we presented our submission to the
BEA 2025 Shared Task on the Pedagogical Ability
Assessment of AI-powered Tutors. Our submis-
sion combines fine-tuning and DARE-TIES merg-
ing FLAN-T5-xl models. In terms of macro F1,
the primary evaluation metric used for the shared
task, our models could only achieve upper mid
table results, which is likely due to the underrep-
resentation of No and to some extent cases within
the training set. In terms of overall accuracy, our
submissions achieve more competitive results. Our
general results show that combining DARE-TIES
merging with fine-tuning can have beneficial results
on downstream performance.

Limitations

Focus on FLAN-T5: In this paper, we focused
solely on FLAN-T5 models while not considering
other models such as Mistral-7b (Jiang et al., 2023).
The reason behind this was mainly that our contri-
bution was created under heavy time pressure, so
we wanted to focus on making our approach work
for one model family as best as we could, instead
of comparing a larger range of models.

No data augmentation used: Since the pro-
vided dataset is highly imbalanced, with the no and
to some extent cases being underrepresented for all
four dimensions, we assume that data augmenta-
tion could have likely benefited our systems, e.g.,
in the form of techniques such as paraphrased over-
sampling (Patil et al., 2022). However, due to the
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heavy time pressure, we decided against exploring
data augmentation.

No hyperparameter search: We did not con-
duct a hyperparameter search but instead stuck to
the standard training hyperparameters used to pre-
train the FLAN-T5 models, except for the batch
size, which we reduced from the original 64 to 4
due to limited computational resources. Similarly,
it is possible that performance gains in the task-
specific post-merge fine-tuning stem at least partly
from an additional epoch of training.
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Frank Jäkel. 2024. Involving affected communities
and their knowledge for bias evaluation in large lan-
guage models. In 1st HEAL Workshop at CHI Con-
ference on Human Factors in Computing Systems,
Honolulu, Hawaii, USA.

Shashank Sonkar, Kangqi Ni, Sapana Chaudhary, and
Richard Baraniuk. 2024. Pedagogical alignment of
large language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2024,
pages 13641–13650, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Anaïs Tack, Ekaterina Kochmar, Zheng Yuan, Serge
Bibauw, and Chris Piech. 2023. The BEA 2023
shared task on generating AI teacher responses in
educational dialogues. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2023), pages 785–795,
Toronto, Canada. Association for Computational Lin-
guistics.

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang,
Joleen Liang, Jiliang Tang, Philip S Yu, and Qing-
song Wen. 2024. Large language models for ed-
ucation: A survey and outlook. arXiv preprint
arXiv:2403.18105.

Tianfu Wang, Yi Zhan, Jianxun Lian, Zhengyu Hu,
Nicholas Jing Yuan, Qi Zhang, Xing Xie, and Hui
Xiong. 2025. Llm-powered multi-agent framework
for goal-oriented learning in intelligent tutoring sys-
tem. In Companion Proceedings of the ACM on Web
Conference 2025, WWW ’25, page 510–519, New
York, NY, USA. Association for Computing Machin-
ery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven

Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Sebastian Wollny, Jan Schneider, Daniele Di Mitri,
Joshua Weidlich, Marc Rittberger, and Hendrik
Drachsler. 2021. Are we there yet?-a systematic
literature review on chatbots in education. Frontiers
in artificial intelligence, 4:654924.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2025.
Hallucination is inevitable: An innate limitation of
large language models. Preprint, arXiv:2401.11817.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems,
36:7093–7115.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: absorb-
ing abilities from homologous models as a free lunch.
In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org.

1179

https://doi.org/10.1016/j.caeai.2023.100199
https://doi.org/10.1016/j.caeai.2023.100199
https://doi.org/10.1145/3657604.3662041
https://doi.org/10.1145/3657604.3662041
https://doi.org/10.1145/3657604.3662041
https://doi.org/10.18653/v1/2024.findings-emnlp.797
https://doi.org/10.18653/v1/2024.findings-emnlp.797
https://doi.org/10.18653/v1/2023.bea-1.64
https://doi.org/10.18653/v1/2023.bea-1.64
https://doi.org/10.18653/v1/2023.bea-1.64
https://doi.org/10.1145/3701716.3715244
https://doi.org/10.1145/3701716.3715244
https://doi.org/10.1145/3701716.3715244
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817


Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 1180–1186
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

LexiLogic at BEA 2025 Shared Task: Fine-tuning Transformer Language
Models for the Pedagogical Skill Evaluation of LLM-based tutors

Souvik Bhattacharyya, Billodal Roy, Niranjan Kumar M, Pranav Gupta
Lowe’s

Correspondence: {souvik.bhattacharyya, billodal.roy, niranjan.k.m, pranav.gupta}@lowes.com

Abstract
While large language models show promise as
AI tutors, evaluating their pedagogical capabil-
ities remains challenging. In this paper, we,
team LexiLogic presents our participation in
the BEA 2025 shared task on evaluating AI
tutors across five dimensions: Mistake Identifi-
cation, Mistake Location, Providing Guidance,
Actionability, and Tutor Identification. We ap-
proach all tracks as classification tasks using
fine-tuned transformer models on a dataset of
300 educational dialogues between a student
and a tutor in the mathematical domain. Our re-
sults show varying performance across tracks,
with macro average F1 scores ranging from
0.47 to 0.82, achieving rankings between 4th
and 31st place. Such models have the poten-
tial to be used in developing automated scoring
metrics for assessing the pedagogical skills of
AI math tutors.

1 Introduction

While significant progress has been made in mak-
ing today’s large language models helpful, aligned,
and responsible (Tan et al., 2023; Ji et al., 2023;
Feng et al., 2024), their full potential in academic
settings remains underutilized. Despite growing in-
terest in using LLM-based AI tutors for academic
support, traditional evaluation benchmarks tend to
focus more on knowledge, factual accuracy, and
reasoning (DeepSeek-AI et al., 2025; Abdin et al.,
2025) rather than on the ability of these dialogue
systems to function effectively in the role of a tu-
tor. In educational contexts, there is a pressing
need for systems and evaluation metrics specifically
designed to assess complex pedagogical qualities.
Therefore, it is essential to not only develop intelli-
gent tutoring systems but also to evaluate them in
terms of their ability to provide sufficient, helpful,
and factually accurate guidance.

The shared task organized as part of the BEA
workshop (Kochmar et al., 2025) focuses on edu-
cational dialogues between a student and a tutor in

the mathematical domain, specifically addressing
student mistakes or confusion. The goal of the AI
tutor is to help remediate these issues. The tutor
responses, generated by the task organizers, come
from a range of state-of-the-art LLMs with vary-
ing sizes and capabilities, including GPT-4 (Ope-
nAI et al., 2023), Gemini (Reid et al., 2024), Son-
net (Anthropic, 2025), Mistral (Jiang et al., 2023),
Llama 3.1 (Grattafiori et al., 2024) and Phi-3 (Ab-
din et al., 2024a). In addition to the generated re-
sponses, the development set includes annotations
evaluating their quality across several pedagogi-
cally motivated dimensions: Mistake Identification,
Mistake Location, Providing Guidance, Actionabil-
ity, and Tutor Identification.

Across all tracks of the shared task, we ap-
proached the problems as classification tasks and
followed a fine-tuning approach using several
transformer-based encoder and decoder models. Ta-
ble 1 summarizes the performance of our submitted
models compared to the top-performing entries in
terms of macro average F1 score in each task.1

Track Our Score Best Score
Track 1 0.65 0.72
Track 2 0.48 0.60
Track 3 0.47 0.58
Track 4 0.69 0.71
Track 5 0.82 0.95

Table 1: Performance of our models compared to the
best scores in each track.

2 Related Work

With the widespread use of large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023;
Team et al., 2025) as conversational systems in ed-
ucational contexts, several studies have evaluated

1The code for this work is available at https://github.
com/prannerta100/acl-bea2025-workshop-st
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their pedagogical capabilities. There are numer-
ous LLM evaluation metrics such as BLEU (Pap-
ineni et al., 2002), BERTScore (Zhang et al., 2020),
ROUGE (Lin, 2004), DialogRPT (Gao et al., 2020),
etc., which are not necessarily designed to assess
an LLM’s educational or pedagogy-related capa-
bilities (Jurenka et al., 2024) and shown to have
relatively low correlation with human judgments
(Liu et al., 2023). This highlights the need for al-
ternative methods to evaluate LLM performance
in educational settings. One such approach is to
use human annotators to rate LLM responses based
on various criteria (Collins et al., 2023; Shen and
Wu, 2023; Lee et al., 2024). While human evalu-
ators can consider context, tone, and pedagogical
effectiveness, offering qualitative insights that go
beyond quantitative metrics, they are also prone to
bias, and the process tends to be time-consuming
and relatively expensive.

At the other end of the spectrum, there is grow-
ing interest in automated evaluation systems and
LLM-as-a-judge approaches (Jurenka et al., 2024).
Chen et al. (2023)’s experimental results show that
ChatGPT is capable of evaluating text quality effec-
tively from various perspectives without reference,
and it demonstrates superior performance com-
pared to most existing automatic metrics. Macina
et al. (2025) developed MATHTUTORBENCH to score
the pedagogical quality of open-ended teacher re-
sponses and also trained several LLM-based re-
ward models, showing that these models can dis-
tinguish expert from novice teacher responses with
high accuracy. TUTOREVAL, a diverse question-
answering benchmark, was released by Chevalier
et al. (2024), who evaluated the capabilities of sev-
eral open-weight and proprietary LLMs using GPT-
4 as the evaluator. Maurya et al. (2025a) intro-
duced MRBench, which includes a large set of stu-
dent–tutor conversations from seven state-of-the-
art LLM-based and human tutors, and evaluated
them across various dimensions using a different
set of LLMs. Jurenka et al. (2024) also introduced
LearnLM-Tutor, a fine-tuned model that was con-
sistently preferred over base models for various
academic tasks as judged by LLM-based critics.

3 Task Description and Methodology

The dataset provided for the shared task (Maurya
et al., 2025b) consisted of conversation history
between a tutor and a student along with a final
response from the tutor based on which the vari-

ous pedagogical capability label is to be predicted.
There were a total of 300 distinct conversations out
of which we chose 50 to include in our test set,
which resulted in 2067 training data points and 409
test data points. The same train-test split is used in
all our experiments.

3.1 Track 1 - Mistake Identification
Track 1 of the shared task aims to develop sys-
tems that can identify whether a tutor’s response
acknowledges mistakes in a student’s answer. The
distribution of three categories in this track is de-
tailed in Table 2. Each data point consists of a
conversation history between a tutor and a student,
along with a final response from the tutor. Partic-
ipants are required to assess whether the tutor’s
reply explicitly recognizes the student’s mistake
within the conversation.

Tutor Yes No To some extent
GPT4 234 15 1
Gemini 215 21 14
Sonnet 212 20 18
Phi-3 68 176 6
Mistral 223 10 17
Llama318B 202 31 17
Llama31405B 239 7 4
Expert 188 15 47
Novice 28 11 28
Total 1609 306 152

Table 2: Distribution of instances across categories for
each tutor in the dataset in Track 1

For this task, our experiments involved fine-
tuning various encoder and decoder models. The
input sequence was formed by concatenating the
conversation history with the final response, and
we replaced the model’s un-embedding layer with
a classification head for the three target classes.
The models we used included FLAN-T5 (Chung
et al., 2022), ModernBert (Warner et al., 2024),
Llama 3.2 (Grattafiori et al., 2024), Phi-4 (Abdin
et al., 2024b), and Qwen-2.5 (Qwen et al., 2025).
All models were trained for 10–15 epochs with
an initial learning rate between 5e-5 and 1e-4, us-
ing an exponential learning rate scheduler, a batch
size of 8–10, and a gradient accumulation step of
2. On the test set, FLAN-T5-large performed the
best, achieving a macro average F1 score of 0.65
and placing us 22nd among 44 submissions on the
official leaderboard. The training and test set per-
formance of all models is presented in Table 3 (with
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the train set F1 scores corresponding to the epoch
with the highest test set performance).

Model Train F1 Test F1
FLAN-T5-large 0.94 0.65
ModernBERT-large 0.98 0.61
Llama-3.2-3B 0.99 0.62
Phi-4-mini-instruct 1.0 0.63
Qwen2.5-7B-Instruct 0.73 0.55

Table 3: Strict macro average F1 scores of different
models on training and test datasets of Track 1

3.2 Track 2 - Mistake Location

In subtask 2, the objective is to develop a system
capable of identifying whether a tutor’s response ef-
fectively locates the mistake in the student’s answer
and provides a clear explanation of the error. This
includes assessing whether the tutors’ responses ac-
curately point to a genuine mistake and its location
in the students’ responses. The distribution of each
labels across different categories for each tutor in
the training dataset is shown in Table 4.

Tutor Yes No To some extent
GPT4 242 37 13
Gemini 176 93 31
Sonnet 207 60 33
Phi-3 73 223 4
Mistral 216 52 35
Llama318B 161 108 31
Llama31405B 252 33 15
Expert 197 58 45
Novice 19 60 2
Total 1543 724 209

Table 4: Distribution of instances across categories for
each tutor in the dataset for Track 2

The final response is concatenated with the con-
versation history and fed as input into our model.
Our experimental setup predominantly focused on
transformer-based encoder and decoder models. In
both encoder-decoder and large language model
(LLM) configurations, we modify the original mod-
els by removing the final un-embedding layer and
replacing it with a classification head. Among
the encoder-based models, we evaluated Modern-
Bert (Warner et al., 2024), and MathBERT (Peng
et al., 2021). For large language models, we con-
ducted experiments with Llama 3.2 (Grattafiori
et al., 2024), Phi-4 (Abdin et al., 2024b), and Qwen-

2.5 (Qwen et al., 2025).
We fine-tuned all models for a maximum of 10

epochs, with an initial learning rate in the range of
2e-2 to 5e-5, an exponential learning rate scheduler
with gamma set between 0.9 and 0.9375 with a
batch size between 4 and 12, with gradient accumu-
lation steps set to 2. During training we minimized
the categorical cross-entropy loss. In Table 5, we
report the strict Macro average F1 scores of various
models. The reported training set F1 scores corre-
spond to the epoch with the highest F1 score on the
test set. On the held-out test set, our submission
based on Phi-4-mini-instruct achieved an F1
score of 0.48 on the unseen test dataset placing us
at the 23rd position out of total 31 submissions.

Model Train F1 Test F1
MathBERT 0.67 0.5
ModernBERT-large 0.72 0.52
Llama-3.2-3B 0.73 0.55
Llama-3-8B 0.71 0.53
Phi-4-mini-instruct 0.78 0.68
Qwen2.5-7B-Instruct 0.67 0.55

Table 5: Strict Macro average F1 scores of different
models on training and test datasets

3.3 Track 3 - Providing Guidance
Track 3 focuses on evaluating whether a tutor’s
response provides effective guidance to help stu-
dents understand and correct their mistakes. This
task goes beyond simply identifying and locating
errors to assess the pedagogical quality of the tu-
toring response. The system must determine if the
tutor offers constructive feedback, explanations, or
suggestions that would help the student learn from
their mistakes. Similar to the previous tracks, the
task includes three categories: ’Yes’, ’No’, and ’To
some extent’, with their distribution across differ-
ent tutors shown in Table 6.

Our approach for this track followed a similar
methodology to the previous tasks, where we con-
catenated the conversation history with the final
tutor response and fed it as input to our classifi-
cation models. The experimental setup involved
fine-tuning various transformer-based models to
classify the quality of guidance provided in tutor
responses.

We evaluated several model architectures in-
cluding both encoder-only and decoder-only mod-
els. Among the encoder-based models, we experi-
mented with ModernBERT (Warner et al., 2024),
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Tutor Yes No To some extent
GPT4 228 41 31
Gemini 168 47 85
Sonnet 184 52 64
Phi-3 51 189 60
Mistral 189 47 64
Llama318B 134 65 101
Llama31405B 238 16 46
Expert 205 47 48
Novice 10 62 4
Total 1407 566 503

Table 6: Distribution of instances across categories for
each tutor in the dataset for Track 3

while for large language models, Phi-4 (Abdin
et al., 2024b), and FLAN-T5 (Chung et al., 2022).
All models were modified by replacing the final
un-embedding layer with a three-way classification
head corresponding to our target categories. The
train and test F1 values are in Table 7.

The training configuration involved fine-tuning
for 8-12 epochs with learning rates ranging from
1e-5 to 8e-5, using an exponential learning rate
scheduler with gamma values between 0.85 and
0.95. We employed batch sizes of 6-14 with gradi-
ent accumulation steps of 2, and optimized using
categorical cross-entropy loss. The performance of
different models on both training and test sets is
presented in Table 7, where the training F1 scores
correspond to the epoch achieving the highest test
set performance.

Model Train F1 Test F1
FLAN-T5-large 0.92 0.36
ModernBERT-large 0.89 0.39
Phi-4-mini-instruct 0.97 0.45

Table 7: Strict Macro average F1 scores of different
models on training and test datasets for Track 3

Our best performing model,
Phi-4-mini-instruct, achieved a macro
average F1 score of 0.47 on the test set, securing
the 31st position out of 35 total submissions on
the official leaderboard. The relatively lower
performance across all models suggests that
evaluating the quality of pedagogical guidance is
inherently more challenging than simple mistake
identification, as it requires understanding the
nuanced aspects of effective tutoring strategies and
educational support.

3.4 Track 4 - Actionability

In Track 4, the goal is to develop system to identify
whether the tutor’s response is clear in regards to
what the student should do next, i.e., whether or
not the tutor response was vague, unclear or a con-
versation stopper. Table 8 shows the distribution of
instances across different categories for each tutor
in the training dataset provided.

Tutor Yes No To some extent
GPT4 116 125 9
Gemini 142 52 56
Sonnet 141 74 35
Phi-3 27 215 8
Mistral 168 43 39
Llama318B 106 93 51
Llama31405B 182 40 28
Expert 200 18 32
Novice 3 52 12
Total 1085 673 309

Table 8: Distribution of instances across categories for
each tutor in the dataset in Track 4

We use as an input the sequence of tokens after
the final response from the tutor is appended with
the original conversation. We experimented with
multiple transformer based encoder and decoder
models in this task as well. In all the experiments,
we remove the final un-embedding layer from the
original models and replace it with a classifica-
tion head producing three dimensional logits corre-
sponding to the three available classes in this task.
Among the encoder models we have experimented
with FLAN-T5 (Chung et al., 2022), ModernBert
(Warner et al., 2024) and MathBERT (Peng et al.,
2021) and among the LLMs we tried Llama 3.2
(Grattafiori et al., 2024), Phi-4 (Abdin et al., 2024b)
and Qwen-2.5 (Qwen et al., 2025).

We fine-tune all the models for 15–20 epochs,
using an initial learning rate in the range of 5e-5 to
1e-4, with an exponential learning rate scheduler
(gamma set to 0.9). We use a batch size between 8
and 12, gradient accumulation steps of 2, and mini-
mize the categorical cross-entropy loss. In Table 9,
we report the Strict macro average F1 scores of var-
ious models. Note that the reported training set F1
scores correspond to the epoch with the highest test
set F1 score. In the held-out test set, our submis-
sion based on Phi-4-mini-instruct scored an F1
score of 0.69 securing us the 4-th place among 29
submissions in the official leaderboard.
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Model Train F1 Test F1
FLAN-T5-base 0.76 0.59
MathBERT 0.98 0.58
ModernBERT-large 1.0 0.67
Llama-3.2-3B 0.97 0.61
Llama-3-8B 0.74 0.55
Phi-4-mini-instruct 1.0 0.71
Qwen2.5-7B-Instruct 1.0 0.65

Table 9: Strict macro average F1 scores of different
models on training and test datasets of Track 4

3.5 Track 5 - Tutor Identification

The goal of track 5 was to predict the identity of
the tutor for a given response, from a set of 9 identi-
ties, such as Sonnet, Llama3.1 8B, Llama 3.1 405B,
GPT4 to name a few. We mainly fine-tuned vari-
ous transformer models for this task with a similar
setup to the previous tasks, and have reported our
scores in Table 10. We observed that for many
models the per-class F1 score for Novice, Llama
3.1 405B and 8B was lower than other classes. For
the Novice class, a possible cause could be the lack
of enough Novice examples in the dataset. We
did not investigate the cause for the low perfor-
mance for Llama 3.1 8B and 405B in detail, but
when we looked at the test set confusion matrix for
one of the models, we found that there was signifi-
cance confusion between Llama 3.1 8B and 405B.
It would be interesting to investigate how much of
these similarities are task-specific and how much
are specific to the base model. A recent preprint
(Smith et al., 2025) suggests similar patterns in
cosine similarities between the outputs of various
LLMs. Note that these metrics are reported on our
hold out sets and not the leaderboard test sets. Our
best leaderboard test set performance was 0.82, and
our final leaderboard position was 16th according
to the macro average F1 metric.

4 Conclusion

In this work, we presented our experiments using a
fine-tuning-based approach with several encoder-
based and large language models to evaluate the
pedagogical capabilities of AI tutors. We observed
that different LLMs yield varying performance lev-
els, highlighting model-specific behavior. Some
class labels in the training data had very few ex-
amples, which may have impacted performance.
Future work could explore data augmentation and
sampling techniques to address this imbalance and

Model Train F1 Test F1
FLAN-T5-base 0.76 0.59
ModernBERT-large 0.99 0.84
Phi-4-mini-instruct 1.0 0.78
Llama-3.2-3B 1.0 0.85
Longformer - 0.83*
BigBird Roberta Large - 0.79*
MathBERT - 0.79*

Table 10: Macro average F1 scores of different models
on training and test datasets of Track 5
∗: test set drawn from the same distribution but might
differ from the other models

potentially improve results. It would also be worth-
while to investigate prompt-based classification
methods for evaluating tutor responses in zero-shot
or few-shot settings, and explore the use of the
models reported in this paper as reward models
for post-training or performing test-time scaling
on LLMs for improving their pedagogical skills.
Additionally, future research could examine the po-
tential of using the same set of AI tutors to reflect
on and revise their responses to better align with the
goals of effective and helpful AI tutoring systems.

5 Limitations

Automated scoring metrics for evaluating the ped-
agogy of AI math tutors and AI tutors in general
come with their own limitations. Bias introduced
by the finetuned model and the underlying pre-
trained model can lead certain behaviors to be rein-
forced and certain demographics to be highlighted
over other demographics. Cultural considerations
also play an important part in pedagogy. A lack
of rigorous theoretical guarantees on the mathe-
matical and conceptual accuracy of LLM models
can propagate incorrect concepts among students
and lead to unwanted friction with instructors. Ac-
cessibility of AI tutoring tools could be a barrier
for some students with limited resources and in-
ternet access, given the resource-expensive nature
of LLMs. Moreover, AI tutoring tools typically
require students to access internet on their phone or
computer, enhancing their risk of being exposed to
other websites and social media, causing the risks
to outweigh the benefits.
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Abstract

As AI’s presence in educational environments
grows, it becomes critical to evaluate how its
feedback may impact students’ learning pro-
cesses. Pedagogical theory, with decades of ef-
fort into understanding how human instructors
give good-quality feedback to students, may
provide a rich source of insight into feedback
automation. In this paper, we propose a novel
architecture based on pedagogical-theory fea-
ture extraction from the conversation history
and tutor response to predict pedagogical guid-
ance on MRBench. Such features are based on
Brookhart’s canonical work in pedagogical the-
ory, and extracted by prompting the language
model LearnLM. The features are then used to
train a random-forest classifier to predict the
Track 3: Pedagogical Guidance of the BEA
2025 shared task. Our approach ranked 8th in
the dimension’s leaderboard with a test Macro
F1-score of ∼ 0.54. Our work provides some
evidence in support of using pedagogical the-
ory qualitative factors treated separately to pro-
vide clearer guidelines on how to improve low-
scoring intelligent tutoring systems. Finally,
we observed several inconsistencies between
pedagogical theory and MRBench’s inherent
relaxation of the tutoring problem implied in
evaluating on a single-conversation basis, call-
ing for the development of more elaborate mea-
sures which consider student profiles to serve
as true heuristics of AI tutors’ usefulness.

1 Introduction

As part of the AI revolution, AI tutors will gain
a growing role in education. Their use, however,
should be preceded by rigorous evaluation, as omit-
ting this step would be as unthinkable as hiring
untrained teachers. To contribute to the develop-
ment of evaluation standards for AI tutors, this pa-
per describes an approach to automatically classify
certain aspects of pedagogical ability on the Mis-
take Remediation Benchmark (MRBench) dataset
of grade-school math tutoring chats (Maurya et al.,

2025a). The dataset contains annotations for the
dimensions of identifying that the student has made
a mistake, correctly individualizing what that mis-
take was, providing the student with relevant and
helpful guidance, and cueing the student on how to
follow the conversation. Of these, our approach at-
tempts to classify whether feedback did, did not, or
did to some extent, provide pedagogical guidance
(PG) on the, Track 3: Pedagogical Guidance of the
BEA 2025 shared task (Kochmar et al., 2025).

PG as an object of study is richly explored in
the theory of pedagogy. For instance, the area
of math didactics has studied phenomena such as
students’ capacity to grasp concepts progressing
from the concrete, to the pictorial, to the abstract
(Bruner, 1966); how to develop an academic math
discourse to support understanding (Chapin et al.,
2009); and best practices for orchestrating produc-
tive student discussions (Smith and Stein, 2011).
Also, assessment theory compiles frameworks on
how to construct feedback as a powerful tool to
improve student understanding and performance
(Brookhart, 2008; Tunstall and Gipps, 1996). Our
approach attempts to transfer knowledge from ped-
agogical theory by proposing a set of engineered
features for PG classification strongly based on
Brookhart’s work. With these features in hand, we
propose a two-phase classification process. In the
first phase, we use an LLM to query the text, which
includes the conversation history between the stu-
dent and the tutor, for the presence, or lack thereof,
of our features in the tutor’s feedback. In the sec-
ond phase, we use a random-forest classifier which
is given a binary vector representing the output of
the previous phase and attempts to predict the PG
dimension.

2 Related Work

MRBench’s dimensions on which to assess the ped-
agogical ability of AI tutors result from the distil-
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lation of a body of previous work in NLP address-
ing ITS evaluation (Tack and Piech, 2022; Macina
et al., 2023; Daheim et al., 2024; Wang et al., 2024).
Tack and Piech (2022), in their “AI Teacher Test”
evaluated the dialogic pedagogical ability of certain
LLMs in a mathematics-domain educational dia-
logue from the dimensions of whether they speak
like a teacher, understand a student, and help a stu-
dent. Specifically in math mistake remediation in
the tutoring context, Macina et al. (2023) dimen-
sions included coherence, correctness, and equi-
table tutoring. In the same context, Daheim et al.
(2024) create the dimensions of targetedness, cor-
rectness, and actionability. Finally, and also within
said context, Wang et al. (2024) put forth useful-
ness, care, and humanness. Maurya et al. (2025b)
compile MRBench to address this need for a unified
evaluation framework, and the present Shared Task
is proposed as a challenge because all the afore-
mentioned work is not, as of yet, fully independent
from manual evaluation.

3 Preliminaries

To determine qualities that make feedback effec-
tive, the pedagogical perspective generally fol-
lows Brookhart’s (2008) four-dimension frame-
work: content, specificity, timing and audience.
Rather than assigning intrinsic value to hints, ex-
planations or other information the tutor might pro-
vide, these dimensions promote that feedback’s
potential depends on every point that it communi-
cates complying with certain characteristics. For
example, when amending any student misconcep-
tions (content-focus), to unambiguously identify
the misconception (specificity-clarity), feedback
should explicitly distinguish it from what the stu-
dent has understood correctly (content-valence).
The same would be true for the offering of procedu-
ral guidance (content-focus): a hint about the right
direction may confuse the student into undoing cor-
rect steps taken. Furthermore, the clarity of all
the aforementioned depends on the student’s level
of prior knowledge (audience-individual), which
in this case we may approximate as the school
year. This framework thus offers a theoretically
grounded approach to tackle the interdependence
of feedback dimensions in function of the ultimate
goal: helping the student.

4 Methodology

To distill a set of features from pedagogical the-
ory, we first asked the virtual assistant Claude (An-
thropic, 2024) to create a feedback checklist from
the key takeaways of seminal books on assessment
and math didactics (Chapin et al., 2009; Smith and
Stein, 2011; Brookhart, 2008; Tunstall and Gipps,
1996). Second, we merged redundant points to-
gether and discarded factors that were outside the
scope of MRBench: anything that required know-
ing the student personally, communicating non-
verbally and/or interacting in a classroom environ-
ment. The few remaining factors came chiefly from
Brookhart (2008). Third, we stress-tested these for
what we anticipated as possible AI tutor failures
and edited accordingly by hand. For example, we
added “accurately and specifically” at the begin-
ning of Claude’s sentence “identify what was done
correctly before addressing the error”. Then, each
quality was separated into its own feature (identi-
fies / identifies accurately / identifies specifically),
so that binary tags on these features would be as
informative as possible. Fourth, we phrased each
feature as a yes-or-no question to prompt LearnLM
(Team et al., 2024). Finally, we performed prompt
engineering on the questions using a subset of 20
random tutor responses. The full resulting list of
questions is available in Appendix A.

5 Architecture

Our proposed architecture, shown in Figure 1, is
composed of two models working sequentially: a
feature extractor, and a classifier.

First, features are extracted by prompting
LearnLM (Team et al., 2024), a domain-specific
Gemini fine-tuning, currently in experimental
phase. We chose this model because of its expert
training on tutoring data and pedagogical theory
sources. For each feature, the conversation his-
tory is concatenated to the tutor response and a
yes-or-no question representing the feature (see
Appendix B), to which the model is prompted to
respond with a binary 0/1 tag. Since preliminary
tests yielded no relevant difference resulting from
temperature variation, the model’s hyperparameters
were left at their default values. The full feature
extraction prompt is in Appendix B.

To accommodate the low dimensionality of the
data, decision tree (DT) and random forest (RF)
models were included in the trials for the final
classifier. These were chosen for their structural
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Figure 1: Proposed architecture to classify using expert pedagogical features.

mimicking of the decision process that pedagogy
professionals described while annotating sample
data.

6 Results

The variety of classifiers trained resulted from a
different selection of extracted features as input,
hyperparameter combinations, and the choice of
DT versus RF model. A total 17320 DTs and 1400
RFs were trialed, each with 5-fold cross-validation,
and the best candidates were then iterated using
SMOTE oversampling. The highest performing
model was an RF excluding some features from
the input data, the hyperparameters of which we in-
clude in Appendix C, with training metrics detailed
in Table 1.

Phase Exact
macro F1

Exact
accuracy

Lenient
macro F1

Lenient
accuracy

Train 0.5662 0.6373 0.7529 0.8214

Test 0.5369 0.6244 0.7379 0.7822

Table 1: Performance of selected classifier model.

The final architecture using this model ranked
8th in the leaderboard for the pedagogical guidance
dimension, with test metrics detailed in Table 1.

7 Conclusions

We have presented an approach to PG classification
that combines LLMs and traditional AI techniques
with a theoretical framework on PG. The features
we propose offer a perspective that considers the
interdependence of the original MRBench dimen-
sions, but puts them all in service of how well the
tutor guides the student.

Our work shows the potential of using PG-
theory-based features, which is a fine-grained way
of assessing elements of good-quality feedback
while exploiting an LLM. Future work should ex-
plore other ways in which identification of these

features may be exploited to iterate the construction
of good-quality feedback via LLMs. In addition,
we think that PG theory invites developers of AI
tutors to take two other complementary routes for
future work. The first is to design tutors aware of
learning objectives, since this is fundamental to
understand how to guide the student. The second is
that AI tutors should build and exploit a student pro-
file over time, considering the student’s previous
knowledge, degree of metacognition, and learning
strategies that have previously worked or failed.
Tackling these two action points would expand the
frontier of AI tutor evaluation beyond the biggest
limitations of this work from the standpoint of PG
theory.

