EACL 2021

The 16th Conference of the European Chapter
of the Association for Computational Linguistics

Proceedings of the System Demonstrations

April 19 - 23, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-954085-05-3

ii

Introduction

Welcome to the proceedings of the EACL System Demonstration Sessions. This volume contains the
papers of the system demonstrations presented at the 16th conference of the European Chapter of the
Association for Computational Linguistics (EACL) on April 19th - April 23rd, 2021.

The EACL 2021 demonstrations track welcomed submissions ranging from early research prototypes
to mature production-ready systems. We received 56 submissions this year, of which 39 were selected
for inclusion in the program after having been reviewed by two members of the program committee.
This year, the EACL demo track received a very large amount of high-quality research papers. We
therefore decided to feature an inclusive programme where all excellent publications were chosen to be
presented at the meeting. Following current practice, we further asked the programme committee to pay
special attention to issues related to ethics. We would like to warmly thank the members of the program
committee for their timely help in reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. Because this
year the EACL conference is completely virtual, the demonstration paper talks are therefore pre-recorded
and authors are invited to present their work with posters during the two live demo sessions through
gather.town.

Dimitra Gkatzia and Djamé Seddah
EACL 2021 Demonstration Track Chairs

iii

Organizing Committee

¢ System Demonstration Chairs:
Dimitra Gkatzia, Djamé Seddah

* Program Committee:

Omri Abend, Nikolaos Aletras, Shlomo Argamon, Rachel Bawden, Timothée Bernard, Marie
Candito, Xavier Carreras, Alberto Cetoli, Jhih-Jie Chen, Manuel R. Ciosici, Miruna-Adriana
Clinciu, Raphael Cohen, Michael Desmond, Sourav Dutta, Catherine Finegan-Dollak, Dimitra
Gkatzia, Johannes Heinecke, Daniel Hershcovich, David M. Howcroft, Ganesh Jawahar, Giannis
Karamanolakis, Rabeeh Karimi Mahabadi, Andrew Kirby, Arne K&hn, Philippe Laban, Dong-
Ho Lee, Manling Li, Xuezhe Ma, Prodromos Malakasiotis, Yuval Marton, Ivan Vladimir Meza
Ruiz, Khalil Mrini, Pedro Javier Ortiz Sudrez, Xutan Peng, Benoit Sagot, Sashank Santhanam,
Sebastin Santy, Thomas Scialom, Djamé Seddah, Somayajulu Sripada, Carl Strathearn, Simon
Wells, Guillaume Wisniewski, Runxin Xu, Hamada Zahera, Yi Zhang

Table of Contents

Using and comparing Rhetorical Structure Theory parsers with rst-workbench
AINe NEUMANI . . . oottt e e e et et e e e e e 1

SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
Xiaopeng Lu, Kyusong Lee and Tiancheng Zhao.......... i .. 7

Finite-state script normalization and processing utilities: The Nisaba Brahmic library
Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin and Brian Roark 14

CovRelex: A COVID-19 Retrieval System with Relation Extraction
Vu Tran, Van-Hien Tran, Phuong Nguyen, Chau Nguyen, Ken Satoh, Yuji Matsumoto and Minh

MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue Annotator
Davide Cucurnia, Nikolai Rozanov, Irene Sucameli, Augusto Ciuffoletti and Maria Simi. 32

AnswerQuest: A System for Generating Question-Answer Items from Multi-Paragraph Documents
Melissa Roemmele, Deep Sidhpura, Steve DeNeefe and Ling Tsou 40

T-NER: An All-Round Python Library for Transformer-based Named Entity Recognition
Asahi Ushio and Jose Camacho-Collados 53

Forum 4.0: An Open-Source User Comment Analysis Framework
Marlo Haering, Jakob Smedegaard Andersen, Chris Biemann, Wiebke Loosen, Benjamin Milde,
Tim Pietz, Christian Stocker, Gregor Wiedemann, Olaf Zukunft and Walid Maalej 63

SLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari, Ondfej Bojar, Barry Haddow and Mohammad Mahmoudi 71

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing
Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh and Thien Huu Nguyen 80

DeblE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran GlavaS 91

A Dashboard for Mitigating the COVID-19 Misinfodemic

Zhengyuan Zhu, Kevin Meng, Josue Caraballo, Israa Jaradat, Xiao Shi, Zeyu Zhang, Farahnaz
Akrami, Haojin Liao, Fatma Arslan, Damian Jimenez, Mohanmmed Samiul Saeef, Paras Pathak and
Chengkal Li . ..o e 99

EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with Amazon Mechanical
Turk
Lorenzo Bocchi, Valentino Frasnelli and Alessio Palmero Aprosio................ovvuue.... 106

ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali and Kareem Darwish 113

COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
Maria Becker, Katharina Korfhage and Anette Frank 119

vii

A description and demonstration of SAFAR framework
Karim Bouzoubaa, Younes Jaafar, Driss Namly, Ridouane Tachicart, Rachida Tajmout, hakima
khamar, hamid jaafar, Lhoussain aouragh and Abdellah Yousfi.................................. 127

InterpreT: An Interactive Visualization Tool for Interpreting Transformers
Vasudev Lal, Arden Ma, Estelle Afialo, Phillip Howard, Ana Simoes, Daniel Korat, Oren Pereg,
Gadi Singer and Moshe Wasserblat. i e 135

Representing ELMo embeddings as two-dimensional text online
Andrey Kutuzov and Elizaveta Kuzmenko, 143

LOME: Large Ontology Multilingual Extraction
Patrick Xia, Guanghui Qin, Siddharth Vashishtha, Yunmo Chen, Tongfei Chen, Chandler May,
Craig Harman, Kyle Rawlins, Aaron Steven White and Benjamin Van Durme 149

MadDog: A Web-based System for Acronym Ildentification and Disambiguation
Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang and Thien Huu Nguyen........ 160

Graph Matching and Graph Rewriting: GREW tools for corpus exploration, maintenance and conversion
Bruno Guillaume e 168

Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP
Rob van der Goot, Ahmet Ustiin, Alan Ramponi, Ibrahim Sharaf and Barbara Plank. 176

SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
Christian Haase, Saba Anwar, Seid Muhie Yimam, Alexander Friedrich and Chris Biemann. .. 198

GCM: A Toolkit for Generating Synthetic Code-mixed Text
Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja Ganu, Monojit Choudhury and Sunayana

T2NER: Transformers based Transfer Learning Framework for Named Entity Recognition
Saadullah Amin and Guenter Neumannttt 212

European Language Grid: A Joint Platform for the European Language Technology Community

Georg Rehm, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, Andrejs Vasiljevs,
Gerhard Backfried, Jose Manuel Gomez-Perez, Ulrich Germann, Rémi Calizzano, Nils Feldhus, Ste-
fanie Hegele, Florian Kintzel, Katrin Marheinecke, Julian Moreno-Schneider, Dimitris Galanis, Penny
Labropoulou, Miltos Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris Gkoumas, Leon Vouk-
outis, Ian Roberts, Jana Hamrlova, Dusan Varis, Lukas Kacena, Khalid Choukri, Valérie Mapelli, Mick-
aél Rigault, Julija Melnika, Miro Janosik, Katja Prinz, Andres Garcia-Silva, Cristian Berrio, Ondrej
Klejch and Steve Renals 221

A New Surprise Measure for Extracting Interesting Relationships between Persons
Hidetaka Kamigaito, Jingun Kwon, Young-In Song and Manabu Okumura 231

Paladin: an annotation tool based on active and proactive learning
Minh-Quoc Nghiem, Paul Baylis and Sophia Ananiadou................................... 238

Story Centaur: Large Language Model Few Shot Learning as a Creative Writing Tool
Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen and Monica Dinalescu 244

FrameForm: An Open-source Annotation Interface for FrameNet
Biisra Marsan and Olcay Taner Yild1z i i 257

viii

OCTIS: Comparing and Optimizing Topic models is Simple!
Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano and ANTONIO CAN-
DELIERI 263

ELITR Multilingual Live Subtitling: Demo and Strategy

Ondfej Bojar, Dominik Machacek, Sangeet Sagar, Otakar Smrz, Jonas Kratochvil, Peter Polék,
Ebrahim Ansari, Mohammad Mahmoudi, Rishu Kumar, Dario Franceschini, Chiara Canton, Ivan Si-
monini, Thai-Son Nguyen, Felix Schneider, Sebastian Stiiker, Alex Waibel, Barry Haddow, Rico Sen-
nrich and Philip WIlliamst e e e 271

Breaking Writer’s Block: Low-cost Fine-tuning of Natural Language Generation Models
Alexandre Duval, Thomas Lamson, Gaél de Léséleuc de Kérouara and Matthias Gallé. 278

OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
Tommi NIBMINEINo o ettt et ettt e et e 288

Domain Expert Platform for Goal-Oriented Dialog Collection
Didzis Gosko, Arturs Znotins, Inguna Skadina, Normunds Gruzitis and Gunta NeSpore-Bérzkalne
295

Which is Better for Deep Learning: Python or MATLAB? Answering Comparative Questions in Natural
Language

Viktoriia Chekalina, Alexander Bondarenko, Chris Biemann, Meriem Beloucif, Varvara Logacheva
and Alexander Panchenko. i e 302

PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Written Text
Varnith Chordia e e 312

Conversational Agent for Daily Living Assessment Coaching Demo
Raymond Finzel, Aditya Gaydhani, Sheena Dufresne, Maria Gini and Serguei Pakhomov... .. 321

HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Language Processing
Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin and William Yang Wang........................... 329

X

Conference Program

Using and comparing Rhetorical Structure Theory parsers with rst-workbench
Arne Neumann

SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
Xiaopeng Lu, Kyusong Lee and Tiancheng Zhao

Finite-state script normalization and processing utilities: The Nisaba Brahmic li-
brary
Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin and Brian Roark

CovRelex: A COVID-19 Retrieval System with Relation Extraction
Vu Tran, Van-Hien Tran, Phuong Nguyen, Chau Nguyen, Ken Satoh, Yuji Mat-
sumoto and Minh Nguyen

MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue An-
notator

Davide Cucurnia, Nikolai Rozanov, Irene Sucameli, Augusto Ciuffoletti and Maria
Simi

AnswerQuest: A System for Generating Question-Answer Items from Multi-
Paragraph Documents
Melissa Roemmele, Deep Sidhpura, Steve DeNeefe and Ling Tsou

T-NER: An All-Round Python Library for Transformer-based Named Entity Recog-
nition
Asahi Ushio and Jose Camacho-Collados

Forum 4.0: An Open-Source User Comment Analysis Framework

Marlo Haering, Jakob Smedegaard Andersen, Chris Biemann, Wiebke Loosen, Ben-
jamin Milde, Tim Pietz, Christian Stocker, Gregor Wiedemann, Olaf Zukunft and
Walid Maalej

SLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari, Ondfej Bojar, Barry Haddow and Mohammad Mahmoudi

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Lan-
guage Processing
Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh and Thien Huu Nguyen

DeblE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran Glavas

A Dashboard for Mitigating the COVID-19 Misinfodemic

Zhengyuan Zhu, Kevin Meng, Josue Caraballo, Israa Jaradat, Xiao Shi, Zeyu
Zhang, Farahnaz Akrami, Haojin Liao, Fatma Arslan, Damian Jimenez, Mohan-
mmed Samiul Saeef, Paras Pathak and Chengkai Li

X1

No Day Set (continued)

EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with
Amazon Mechanical Turk
Lorenzo Bocchi, Valentino Frasnelli and Alessio Palmero Aprosio

ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali and Kareem Darwish

COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
Maria Becker, Katharina Korfhage and Anette Frank

A description and demonstration of SAFAR framework
Karim Bouzoubaa, Younes Jaafar, Driss Namly, Ridouane Tachicart, Rachida Taj-
mout, hakima khamar, hamid jaafar, Lhoussain aouragh and Abdellah Yousfi