Limitations

Our architecture first assumes the limitations of our
theoretical alignment: following Brookhart (2008)
may better describe certain Western learning con-
texts than other sociocultural realities. Then, the
architecture’s reliance on LearnLM means it inher-
its any of the model’s possible inaccuracies and
biases, and that implementation depends on pro-
prietary API use. Finally, the classifier model’s
performance should be improved with further trials
using cleaned and augmented data.
Regarding the last point, the MRBench dataset car-
ries limitations that transfer to our architecture. In
terms of quality, we found conversation histories
that we considered to be noisy: some lacking the
original word problem being solved, with alterna-
tive tutor responses embedded within, or exchang-
ing tutor/student speaker tags. We also did not find
tagging criteria to be self-evident: the question of
what constituted relevant “explanation, elaboration,
hint, examples, and so on” seemed both open and
necessitating at least some degree of expert peda-
gogical knowledge. Finally, the dataset is limited
to the English language, mathematics school sub-
ject, arithmetic content and grade-school instruc-
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tion level. Asymmetric advances in low-resource
languages and higher influence of culture in other
subjects of instruction limit the applicability of the
benchmark for the range of intelligent tutoring sys-
tems currently on the market.
Finally, the strongest limitation surrounding this
shared task was scarcity of context. In the pedagog-
ical theory that we reviewed and that we believe is
key to incorporate to these systems, the majority
of factors contributing to PG are considered to be
based on the student as a subject of learning. As
such, factors that are regarded as key to PG are the
student’s individual previous knowledge, metacog-
nitive ability, optimal learning strategies, personal
relationship to the contents being taught, role in
the classroom social dynamics, and sociocultural
context (Brookhart, 2008; Smith and Stein, 2011;
Chapin et al., 2009). Though we expanded as much
as possible on the factors inferable from a single
conversation via text, existing PG literature would
suggest that an AI tutor’s quality of PG can only be
realistically estimated against a constructed learner
profile of the student. Moreover, these consider-
ations all defined their value only in relation to
learning objectives and how they advanced the stu-
dent towards them, meanwhile the context of what
learning objectives were being reinforced in the
tutoring sessions was not present in the MRBench
dataset.
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A Full list Pedagogical Features

Table 2

Scope Criterion Question

Transversal Psicosocial Does the tutor’s response focus on the specific task/process rather than the
student personally?

Transversal Psicosocial Does the tutor’s response frame mistakes as learning opportunities?

Transversal Psicosocial Does the tutor’s response begin by affirming any partial success, even if minor?

Transversal Metacognition
Throughout the conversation history and final response, does the tutor show
preference for asking, rather than stating, to the student what their error could
have been and/or how to fix it?

Local Achieved Does the tutor’s response express that the student has taken some steps correctly?

Local Achieved Is the tutor’s final response specific about which portion of the student’s messages
are going in the right direction to solve the proposed problem?

Local Achieved Is the tutor’s final response correct about which portion of the student’s messages
are going in the right direction to solve the proposed problem?

Local Mistaken Does the tutor’s final response imply that the student has made a mistake of some
sort?

Local Mistaken Is the tutor’s final response fully accurate in pointing out the student’s mistake(s)?

Local Mistaken When communicating that the student has made a mistake, is the tutor’s final
repsonse specific with regards to what the alleged error was?

Local Mistaken Does the tutor’s final response provide an explanation for why the student’s
approach was incorrect?

Local Mistaken Regarding the tutor’s explanation for why the student’s approach was incorrect,
is it clear and understandable at a 6th grade level?

Local Mistaken Regarding the tutor’s explanation for why the student’s approach was incorrect,
is it fully accurate?

Local Remediate Does the tutor offer the student a strategy or hint to solve the word problem?

Local Remediate Does the tutor offer the student a correct strategy or hint that would allow them
to successfully solve the word problem?

Local Remediate Does the tutor offer the student a strategy to solve the word problem that is clear
and understandable at the 6th-grade level?

Local Remediate Does the tutor offer the student an example problem or fact to correct a misinter-
pretation of the original problem?

B Feature Extraction Prompt

"""You will be presented with the conversation history from a grade-school math
tutoring session happening over computer chat, where the student makes a mistake or
evidences confusion.
Your task is to evaluate the tutor's final response in terms of the question:
{question}
----------------------------------
{conversation_history}
----------------------------------
Tutor Response: {tutor_response}
----------------------------------
Question: {question} (0 for No, 1 for Yes)
Answer: """
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C Best-Performing Classifier Configuration

model_config = {
'input_features': [
' Throughout the conversation history and final response, does the tutor show
preference for asking, rather than stating, to the student what their error
could have been and/or how to fix it?',
'Does the tutor\'s response express that the student has taken some steps
correctly?',

'Is the tutor\'s final response specific about which portion of the student's
messages are going in the right direction to solve the proposed problem?',
'Is the tutor\'s final response correct about which portion of the student's
messages are going in the right direction to solve the proposed problem?',

'Does the tutor\'s final response imply that the student has made a mistake of
some sort?',

'Is the tutor\'s final response fully accurate in pointing out the student\'s
mistake(s)?',
'When communicating that the student has made a mistake, is the tutor\'s
final response specific with regards to what the alleged error was?',
'Does the tutor\'s final response provide an explanation for why the
student\'s approach was incorrect?',
'Regarding the tutor\'s explanation for why the student\'s approach was
incorrect, is it clear and understandable at a 6th grade level?',
'Regarding the tutor\'s explanation for why the student\'s approach was
incorrect, is it fully accurate?',
'Does the tutor offer the student a strategy or hint to solve the word
problem?',
'Does the tutor offer the student an example problem or fact to correct a
misinterpretation of the original problem?',

]
'preprocessing': {

'oversampling': 'SMOTE'
},
'rf_hyperparameters': {

'max_depth': None,
'max_features': 'sqrt',
'min_samples_leaf': 4,
'n_estimators': 500

}
}
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Abstract

We present MSA-MATHEVAL, our submis-
sion to the BEA 2025 Shared Task on eval-
uating AI tutor responses across four instruc-
tional dimensions: Mistake Identification, Mis-
take Location, Providing Guidance, and Ac-
tionability. Our approach uses a unified train-
ing pipeline to fine-tune a single instruction-
tuned language model across all tracks, without
any task-specific architecture modifications. To
improve prediction reliability, we introduce a
disagreement-aware ensemble inference strat-
egy that enhances coverage of minority la-
bels. Our system achieves strong performance
across all tracks, ranking 1st in Providing Guid-
ance, 3rd in Actionability, and 4th in both
Mistake Identification and Mistake Location.
These results demonstrate the effectiveness of
scalable instruction tuning and disagreement-
driven modeling for robust, multi-dimensional
evaluation of LLMs as educational tutors.

1 Introduction

Large language models (LLMs) are increasingly
used in educational applications, acting as AI tutors
that engage students in natural language. However,
effective tutoring goes beyond producing correct
answers. AI tutors must recognize student mistakes,
explain misconceptions, provide constructive guid-
ance, and suggest actionable next steps. Assessing
such teaching behavior remains challenging.

Prior work in intelligent tutoring systems (ITS)
emphasized these goals long before the advent of
LLMs. For example, AutoTutor used natural lan-
guage processing (NLP) and dialogue-based feed-
back to improve learning outcomes across domains
(Nye et al., 2014). Later, metrics such as conver-
sational uptake were proposed to capture tutor re-
sponsiveness and its link to instructional quality
(Demszky et al., 2021).

*§ https://github.com/baraahekal/BEA-2025

With the rise of instruction-tuned LLMs, new
frameworks have emerged to assess their teaching
abilities. Tack and Piech (Tack and Piech, 2022) in-
troduced the AI Teacher Test for evaluating model
helpfulness and student understanding, while later
work proposed finer rubrics such as coherence, cor-
rectness, targetedness, and actionability (Macina
et al., 2023; Daheim et al., 2024; Wang et al., 2024).

Building on these efforts, the BEA 2025 Shared
Task adopts MRBench—a pedagogically motivated
benchmark introduced by Maurya et al. (2025)—to
evaluate AI-generated tutor responses in math di-
alogues (Kochmar et al., 2025). While BEA 2023
emphasized response generation, BEA 2025 shifts
toward assessing feedback quality across four in-
structional dimensions derived from educational
science.

In this work, we present MSA-MATHEVAL,
a unified system that addresses all four tracks
using a single fine-tuned model and consistent
training pipeline. We fine-tune the open-weight
Mathstral-7B-v0.1—an instruction-tuned LLM
specialized for mathematical reasoning—using
parameter-efficient LoRA adapters. To improve
prediction reliability, we incorporate ensemble-
based inference that combines model disagreement
and uncertainty estimation.
Our contributions are as follows:

• We design a unified training pipeline for all
four BEA 2025 tracks, using LoRA-based
fine-tuning of Mathstral-7B-v0.1 with no
track-specific architecture changes.

• We propose an ensemble-based inference strat-
egy leveraging model disagreement and uncer-
tainty for robust prediction.

• We achieve top-tier performance across all
tracks, including first place in Providing Guid-
ance.
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Figure 1: Overview of our unified MSA-MATHEVAL framework for the BEA 2025 Shared Task. The pipeline
includes preprocessing, LoRA-based fine-tuning of Mathstral-7B-v0.1, and disagreement-aware ensemble infer-
ence.

2 Related Work

Evaluating the pedagogical capabilities of AI tutors
builds upon long-standing research in intelligent
tutoring systems (ITS) and more recent advances
in large language models (LLMs). Early ITS such
as AutoTutor emphasized the importance of natural
language dialogue in promoting student learning
through error remediation and scaffolding (Nye
et al., 2014). These systems often relied on rule-
based or statistical NLP methods to assess learner
inputs and generate appropriate tutor responses.

The emergence of instruction-tuned LLMs has
prompted a shift toward more scalable methods
for modeling tutoring behavior. Tack and Piech
(2022) proposed the AI Teacher Test to benchmark
LLM outputs on criteria such as helpfulness and
pedagogical appropriateness. Macina et al. (2023)
and Daheim et al. (2024) introduced fine-grained
rubrics for LLM tutoring quality in mathematical
dialogue, including dimensions such as targeted-
ness, coherence, and actionability.

In terms of modeling strategies, prior systems
have explored both classification and ranking ap-
proaches for feedback generation. Daheim et al.
(2024) used multi-aspect annotation schemes to
evaluate feedback informativeness, while Wang
et al. (2024) proposed a bridging rubric for LLM
feedback grounded in human tutor behavior. These
studies highlight the need for systems that go be-
yond correctness to capture richer instructional at-
tributes.

Compared to these approaches, our work intro-
duces a unified training and inference framework
across multiple feedback dimensions, leveraging
ensemble disagreement and uncertainty estima-
tion for prediction stability. Unlike previous mod-
els with track-specific adaptations or rule-based
post-processing, we apply a consistent architecture
based on the Mathstral-7B-v0.1 model across all

tasks. This allows us to assess the generalizability
of instruction-tuned LLMs for the mathematics do-
main across key dimensions of pedagogical ability.

3 Method

Our approach, MSA-MATHEVAL, applies a uni-
fied framework across all four tracks in the BEA
2025 Shared Task. We build on the instruction-
tuned Mathstral-7B-v0.1 model and leverage
parameter-efficient fine-tuning (LoRA) along with
ensemble-based inference to enhance prediction ro-
bustness. The methodology consists of the follow-
ing stages: dataset preprocessing, model selection,
fine-tuning strategy, and ensemble-based inference
(see Figure 1).

3.1 Preprocessing

The original dataset consists of nested JSON files,
where each dialogue contains multiple tutor re-
sponses annotated across four pedagogical dimen-
sions. To facilitate instruction-based fine-tuning,
we transformed the data into four track-specific
JSONL files. Each file includes a flattened dia-
logue, a natural language evaluation prompt, and a
categorical label from three possible options: Yes,
To some extent, or No.

Each training instance was structured as a two-
turn dialogue following the chat schema used by
instruction-tuned language models. Specifically:

• user: This field contains a complete, track-
specific prompt with explicit evaluation crite-
ria, followed by the dialogue context and tutor
response to be evaluated.

• assistant: This field contains the gold la-
bel corresponding to the tutor response—one
of "Yes", "To some extent", or "No"—as
annotated in the development set.
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The system role was omitted to reduce token over-
head and focus the model on the input–output map-
ping relevant to each multi-class classification task.

Track 1 – Mistake Identification

TASK DEFINITION:

You are an expert evaluator of AI tutor
responses. Your task is to determine
whether the tutor’s response accurately
identifies a mistake in the student’s
reasoning or solution.

EVALUATION CRITERIA:

1."Yes"– The tutor accurately identifies
a mistake in the student’s response.
2."To some extent"– The tutor shows
some awareness, but it is ambiguous or
uncertain.
3."No"– The tutor fails to identify or
misunderstands the mistake.

Track 2 – Mistake Location

TASK DEFINITION:

You are an expert evaluator of AI tutor
responses. Your task is to determine
whether the tutor’s response accurately
points to a genuine mistake and its
location in the student’s response.

EVALUATION CRITERIA:

1."Yes"– The tutor clearly points to
the exact location of the mistake.
2."To some extent"– The tutor refers
to a mistake but is vague or indirect.
3."No"– The tutor provides no indication
of where the mistake occurred.

Track 3 – Providing Guidance

TASK DEFINITION:

You are an expert evaluator of AI tutor
responses. Your task is to determine
whether the tutor’s response provides
correct and relevant guidance to help
the student.

EVALUATION CRITERIA:

1."Yes"– The tutor gives helpful
guidance such as a hint or explanation.
2."To some extent"– The guidance
is partially helpful, unclear, or
incomplete.
3."No"– The guidance is absent,
irrelevant, or factually incorrect.

Track 4 – Actionability

TASK DEFINITION:

You are an expert evaluator of AI
tutor responses. Your task is to
determine whether the tutor’s feedback
is actionable, i.e., it clearly suggests
what the student should do next.

EVALUATION CRITERIA:

1."Yes"– The response includes clear
next steps for the student.
2."To some extent"– Some action is
implied, but it is not clearly stated.
3."No"– No action is suggested or the
feedback ends the conversation.

Each JSONL instance includes an instruction
(as the user message), an input (composed of
the full dialogue context and tutor response), and
an output (gold label as assistant). This for-
mat enables effective supervised fine-tuning of
Mathstral-7B-v0.1 on each dimension-specific
classification task.

3.2 Model Selection and Architecture
Our system is built upon the Mathstral-7B-v0.1
language model, an open-source 7B-parameter
transformer tailored for mathematical and scien-
tific reasoning (Mistral AI Team, 2024). It is an
instruction-tuned variant of the Mistral 7B archi-
tecture (Jiang et al., 2023), which itself builds on
the transformer framework used in LLaMA (Tou-
vron et al., 2023a,b). Mathstral uses a 32-layer
transformer with 4096-dimensional hidden states
and 32 attention heads (8 for keys/values), and ben-
efits from Mistral’s sliding-window attention mech-
anism, enabling long-context comprehension up to
32k tokens. This makes it particularly suitable for
modeling multi-turn math tutoring dialogues that
require broad context retention.
Mathstral-7B-v0.1 was selected based on its

strong performance in math-specific benchmarks
and its open-access availability. It was instruction-
tuned by Project Numina on mathematical reason-
ing tasks and achieves high scores on datasets
such as GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), and MMLU-STEM
(Hendrycks et al., 2021a). For instance, it reports
56.6% accuracy on MATH, significantly outper-
forming base Mistral and LLaMA models of com-
parable size.

Compared to alternatives,Mathstral outper-
forms general-purpose LLaMA 2 (Touvron et al.,
2023b) and even surpasses some larger models in
mathematical domains. While proprietary mod-
els like GPT-3.5 or GPT-4 (OpenAI, 2022, 2023)
show impressive general capabilities, their closed
nature limits fine-tuning flexibility and deployment
cost-effectiveness.Mathstral, by contrast, is re-
leased under Apache 2.0, making it fine-tunable
with LoRA on modest compute budgets.

We thus chose Mathstral-7B-v0.1 as the back-
bone of our system due to its optimal trade-off
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between math reasoning accuracy, open weight
availability, and instruction-following capability.

3.3 Training and Fine-Tuning

We fine-tuned Mathstral-7B-v0.1 separately for
each BEA 2025 track using Low-Rank Adap-
tation (LoRA) (Hu et al., 2021), framing the
task as three-way instruction-based classification.
Each input was represented as a two-turn dia-
logue—comprising a prompt and a categorical
label—and modeled as a supervised instruction-
following task.

To enable efficient adaptation with minimal
memory overhead, we used LoRA with a rank of
r = 64, scaling factor α = 2.0, and no dropout.
Adapters were injected into the attention query and
value projections in each transformer block. The
low-rank update to the frozen weight matrix W is
defined as:

∆W = α ·AB (1)

where A ∈ Rd×r and B ∈ Rr×d are trainable ma-
trices, and d is the dimension of the attention head.
The final effective weight is W +∆W . Figure 2
illustrates this injection mechanism.

Figure 2: LoRA adaptation adds trainable low-rank
matrices A and B to frozen attention weights W0, pro-
ducing an effective weight W = W0 + αAB during
training. Only A and B are updated, enabling memory-
efficient fine-tuning (Hu et al., 2021).

Training was capped at 500 steps with gradient
norm clipping (∥g∥2 < 1.0) and a maximum se-
quence length of 2048 tokens. We used a batch
size of 2, single micro-batching, and fixed seed 42
for reproducibility. Optimization was performed
using AdamW with a learning rate of 4 × 10−5,
10% linear warmup, and weight decay of 0.05.

We evaluated model performance every 50 steps
on a held-out validation set, which consisted of the
last 30% of the development dataset. The develop-
ment set includes 300 dialogues sourced from the
MathDial (Macina et al., 2023) and Bridge (Wang
et al., 2024) datasets.Checkpoints were saved every
100 steps with a retention window of the three most

recent. Only LoRA adapter weights were saved to
minimize disk usage and enable efficient inference.
All training runs were conducted in a single-node
setup with world_size=1.

This training configuration ensured stable con-
vergence on limited supervision, while maintaining
computational efficiency and reproducibility across
all four pedagogical dimensions.

3.4 Inference and Ensemble Strategy

To enhance robustness and maintain generalization
across all four tracks, we employed an ensemble-
based inference strategy grounded in model dis-
agreement. Rather than aggregating predictions
through majority voting, we fine-tuned five inde-
pendent models per track. Each model used the
same base architecture Mathstral-7B-v0.1 but
was trained with different random seeds and shuf-
fled data splits to encourage diversity in learned
representations. This disagreement-aware mecha-
nism allows us to capture uncertainty and preserve
minority-class predictions, especially for ambigu-
ous cases labeled "To some extent".

Each model in the ensemble predicts a class in-
dependently using greedy decoding. During in-
ference, we collect all five predictions for a given
sample and apply a filtering policy: if the predic-
tions exhibit full agreement, the class is retained.
If the ensemble disagrees, we analyze the class dis-
tribution and prefer predictions that preserve the
relative frequency of "To some extent" observed
in the development set. This is crucial because
"Yes" labels are dominant in both the training and
validation sets, potentially leading to biased predic-
tions under a naïve voting scheme.

Our design choice is motivated by the use of
macro-F1 as the primary evaluation metric in the
BEA 2025 Shared Task. Unlike accuracy or micro-
F1, macro-F1 gives equal weight to all classes,
making performance on minority labels such as "To
some extent" especially important. By encourag-
ing the retention of these less frequent but pedagog-
ically relevant labels through disagreement-aware
filtering, we improve per-class recall and stabilize
final predictions.

This ensemble strategy is lightweight in deploy-
ment, as only LoRA adapter weights are loaded
during inference. Predictions are generated se-
quentially and combined via a deterministic post-
processing script that requires no additional train-
ing.
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Figure 3: Label distribution comparison across four evaluation tracks. Each group of bars represents the percentage
of predictions for the labels "Yes", "No", and "To some extent" for three settings: the MRBench development
set (Dev), the best-performing single model on the test set (Single), and the ensemble system on the same test set
(Ensemble).

4 Experiments

4.1 Dataset

The BEA 2025 Shared Task provides a benchmark
for evaluating AI tutor responses across four peda-
gogically motivated tracks: Mistake Identification,
Mistake Location, Providing Guidance, and Action-
ability (Kochmar et al., 2025). The dataset is based
on MRBench, a curated collection of math-focused
educational dialogues designed for evaluating feed-
back quality in instructional settings (Maurya et al.,
2025). It includes dialogues drawn from two pub-
licly available sources: MathDial (Macina et al.,
2023) and Bridge (Wang et al., 2024).

Each instance comprises a multi-turn conversa-
tion between a student and an AI tutor, a final
student question or statement, and multiple can-
didate tutor responses. The task is to classify each
response along the four instructional dimensions,
using a three-way labeling scheme: Yes, To some
extent, and No.

The shared task organizers provide a labeled de-
velopment set with expert annotations for training
and validation. The test set is blind—its labels are
hidden from participants and used by the organiz-
ers to evaluate final system submissions. This setup
ensures fair comparison and simulates real-world
deployment where labeled data may be limited or
unavailable.

MRBench Statistics:

• 192 annotated dialogues in total: 60 from
Bridge and 132 from MathDial.

• 1,596 total tutor responses annotated across 7
LLMs and multiple human tutors (expert and
novice).

• Each response is annotated with 8 evaluation
dimensions; the shared task focuses on 4 core
tracks.

• Dialogue Length: Bridge dialogues average
4 turns and 140 characters. MathDial averages
5.5 turns and 906 characters.

4.2 Evaluation

To evaluate the pedagogical quality of model pre-
dictions across all four tracks, the BEA 2025
Shared Task employs two complementary scoring
protocols: exact evaluation and lenient evaluation.
Both use macro-averaged F1 score and accuracy as
core metrics.

Exact Evaluation. In the primary setting, each
prediction is evaluated against a gold label using a
three-way classification scheme: "Yes", "To some
extent", and "No". Let C denote the set of all
classes, and F1c the F1 score for class c ∈ C. The
macro-F1 score is computed as the unweighted
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Track Run Strict F1 Lenient F1 Strict Acc. Lenient Acc. Main Metric Rank

Mistake Identification

Run 1 71.54% 91.52% 87.59% 95.35%

4th / 44
Run 2 70.66% 91.42% 87.98% 95.22%
Run 3 56.78% 82.95% 83.65% 91.92%
Run 4 67.88% 90.13% 87.20% 94.76%
Run 5 71.34% 91.52% 87.39% 95.35%

Mistake Location

Run 1 55.62% 77.79% 72.01% 80.93%

4th / 31
Run 2 56.02% 77.73% 72.01% 81.19%
Run 3 56.88% 78.48% 71.88% 82.09%
Run 4 52.79% 73.65% 63.61% 78.22%
Run 5 57.43% 78.48% 69.75% 82.09%

Providing Guidance

Run 1 55.28% 76.02% 67.29% 80.35%

1st / 35Run 2 53.76% 76.59% 65.09% 80.74%
Run 3 56.65% 74.75% 63.61% 80.61%
Run 4 58.33% 77.98% 66.13% 81.90%

Actionability

Run 1 51.35% 68.81% 58.31% 76.60%

3rd / 29
Run 2 66.99% 84.97% 71.95% 87.91%
Run 3 65.90% 84.45% 71.82% 87.07%
Run 4 69.84% 86.59% 75.37% 89.08%
Run 5 65.90% 84.45% 71.82% 87.07%

Table 1: Strict and lenient macro-F1 and accuracy across five runs per track. Bolded scores indicate per-track bests.
Final column shows BEA 2025 leaderboard rank based on strict macro-F1 (main metric).

average across all classes:

Macro-F1 =
1

|C|
∑

c∈C

2 · Precisionc · Recallc
Precisionc + Recallc

(2)

This metric penalizes class imbalance and re-
wards systems that maintain recall across minority
classes such as "To some extent".

Lenient Evaluation. To account for pedagogical
similarity between "Yes" and "To some extent",
the task also includes a two-way lenient evaluation
protocol. Labels "Yes" and "To some extent"
are merged into a single positive class, resulting
in a binary classification task. The same macro-
F1 and accuracy metrics are then applied to the
collapsed label set.

Accuracy. For both settings, accuracy is defined
as the proportion of correct predictions over all
samples:

Accuracy =
1

N

N∑

i=1

⊮(ŷi = yi) (3)

where N is the number of samples, ŷi is the pre-
dicted label, and yi is the gold label for instance
i.

Protocol. Since the test labels were not released,
we computed local metrics only on the develop-
ment set. All official test results were obtained
through the shared task evaluation server. Model

selection and early stopping were based on develop-
ment macro-F1 under the exact evaluation setting,
which served as the primary leaderboard metric.

4.3 Effect of Ensemble Disagreement on
Label Distribution

To analyze the effect of our ensemble strategy on
class balance, we examined the label distributions
across all four tracks. The development set con-
sistently exhibited a dominant proportion of "Yes"
labels—often exceeding 55%—with "To some
extent" and "No" underrepresented.

Left uncorrected, single-model predictions
tended to reinforce this imbalance, frequently col-
lapsing uncertain cases into the majority class. To
mitigate this, our ensemble disagreement filtering
selectively retained predictions for the minority
class "To some extent" when model consensus
was low. This design choice was informed by the
use of macro-F1 as the shared task’s official rank-
ing metric, which rewards balanced performance
across all classes.

Figure 3 compares label distributions from the
development set, single-model outputs, and en-
semble predictions. The ensemble strategy im-
proves minority-class coverage—especially for "To
some extent"—by better matching the develop-
ment distribution and mitigating dominant-class
bias. This adjustment is particularly useful in am-
biguous cases where subtle feedback is warranted.
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Track Strict Macro-F1 Lenient Macro-F1 Strict Acc. Lenient Acc.

Mistake Identification 4th / 44 2nd / 44 1st / 44 2nd / 44
Mistake Location 4th / 31 6th / 31 10th / 31 6th / 31
Providing Guidance 1st / 35 2nd / 35 3rd / 35 3rd / 35
Actionability 3rd / 29 1st / 29 2nd / 29 2nd / 29

Table 2: Per-metric leaderboard ranks (out of all teams) for each track.

5 Results

We evaluate our system across the four BEA 2025
tracks—Mistake Identification, Mistake Location,
Providing Guidance, and Actionability—using
both exact (three-class) and lenient (binary) evalua-
tion protocols, as outlined in Section 4.2. We report
macro-averaged F1 and accuracy scores across five
independent runs for each track and compare our
best results to the official leaderboard.

5.1 Performance Across Runs
Table 1 presents detailed performance scores from
five independent fine-tuning runs per track. Each
run was evaluated on strict and lenient macro-F1
as well as accuracy. We observe moderate variance
across runs, particularly in Tracks 2 and 4, which
feature more ambiguous tutor responses.

Our best-performing models achieved:

• Track 1: 71.54% strict macro-F1 and 91.52%
lenient macro-F1 (Run 1).

• Track 2: 57.43% strict macro-F1 and 78.48%
lenient macro-F1 (Run 5).

• Track 3: 58.33% strict macro-F1 and 77.98%
lenient macro-F1 (Run 4).

• Track 4: 69.84% strict macro-F1 and 86.59%
lenient macro-F1 (Run 4).

These results highlight the robustness of our uni-
fied training pipeline and the positive impact of
ensemble disagreement filtering on minority-class
prediction, especially in borderline cases.

5.2 Leaderboard Rankings
Table 2 summarizes our official rankings among all
participating teams. We consistently placed within
the top 5 across all tracks and metrics, securing the
1st rank in Track 3 (Providing Guidance) and top-3
ranks in three other metrics.

These ranks validate the effectiveness of our
approach across varied pedagogical feedback di-
mensions. Notably, our system generalizes well

across tasks using a unified model and minimal
task-specific engineering.

6 Limitations

Despite its strong performance across BEA 2025
tracks, our approach has several limitations.

First, the specialization of Mathstral-7B-v0.1
to mathematical reasoning may hinder generaliza-
tion to non-mathematical domains. While domain-
specific instruction tuning improves in-domain per-
formance, prior work has shown that such special-
ization can cause catastrophic forgetting of general
knowledge, even with parameter-efficient methods
like LoRA (Dettmers et al., 2023). Moreover, al-
though LoRA significantly reduces memory and
compute costs, its low-rank decomposition can con-
strain the model’s expressiveness in capturing nu-
anced pedagogical feedback (Xu et al., 2023; Zhou
et al., 2023).

Second, our ensemble disagreement strategy in-
troduces additional inference cost. While it im-
proves recall for minority labels such as "To some
extent", the benefit may diminish if the base mod-
els exhibit correlated predictions. Prior work shows
that ensembles are most effective when model pre-
dictions are diverse and independent (Lakshmi-
narayanan et al., 2017), which may not always hold
in practice.

Finally, the reliance on macro-averaged F1 as
the primary evaluation metric, although fair for
class imbalance, lacks granularity in penalizing
pedagogically critical mistakes. For example, mis-
classifying a completely wrong tutor response as
"To some extent" is penalized equally to a more
plausible confusion between "Yes" and "To some
extent". While the lenient evaluation partially ad-
dresses this by collapsing similar labels, it does
not fully capture the instructional severity of errors
(Kochmar et al., 2025).

7 Conclusion

We presented MSA-MATHEVAL, a unified frame-
work for evaluating AI tutor responses across
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four pedagogical dimensions in the BEA 2025
Shared Task. By fine-tuning a math-specialized
LLM (Mathstral-7B-v0.1) using LoRA and
leveraging ensemble disagreement during infer-
ence, our system achieved top-tier results across
all tracks—ranking 1st in Providing Guidance and
within the top 5 in all others. Our findings highlight
the effectiveness of combining domain-specific in-
struction tuning with disagreement-aware predic-
tion filtering for educational feedback assessment.
Future work will explore cross-domain generaliza-
tion and dynamic calibration strategies to further
enhance robustness.
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Abstract

In light of the growing adoption of large lan-
guage models (LLMs) as educational tutors,
it is crucial to effectively evaluate their peda-
gogical capabilities across multiple dimensions.
Toward this goal, we address the Mistake Iden-
tification sub-task of the BEA 2025 Shared
task, aiming to assess the accuracy of tutors
in detecting and identifying student errors. We
experiment with several LLMs, including GPT-
4o-mini, Mistral-7B, and Llama-3.1-8B, eval-
uating them in both zero-shot and fine-tuned
settings. To address class imbalance, we aug-
ment the training data with synthetic examples,
targeting underrepresented labels, generated by
Command R+. Our GPT-4o model fine-tuned
on the full development set achieves a strict
macro-averaged F1 score of 71.63%, ranking
second in the shared task. Our work highlights
the effectiveness of fine-tuning on task-specific
data and suggests that targeted data augmenta-
tion can further support LLM performance on
nuanced pedagogical evaluation tasks.

1 Introduction

The increasing integration of large language mod-
els into educational applications has sparked signif-
icant interest in their potential as AI tutors capable
of engaging students in meaningful learning dia-
logues. A critical component of effective tutoring
lies in the ability to identify and address student
misconceptions or errors. While recent studies
have explored the capabilities of LLMs in simu-
lating tutor-like behaviors, there remains a pressing
need for systematic frameworks to evaluate their
pedagogical effectiveness.

The BEA 2025 Shared Task (Kochmar et al.,
2025) introduced a structured evaluation of AI tu-
tors’ responses, focusing on four pedagogical di-

mensions: mistake identification, mistake location,
providing guidance, and actionability. In this work,
we focus on the Mistake Identification sub-task,
which involves determining whether a tutor’s re-
sponse acknowledges a student’s error within a
given conversational context. The task builds upon
the unified evaluation taxonomy proposed by (Mau-
rya et al., 2025), which defines key pedagogical
dimensions for assessing the effectiveness of AI
tutors in mistake remediation scenarios.

In our participation in this task, under the team
name TutorMind, we explore the effectiveness of
multiple LLMs, including GPT-4o-mini (OpenAI,
2024), Mistral-7B (Mistral-AI, 2023), and Llama-
3.1-8B (Meta, 2024), in both zero-shot and fine-
tuned settings. To address class imbalance in the
dataset, we introduce a data augmentation strategy
using the Command-R-plus model (Cohere, 2024)
to generate synthetic examples targeting underrep-
resented classes. Our best-performing model, a
fine-tuned variant of GPT-4o-mini trained on the
full development dataset, achieved a strict macro-
averaged F1 score of 71.63%, ranking second place
in the competition.

This study contributes to the growing body of
research on AI-assisted education by demonstrat-
ing how targeted fine-tuning can enhance LLMs’
ability to evaluate the pedagogy of tutor LLMs.
Our findings underscore the importance of aligning
model training with domain-specific evaluation cri-
teria. All fine-tuning scripts, evaluation pipelines,
and data augmentation prompts, are publicly avail-
able for reproducibility and further research.1

1https://github.com/fatimadekmak/
TutorMind-BEA2025
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2 Related Work

LLM-Powered AI Tutors in Education: Large
language models are being increasingly used as
AI tutors capable of engaging students in natural
dialogue and providing real-time feedback (Wang
et al., 2024). In particular, domains like mathemat-
ics and programming have seen significant interest
due to the structured nature of problems and the
importance of identifying student misconceptions
early (Daheim et al., 2024).

However, while LLMs demonstrate impressive
fluency and general question-answering capabili-
ties, their effectiveness as pedagogical models re-
mains limited. For instance, GPT-4 often reveals
answers prematurely, undermining its role as a sup-
portive tutor. Similarly, Gemini and Phi3 struggle
with coherence and actionable guidance, highlight-
ing the need for targeted evaluation frameworks
that go beyond traditional natural language genera-
tion (NLG) metrics (Jurenka et al., 2024).

Tutor LLMs Evaluation Frameworks: Tradi-
tional NLG metrics such as BLEU, ROUGE, and
BERTScore are insufficient for evaluating AI tutors
because they do not account for pedagogical val-
ues such as mistake identification, scaffolding, or
encouraging tone. Several studies have proposed
domain-specific evaluation criteria tailored to edu-
cational dialogues.

(Tack and Piech, 2022) introduced a framework
assessing AI tutors based on conversational uptake,
understanding, and helpfulness. (Wang et al., 2024)
extended this by incorporating dimensions such as
care, human-likeness, and usefulness. (Daheim
et al., 2024) focused on actionability and correct-
ness.

In contrast, (Maurya et al., 2025) proposed a
unified taxonomy comprising eight distinct peda-
gogical dimensions: Mistake Identification, Mis-
take Location, Revealing of the Answer, Providing
Guidance, Actionability, Coherence, Tutor Tone,
Human-likeness, The authors also released MR-
Bench, a benchmark dataset containing annotated
responses from both human and LLM-based tutors,
which is a previous version of the dataset being
used in the current task.

Use of LLMs as Evaluators: Researchers have
explored the use of LLMs themselves as critics
or evaluators. Several studies have demonstrated
that LLMs like GPT-4 can assess the quality of
educational dialogues with moderate agreement
compared to human annotators (Koutcheme et al.,

2024). In particular, GPT-4 has been used as an
automatic judge to evaluate feedback quality in
programming education, showing reasonable cor-
relation with expert human evaluations, although it
tends to be overly optimistic in its ratings.

Other studies have leveraged LLMs to score
classroom instruction or provide actionable insights
for teacher coaching (Wang and Demszky, 2023).
These works suggest that LLMs can offer scalable
and cost-effective evaluation solutions, although
they are not yet fully reliable substitutes for human
judgment.

Recent efforts underscore both the growing in-
terest in deploying LLMs as AI tutors and the chal-
lenges involved in evaluating their pedagogical ef-
fectiveness. While LLMs are proficient at gener-
ating fluent and coherent responses, their ability
to function as effective tutor agents remains lim-
ited. Building on the work of (Maurya et al., 2025),
we focus on a single pedagogical dimension, mis-
take identification, and investigate how fine-tuning
LLMs can enhance their ability to evaluate tutor
responses within this context.

3 Methodology

This section describes the models, dataset prepa-
ration, training setup, and augmentation strategy
used to address the Mistake Identification sub-task
of the BEA 2025 Shared Task.

3.1 Task Setup & Dataset

We utilized the labeled development set provided
by the shared task organizers, focusing specifically
on the Mistake Identification dimension of AI tu-
tor responses. The dataset contains three class
labels indicating whether the tutor’s response ad-
dressed a student mistake: Yes (1932 instances),
No (370), and To some extent (174). This distribu-
tion presents a significant class imbalance, with the
"Yes" class significantly overrepresented compared
to the other two categories (see Appendix A for
a breakdown). We observed that this imbalance
negatively impacted model performance during ini-
tial experiments. This motivated us to implement
targeted data augmentation strategies, as discussed
in Section 3.4.

To evaluate model behavior under constrained
supervision, we partitioned the development set
into two subsets using stratified sampling: a Train-
ing Subset (80%) and an Validation Subset (20%).
All initial zero-shot and fine-tuning experiments
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were conducted using the training subset, while the
validation subset served as a held-out test set to
guide model selection.

Additionally, all final system submissions were
evaluated by the organizers on a separate Blind
Test Set, for which ground-truth labels were not
released. This Blind Test Set was used to compute
the official leaderboard scores for the shared task.

3.2 Model Selection
We evaluated the use of multiple large language
models as tutor evaluators. GPT-4o-mini (OpenAI,
2024) was chosen for its strong performance and
availability for fine-tuning. Mistral-7B (Mistral-AI,
2023) and LLaMA-3.1-8B (Meta, 2024) instruct
models were selected as competitive open-source
baselines. Larger models were excluded from this
study due to computational constraints.

3.3 Fine-tuning Setups
Fine-tuning experiments on the Mistral-7B and
LLaMA-3.1-8B models were carried out using the
Unsloth framework, which enables optimized and
efficient training through 4-bit quantization and
the integration of LoRA adapters. Both models
were trained for a total of three epochs with a learn-
ing rate of 2e-4 and the AdamW optimizer. The
training process was conducted on Google Colab
2, leveraging the range of available GPU resources,
including A100 and T4 GPUs with high memory
capacity, to ensure stable and efficient execution.

GPT-4o-mini, in contrast, was fine-tuned via
the OpenAI platform3 using supervised fine-tuning
(SFT). The training data was formatted into JSONL
files with role-tagged messages and associated clas-
sification targets (Yes/No/To Some Extent), follow-
ing OpenAI’s SFT guidelines. Prompt templates
and formatting details for all models are provided
in appendix C and D.

3.4 Data Augmentation
After initially fine-tuning our selected models on
the training subset, we observed a noticeable dis-
crepancy between strict and lenient scores (see
Section 5 for further discussion). The models fre-
quently confused the No and To some extent classes
with Yes, indicating that class imbalance was a lim-
iting factor. This motivated a data augmentation
step focused on these underrepresented classes. We
generated additional training examples for the No

2https://colab.google/
3https://platform.openai.com/docs/overview

and To some extent classes using the Command
R+ model (Cohere, 2024). This model was se-
lected because it was neither involved in gener-
ating the original tutor responses nor used in the
evaluation pipeline, and was capable of producing
high-quality tutor response that follow the given
instruction.

We created 100 synthetic examples per under-
represented class. Each instance was manually re-
viewed for label correctness and consistency with
the shared task’s annotation guidelines. These ex-
amples were added to the training subset and used
in a second round of fine-tuning. We refer to this
expanded dataset as the augmented training sub-
set throughout the paper.

During manual inspection, most generated re-
sponses appeared to match the intended labels. The
“To some extent” examples typically followed the
prompt instructions, using cautious or indirect lan-
guage like “maybe,” “I think,” or “let’s double-
check”, without clearly identifying a mistake. For
the “No” class, most responses were affirming and
feedback-neutral, as expected. However, some re-
sponses included subtle hints that could be inter-
preted as uncertainty, making them closer in tone
to the “To some extent” label. These cases were
not filtered out as we prioritized maintaining class
coverage. In retrospect, these borderline cases in-
troduced some mild label noise, which highlights
the need for more precise quality control in future
augmentation steps.

The original and augmented training setups
shared identical hyperparameter settings. The
prompt used with Command R+ to generate data is
documented in appendix E.

4 Results

We report results on both the held-out dev test set
and the official shared task test set. Table 1 sum-
marizes the accuracy and macro F1 scores under
both strict and lenient settings. Our discussion fo-
cuses on strict F1, which was the official evaluation
metric.

Zero-shot results show that both GPT-4o and
Mistral-7B performed reasonably well out of the
box (strict F1: 52.13% and 51.73% respectively),
while LLaMA-3.1-8B struggled in the absence of
fine-tuning, scoring only 19.03%. These results
highlight the limitations of zero-shot prompting,
particularly for minority class detection.

Fine-tuning on the initial training subset signif-
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icantly improved performance across all models.
GPT-4o achieved 68.20% strict F1 on the dev test
set and was submitted as our first system, scoring
67.70% on the official blind test set. Mistral-7B
and LLaMA-3.1-8B achieved 62.61% and 41.52%,
respectively. Based on these results, we selected
GPT-4o for further fine-tuning on the full develop-
ment set. GPT-4o fine-tuned on the full develop-
ment set scored 71.63% on the blind test, ranking
second in the competition.

To evaluate the impact of data augmentation,
we fine-tuned both GPT-4o-mini and Mistral-7B
on the augmented training subset, which included
synthetic examples targeting the underrepresented
“No” and “To some extent” classes. LLaMA-
3.1-8B was excluded from this stage, as it con-
sistently underperformed compared to the other
models in earlier experiments. Both GPT-4o-mini
and Mistral-7B showed further gains: GPT-4o-
mini reached 70.34% strict F1 on the dev test
set, while Mistral-7B improved from 62.61% to
70.08%. These configurations were submitted
as additional runs, with GPT-4o-mini achieving
70.76% on the blind test set. Notably, the aug-
mented GPT-4o-mini model outperformed all other
models trained only on the training subset. How-
ever, it was never fine-tuned on the full develop-
ment set due to time constraints. As a result, it was
not submitted in its optimal form. We hypothesize
that combining data augmentation with full-devset
fine-tuning would have yielded even stronger re-
sults, potentially surpassing our best-performing
submission (GPT-4o-mini fine-tuned on the full de-
vset without augmentation), which scored 71.63%
on the blind test. The relatively lower leaderboard
score of the augmented GPT-4o-mini model reflects
the limitation of training on a smaller portion of
the data, rather than a shortcoming of the augmen-
tation strategy itself. The complete comparison is
presented in Table 1.

5 Analysis

The Mistake Identification task was evaluated un-
der two settings: strict and lenient. In the strict
setting, the model deals with the three classes, Yes,
No, or To some extent, separately. On the other
hand, the lenient setting merges the Yes and To
some extent labels into a single positive class. This
reduces the penalty for confusing pedagogical dis-
tinctions, specifically partial vs. full mistake recog-
nition.

As shown in Table 2, lenient scores were con-
sistently higher than strict scores across all models
and configurations. For instance, our GPT-4o-mini
model fine-tuned on the training subset achieved
a strict F1 of 68.20% but a lenient F1 of 87.53%,
suggesting that the model often detected the pres-
ence of a mistake but occasionally failed to clearly
distinguish between full and partial mistake identi-
fication. Similarly, Mistral-7B’s results reinforce
this observation, with 62.61% strict F1 and 85.71%
lenient F1.

These results, along with careful examination of
model predictions, had two key implications during
system development. First, they highlighted that
model failures were frequently due to confusion be-
tween Yes and To some extent, rather than between
positive and negative classes (Yes/To some extent
vs. No). This informed our decision to generate tar-
geted augmentations specifically for the No and To
some extent classes, which were both underrepre-
sented and prone to misclassification. Second, the
wide gap between strict and lenient scores helped
us judge whether model improvements were actu-
ally sharpening pedagogical judgment, or simply
boosting overall correctness.

To better understand the effect of data augmen-
tation, we compare confusion matrices under both
strict and lenient settings for the GPT-4o-mini
model (Appendix B). In the lenient setting, slight
improvements are observed after augmentation, but
the gains are minimal—likely due to the small scale
of augmentation relative to the underlying class im-
balance. Under the strict setting, a few additional
instances from the “No” and “To some extent”
classes were correctly classified, confirming that
the augmentation was directionally helpful. How-
ever, we also observe increased confusion within
the “Yes” class, suggesting that the added synthetic
data may have introduced mild noise. These trends
indicate that while small-scale augmentation can
be beneficial, its impact is limited and should be
expanded or refined in future work.

6 Conclusion

In this work, we addressed the Mistake Identifica-
tion sub-task of the BEA 2025 Shared Task, which
evaluates whether AI tutors recognize student er-
rors within educational dialogues. We explored
both zero-shot and fine-tuned settings across sev-
eral LLMs, including GPT-4o-mini, Mistral-7B,
and LLaMA-3.1-8B. Our best-performing submit-
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Model Method Validation Subset Blind Test Set

Strict F1 Strict Acc. Strict F1 (submission)

GPT-4o-mini Zero-shot 52.13 82.86 –
GPT-4o-mini Fine-tuned on training subset 68.20 88.71 67.70
GPT-4o-mini Fine-tuned on Full develop-

ment set
– – 71.63

GPT-4o-mini Fine-tuned on augmented
training subset

70.34 88.91 70.76

Mistral-7B Zero-shot 51.73 70.16 –
Mistral-7B Fine-tuned on training subset 62.61 87.10 –
Mistral-7B Fine-tuned on augmented

training subset
70.08 88.51 60.59

LLaMA-3.1-8B Zero-shot 19.03 29.44 –
LLaMA-3.1-8B Fine-tuned on training subset 41.52 84.48 –

Table 1: Performance comparison of all models under strict evaluation: The table reports strict macro-F1 and
accuracy scores on the internal validation set and the official blind test set. The best-performing submitted model
was GPT-4o-mini fine-tuned on the full development set, achieving a strict F1 score of 71.63% on the blind test.

Model Method Strict F1 Strict Acc. Lenient F1 Lenient Acc.

GPT-4o-mini Zero-shot 52.13 82.86 77.57 89.52
GPT-4o-mini Fine-tuned on training subset 68.20 88.71 87.53 93.95
GPT-4o-mini Fine-tuned on augmented

training subset
70.34 88.91 88.36 94.35

Mistral-7B Fine-tuned on training subset 62.61 87.10 85.71 92.74
Mistral-7B Fine-tuned on augmented

training subset
70.08 88.51 87.15 93.55

Table 2: Macro-F1 and accuracy scores are shown for both strict (3-way classification) and lenient (binary
classification: Yes/To some extent vs. No) settings on the validation subset. GPT-4o-mini fine-tuned on the
augmented training dataset performs best on the validation subset in both settings.

ted system, a GPT-4o-mini model fine-tuned on
the full development set, achieved a strict macro-
F1 score of 71.63% on the official blind test set,
ranking second in the competition. These results
highlight the value of lightweight fine-tuning in en-
hancing LLMs’ pedagogical sensitivity. Our find-
ings support the ongoing effort to make LLM-based
tutors not only fluent but diagnostically effective,
capable of recognizing learner misconceptions and
delivering instruction that aligns with educational
goals.

7 Limitations

While our approach yielded strong results on the
Mistake Identification sub-task, several limitations
remain. First, the scale of training data, particu-
larly for the “No” and “To some extent” classes,

was limited, Although synthetic augmentation im-
proved model calibration, manual inspection of the
generated examples was relatively permissive. In
particular, some “No” examples included subtle
guidance or hints that could blur the boundary with
the “To some extent” class, introducing mild la-
bel noise. These were not filtered out during data
selection and may have affected label consistency.
Future work should explore more grounded aug-
mentation strategies, along with stricter validation
procedures to ensure correct label alignment.

Moreover, the models we used for evaluation in
our study were also among those used to generate
tutor responses for the development data. This
overlap introduces potential bias, as models could
be more inclined to align with responses produced
by themselves or closely related variants. This

1207



type of alignment can lead to overestimation of
pedagogical quality of the tutor response.
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A Development Set Class Distribution

Figure 1: Class distribution in the original development set, split by training and validation subsets. This shows the
class imbalance in the provided training data, motivating data augmentation.
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B Confusion Matrices

Figure 2: Confusion matrices for GPT-4o-mini fine-tuned on the original training subset.

Figure 3: Confusion matrices for GPT-4o-mini fine-tuned on the augmented training subset.
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C Prompt for Llama3.1 8B Instruct and Mistral 7B Instruct

Prompt Template

Instruction:
Evaluate the tutor’s response based on whether they identified a mistake in the student’s response or
not. Mistake Identification: Has the tutor identified a mistake in the student’s answer? Options:Yes,
To some extent, No. Yes means the mistake is clearly identified or recognized in the tutor’s
response. No means the tutor does not recognize the mistake (e.g., they proceed to simply provide
the answer to the asked question). To some extent means the tutor’s response suggests that there
may be a mistake, but it sounds as if the tutor is not certain. You should answer by Yes, No or To
some extent strictly in the following format: Evaluation: (Yes, No, To Some Extent). It is very
important to have the word Evaluation: before your answer, while also sticking to the criteria of
evaluation.

Input:
{Conversation History + Tutor Response}

Response:
Evaluation: {Yes, No, or To Some Extent}

D Prompt for GPT-4o-mini

Prompt Format

System Message:
Classify the tutor’s response to the student’s answer based on whether the tutor has identified a
mistake. Use the following labels: ’Yes’ means the mistake is clearly identified; ’No’ means the
tutor does not recognize the mistake; ’To some extent’ means the tutor suggests a mistake but is
unsure. Respond strictly in the format: Evaluation: [Yes/No/To Some Extent].

User Message:
{Conversation History + Tutor Response}

Expected Output:
Evaluation: {Yes, No, or To Some Extent}

E Prompt for Data Augmentation with Command R+

Prompt for Generating “To Some Extent” Responses

Instruction:
You are a math tutor giving feedback to a student. Based on the conversation, write a single-sentence
response that gently suggests the student may have made a mistake, but without clearly identifying
what the mistake is. Your tone should sound uncertain, cautious, or exploratory. Do not explicitly
say what is wrong. Do not state that something is definitely incorrect. Keep your response to ONE
short sentence.

Input:
{Conversation History}

Output:
A single-sentence tutor response labeled “To some extent”
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Abstract

This paper presents DiReC (Disentangled Con-
trastive Representation), a novel two-stage
framework designed to address the BEA 2025
Shared Task 5: Tutor Identity Classification.
The task involves distinguishing between re-
sponses generated by nine different tutors, in-
cluding both human educators and large lan-
guage models (LLMs). DiReC leverages a
disentangled representation learning approach,
separating semantic content and stylistic fea-
tures to improve tutor identification accuracy.
In Stage 1, the model learns discriminative con-
tent representations using cross-entropy loss.
In Stage 2, it applies supervised contrastive
learning on style embeddings and introduces a
disentanglement loss to enforce orthogonality
between style and content spaces. Evaluated
on the validation set, DiReC achieves strong
performance, with a macro-F1 score of 0.9101
when combined with a CatBoost classifier and
refined using the Hungarian algorithm. The
system ranks third overall in the shared task
with a macro-F1 score of 0.9172, demonstrat-
ing the effectiveness of disentangled represen-
tation learning for tutor identity classification.

1 Introduction

This paper presents the Two Outliers Tutor Iden-
tification Systems for Track 5 of the BEA 2025
Shared Task (Kochmar et al., 2025). The goal of
this task is to recognize which response belongs to
which tutor. We were provided with responses from
nine different tutors, including two human tutors
(novice and expert) and seven different Large Lan-
guage Models (LLMs) (Abdin et al., 2024; OpenAI
et al., 2024; Grattafiori et al., 2024; Team et al.,
2024; Jiang et al., 2023) using data from MRBench
(Maurya et al., 2024). For each question, all tutors
provided an answer, and the objective is to develop
a model capable of distinguishing between these
tutor identities based on their responses.

*Core contributor

Conversational agents, especially those powered
by LLMs, are increasingly used in education to
support student learning through interactive and
tutor-like dialogue (Wollny et al., 2021; Tack et al.,
2023). These systems can generate human-like,
context-aware responses, offering new opportuni-
ties for scalable and personalized instruction. How-
ever, determining whether these models truly be-
have like effective tutors remains a challenge (Tack
and Piech, 2022; Tack et al., 2023). This shared
task explores whether it is possible to distinguish
between responses generated by different AI tutors
and human tutors.

Recent research has shown that models can be
fine-tuned using contrastive loss to create powerful
and representative embeddings. Powerful embed-
ding models such as Jina, mE5, and BGE (Sturua
et al., 2024; Chen et al., 2024; Wang et al., 2024)
that are performing well in MTEB are trained using
this approach (Muennighoff et al., 2023; Enevold-
sen et al., 2025). Although a more common method
for classification tasks involves using cross-entropy
loss (Mao et al., 2023) to fine-tune encoder models
like BERT (Devlin et al., 2019), contrastive learn-
ing approaches that produce high-quality embed-
dings and use simple classifiers have been shown
to outperform this traditional method. In some
cases, they even surpass large decoder-based mod-
els on classification benchmarks (Hanif et al., 2025;
Muhammad et al., 2025). Furthermore, training
models with contrastive loss directly on a down-
stream task has also demonstrated strong perfor-
mance (Khosla et al., 2020; Muhammad et al.,
2025). Motivated by these findings, our work ex-
plores contrastive learning as a strategy for tutor
identification.

Contrastive loss is widely used in self-supervised
learning to pretrain large language models by
pulling together augmented views of the same in-
put (Chen et al., 2020; Tao et al., 2024). For su-
pervised tasks, supervised contrastive loss (Khosla
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et al., 2020) extends this by using label information,
treating all samples with the same label as positives.
This leads to more discriminative representations
for classification.

Building on this foundation, we propose DiReC,
a two-stage Disentangled Contrastive Representa-
tion framework for tutor response modeling. The
core idea is to separate each response into two
latent spaces: one that captures content (seman-
tics, structure, factuality), and another that captures
style (tone, verbosity, lexical choices), which is es-
pecially important for distinguishing among tutors.
In the first stage, we train the model to learn content
representations useful for tutor classification. In the
second stage, we introduce supervised contrastive
learning to the style space, encouraging similiar
representations across responses from the same tu-
tor. By disentangling these factors, the model better
captures tutor-specific traits while maintaining a
coherent content backbone, improving both classi-
fication accuracy and interpretability.

2 System Overview

We propose a two-stage Disentangled Representa-
tion for Classification (DiReC) framework for tutor
classification, which simultaneously learns content
and style representations from text. The overall
architecture is depicted in Figure 1.

2.1 Model Architecture
Given an input text sequence x = (w1, . . . , wT ),
we first obtain contextualized token embeddings
via a pretrained DeBERTa-v3-large encoder:

H = Encθ(x) ∈ RT×d, h = H[CLS] ∈ Rd .

Two parallel projection heads then map h into the
content and style subspaces of dimension p:

c = fcontent(h) ∈ Rp, s = fstyle(h) ∈ Rp.

The content embedding c is intended to capture
relevant semantic information for the identifica-
tion of the tutor, while the style embedding s cap-
tures stylistic traits. We concatenate these vectors
and feed them to a linear classifier g over K tutor
classes:

z = g
(
[c; s]

)
∈ RK , ŷ = argmax

j
zj .

2.2 Two-Stage Training Procedure
Training alternates between two stages to disentan-
gle style from content:

Stage 1 (Cross-Entropy Only). While con-
trastive loss is effective at capturing stylistic simi-
larity, it does not explicitly enforce class separation
nor provide a direct classification signal. There-
fore, cross-entropy acts as a necessary foundation
to learn robust content features before style-specific
objectives are introduced.

In the first stage, we freeze the style head fstyle
and train the encoder Encθ, content head fcontent,
and classifier g using standard cross-entropy loss:

LCE = − 1

N

N∑

i=1

log
exp(zi,yi)∑K
j=1 exp(zi,j)

,

where zij is the logit for sample i and class j, and
zi,yi is the logit for the true class label yi of sample
i. This loss encourages the model to learn dis-
criminative content representations that effectively
differentiate tutors based on semantic and structural
aspects of their responses.

Stage 2 (Joint Contrastive & Disentanglement).
In the second stage, we unfreeze the style head and
optimize it jointly with the rest of the model. We
apply supervised contrastive loss on style embed-
dings to capture tutor-specific writing traits, encour-
aging embeddings from the same tutor to cluster
regardless of content variation. Simultaneously,
a disentanglement loss penalizes high similarity
between content and style embeddings, prevent-
ing redundancy and promoting specialization of
each representation. This joint training improves
the model’s ability to separately encode semantic
content and stylistic nuances, enhancing both inter-
pretability and classification performance.

• LSupCon is the supervised contrastive loss ap-
plied to style embeddings:

LSupCon = − 1

|P|
∑

(i,j)∈P
log

exp
(
s⊤i sj/τ

)
∑

k ̸=i

exp
(
s⊤i sk/τ

) .

where P indexes all positive pairs sharing the
same tutor label, and τ is a temperature hyperpa-
rameter.

Unlike the original formulation by Khosla et al.,
which uses log-softmax over multiple positives
and negatives per anchor, our version is simpli-
fied. Since the main supervision is already pro-
vided via cross-entropy classification, the con-
trastive loss acts as an auxiliary signal to refine
stylistic clustering, making a lighter pairwise
variant sufficient and more efficient.
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Figure 1: DiReC Architecture. Trainable components are marked with , while frozen components are indicated
with .

• Ldis is a cosine-based disentanglement loss that
penalizes similarity between content and style
embeddings:

Ldis =
1

N

N∑

i=1

∣∣cos(ci, si)
∣∣

=
1

N

N∑

i=1

∣∣ c⊤i si
∥ci∥∥si∥

∣∣.

Finally we calculate all the loss using

L = λCELCE + λsty LSupCon({si, yi})
+ λdis Ldis(c, s) .

2.3 Experimental Setup
All experiments were conducted using a consis-
tent set of hyperparameters (Table 3). At the on-
set of Stage 2, we halved the learning rate and
enabled mixed-precision optimization (AdamW +
GradScaler) to stabilize fine-tuning. The parame-
ters are provided in Appendix A.

Unless stated otherwise, all single-stage exper-
iments were trained for a total of 5 epochs. The

two-stage DiReC model was initially set to train
for 5 epochs during Stage 1 (content-only training
with the style head frozen), followed by up to 5 ad-
ditional epochs in Stage 2 (joint training with both
heads unfrozen). In practice, however, the best val-
idation checkpoint was achieved at epoch 6 (the
first epoch of Stage 2). For clarity in the 3.1 sub-
section, we therefore refer to the two-stage model
as effectively trained for 6 epochs in total.

At test time, we compute content and style em-
beddings jointly, concatenate them, and feed the
resulting vector into the classifier g. The disen-
tanglement enforced during training ensures that c
and s capture complementary information, improv-
ing both generalization and interpretability in tutor
prediction.

3 Result

3.1 Development

We conducted a series of experiments to validate
the components of the DiReC framework. Table 1
summarizes the macro-F1 in the validation set for
each setting.
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Experiment Val. F1 (Macro)
Single-stage DiReC 0.8720
Only content projection 0.8845
Only style projection 0.8692
Two-stage DiReC 0.9042
Two-stage DiReC + Cat-
Boost classifier

0.9101

Table 1: Validation Macro-F1 scores for development experi-
ments.

Single-Stage First, we trained the DiReC model
in a single stage, which yielded a macro-F1 of
0.8720.

Projection-Head Ablation Next, we performed
an ablation on the two projection heads to assess
its standalone contribution. Training with only
the content head for 5 epochs yielded a macro-
F1 of 0.8845, whereas using only the style head
under the same epochs fell to 0.8692. Moreover,
when we extended the content-only model to 6
epochs—to match the total training steps of our
two-stage strategy—its performance dropped fur-
ther to 0.8730, indicating overfitting in the absence
of style guidance. These results confirm that the
content subspace carries the most of the classifi-
cation signal, and naively prolonging content-only
training can actually harm generalization.

Two-Stage DiReC We observed that introducing
the style projection head from the initial stage of
training could potentially hinder the development
of the content projection’s discriminative capabil-
ities. However, a naive extension of content-only
training often led to overfitting. Consequently, we
hypothesized that treating the style learning as a
subsequent refinement phase could be beneficial.
To address these limitations, we adopted the two-
stage DiReC strategy (Section 2), introducing the
style head only after the content pathway had con-
verged. This staged training approach achieved
a validation macro-F1 score of 0.9042, with the
best model obtained at epoch 6—the first epoch of
Stage 2. It outperformed both content-only base-
lines, which achieved scores of 0.8845 at epoch 5
and 0.8730 at epoch 6, establishing our strongest
benchmark among purely neural network models.

CatBoost on Learned Embeddings Finally,
we replaced the model’s linear classifier with a
CatBoost classifier (Prokhorenkova et al., 2019)

trained on the concatenated style∥content embed-
dings. This hybrid approach further improved vali-
dation macro-F1 to 0.9101.

Embedding Clustering Evolution Fig-
ures 2a–2c visualize the t-SNE projections of
content embeddings at epochs 1, 3, and 6. Early in
training (Figure 2a), tutor clusters overlap greatly.
By epoch 3 (Figure 2b), distinct clusters begin
to form, and by epoch 6 (Stage 2) (Figure 2c)
each tutor’s content representations occupy tight,
well-separated regions. This suggest that DiReC
has effectively learned to represent tutor-specific
content characteristics.

Validation Confusion Matrix Analysis Figure 3
shows the two-stage DiReC + CatBoost classifier
confusion matrix on the validation set. The strong
diagonal indicates high overall classification accu-
racy, with most tutor identities being correctly pre-
dicted. However, some misclassification between
different tutor identities is observable.

The highest confusion occurs between Llama3.1-
8B and Llama3.1-405B. Specifically, 8 instances of
Llama3.1-8B are misclassified as Llama3.1-405B,
and 7 instances of Llama3.1-405B are misclassified
as Llama3.1-8B. This is likely attributable to the
inherent similarity in response styles and content
patterns originating from the same Llama model
family. Nevertheless, the majority of tutors are
classified with high precision and recall, with the
primary challenge lying in distinguishing between
closely related model variants, highlighting the ef-
fectiveness of the disentangled representations.

Figure 3: Validation confusion matrix for the two-stage
DiReC + CatBoost classifier.
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(a) Epoch 1 (b) Epoch 3 (c) Epoch 6

Figure 2: Evolution of content-embedding clusters over training.

3.2 Submission

Each conversation in the dataset contains K ut-
terances, each from a different tutor, requiring a
one-to-one mapping between utterances and tutor
labels. However, our CatBoost classifier predicts
labels independently, which can result in duplicate
tutor assignments.

To enforce uniqueness, we apply the Hungarian
algorithm as a post-processing step (Crouse, 2016).
For each conversation g, we create a K ×K prob-
ability matrix P(g), where P

(g)
ij is the predicted

probability that utterance i belongs to tutor j. We
seek the assignment σ∗ that maximizes the total
confidence:

σ∗ = arg max
σ∈SK

K∑

i=1

P
(g)
i,σ(i)

Since SciPy’s linear_sum_assignment1 mini-
mizes cost, we negate the probabilities to form a
cost matrix C(g), with C

(g)
ij = −P (g)

ij . This ensures
a unique, high-confidence mapping between utter-
ances and tutor labels. This procedure refines the
initial probabilistic predictions from the classifier
to adhere to the structural constraint of the problem
for each conversation.

Rank Team F1 Acc
1 Phaedru 0.9698 0.9664
2 SYSUpporter 0.9692 0.9657
3 Two Outliers 0.9172 0.9412

Table 2: Final leaderboard results of the shared task. Our
team, Two Outliers, finished in third place.

The predictions from the two-stage DiReC
model combined with the CatBoost classifier, fur-

1https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.linear_sum_assignment.
html

ther refined using the linear sum assignment strat-
egy, were submitted to the official Codabench
leaderboard. This approach achieved a final macro-
F1 score of 0.9172, placing third in the shared
task, as shown in Table 2.

4 Conclusion

In this work, we proposed DiReC, a two-stage
framework that leverages disentangled contrastive
representation learning for the task of tutor iden-
tity classification. Our approach separates content
and style embeddings to capture both semantic and
tutor-specific stylistic characteristics, resulting in
improved classification accuracy and interpretabil-
ity. Empirical evaluations on the BEA-2025 Shared
Task data show that the two-stage DiReC model
outperforms single-stage baselines and benefits
from contrastive refinement and disentanglement.
Additionally, incorporating a CatBoost classifier
and applying a Hungarian algorithm for structured
post-processing further enhanced performance, cul-
minating in a top-three placement in the official
leaderboard. These results highlight the potential
of disentangled representation learning in model-
ing nuanced tutor behavior across human and AI-
generated responses.

Limitations

Due to time and computational constraints, we did
not perform thorough hyperparameter tuning. Sev-
eral important parameters, including the contrastive
temperature, the weights for the cross-entropy loss,
style loss, and disentanglement loss, were chosen
heuristically without extensive validation. Addi-
tionally, core training settings such as the learning
rate, batch size, and number of training epochs
were fixed throughout our experiments. These pa-
rameters may significantly influence model perfor-
mance, and future work could focus on systemati-
cally tuning them to achieve further improvements.
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A Appendix

Hyperparameter Value
Maximum sequence length
(MAX_LEN)

256 tokens

Batch size (BATCH_SIZE) 32
Initial learning rate (LR) 2× 10−5

Encoder embedding size
(EMBED_SIZE)

1024

Projection dimension
(PROJ_SIZE)

256

Contrastive temperature (τ ) 0.07
CE loss weight (λCE) 1.0
Style loss weight (λsty) 0.3
Disentanglement weight (λdis) 0.1

Table 3: Hyperparameter settings for all DiReC experiments.