InterpreT: An Interactive Visualization Tool for Interpreting Transformers
Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard, Ana Simoes, Daniel Korat,
Oren Pereg, Gadi Singer and Moshe Wasserblat

Representing ELMo embeddings as two-dimensional text online
Andrey Kutuzov and Elizaveta Kuzmenko

LOME: Large Ontology Multilingual Extraction

Patrick Xia, Guanghui Qin, Siddharth Vashishtha, Yunmo Chen, Tongfei Chen,
Chandler May, Craig Harman, Kyle Rawlins, Aaron Steven White and Benjamin
Van Durme

MadDog: A Web-based System for Acronym Identification and Disambiguation
Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang and Thien Huu
Nguyen

Graph Matching and Graph Rewriting: GREW tools for corpus exploration, main-
tenance and conversion
Bruno Guillaume

Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in
NLP
Rob van der Goot, Ahmet Ustiin, Alan Ramponi, Ibrahim Sharaf and Barbara Plank

SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
Christian Haase, Saba Anwar, Seid Muhie Yimam, Alexander Friedrich and Chris
Biemann

GCM: A Toolkit for Generating Synthetic Code-mixed Text

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja Ganu, Monojit Choudhury and
Sunayana Sitaram

xii

No Day Set (continued)

T2NER: Transformers based Transfer Learning Framework for Named Entity
Recognition
Saadullah Amin and Guenter Neumann

European Language Grid: A Joint Platform for the European Language Technology
Community

Georg Rehm, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, An-
drejs Vasiljevs, Gerhard Backfried, Jose Manuel Gomez-Perez, Ulrich Germann,
Rémi Calizzano, Nils Feldhus, Stefanie Hegele, Florian Kintzel, Katrin Marhei-
necke, Julian Moreno-Schneider, Dimitris Galanis, Penny Labropoulou, Miltos
Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris Gkoumas, Leon Vouk-
outis, Ian Roberts, Jana Hamrlova, Dusan Varis, Lukas Kacena, Khalid Choukri,
Valérie Mapelli, Mickaél Rigault, Julija Melnika, Miro Janosik, Katja Prinz, An-
dres Garcia-Silva, Cristian Berrio, Ondrej Klejch and Steve Renals

A New Surprise Measure for Extracting Interesting Relationships between Persons
Hidetaka Kamigaito, Jingun Kwon, Young-In Song and Manabu Okumura

Paladin: an annotation tool based on active and proactive learning
Minh-Quoc Nghiem, Paul Baylis and Sophia Ananiadou

Story Centaur: Large Language Model Few Shot Learning as a Creative Writing
Tool
Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen and Monica Dinalescu

FrameForm: An Open-source Annotation Interface for FrameNet
Biisra Marsan and Olcay Taner Yildiz

OCTIS: Comparing and Optimizing Topic models is Simple!
Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano and
ANTONIO CANDELIERI

ELITR Multilingual Live Subtitling: Demo and Strategy

Ondrej Bojar, Dominik Machacek, Sangeet Sagar, Otakar Smrz, Jonas§ Kratochvil,
Peter Polak, Ebrahim Ansari, Mohammad Mahmoudi, Rishu Kumar, Dario Frances-
chini, Chiara Canton, Ivan Simonini, Thai-Son Nguyen, Felix Schneider, Sebastian
Stiiker, Alex Waibel, Barry Haddow, Rico Sennrich and Philip Williams

Breaking Writer’s Block: Low-cost Fine-tuning of Natural Language Generation
Models

Alexandre Duval, Thomas Lamson, Ga€l de Léséleuc de Kérouara and Matthias
Gallé

OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
Tommi Nieminen

Domain Expert Platform for Goal-Oriented Dialog Collection
Didzis Gosko, Arturs Znotins, Inguna Skadina, Normunds Gruzitis and Gunta
Nespore-Bérzkalne

Which is Better for Deep Learning™ Python or MATLAB? Answering Comparative
Questions in Natural Language

Viktoriia Chekalina, Alexander Bondarenko, Chris Biemann, Meriem Beloucif,
Varvara Logacheva and Alexander Panchenko

No Day Set (continued)

PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Writ-
ten Text
Varnith Chordia

Conversational Agent for Daily Living Assessment Coaching Demo
Raymond Finzel, Aditya Gaydhani, Sheena Dufresne, Maria Gini and Serguei
Pakhomov

HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Lan-

guage Processing
Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin and William Yang Wang

X1v

Using and comparing Rhetorical Structure Theory parsers with
rst-workbench

Arne Neumann
Independent researcher
rst—-workbench@arne.cl

Abstract

I present rst-workbench, a software package
that simplifies the installation and usage of nu-
merous end-to-end Rhetorical Structure The-
ory (RST) parsers.! The tool offers a web-
based interface that allows users to enter text
and let multiple RST parsers generate analy-
ses concurrently. The resulting RST trees can
be compared visually, manually post-edited (in
the browser) and stored for later usage.

1 Introduction

Rhetorical Structure Theory (RST) provides a for-
malism for hierarchical text organization that can
be applied to a wide range of natural language pro-
cessing tasks, ranging from text generation (Marcu,
1997; Konstas and Lapata, 2013) to the assessment
of conversational patterns of Alzheimer’s patients
(Abdalla et al., 2018; Paulino et al., 2018).

Most research on RST parsing is focused on
parser engineering, i.e. the evaluation of parsers
against a “gold standard” hand-annotated dataset.
Although RST corpora exist for a variety of other
languages (e.g. German, Dutch and Spanish), end-
to-end discourse parsers are usually only trained
and evaluated on English data, with the notable
exception of Braud et al. (2017a,b,c).

There are a number of RST parsers that were de-
veloped for other languages, but either are they not
publicly available (e.g. Reitter (2003) for German
and English as well as Pardo and Nunes (2008) for
Portuguese) or they do not produce complete RST
analyses, e.g. Sumita et al. (1992) for Japanese (no
intra-sentence relations) and da Cunha et al. (2012)
for Spanish (no inter-sentence relations).

!The rst-workbench and all related Docker configuration
files, images and REST API wrappers around the RST parsers
are available from https://github.com/arne-cl/
rst-workbench. An online demo is provided at https:
//rst-workbench.arne.cl/.

1

Compared to other NLP tasks like syntax pars-
ing, the amount of available training data is lim-
ited, with corpora being in the range from dozens
to a few hundred hand-annotated texts. There is
also little work evaluating RST parsers beyond
the Parseval-based procedure proposed by Marcu
(2000).2

For example, machine learning models are usu-
ally not compared with respect to their ability to de-
tect rare rhetorical relations. Zhang and Liu (2016)
found that rhetorical relations in RST-DT at differ-
ent levels—i.e. between clauses within sentences,
between sentences within paragraphs and between
paragraphs—all follow the same Zipf’s law-related
distribution. Individual relations show different
patterns, e.g. Attribution is more common in intra-
sentential relations than on higher levels.

In addition, no systematic review exists of the im-
pact of the preprocessing steps—sentence splitting,
syntax parsing and segmentation into Elementary
Discourse Units (EDUs)—on the quality of the re-
sulting RST parses. There is some work in this
direction, though.

For example, Surdeanu et al. (2015) imple-
mented two RST parsers that only differ in the
syntax parser used—the constituent-based RST
parser produced slightly better results, but the
dependency-based equivalent was 2.5 times faster.
Braud et al. (2017c¢) evaluated the influence of syn-
tactic information (using either constituency parses,
dependency parses or only POS tags) on discourse
segmentation. Rutherford et al. (2017) reviewed
the impact of different neural network architectures
on implicit discourse relation detection.

While Huber and Carenini (2020) showed that
RST parser performance can be improved by train-

’In a replication study, Morey et al. (2017) found that
most recently reported increases in RST parser performance
(9 parsers published between 2013 to 2017) are caused by
implementation differences of Marcu’s evaluation procedure.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 1-6

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

ing them on large RST treebanks automatically
generated using distant supervision, I hypothesize
that RST parsers can profit even more from larger
human-annotated training corpora.

In turn, the annotation of RST corpora can likely
be sped up by leveraging RST parsers. In the same
vein that translators can produce high-quality trans-
lations by post-editing machine-translated texts
more quickly than by manual translation alone
(Gaspari et al., 2014; Koponen, 2016), I assume
that linguists can produce RST analyses faster with
machine support (i.e. by selecting the best au-
tomatic analysis from a number of RST parsers
and then post-editing it) than by relying on hand-
annotation alone.

If the goal is to make annotators use RST parsers
productively, the parsers need to be adapted to
meet their needs. While the primary focus of RST
parser development is improving upon state-of-the-
art benchmark results, this work focuses on usabil-
ity and compatibility, i.e. the parsers need to be
easy to install and run while supporting the same
format(s) that common RST annotation and visual-
ization tools use.

To achieve this, I implemented rst-workbench,
which:

e acts as a web-based front-end to six different

RST parsers,

e provides an easy way to install the parsers on
all modern desktop operating systems using
Docker containers,

o facilitates their integration into NLP pipelines
by wrapping them in REST APIs,

e cnables the RST analyses produced by the
parsers to be visualized by and edited in
the rstWeb annotation tool (Zeldes, 2016) by
amending it with a REST API and by provid-
ing converters from the parsers’ output for-
mats to rstWeb’s input format.

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview of related
work, while Section 3 describes the architecture
and usage of the system. Section 4 summarizes
the main conclusions and outlines areas of future
work.

2 Related work

To the best of my knowledge, rst-workbench is the
first tool that offers a graphical user interface for
and integrates several RST parsers. Besides rst-
Web (Zeldes, 2016), which is integrated in this soft-

RST Parser 1
LR N

RST Parser n

RST tree

Text (format 1)

Text

RST tree
(format n)

D

plain text
document

Y.

rst-workbench front-end

RST tree

RST tree
(any format)

discoursegraphs

Components and workflow of the rst-

RST tree RST tree

(rs3 format) (rs3 format) or rs3)

manual post-editing

Figure 1:
workbench.

ware, there are two other annotation tools specif-
ically made for rhetorical structures: RSTTool
(O’Donnell, 2000) and TreeAnnotator (Helfrich
et al., 2018). For visualizing RST trees and query-
ing RST corpora, there is ANNIS3 (Krause and
Zeldes, 2014).

While I implemented very minimal REST APIs
around the individual RST parsers in Python,
CLAM (van Gompel and Reynaert, 2014) could
be used to create REST API wrappers around
command-line NLP tools by writing a configura-
tion file. For simple cases, it is slightly more com-
plicated to setup than my approach (cf. Section
3.2), but it comes with many additional features
(e.g. user authentication, batch processing and a
generic web interface for each API) and can be
extended with additional format converters and vi-
sualization components.

3 Software architecture and usage

The rst-workbench provides a simple way to install
multiple RST parsers on a computer, run them as
well as visually compare and edit their analyses in
a web browser. Its architecture and usage is sum-
marized in Figure 1. Screenshots of the workflow
are provided in Figures 2 and 3.

At the core, the rst-workbench consists of six
existing open-source RST parsers—HILDA (Her-
nault et al., 2010), Feng and Hirst (2014), DPLP (Ji
and Eisenstein, 2014), Heilman and Sagae (2015),
CODRA (Joty et al., 2015) and StageDP (Wang
et al., 2017, 2018)—packaged as Docker contain-
ers to make them easily installable without any user
intervention (cf. Section 3.1).

Users do not have to learn the different

(visualization

rst-workbench

Enter some text to be parsed:

Students and lecturers alike are worried about global warming and related climate change
With a clear ecological conscience and convinced that they stand on the right side of history,
they cycle to their university campus, buy a vegetarian sandwich on the way

and were jointly outraged when Donald Trump pulled the US out of the Paris Climate
Agreement.