1223

https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672


Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 1224–1241
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Archaeology at BEA 2025 Shared Task:
Are Simple Baselines Good Enough?

Ana-Maria Ros, u
anarosu766@gmail.com

Jany-Gabriel Ispas
iani.ispas@gmail.com

Sergiu Nisioi*

sergiu.nisioi@unibuc.ro

Human Language Technologies Research Center
Faculty of Mathematics and Computer Science

University of Bucharest

Abstract

This paper describes our approach to the 5 clas-
sification tasks from the Building Educational
Applications (BEA) 2025 Shared Task. Our
methods range from classical machine learning
models to fine-tuning large-scale transformer
architectures. Despite the diversity of tech-
niques, performance differences were often mi-
nor, suggesting the presence of strong surface-
level signal in the data and a limiting effect of
annotation noise – particularly around the “To
some extent” label. Under lenient evaluation,
simple models perform competitively, show-
ing their effectiveness in low-resource settings.
Our submissions rank in the top 10 in three
out of five tracks. The code and models are
publicly available at: https://github.com/
ana-rosu/Archaeology-at-BEA2025

1 Introduction

This paper presents an exhaustive set of experi-
ments conducted for the BEA 2025 Shared Task,
which revolves around assessing the pedagogi-
cal abilities of AI tutors in educational dialogues
within the mathematical domain.

We start with classical machine learning meth-
ods like logistic regression over TF-IDF encod-
ings and String Kernel SVMs, gradually scaling
up to more complex approaches such as zero-shot
and few-shot prompting with Mistral-7B-Instruct
(Jiang et al., 2023), feature-based methods us-
ing frozen transformer representations (from mod-
els like ModernBERT (Warner et al., 2024a) and
GritLM (Muennighoff et al., 2024)), decoder-style
architectures such as GPT2-XL (Radford et al.,
2019) combined with a linear classification head,
parameter-efficient fine-tuning with LoRA adapters
in 4-bit precision on Mistral-7B, as well as BERT-
like classifiers (e.g., RoBERTa (Liu et al., 2019),
ModernBERT (Warner et al., 2024b), DeBERTa
(He et al., 2021)).

*Corresponding author.

Our best-performing submissions across all
tracks use fine-tuned BERT-style classifiers. Fi-
nal submissions are selected in an unsystematic
way due to the five-submission limit per track; we
focus on choosing the models that perform best on
our local validation set, while also ensuring that
they differ from each other. Although most of our
submissions are based on Masked Language Mod-
els, we include a broader set of experiments in this
paper to document our development process and
highlight that some alternative approaches remain
competitive.

We place greater emphasis on Track 1 (Mistake
Identification), as it is the first task we explore
and serves as a foundation for the others. Some
of our preliminary experiments, including prompt-
ing and decoder-based fine-tuning, are conducted
exclusively on this track.

Despite using a wide range of models, we ob-
serve that performance is often surprisingly similar
across setups, suggesting that model architecture
may not be the dominant factor for this task. One
possible explanation is that subtle annotation in-
consistencies, especially between “Yes” and “To
some extent”, introduce noise that limits perfor-
mance (see Appendix G). We notice that tutor re-
sponses with very similar wording (e.g., “Please
recheck your answer”) are labeled “Yes” in some
dialogues and “To some extent” in others. In this
context, the order in which training examples are
presented becomes important, especially in such a
small and imbalanced setting. When the model sees
one interpretation early on, it may implicitly learn
to generalize that decision across similar examples,
reinforcing a bias. This makes the optimization
sensitive to random factors such as batch order or
initialization.

The “To some extent” label is the main source
of difficulty in this task. Without it, the classifi-
cation becomes much easier, a fact supported by
the lenient evaluation scores, which reach or even
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exceed 85% F1 on all tracks but one (Providing
Guidance, where the best lenient performance on
the public leaderboard is 78% F1), suggesting that
models perform well when ambiguity is removed
from the label space.

When evaluated under the lenient setting (“Yes”
and “To some extent” are merged into a single
class), traditional machine learning models have
surprisingly strong performance even with minimal
effort, using default configurations. As shown in
Table 9, the validation accuracies achieved with
these models are very close to the best public
leaderboard results, with gaps between 0.37%-
4.15%. In terms of Macro F1, these models also
achieve competitive scores, with gaps between
3.70%-10.41%, demonstrating that pedagogical
signal can be captured effectively under a binary
framing, making them strong baselines in scenarios
with constrained resources.

The presence of strong surface-level signal may
allow even simple models to perform well. An-
other potential hypothesis is that there is simply
not enough data for larger models to generalize
better.

Our team’s submissions were competitive across
all tracks:
Track 1 (Mistake Identification): 8th out of 44
teams
Track 2 (Mistake Location): 12th out of 31 teams
Track 3 (Providing Guidance): 13th out of 35 teams
Track 4 (Actionability): 7th out of 29 teams
Track 5 (Tutor Identification): 6th out of 20 teams
Team ranks are based on the results according to the
main shared task metric – exact Macro F1 score.

2 Data and Tasks

2.1 Shared-Task Tracks

The data provided for this shared task builds on
MRBench, a dataset of short alternate-turn dia-
logues sourced from MathDial (Macina et al., 2023)
and Bridge (Wang et al., 2024). Each dialogue is
annotated for eight pedagogical dimensions based
on a unified evaluation taxonomy introduced by
Maurya et al. (2025a). This taxonomy reflects core
learning sciences principles and builds on prior
work in AI tutor evaluation (Tack and Piech, 2022;
Daheim et al., 2024; Wang et al., 2024)

The task focuses on four key dimensions – which
also form the first four of the five tracks in the BEA
2025 shared task:

Track 1 - Mistake Identification: determine if

the tutor identifies the student’s mistake.
Track 2 - Mistake Location: determine if the

tutor pinpoints where the mistake occurs.
Track 3 - Providing Guidance: determine if

the tutor gives helpful and relevant feedback.
Track 4 - Actionability: determine if the student

can clearly understand what to do next.
Track 5 - Tutor Identification: predict which

tutor produced the response.

2.2 Dataset

The dataset includes 300 dialogues in the de-
velopment set and 191 in the test set, each
paired with responses from both human tutors
(Expert and Novice) and 7 LLM-based tutors
(GPT4 (OpenAI et al., 2024), Gemini (Team et al.,
2025), Llama31405B (Grattafiori et al., 2024),
Llama318B, Mistral (Jiang et al., 2023), Phi3 (Ab-
din et al., 2024), Sonnet (Anthropic, 2024)). Each
dialogue ends with a student turn that contains a
mistake, confusion, or misconception, to which
multiple tutor responses are provided. Every tutor
reply is annotated with gold-standard labels along
four dimensions – Mistake Identification, Mistake
Location, Providing Guidance, and Actionability
– using a three-class scheme: “Yes”, “To some ex-
tent”, and “No”.

The label distribution is imbalanced across tasks,
with “Yes” being the majority class, “No” moder-
ately represented, and “To some extent” notably
underrepresented (Figure 1). Furthermore, the 2D
scatter plots (Figure 2), generated using t-SNE
on tutor response embeddings extracted from the
ModernBERT-large model, show that responses
labeled “No” tend to form small, tight clusters, re-
gardless of the task. These responses often share
similar semantic structures, such as starting with
phrases like “Good job!”, “Good catch!”, or “You
are absolutely correct.” In contrast, responses la-
beled “Yes” show consistent distributions across
tasks, suggesting that positive responses are more
generalizable. The Actionability task exhibits the
highest dispersion among “No” responses.

During our experiments, we identify some cases
of label inconsistencies, especially between the
labels “Yes” and “To some extent”, which we report
in Appendix G.

2.2.1 Training and Validation Splits
For model development, we create separate train-
validation splits for each of the first four tasks, to
accommodate the varying label distributions across
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them. It is important to ensure that all samples from
the same conversation remain in the same split to
avoid data leakage – otherwise, multiple tutor re-
sponses with the same conversation history could
appear in both training and validation sets. For
that, we group all samples by conversation_id and
compute the majority label for each dialogue. This
majority label is then used to perform stratified sam-
pling, helping us preserve the overall class distribu-
tion of the full development set in both the training
and validation sets. An 80/20 train/validation ratio
is used, with a fixed random seed for reproducibil-
ity. Detailed statistics on the splits, including label
ratios and counts, are provided in Appendix A.

For Track 5, we perform a stratified 80/20
train/validation split to maintain balanced propor-
tions of tutor identities across both sets. Unlike
the other tracks, grouping by conversation_id is
not required here, since all samples with the same
conversation_id share an identical conversation his-
tory that includes previous tutor turns not authored
by the tutor being identified. As a result, only the
final generated response can be used to distinguish
between them.

For each track, we submit the runs that achieve
the highest validation performance. In addition, we
include results from lower-performing methods to
document the full range of approaches explored.

2.3 Evaluation Metrics

According to Kochmar et al. (2025), Tracks 1 –
4 (Mistake Identification, Mistake Location, Pro-
viding Guidance, and Actionability) are evaluated
using Macro F1 as the main metric, with accuracy
as the secondary metric. The evaluation is done in
two ways:

• Exact evaluation: the model has to predict
the correct label among the three options
(“Yes”, “To some extent”, or “No”).

• Lenient evaluation: “Yes” and “To some ex-
tent” are combined into a single class and com-
pared against “No”.

Track 5 (Tutor Identity) is a 9-class classification
task, evaluated using Macro F1 as the main metric
and accuracy as the secondary metric, without any
lenient setting.

3 Methods

3.1 Traditional ML Methods

As a baseline1 we use traditional machine learning
models across all tracks. For all experiments in
this approach, we use TF-IDF for feature extraction
covering both unigrams and bigrams from the input
text.

Logistic Regression gives us a baseline with a
Macro F1 of 0.63 on Track 1, and confirms that
the TF-IDF features are useful. We train the model
using balanced class weights to handle label im-
balance and set the maximum number of iterations
to 1000. XGBoost, which is known for strong per-
formance on tabular data and classification tasks
(McElfresh et al., 2023), reaches a Macro F1 of
0.625 for Track 1, slightly below Logistic Regres-
sion. In all our experiments with this model, we use
a learning rate of 0.1, 200 estimators, and set both
subsample and colsample bytree to 0.8 for regular-
ization. Ensembling XGBoost with other boosting
methods such as LightGBM provides small im-
provements in a few cases, but overall, the results
remain close to those obtained with XGBoost alone
(see Table 8).

We also explore a character-level string kernel
using an SVM with a precomputed spectrum kernel
(Ionescu and Butnaru, 2018). The string spectrum
kernel measures the similarity between two strings,
s1 and s2, based on their n-grams. It is defined as:

Kspectrum(s1, s2) =

∑
u,v κ(u, v)√∑

u κ(u, u)
∑

v κ(v, v)

where u and v represent the n-grams (substrings of
lengths ∈ [2, 5]) from s1 and s2, respectively. And
κ(u, v) is a dot product over binary occurrences of
n-grams u and v.

This approach appears competitive to deep-
learning based models on several tracks. For exam-
ple, on Mistake Identification it achieves a Macro
F1 score of 0.6346, indicating that a lot of the sig-
nal can be captured just by comparing strings di-
rectly. We take this as an indicator that some of
the Yes/No annotations for different tasks share
similar-looking strings.

For these experiments, all the validation results
are included in the Appendix E.

1We also use LLM prompting the Mistral-7B-Instruct
model, but results are weaker than even traditional ML base-
lines - best F1 on Task 1 is 0.42. In the few-shot setting, best
is 0.45. We describe the entire approach in Appendix C
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3.2 Frozen Embeddings + Linear Classifiers

We compare several feature extraction strate-
gies using ModernBERT-large for logis-
tic regression classifiers (max_iter=2000,
class_weight=’balanced’) on Mistake Identifica-
tion, Mistake Location, Providing Guidance and
Actionability. All embeddings are computed over
the tutor response only, without including any
surrounding conversational context. We evaluate
4 pooling methods: the final hidden state of the
[CLS] token, mean pooling, max pooling, and a
concatenation of [CLS] and mean. Results are
summarized in Appendix E.1.1.

Mean pooling appears to perform slightly better
when tasks do not require fine-grained distinctions,
such as in Mistake Identification and Actionabil-
ity, likely due to better aggregation of distributed
semantic cues across the tutor response. For ex-
ample, using mean-pooled embeddings on the Mis-
take Identification task, the classifier achieves a
Macro F1 of ∼ 0.65 on the fixed validation split,
outperforming [CLS] pooling (∼ 0.62). However,
[CLS] pooling demonstrates superior performance
on the validation split on more complex tasks like
Mistake Location and Providing Guidance. These
likely require more nuanced representations. The
complexity of these tasks is further evidenced by
their overall performance, results remaining no-
tably lower, suggesting they depend more on the
dialogue context and how the response relates to
the student’s earlier reasoning, which cannot be
captured in the response itself.

For Mistake Identification, on the other hand, sig-
nal can be inferred from the response alone from
the presence/absence of corrective language. Sim-
ilarly, the model performs well on Actionability
under the same conditions, likely because action-
able feedback is sometimes expressed directly in
the tutor’s reply through question words that en-
courage the student to take action. As a result, the
signal required for predicting Mistake Identifica-
tion and Actionability is more localized, allowing
the classifier to perform well without access to prior
student turns.

Additionally, we extract embeddings from in-
termediate layers for Mistake Identification, mo-
tivated by findings from Skean et al. (2025) that
middle-to-late layers may encode more useful in-
formation for the MTEB benchmarks. In our case,
the performance peaks around layers 9 and 15 for
mean and CLS respectively.

Last but not least, we explore GritLM - a
Mistral-based 7b parameter fine-tuned using
GRIT (Muennighoff et al., 2024). This autore-
gressive model achieves state-of-the-art results on
MTEB benchmarks. We compare the embeddings
extracted from different layers combined with sev-
eral classifiers: logistic regression, a multi-layer
perceptron (MLP), a Gaussian Naive Bayes and
a k-nearest neighbor models. For GritLM we do
not observe any significant decay in performance
from middle layers up until the final ones (see Fig-
ure 9). The weakest classifiers are the KNN and
GaussianNB, while between MLP and logistic re-
gression there does not seem to be a clear winner.
Our submission number 2 on Mistake Identification
obtains 0.6532 F1 score on the final leader board
using the embeddings from layer 24. The compara-
tive results across layers on the validation set are
included in Appendix E.1.2.

3.3 Decoder LM Fine-Tuning

We experiment with full fine-tuning of GPT2-XL
on the Mistake Identification task by applying mean
pooling over its last hidden state and training a
linear classification head. This setup achieves a
Macro F1 score of 0.65 on local split using only
the tutor responses as input. We also explore the
frozen version of GPT2-XL, updating only the
final transformer block. This approach reaches
0.55 Macro F1. We do not pursue these experi-
ments further as the performance plateaued even
when experimenting with stratified batches, alter-
native loss functions, and varying input context on
the last-transformer-block version. Configuration:
epochs=10, batch_size=32, lr=2e-5, dropout=0.1,
loss_fn=CrossEntropyLoss(), optimizer=AdamW.
This result reinforces that pedagogical signal de-
tection requires specialized approaches rather than
simply scaling model size.

3.4 BERT-like encoders

The final best results are obtained by fine-tuning
masked language models. We experiment with
three model families: RoBERTa (Liu et al., 2019),
DeBERTa (He et al., 2021), and ModernBERT
(Warner et al., 2024b). For all models, we apply
a linear classification head on top of the final hid-
den state of the first token (corresponding to the
[CLS] token). No additional pooling or attention
mechanisms are introduced beyond the pretrained
architecture. We begin with base-sized variants on
Track 1, but the better performance of the large
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variants motivates us to adopt them for our next
experiments on all tracks.

For each track and model, we compare three
main input formats, which we refer to throughout
the paper as:

• response-only: consists only of the tutor’s re-
sponse, isolating the pedagogical value of the
response itself without surrounding dialogue

• context: includes the final student turn con-
catenated with the tutor’s response, capturing
the local misunderstanding or confusion the
tutor is addressing

• full context: includes the entire conversa-
tion history preceding the tutor’s response en-
abling multi-turn reasoning over the dialogue
and potentially identify earlier misalignments

These representations allow us to assess how much
conversational context is necessary or beneficial
for each track, and how different models leverage
that context.

To address the severe class imbalance and re-
duce bias toward the majority label, we experiment
with three loss functions: standard cross-entropy
as a baseline; class-weighted cross-entropy, where
class weights are set to the inverse of class fre-
quencies; and focal loss (Lin et al., 2018), with
γ ∈ [1.0, 3.0] and various α configurations, in-
cluding uniform (α = [1.0, 1.0, 1.0]), inverse-
frequency class weights, and class-balanced α as
proposed by Cui et al. (2019).

We also experiment with prepending natural lan-
guage task prompts to the input, inspired by re-
cent work on instruction tuning and prompt-based
adaptation. These prompts frame the classification
task using instructions, such as ordinal scales (“To
what extent does the tutor identify the mistake?
0 = not at all, 1 = partially, 2 = fully”) or evalu-
ator roles (“You’re evaluating a tutor’s response.
Score how clearly they identify the student’s mis-
take”). The prompt text is prepended to the input
before tokenization. Although BERT-like models
are not autoregressive, we find that in some cases,
prompts improve validation performance and make
the task framing more consistent across examples
(see Appendix B). Further exploration is needed to
fully quantify their impact, but we include this as a
promising direction for instruction-aware encoder
fine-tuning.

3.5 Submissions

3.5.1 Mistake Identification
Submission 1 uses a fine-tuned RoBERTa-large
model, trained with context input format and focal
loss (γ = 2.0, uniform α) for 4 epochs. For all hy-
perparameters and the approach used for selecting
the input configuration and loss function, refer to
Appendix D.1. We train the model on five random
seeds, average the logits across seeds, and apply
post-training calibration using temperature scaling
and per-class thresholding based on validation per-
formance. On the validation set, this approach
achieves a 0.7072 Macro F1. In the public leader-
board, it obtains 0.6919 Macro F1, making it our
second-best overall submission.

Training observations:
Initially, random batches leads the model to see

mostly majority-class examples early on, which
causes a bias to predict predominantly a single
label (e.g., "Yes"), hard to correct in later stages.
This is visible in the first-epoch confusion matrix.

To resolve this, we implement a custom stratified
batch sampler that maintains around the same class
ratios as the full training set within each batch,
which proves beneficial for small batch sizes in
our setup, where a random batch could otherwise
contain only examples from the "Yes" class. This
helps the model learn minority classes from the
start.

Submission 2 uses embeddings from layer 24
of GritLM (Muennighoff et al., 2024), selected
based on validation performance (Figure 9). The
classifier is an ensemble of logistic regression and a
multilayer perceptron (MLP) with a hidden size of
100. The best development set score is 0.71, while
the leaderboard score is 0.65. The performance
gap indicates overfitting and suggests that layer-
wise performance variation can significantly affect
decisions, as such, high evaluation scores may not
generalize well on new test sets.

Submission 3 is fine-tuned on the
mistralai/Mistral-7B-v0.1 backbone with
a maximum sequence length of 1536 and three
output labels. Tokenization uses left-side padding
and truncation with the fast tokenizer. LoRA
is applied to the q_proj and k_proj modules
with rank r = 16, α = 16, and dropout rate 0.1.
The classification head is excluded from LoRA
adaptation.

Training uses the AdamW8bit optimizer from
bitsandbytes, with separate learning rates for the
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backbone (2 · 10−5) and classification head (2 ·
10−6). Parameters are grouped based on whether
they belong to the head or body and whether they
are subject to weight decay. A lower weight decay
is applied to the body parameters. The training runs
for up to 24 epochs with early stopping (patience
20), a warm-up of 10% of the steps, and evaluation
every 10 steps. The best model is selected based
on validation performance. On the local split this
approach reaches 0.74 Macro F1 score, while on
the public leaderboard the results are weaker than
other masked language modeling approaches.

Submission 4 uses a ModernBERT-large
model with a response-only input (no additional
context). Unlike Submission 1, it does not use strat-
ified batches and training is done on a single fixed
random seed. The model is trained for 3 epochs,
followed by per-class threshold calibration on the
validation set for post-training adjustments.

This configuration achieves a Macro F1 of
0.7145 on the validation set and 0.6976 on the
test set, making it our best-performing submission
overall.

Submission 5 uses the same configuration as
Submission 4, but consists of predictions from
a second inference checkpoint corresponding to
epoch 4 of the same run.

This is motivated by the use of early stopping
with patience=2 during experiments, which causes
training to terminate at variable points depend-
ing on the run. Since early stopping introduces
non-determinism and cannot be controlled directly
during inference, we submit this variant to ex-
plore whether extending inference to the subse-
quent saved epoch could yield marginal gains.

Submission Macro F1 Accuracy Ranking

Submission 1 0.6919 0.8746 26
Submission 2 0.6532 0.8423 58
Submission 3 0.6860 0.8565 27
Submission 4 0.6976 0.8675 17
Submission 5 0.6812 0.8681 31

Table 1: Leaderboard Results for Track 1 (Mistake Iden-
tification)

3.5.2 Mistake Location
Submission 1 and 2 use a RoBERTa-large model,
trained with context input and weighted cross-
entropy loss function. Submission 2 introduces
a two-phase training strategy: in the first phase,

the model is trained as a binary classifier, distin-
guishing between "Yes" and "No" labels only; in
the second phase, the model is further fine-tuned
using the full three-way label set, starting from the
weights learned in phase one. This curriculum-like
strategy consistently outperformed the single-phase
baseline, obtaining higher F1 scores on the valida-
tion set. The performance gain also persists on the
public leaderboard, where it results in an approxi-
mate 3% absolute increase in F1.

Submission 3 uses a fine-tuned
microsoft/deberta-v3-large. The input
sequence length is capped at 1536 tokens. Training
is conducted a batch size of 8 for up to 26 epochs
with early stopping (patience 15), a warm-up
phase comprising 10% of the training steps,
and evaluation every 60 steps. The optimizer is
AdamW8bit (bitsandbytes), using layer-wise
learning rate decay (LLRD) with a decay factor of
0.9. The learning rate is set to 2 · 10−5 for both the
backbone and classification head.

The dataset is split using stratified group k-fold
to ensure balanced class distributions between train-
ing and validation sets. Training batches are con-
structed using a custom BalancedBatchSampler
that ensures balanced class representation by over-
sampling minority classes and yielding samples in
a round-robin fashion across classes.

This achieves the best overall result for Mistake
Location, however, we find this solution to be over-
engineered compared to the actual results obtained.

Submission Macro F1 Accuracy Ranking

Submission 1 0.5013 0.6348 44
Submission 2 0.5301 0.6826 25
Submission 3 0.5318 0.6568 24

Table 2: Leaderboard Results for Track 2 (Mistake Lo-
cation)

3.5.3 Providing Guidance
Submissions 1, 2 and 4 all use a RoBERTa-large
model trained for 4 epochs with class-weighted
cross-entropy loss. Submissions 1 and 2 use a
response-only input and a cosine learning rate
scheduler without warm-up. Submission 2 addi-
tionally applies post-training calibration via tem-
perature scaling and per-class threshold adjustment.
Submission 4 differs by using a context input and
a linear cosine scheduler with warmup ratio 0.1,
while keeping the rest of the configuration un-
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changed. Submission 3 is based on the same
DeBERTa-large model as Submission 3 for Mis-
take Location 3.5.2. Both submissions 2 and 3
achieve strong validation Macro F1 scores (0.58
and 0.59, respectively), but drop significantly on
the test set (to 0.50 and 0.48), suggesting a degree
of overfitting to the validation distribution. Alter-
natively, the discrepancy may suggest a mismatch
in class proportions between the dev and test sets
for this metric. In contrast, Submission 4, which
scores lower on validation (0.56), achieves 0.52
on the test set – a smaller drop that could indicate
better generalization.

Submission Macro F1 Accuracy Ranking

Submission 1 0.4945 0.5398 42
Submission 2 0.5068 0.5740 35
Submission 3 0.4839 0.6025 58
Submission 4 0.5208 0.5734 23

Table 3: Leaderboard Results for Track 3 (Providing
Guidance)

3.5.4 Actionability
Submission 1 uses a ModernBERT-large model
trained for 4 epochs on full context input with stan-
dard cross-entropy loss. This serves as our starting
point for the track, providing a baseline for com-
paring different architectures and training setups.

Submission 2 uses a RoBERTa-large model
trained for 4 epochs, this time with context input
(instead of full context) and weighted cross-entropy
loss. This setup ends up performing the best in our
experiments, giving us the highest test score on this
track.

Submissions 3 and 4 use DeBERTa-v3-large
with the same setup as Submission 2: context in-
put and weighted cross-entropy loss. We switch
to DeBERTa-v3-large after noticing improvements
on the validation set, but the performance turns out
to be lower on the test set. For Submission 3, we
train for 4 epochs and initially observe promising
validation results. In Submission 4, we reduce the
training to 3 epochs to see if it improves general-
ization, but the results remain below expectations.

Submission 5 is based on the same DeBERTa-
large model as Submission 3 for Providing Guid-
ance and Mistake Location 3.5.2.

3.5.5 Tutor Identification
For this track, we use the tutor’s response as in-
put, as the goal is to identify which tutor (LLM

Submission ModernBERT Accuracy Ranking

Submission 1 0.6571 0.7136 23
Submission 2 0.6776 0.7214 11
Submission 3 0.6434 0.7214 33
Submission 4 0.6146 0.7098 41
Submission 5 0.6430 0.7033 34

Table 4: Leaderboard Results for Track 4 (Actionability)

Submission Macro F1 Accuracy Ranking

Submission 1 0.8866 0.8882 13
Submission 2 0.8794 0.8759 16
Submission 3 0.8786 0.8817 18

Table 5: Leaderboard Results for Track 5 (Tutor Identi-
fication)

or human) generates it. For all of the experiments,
we use cross entropy loss, a learning rate of 1e-5,
a batch size of 8, a weight decay of 0.05 and a
warmup ratio of 0.1.

Submission 1 uses a RoBERTa-large model
trained for 4 epochs. We notice that the validation
score is very close to the test score, so we use it as
a starting point to decide what to try next.

Submission 2 uses a ModernBERT-large
model trained for 5 epochs. We observe that the
validation score is higher than what we obtain with
RoBERTa, but when we actually submit it, the
test performance is lower, which suggests that the
model doesn’t generalize as well.

Submission 3 also uses ModernBERT-large,
but trained for 4 epochs. The motivation behind
this submission is to see if reducing the number of
epochs helps the model generalize better to unseen
data, especially after seeing a performance drop in
submission 2. While the validation score is similar,
the test performance is not improved, so we con-
clude that simply reducing the number of training
epochs isn’t sufficient to improve generalization.

We notice that the model sometimes predicts the
same tutor identity for multiple responses within
the same dialogue, even though each tutor gener-
ates only one response per dialogue. Due to time
constraints, we do not implement this refinement,
although it likely leads to improvements in both
accuracy and F1 scores.

4 Conclusions

Our work presents a comprehensive empirical ex-
ploration of text classification methods for the
Shared Task at BEA2025. We explore a wide range
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of modeling approaches – from classical machine
learning methods to large-scale transformer-based
models with parameter-efficient fine-tuning. De-
spite this diversity, we find that simple baselines
can achieve good enough evaluation scores and
that additional engineering using larger deep mod-
els adds less than 0.1 extra points for the Macro F1
evaluation score or accuracy.

The “To some extent” label emerges as a key
source of difficulty, introducing inconsistency that
complicates learning and evaluation. Our results
suggest that simple models can achieve competitive
performance when ambiguity is reduced, particu-
larly under lenient evaluation settings.

Across all tracks, our models achieve compet-
itive results, with top-10 rankings in three out of
five tracks.

To the question posed in our title – Are Simple
Baselines Good Enough? – we offer an answer in
the spirit of the task itself: “To some extent”.

Limitations

Model selection for the final leaderboard is based
on classification performance on a local dev split,
without in-depth qualitative analysis of the clas-
sifiers or their features. We believe that such ap-
proaches in the future lead to a better understand-
ing of why some responses are suitable and some
others are not, based on so-called "reasoning" ca-
pabilities of LLMs. Furthermore, the LLM we use
for prompting is a relatively weak one, and due
to compute limitations, we do not explore higher-
performing open source LLMs, nor closed-source
systems.
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A Data Distribution

Figure 1: Label distribution

For the first four tasks, we generate stratified
group splits that maintain label distribution balance
while ensuring that all responses from the same di-
alogue (identified by conversation_id) are assigned
to the same split. The stratification is based on the
majority (mode) label per conversation.

A.1 Conversation-Level Label Distributions
in Devset

Below are the counts of dialogues grouped by their
majority label for each task:
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Figure 2: T-SNE plots of tutor response embeddings
extracted from model ModernBERT-large. We can ob-
serve on the left-hand side of each plot several tiny clus-
ters of responses labeled with "No". These responses
have similar semantic patterns (e.g., starting with "Good
job!", "Good catch!", "You are absolutely correct") and
share similar labels regardless of task. The Actionabil-
ity task has the highest spread of negatively annotated
responses.

• Mistake Identification:

– Label Yes: 282 dialogues

– Label No: 12 dialogues

– Label To some extent: 6 dialogues

• Mistake Location:

– Label Yes: 216 dialogues

– Label No: 69 dialogues

– Label To some extent: 15 dialogues

• Providing Guidance:

– Label Yes: 204 dialogues

– Label To some extent: 50 dialogues

– Label No: 46 dialogues

• Actionability:

– Label Yes: 185 dialogues

– Label No: 92 dialogues

– Label To some extent: 23 dialogues

These distributions guides stratification during
splitting.

A.2 Label Distribution Within Splits

The table below shows the relative frequency of
each label within the training and validation splits
for each task. Proportions are expressed as percent-
ages of total samples within each split.

Task Label Train (%) Val (%)

Mist. Id. No 14.98 14.81
TSE 7.21 6.29
Yes 77.81 78.90

Mist. Loc. No 29.22 27.11
TSE 8.85 9.04
Yes 61.93 63.86

Prov. Guid. No 22.63 23.79
TSE 20.35 20.16
Yes 57.02 56.05

Act. No 31.85 33.54
TSE 14.84 15.15
Yes 53.31 51.31

Table 6: Label distribution percentages in the train and
validation splits for each task

B BERT tokenization with and without
prepended prompts.

Table 7: ModernBERT-large with default config
(lr=10−5, batch size=8, epochs=4, weight decay=0.01,
lr_scheduler=linear, warmup_ratio=0.1, cross entropy
loss) across tokenization strategies with and without
prepended prompts (prompt="Rate how well the tutor
identifies the student’s mistake on a scale from 0 (not at
all) to 2 (clearly)). Prompted variants improve perfor-
mance across all metrics, likely due to the model better
internalizing task-specific instruction tokens.

Strategy Macro F1 Accuracy

no_context 0.6759 0.6188
context 0.6495 0.6020
context_full 0.6413 0.6125
prompt_no_context 0.6951 0.6609
prompt_context 0.6799 0.6493
prompt_context_full 0.6740 0.6382

C Zero-shot and Few-shot Prompting
Approach

We evaluate the Mistake Identification task
using zero-shot and few-shot prompting with
mistralai/Mistral-7B-Instruct-v0.2, under greedy
decoding. All scores are reported on our validation
split.

In the zero-shot setting, a simple prompt
achieves a Macro F1 of 0.419, but tends to over-
predict “To some extent”. Adding label defini-
tions reduces performance (F1 drops to 0.367), and
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prompting with “think step by step” introduces
some invalid outputs and we decide not to invest
effort into resolving this behaviour. Introducing
a soft constraint, asking the model to avoid pre-
dicting “To some extent” unless clearly justified,
reduces overprediction overprediction (from 154 to
40 on validation split) and preserves performance
(F1 0.411), with a refined version reaching 0.421.

In the few-shot setup, we retrieve three di-
verse training examples using embeddings from
all-mpnet-base-v2 (bi-encoder) and rerank them
with the cross-encoder cross-encoder/ms-marco-
MiniLM-L-6-v2.This setup achieves 0.392 Macro
F1, with frequent “To some extent” predictions.
Simplifying retrieval increases these predictions
without improving performance. Adding label def-
initions and the same constraint improves F1 to
0.452 and reduces overprediction.

We do not invest further effort into optimizing
this approach, as performance remains well below
our logistic regression baseline.

This aligns with findings from Maurya et al.
(2025b), who report that LLM-based evaluators
correlate poorly with human judgments on peda-
gogical tasks.

C.1 Base prompt
Task: You are an expert tutor evaluator. Label
whether the tutor identifies the student’s mistake.
There are 3 possible labels:
- Yes
- To some extent
- No
Provide only the label.