However, their own contribution to climate change is all too often ignored

Run RST Parsers
hilda
Show/Hide original Download as .rs3 file Edit in rstWeb
parser output
T S
Students and ’
lecturers alike are
worried about global Elaboration
warming and related
climate change
| I
‘ However , their own
contribution to
Background climate change is
all too often
ignored .
Ii! S
With a clear
ecological
conscience and
convinced that they
stand on the right ‘when Donald Trump
side of history , pulled the US out of
-y cycle to their the Paris Climate
university campus , ‘Agreement .
¥ avegetarn
sandwich on the
wayand were Jmml)
age
feng-hirst-2014
Show/Hide original Download as .rs3 file Edit in rstWeb
parser output

codra

Show/Hide original Download as .rs3 file
parser output

Edit in rstWeb

heilman-sagae-2015

Show/Hide original Download as .rs3 file
parser output

Edit in rstWeb

Figure 2: Screenshot of rst-workbench showing the re-
sult of parsing the beginning of a newspaper article
with various RST parsers.

®10 ®24

Students and
lecturers alike are
worried about
global warming

ist v st v

®20
®

attribution

and related that they stand on | circumstar v
climate change. the right side of 3z
With aclear pistory, they cycle ®30 ®a@
ecological 4 0 therr university o)
cor;z(;]lsl?‘ii:” campus, buya and were jointly when Donald
vegetarian outraged Trump pulled the

sandwich on the US out of the

way Paris Climate

Agreement.

However, their
own contribution
to climate change

is all too often

Figure 3: Post-editing a parse result in rstWeb (here:
changing the relation that holds between two EDUs).

command-line interfaces of the parsers, but can
simply interact with them via a web browser. To
make this possible, I added a REST API to each
of the parsers, which the browser can talk to (cf.
Section 3.2).

In the browser, annotators can enter text or up-
load a plain text document. After clicking the “Run
Parsers” button, all RST parsers are started concur-
rently to analyze the given text. The results appear
asynchronously in the browser, i.e. the user sees the
result of the fastest parser immediately when it is
available and does not have to wait for the remain-
ing parsers to finish processing. Users can now
select the parse tree that most resembles their lin-
guistic intuition, and click “Edit in rstWeb” to load
the analysis into the rstWeb annotation tool. Here,
all aspects of the RST tree can be modified, e.g.
rhetorical relations between EDUs and/or larger
subtrees can be replaced (Figure 3). Afterwards,
the result can be saved locally for further inspection
or corpus creation.

The technical setup needed to integrate all these
stand-alone tools into one software package with
a unified interface is described in the following
subsections.

3.1 Docker

Docker is a tool that allows programmers to bun-
dle a piece of software with all its dependencies
into a container, which a user can reproducibly
install on any computer with Linux, Mac OSX or
Windows without having to know any details about

the software. The step-by-step installation process
of a software package is described in a so-called
Dockerfile, which is both readable by machines and
humans.

Installing an RST parser from a Dockerfile will
save the user the effort of finding its dependen-
cies, installation parameters and training settings.
This will not, however, reduce the run time of the
installation and training process, as that will hap-
pen on the user’s local machine. This process can
be drastically sped up by using a Docker image,
which is a compressed file that contains the results
of running a Dockerfile. I provide Docker images
for all but one of the RST parsers available in the
rst-workbench.® If Docker is already running on
the target system, the installation of an RST parser
boils down to a one-line command.*

At this point, the parsers can be used without
tedious installation procedures, but are still only
available as individual command-line tools with
different parameters and output formats. To im-
prove their usability, I make them available as web
services with a common interface (cf. Section 3.2).
To improve their comparability, 1 offer a simple
way to convert their output to a common format
and generate visualizations of the resulting RST
trees (Section 3.3).

3.2 Web application and REST APIs

With rst-workbench, I aim to make RST parsers
more accessible to a wider audience, by providing
a common (graphical) interface for them. I chose to
implement this in form of a web application, which
talks to the individual RST parsers via REST (Field-
ing, 2000), a simple text-based protocol commonly
used by programs running on different computers
to communicate with each other via the Internet.
I implemented REST interfaces for each of the
parsers using the Python hug library>. They re-
ceive requests containing the text to be analyzed,
run the actual (command-line) RST parsers in the
background on the given input, capture their out-

3 All Docker images for the rst-workbench are available
athttps://hub.docker.com/u/nlpbox. I can’t pro-
vide an image for the HILDA RST parser (Hernault et al.,
2010), as its license does not allow its source code to be
freely distributed. Nevertheless, if you have access to the
HILDA source code, you can simply build an image us-
ing the Dockerfile provided at https://github.com/
NLPbox/hilda—-docker.

“For example
nlpbox/heilman-sagae—-2015 for
and Sagae, 2015) parser.

‘http://www.hug.rest/

docker run
the (Heilman

puts and send them back to the requesting program.

Using REST allows the user to run the parsers
on different machines than the web application (in
case one computer does not have enough RAM or
processing power to run all RST parsers at the same
time) and even to use the parsers as web services
without the front-end, e.g. to integrate them into
custom NLP pipelines. It also simplifies the pro-
cess of adding more parsers to the rst-workbench,
as it only needs to know where the parsers run and
which output format they use.

3.3 discoursegraphs and rstWeb

The interoperability of RST tools is hindered by
the lack of a standard format for encoding RST
analyses. While corpora are either using the LISP-
like dis or the XML-based rs3 format, RST
parsers are using a plethora of custom formats.
rst-workbench is able to convert many of them
into rs3—the format supported by RST annotation
tools like RSTTool (O’Donnell, 2000) and rstWeb
(Zeldes, 2016)— by utilizing a REST service I im-
plemented on top of the discoursegraphs converter
library (Neumann, 2015, 2016), which supports all
RST file formats of the given parsers.

Using the rs3 format and integrating rstWeb into
the rst-workbench allows it to leverage rstWeb’s
capabilities to visualize and (post)-edit RST trees.

4 Conclusions

In this paper, I presented a software package that
simplifies the installation, usage and visual com-
parison of RST parsers. I showed how it can help
linguists to produce manual RST analyses with less
effort.

I plan to integrate the rst-workbench directly into
rstWeb to facilitate corpus annotation projects. In
rstWeb, an “administrator’” can create an annota-
tion project, upload documents to be annotated and
assign them to annotators. With an integrated rst-
workbench, the administrator could precompute
and store the automatic RST analyses once for all
annotators, which would reduce wait time for the
annotators and allow them to work without switch-
ing browser tabs and tools.

In the current setup, analyzing a text with all
parsers may take up to two minutes. Most of this

To achieve this, I added a REST interface to rstWeb. For
lack of time, it is not yet part of the official rstWeb source code,
but is available here: https://github.com/arne-cl/
rstWeb/tree/add-rest-api

time is spent on loading the models of the underly-
ing syntax parsers. This can be drastically reduced
by “outsourcing” the syntax parsers into their own
web services, as I have already done for DPLP.’

References

Mohamed Abdalla, Frank Rudzicz, and Graeme Hirst.
2018. Rbhetorical structure and Alzheimers disease.
Aphasiology, 32(1).

Chloé Braud, Maximin Coavoux, and Anders Sggaard.
2017a. Cross-lingual RST Discourse Parsing. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 292-304,
Valencia, Spain. Association for Computational Lin-
guistics.

Chloé Braud, Ophélie Lacroix, and Anders Sggaard.
2017b. Cross-lingual and cross-domain discourse
segmentation of entire documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 237-243, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Chloé Braud, Ophélie Lacroix, and Anders Sggaard.
2017c. Does syntax help discourse segmentation?
Not so much. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2432-2442, Copenhagen, Den-
mark. Association for Computational Linguistics.

Iria da Cunha, Eric SanJuan, Juan-Manuel Torres-
Moreno, M. Teresa Cabré, and Gerardo Sierra. 2012.
A Symbolic Approach for Automatic Detection of
Nuclearity and Rhetorical Relations among Intra-
sentence Discourse Segments in Spanish. In Pro-
ceedings of the 13th International Conference in
Computational Linguistics and Intelligent Text Pro-
cessing (CICLing 2012).

Vanessa Wei Feng and Graeme Hirst. 2014. A Linear-
Time Bottom-Up Discourse Parser with Constraints
and Post-Editing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 511-
521, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Roy Thomas Fielding. 2000. Architectural Styles and
the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine.

Federico Gaspari, Antonio Toral, Sudip Kumar Naskar,
Declan Groves, and Andy Way. 2014. Perception
vs Reality: Measuring Machine Translation Post-
Editing Productivity. In Proc. Third Workshop on
Post-Editing Technology and Practice.

"See the Dockerfile in https://github.com/
NLPbox/dplp-docker.

Maarten van Gompel and Martin Reynaert. 2014.
CLAM: Quickly deploy NLP command-line tools
on the web. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: System Demonstrations, pages 71-75,
Dublin, Ireland. Dublin City University and Associ-
ation for Computational Linguistics.

Michael Heilman and Kenji Sagae. 2015. Fast Rhetor-
ical Structure Theory Discourse Parsing. arXiv
preprint arXiv:1505.02425.

Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy
Liicking, and Alexander Mehler. 2018. TreeAnno-
tator: Versatile Visual Annotation of Hierarchical
Text Relations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC-2018), Miyazaki, Japan. Euro-
pean Languages Resources Association (ELRA).

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue & Discourse, 1(3).

Patrick Huber and Giuseppe Carenini. 2020. MEGA
RST Discourse Treebanks with Structure and Nucle-
arity from Scalable Distant Sentiment Supervision.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7442-7457, Online. Association for Computa-
tional Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion Learning for Text-level Discourse Parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13-24, Baltimore, Maryland.
Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A Novel Discriminative Framework
for Rhetorical Analysis. Computational Linguistics,
41(3):385-435.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing Document Plans for Concept-to-Text Generation.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1503-1514, Seattle, Washington, USA. Association
for Computational Linguistics.

Maarit Koponen. 2016. Is machine translation post-
editing worth the effort? A survey of research into
post-editing and effort. The Journal of Specialised
Translation, 25:131-148.

Thomas Krause and Amir Zeldes. 2014. ANNIS3: A
new architecture for generic corpus query and visu-
alization. Literary and Linguistic Computing.

Daniel Marcu. 1997. The Rhetorical Parsing, Summa-
rization, and Generation of Natural Language Text.
Ph.D. thesis, Department of Computer Science. Uni-
versity of Toronto.

Daniel Marcu. 2000. The rhetorical parsing of unre-
stricted texts: a surface-based approach. Computa-
tional Linguistics, 26(3):395-448.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? A replication study of recent re-
sults on the RST-DT. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1319-1324, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Arne Neumann. 2015. discoursegraphs: A graph-
based merging tool and converter for multilayer
annotated corpora. In Proceedings of the 20th
Nordic Conference of Computational Linguistics
(NODALIDA 2015), pages 309-312, Vilnius, Lithua-
nia. Linkoping University Electronic Press, Sweden.

Arne Neumann. 2016. Merging and validating het-
erogenous, multi-layered corpora with discourseg-
raphs. Journal for Language Technology and Com-
putational Linguistics, 31(1):101-115.

Michael O’Donnell. 2000. RSTTool 2.4 - A markup
Tool for Rhetorical Structure Theory. In INLG’2000
Proceedings of the First International Conference
on Natural Language Generation, pages 253-256,
Mitzpe Ramon, Israel. Association for Computa-
tional Linguistics.

Thiago Alexandre Salgueiro Pardo and Maria das
Gracas Volpe Nunes. 2008. On the Development
and Evaluation of a Brazilian Portuguese Discourse
Parser. RITA, 15(2):43-64.

Anayeli Paulino, Gerardo Sierra, Laura Hernidndez-
Dominguez, Iria da Cunha, and Gemma Bel-Enguix.
2018. Rhetorical relations in the speech of
Alzheimers patients and healthy elderly subjects: An
approach from the RST. Computacion y Sistemas,
22(3).

David Reitter. 2003. Simple Signals for Com-
plex Rhetorics: On Rhetorical Analysis with Rich-
Feature Support Vector Models. LDV Forum, 18(1).

Attapol Rutherford, Vera Demberg, and Nianwen Xue.
2017. A Systematic Study of Neural Discourse
Models for Implicit Discourse Relation. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 281-291, Valencia,
Spain. Association for Computational Linguistics.

K. Sumita, K. Ono, T. Chino, T. Ukita, and S. Amano.
1992. A Discourse Structure Analyzer for Japanese
Text. In Proceedings International Conference on
Fifth Generation Computer Systems, pages 1133—
1140.

Mihai Surdeanu, Tom Hicks, and Marco Antonio
Valenzuela-Escéarcega. 2015. Two Practical Rhetor-
ical Structure Theory Parsers. In Proceedings of

the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 1-5, Denver, Colorado. As-
sociation for Computational Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017. A
Two-Stage Parsing Method for Text-Level Discourse
Analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 184-188, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward Fast and Accurate Neural Discourse Seg-
mentation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 962-967, Brussels, Belgium. Association
for Computational Linguistics.

Amir Zeldes. 2016. rstWeb - A Browser-based Anno-
tation Interface for Rhetorical Structure Theory and
Discourse Relations. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 1-5, San Diego, California. Associ-
ation for Computational Linguistics.

Hongxin Zhang and Haitao Liu. 2016. Quantitative As-
pects of RST Rhetorical Relations across Individual
Levels. Glottometrics, 33:8-24.

SF-QA: Simple and Fair Evaluation Library for Open-domain Question
Answering

Xiaopeng Lu?; Kyusong Lee' and Tiancheng Zhao'
SOCO Inc.
Wkyusongl, tianchez}@soco.ai
Language Technologies Institute, Carnegie Mellon University

2

Abstract

Although open-domain question answering
(QA) draws great attention in recent years, it
requires large amounts of resources for build-
ing the full system and it is often difficult to
reproduce previous results due to complex con-
figurations. In this paper, we introduce SF-QA:
simple and fair evaluation framework for open-
domain QA. SF-QA framework modularizes
the pipeline open-domain QA system, which
makes the task itself easily accessible and re-
producible to research groups without enough
computing resources. The proposed evalua-
tion framework is publicly available and any-
one can contribute to the code and evaluations.

1 Introduction

Open-domain Question Answering (QA) is the task
of answering open-ended questions by utilizing
knowledge from a large body of unstructured texts,
such as Wikipedia, world-wide-web and etc. This
task is challenging because researchers have to
face issues in both scalability and accuracy. In
the last few years, rapid progress has been made
and the performance of open-domain QA systems
has been improved significantly (Chen et al., 2017;
Qi et al., 2019; Yang et al., 2019). Several dif-
ferent approaches were proposed, including two-
stage ranker-reader systems (Chen et al., 2017),
end-to-end models (Seo et al., 2019) and retrieval-
free models (Raffel et al., 2019). Despite people’s
increasing interest in open-domain QA research,
there are still two main limitations in current open-
domain QA research communities that makes re-
search in this area not easily accessible:

The first issue is the high cost of ranking large
knowledge sources. Most of the prior research
used Wikipedia dumps as the knowledge source.
For example, the English Wikipedia has more than

* This work was done during an internship at SOCO

7

xiaopenZ2@andrew.cmu.edu

7 million articles and 100 million sentences. For
many researchers, indexing data of this size with
a classic search engine (e.g., Apache Lucene (Mc-
Candless et al., 2010)) is feasible but becomes im-
practical when indexing with a neural ranker that
requires weeks to index with GPU acceleration
and consumes very large memory space for vec-
tor search. Therefore, research that innovates in
ranking mostly originates from the industry.

The second issue is about reproducibility. Open-
domain QA datasets are collected at different
time, making it depends on different versions
of Wikipedia as the correct knowledge source.
For example, SQuAD (Rajpurkar et al., 2016)
uses the 2016 Wikipedia dump, and Natural
Question (Kwiatkowski et al., 2019) uses 2018
Wikipedia dump. Our experiments found that a
system’s performance can vary greatly when using
the wrong version of Wikipedia. Moreover, index-
ing the entire Wikipedia with neural methods is
expensive, so it is hard for researchers to utilize
others’ new rankers in their future research. Lastly,
the performance of an open-domain QA system de-
pends on many hyperparameters, e.g. the number
of passages passed to the reader, fusion strategy,
etc., which is another confounding factor to repro-
duce a system’s results.

Thus, this work proposes SF-QA (Simple and
Fair Question-Answering), a Python library to
solve the above challenges for two-stage QA sys-
tems. The key idea of SF-QA is to provide pre-
indexed large knowledge sources as public APIs
or cached ranking results; a hub of reader models;
and a configuration file that can be used to pre-
cisely reproduce an open-domain QA system for a
task. The pre-indexed knowledge sources enable re-
searchers to build on top of the previously proposed
rankers without worrying about the tedious work
needed to index the entire Wikipedia. Then the
executable configuration file provides a complete

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 7—13

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

snapshot that captures all of the hyperparameters
in order to reproduce a result.

Experiments are conducted to validate the effec-
tiveness of SF-QA. We show that one can easily re-
produce previous state-of-the-art open-domain QA
results on four QA datasets, namely Open SQuAD,
Open Natural Questions, Open CMRC, and Open
DRCD. More datasets will be included in the fu-
ture. Also, we illustrate several use cases of SF-QA,
such as efficient reader comparison, reproducible
research, open-source community, and knowledge-
empowered applications.

SF-QA is also completely open-sourced ! and
encourages the research community to contribute
their rankers or readers into the repository, so that
their methods can be used by the rest of the com-
munity.

In short, the contributions of this paper include:

1. The proposed open-source SF-QA project that
provides a complete pipeline for simplifying
open-domain QA research.

2. A hub of pre-indexed Wikipedia at different
years with different ranking algorithms as pub-
lic APIs or cached results.

3. Experiments and tutorials that explain use
cases and scenarios of SF-QA and validate
its effectiveness.

2 Related Work

Existing deep learning open-domain QA ap-
proaches can be broadly divided into three cate-
gories.

2.1 Two-stage Approach

Recent open-domain QA systems mostly use a
two-stage ranker-reader approach. Dr.QA (Chen
et al., 2017) uses a modified TF-IDF bag-of-words
method as the first-stage retriever. Selected docu-
ments are then fed into an RNN-based document
reader to extract the final answer span. Wang et al.
(2018) leverage reinforcement learning to update
both ranker and reader components and shows im-
provement over Dr.QA in open-domain QA task.
Lee et al. (2018) focuses on the ranker improve-
ment and uses a learned reranker to boost first stage
answer recall.

Some other works focus on second-stage reader
improvement. Yang et al. (2019) adopts a BERT-
based reader model (Devlin et al., 2018) instead

"https://github.com/soco-ai/SF-QA.git

of the previous RNN-based model and that signif-
icantly improved the end-to-end performance. To
deal with span extraction in a multi-document set-
ting, Wang et al. (2019) uses the global normaliza-
tion approach (Clark and Gardner, 2017) to make
the span scores comparable among candidate docu-
ments, which improved the performance by a large
amount.

The graph-based ranker-reader approach has also
been explored recently. Asai et al. (2019) proposes
a graph-based retriever to retrieve supporting doc-
uments recursively based on entity link evidence,
and then uses a BERT-based reader model to com-
plete open-domain QA task.

2.2 End-to-End Approach

Open-domain QA using the end-to-end approach
was not feasible for a long time, because this needs
humongous memory to index the corpus and do the
vector search. With the emergence of a large pre-
trained language model (PLM), researchers revisit
this idea and make the end-to-end open-domain
QA feasible. Lee et al. (2019) proposed Open-
retrieval QA (ORQA) model, which updates the
ranker and reader model in an end-to-end fashion
by pre-training the model with an Inverse Cloze
Task (ICT). Seo et al. (2019) experiments with
considering open-domain QA task as a one-stage
problem, and indexing corpus at phrase level di-
rectly. This approach shows promising inference
speed with compromise in worse performance.

2.3 Retrieval-free Approach

Pre-trained language models have got rapid de-
velopment in recent years. Querying a language
model directly to get phrase-level answers becomes
a possibility. The T5 model (11B version) (Raf-
fel et al., 2019) can reach comparative scores on
several open-domain QA datasets, compared with
two-stage approaches with far less number of pa-
rameters (~330M). However, as reported in Guu
et al. (2020), decreasing the number of parame-
ters hurts the model performance drastically. This
leaves large room for future research on how to
make retrieval-free open-domain QA feasible in
the real-world setting.

3 The Proposed Method
3.1 Background

A typical ranker-reader-based open-domain QA
system operates as follows: first, a large text

Config:
Source: 2016-wiki-en
Ranker: BM25
Reader: SpanBERT
Dataset: SQUAD_dev

Cached Ranking

Results

) EM: 65.4
Machine Reader Models —> Evaluation Script —> F1 .'70'4
— 5 o
R@10:78.5

Indexed Wiki

Ranking APIs

Reproducible Results:

Figure 1: Overall pipeline for open-domain QA

knowledge-base is indexed by a ranker, e.g. a full-
text search engine. Given a query, the ranker can
return a list of relevant passages that may contain
the correct answer. How to choose the size of a
passage is still an open research question and many
choices are available, e.g. paragraph, fixed-size
chunks, and sentences. Note that it is not necessary
that the ranker needs to return the final passages in
one-shot: advanced ranker can iteratively refine the
passage list to support multi-hop reasoning (Yang
et al.,, 2018; Asai et al., 2019).

Then given the returned passages, a machine
reader model will process all passages jointly and
extract potential phrase-level answers from them.
A fusion strategy is needed to combine candidate
answers and scores from each passage and to cre-
ate a final list of N-best phrase-level answers by
reading these passages. The reason to combine
ranker with the reader is to solve the scalability
challenge since the state-of-the-art readers are pro-
hibitively slow to process very large corpus in real-
time (Chen et al., 2017; Devlin et al., 2018).

3.2 The Proposed Library Overview

SF-QA is a library that is designed to make it easy
to evaluate and reproduce open-domain systems
that use ranker-reader architecture. SF-QA de-
creases the cost of indexing, hosting, and query-
ing large unstructured text knowledge base, e.g.
Wikipedia, and also provides a complete configu-
ration snapshot that can be used to replicate a QA
system’s performance. It is also a place for open-
domain QA researchers to share their work, no mat-
ter it is innovating in better information retrieval or
it is in stronger machine reading comprehension.

There are four main components in SF-QA:
ranker service, reader hub, evaluation, and
pipeline configuration.

3.3 Ranker Service

The goal of the ranker service is to reduce the
cost and time to index and query large knowledge
source for open-domain QA research using a vari-
ety of ranking technologies. Up to date, we have
included the BM25 (Robertson et al., 2009) and
SPARTA (Zhao et al., 2020) ranking methods with
several configurations detailed below. More meth-
ods will be included and we also welcome commu-
nity contributions.

Currently, SF-QA supports four ways of docu-
ment splitting for indexing:

1. Sentence: sentence-level indexing
2. Paragraph: paragraph-level indexing
3. Chunk: fixed word size indexing

4. Context: context-level indexing, where the
full sentence is always kept, with a maximum
number of tokens

Also, Wikipedia dumps at different times are
indexed separately so that users can choose to use
the same dump as benchmark datasets used. The
following versions are included:

1. English Wikipedia: 2016/2018/2020
2. Chinese Wikipedia: 2017/2018/2020

The returned passage is in the following JSON
format: {(question_id): [“score”: 42.86,“an-
swer”: “Super Bowl'V, the fifth edition of the Super
Bowl...”, ...]}, which contains all question ids as
key, and top-k retrieved documents and scores as
value.