C.2 With label definitions
These are added after listing labels and before the
instruction to provide only the label:

Label definitions:
- Yes: The tutor clearly identifies and addresses the
mistake.
- To some extent: The tutor hints at or partially
recognizes the mistake, but not clearly.
- No: The tutor does not identify or acknowledge
the mistake.

C.3 Anti-"To some extent" constraints
We experiment with two variants of constraints.
These are added after listing labels and before the
instruction to provide only the label.
1: Avoid choosing "To some extent" unless it is

clearly not a full "Yes" or a full "No".
2: Use "To some extent" only when the tutor’s
response **clearly shows partial understanding** –
not as a fallback when unsure.

C.4 Final Prompt Composition

In the zero-shot setting, this is appended after the
instruction:
### Student: student
### Tutor: response
### Label:

In the few-shot setting, this is appended af-
ter the instruction:
### Example i:
Student: student
Tutor: response
Label:

### Now classify:
Student: student
Tutor: response
Label:

Each few-shot prompt includes three examples
(one per class) retrieved using a combination of
bi-encoder similarity and cross-encoder reranking.
Cosine similarity is computed over the concatena-
tion of last student utterance + tutor response.

C.5 Inference Configuration

• Model & Tokenzier: mistralai/Mistral-7B-
Instruct-v0.2

• Decoding: Greedy (do_sample=False)
• Max tokens: 5
• Quantization: 4-bit NF4 (bitsandbytes)

D Hyperparameters and Training
Configurations

D.1 BERT-like encoders

Mistake Identification, Submission 1:
• Learning rate: 1e-5
• Weight decay: 0.01
• Scheduler: cosine learning rate scheduler (no

warmup)
• Epochs: 4
• Batch size: 8
• 5 different training seeds
Ensembling: We train five models (one per

seed) and average the logits at inference time.
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Post-training calibration: After ensembling,
we apply temperature scaling (T = 1.049) and
per-class threshold tuning using validation perfor-
mance. Since we use a threshold-based override
strategy, we only tune thresholds for the "Yes" and
"To some extent" classes. The "No" class is treated
as the default fallback when neither of the other
logits pass their respective thresholds. Final thresh-
olds:

• Yes: 0.4429
• To some extent: 0.3776
• No: default threshold

Mistake Identification, Submission 4:

• Learning rate: 2e-5
• Weight decay: 0.05
• Scheduler: cosine learning rate scheduler with

10% warmup
• Epochs: 3
• Batch size: 8
• Loss: Focal loss with γ = 1.3, class-balanced
α = [0.9216, 1.7772, 0.3012]

Post-training calibration: Temperature scal-
ing with T = 1.0, and threshold override strategy
using:

• Yes: 0.63
• To some extent: 0.22
• No: default fallback

To select the optimal input format and loss function,
we conduct multiple runs using different configu-
rations and evaluate them using Macro F1 on the
validation set. This selection procedure is applied
systematically to almost all submissions.

Figure 3: Macro F1 scores with and without context
across seeds

Figure 4: Macro F1 score comparison for loss functions
across seeds

Figure 5: Confusion matrix on the full dev set after train-
ing, ensembling, and calibration, just before generating
test predictions

Figure 6: Distribution of prediction confidences (maxi-
mum softmax probability) on the dev set, after ensem-
bling and temperature scaling

Mistake Identification, Submission 5: Same as
Submission 4, except trained for 4 epochs instead
of 3.
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E Validation Performance Tables

Model Track Macro F1 Accuracy

Logistic Regression Track 1 0.6318 0.8499
Logistic Regression Track 2 0.5167 0.6647
Logistic Regression Track 3 0.4947 0.5665
Logistic Regression Track 4 0.5547 0.6384
Logistic Regression Track 5 0.7455 0.7289

XGBoost Track 1 0.6254 0.8803
XGBoost Track 2 0.4671 0.7329
XGBoost Track 3 0.4775 0.6190
XGBoost Track 4 0.5374 0.6869
XGBoost Track 5 0.7758 0.7731

XGB + LightGBM Track 1 0.6230 0.8783
XGB + LightGBM Track 2 0.4734 0.7309
XGB + LightGBM Track 3 0.4584 0.6230
XGB + LightGBM Track 4 0.5291 0.6869
XGB + LightGBM Track 5 0.7846 0.7892

Spectrum Kernel Track 1 0.6346 0.8844
Spectrum Kernel Track 2 0.4728 0.7430
Spectrum Kernel Track 3 0.4410 0.6351
Spectrum Kernel Track 4 0.5490 0.7212
Spectrum Kernel Track 5 0.8186 0.8092

Table 8: Exact evaluation on the validation set using
minimal preprocessing and no fine-tuning.

Note: Tree-based models perform particularly well
on Mistake Location (Track 2) and Providing Guid-
ance (Track 3), achieving Macro F1 scores of 0.541
and 0.542 respectively – comparable to BERT-
like models on these tracks – when optimized via
randomized search over standard hyperparameter
grids.

Task Model Metric Val LB
MI String Kernel Acc. 0.9391 0.9541

String Kernel F1 0.8597 0.9185
ML String Kernel Acc. 0.8233 0.8630

String Kernel F1 0.7363 0.8404
PG XGBoost Acc. 0.8185 0.8222

XGBoost F1 0.6919 0.7860
AC String Kernel Acc. 0.8525 0.8940

String Kernel F1 0.8289 0.8659

Table 9: Comparison between the scores obtained with
traditional machine learning models on validation split
and the best public leaderboard results (LB), for each
task, under lenient evaluation.

Track Macro F1 Accuracy

Track 1
Submission 1 0.9054 0.9463
Submission 2 0.8675 0.9250
Submission 3 0.8907 0.9392
Submission 4 0.8959 0.9405
Submission 5 0.8917 0.9399

Track 2
Submission 1 0.7406 0.7666
Submission 2 0.7506 0.7886
Submission 3 0.7558 0.8009

Track 3
Submission 1 0.7303 0.7854
Submission 2 0.7228 0.7725
Submission 3 0.6730 0.7666
Submission 4 0.7171 0.7770

Track 4
Submission 1 0.8229 0.8571
Submission 2 0.8302 0.8565
Submission 3 0.8250 0.8500
Submission 4 0.8370 0.8655
Submission 5 0.8152 0.8487

Table 10: Lenient evaluation of our submissions on the
public leaderboard.
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E.1 Transformer Embeddings
E.1.1 Frozen ModernBERT-large Embeddings + Linear Classifier

Figure 7: Pooling strategy comparison across 2 split strategies; CV - StratifiedKFold(n_splits=5, shuffle=True,
random_state=42), Fixed - 80/20 train/validation splits as described in A

Evaluation is conducted using two split strategies: stratified 5-fold cross-validation and a fixed 80/20
train/validation split.

Since only the tutor response is used for embedding extraction, the folds are not grouped by conversa-
tion_id, which may partially explain why scores are higher under cross-validation for three out of four
tasks (not grouping by conversation_id can lead to leakage across folds by having similar responses from
the same dialogue appearing in both train and validation).

E.1.2 Various Model layers + Linear Classifier
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Figure 8: Pooling strategies from BERT model comparison across layers for Mistake Identification. Mean pooling
appears to perform better on early and late layers.

Figure 9: Comparison of different predictors using embeddings from middle layers of GritLM. The are no striking
differences between MLP and Logistic Regression classifiers. Furthermore, there is no pattern showing that late
layers are performing significantly better than early layers using embeddings from GritLM. The k-nearest neighbors
(knn) and Gaussian Naive Bayes models perform weaker.

F Misclassified Examples

Here we provide several misclassified examples from our best predictor on Mistake Identification.
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Example of chat misclassified as "No" for Mistake Identification; True label: "Yes"

Tutor: Hi, could you please provide a step-by-step solution for the question below? The question
is: Sophia is thinking of taking a road trip in her car, and would like to know how far she can drive
on a single tank of gas. She has traveled 100 miles since last filling her tank, and she needed to put
in 4 gallons of gas to fill it up again. The owner’s manual for her car says that her tank holds 12
gallons of gas. How many miles can Sophia drive on a single tank of gas?
Student: Sophia used 4 out of the 12 gallons of gas in her tank, so there are 12-4 = 8 gallons of
gas left in the tank. If Sophia can drive 100 miles on 4 gallons of gas, then she can drive 100/4 =
25 miles per gallon. Therefore, with 8 gallons of gas left in the tank, Sophia can drive 25 x 8 = 200
miles on a single tank of gas. 200
Tutor: talk me through your solution
Student: Hi I started by figuring out how many gallons of gas were left in Sophia’s tank. I knew
that she had used 4 gallons of gas to fill it up so I subtracted 4 from 12 to get 8 gallons of gas left
in the tank. Then I figured out how many miles Sophia could drive on a single gallon of gas. I
knew that she had driven 100 miles on 4 gallons of gas so I divided 100 by 4 to get 25 miles per
gallon. Finally I multiplied 25 by 8 to get 200 miles which is how many miles Sophia can drive on
a single tank of gas.
Response: Great job! To further enhance your understanding, let’s explore more examples and
practice problems related to this concept

Interpretation: Student’s math is correct, 8 gallons× 25 miles gallon = 200 miles, but the answer should
be 300 since Sophia can drive 12 gallons × 25 miles gallon = 300 miles. The ground truth label is "Yes",
implying that the tutor correctly identified the mistake. Language in the tutor’s response is affirming and
does not correct the student’s incorrect logic, so the model likely sees Great job! .. and looking only at
the tutor response, assumes no mistake is identified.

Example of chat misclassified as "Yes" for Mistake Identification; True label: "No"

Tutor: Hi, could you please provide a step-by-step solution for the question below? The question
is: A customer’s loyalty card at a store gives them rewards of $1 off their next purchase for every
$20 they spend. Their last shopping trip, they spent $80. This shopping trip, they spent $43, used
their rewards, and applied a coupon that took twice the amount of rewards off the price. How many
dollars did the customer pay on this shopping trip?
Student: The customer earned 80/20 = 4 rewards on their last shopping trip.
They had 4 x $1 = $4 in rewards to use this shopping trip. The coupon took twice the amount of
rewards off, so it took $4 x 2 = $8 off the price. The original price of the items was $43 + $4 = $47.
After the coupon and rewards were applied, the customer paid $47 - $8 = $39.
Tutor: could you please walk me through your solution?
Student: Sure. I started by calculating the rewards the customer earned on their last shopping trip.
They spent $80 so they earned 80/20 = 4 rewards. Then I multiplied 4 rewards by $1 to get the
total amount of rewards which was $4. I then applied the coupon that took twice the amount of
rewards off the price so it took $4 x 2 = $8 off the price. The original price of the items was $43 +
$4 = $47. After the coupon and rewards were applied the customer paid $47 - $8 = $39.
Tutor: If i purchase a bicycle worth $100 and have a coupon of $24 and rewards worth 6$ how
much do i actually pay for it?
Student: You would pay $100 - $24 - $6 = $70.
Response: That’s close, but remember to apply the coupon first since it has a higher value and can
reduce the price before the rewards. So, you would pay $100 - $24 = $76 and then subtract the
rewards, which is $76 - $6 = $70, not the other way around.

Interpretation: Student’s answer of 70 is mathematically correct. The tutor’s reasoning about the order
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is irrelavant, since subtracting fixed dollar amounts is order-invariant. The tutor gives a correct final
answer but justifies it incorrectly, which should count as a failure to identify a student mistake (correct
answer by chance). The model likely sees the phrase: "That’s close, but remember..." which resembles
correction, and may interpret it as mistake identification, when in reality, no actual error is identified.

These misclassifications highlight the limitations of response-only models for Mistake Identification.
In both cases, the tutor’s language is superficially corrective or affirming, but semantically misaligned
with the student’s actual performance.

G Data observations

During our experiments, we identify some cases of label inconsistencies, especially between label "Yes"
and "To some extent".
Label disagreement on nearly identical tutor responses when the student makes a mistake:

1. Mistake Identification

Sample A (Label: Yes)

Conversation ID: 413876945_2
History:
Tutor: Please recheck your answer once.
Tutor: What is the product of this equation?
Tutor: 7*60 = ?
Student: 520
Response: Please recheck your answer.

Sample B (Label: To some extent)

Conversation ID: 294929858
History:
Tutor: We are asked to find the quotient of 72 and 6.
Tutor: Let n be the number of doughnuts.
Tutor: Are you working on this question?
Student: 0.0833333
Response: Please recheck your answer.

2. Actionability

Sample A (Label: Yes)

Conversation ID: 29892262_1
History:
Tutor: Happy to work with you today!
Tutor: Today, let us review and master the lesson "Rounding Whole Numbers."
Tutor: Which is the greatest number among 5 and 3?
Student: 4
Response: That’s a good try, but remember, we’re looking for the greatest number between 5 and 3.
Let’s try again!
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Sample B (Label: To some extent)

Conversation ID: 29892262_2
History:
Tutor: Happy to work with you today!
Tutor: Today, let us review and master the lesson "Rounding Whole Numbers."
Tutor: Which is the greatest number among 5 and 3?
Student: 4
Response: That’s a good try, but remember we’re looking for the greatest number between 5 and 3.
Let’s try again.

H Team rankings

Metric Mistake ID Mistake Loc Prov. Guid. Actionability Tutor ID

Strict Macro F1 8 12 13 7 6
Strict Accuracy 4 23 21 7 6
Lenient Macro F1 8 12 11 10 –
Lenient Accuracy 7 10 10 10 –

Table 11: Archaeology’s offical team ranking per task under all evaluation metrics.
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Abstract

This paper presents our system submission to
the Building Educational Applications (BEA)
2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors. The task evalu-
ates multiple dimensions of AI tutor responses
within student-teacher educational dialogues,
including mistake identification, mistake loca-
tion, providing guidance, and actionability. Our
approach leverages transformer-based models
(Vaswani et al., 2017), primarily DeBERTa
and RoBERTa, and incorporates ordinal re-
gression, threshold tuning, oversampling, and
multi-task learning. Our best-performing sys-
tems are capable of assessing tutor response
quality across all tracks. This highlights the ef-
fectiveness of tailored transformer architectures
and pedagogically motivated training strategies
for AI tutor evaluation.

1 Introduction

Nowadays, AI systems can support sophisticated
educational dialogues thanks to recent advance-
ments in large language models (LLMs), which
suggests they could be used as tutors in real-world
learning settings. Although models like GPT-4
(Achiam et al., 2023) and its successors are effec-
tive at producing coherent text (Brown et al., 2020),
their capacity to carry out pedagogical tasks, like
identifying misconceptions, assisting students, or
providing helpful criticism, is still poorly under-
stood and requires focused assessment (Tack and
Piech, 2022; Daheim et al., 2024).

Our work in the BEA 2025 Shared Task
(Kochmar et al., 2025) aims to address this gap
by systematically assessing tutor responses along
four dimensions: mistake identification, mistake lo-
cation, guidance provision, and actionability. Built
upon a unified taxonomy (Maurya et al., 2025), the
task draws on annotated exchanges from the Math-
Dial (Macina et al., 2023) and Bridge (Wang et al.,
2024) datasets to create a benchmark for evaluating

AI tutor behaviour.
This paper describes our submissions to all four

tracks of the shared task. Our systems leverage
transformer-based models, primarily DeBERTa (He
et al., 2021) and RoBERTa (Liu et al., 2019b), with
tailored architectures for each subtask. Binary and
multiclass classification are applied for Tracks 1
and 3, ordinal regression with threshold tuning for
Track 2, and ensemble classifiers for Track 4 that
combine neural features with symbolic representa-
tions (e.g., TF-IDF and entailment scores).

Several techniques have been employed to rec-
tify class imbalance and take advantage of cross-
task signals:

• Utilizing resampling strategies that have been
proven successful in analogous domains to
oversample under-represented labels, such as
"To some extent" (Saha et al., 2023; Chawla
et al., 2002).

• Adopting a standard multi-task learning ar-
chitecture comprising a shared encoder and
task-specific output layers, following estab-
lished practices in similar domains (Liu et al.,
2019a).

• Ensemble classifiers (using stacking) that im-
prove actionability prediction by combining
deep contextual representations with conven-
tional NLP features.

In every track, our models regularly outper-
form baseline systems. For instance, the multi-
task DeBERTa model attains a Macro F1 of 0.8065
on Track 4 (strict setting) and 0.8809 on Track 1.
A regression-based strategy with threshold adjust-
ment yields the most remarkable results for Track
2, with a Macro F1 of 0.58. Ensemble classifiers
on Track 4 considerably increase robustness; the
lenient Macro F1 is greater than 0.861.

These findings show that using well-designed
methods to balance and combine training data and
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Figure 1: Example of Dataset where MI - Mistake Iden-
tification, ML - Mistake Location, PG - Providing Guid-
ance, ACT - Actionability.

carefully fine-tuning transformer models can help
assess AI teachers to check if they speak fluently
and give useful educational feedback (Wollny et al.,
2021).

2 Shared Task Structure

Development phase: A dataset consisting of
2476 annotated tutor responses drawn from 300
dialogues was provided. Each response was labeled
across four pedagogical dimensions — mistake
identification, mistake location, guidance provision,
and actionability, according to the taxonomy of
Maurya et al. (2025). A 80%–20% stratified split
was performed to create training and test sets (1980
and 496 responses, respectively), preserving class
label proportions across all tracks. This stratified
sampling ensured balance across both frequent and
rare labels such as “Yes”, “No”, and “To some
extent”.

Table 1 summarizes the distribution of classes
across the four tracks before and after splitting. It is
observed considerable class imbalance in all tracks,
particularly in Track 1, where over 75% of the re-
sponses are labeled “Yes”. The “To some extent”
category appears in only 7% of cases. While Track
2 shows slightly improved balance, it still under-
represents the “To some extent” label. Track 3 is
relatively more balanced, with “To some extent”
making up over 20% of the examples. Track 4
has the most even distribution, with “No” (32.3%),

“Yes” (52.8%), and “To some extent” (14.9%) la-
bels appearing at meaningful frequencies. This
variation in class balance prompted us to use strat-
ified sampling, experimenting with a range of mod-
els (Section 3) and evaluating them using metrics
— Accuracy and Macro-F1 under both strict and le-
nient conditions. The top-performing models were
selected for final submission.

In addition to quantitative analysis, it is exam-
ined how different tutors address the four pedagog-
ical dimensions using concrete examples. Figure 1
illustrates a representative case comparing GPT-4

and Gemini on an evaluation error. Both systems
successfully identify the student’s mistake, locate
it, and provide guidance; however, only Gemini
(Reid et al., 2024) offers actionable feedback with
explicit instructions to the student on how to correct
their answer, whereas GPT-4 omits this crucial step.
This highlights the importance of distinguishing be-
tween basic guidance and true actionability in
tutor responses and underscores the nuanced chal-
lenges in reliably annotating and modelling these
dimensions.

Test phase: In the final evaluation phase, an un-
labeled test set comprising 1547 tutor responses
from 191 dialogues was given. Predictions from
our best models were submitted for each of the
four tracks, and performance was assessed using
the same evaluation metrics (Section 4). To aid
interpretation, LIME (Local Interpretable Model-
agnostic Explanations) on selected outputs was ap-
plied to visualize influential tokens (see Figure 6a),
offering insights into the model behaviour.

Track Split No Yes To some extent

Track 1 All 370 (15.0%) 1932 (78.0%) 174 (7.0%)
Train 296 (15.0%) 1545 (78.0%) 139 (7.0%)
Test 74 (15.0%) 387 (78.0%) 35 (7.0%)

Track 2 All 709 (28.6%) 1552 (62.7%) 215 (8.7%)
Train 567 (28.6%) 1241 (62.7%) 172 (8.7%)
Test 142 (28.6%) 311 (62.7%) 43 (8.7%)

Track 3 All 566 (22.9%) 1407 (56.8%) 503 (20.3%)
Train 453 (22.9%) 1125 (56.8%) 402 (20.3%)
Test 113 (22.9%) 282 (56.8%) 101 (20.3%)

Track 4 All 800 (32.3%) 1307 (52.8%) 369 (14.9%)
Train 640 (32.3%) 1045 (52.8%) 295 (14.9%)
Test 160 (32.3%) 262 (52.8%) 74 (14.9%)

Table 1: Class-wise distribution of tutor responses
across all four tracks (Train = 80%, Test = 20%). Per-
centages indicate class proportions within each split.

3 Tracks Descriptions and Methodology

• Track 1: Mistake Identification - Since stu-
dent mistakes are present in every dialogue,
a good tutor must identify them by reflect-
ing student understanding (Tack and Piech,
2022) and correctness (Macina et al., 2023).
A RoBERTa-base model is fine-tuned for 3-
way sequence classification that detects the
presence of error in tutor responses and pro-
vides dialogue context. The cross-entropy loss
function is used. Predictions at the end are all
converted to categorical labels. The RoBERTa
model is used for this task as it captures deep
contextual representations from large-scale
pretraining on diverse data, which enables it
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to effectively understand subtle distinctions
in input, making it the best-performing model
for identifying sentence-level mistakes.

• Track 2: Mistake Location - A good tutor
response should point to the error location
and explain it clearly to help the student im-
prove, capturing targetedness as defined by
(Daheim et al., 2024). It is a fine-grained task
that requires identifying the exact phrase caus-
ing the error and not just flagging the whole
sentence. An ordinal regression approach
is implemented by fine-tuning a pretrained
DeBERTa-v3-base transformer encoder. The
mapping of class labels to ordinal values was
done as follows: Class “No" was mapped to
0, Class “To Some Extent" was mapped to
1, and Class “Yes" was mapped to 2. Ran-
domOverSampler has been used to address
class imbalance, by increasing the number of
samples in the underrepresented To some ex-
tent class to equal the number of samples in
class No. The model architecture consists of
a DeBERTa encoder followed by a dropout
layer and a linear regression head that outputs
a continuous scalar. During training, optimiza-
tion is done through mean squared error loss
between predicted scalar outputs and ordinal
labels. Focal and Cross entropy loss underper-
formed compared to the Mean Squared Error
loss. Consequently, the results of these losses
are not reported in the paper. Discretization
was performed for continuous predictions into
ordinal classes through predefined thresholds
during inference, and then inverse mapping to
the original categorical labels was done. The
enhanced positional encoding and disentan-
gled attention mechanism of the DeBERTa
model allows it to locate contextual clues and
word-level dependencies, making it highly ef-
fective and the best performing for this track.

• Track 3: Providing Guidance - A good tutor
response should offer helpful guidance, like
hints without explicitly giving away the so-
lution, aligning with helping a student (Tack
and Piech, 2022) and usefulness (Wang et al.,
2024). A RoBERTa-base model is fine-tuned
on the final input sequence. Encoding of tar-
get labels via label encoding into three classes
is done. Model architecture comprises a
RoBERTa encoder, dropout, and a linear clas-

sification head. The cross-entropy loss func-
tion and a cosine learning rate with 60 epochs
are used. Mixed precision training, along with
gradient scaling and gradient clipping, has
been employed to improve efficiency. The na-
ture of deep contextual understanding and ro-
bust pretraining enables the RoBERTa model
to generate contextually relevant and accurate
suggestions, making it the best-performing
model for offering meaningful guidance on
corrections.

• Track 4: Actionability - A good tutor re-
sponse should clearly mention the next step
for the student avoiding dead ends—capturing
actionability as defined by (Daheim et al.,
2024). A stacked ensemble model combin-
ing traditional TF-IDF with contextual em-
beddings from RoBERTa is developed. TF-
IDF vectorizes the tutor responses initially
and the tokenized input is passed into a pre-
trained RoBERTa-base model which is fine-
tuned for sequence classification having three
output classes. Probability distributions from
RoBERTa are then concatenated with TF-IDF
vectors forming a comprehensive feature set.
On this, training is performed by Extra Trees
ensemble classifier. Final model evaluation
is done using accuracy and macro F1 score,
demonstrating the effectiveness of classical
integration. A stacking ensemble approach
using TF-IDF, RoBERTa and Extra Trees is
used for this track because it combines the
strengths of deep contextual embeddings, lex-
ical features and robust non-linear classifica-
tion to effectively capture both semantic and
surface-level cues, leading to superior action-
ability predictions.

3.1 Multitask Approach

A multitask RoBERTa-based model is utilized
to jointly predict four classification tasks: Mistake
Identification, Mistake Location, Providing Guid-
ance, and Actionability. The model shares frozen
embeddings and partially frozen encoder layers,
which are followed by task-specific classification
heads. The total loss is a weighted sum of cross-
entropy losses across tasks:

Ltotal =

4∑

i=1

λi · CE(ŷi, yi)
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TRACK 1: Mistake Identification
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.607 0.827 0.849 0.919 94
DistilRoBERTa 0.621 0.818 0.823 0.892 84
BERT 0.626 0.846 0.861 0.928 80
RoBERTa 0.639 0.823 0.837 0.903 67
Multitask (RoBERTa, 40 epochs) 0.644 0.855 0.872 0.926 63

TRACK 2: Mistake Location
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.532 0.688 0.749 0.795 23
SpanBERT 0.477 0.601 0.708 0.751 63
RoBERTa 0.495 0.624 0.712 0.749 48
BERT 0.508 0.654 0.712 0.765 42
ModernBERT 0.486 0.599 0.702 0.767 56

TRACK 3: Providing Guidance
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.481 0.587 0.685 0.733 60
RoBERTa 0.489 0.603 0.693 0.765 52
Multitask (RoBERTa, 25 epochs) 0.460 0.658 0.723 0.789 79
Multitask (RoBERTa, 40 epochs) 0.465 0.658 0.722 0.789 78

TRACK 4: Actionability
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
Stacking (BERT + Extra Trees) 0.599 0.677 0.815 0.845 47
Stacking (RoBERTa + Extra Trees) 0.606 0.689 0.821 0.847 45
DeBERTa (Last Layer) 0.589 0.676 0.810 0.846 53
DeBERTa (Second Last Layer) 0.476 0.564 0.657 0.661 75
Multitask (RoBERTa, 40 epochs) 0.579 0.688 0.815 0.839 55

Table 2: Performance metrics (macro F1 and accuracy) across Tracks 1–4 using strict and lenient evaluation settings.
Strict evaluation best values are highlighted in blue and Lenient evaluation best values in green.

where λi are task specific weights, ŷi are the pre-
dicted logits and yi are the corresponding ground
truth labels. Hyperparameters such as learning rate,
dropout, and task weights are optimized using the
Optuna framework. Evaluation uses macro-F1 and
lenient accuracy across tracks.

4 Evaluation and Results

Tracks 1-4 are evaluated using macro F1 as the
primary metric and accuracy as the secondary met-
ric. The two evaluation formats used are as follows:

• Strict evaluation: A total of three classes
are present - "Yes", "To some extent", "No".
Based on these classes, models are assessed.

• Lenient evaluation: “Yes” and “To some ex-
tent” are merged into a single class that simpli-
fies the task into a binary classification (“Yes
+ To some extent” vs “No”).

The results obtained here (shown in Table 2) are on
the test dataset. For results obtained on the devel-
opment dataset refer to the Appendix (Section A).

4.1 Track 1: Mistake Identification
Multitask RoBERTa models, especially the one

fine-tuned for 40 epochs, outperformed all other
models with a strict macro F1 of 0.6438 and accu-
racy of 0.8546, highlighting the benefit of extended

domain-specific training. BERT maintained strong
baseline performance (F1: 0.6262), whereas Dis-
tilRoBERTa exhibited lower performance due to
its compact architecture, trading off accuracy for
efficiency.

4.2 Track 2: Mistake Location

DeBERTa achieved the best performance (F1:
0.5319, accuracy: 0.6878), likely due to its strong
token-level contextual understanding. RoBERTa
and BERT were competitive but fell slightly behind.
The overall lower scores across models reflect the
increased difficulty in precisely locating mistakes,
which demands deeper syntactic and semantic anal-
ysis.

4.3 Track 3: Providing Guidance

In this track, models had to suggest appropriate
corrections and identify errors. RoBERTa-based
models again led, with strict F1 around 0.48 and
best accuracy at 0.6580 by the Multitask variant.
While fine-tuned RoBERTa models balanced preci-
sion and recall effectively, Multitask models under-
performed.

4.4 Track 4: Actionability

Our approach to this track combined surface-
level lexical and deep contextual features to identify
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Figure 2: Radar plots comparing model performance across the four shared task tracks. The top row shows results
for Track 1 (Mistake Identification, left) and Track 2 (Mistake Location, right). The bottom row presents Track 3
(Providing Guidance, left) and Track 4 (Actionability, right). Each plot visualizes four evaluation metrics: Strict
Accuracy, Strict Macro F1, Lenient Accuracy, and Lenient Macro F1, as reported in Table 2. These radar charts
highlight the relative strengths and weaknesses of different modeling approaches across the four tracks.

actionable feedback. A stacked ensemble model
using TF-IDF features, RoBERTa embeddings, and
an Extra Trees classifier achieved the highest re-
sults (F1: 0.6055, accuracy: 0.6897), outperform-
ing standalone models like BERT and DeBERTa.
The Multitask RoBERTa model showed similar ac-
curacy but slightly lower F1, suggesting ensemble
methods can offer better generalization by leverag-
ing multiple feature types.

5 Analysis and Discussion

Various model strengths have been seen across
the four tracks. Fine-tuned RoBERTa with
40 epochs gave the best result after Multitask
(Roberta) for Mistake Identification, while De-
BERTa did better in Mistake Location due to better
token-level context. RoBERTa also performed
best in Providing Guidance. For Actionability, a
stacking ensemble model of TF-IDF, RoBERTa,
and Extra Trees outperformed transformers alone,
as it allowed the value of combining both seman-
tic and lexical features. Real-world classification

challenges are clearly visible by the gap between
the strict and lenient metrics. Overall, fine-tuned
transformers showed quite promising results, but
stacking ensemble approaches are crucial for com-
plex tasks.

Figure 2 provides a comparative view of model
performances across the four shared task tracks
using four evaluation metrics — Strict Accuracy,
Strict Macro F1, Lenient Accuracy, and Lenient
Macro F1, all derived from leaderboard submis-
sions on the test set (refer Table 2). For Track 1,
multi-task RoBERTa achieves the most balanced
performance, outperforming BERT and vanilla
RoBERTa baselines. The findings of Track 2
demonstrate how effective DeBERTa is when deal-
ing with ordinal-aware losses. Multi-task models
increase macro-F1 in Track 3. Track 4 demon-
strates that ensemble models include classifiers
and entailment scores outperform traditional NLI
(Natural Language Inferencing) or classification
baselines and provide the most promising results
across all measures. Overall, the plots highlight
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Figure 3: Box Plot showing the evaluation of different models in each track

the advantages of ordinal regression (Cheng and
Greiner, 2008; Li and Lin, 2007), stacked ensemble
classifiers (Dietterich, 2000) and multi-task learn-
ing (Ruder, 2017).

Figure 3 presents box-and-scatter plots sum-
marizing model performance across the four BEA
2025 Shared Task tracks. Each subplot represents
one track and compares five models across four
metrics: Strict Macro F1, Strict Accuracy, Lenient
Macro F1, and Lenient Accuracy. Boxplots show
metric distributions, while scatter points (colored
by model) indicate individual scores. In Tracks 1
and 4, the boxes are notably thin across all metrics,
indicating comparable performance across models
and easier tasks overall. Accuracy and macro-F1
scores appear to plateau here, suggesting that fun-
damentally different strategies could be needed to
achieve additional improvements. Tracks 2 and 3,
on the other hand, display much wider boxes, espe-
cially for strict accuracy in both tracks and lenient
metrics in Track 3, indicating greater difficulty and
more performance variation. Transformer-based
models demonstrated benefit: DeBERTa led con-
sistently in Track 2, while multitask RoBERTa
stood out in Track 3, outperforming others across
strict and lenient metrics.

Figures 4 and 5 present the t-SNE plots (van der
Maaten and Hinton, 2008), which show the best-
performing models in each track. It can be seen
that the models clearly separate "No" from "Yes" +
"To some extent" examples when used in a lenient
setup, suggesting they handle obvious cases well.
However, in a three-class setting (strict evaluation),
"Yes" and "To some extent" classes often overlap,
leading to difficulties in capturing subtle differ-
ences between full and partial affirmations. This
overlap illustrates the model’s limited capacity to
capture nuanced intent as well as the subjective na-
ture of intermediate labels (like "To some extent").