There are two methods to use the ranking results:
cached ranking results and ranking API.

3.3.1 Cached Ranking Results

The fastest way to use ranking service for exper-
iments is via cached ranking results. SF-QA pro-
vides top-K ranked passages in JSON format for
training, validation and test (if publicly available)
set. One can directly use the cached results for
training or for testing, saving time, and resources
for processing the raw data. Another use case is
one may use more computationally expensive re-
ranking methods to re-rank the top-K passages and
then feed them into the reader component.

3.3.2 Ranking APIs

The cached results are very useful for researchers
who work on existing datasets and who do not need
to have a live system. However, only cached results
do not work for new datasets or live QA system that
needs to handle user queries. Therefore, SF-QA
also provides public API as a service to solve this
need. The API is available as a RESTful API and
can be reached via HTTPs. Detailed connection
documentation can be found on the GitHub.

3.4 Reader Hub

Reader hub allows SF-QA’s user to specify which
reader model to use to extract phrase-level answers.
One can either uses their own models by imple-
menting an abstract function or directly load any
reader models that are compatible with the Hug-
ging Face Transformer library (Wolf et al., 2019).
SF-QA also includes its own reader model that
is optimized for open-domain QA. For example,
it offers a BERT reader that is globally normal-
ized (Wang et al., 2019), which provides more reli-
able answer scores to compare multiple candidates’
answers from different passages.

Moreover, the reader hub allows the user to de-
fine the fusion mechanism that combines the rank-
ing results with reading results. The current im-
plementation supports a linear combination with
two free variables, namely the type of score and
the weight on reader score. Concretely, the final
answer score is computed as follows:

)

where « is a coefficient between 0 and 1. ¥,cqder 18
the reader score, which can either be logits or prob-
ability after the softmax layer. y,qnker 1S the ranker
score, which depends on the ranking method. One
may also specify different normalization strategies
to normalize the score from ranker or reader. Nor-
malization strategies include z-normalization, floor

y= (1 - a)yreade'r + QYrank

10

normalization etc. Lastly, one may easily add their
own strategy by overriding the fusion function.

3.5 Evaluation

SF-QA evaluation is designed to offer a multilin-
gual and comprehensive evaluation script that com-
putes the performance of an open-domain QA sys-
tem and also outputs useful intermediate metrics
that are useful for analysis and visualization. For
language support, SF-QA evaluation supports En-
glish and Chinese. For metrics, it has the most
common EM (exact match) and F1 score for the
final performance. It also provides other relevant
metrics. The following is a list of metrics that are
in the output:

e Exact match (EM)

F-1 Score

Ranking recall at K

Oracle ranker score

Mean reciprocal rank (MRR)

3.6 Pipeline Configurations

The pipeline configuration file is in YAML format,
which defines all the hyperparameter for an open-
domain QA system to do a forward inference. One
can set the configuration for data, ranker ID, and
reader ID, fusion strategy and etc. Therefore, the
easiest way to share an open-domain QA system for
results replication is via providing the right YAML
configuration. The following is an example.

config.yaml
data:
lang: en
name: squad
split: dev—vl.]1
ranker:
use_cached: False
model:
name: sparta
es_index_name: en—wiki —2016
reader:
model_id: squad—context—spanbert
param:

n_gpu: 2
score_weight: 0.8
top_k: 10

4 Use Cases

SF-QA is designed to be modular and ready to
use, with the hope that it can connect people from
researchers interested in Question Answering (QA),
Information Retrieval (IR), and developers from
industries. In this section, we illustrate several use
cases of SF-QA.

4.1 Efficient Reader Comparison

In open-domain QA, the first stage ranker con-
sumes humongous resources in both time, memory,
and storage. For researchers without enough com-
puting power, it is not feasible to start open-domain
QA research, even if they only want to improve
the system on the reader stage. SF-QA provides
solutions for researchers with this need. In SF-
QA, existing publicly available open-domain QA
datasets are already indexed with multiple rankers
used in previous open-domain QA research work,
currently including BM25 (Robertson et al., 2009),
and SPARTA (Zhao et al., 2020), both with dif-
ferent granularity options. Researchers can call
the RESTful API to get the cached ranking results
directly if they want to focus on existing open-
domain QA datasets, for example, Open SQuAD,
Open CMRC, etc. Alternatively, they can call the
backend live ranker to get the top retrieved results
regarding the input query. We design SF-QA to be
completely modular: the researcher is able to pick
up a cached ranker and plug in their own reader
model to evaluate the open-domain QA results.

4.2 Reproducible Research

Reproducibility is another problem that existed in
current open-domain QA research. Since the first-
stage retriever model needs researchers to collect
large-scale data by themselves, it is hard to keep
all the settings the same to make fair comparisons.
In SF-QA, we collected data following the earli-
est works’ setting (Chen et al., 2017; Yang et al.,
2019; Kwiatkowski et al., 2019). Therefore, re-
searchers can check SF-QA to get data specifica-
tions for existing models. Moreover, parameter set-
tings for different models are recorded and saved
in another separate configuration file, as shown in
the section3.6. Therefore, any existing models in
the current SF-QA project can be directly repro-
duced, which would greatly facilitate researchers
in establishing benchmark scores and doing fair
comparisons.

11

4.3 Knowledge-empowered Applications

SF-QA framework also considers the needs from
an industry perspective. To show the potential of
open-domain QA and to encourage more people to
join the development of this task, we also provide
a RESTful API (with a ready-to-use open-domain
QA model in the backend) for users to ask ques-
tions and get the phrase-level answers directly as
output. We also provide a tutorial to demonstrate
that SF-QA can be seamlessly incorporated into
RASA (Bocklisch et al., 2017), a popular open-
source chatbot building platform, with only a few
lines of code. We hope that this effort can attract
people from different backgrounds to open-domain
QA research.

5 Experiment Results

Reported Reproduced
EM Fl EM Fl
Bertserini (Yang | 38.6 46.1 | 41.2 48.6
et al., 2019)
+DS (Xie et al,|51.2 594|516 592
2020)
Multipassage (Wang | 53.0 609 | 53.2 60.7
et al., 2019)
SpartaQA (Zhao | 59.3 66.5| 59.3 66.5
et al., 2020)

Table 1: Comparison between reported performance
and reproduced performance on Open SQuAD.

5.1 Reproducing Prior Art

Results in Table 1 shows the performance compar-
ison between several reported open-domain QA
systems and our reproduced results. The first exper-
iment conducted is to reproduce some prior results
using SF-QA. We choose Bertserini (Yang et al.,
2019), Bertserini with distant supervision (Xie
et al.,, 2020), Multi-passage Bert (Wang et al.,
2019), and SPARTA (Zhao et al., 2020) as three
benchmark systems to reproduce.

To reproduce Bertserini (Yang et al., 2019), we
follow the implementation described in the original
paper and first index the 2016 English Wikipedia
in paragraph level to get 29.5M documents in total.
A BERT-base-cased model is trained with global
normalization, following descriptions in the pa-
per. We observe a slight improvement in the open-
domain QA result, which may due to the usage of
a newer version of the BM25 retriever. The same

Indexing | Uploading | Retrieval | Reader | Total
Traditional |y 0 | 521 6.1h |44h [219h
Approach
SF-QA - - - 44h 4.4h

Table 2: Time elapsed to evaluate open-domain QA using Open SQuAD development set

) . wiki 2016* wiki 2018 wiki 2020
open-domain QA setling o= R@T TEM [FT [R@I | EM | FI | R@I
BM25 + SpanBERT 492 | 567 | 419 | 458 | 538 | 394 | 415 | 495 | 354
Sparta + SpanBERT 593 | 665 | 50.8 | 465 | 54.4 | 393 | 46.4 | 5390 | 422

Table 3: Open SQuAD performance using Wikipedia dumps from different years. * represents the dump which

SQuAD originally used for annotation.

phenomenon has also been reported in (Xie et al.,
2020).

For Bertserini with distant supervision (Xie et al.,
2020), we follow the two-stage distant supervision
strategy proposed by the original author, where
the model was first fine-tuned using the origi-
nal SQuAD dataset, and then fine-tuned on the
distantly supervised data retrieved from the full
Wikipedia. The score we get matches the score
reported by the original author.

To reproduce Multi-passage BERT (Wang et al.,
2019), we first index the Wikipedia corpus using
chunk size equals to 100, with a stride of 50 words.
A BERT reranker is then trained to rerank the re-
trieved top 100 documents and the top 30 docu-
ments are passed to the reader. In the reader train-
ing stage, we train the model using BERT-large-
cased model, also with global normalization to
make the span score comparable. Our reproduced
score matches the score reported in the original
paper.

For SpartaQA, we follow the original author’s
implementation on SPARTA retriever, and index
the Wikipedia in the context level with a size of 150.
During the reader stage, a SpanBERT (Joshi et al.,
2020) model is used to train the model with dis-
tantly supervised data retrieved from Wikipedia
with global normalization strategy. The score
matches the reported score.

5.2 Time saved by SF-QA

This experiment shows results for elapsed time
to evaluate open domain question answering with
and without the SFQA evaluation framework (Ta-
ble 2). Traditionally, we need to build the com-
plete pipeline in order to evaluate the open-domain
QA as following steps: (1) Indexing: converting
full Wikipedia into sparse or dense representations;

12

(2) Uploading: inserting the text and representa-
tions to Elasticsearch (or similar database); 3) Re-
triever: retrieval n-best candidates from Elastic-
search; 4) Reader: span prediction using machine
reading comprehension. We use GeForce RTX
2080 Ti GPU to index the entire Wikipedia dump
of the total 89,544,689 sentences. The total amount
of elapsed time for open-domain QA is 29 hours
without using SF-QA for one experimental setting.
In comparison to this, using cached retrieved re-
sults provided from SF-QA saves repetitive work
in heavy indexing, and it only takes ~ 4 hours to
get the final scores.

5.3

We conduct the last experiment to test the robust-
ness of the state-of-the-art system against temporal
shifting. Results are reported in Table 3. We ob-
serve that model accuracy is largely affected by the
version of the Wikipedia dump, showing that it is
essential to track the version of the input data and
make sure that all open-domain QA researches are
reproducible starting from the data input level.

Model Accuracy v.s. Corpus release year

6 Conclusion

In conclusion, this paper presents SF-QA, a novel
evaluation framework to make open-domain QA
research simple and fair. This framework fixes the
gap among researchers from different fields, and
make the open-domain QA more accessible. We
show the robustness of this framework by success-
fully reproducing several existing models in open-
domain QA research. We hope that SF-QA can
make the open-domain QA research more accessi-
ble and make the evaluation easier. We expect to
further improve our framework by including more
models in both ranker and reader side, and encour-
age community contributions to the project as well.

References

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2019. Learn-
ing to retrieve reasoning paths over wikipedia
graph for question answering. arXiv preprint
arXiv:1911.10470.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management. arXiv
preprint arXiv:1712.05181.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64-717.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics,
7:453-466.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. arXiv preprint arXiv:1810.00494.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Michael McCandless, Erik Hatcher, Otis Gospodnetic,
and O Gospodneti¢. 2010. Lucene in action, vol-
ume 2. Manning Greenwich.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. arXiv preprint arXiv:1910.07000.

13

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends®) in Information Re-

trieval, 3(4):333-389.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4430-4441.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R 3:
Reinforced ranker-reader for open-domain question
answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for
open-domain question answering. arXiv preprint
arXiv:1908.08167.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-

of-the-art natural language processing. ArXiv, pages
arXiv—1910.

Yuqing Xie, Wei Yang, Luchen Tan, Kun Xiong,
Nicholas Jing Yuan, Baoxing Huai, Ming Li, and
Jimmy Lin. 2020. Distant supervision for multi-
stage fine-tuning in retrieval-based question answer-
ing. In Proceedings of The Web Conference 2020,
pages 2934-2940.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee.
2020. Sparta: Efficient open-domain question an-
swering via sparse transformer matching retrieval.
arXiv preprint arXiv:2009.13013.

Finite-state script normalization and processing utilities:
The Nisaba Brahmic library

Cibu Johny' Lawrence Wolf-Sonkin* Alexander Gutkin Brian Roark?
Google Research
TUnited Kingdom and *United States
{cibu,wolfsonkin,agutkin, roark}@google.com
Abstract In addition to such normalization issues, some

This paper presents an open-source library
for efficient low-level processing of ten ma-
jor South Asian Brahmic scripts. The library
provides a flexible and extensible framework
for supporting crucial operations on Brahmic
scripts, such as NFC, visual normalization,
reversible transliteration, and validity checks,
implemented in Python within a finite-state
transducer formalism. We survey some com-
mon Brahmic script issues that may adversely
affect the performance of downstream NLP
tasks, and provide the rationale for finite-state
design and system implementation details.

1 Introduction

The Unicode Standard separates the representation
of text from its specific graphical rendering: text
is encoded as a sequence of characters, which, at
presentation time are then collectively rendered
into the appropriate sequence of glyphs for display.
This can occasionally result in many-to-one map-
pings, where several distinctly-encoded strings can
result in identical display. For example, Latin
script letters with diacritics such as “é” can gener-
ally be encoded as either: (a) a pair of the base let-
ter (e.g., “e” which is U+0065 from Unicode’s Ba-
sic Latin block, corresponding to ASCII) and a dia-
critic (in this case U+0301 from the Combining Dia-
critical Marks block); or (b) a single character that
represents the grapheme directly (U+00E9 from the
Latin-1 Supplement Unicode block). Both encod-
ings yield visually identical text, hence text is of-
ten normalized to a conventionalized normal form,
such as the well-known Normalization Form C
(NFC), so that visually identical words are mapped
to a conventionalized representative of their equiv-
alence class for downstream processing. Critically,
NFC normalization falls far short of a complete
handling of such many-to-one phenomena in Uni-
code.

14

scripts also have well-formedness constraints, i.e.,
not all strings of Unicode characters from a single
script correspond to a valid (i.e., legible) grapheme
sequence in the script. Such constraints do not ap-
ply in the basic Latin alphabet, where any permuta-
tion of letters can be rendered as a valid string (e.g.,
for use as an acronym). The Brahmic family of
scripts, however, including the Devanagari script
used to write Hindi, Marathi and many other South
Asian languages, do have such constraints. These
scripts are alphasyllabaries, meaning that they are
structured around orthographic syllables (aksara)
as the basic unit.! One or more Unicode characters
combine when rendering one of thousands of leg-
ible aksara, but many combinations do not corre-
spond to any aksara. Given a token in these scripts,
one may want to (a) normalize it to a canonical
form; and (b) check whether it is a well-formed
sequence of aksara.

Brahmic scripts are heavily used across South
Asia and have official status in India, Bangladesh,
Nepal, Sri Lanka and beyond (Cardona and Jain,
2007; Steever, 2019). Despite evident progress
in localization standards (Unicode Consortium,
2019) and improvements in associated technolo-
gies such as input methods (Hinkle et al., 2013) and
character recognition (Pal et al., 2012), Brahmic
script processing still poses important challenges
due to the inherent differences between these writ-
ing systems and those which historically have been
more dominant in information technology (Sinha,
2009; Bhattacharyya et al., 2019).

In this paper, we present Nisaba, an open-source
software library,” which provides processing utili-
ties for ten major Brahmic scripts of South Asia:
Bengali, Devanagari, Gujarati, Gurmukhi, Kan-
nada, Malayalam, Oriya (Odia), Sinhala, Tamil,

!See §3 for details on the scripts.
Zhttps://github.com/google-research/nisaba/

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 14-23

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

and Telugu. In addition to string normaliza-
tion and well-formedness processing, the library
also includes utilities for the deterministic and re-
versible romanization of these scripts, i.e., translit-
eration from each script to and from the Latin
script (Wellisch, 1978). While the resulting roman-
izations are standardized in a way that may or may
not correspond to how native speakers tend to ro-
manize the text in informal communication (see,
e.g., Roark et al., 2020), such a default romaniza-
tion can permit easy inspection of an approximate
version of the linguistic strings for those who read
the Latin script but not the specific Brahmic script
being examined.

As a whole, the library provides important utili-
ties for language processing applications of South
Asian languages using Brahmic scripts. The de-
sign is based on the observation that, while there
are considerable superficial differences between
these scripts, they follow the same encoding model
in Unicode, and maintain a very similar char-
acter repertoire having evolved from the same
source — the Brahmi script (Salomon, 1996; Fe-
dorova, 2012). This observation lends itself to the
script-agnostic design (outlined in §4) that, unlike
other approaches reviewed in §2, is based on the
weighted finite state transducer (WFST) formal-
ism (Mohri, 2004). The details of our system are
provided in §5.

2 Related Work

The computational processing of Brahmic scripts
is not a new topic, with the first applications
dating back to the early formal syntactic work
by Datta (1984). With an increased focus on the
South Asian languages within the NLP commu-
nity, facilitated by advances in machine learning
and the increased availability of relevant corpora,
multiple script processing solutions have emerged.
Some of these toolkits, such as statistical ma-
chine translation-based Brahmi-Net (Kunchukut-
tan et al.,, 2015), are model-based, while oth-
ers, such as URoman (Hermjakob et al., 2018),
IndicNLP (Kunchukuttan, 2020), and Akshar-
mukha (Rajan, 2020), employ rules. The main fo-
cus of these libraries is script conversion and ro-
manization. In this capacity they were success-
fully employed in diverse downstream multilin-
gual NLP tasks such as neural machine transla-
tion (Zhang et al., 2020; Amrhein and Sennrich,
2020), morphological analysis (Hauer et al., 2019;

15

Murikinati et al., 2020), named entity recogni-
tion (Huang et al., 2019) and part-of-speech tag-
ging (Cardenas et al., 2019).

Similar to the software mentioned above, our li-
brary does provide romanization, but unlike some
of the packages, such as URoman, we guarantee
reversibility from Latin back to the native script.
Similar to others we do not focus on faithful in-
vertible transliteration of named entities which
typically requires model-based approaches (Se-
quiera et al., 2014). Unlike the IndicNLP pack-
age, our software does not provide morphologi-
cal analysis, but instead offers significantly richer
script normalization capabilities than other pack-
ages. These capabilities are functionally sepa-
rated into normalization to Normalization Form
C (NFC) and visual normalization. Additionally,
our library provides extensive script-specific well-
formedness grammars. Finally, in contrast to these
other approaches, grammars in our library are
maintained separately from the code for compila-
tion and application, allowing for maintenance of
existing scripts and languages plus extension to
new ones without having to modify any code. This
is particularly important given that Unicode stan-
dards do change over time and there remain many
languages left to cover.

To the best of our knowledge this is the first
publicly available general finite-state grammar ap-
proach for low-level processing of multiple Brah-
mic scripts since the early formal syntactic work
by Datta (1984) and is the first such library de-
signed based on an observation by Sproat (2003)
that the fundamental organizing principles of the
Brahmic scripts can be algebraically formalized.
In particular, all the core components of our li-
brary (inverse romanization, normalization and
well-formedness) are compactly and efficiently
represented as finite state transducers. Such for-
malization lends itself particularly well to run-time
or offline integration with any finite state process-
ing pipeline, such as decoder components of in-
put methods (Ouyang et al., 2017; Hellsten et al.,
2017), text normalization for automatic speech
recognition and text-to-speech synthesis (Zhang
et al.,, 2019), among other natural language and
speech applications.

3 Brahmic Scripts: An Overview

The scripts of interest have evolved from the an-
cient Brahmi writing system that was recorded

Name Id IV DV c co
Bengali BENG 16 13 43 5
Devanagari DEVA 19 17 45 4
Gujarati GUIR 16 15 39 5
Gurmukhi GURU 12 9 39 8
Kannada KNDA 17 15 39 3
Malayalam MLYM 16 16 38 10
Oriya ORYA 14 13 38 5
Sinhala SINH 18 17 41 2
Tamil TAML 12 11 27 1
Telugu TELU 16 15 38 5

Table 1: Sizes of core graphemic classes: Independent
vowels (1v), dependent vowel diacritics (DV), conso-
nants (c), coda symbols (co).

from the 3rd century BCE and fell out of use
by the 5th century CE (Salomon, 1996; Strauch,
2012; Fedorova, 2012). The main unit of lin-
ear graphemic representation in Brahmic scripts
is known by its traditional Sanskrit-derived name
aksara. As Bright (1999) notes, it is often trans-
lated as “syllable” although it does not bear di-
rect correspondence to a syllable of speech, but
rather to an orthographic syllable. The structure,
or “grammar” of an aksara is based on the follow-
ing common principles: an aksara often consists
of a consonant symbol C, by default bearing an
unmarked inherent vowel or attached diacritic (de-
pendent) vowel sign v (C); but it may also be an
independent vowel symbol V, or a consonant sym-
bol with its inherent vowel “muted” by a special
virama diacritic () (C?). In any of these preceding
scenarios, the base consonant C' can be replaced
by a consonant cluster where all but the last conso-
nant lose their inherent vowel. When the individ-
ual component consonants of the cluster combine
to form a composite form, precluding the use of an
overt virama diacritic, this is known as a “conso-
nant conjunct” (e.g., CYCYCy, vs [C,C,C) (Fe-
dorova, 2013; Bright, 1999; Coulmas, 1999; Share
and Daniels, 2016).

The elements of the aksara grammar described
above can be grouped into several natural classes.
The sizes of the core classes are shown in Ta-
ble 1 for each writing system and its correspond-
ing ISO 15924 identifier in uppercase format (ISO,
2004). The major classes are the independent vow-
els (e.g., the Devanagari diphthong sft), the depen-
dent vowel diacritics (e.g., the Gujarati :1), and the
consonants (e.g., the Gurmukhi 3). Another im-
portant class consists of the coda consonant sym-
mnding the consonants in square brackets will

serve to indicate that the enclosed consonants form a conjunct
together.

16

Visual Legacy sequence NFC normalized
Bl NA NUKTA (U+0928 U+093C) NNNA (U+0929)
& QA (U+0958) KA NUKTA (U+0915 U+093C)

Table 2: NFC examples for Devanagari.

bols, like anusvara, chandrabindu, and visarga,
which modify the aksara as a whole (and follow
and vowel signs in the memory representation). Fi-
nally, there is a class of special characters, such as
the religious symbol Om 3, that behave like inde-
pendent aksara.*

Unicode Normalization Unicode defines sev-
eral normalization forms which are used for check-
ing whether the two Unicode strings are equiv-
alent to each other (Unicode Consortium, 2019).
In our library we support Normalization Form C
(NFC) which is well suited for comparing visu-
ally identical strings. This normalization gener-
ally converts strings to the equivalent form that
uses composite characters. Table 2 shows two ex-
amples of legacy sequences corresponding canon-
ically equivalent forms for Devanagari.

Visual Normalization As was mentioned above,
an aksara may be represented by multiple Unicode
character sequences and the goal of NFC normal-
ization is to convert them to their unique canonical
form. However, there are many Unicode character
sequences that fall outside the scope of NFC algo-
rithm. We provide visual normalization that, in ad-
dition to providing the NFC functionality, also sup-
ports transforming such legacy sequences. Some
of the rules are provided as “Do Not Use” tables by
the Unicode Consortium (2019) that recommends
transformations from legacy sequences to their cor-
responding canonical form, such as Devanagari {
a1 (U+0905), ~ (U+0945) } — 3F (U+0972). We also
included transformations for visually identical se-
quences (under many implementations) which are
commonly found on the Web, such as Devanagari
{® (U+0910),” (U+0947) } — T (U+0910).°

Well-formedness Check A well-formedness ac-
ceptor verifies whether the given text is readable in
a particular script or not. It would be hard for the
native reader to visually parse the text if the script
rules are not followed. For example, the reader

4These classes are documented in https://github.com/
google-research/nisaba/blob/main/nisaba/brahmic/
mappings.md.

SHere the combining vowel sign U+0947 does not affect
the compound glyph’s visual appearance hence is removed.

Script ID Visual Character(s) Translit.
BENG Q KHANDA TA ")
DEVA 3 Non-word initial VOWEL I iy
GUJR 7 Religious sign OM (6rn)
GURU ADDAK 0]
MLYM @ CHILLU N (n*)
SINH @ JNYA (N
TAML Sl VISARGA, PA (f

Table 3: Examples for additions to ISO 15919.

does not expect two vowels signs on a single con-
sonant and such a thing may not even be possible
to reasonably draw. Furthermore, unlike the Latin
script, acronyms are not written using arbitrary let-
ter sequences, they are formed only as a sequence
of aksara. Our approach verifies whether the text is
a sequence of well-formed aksara using the gram-
mar described above.

Reversible ISO Transliteration I1SO 15919 rep-
resents a unified 8-bit Latin transliteration scheme
for major South Asian Brahmic scripts (ISO, 2001).
Since it has not been updated with the characters
that were introduced to the Unicode standard af-
ter 2001, we have added additional mappings, with
some examples shown in Table 3. These additions
are crucial because they allow us to reverse the
romanizations to get the original Brahmic strings
back reliably. This property allows various data
processing pipelines to use the romanized text as
an internal representation and convert it back to the
original native script at the output stage.

Language-specific Logic Several South Asian
languages often share the same script with some,
often minor, language-specific differences. Our
library supports language-specific customizations
that can be combined with language-agnostic
script logic. For example, the modern Bengali—
Assamese script (Beng) is shared by both Bengali
and Assamese languages, among others (Brandt
and Sohoni, 2018). For both of these languages
our library provides customizations,® such as
the transformations required for visual normal-
ization of Assamese that transform Bengali let-
ter ra into its Assamese equivalent when it par-
ticipates in a consonant conjunct (which gener-
ally occurs when following or preceding virama,
e.g., { T (U+09B0), = (U+09CD) } — { I (U+Q9F0),
£ (U+Q9CD) }).

®https://github.com/google-research/nisaba/
tree/main/nisaba/brahmic/data/lang

17

U+0AA6 U+0ABS
(=)
. OXEQ . 0xAAOxA60xE00xAAOxB8
€ A

Figure 1: String acceptors for Gujarati word €1 ({(dasa),
“ten”) over an alphabet of Unicode code points (top) and
bytes (bottom).

Require: FSAs: consonant, vowel, vowel_sign, coda, standalone, virama,
dead_consonant, accept.

1: function W (consonant, vowel, vowel sign, coda, standalone, virama,
dead_consonant, accept)
cluster < (consonant + virama)* + consonant
.2 ?
codable + (vowel U (cluster + vowel_sign’) U accept) U coda
akshara + codable U (cluster + virama + dead_consonant”)
T « akshara U standalone
return 7"

> Kleene plus

Figure 2: Simplified construction of the well-formed
automaton W.

4 The Finite-State Approach

The Brahmic script manipulation operations
described above have a natural intepretation
grounded in formal language theory. We treat the
text corpus in a given script as a set of strings
over some finite alphabet 3 that defines a set of
admissable script symbols. The set of zero or
more strings is known as language which, in its
simplest (regular) form, can be succintly described
(or recognized) by a finite state automaton (FSA)
or acceptor (Yu, 1997). Two simple FSAs that
represent the Gujarati word €t are shown in
Figure 1, where the top automaton represents the
word over an alphabet of Unicode code points
for Gujarati, while the bottom one represents the
same string over the corresponding byte symbols
in UTF-8 encoding (Unicode Consortium, 2019).
Our library supports both representations.

The aksara grammar outlined in the previous
section can be expressed via elementary formal op-
erations on the FSAs that describe grammar con-
stituents. Such set-theoretic operations include
union (U), concatenation (+) and closure, where
closure is defined as an arbitrary natural number
of concatenations of a language L over X with it-
self, either accepting an empty input {e} or not,
denoted L* (Kleene star) and L™ (Kleene plus),
respectively (Kuich and Salomaa, 1986). These
operations represent non-trivial automata which
are compiled offline resulting in compact and ef-
ficient representations. A simplified process for
constructing the automaton W to perform the well-

Figure 3: Romanization of Sinhala words & (“one”
and ¢ (“two”) into {(eka) and (deka), respectively.

formed check from the previous section is shown
in Figure 2. In this simplified example, the paths
through the automaton that define a legal conso-
nant cluster (line 2 of the algorithm) are repre-
sented by a sub-automaton that recognizes the lan-
guage that consists of strings formed from the con-
sonant and virama symbols only, where each con-
sonant, apart from the last one, must be followed
by the virama that removes an inherent vowel.

The rest of the operations on the Brahmic scripts,
namely the normalization and transliteration, in-
volve modifications of the Brahmic script inputs.
Such operations are naturally expressed by finite
state transducers (FSTs), which are a generaliza-
tion of the FSA concept used to encode string-
string relations (or transductions), by modifying
the automata arcs to have pairs of labels from in-
put and output alphabets, instead of single labels.
A trivial romanization in our representation of the
two Sinhala words &2 ({eka), “one”) and &z
({deka), “two”) is shown in Figure 3. Note the
“vocalization” of the final consonant by insertion
of a schwa via an input e-transition. Also note that
the path accepting the second word is longer. The
word ez consists of three aksara and requires
modification of the inherent vowel by the depen-
dent vowel in order to produce (de).

The basic operations on the FSAs outlined
above also extend to the FST case and allow
for similarly succinct final compiled representa-
tions (Mohri, 2000), such as the simplified con-
struction of the ISO romanization transducer J for
converting from Brahmic scripts to Latin alpha-
bet, shown in Figure 4. An important extension
of FSAs and FSTs are the weighted finite state au-
tomata (WFSAs) and transducers (WFSTs) (Mohri,
2004, 2009) that equip each arc in the automaton or
transducer with a weight, thus allowing optimiza-
tion and search algorithms to compute the costs of
distinct paths, which can be used to determine their
relative importance. We use weights in some of our
grammars to indicate the relative priority of a par-
ticular aksara modification. For example, in Fig-
ure 4, the paths corresponding to consonants fol-
lowed by dependent vowels (line 6) have priority

18

Require: FSTs: consonant, vowel, vowel_sign, coda, standalone, virama.

1: function J(consonant, vowel, vowel_sign, coda, standalone, virama)
2 del_virama < virama x @ > Delete virama

3: ins_schwa + @ x {(a)} > Insert inherent vowel
4 deweight + (e, €,w |) > De-prioritize the path
5: T+ (

6:
7:
8:
9:
10:
11:

(consonant + vowel _sign) U > (610,(sa)) + (:,(u)) — (s1ue,(su))
(consonant + del_virama + deweight) U

(consonant + ins_schwa + deweight) U

(vowel + deweight) U coda U standalone U

> Further logic

return 7 > Kleene star

Figure 4: Simplified construction of the transliteration
transducer J.

over the aksara-initial independent vowels (line 9).

The two remaining operations on aksara,
namely NFC and visual normalization, are repre-
sented in our library using the context-dependent
rewrite rules from the formal approach pop-
ularized by Chomsky and Halle (1968). The
normalization rules are represented as a sequence
{¢ — /X _ p}, where the source ¢ is rewritten
as 1 if its left and right contexts are A and p. For
an earlier example from §3, a single NFC normal-
ization rule rewrites the Devanagari string ¢p = 47
(na, U+0928) + *’ (nukta sign, U+093C) into its
canonical composition ¢ = “d” (nnna, U+0929).
Kaplan and Kay (1994) proposed an algorithm
for compiling such sequences into an FST. This
approach was further improved and extended
to WFSTs by Mohri and Sproat (1996), whose
algorithm we use to compile sequences of NFC
and visual normalization rules into transducers
denoted NV and V.

Finally, the transducers representing language-
specific customizations of a particular script op-
eration are compiled by composing the generic
language-agnostic transducer, such as the Devana-
gari visual normalizer, with the transducer rep-
resenting transformations that capture language-
specific use of the script, e.g., Devanagari for
Nepali.

5 System Details and Demo

The core of the Nisaba Brahmic script manipula-
tion library resides under the brahmic directory
of the distribution. In this section we provide de-
tails for how to build and use the library and also
explore its application to visual normalization of
Wikipedia-based text in 9 of these scripts.

Prerequisites We use Bazel (Google, 2020) as
a primary build environment. For compiling the

Script

Op. Symb. Prop. pove pEve GUIR GURU KNDA MLYM ORVA SINH TAML TELU

A N, 127 130 113 93 119 122 105 122 75 112
Unicode s

; N, 475 546 476 418 487 522 452 513 326 485

- N, 248 235 195 171 210 201 178 192 126 181

N, 384 399 334 288 350 345 305 339 229 318

Unicode Ve 9 17 1 8 21 8 9 17 1 4

~ N, 158 248 75 78 349 261 160 352 228 163

Byte N, 31 55 1 28 70 27 31 55 37 14

N, 1,812 1,841 255 1,047 2,884 2322 1813 2,611 3,098 1,543

Unicode Ns 103 51,710 98 119 1764 287 60 182 209 57

» N, 2423 121,157 2234 2322 6136 3021 1,732 2,129 1280 2249

B N, 369 165,168 356 425 5,611 965 232 624 703 225

N, 18896 266441 18,684 20,733 30422 18,598 16,146 15363 11,830 18,717

Unicode Vs 11 7 7 7 10 10 7 7 4 6

W N, 427 446 388 341 465 485 380 361 158 335

Byte N, 38 23 21 23 33 33 2 2 1 19

N, 297 321 284 257 309 297 279 195 130 239

Table 4: Properties of script FSTs arranged by operation and symbol types (Unicode code points and UTF-8 bytes),
where J denotes the ISO transliteration operation, N is the NFC normalization, 1V denotes visual normalization,
and W is the well-formed check. The numbers of states and arcs are denoted by IV, and IV, respectively.

Brahmic Brahmic Brahmic
Offline: Compile Runtime: Python Runtime: C++
/ RN

[{ P } [T J

{ Opent } { Opents }

Figure 5: Software dependency diagrams for the three
modes of operation: compile stage (left), Python run-
time (center) and C++ run-time (right).

Thrax }

automata and transducers we employ Pynini’, a
Python library for constructing finite-state gram-
mars and for performing operations on WEF-
STs (Gorman, 2016; Gorman and Sproat, in press).
In addition, the library depends on Thrax®, an older
relative of Pynini, that provides a custom gram-
mar manipulation language for WFSTs (Tai et al.,
2011; Roark et al., 2012). Although Thrax has
been mostly superseded by Pynini, we still rely on
some of its utilities for unit testing and its C++ run-
time components. At their core, both Pynini and
Thrax depend on the OpenFst library” for the im-
plementation of most WFST algorithms (Allauzen
et al., 2007; Riley et al., 2009). The overall depen-
dency diagram is shown on the left-hand side of
Figure 5 (the minimal dependency on Thrax is in-
dicated by a dotted arrow). At build time, Bazel
pulls in these dependencies remotely from their re-
spective repositories.