Relative difficulty among the tasks: The results
and analysis demonstrate that Tracks 2 and 3 have
a higher difficulty level. In Table 2, we see that
the metric scores for Tasks 2 and 3 are lower than
those of the other tasks. In Figure 3, we also see
that the models have diverse scores on the strict ac-
curacy metric for these tasks, indicating these tasks
require careful modelling and training. Variation
in modeling or training results in quite different
scores for Tracks 2 and 3. A similar observation
can be made from the radar plot in Figure 2 where
the polygons corresponding to different methods
are clearly distinctly visible, indicating a difference
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(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 4: t-SNE Plot showing distribution of classes based on strict evaluation

in the scores. Furthermore, the t-SNE plots in Fig-
ures 4 and 5 show many overlaps for the points
belonging to different classes in the case of Tracks
2 and 3. We hypothesize that this difficulty might
be due to the presence of referencing (identifying
error location in Track 2 and providing guidance in
terms of how to correct the error in Track 3).

Interpretability: LIME (Ribeiro et al., 2016)
is employed for analyzing model interpretability.
This has been done for both Track 1 (Mistake Iden-
tification) and Track 4 (Actionability). In Figure 6a,
highlighted tokens show that the model attends to
corrective phrases from the tutor (e.g., "We need",
"Remember,", "Let’s try counting..."), suggesting
alignment with human reasoning when identifying
student mistakes. In Task 4 (Figure 6b), attention is
emphasized by LIME on mathematical expressions
(e.g., "20 plus 7 plus 10 plus 6") and evaluative sig-
nals (e.g., "Nice try!", "answer is incorrect"). The
suggestion that the model takes into account both
numerical and contextual feedback when determin-
ing response availability is clear. These visualiza-
tions demonstrate how the model uses meaningful
context to improve interpretability and confidence
in its predictions.

On the overall performance of different represen-

tation techniques and models: Based on our experi-
mental results shown for (a) the held-out dataset in
Table 2 and (b) the development data in Appendix
A, we see that DeBERTa performed better than
RoBERTa in most of the cases. This might be due
to the disentangled representation of the token and
position vectors of the inputs in DeBERTa, and the
attention computation performed on these word and
position matrices separately. Also, DeBERTa uses
adversarial inputs for its fine tuning which makes it
robust. We also see that MultiTask learning helps
in good performance across the tasks. This is be-
cause the tasks in the 4 tracks are strongly related
to each other. All tracks aim to help the student
with inputs to identify and correct mistakes. Due
to this commonality among the tasks, we felt that
a joint model could leverage the signals across the
tasks and perform well. We did not use any LLM
based approach as (a) it would be difficult to ex-
plain its decisions without effective prompting, (b)
the results of LLM response may change signifi-
cantly between different prompts, (c) coming up
with good prompt requires extensive trial and error,
and (d) extensive experimentations would require
costly subscription of the API keys.
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(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 5: t-SNE Plot showing distribution of classes based on lenient evaluation

(a) Track 1 - Mistake Identification

(b) Track 4 - Actionability

Figure 6: Interpretability analysis for Tracks 1 and 4
with LIME

6 Conclusions

In conclusion, the study demonstrated the effec-
tiveness of transformer-based models, particularly
RoBERTa and DeBERTa, which addressed various
tasks of pedagogical ability evaluation of AI tutors
like mistake identification, mistake location, pro-
viding guidance and actionability. We showed how
using sampling techniques to balance the dataset
is essential to have better discrimination power for
the tasks. The results and analysis also demon-
strate that Tracks 2 and 3 have a higher difficulty
level. This is due to the presence of referencing
(identifying error location in Track 2 and providing
guidance in terms of how to correct the error in

Track 3). This may be indirectly reflected in how
the inputs are organized in the latent space. Due to
the relatedness among the tasks, we also see that a
multitask approach is well suited for approaching
all the tracks in the shared task together.

However, the models have a significant scope
for improvement as indicated by the moderate per-
formance of the methods. Also, as the tasks come
from the field of education, explainability in the
actions is also required. Our future work in this
segment will try to focus on these aspects.

Limitations

Our method’s limitations include its reliance on
the quality of labeled data and high compute re-
quirements associated with ensemble approaches.
There is room for improved semantic modeling
because it may also have trouble capturing sub-
tle contextual meanings in feedback. Additionally,
performance on the “To some extent” class is vari-
able between tracks, indicating a lack of ability to
handle ambiguity.

Ethics Statement

This work is based on a limited size dataset,
which constrains the generalizability and trustwor-
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thiness of our findings. While transformer-based
models are employed that are typically pre-trained
on large datasets, the small size of our dataset may
limit their full potential. It is acknowledged that
the reported results may not fully reflect real-world
performance, and future work should be encour-
aged to validate and extend our findings on larger
and more diverse corpora. No sensitive informa-
tion is present in the dataset. The study adheres
to ethical standards for data handling and research
transparency.
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A Appendix

This appendix presents a set of quantitative results for each of the four tracks in the BEA 2025 Shared
Task. For each track, one table (Table 3, Table 4, Table 5 and Table 6) was included for reporting evaluation
metrics - accuracy, macro-F1, precision, and recall in both strict and lenient settings for all tested models,
obtained on the development dataset.

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

BERT (base, uncased) 0.849 0.593 0.633 0.574 0.929 0.852 0.878 0.830
RoBERTa-base 0.879 0.688 0.742 0.658 0.944 0.884 0.903 0.867
DistilRoBERTa-base 0.865 0.674 0.721 0.646 0.927 0.850 0.868 0.835
DeBERTa-v3-base 0.871 0.672 0.735 0.636 0.934 0.859 0.892 0.833
RoBERTa-base (Focal Loss) 0.827 0.593 0.591 0.597 0.911 0.831 0.821 0.842
MathBERT 0.845 0.596 0.633 0.581 0.919 0.836 0.848 0.825
Multitask (RoBERTa) 0.858 0.553 0.534 0.573 0.919 0.847 0.838 0.857
Multitask (DeBerta) 0.879 0.576 0.572 0.582 0.941 0.881 0.893 0.869
Multitask (Bert) 0.871 0.562 0.579 0.555 0.936 0.861 0.904 0.829

Table 3: TRACK-1: Mistake Identification performance across various transformer models using Strict and Lenient
evaluation metrics. Colour codings - Blue (Strict), Green (Lenient)

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Without Oversampling
DeBERTa-v3-base 0.729 0.580 0.592 0.577 0.813 0.753 0.779 0.738
SpanBERT-base-cased 0.684 0.533 0.568 0.527 0.817 0.745 0.803 0.722
Codebert-base 0.688 0.519 0.535 0.512 0.802 0.741 0.765 0.727
Modern-bert-base 0.671 0.564 0.599 0.599 0.813 0.739 0.796 0.717
Roberta-base 0.682 0.542 0.577 0.548 0.813 0.742 0.792 0.721
Bert-base-uncased 0.684 0.506 0.544 0.494 0.802 0.723 0.782 0.701
Multitask (RoBERTa) 0.729 0.476 0.489 0.489 0.809 0.739 0.783 0.719
Multitask (Deberta) 0.739 0.489 0.512 0.498 0.831 0.765 0.823 0.739
Multitask (Bert) 0.720 0.463 0.505 0.472 0.812 0.726 0.811 0.701

With Oversampling
SpanBERT-base-cased 0.709 0.553 0.559 0.548 0.811 0.759 0.771 0.751
DeBERTa-v3-base 0.694 0.532 0.539 0.528 0.802 0.747 0.761 0.737
Codebert-base 0.659 0.521 0.528 0.525 0.786 0.726 0.739 0.717
Modern-bert-base 0.633 0.536 0.577 0.565 0.813 0.745 0.788 0.725
Roberta-base 0.686 0.56 0.566 0.578 0.798 0.744 0.755 0.737
Bert-base-uncased 0.718 0.533 0.565 0.521 0.807 0.733 0.783 0.713

Table 4: TRACK-2: Mistake Location Performance across various transformer models using Strict and Lenient
Evaluation. Colour codings - Blue (Strict), Green (Lenient)

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Multitask (RoBERTa) 0.659 0.447 0.434 0.485 0.823 0.722 0.751 0.704
Multitask (Bert) 0.667 0.454 0.472 0.485 0.847 0.742 0.812 0.711
Multitask (Deberta) 0.664 0.458 0.567 0.486 0.836 0.730 0.784 0.704
BERT (Last layer predictions) 0.589 0.503 0.516 0.497 0.748 0.607 0.622 0.599
BERT (Second-last Layer + Linear Classifier) 0.581 0.453 0.507 0.448 0.732 0.594 0.602 0.589
RoBERTa (Last layer predictions) 0.655 0.593 0.611 0.582 0.825 0.733 0.754 0.718
RoBERTa (Second-last Layer + Linear Classifier) 0.282 0.288 0.731 0.439 0.841 0.688 0.901 0.654
DeBERTa (Last layer predictions) 0.601 0.524 0.539 0.520 0.760 0.611 0.637 0.601
DeBERTa (Second-last Layer + Linear Classifier) 0.615 0.418 0.671 0.425 0.813 0.611 0.847 0.598
DistilRoberta (Last layer predictions) 0.601 0.522 0.543 0.517 0.778 0.636 0.672 0.622
DistilRoberta (Second-last Layer + Linear Classifier) 0.479 0.376 0.525 0.427 0.561 0.529 0.568 0.597

Table 5: TRACK-3: Providing Guidance performance across various transformer models using Strict and Lenient
evaluation metrics. Colour codings - Blue (Strict), Green (Lenient)
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Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Multitask (RoBERTa) 0.669 0.449 0.469 0.472 0.801 0.722 0.784 0.701
Multitask (Bert) 0.669 0.449 0.493 0.469 0.815 0.731 0.826 0.705
Multitask (Deberta) 0.715 0.505 0.484 0.536 0.844 0.807 0.814 0.799
Stacking (BERT + Extra Trees) 0.754 0.655 0.675 0.648 0.867 0.849 0.847 0.851
Stacking (BERT + Logistic Regression) 0.744 0.637 0.654 0.632 0.873 0.855 0.854 0.856
Stacking (RoBERTa + Extra Trees) 0.744 0.632 0.646 0.628 0.875 0.857 0.858 0.855
Stacking (RoBERTa + Logistic Regression) 0.756 0.662 0.674 0.657 0.879 0.862 0.862 0.862
Stacking (DeBERTa + Extra Trees) 0.734 0.647 0.651 0.645 0.881 0.861 0.869 0.855
Stacking (DeBERTa + Logistic Regression) 0.726 0.629 0.637 0.623 0.873 0.850 0.863 0.841

Table 6: TRACK-4: Actionability performance across various models for Strict and Lenient evaluations. Colour
codings - Blue (Strict), Green (Lenient)
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Abstract

This paper presents our system for TRACK
1: MISTAKE IDENTIFICATION in the BEA
2025 SHARED TASK ON PEDAGOGICAL
ABILITY ASSESSMENT OF AI-POWERED TU-
TORS. The task involves evaluating whether
a tutor’s response correctly identifies a mis-
take in a student’s mathematical reasoning.
We explore four approaches: (1) an ensemble
of machine learning models over pooled to-
ken embeddings from multiple pretrained lan-
gauge models (LMs); (2) a frozen sentence-
transformer using [CLS] embeddings with
an MLP classifier; (3) a history-aware model
with multi-head attention between token-level
history and response embeddings; and (4) a
retrieval-augmented few-shot prompting sys-
tem with a large language model (LLM) i.e.
GPT 4O. Our final system retrieves semanti-
cally similar examples, constructs structured
prompts, and uses schema-guided output pars-
ing to produce interpretable predictions. It
outperforms all baselines, demonstrating the
effectiveness of combining example-driven
prompting with LLM reasoning for pedagogi-
cal feedback assessment. Our code is available
at https://github.com/NaumanNaeem/BEA_
2025.

1 Introduction

Conversational AI systems are increasingly being
used for educational applications, particularly in
the form of AI-powered tutors that can engage stu-
dents in instructional dialogues. While recent ad-
vances in LLMs have made it possible to gener-
ate fluent and context-aware responses, evaluating
whether these responses exhibit true pedagogical
ability remains a fundamental challenge. Tradi-
tional dialogue evaluation metrics, such as fluency,
coherence, or BLEU-like scores, fall short in cap-
turing educational effectiveness, such as whether
the tutor correctly identifies a student’s mistake or
provides helpful, targeted feedback.

The BEA 2025 SHARED TASK ON PEDAGOG-
ICAL ABILITY ASSESSMENT OF AI-POWERED

TUTORS (Kochmar et al., 2025) addresses this gap
by introducing a standardized evaluation bench-
mark and taxonomy to assess pedagogical abili-
ties in AI-generated tutor responses. In particular,
TRACK 1: MISTAKE IDENTIFICATION focuses on
determining whether a tutor’s response correctly
detects and communicates an error in the student’s
reasoning within a mathematical dialogue. The
benchmark used in this task is based on MRBENCH

(Maurya et al., 2025), which includes 192 dialogues
and over 1,500 responses from human and LLM
tutors, annotated across eight pedagogical dimen-
sions grounded in learning sciences.

2 Methodology

We tackle TRACK 1: MISTAKE IDENTIFICATION,
which involves determining whether a tutor’s re-
sponse correctly identifies a student’s mistake in a
multi-turn mathematical dialogue. Given the subtle
and varied nature of student errors and tutor feed-
back, this task demands both contextual understand-
ing and pedagogical sensitivity. To address this, we
developed and evaluated four distinct approaches:
three baseline models leveraging traditional clas-
sification techniques and transformer embeddings,
followed by a final retrieval-augmented few-shot
classification technique using LLMs.

2.1 Layered Embedding Extraction with
Classical ML Ensemble

In our first baseline, we designed a layered en-
semble approach by extracting embeddings from
several pre-trained transformer models, including
BERT, ROBERTA, XLNET, T5, and GPT-2.
To handle this flexibly, we developed a unified
LM_EMBED class that tokenizes and encodes
both conversation history and tutor responses us-
ing each model’s specific configuration. We ap-
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plied average pooling over the token embeddings
to produce fixed-length vectors for each input, and
then averaged the conversation and response vec-
tors to create the final input representation. Using
these features, we trained a diverse set of tradi-
tional classifiers i.e. SVM, Decision Tree, Random
Forest, Logistic Regression, Naive Bayes, KNN,
AdaBoost, and MLP, each optimized using GRID-
SEARCHCV with 10-fold cross-validation. We
then built a meta-classifier by stacking the predic-
tion probabilities from these base models and train-
ing a logistic regression model on top. This ensem-
ble strategy allowed us to combine the strengths of
different embedding models and classifiers, leading
to more stable and accurate predictions compared
to using any single model alone.

2.2 Token-Level Attention with
History-Aware Model

In our second baseline, we modeled the inter-
action between the conversation history and
tutor response using a token-level attention
mechanism without any pooling during embed-
ding extraction. We used a transformer encoder
(sentence-transformers/all-mpnet-base-v2)
to obtain full token-level representations for both
the conversation history and the tutor’s response.
These representations were then passed into a
custom multi-head attention module. Specifically,
we treated the response as the query (Q) and
the history as both the key (K) and value (V)
in a standard multi-head attention setup. The
output of the attention layer was mean-pooled
along the sequence length dimension, and a small
feedforward network mapped the pooled vector to
three output classes. The model was trained using
cross-entropy loss with the ADAMW optimizer,
and predictions were generated by taking the
argmax over the logits. This architecture allows
the model to explicitly attend to relevant parts of
the history when interpreting the tutor’s response,
resulting in a more nuanced classification of
pedagogical mistakes.

2.3 Frozen Sentence-Transformer with MLP
Classifier

Our third baseline models the pedagogical mistake
identification task as a supervised classification
problem using fixed sentence embeddings. We
use a frozen sentence-level transformer model
(sentence-transformers/all-mpnet-base-v2)
to independently encode the conversation history

and the tutor’s response, extracting the [CLS]
token from the final hidden state as a dense repre-
sentation. These embeddings are projected through
two separate linear layers and concatenated to form
a joint feature vector, which is passed to a shallow
feedforward neural network to predict one of three
mistake identification categories. We trained this
model using cross-entropy loss and the ADAMW
optimizer, keeping the encoder frozen throughout
training. To improve efficiency, we cached the
embeddings as .npz files. The final output was
restructured to match the original JSON format for
evaluation, preserving conversation IDs, model
names, tutor responses, and predicted mistake
annotations.

2.4 Retrieval-Augmented Few-Shot
Classification with LLM-as-a-Judge

Our final and most effective approach tackles the
mistake identification task as a judgment prob-
lem, using a retrieval-augmented few-shot prompt-
ing strategy powered by large language models
(LLMs). Instead of training a traditional classi-
fier, we designed a modular pipeline built with
LangChain. At its core, the system takes the full
conversation history and the tutor’s response, then
prompts an LLM, specifically, GPT-4o to assess
whether the tutor has correctly identified a mistake
in the student’s reasoning.

Figure 1 outlines the system architecture. We
begin by embedding the conversation history and
tutor responses from the MRBENCH training set
using the OpenAI Embedding Model. These em-
beddings are stored in a persistent vector database
using ChromaDB. With this setup, we construct a
few-shot prompt template and use the LLM itself
as a “judge” on the test data. At inference time,
the system retrieves the top-k semantically similar
examples and integrates them into the prompt.

Each prompt includes detailed labeling instruc-
tions, definitions for all possible labels (Yes, No,
To some extent), and the full dialogue con-
text. (see Appendix B for more information).
To ensure clear and structured outputs, we use
a PydanticOutputParser that enforces a strict
schema and reliably extracts the label from the
LLM’s response. The pipeline also supports re-
tries and incremental saving, making it robust and
efficient for large-scale processing.

By combining relevant examples with a powerful
instruction-following model, this method allows for
nuanced mistake identification beyond simple clas-
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Embedding Model

MRBench Train Set

MRBench Train Set
VectorDB

Prompt Template
### In structio ns
………………...……………….
### Examples
{examples}

Semantic Similarity 
Retriever MRBench Test Set

Judge LLM Output Parser

Prompt
### In structio ns
………………...……………….
### Examples
...................

Figure 1: Pipeline of our final approach for mistake
identification. The system takes tutor–student dialogue
as input, retrieves relevant examples, constructs a struc-
tured prompt, and uses LLM to predict whether a mis-
take is identified. The output is parsed and saved.

sification. It requires no fine-tuning, generalizes
well to new inputs, and showed improvements in
both accuracy and qualitative evaluations compared
to baseline methods. This highlights the effec-
tiveness of prompt-based, retrieval-augmented ap-
proaches in educational and feedback-driven NLP
tasks.

3 Dataset

We use the dataset introduced by Maurya et al.
(2025), which includes both development and test
splits. The development set consists of 300 dia-
logues from Macina et al. (2023) and Wang et al.
(2024), each ending with a student utterance that
reflects confusion or a mistake. Tutor responses,
generated by seven large language model systems
and human tutors (one in MathDial Macina et al.
(2023), expert and novice in Bridge), are annotated
along four pedagogical dimensions: (1) Mistake
Identification, (2) Mistake Location, (3) Provid-
ing Guidance, and (4) Actionability. In total, the
development set includes over 2,480 annotated re-
sponses.

The test set contains 200 dialogues with the same
structure, but tutor identities are anonymized (for
example, Tutor_1, Tutor_2), and no annotations
are provided. This allows for blind evaluation of
system outputs under the shared task setting.

3.1 Pre-processing
For the baseline systems, we apply extensive pre-
processing to both the conversation history and tu-
tor response texts. This includes converting text to
lowercase, removing punctuation, stripping emojis,
and cleaning URLs, HTML tags, and contractions.
We also remove stopwords using the NLTK stop-
word list. All texts are passed through a unified

normalization pipeline to reduce noise and ensure
consistency. The labels for Mistake Identification
are mapped to numeric values as follows: No→ 0,
Yes→ 1, and To Some Extent→ 2.

For our final approach, we additionally prepro-
cess both the development and test sets so that
each dialogue is reformatted into evenly paired ex-
changes between tutor and student, preserving the
integrity of the back-and-forth interaction. During
this process, we addressed two key issues. First,
some conversations included greetings or closing
phrases (e.g., “Hi”, “Thank you”) that did not con-
tribute to the reasoning process. These were re-
moved to maintain focus on educational content.
Second, a few dialogues contained erroneous seg-
ments where the tutor responded to its own ut-
terance without student input. These cases were
consistently found to follow a correctly structured
exchange and were manually removed (see Ap-
pendix A for examples).

This pre-processing step ensured a clean and con-
sistent input format, enabling reliable downstream
processing and model evaluation.

4 Evaluation and Results

We evaluated all four approaches on the Track 1:
Mistake Identification test set using two evalua-
tion schemes: Strict and Lenient, each reporting
both Macro F1 and Accuracy. In the strict set-
ting, only exact matches with the gold labels are
considered correct. In contrast, the lenient setting
provides partial credit by treating To some extent
as aligning with Yes, reflecting the fuzzy nature of
pedagogical judgments in borderline cases. Table 1
summarizes the results.

As expected, the first baseline using pooled to-
ken embeddings and an ensemble of traditional
classifiers (Approach 1) offered a modest start-
ing point. This method, while straightforward,
lacked the capacity to fully capture the nuances
in dialogue-based reasoning.

Introducing token-level attention in Approach 2
led to a notable jump in performance. This suggests
that modeling fine-grained interactions between the
student’s dialogue and the tutor’s response helps
the model better identify whether a mistake was
correctly addressed. However, while this approach
added depth to the representation, it still relied on
relatively shallow modeling of the context.

Approach 3, which used frozen [CLS] embed-
dings from a sentence transformer combined with
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Approach Strict F1 Strict Acc Lenient F1 Lenient Acc

Approach 1 (ML Ensemble) 0.446 0.657 0.637 0.754
Approach 2 (Token-Level Attention) 0.571 0.765 0.777 0.865
Approach 3 (CLS + MLP) 0.583 0.809 0.805 0.888
Approach 4 (Few-shot LLM + Retrieval) 0.584 0.827 0.814 0.897

Table 1: Performance of all four approaches on the BEA 2025 Mistake Identification test set under strict and lenient
evaluation settings.

an MLP classifier, further improved performance.
This indicates that sentence-level semantic repre-
sentations, especially when paired with a focused
classification head, can offer a stronger understand-
ing of the overall pedagogical intent.

Our final method, Approach 4, which frames the
task as a retrieval-augmented prompting problem
with GPT-4o, achieved the best performance across
all metrics. By retrieving semantically similar ex-
amples and using detailed, schema-guided prompts,
the system benefited from both contextual ground-
ing and the powerful instruction-following capabil-
ities of modern LLMs. Notably, it showed strong
results in both strict and lenient settings, highlight-
ing its ability to make fine distinctions while still
handling ambiguity in borderline cases effectively.
Our final submission, achieved an official leader-
board rank of 37th among all participants.

5 Conclusion

We developed and evaluated four approaches
for the BEA 2025 Shared Task Track 1: Mis-
take Identification, culminating in a retrieval-
augmented few-shot prompting system using GPT-
4O. While our initial baselines used traditional
classifiers over pretrained embeddings, the final
system reframed the task as a structured judgment
problem, combining semantically retrieved exam-
ples, instruction-driven prompting, and schema-
constrained output parsing.

This approach consistently outperformed all
baselines in both strict and lenient evaluations,
achieving a strict Macro F1 of 0.584 and a lenient
accuracy of 0.897. It was particularly effective
at capturing nuanced pedagogical feedback, high-
lighting the strength of LLM-based reasoning when
guided by relevant context. Our submission ranked
37th on the official leaderboard, demonstrating the
competitiveness of our method.

These results show that retrieval-augmented
prompting offers a scalable and effective solution

for assessing complex teaching behaviors in AI tu-
tors. Future work could explore more adaptive ex-
ample selection, multi-turn consistency, and align-
ment with broader goals such as helpfulness and
instructional fairness.

Limitations

While our final system achieved the best perfor-
mance among all submitted approaches, it still has
several limitations that suggest promising direc-
tions for future work.

Limited Diversity in Retrieved Examples The
effectiveness of our retrieval-augmented prompting
pipeline depends heavily on the quality and cover-
age of the example pool. Since we rely on a fixed
set of annotated training examples, the system may
struggle with out-of-distribution dialogues or ques-
tion types that are underrepresented in the retrieval
set. Moreover, retrieval is based solely on static
embedding similarity from OpenAI embeddings,
without adapting to the context or emphasizing spe-
cific pedagogical traits.

Lack of Multi-Turn Dialogue Modeling Each
input is treated as a standalone conversation-
response pair, with no memory of earlier tutor turns
or evolving dialogue context. This limits the sys-
tem’s ability to track learning progression or take
prior feedback into account. Modeling dialogue
history explicitly—through dialogue state tracking
or memory-based retrieval—could improve consis-
tency and pedagogical depth in multi-turn interac-
tions.

Simplified Output Format Although the use of
a structured parser ensures consistency, it restricts
the model to selecting a single label per example. It
does not capture uncertainty, nuanced justifications,
or cases where multiple labels might apply. Extend-
ing the output to include rationales or confidence
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scores could make evaluations more informative
and reflective of real-world ambiguity.

Scalability and Cost Constraints Inference with
frontier models like GPT-4o is computationally in-
tensive and dependent on external APIs, which
introduces latency, cost, and rate-limit challenges.
These constraints pose barriers to deployment in
low-resource settings or real-time tutoring applica-
tions, where efficiency and scalability are critical.
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A Preprocessing Examples

This appendix list some issues which are fixed dur-
ing pre-processing of dataset.

In the following example from the development
set, the initial student message is a casual greeting
that disrupts the expected alternating structure of
the dialogue. To maintain structural integrity and
ensure an even number of turns between tutor and
student, such non-essential messages are removed
during preprocessing.

[
'Student: okey',
'Tutor: What is 25 minus 18?',
'Student: 8'
]

In the example below, the final tutor response
erroneously mimics the student’s explanation, as if
the tutor is responding to itself rather than engag-
ing with the student. This type of error breaks the
natural flow of the dialogue and was manually iden-
tified and removed during preprocessing to ensure
accurate tutor-student interaction.

[
'Tutor: Hi, could you please provide a

step-by-step solution for the question
below? The question is ...',

↪→
↪→
'Student: Samantha buys 4 toys at $12.00 each.

For each pair of toys...',↪→
'Tutor: I added the two amounts together to get

a total of $36.00 + $6.00 = $42.00.'↪→
]

In cases like the example below, the tutor’s
prompt is split across multiple turns, breaking the
intended question into separate messages. To pre-
serve the coherence of the dialogue and maintain a
consistent turn-taking structure, such fragmented
tutor responses are merged into a single utterance
by concatenating the strings.

[
'Tutor: Hi, could you please provide a

step-by-step solution for the question
below? The question is: Tyson decided to
make muffaletta sandwiches for ...,

↪→
↪→
↪→
'Tutor: How many pounds of meat are needed for

each sandwich?',↪→
'Student: Each sandwich requires 1 pound of

meat and 1 pound of cheese.',↪→
'Tutor: What is the cost of 1 pound of meat?',

'Student: The cost of 1 pound of meat is
$7.00.'

↪→
↪→
]
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B Prompt Engineering

"""
You will be shown a short educational "Conversation" between a tutor and a student, including the

student's solution and the tutor's follow-up "Response". Your task is to judge whether the
tutor's response successfully **identifies a mistake** in the student's reasoning.

↪→
↪→

### Instructions
1. Read the entire dialogue to understand the context of the student's solution.
2. Focus on whether the tutor's response explicitly or implicitly calls out an error.
3. Reply **only** with one of the labels: `Yes`, `To some extent`, or `No`.

### Labels
- `Yes`: The mistake is clearly identified/recognized in the tutor's response. The tutor implicitly

or explicitly points out the error in the student's reasoning.↪→
- `No`: The tutor's response does not identify any mistake in the student's reasoning. The tutor's

response is either irrelevant or does not address the student's solution.↪→
- `To some extent`: The tutor's response suggests that there may be a mistake, but it sounds as if

the tutor is not certain.↪→

### Format Instructions:
{format_instructions}
Return only the classification label without any additional commentary or extraneous details.

### Examples
{examples}

## Mistake Identification
### Conversation
{conversation}

### Response
{response}
"""

Figure 2: Prompt for LLM which is used a judge in Retrieval-Augmented Few-shot classification approach
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Abstract

We present our submission for Tracks 3 (Pro-
viding Guidance), 4 (Actionability), and 5 (Tu-
tor Identification) of the BEA 2025 Shared
Task on Pedagogical Ability Assessment of AI-
Powered Tutors. Our approach sought to in-
vestigate the performance of directly using sen-
tence embeddings of tutor responses as input
to downstream classifiers (that is, without em-
ploying any fine-tuning). To this end, we bench-
marked two general-purpose sentence embed-
ding models: gte-modernbert-base (GTE) and
all-MiniLM-L12-v2, in combination with two
downstream classifiers: XGBoost and multi-
layer perceptron. Feeding GTE embeddings
to a multilayer perceptron achieved macro-F1
scores of 0.4776, 0.5294, and 0.6420 on the
official test sets for Tracks 3, 4, and 5, respec-
tively. While overall performance was modest,
these results offer insights into the challenges
of pedagogical response evaluation and estab-
lish a baseline for future improvements.

1 Introduction

Recent advancements in large language models
(LLMs) have opened new possibilities for using
AI-powered chatbots as educational tutors, pro-
viding benefits for tasks such as homework assis-
tance, personalized learning, and skills develop-
ment (Labadze et al., 2023). However, while these
systems can generate human-like dialogue, assess-
ing their pedagogical effectiveness remains a signif-
icant challenge. In the past, human evaluation has
typically been used for evaluation, though reliable,
this is costly and difficult to scale (Liu et al., 2023).

To address this gap, the BEA 2025 Shared Task
on Pedagogical Ability Assessment of AI-powered
Tutors (Kochmar et al., 2025) was organized to pro-
mote the development of automated evaluation sys-
tems for tutor responses in educational dialogues.

*Contributed equally

The shared task focused on assessing the quality
of tutor responses aimed at helping students correct
their mistakes in math-related dialogues. Partici-
pants were provided with dialogues that included
conversation history, a student’s incorrect utter-
ance, and multiple possible tutor responses (Mau-
rya et al., 2025). Each response was to be evaluated
along four pedagogically motivated dimensions:
mistake identification, mistake location, guidance
provision, and actionability. These dimensions
were annotated on a three-point scale: “Yes,” “To
some extent,” or “No.”

In addition to these four tracks, the shared task
included a fifth track, Tutor Identification, wherein
participants were asked to predict the origin of
anonymous tutor responses, distinguishing between
different LLMs and human tutors. This track ex-
plored whether distinct pedagogical or linguistic
styles could be used to attribute responses to their
source.

The organizers released a development dataset
of 300 annotated dialogues and a test set of 191
dialogues. Both sets included responses from a
diverse set of state-of-the-art LLMs and, in some
cases, human tutors (Maurya et al., 2025).

Our contributions are as follows:

• We evaluated the performance of directly feed-
ing sentence embeddings of tutor responses
(without any fine-tuning) to downstream clas-
sifiers for Tracks 3 (Providing Guidance),
4 (Actionability), and 5 (Tutor Identification).

• We benchmarked two sentence embedding
models: gte-modernbert-base (GTE) and all-
MiniLM-L12-v2. Our results show that using
GTE embeddings and a multilayer perceptron
yielded macro-F1 scores of 0.4776, 0.5294,
and 0.6420, thus providing a baseline for the
performance of general-purpose sentence em-
beddings on multiple pedagogical response
evaluation tasks.
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2 Methods

Figure 1: Methodology

Figure 1 shows our approach. First, we extracted
the tutor response from each dialogue instance
and fed it into a pretrained sentence embedding
model to obtain a fixed-length vector representa-
tion. We used this representation as input to a
classifier trained to predict the relevant task labels.

This methodology was applied across all three
tracks in which we participated. We modeled
Tracks 3 and 4 as multiclass classification prob-
lems where the output labels are “No,” “To some
extent,” and “Yes.” Likewise, Track 5 was also
modeled as a multiclass classification problem
with nine output labels: “Expert,” “GPT4,” “Gem-
ini,” “Llama31405B,” “Llama318B,” “Mistral,”
“Novice,” “Phi3,” and “Sonnet.”

2.1 Sentence Embedding Model
Two embedding models were chosen from the Mas-
sive Text Embedding Benchmark (MTEB) Leader-
board1 (Enevoldsen et al., 2025), which compares
the performance of over a hundred embedding mod-
els across multiple tasks.

We first selected gte-modernbert-base2 (Zhang
et al., 2024) or GTE, a general-purpose embedding

1https://huggingface.co/spaces/mteb/
leaderboard

2https://huggingface.co/Alibaba-NLP/
gte-modernbert-base

model built on modernBERT (Warner et al., 2024).
With 149 million parameters and a context length
of up to 8192 tokens, it performs strongly on the
MTEB leaderboard, competitive with other models
with under 1 billion parameters.

In addition, we also evaluated a more lightweight
model, all-MiniLM-L12-v23, which has 33.4M pa-
rameters. Despite its compact size, it registers com-
petitive performance on the MTEB leaderboard and
on other classification tasks (Meleti et al., 2025).

2.2 Downstream Classifier

We trained two classification models: XGBoost
and a multilayer perceptron (MLP) with a single
hidden layer. XGBoost, a decision tree-based gradi-
ent boosting method, has been reported to achieve
good performance with dense sentence embeddings
as input (Muqadas et al., 2025; Chen and Guestrin,
2016). MLPs are capable of capturing nonlinear
relationships and, as such, are widely used in su-
pervised learning tasks (Goodfellow et al., 2016).

We partitioned the development set such that
80% of the data comprises the training set and the
remaining 20% comprises the test set. We then per-
formed three-fold cross-validation with grid search
on the training set to tune the hyperparameters of
both models; the complete hyperparameter search
space is reported in Table 3. Tables 4 and 5 show
the combination of hyperparameters that returned
the highest macro-F1.

3 Results and Discussion

3.1 Development Set Results

Table 1 summarizes the results on the test set parti-
tion of our development set. We found that using
MLP consistently outperformed using XGBoost in
terms of macro-F1 across all three tasks, with the
strongest gains observed in Tracks 4 (Actionability)
and 5 (Tutor Identification). Pairing GTE embed-
dings with MLP achieved the highest macro-F1 and
also the highest accuracy (except for Task 3).Con-
fusion matrices are given in Figure 2.

3.2 Official Test Set Results

Based on the development set results, we selected
the top two model combinations for final testing.
For Tracks 3 and 4, we chose GTE + MLP and GTE
+ XGBoost. For Track 5, we selected GTE + MLP
and MiniLM + MLP. The complete official test set

3https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2
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Task Model Macro-F1 Accuracy

Track 3

GTE + MLP 0.5601 0.6371
GTE + XGBoost 0.5095 0.6492
MiniLM + MLP 0.4675 0.6371
MiniLM + XGBoost 0.4814 0.6310

Track 4

GTE + MLP 0.5667 0.6492
GTE + XGBoost 0.5097 0.6552
MiniLM + MLP 0.5504 0.6411
MiniLM + XGBoost 0.4766 0.6431

Track 5

GTE + MLP 0.6047 0.5665
GTE + XGBoost 0.4879 0.4476
MiniLM + MLP 0.5333 0.4879
MiniLM + XGBoost 0.4595 0.3992

Table 1: Macro-F1 and accuracy on the development
set across Tracks 3 (Providing Guidance), 4 (Actionabil-
ity), and 5 (Tutor Identification). The best performance
scores are in bold.

scores for these selected model combinations are
reported in Table 2.

3.3 Limitations

First, we fed the tutor responses, as is, to the sen-
tence embedding models, that is, we did not per-
form any text preprocessing (such as stopword re-
moval or punctuation stripping) prior to embedding.
While this decision aligns with the intention to eval-
uate the raw utility of general-purpose embeddings,
preprocessing might have potentially reduced noise
and improved classification performance.

Second, we did not fine-tune the sentence em-
bedding models on task-specific data. The GTE
and MiniLM embeddings were used as is, without
adaptation to the tutoring domain or label space.
This might have limited the models’ ability to cap-
ture nuanced patterns in the instructional dialogue,
particularly for more subtle distinctions such as
“To some extent” in Tracks 3 and 4 or between tutor
personas in Track 5.

Finally, the per-class evaluation results (Figure 3)
reflect the class imbalance, with the dominant class
(“Yes”) having noticeably higher F1 compared to
“No” and “To some extent” for Tracks 3 and 4. To
address this, it may be helpful to incorporate class-
adjusted weights during training, perform data aug-
mentation, or generate synthetic data.

4 Conclusion

In this paper, we investigated the performance of
directly feeding sentence embeddings of tutor re-
sponses to downstream classifiers for multiple ped-
agogical response evaluation tasks, thus providing

baseline models for future improvements in this
domain.

For future work, it may be interesting to compare
these baselines with domain-specific fine-tuning,
as well as perform more extensive hyperparameter
tuning through automated optimization techniques
(such as Bayesian optimization) to further improve
classification accuracy.
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Task Model Exact F1 Exact Acc Lenient F1 Lenient Acc

Track 3 (Providing Guidance) GTE + MLP 0.4776 0.5669 0.6755 0.7382
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Track 4 (Actionability) GTE + MLP 0.5294 0.6089 0.7351 0.7738
GTE + XGBoost 0.4966 0.6102 0.7170 0.7789
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MiniLM + MLP 0.5808 0.5624 – –

Table 2: Performance on the official test sets. “F1” is shorthand for macro-F1, and “Acc” stands for accuracy.
For Tracks 3 and 4, two additional metrics were additionally computed by the testing platform: lenient F1 and
lenient accuracy, which consider “Yes” and “To some extent” the same class. The qualifier “exact” distinguishes the
conventional metrics from their lenient variation.
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Hyperparameter Search Space

XGBoost

Number of estimators 50, 100, 150
Maximum depth of a tree 3, 5, 7
Learning rate 0.01, 0.1, 0.2
Subsample ratio of the training instances 0.8, 1.0
Subsample ratio of columns when constructing each tree 0.8, 1.0

MLP
Hidden layer size (50,), (100,), (150,)
Activation ReLU, tanh, logistic
Solver Adam, SGD
L2 regularization strength 10−4, 10−3, 10−2

Learning rate schedule Constant, adaptive

Table 3: Hyperparameter search space

Task Embedding n_estimators max_depth learning_rate subsample colsample_bytree

Track 3 GTE 100 7 0.2 1.0 0.8
MiniLM 50 5 0.2 1.0 1.0

Track 4 GTE 150 3 0.2 0.8 0.8
MiniLM 150 7 0.1 0.8 0.8

Track 5 GTE 150 3 0.2 0.8 0.8
MiniLM 150 5 0.1 0.8 1.0

Table 4: Optimal XGBoost hyperparameters selected via three-fold cross-validation with grid search for each task
and sentence embedding model. n_estimators refers to the number of estimators; max_depth, maximum depth of a
tree; learning_rate, learning rate; subsample, subsample ratio of the training instances; and colsample_bytree,
subsample ratio of columns when constructing a tree.

Task Embedding Activation L2 Reg. Hidden Layer Size Learning Rate Schedule Solver

Track 3 GTE ReLU 10−2 (150,) Constant Adam
MiniLM tanh 10−4 (150,) Constant SGD

Track 4 GTE ReLU 10−4 (50,) Constant Adam
MiniLM ReLU 10−4 (150,) Constant Adam

Track 5 GTE Logistic 10−3 (50,) Constant Adam
MiniLM Logistic 10−2 (50,) Constant Adam

Table 5: Optimal MLP hyperparameters selected via three-fold cross-validation with grid search for each task and
sentence embedding model

1264



Figure 2: Confusion matrices for (a) Track 3, (b)
Track 4, and (c) Track 5, obtained by pairing gte-
modernbert-base and multilayer perceptron (GTE +
MLP)

Figure 3: Per-class F1 scores for (a) Track 3, (b) Track 4,
and (c) Track 5
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Abstract

We present Team BD’s submission to the BEA
2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors, under Track
1 (Mistake Identification) and Track 2 (Mis-
take Location). Both tracks involve three-class
classification of tutor responses in educational
dialogues – determining if a tutor correctly
recognizes a student’s mistake (Track 1) and
whether the tutor pinpoints the mistake’s loca-
tion (Track 2). Our system is built on MPNet,
a Transformer-based language model that com-
bines BERT and XLNet’s pre-training advan-
tages. We fine-tuned MPNet on the task data
using a class-weighted cross-entropy loss to
handle class imbalance, and leveraged grouped
cross-validation (10 folds) to maximize the use
of limited data while avoiding dialogue over-
lap between training and validation. We then
performed a hard-voting ensemble of the best
models from each fold, which improves robust-
ness and generalization by combining multiple
classifiers. Our approach achieved strong re-
sults on both tracks, with exact-match macro-
F1 scores of approximately 0.7110 for Mistake
Identification and 0.5543 for Mistake Location
on the official test set. We include compre-
hensive analysis of our system’s performance,
including confusion matrices and t-SNE visual-
izations to interpret classifier behavior, as well
as a taxonomy of common errors with exam-
ples. We hope our ensemble-based approach
and findings provide useful insights for design-
ing reliable tutor response evaluation systems
in educational dialogue settings.

1 Introduction

Effective intelligent tutoring systems need to be
able to recognize and address student mistakes dur-
ing interactions. To evaluate such capabilities in
automated systems, the BEA 2025 Shared Task
introduced a multi-dimensional assessment of AI
tutor responses. In particular, Track 1 focuses on
whether a tutor’s response identifies the student’s

mistake, and Track 2 on whether it locates the mis-
take in the student’s answer. Each track is framed
as a three-way classification: the tutor either fully
recognizes/locates the error (“Yes”), partially or
uncertainly does so (“To some extent”), or fails to
do so (“No”). These pedagogically motivated cate-
gories draw from prior frameworks in educational
dialogue analysis—for example, Mistake Identi-
fication corresponds to the student understanding
dimension in Tack and Piech’s schema (Tack and
Piech, 2022b) and correctness in other tutoring eval-
uation schemata, reflecting how well the tutor ac-
knowledges the student’s misconception.

Assessing tutor responses along such dimensions
is challenging due to the nuanced and subjective na-
ture of pedagogical feedback. For instance, differ-
ent studies have used varied measures (e.g., “speak-
ing like a teacher,” “understanding the student,”
etc.) to judge tutor responses. The BEA 2025
shared task addresses this gap by defining clear
categories and metrics for evaluation (Kochmar
et al., 2025). However, even with a fixed taxonomy,
classifying responses correctly remains non-trivial:
tutors may implicitly acknowledge an error without
stating it outright, or they might hint at the error’s
location in vague terms. Distinguishing between
a definite “Yes” and a tentative “To some extent”
thus requires subtle interpretation of language.

In this paper, we describe Team BD’s ensemble-
based MPNet system for automating the annotation
of mistake identification and mistake location in AI-
tutor responses. MPNet, a pretrained Transformer
model that uses masked and permuted language
modeling to capture token dependencies, was cho-
sen as our backbone for its strong generalization
capabilities compared to earlier models like BERT,
XLNet, and RoBERTa. To address the limited size
of the labeled data (approximately 2.5 K examples)
and inherent class imbalance, we fine-tuned MP-
Net with a class-weighted cross-entropy loss and
trained ten separate models using grouped cross-
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validation—grouped by dialogue to prevent context
leakage—and then combined the top-performing
model from each fold through hard-voting. This
ensemble strategy greatly improved robustness and
generalization, leading to high accuracy and macro-
F1 scores on both the mistake identification and
mistake location tracks. Our error analysis us-
ing confusion matrices and t-SNE visualizations
revealed consistent misclassification patterns, no-
tably confusing fully recognized with partially ac-
knowledged mistakes. We created a taxonomy of
common error types with examples to aid future
refinements.

2 Related Work

Evaluation of Tutor Responses: The task of judg-
ing tutor or teacher responses in educational dia-
logues has recently garnered attention. Tack and
Piech (Tack and Piech, 2022a) introduced the AI
Teacher Test to measure the pedagogical ability
of dialogue agents, proposing dimensions such as
whether the agent understands the student’s error
and provides helpful guidance. Following this,
the BEA 2023 Shared Task (Tack et al., 2023) fo-
cused on generating AI teacher responses (rather
than classification), where models like GPT-3 and
Blender were challenged to produce tutor-like feed-
back. The BEA 2025 Shared Task (Kochmar et al.,
2025) moves a step further by creating a benchmark
dataset of tutor responses annotated along multi-
ple pedagogical dimensions. The dataset leverages
dialogues from MathDial (Macina et al., 2023)
and Bridge (Maurya et al., 2025), two collections
of student-tutor interactions in the math domain.
Each tutor response in these dialogues was labeled
by experts as to whether it identifies the student’s
mistake, pinpoints the mistake’s location, provides
guidance, and offers actionable next steps. Such
multi-faceted annotation of tutor feedback is rela-
tively novel; it connects to earlier work on dialogue
act classification (Maurya et al., 2025) in that both
involve categorizing utterances, but here the labels
are pedagogical quality ratings rather than commu-
nicative intent.

Ensemble Methods in NLP: Classic studies,
such as Dietterich’s work on ensemble methods,
demonstrated that an ensemble of diverse classifiers
can correct individual models’ errors and reduce
variance (Dietterich, 2000). For instance, (Ovadia
et al., 2019) and (Gustafsson et al., 2020) found that
deep ensembles improve reliability under dataset

shift. In shared task and kaggle competitions, top
teams often resort to model ensembling to squeeze
out some additional performance. These benefits
come at the cost of increased computational over-
head. Our approach aligns with this trend, as we
build an ensemble of 10 MPNet-based classifiers
(from cross-validation folds) to tackle the classifi-
cation of tutor responses.

Dialogue and Educational NLP: Related to our
work is research on grammatical error detection
and correction, where systems identify mistakes in
student-written text. Notably, (Ng et al., 2014) and
(Bryant et al., 2019) have contributed significantly
to this field. However, our task differs in that the
“mistakes” are conceptual or procedural errors in a
problem solution, and we are evaluating the tutor’s
response to those errors rather than directly ana-
lyzing the student’s text. Another line of relevant
work is on student response analysis in tutoring sys-
tems, where the goal is to classify student answers
as correct, incorrect, or incomplete. (Dzikovska
et al., 2013) explored this in the context of the
SemEval-2013 Task 7. In our case, the roles are
reversed—we classify the tutor’s replies. We also
draw on insights from educational dialogue anal-
ysis: studies like (Daheim et al., 2024) examined
tutor responses for targetedness and actionability,
which correspond to our Track 2 and Track 4 tasks.
These studies emphasize the subtle linguistic cues
that indicate whether a tutor has pinpointed an er-
ror (e.g., referencing a specific step in the student’s
solution) or just given generic feedback.

In summary, our work is situated at the intersec-
tion of dialogue evaluation and text classification.
We build upon the shared task’s provided taxon-
omy (SIGEDU, 2025) and prior educational NLP
research, employing modern Transformer models
and ensemble techniques known to be effective in
such tasks.

3 Data and Task Definition

Task Definition: Tracks 1 and 2 are classifica-
tion tasks applied to tutor responses in a dialogue.
Based on the previous conversation history between
students and tutors, in Track 1 (Mistake Identifi-
cation), the system must determine if the tutor’s
response indicates recognition of the student’s mis-
take. In Track 2 (Mistake Location), the system
judges if the tutor points out the specific location or
nature of the mistake in the student’s solution. Both
tasks share the same label set: Yes, To some extent,
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Model Macro-F1 Score

BERT-large 0.6851
DeBERTa 0.6845
MPNet (selected) 0.6975

Table 1: 10 fold Cross-validation Macro-F1 scores for
different Transformer models on the track 1 develop-
ment set. MPNet achieves the highest score.

or No. Because these categories can be nuanced,
the shared task also defined a lenient evaluation
where “Yes” and “To some extent” are merged, but
our system is trained on the full 3-class distinction
(exact evaluation).

Dataset: The training (development) data pro-
vided by the organizers consists of annotated ed-
ucational dialogues in mathematics, drawn from
the MathDial and Bridge datasets. Each dialogue
includes a student’s attempt at a math problem (con-
taining a mistake or confusion) and one or more tu-
tor responses (from either human tutors or various
LLMs such as Mistral, Llama, GPT-4, etc. acting
as tutors). Each tutor response is annotated with the
three-class labels for all four dimensions (Tracks
1–4). In total, the development set contains 300
conversation history and over 2,480 tutor responses
with annotations. On average, each dialogue con-
text yields 8–9 different tutor responses (one from
each of several tutor sources), which were all anno-
tated. The test set is constructed in the same way
but uses held-out dialogues and responses—both
the ground-truth labels and the tutors’ identities are
hidden.

The development set for both Track 1 (Mistake
Identification) and Track 2 (Mistake Location)
consists of the same 300 dialogues and 2,476 tutor
responses. However, the label distributions differ
between tracks due to the nature of the classifi-
cation tasks. The underrepresentation of the To
some extent class in both tracks poses challenges
for model learning.

4 Methodology

4.1 Preprocessing
All tutor responses and conversation histories were
first lowercased (while preserving punctuation) to
ensure consistent casing.

To standardize and sanitize the responses, we
applied a series of targeted cleaning steps:

• Extra Info Removal: Eliminated any meta-
data or annotations not part of the tutor’s ac-

tual reply.

• Appended Dialogue Trimming: Removed
follow-up conversational turns that were ap-
pended after the original tutor response (e.g.,
speculative follow-up questions or acknowl-
edgments).

• Code Abstraction: Replaced Python code
blocks with the placeholder «python code»
to retain structural intent while abstracting
away executable details.

• Punctuation Cleanup: Stripped redundant
or mismatched punctuation (e.g., extraneous
quotes or dashes) that might confuse the tok-
enizer or the model.

Table 4 provides a summary of how many in-
stances were affected by each category. We ob-
served that models such as Phi-3 and Llama-3.1-
405B required the most extensive preprocessing.

Finally, each input example—consisting of the
conversation history, cleaned response, and separa-
tor tokens—was constrained to a maximum of 512
MPNet tokens. In cases where the input exceeded
this limit, we removed the low-value content (e.g.,
greetings or small talk) from the conversation his-
tory to retain the most relevant context.

4.2 Language Model Finetuning
In our experiments, we utilize transformer-based
pretrained language models (LMs). Since these
models may lack task-specific contextual knowl-
edge, we fine-tune them on our target tasks to im-
prove performance.

To begin, we consider a pretrained language
model denoted as ϕLM. Each tutor’s response af-
ter preprocessing T is input to the model, yielding
a sequence of tokens T = {t[CLS], t1, t2, . . . , tn}
along with their corresponding layer-wise hidden
representations H l = {hl[CLS], h

l
1, h

l
2, . . . , h

l
n}.

In our setup, we use the hidden representation of
the [CLS] token from the final layer as the sentence-
level representation of the input T , defined as:

hT = ϕLM(T )L[CLS] = HL
[CLS]

This representation hT is then passed through a
classification head to produce the prediction. The
classification head consists of a dropout layer Drop
followed by a linear transformation:

p = W · Drop(hT ) + b
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Finally, we use a cross-entropy loss function to
update the parameters of the language model ϕLM
during training.

4.3 Grouped Cross-Validation
We employ group cross-validation to ensure ro-
bust evaluation and mitigate overfitting. In this
approach, each dialogue (or group of dialogues)
is entirely assigned to either the training or valida-
tion set within each fold, preventing shared context
between the training and validation sets.

For each fold f ∈ {1, 2, . . . , k}, we define
the training and validation sets as G(f)train and G(f)val ,
respectively, where each set contains whole dia-
logues (or groups) with no overlap. We monitor the
model’s performance on the validation set using
the macro-averaged F1 score (macro-F1), which
provides a balanced measure of performance across
classes. For each fold, we save the model check-
point that achieves the highest macro-F1 score on
the validation set.

The final performance of the model is computed
by aggregating the macro-F1 scores across all k
folds.

4.4 Ensembling Strategy
To enhance model performance, we employed an
ensembling strategy where the top-performing mod-
els from each fold were combined using hard vot-
ing. Specifically, for each track, we had a total of
N = 10 models (one from each fold).

Let ŷ
(f)
i denote the prediction of the model

from fold f for the i-th sample, where f ∈
{1, 2, . . . , N}. The final prediction ŷi for each
sample i was determined by majority vote:

ŷi = mode(ŷ(1)i , ŷ
(2)
i , . . . , ŷ

(N)
i )

In the case of a tie, the tie-breaking rule was
based on the average softmax confidence across
all models. Let s(f)i denote the softmax output
(confidence) of the f -th model for the i-th sample.
If a tie occurs, the final prediction is chosen as:

ŷi = argmax


 1

N

N∑

f=1

s
(f)
i




Ensembling helps to reduce variance and correct
individual model biases, leading to more robust pre-
dictions. Our ensembling approach improved the
macro-F1 score by 2–3 points over the performance
of individual models.

5 Experimental Setup

5.1 Implementation Details
Model Selection In our experiments, we compared
several such models—including BERT-large, De-
BERTa, and MPNet—on a held-out subset of the
training data. Among these, MPNet achieved the
best macro-F1 score (see Table 1), and was thus
selected as our backbone. For implementation de-
tails, including software, packages, and hardware
setup, see Appendix A.
Model Hyperparameters

We used the AdamW optimizer with a learn-
ing rate of 2× 10−5, selected through preliminary
experiments on a held-out validation set. This set-
ting outperformed alternative learning rates such
as 1× 10−5 and 3× 10−5 in terms of macro-F1. A
linear learning rate decay schedule was used, along
with early stopping based on validation macro-F1
(patience = 5 epochs). We trained with a batch
size of 32 and applied a dropout rate of 0.1 in the
classification head. No gradient accumulation was
used.
Handling Class Imbalance

To mitigate class imbalance, we used a class-
weighted cross-entropy loss, where the weight for
each class c was computed as:

wc =
N

K · nc

with N being the total number of samples, K
the number of classes, and nc the count for class
c. This formulation emphasizes underrepresented
classes without overly penalizing frequent ones.

For Track 1 (Mistake Identification), class dis-
tributions were skewed toward “Yes” (1932), com-
pared to “No” (370) and “To some extent” (174).
We thus used the weight vector:

[wNo, wSome, wYes] = [1.0, 3.0, 0.5]

to boost recall for the rare “Some extent” class and
mildly down-weight the majority class.

In Track 2 (Mistake Location), the frequencies
were: “Yes” (1504), “No” (732), and “To some
extent” (240). Based on this, we used:

[wNo, wSome, wYes] = [0.8, 2.2, 0.9]

These weights, derived from inverse class frequen-
cies and lightly tuned, improved macro-F1 by
reducing systematic underprediction of minority
classes. Although not extensively optimized, this
approach provided consistent performance gains
across both tracks.
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Track Macro F1 Accuracy

Track 1 – Mistake Identification
Best (BJTU) 0.718 0.862
Ours (Test) 0.711 0.877
Ours (CV aggregate) 0.685 0.869

Track 2 – Mistake Location
Best (BLCU-ICALL) 0.598 0.768
Ours (Test) 0.554 0.714
Ours (CV aggregate) 0.560 0.700

Table 2: Comparison of our system’s macro-F1 and
accuracy with top leaderboard scores on both tracks.

5.2 Evaluation Metrics

Following the shared task guidelines, we report
both Accuracy and Macro F1. Macro F1, the un-
weighted average of per-class F1 scores, is em-
phasized due to class imbalance. We monitored
performance using these metrics on the validation
set during training and evaluated on the aggregated
development set using cross-validation predictions.
Final test metrics were provided by the organizers.
We focus on exact 3-class classification; lenient
2-class metrics (merging “Yes” with “To some ex-
tent”) were higher but are omitted here for brevity.

6 Result and Analysis

6.1 Main Result

To contextualize our system’s performance, we
compared it against the top submissions from the
official shared task leaderboard. On Track1 (Mis-
take Identification), our model achieved a macro-F1
of 0.711 on the test set, placing 5th out of 44 par-
ticipating teams. The top-ranked system (BJTU)
achieved a macro-F1 of 0.718, indicating that our
system performs competitively, within 0.7 points
of the best result. For Track2 (Mistake Location),
our system scored 0.554 macro-F1 on the test set,
ranking 7th out of 31 teams. The highest score on
this track was 0.598, obtained by BLCU-ICALL.
While our model trails behind the top result by ap-
proximately 4.4 points in macro-F1, it still exceeds
the median leaderboard performance.

Our system achieved higher accuracy than the
top Track 1 system (0.877 vs. 0.862), suggesting
stronger performance on dominant classes, albeit
with slightly lower balance across all classes.

Even though our system performs well, a closer
examination of its errors provides insights into its
decision-making and the task’s inherent difficulty.
We carried out an error analysis on the development
set predictions, focusing on confusion patterns and

the nature of misclassified cases.

6.2 Class-Level Performance Analysis

Figure 1: Confusion matrix for Track 1 (Mistake Iden-
tification) on the development set. The model shows
strong performance on the "Yes" class but has difficulty
distinguishing partial acknowledgment ("To some ex-
tent").

Figure 2: Confusion matrix for Track 2 (Mistake Loca-
tion). The model maintains high accuracy on explicit
localizations ("Yes") but misclassifies many “To some
extent” and “No” cases, highlighting the subtlety of lo-
cation inference.

To gain insight into how well our system dis-
tinguishes among the three pedagogical feedback
categories, we analyze confusion matrices for both
tasks. Figures 1 and 2 visualize model predictions
against gold labels on the development set for Track
1 (Mistake Identification) and Track 2 (Mistake Lo-
cation), respectively.

In Track 1 (Figure 1), the model performs
strongly on the "Yes" class, correctly identifying
1,827 instances, with relatively low misclassifica-
tion into the "No" (54) and "To some extent" (51)
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classes. The "No" class is also well captured with
275 correct predictions and few false positives. The
model struggles more with the "To some extent"
category: 61 were correctly predicted, but 113 were
misclassified as either "No" or "Yes." This aligns
with our earlier claim that “To some extent” lies on
a subjective continuum and is more difficult to pin
down categorically.

For Track 2 (Figure 2), a similar trend emerges.
The model again shows high accuracy on “Yes”
(1,450 correct), but struggles to distinguish “To
some extent,” which is often misclassified as “Yes”
(197 cases) or “No” (11 cases). Notably, the “No”
class is less cleanly separated in Track 2 compared
to Track 1, with 330 examples misclassified as
“Yes.” This may suggest that tutors sometimes ap-
pear to reference an error without pinpointing its
location, confusing the model’s judgment.

Overall, these confusion matrices illustrate the
asymmetric difficulty across classes. "Yes" re-
sponses are most reliably predicted due to their
clearer, more direct language. "To some extent"
predictions remain a challenge, particularly when
tutors use indirect or hedging phrasing that blurs
the line between partial and full error acknowledg-
ment or localization.

6.3 Embedding Space Insights

Figure 3: t-SNE projection of [CLS] embeddings from
the held-out fold (Fold 0) for Track 1 (Mistake Identi-
fication), colored by true label. “Yes” and “To some
extent” examples are scattered and intermixed, whereas
“No” forms a more compact cluster, indicating lower
intra-class variation.

To better understand the internal representations
learned by our model, we applied t-SNE (van der
Maaten and Hinton, 2008) to the [CLS] embed-
dings from the final Transformer layer. These pro-

Figure 4: t-SNE projection of [CLS] embeddings from
MPNet models across all 10 cross-validation folds for
Track 1 (Mistake Identification). Each point represents
a tutor response from a held-out fold, colored by fold
ID. The emergence of distinct clusters suggests that
each fold-specific model learns a consistent but fold-
specific embedding subspace, reflecting representational
diversity across the ensemble.

jections reveal how the model organizes tutor re-
sponses in the embedding space across folds and
classes.

Figure 4 shows the t-SNE projection of the
[CLS] embeddings across all ten cross-validation
folds, with points colored by fold ID. We ob-
serve that embeddings from each fold tend to form
compact, well-separated clusters. This indicates
that while training on different subsets, each fold-
specific model learns fold-consistent but distinct
representations. The tightness of these clusters also
suggests good embedding stability and coherence
across training runs.

Figure 3 presents the t-SNE visualization for
the held-out fold (Fold 0), this time colored by
the true label. Unlike the per-fold visualization,
class-level structure is less distinct: the “Yes” and
“To some extent” responses are widely dispersed
and often intermingle, suggesting overlapping se-
mantic characteristics. In contrast, the “No” class
forms a more compact group, indicating that tutor
responses with no recognition of error share more
consistent linguistic patterns. This aligns with our
earlier findings that “Yes” and “To some extent”
are harder to separate, as they exist on a continuum
of acknowledgment.

Together, these visualizations support our earlier
confusion matrix results and highlight the chal-
lenge of distinguishing nuanced pedagogical feed-
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back categories based solely on language.

6.4 Error Taxonomy
To better understand where the model fails, we
analyzed misclassified responses from both tasks
and developed a taxonomy of recurring error types,
summarized in Table 3. These categories reflect
systematic issues in how the model interprets peda-
gogical language.

False Negatives (Missed Signal). These errors
occur when the model fails to recognize that the
tutor has identified or located a mistake, typically
labeling the response as “No” or “To some extent”
instead of “Yes.” Such cases often involve subtle
cues like rhetorical questions or light correction
phrasing (e.g., “Can you check the multiplication
again?”), which the model may under-interpret.

False Positives (Over-interpretation). Here,
the model predicts “Yes” even when the tutor does
not provide evidence of error recognition. This
often results from over-interpreting generic encour-
agement (e.g., “Let’s try another one.”) or positive
sentiment as pedagogical feedback.

Partial–Full Confusion. A frequent source of
confusion is the distinction between full and partial
identification or localization. Indirect language
such as “You’re close, just verify your subtraction”
may be intended as partial feedback, but the model
may treat it as a complete identification.

Hedged Language Confusion. Tutors often use
polite or indirect language (e.g., “Maybe revisit
the earlier step?”), especially in educational set-
tings. Such hedging may obscure intent, leading
the model to underestimate the strength of the feed-
back signal.

Contextual Miss. Some misclassifications stem
from failing to use conversational history. For in-
stance, if a tutor’s comment refers to an earlier
incorrect step, the model may mislabel it when that
context is not incorporated effectively.

Template Bias. We also observed that the model
sometimes over-relies on surface patterns seen dur-
ing training. For example, statements like “Great
work!” may be incorrectly classified as “Yes” due
to template bias, even when no mistake is acknowl-
edged.

These error categories offer valuable insight into
the linguistic and contextual challenges of the task.
They suggest that improvements in discourse mod-
eling, uncertainty handling, and pragmatic lan-
guage understanding could further enhance per-
formance.

From the above taxonomy, we see that many of
the model’s mistakes correspond to understandable
difficulties. False negatives often involved indirect
tutor feedback—the tutor recognized the mistake
but phrased it as a question or hint, requiring infer-
ence to identify it as an acknowledgment of error.
Our model sometimes took such tentative language
at face value and labeled it as if the tutor did noth-
ing. False positives, on the other hand, were cases
where the tutor’s response had reassuring or neutral
language that the model mistook for a sign of rec-
ognizing a mistake. For example, tutors might say
“Let’s double-check that” even when the student
was correct (encouraging the student, not pointing
an error), and the model erroneously flagged it as
identifying an error.

The partial vs. full confusion category was the
most prevalent error type. This reflects the inherent
ambiguity of the “To some extent” class—even hu-
man annotators might differ on these in some cases.
Our model would sometimes collapse it into one
of the binary decisions (“Yes” or “No”) depending
on slight wording differences. In some cases, the
model predicted “To some extent” when the tutor
had actually pinpointed the error but perhaps in a
subtle way; in others, it predicted “Yes” for a tu-
tor response that was only hinting. This suggests
that improving the model’s understanding of nu-
anced language (perhaps via better context usage
or training on more examples of hedging) could
help.

We also found that ambiguous wording and
polite phrasing (common in educational settings)
posed challenges. Phrases like “Maybe check
that again” require contextual understanding—they
might indicate an error without explicit wording.
Our model did catch many of these, but not all.
Some errors could be attributed to the model’s lack
of world knowledge or reasoning; for example, if
a tutor says “Remember the formula for area,” the
model needs to infer that the student likely made
a mistake related to area calculation and that the
tutor is hinting at it—a level of reasoning beyond
surface text.

In summary, the error analysis reveals that while
our ensemble is effective, there is room for im-
provement in handling borderline cases and under-
standing implicit signals. These findings guided
us in considering potential enhancements, as dis-
cussed next.

1272



Error Type Description Example Scenario

False Negative (Missed
Signal)

Tutor indicates or locates a mistake, but
the model predicts “No” or “To some
extent.”

Tutor: “Can you check the multiplication again?”
Gold: Yes→ Pred: To some extent

False Positive (Over-
interpretation)

Model predicts “Yes” despite the tutor
giving no error feedback.

Tutor: “Let’s try another one.”
Gold: No→ Pred: Yes

Partial–Full Confusion Confuses indirect hints as full identifica-
tion, or subtle localization as partial.

Tutor: “You’re close, just verify your subtraction.”
Gold: To some extent→ Pred: Yes

Hedged Language Con-
fusion

Tutor’s suggestion is misread due to po-
lite phrasing or indirect cues.