"http://pynini.opengrm.org/
8http://thrax.opengrm.org
“http://www.openfst.org

19

Compiling the Transducers Figure 6 presents
the sequence of steps to compile the transduc-
ers, including downloading the repository (line 2),
compiling the library and its artifacts (line 5) and
running the unit tests (line 7). The artifacts are
compiled by Bazel using Pynini and consist of the
finite state archive (FAR) files that contain collec-
tions of WFSTs (Roark et al., 2012). For each
of the four Brahmic script operations we generate
two FAR files: one for WFSTs over the byte al-
phabet, and another over the Unicode code point
alphabet.!® Each FAR file contains ten script-
specific transducers whose names correspond to
the upper-case ISO 15924 script codes. Since the
transliteration operation is bidirectional, the name
of each script-specific transliteration transducer
has the prefix FROM_ for the native-to-Latin direc-
tion, and TO_ for the inverse. The numbers of states
(IV,) and arcs (IV,) of the resulting transliteration
(7), NFC (), visual normalization (V) transduc-
ers and well-formedness acceptors (W) for each
script and alphabet type are shown in Table 4.

Offline and Online Usage Once the transduc-
ers are compiled, they can be applied offline to
the input files using the rewrite-tester tool pro-
vided by Thrax, as shown in lines 8—13 of the ex-
ample in Figure 6, where the visual normalization
transducer V for Kannada that resides in the vi-
sual_norm. far archive is applied to words in in-
put file words. txt.

We provide lightweight run-time interfaces for

9The Unicode code point FARs rather misleadingly have
the suffix utf8 in their name for historical reasons.

Download Nisaba repository.

git clone https://github.com/google-research/nisaba.git

cd nisaba

Compile the transducers and tests.

bazel build -c opt //nisaba/brahmic/...

Run the unit tests.

bazel test -c opt //nisaba/brahmic/...

Compile Thrax rewrite helper tool.

bazel build -c opt @org_opengrm_thrax//:rewrite-tester

Run visual normalization for Kannada.

bazel-bin/external/org_opengrm_thrax/rewrite-tester \
--far=bazel-bin/nisaba/brahmic/visual_norm.far \
--rules=KNDA < words.txt

[I - N N U N

Figure 6: Compiling the transducers.

import unittest
from nisaba import brahmic

class BrahmicTest(unittest.TestCase):
def testBasicOperations(self)
Check romanization
iso_to_deva = brahmic.IsoTo(’Deva’)
self.assertEqual(’&aa’,
iso_to_deva.ApplyOnText(’(k'laba)’))
Check valid inputs.
wellformed_mlym = brahmic.WellFormed(’Mlym’)
self.assertTrue(wellformed_mlym.AcceptText(’ qui@o’))
Visual normalizer
visual_norm_deva = brahmic.VisualNorm(’Deva’)
self.assertEqual(’sft’, visual_norm_deva.ApplyOnText(’sft’))

Figure 7: Run-time Python interface example.

both Python and C++, their dependencies shown
in the center and the right-hand side of Figure 5,
respectively. The Python interface is provided via
several wrappers around the pynini.Fst abstrac-
tion, with a simple example shown in Figure 7.
In addition to performing simple operations on in-
dividual strings, more WFST-specific operations,
such as transducer composition, are provided by
Pynini. The C++ interface is provided by the Gram-
mar helper class, shown in Figure 8, that includes
the necessary methods for initializing the WFSTs
and performing rewrites (for transducers) and ac-
ceptance tests (for acceptors). In addition, many
more operations on WFSTs are available through
the OpenFst library, if required.

Prevalence of Normalization To demonstrate
the prevalence of text requiring normalization in

#include <string>

// Generic wrapper around FST archive with Brahmic transducers.
class Grammar {
public:
// Constructs given the FAR path, its name and the name of WFST.
Grammar(const std::stringd& far_path, const std::string& far_name,
const std::string& fst_name);
// Initializes the transducer.
bool Load();
// Rewrites <input> into <output>.
bool Rewrite(const std::string& input, std::string *output) const;
// Checks whether the grammar accepts <input>.
bool Accept(const std::string& input) const;

Figure 8: Run-time C++ interface.

20

% Changed

Language Script Types Tokens
Bengali BENG 0.53 0.06
Gujarati GUJR 0.46 0.09
Hindi DEVA 1.41 0.18
Kannada KNDA 4.19 1.66
Malayalam MLYM 6.33 4.19
Marathi DEVA 1.51 0.40
Punjabi GURU 1.67 0.33
Sinhala SINH 3.55 0.71
Tamil TAML 0.59 0.17
Telugu TELU 1.97 0.63

Table 5: Percentage of types and tokens changed by vi-
sual normalization from native script Wikipedia train-
ing partitions of the Dakshina dataset.

these scripts, we normalized publicly available cor-
pora and measured how frequently words in the
samples were modified. The Dakshina dataset
(Roark et al., 2020) includes (among other things)
collections of monolingual Wikipedia sentences in
12 South Asian languages, 10 of which use Brah-
mic scripts. We applied visual normalization to the
training partitions of the collections in these 10 lan-
guages, and Table 5 presents the percentage of both
types and tokens that were changed by the normal-
ization.!! Malayalam is the language with the high-
est percentage of both types and tokens changed by
visual normalization, largely due to frequent con-
version to chillu letters from alternative encodings.
For example, the relatively frequent word @meag
(“yours”) is normalized to the encoding with the
chillu letter o instead of m.

6 Conclusion and Future Work

We presented finite-state automata-based utilities
for processing the major Brahmic scripts. The fi-
nite state transducer formalism provides an effi-
cient and scalable framework for expressing Brah-
mic script operations and is suitable for many NLP
applications, such as those reported in Kumar et al.
(2020) and Kakwani et al. (2020), which may ben-
efit from the reduction in “noise” present in unnor-
malized text. In the future, we will continue to im-
prove the support for existing scripts and extend
our work to other Brahmic scripts.

"'Tokenization was simply based on whitespace, with no
other processing such as punctuation separation, so the total
number of distinct types is accordingly relatively high. The
texts from that dataset were already NFC normalized.

Acknowledgments

The authors would like to thank Isin Demirsahin
for valuable discussion on this project.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jeiech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In International Conference on Implemen-
tation and Application of Automata, pages 11-23.
Springer.

Chantal Amrhein and Rico Sennrich. 2020. On Roman-
ization for model transfer between scripts in neural
machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2461-2469, Online. Association for Computational
Linguistics.

Pushpak Bhattacharyya, Hema Murthy, Surangika
Ranathunga, and Ranjiva Munasinghe. 2019. Indic
language computing. Communications of the ACM,
62(11):70-75.

Carmen Brandt and Pushkar Sohoni. 2018. Script and
identity — the politics of writing in South Asia: an in-
troduction. South Asian History and Culture, 9(1):1—
15.

William Bright. 1999. A matter of typology: Alphasyl-
labaries and abugidas. Written Language & Literacy,
2(1):45-55.

Ronald Cardenas, Ying Lin, Heng Ji, and Jonathan May.
2019. A grounded unsupervised universal part-of-
speech tagger for low-resource languages. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2428-2439,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

George Cardona and Danesh Jain. 2007. The Indo-
Aryan Languages. Routledge Language Family Se-
ries. Routledge, New York.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Florian Coulmas. 1999. The Blackwell Encyclopedia of
Writing Systems. John Wiley & Sons, Oxford.

A. K. Datta. 1984. A generalized formal approach
for description and analysis of major Indian scripts.
IETE Journal of Research, 30(6):155-161.

Liudmila L Fedorova. 2012. The development of
structural characteristics of Brahmi script in deriva-

tive writing systems. Written Language & Literacy,
15(1):1-25.

21

Liudmila L. Fedorova. 2013. The development of
graphic representation in abugida writing: The ak-
shara’s grammar. Lingua Posnaniensis, 55(2):49—
66.

Google. 2020. Bazel. http://bazel.build. [Online],
Accessed: 2020-12-10.

Kyle Gorman. 2016. Pynini: A Python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 7580, Berlin,
Germany. Association for Computational Linguis-
tics.

Kyle Gorman and Richard Sproat. in press. Finite-State
Text Processing. Human Language Technologies.
Morgan & Claypool, Williston, VT.

Bradley Hauer, Amir Ahmad Habibi, Yixing Luan,
Rashed Rubby Riyadh, and Grzegorz Kondrak. 2019.
Cognate projection for low-resource inflection gen-
eration. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 6-11, Florence, Italy. Asso-
ciation for Computational Linguistics.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Al-
lauzen, Frangoise Beaufays, Tom Ouyang, Michael
Riley, and David Rybach. 2017. Transliterated mo-
bile keyboard input via weighted finite-state trans-
ducers. In Proceedings of the 13th International
Conference on Finite State Methods and Natural
Language Processing (FSMNLP 2017), pages 10—
19, Umed, Sweden. Association for Computational
Linguistics.

Ulf Hermjakob, Jonathan May, and Kevin Knight.
2018. Out-of-the-box universal Romanization tool
uroman. In Proceedings of ACL 2018, System
Demonstrations, pages 13—18, Melbourne, Australia.
Association for Computational Linguistics.

Lauren Hinkle, Albert Brouillette, Sujay Jayakar, Leigh
Gathings, Miguel Lezcano, and Jugal Kalita. 2013.
Design and evaluation of soft keyboards for Brahmic
scripts. ACM Transactions on Asian Language Infor-
mation Processing (TALIP), 12(2):1-37.

Xiaolei Huang, Jonathan May, and Nanyun Peng. 2019.
What matters for neural cross-lingual named entity
recognition: An empirical analysis. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6395-6401, Hong Kong,
China. Association for Computational Linguistics.

ISO. 2001. ISO 15919: Transliteration of Devana-
gari and related Indic scripts into Latin characters.
https://www.iso.org/standard/28333.html. Interna-
tional Organization for Standardization.

ISO. 2004. ISO 15924: Codes for the representation of
names of scripts. https://www.iso.org/obp/ui/#iso:
std:iso:15924:ed-1:v1:en. International Organiza-
tion for Standardization.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N. C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. iNLPSuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian
languages. In Proc. of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, EMNLP 2020, pages 4948-4961, Online
Event. Association for Computational Linguistics.

Ronald M. Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems. Computational
Linguistics, 20(3):331-378.

Werner Kuich and Arto Salomaa. 1986. Semirings, Au-
tomata, Languages, volume 5 of Monographs in The-
oretical Computer Science. Springer, Berlin.

Saurav Kumar, Saunack Kumar, Diptesh Kanojia, and
Pushpak Bhattacharyya. 2020. “A passage to In-
dia”: Pre-trained word embeddings for Indian lan-
guages. In Proc. of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), pages
352-357, Marseille, France. European Language Re-
sources association.

Anoop Kunchukuttan. 2020. The IndicNLP Li-
brary. https://github.com/anoopkunchukuttan/
indic_nlp_library.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-net: A transliteration
and script conversion system for languages of the In-
dian subcontinent. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Demonstra-
tions, pages 81-85, Denver, Colorado. Association
for Computational Linguistics.

Mehryar Mohri. 2000. Minimization algorithms for se-
quential transducers. Theoretical Computer Science,
234(1-2):177-201.

Mehryar Mohri. 2004. Weighted finite-state transducer
algorithms. An overview. In Carlos Martin-Vide,
Victor Mitrana, and Gheorghe Paun, editors, For-
mal Languages and Applications, pages 551-563.
Springer, Berlin; Heidelberg.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, Mono-
graphs in Theoretical Computer Science, pages 213—
254. Springer.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In 34th An-
nual Meeting of the Association for Computational
Linguistics, pages 231-238, Santa Cruz, California,
USA. Association for Computational Linguistics.

Nikitha Murikinati, Antonios Anastasopoulos, and Gra-
ham Neubig. 2020. Transliteration for cross-lingual
morphological inflection. In Proceedings of the

22

17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 189-197, Online. Association for Computa-
tional