Tutor: “Maybe revisit the earlier step?”
Gold: Yes→ Pred: To some extent

Contextual Miss Misclassification caused by ignoring or
misusing multi-turn context.

Tutor: Feedback depends on an earlier step, but the
model misses the reference.

Template Bias Model favors phrases resembling
training-time patterns, even when
semantically incorrect.

Tutor: “Great work!” with no correction.
Model assumes this implies error recognition.

Table 3: Taxonomy of common misclassification errors in both tasks, with representative examples.

Figure 5: Histogram of prediction confidence values for
Track 1 (Mistake Identification). Most predictions fall
within a mid-confidence range.

6.5 Confidence Distribution and Calibration

To further investigate the model’s decision-making
behavior, we analyzed its prediction confidence
across classes and tasks. Figures 5 and 6 present
histograms of predicted confidence scores for
Track 1 and Track 2, respectively. These reflect
the model’s certainty in its predictions across the
development set.

In both tasks, the confidence distribution is
skewed toward the middle range (1.5–3.0), with
multiple local peaks. This suggests that while the
model often makes moderately confident predic-
tions, it does not frequently commit to extremely
low or high confidence outputs. The spiked clus-
ters in Track 2 (Figure 6) hint at calibration arti-
facts possibly introduced by ensemble averaging.
Despite ensemble smoothing, we still observe con-
fidence saturation for some predictions near 3.5,
particularly on easier instances.

Figure 6: Histogram of prediction confidence values
for Track 2 (Mistake Location). A similar mid-range
clustering pattern is observed, with some extreme confi-
dence peaks.

To better understand class-specific behavior,
we examined boxplots of prediction confidence
grouped by predicted label (Figures 7 and 8). In
both tasks, predictions labeled as “No” tend to have
higher median confidence compared to “To some
extent,” reflecting that the model is more certain
when asserting a complete absence of error. Pre-
dictions for “To some extent” exhibit both lower
median confidence and greater spread—supporting
earlier findings that this category is harder to clas-
sify due to its inherent ambiguity. Interestingly,
in Track 1, “Yes” predictions also show relatively
high confidence, indicating that the model treats
full error recognition as a more decisive signal than
partial acknowledgment.

These confidence trends are broadly aligned with
our confusion matrix analysis: “To some extent” is
not only the most frequently confused class but also
the one with the least confident predictions. This
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Figure 7: Boxplot of confidence by predicted class
(Track 1). Predictions labeled “To some extent” tend to
have lower median confidence.

Figure 8: Boxplot of confidence by predicted class
(Track 2). “No” and “Yes” predictions show higher
confidence than “To some extent.”

highlights a key challenge in pedagogical feedback
modeling—the need to model uncertainty explic-
itly, especially in borderline cases. Future work
could explore temperature scaling or Bayesian en-
sembling to better calibrate prediction confidence,
particularly for interpretability in high-stakes edu-
cational settings.

7 Conclusion

This paper presents Team BD’s ensemble-based
MPNet system for the BEA 2025 Shared Task
on Mistake Identification and Location in tutor
responses. By fine-tuning MPNet with class-
weighted loss and grouped cross-validation, we
addressed data imbalance and maximized the use of
training data, achieving high accuracy and macro-
F1 scores on both Track 1 and Track 2. Extensive
analyses show that, while the model reliably han-

dles clear-cut error recognition, it struggles with
borderline cases involving partial acknowledgment,
as evidenced by embedding-space visualizations
and a taxonomy of common errors. Future work
will explore multi-task learning across evaluation
dimensions, leverage larger language models or
adapter-based methods to incorporate LLM knowl-
edge, and improve calibration and domain-specific
contextual understanding to enhance system relia-
bility and interpretability.

8 Limitations

Despite the strong results achieved by our ensemble
MPNet-based system, several limitations warrant
discussion:

Confidence Calibration: Our ensemble ex-
hibits poor calibration, often assigning high con-
fidence to incorrect predictions—problematic for
intervention-triggering systems. We did not ap-
ply calibration methods due to time constraints.
Adaptive Temperature Scaling (ATS), a recent post-
hoc technique, improves token-level calibration by
10–50% across benchmarks (Xie et al., 2024), and
merits future exploration.

Label Ambiguity: The line between “Yes” and
“To some extent” is subjective, with some errors
stemming from annotation uncertainty rather than
model failure, thus limiting performance. Model-
ing the task as ordinal or probabilistic may better
capture this continuum; ordinal methods have been
proposed for similar label structures (Zhang et al.,
2023).

Model Scope and Efficiency: MPNet-base
lacks domain-specific specialization for educa-
tional dialogue, which may limit its ability to
handle nuanced interactions. Exploring a larger,
domain-adapted backbone or a multitask learning
setup could enhance performance and is a promis-
ing direction for future work.
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Appendix

A Software and Package Details

We conducted all experiments using Python 3.9,
PyTorch 1.13, and the Hugging Face Trans-
formers library (version 4.37.2) (Wolf et al.,
2020). Specifically, we fine-tuned the
sentence-transformers/all-mpnet-base-v2
model available on the Hugging Face Model Hub
(Reimers and Gurevych, 2020). Tokenization was
performed using MPNet’s tokenizer, with inputs
truncated to a maximum length of 300 tokens.

All models were trained on a single NVIDIA
RTX 3090 GPU (24 GB). Each fold took approxi-
mately 2–4 minutes per epoch to train, with conver-
gence typically reached within 3 epochs (i.e., 6–12
minutes per model). Full ensemble training (10
models for Track 1 and 7 for Track 2) completed in
under 3 hours. Despite the ensemble size, inference
was efficient: classifying the entire test set (several
hundred responses) took under 30 seconds.

B Training Configuration

Class Weights. To mitigate class imbalance, we
applied inverse frequency class weighting in the
cross-entropy loss function:

wc =
1

log(fc + ϵ)
,

where fc is the frequency of class c and ϵ = 1.05.

Hyperparameter Search. We performed grid
search over learning rates {1e-5, 2e-5, 3e-5} and
batch sizes {8, 16}. The best configuration was
selected based on average macro-F1 over the cross-
validation folds.

Reproducibility. We fixed all random seeds to 42
and set PyTorch to deterministic mode. Our code
will be made publicly available upon publication.

C Preprocessing Frequency Across
Models

Table 4 summarizes the frequency of manual
cleanup operations required across models.

D Additional Training Results

Table 5 reports additional macro-F1 scores for
Mistake Identification and Mistake Location tasks
across various models. For non-Transformer mod-
els, we used TF-IDF representations as input fea-
tures.
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Category Phi3 Mistral Llama-3.1-8B Llama-3.1-405B GPT-4 Total

Extra Info 1 0 1 11 1 14
Appended Dialogue Trimming 19 0 0 0 0 19
Code Abstraction 2 0 0 0 0 2
Punctuation Cleanup 3 2 0 0 0 5

Totals 25 2 1 11 1 40

Table 4: Model-specific frequencies of manual cleanup operations on tutor responses.

Model Mistake Identification Mistake Location

BERT 0.8703 0.7025
RoBERTa 0.7816 0.6551
DeBERTa 0.8576 0.7025
ELECTRA 0.8513 0.6266
MPNet 0.8639 0.6203
NeoBERT 0.8513 0.6677
Logistic Regression 0.7880 0.6139
Random Forest 0.8260 0.6551
Gradient Boosting 0.8418 0.6519
SVM 0.7785 0.6110
LightGBM 0.8418 0.6551
XGBoost 0.8386 0.6646
CatBoost 0.8196 0.6582

Table 5: Macro-F1 scores for Mistake Identification and Mistake Location tasks across Transformer models and
TF-IDF + traditional classifiers. Best results per column are bolded.
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Abstract

This paper presents Thapar Titan/s’ submission
to the BEA 2025 Shared Task on Pedagogi-
cal Ability Assessment of AI-powered Tutors
(Kochmar et al., 2025). The shared task con-
sists of five subtasks; our team ranked 18th in
Mistake Identification, 15th in Mistake Loca-
tion, and 18th in Actionability. However, in this
paper, we focus exclusively on presenting re-
sults for Task 1: Mistake Identification, which
evaluates a system’s ability to detect student
mistakes.

Our approach employs contextual data aug-
mentation using a RoBERTa based masked
language model to mitigate class imbalance,
supplemented by oversampling and weighted
loss training. Subsequently, we fine-tune three
separate classifiers: RoBERTa, BERT, and
DeBERTa for three-way classification aligned
with task-specific annotation schemas. This
modular and scalable pipeline enables a com-
prehensive evaluation of tutor feedback quality
in educational dialogues.

1 Introduction

With the rapid evolution of large language mod-
els (LLMs), their integration into the educational
domain has expanded significantly. These models
present a transformative opportunity to enhance eq-
uitable access to high-quality education, especially
in remote or under-resourced areas where there is
a persistent shortage of qualified educators. When
implemented as AI-powered tutors, LLMs can fa-
cilitate interactive, human-like dialogues that po-
tentially overcome the constraints of conventional
educational tools and enable scalable, personalized
learning experiences.

Nonetheless, despite their promise, current
LLMs exhibit several notable limitations. They
are susceptible to inherent biases derived from
their training data, often display reduced reliability
in solving mathematical problems requiring struc-

tured reasoning, and are prone to generating hal-
lucinated or factually inaccurate responses. These
deficiencies raise critical concerns about their de-
pendability in educational settings where accuracy
and clarity are paramount. Consequently, there is a
growing imperative to establish rigorous and sys-
tematic frameworks for assessing the pedagogical
efficacy of state-of-the-art generative models in the
context of educational dialogues. Evaluating the
pedagogical capabilities of generative models is
crucial because AI tutors must do more than co-
herent dialogue generation, they need to provide
accurate, constructive, and context-sensitive guid-
ance that supports effective learning. This is es-
pecially important in mathematics and reasoning
tasks, where precise problem-solving steps and log-
ical explanations are essential. Without assessing
these educational qualities, models may produce
plausible but incorrect or misleading responses.
Therefore, rigorous evaluation of pedagogical ef-
fectiveness is vital to ensure AI tutors genuinely
enhance learning and meet educational standards.

Due to the absence of a unified evaluation frame-
work, prior studies have adopted a variety of
criteria to assess the effectiveness of AI tutor-
ing systems. For instance, (Tack et al., 2023)
and (Tack and Piech, 2022) focused on whether
the model communicates like a teacher, under-
stands student needs, and offers helpful guidance.
(Macina et al., 2023) employed human evaluators
to judge responses based on coherence, correct-
ness, and fairness in tutoring. Meanwhile, (Wang
et al., 2024) emphasized usefulness, empathy, and
human-likeness, and (Daheim et al., 2024) assessed
responses using targetedness, correctness, and ac-
tionability.

To address these challenges, this paper presents
a classification approach based on fine tuning three
pretrained language models RoBERTa (Zhuang
et al., 2021), DeBERTa (He et al., 2021), and BERT
(Devlin et al., 2019) designed to understand the
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Figure 1: An schematic representation of the overall methodology

underlying context of educational dialogues and ac-
curately identify student mistakes. To mitigate the
inherent class imbalance in the dataset where cer-
tain types of errors are more frequent, our approach
incorporates weighted training and contextual aug-
mentation, ensuring the models do not develop in-
ternal biases toward specific mistake categories.
Subsequent sections provide a detailed account of
our methodology and findings.

2 Methodology

This work formulates the task of mistake classifi-
cation in tutor–student dialogues as a multiclass
classification problem. To address the pronounced
class imbalance in the dataset, two complemen-
tary strategies were employed: conventional over-
sampling and contextual augmentation based on
masked language modeling. The resulting bal-
anced dataset was used to fine-tune transformer
based models such as BERT, RoBERTa, and De-
BERTa, with all layers unfrozen to facilitate effec-
tive weight optimization. The models were trained
using categorical cross entropy loss and evaluated
using macro F1 score and accuracy, with early stop-
ping implemented based on macro F1. A detailed
breakdown of this methodology is illustrated in Fig.
1 and further elaborated in the subsequent sections.

2.1 Dataset
We utilize the official dataset released as part of
the BEA Shared Task 2025 (Maurya et al., 2025),
comprising dialogues sourced from the MathDial
(Macina et al., 2023) and Bridge (Wang et al.,
2024)) datasets. The development set includes 300
dialogues, each consisting of several preceding tu-

tor–student turns where the student either makes a
mistake or expresses confusion, followed by the stu-
dent’s latest utterance and a set of tutor responses.
These responses include those from human tutors
extracted from the original datasets, as well as re-
sponses generated by seven LLMs-as-tutors, each
identified by a unique model ID. In total, the de-
velopment set contains over 2,480 tutor responses,
each annotated for pedagogical quality. The an-
notations span three classes: yes, to some extent,
and no, indicating whether the tutor successfully
performs a given pedagogical function. However,
the distribution is highly imbalanced, with approx-
imately 78% of examples labeled as yes, 7% as
to some extent, and only 14% as no. This skew
poses a significant challenge, as it can lead to bias
in model fine tuning if not properly addressed. The
data is provided in JSON format with fields such
as conversation id, conversation history, tutor re-
sponses, and annotations. The test set comprises
200 similarly structured dialogues from the same
sources, containing unannotated responses from
the same set of tutors, with tutor identities and ped-
agogical annotations withheld.

2.2 Data Augmentation

To address the severe class imbalance in the dataset,
two complementary strategies were employed. The
first involved conventional oversampling, in which
the frequency of each example from the minority
classes was increased by duplicating existing in-
stances. Although this approach provided some im-
provement, it introduced a risk of overfitting due to
repeated exposure to identical inputs. To mitigate
this issue, contextual augmentation was also ap-
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plied to generate diverse and meaningful examples
for the underrepresented classes. A semantic mask-
ing approach was adopted, where selected words
in the conversation history, which represents the
student’s input to the model, were masked while
preserving domain specific terms and mathematical
symbols. These key terms were excluded because
they carry essential meaning and detail, which are
critical for accurately assessing a tutoring scenario.
Irrelevant stopwords were also omitted, as they
do not contribute significant semantic content and
would not enhance the quality of augmentation.
After masking, we applied masked language mod-
eling using a pretrained RoBERTa based model.
These models predicted and replaced the masked
tokens based on their surrounding context, generat-
ing fluent and semantically consistent variations of
the input. By leveraging multiple models, we intro-
duced a rich set of plausible alternatives while pre-
serving the original intent of the student’s question.
Importantly, this augmentation was applied only
to the input context and not to the tutor’s response.
Altering the responses could distort the assessment
of the model’s true predictive performance. This
method allowed us to expand the dataset mean-
ingfully, improve class balance, and maintain the
authenticity of pedagogical evaluation.

2.3 Fine-Tuning for Classification

The overall problem was formulated as a mul-
ticlass classification task focused on identifying
and localizing different types of mistakes within
student-tutor dialogues. Three large language mod-
els, namely BERT large, RoBERTa, and DeBERTa,
were chosen for fine-tuning due to their strong con-
textual understanding and performance in natural
language tasks. The training was conducted using
the final augmented dataset, which contained ap-
proximately 2,000 samples for each class to address
the class imbalance and ensure balanced learning.
To maximize performance, all layers of the mod-
els were unfrozen, allowing for comprehensive
weight adjustment during training. The models
were trained for up to 100 epochs on an Nvidia
H100 GPU, with categorical cross entropy serv-
ing as the optimization loss function. Evaluation
was performed using macro F1 score and accuracy
metrics. Early stopping was applied based on the
macro F1 score to prevent overfitting, and the best
model weights were saved for subsequent evalua-
tion.

RoBERTa DeBERTa BERT
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Figure 2: Model-wise Comparison of Validation Macro
F1 Scores

3 Results and Discussion

Extensive experimentation was conducted across
various hyperparameters and settings to assess
their individual impact on model performance.
RoBERTa was fixed as the baseline/default archi-
tecture for all experiments, and the mask ratio was
set to a default of 15%, except where explicitly
varied during the mask ratio ablation studies. The
experiments focused on three key areas: evaluating
different mask ratios during contextual masking
(15%, 30%, and 50%), comparing transformer ar-
chitectures (RoBERTa, BERT, and DeBERTa) at
the default 15% mask ratio, and investigating two
class imbalance handling techniques—contextual
augmentation and conventional oversampling. We
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Figure 3: Training and Validation Accuracy over Opti-
mization Steps

observed that the model achieved the highest per-
formance with the default 15% mask ratio, yielding
a training accuracy of 99.63%, validation accuracy
of 87.9%, and validation F1 score of 67.61% (Fig. 3
and Fig. 4). Increasing the mask ratio to 30% and
50% led to a slight decrease in all performance
metrics, with the lowest F1 scores observed at the
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S. No. Metric Contextual Augmentation Conventional Oversampling Class Weights
1 Train Accuracy 99.63 100.00 99.77
2 Validation Accuracy 87.90 81.40 81.67
3 Validation F1 Score 67.61 63.75 63.48

Table 1: Performance comparison across different data augmentation and class imbalance handling techniques.

50% masking level (65.47%), as shown in Fig. 5.
This indicates that excessive masking may hinder
the model’s ability to learn meaningful contextual
representations, while the 15% mask ratio strikes
an effective balance between regularization and in-
formation retention, enhancing generalization on
the validation set.

Using the fixed baseline RoBERTa model at the
default mask ratio, we compared the performance
of different transformer architectures. RoBERTa
and DeBERTa demonstrated superior results, with
validation accuracies of 87.9% and 87.1%, respec-
tively. RoBERTa slightly outperformed DeBERTa
in validation F1 score (67.61% vs. 64.66%). BERT
lagged with a validation accuracy of 81.4% and
an F1 score of 60.41%. The stronger performance
of RoBERTa and DeBERTa is attributable to their
improved pre-training methods and architectural
enhancements compared to BERT, facilitating bet-
ter contextual understanding (Fig. 2).
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Figure 4: Validation Macro F1 Score Across Training
Steps

For handling class imbalance, contextual aug-
mentation and conventional oversampling were
evaluated. While oversampling achieved perfect
training accuracy (100%), it produced lower val-
idation accuracy (81.4%) and F1 score (63.75%)
compared to contextual augmentation (validation
accuracy 87.9%, F1 67.61%), as shown in Table 1.
This suggests that oversampling may lead to over-
fitting, whereas contextual augmentation, by gen-
erating semantically consistent synthetic samples,
improves model generalization without overfitting.

Overall, these results emphasize the importance

of choosing an appropriate mask ratio, selecting
advanced transformer architectures, and using se-
mantically informed augmentation techniques for
robust model performance. Fixing RoBERTa as
the baseline and adopting a 15% mask ratio proved
effective across experiments. The findings high-
light the necessity of careful hyperparameter tuning
and data augmentation strategies, especially when
addressing class imbalance. Future research may
explore integrating these techniques further and
evaluating them on larger, more diverse datasets.
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Figure 5: Effect of Masking Ratio on Validation Macro
F1 Score

4 Conclusion

This study addresses the task of mistake classifica-
tion in tutor–student dialogues by fine-tuning large
pre-trained language models on a class-balanced
dataset. To mitigate the issue of severe class im-
balance, both conventional oversampling and con-
textual augmentation were employed, preserving
the semantic integrity of student inputs. The use
of BERT, RoBERTa, and DeBERTa enabled ef-
fective learning, and performance was evaluated
using macro F1 and accuracy. Overall, the pro-
posed framework enhances the reliability and gen-
eralizability of automated feedback systems. Fu-
ture work may explore adaptive augmentation or
dynamic feedback integration to further improve
model robustness.
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Limitations

This study is based on publicly available datasets,
specifically MathDial and Bridge, which may not
capture the full range of tutoring scenarios encoun-
tered in real-world educational settings. As a result,
the model’s performance and generalizability could
be limited when applied to more diverse or com-
plex dialogues beyond these datasets. Furthermore,
while contextual augmentation was effective in mit-
igating class imbalance by generating additional
examples for minority classes, this approach may
inadvertently introduce subtle biases or produce
variations that are not entirely representative of nat-
ural student language. Such synthetic alterations,
although contextually coherent, might affect the
model’s robustness when faced with truly novel or
unexpected inputs. Future studies could address
these limitations by incorporating more diverse di-
alogue datasets and exploring augmentation strate-
gies that more closely mimic real-world student
behavior and language use.
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Säuberli, Andreas, 266

Tack, Anaı̈s, 535, 937, 1011
Tamori, Hideaki, 499

1285



Tan, Chuangchuang, 1073
Taslimipoor, Shiva, 55
Timukova, Anna, 237
Tiwari, Rajneesh, 1098
Tjitrahardja, Eduardus, 1212
Torrance, Mark, 841
Tran, Nhat, 752

Urakawa, Toru, 499
Urrutia, Felipe, 38

Vainikko, Martin, 953
Vallez, Cyril, 248
Van Den Noortgate, Wim, 535
Vanhatalo, Ulla, 594
Vasiluta, Mihai Alexandru, 89
Vasselli, Justin, 1011
Vu, Anh-Duc, 594, 737

Wang, Deliang, 1040
Wang, Shuo, 1084
Wang, Zuowei, 398
Welch, Charles, 582
Wieczarek, Adam, 794
Woo, David, 460
Woodhead, Simon, 294
Wu, Yiheng, 594
Wulff, Stefanie, 687

Xiao, Zheng, 1078
Xie Fincham, Naiyi, 384
Xu, Jin, 1078

Yalcin, Nilay, 100
Yaneva, Victoria, 830, 891
Yang, Chao, 1040
Yang, Erhong, 1084
Yang, Haiyin, 687
Yang, Liner, 1084
Yangarber, Roman, 594, 737
Yarmohammadtoosky, Sahar, 830
Yasser, Mazen, 1121
Yin, Stella Xin, 129

Zalkow, Frank, 415
Zarcone, Alessandra, 415
Zehner, Fabian, 660, 1173
Zeng, Yawen, 1078
Zesch, Torsten, 144, 375, 660
Zhang, Jason, 898
Zhang, Terry Jingchen, 356
Zhang, Xiaoyu, 100
Zhao, Yiling, 908
Zhou, Yiyun, 830, 891
Zong, Xuquan, 1084
Zouhar, Vilém, 612

1286


	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Keynote Talk: How LLMs Are Reshaping GEC: Training, Evaluation, and Task Framing
	Table of Contents
	Program
	Large Language Models for Education: Understanding the Needs of Stakeholders, Current Capabilities and the Path Forward
	Comparing human and LLM proofreading in L2 writing: Impact on lexical and syntactic features
	MateInfoUB: A Real-World Benchmark for Testing LLMs in Competitive, Multilingual, and Multimodal Educational Tasks
	Unsupervised Automatic Short Answer Grading and Essay Scoring: A Weakly Supervised Explainable Approach
	A Survey on Automated Distractor Evaluation in Multiple-Choice Tasks
	Alignment Drift in CEFR-prompted LLMs for Interactive Spanish Tutoring
	Leveraging Generative AI for Enhancing Automated Assessment in Programming Education Contests
	Can LLMs Effectively Simulate Human Learners? Teachers' Insights from Tutoring LLM Students
	Adapting LLMs for Minimal-edit Grammatical Error Correction
	COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content
	Is Lunch Free Yet? Overcoming the Cold-Start Problem in Supervised Content Scoring using Zero-Shot LLM-Generated Training Data
	Transformer Architectures for Vocabulary Test Item Difficulty Prediction
	Automatic concept extraction for learning domain modeling: A weakly supervised approach using contextualized word embeddings
	Towards a Real-time Swedish Speech Analyzer for Language Learning Games: A Hybrid AI Approach to Language Assessment
	Multilingual Grammatical Error Annotation: Combining Language-Agnostic Framework with Language-Specific Flexibility
	LLM-based post-editing as reference-free GEC evaluation
	Increasing the Generalizability of Similarity-Based Essay Scoring Through Cross-Prompt Training
	Automated Scoring of a German Written Elicited Imitation Test
	LLMs Protégés: Tutoring LLMs with Knowledge Gaps Improves Student Learning Outcome
	LEVOS: Leveraging Vocabulary Overlap with Sanskrit to Generate Technical Lexicons in Indian Languages
	Do LLMs Give Psychometrically Plausible Responses in Educational Assessments?
	Challenges for AI in Multimodal STEM Assessments: a Human-AI Comparison
	LookAlike: Consistent Distractor Generation in Math MCQs
	You Shall Know a Word's Difficulty by the Family It Keeps: Word Family Features in Personalised Word Difficulty Classifiers for L2 Spanish
	The Need for Truly Graded Lexical Complexity Prediction
	Towards Automatic Formal Feedback on Scientific Documents
	Don't Score too Early! Evaluating Argument Mining Models on Incomplete Essays
	Educators' Perceptions of Large Language Models as Tutors: Comparing Human and AI Tutors in a Blind Text-only Setting
	Transformer-Based Real-Word Spelling Error Feedback with Configurable Confusion Sets
	Automated L2 Proficiency Scoring: Weak Supervision, Large Language Models, and Statistical Guarantees
	Automatic Generation of Inference Making Questions for Reading Comprehension Assessments
	Investigating Methods for Mapping Learning Objectives to Bloom's Revised Taxonomy in Course Descriptions for Higher Education
	LangEye: Toward 'Anytime' Learner-Driven Vocabulary Learning From Real-World Objects
	Costs and Benefits of AI-Enabled Topic Modeling in P-20 Research: The Case of School Improvement Plans
	Advances in Auto-Grading with Large Language Models: A Cross-Disciplinary Survey
	Unsupervised Sentence Readability Estimation Based on Parallel Corpora for Text Simplification
	From End-Users to Co-Designers: Lessons from Teachers
	LLMs in alliance with Edit-based models: advancing In-Context Learning for Grammatical Error Correction by Specific Example Selection
	Explaining Holistic Essay Scores in Comparative Judgment Assessments by Predicting Scores on Rubrics
	Enhancing Arabic Automated Essay Scoring with Synthetic Data and Error Injection
	Direct Repair Optimization: Training Small Language Models For Educational Program Repair Improves Feedback
	Analyzing Interview Questions via Bloom's Taxonomy to Enhance the Design Thinking Process
	Estimation of Text Difficulty in the Context of Language Learning
	Are Large Language Models for Education Reliable Across Languages?
	Exploiting the English Vocabulary Profile for L2 word-level vocabulary assessment with LLMs
	Advancing Question Generation with Joint Narrative and Difficulty Control
	Down the Cascades of Omethi: Hierarchical Automatic Scoring in Large-Scale Assessments
	Lessons Learned in Assessing Student Reflections with LLMs
	Using NLI to Identify Potential Collocation Transfer in L2 English
	Name of Thrones: How Do LLMs Rank Student Names in Status Hierarchies Based on Race and Gender?
	Exploring LLM-Based Assessment of Italian Middle School Writing: A Pilot Study
	Exploring task formulation strategies to evaluate the coherence of classroom discussions with GPT-4o
	A Bayesian Approach to Inferring Prerequisite Structures and Topic Difficulty in Language Learning
	Improving In-context Learning Example Retrieval for Classroom Discussion Assessment with Re-ranking and Label Ratio Regulation
	Exploring LLMs for Predicting Tutor Strategy and Student Outcomes in Dialogues
	Assessing Critical Thinking Components in Romanian Secondary School Textbooks: A Data Mining Approach to the ROTEX Corpus
	Improving AI assistants embedded in short e-learning courses with limited textual content
	Beyond Linear Digital Reading: An LLM-Powered Concept Mapping Approach for Reducing Cognitive Load
	GermDetect: Verb Placement Error Detection Datasets for Learners of Germanic Languages
	Enhancing Security and Strengthening Defenses in Automated Short-Answer Grading Systems
	EyeLLM: Using Lookback Fixations to Enhance Human-LLM Alignment for Text Completion
	Span Labeling with Large Language Models: Shell vs. Meat
	Intent Matters: Enhancing AI Tutoring with Fine-Grained Pedagogical Intent Annotation
	Comparing Behavioral Patterns of LLM and Human Tutors: A Population-level Analysis with the CIMA Dataset
	Temporalizing Confidence: Evaluation of Chain-of-Thought Reasoning with Signal Temporal Logic
	Automated Scoring of Communication Skills in Physician-Patient Interaction: Balancing Performance and Scalability
	Decoding Actionability: A Computational Analysis of Teacher Observation Feedback
	EduCSW: Building a Mandarin-English Code-Switched Generation Pipeline for Computer Science Learning
	STAIR-AIG: Optimizing the Automated Item Generation Process through Human-AI Collaboration for Critical Thinking Assessment
	UPSC2M: Benchmarking Adaptive Learning from Two Million MCQ Attempts
	Can GPTZero's AI Vocabulary Distinguish Between LLM-Generated and Student-Written Essays?
	Paragraph-level Error Correction and Explanation Generation: Case Study for Estonian
	End-to-End Automated Item Generation and Scoring for Adaptive English Writing Assessment with Large Language Models
	A Framework for Proficiency-Aligned Grammar Practice in LLM-Based Dialogue Systems
	Can LLMs Reliably Simulate Real Students' Abilities in Mathematics and Reading Comprehension?
	LLM-Assisted, Iterative Curriculum Writing: A Human-Centered AI Approach in Finnish Higher Education
	Findings of the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors
	Jinan Smart Education at BEA 2025 Shared Task: Dual Encoder Architecture for Tutor Identification via Semantic Understanding of Pedagogical Conversations
	Wonderland_EDU@HKU at BEA 2025 Shared Task: Fine-tuning Large Language Models to Evaluate the Pedagogical Ability of AI-powered Tutors
	bea-jh at BEA 2025 Shared Task: Evaluating AI-powered Tutors through Pedagogically-Informed Reasoning
	CU at BEA 2025 Shared Task: A BERT-Based Cross-Attention Approach for Evaluating Pedagogical Responses in Dialogue
	BJTU at BEA 2025 Shared Task: Task-Aware Prompt Tuning and Data Augmentation for Evaluating AI Math Tutors
	SYSUpporter Team at BEA 2025 Shared Task: Class Compensation and Assignment Optimization for LLM-generated Tutor Identification
	BLCU-ICALL at BEA 2025 Shared Task: Multi-Strategy Evaluation of AI Tutors
	Phaedrus at BEA 2025 Shared Task: Assessment of Mathematical Tutoring Dialogues through Tutor Identity Classification and Actionability Evaluation
	Emergent Wisdom at BEA 2025 Shared Task: From Lexical Understanding to Reflective Reasoning for Pedagogical Ability Assessment
	Averroes at BEA 2025 Shared Task: Verifying Mistake Identification in Tutor, Student Dialogue
	SmolLab_SEU at BEA 2025 Shared Task: A Transformer-Based Framework for Multi-Track Pedagogical Evaluation of AI-Powered Tutors
	RETUYT-INCO at BEA 2025 Shared Task: How Far Can Lightweight Models Go in AI-powered Tutor Evaluation?
	K-NLPers at BEA 2025 Shared Task: Evaluating the Quality of AI Tutor Responses with GPT-4.1
	Henry at BEA 2025 Shared Task: Improving AI Tutor's Guidance Evaluation Through Context-Aware Distillation
	TBA at BEA 2025 Shared Task: Transfer-Learning from DARE-TIES Merged Models for the Pedagogical Ability Assessment of LLM-Powered Math Tutors
	LexiLogic at BEA 2025 Shared Task: Fine-tuning Transformer Language Models for the Pedagogical Skill Evaluation of LLM-based tutors
	IALab UC at BEA 2025 Shared Task: LLM-Powered Expert Pedagogical Feature Extraction
	MSA at BEA 2025 Shared Task: Disagreement-Aware Instruction Tuning for Multi-Dimensional Evaluation of LLMs as Math Tutors
	TutorMind at BEA 2025 Shared Task: Leveraging Fine-Tuned LLMs and Data Augmentation for Mistake Identification
	Two Outliers at BEA 2025 Shared Task: Tutor Identity Classification using DiReC, a Two-Stage Disentangled Contrastive Representation
	Archaeology at BEA 2025 Shared Task: Are Simple Baselines Good Enough?
	NLIP at BEA 2025 Shared Task: Evaluation of Pedagogical Ability of AI Tutors
	NeuralNexus at BEA 2025 Shared Task: Retrieval-Augmented Prompting for Mistake Identification in AI Tutors
	DLSU at BEA 2025 Shared Task: Towards Establishing Baseline Models for Pedagogical Response Evaluation Tasks
	BD at BEA 2025 Shared Task: MPNet Ensembles for Pedagogical Mistake Identification and Localization in AI Tutor Responses
	Thapar Titan/s : Fine-Tuning Pretrained Language Models with Contextual Augmentation for Mistake Identification in Tutor–Student Dialogues

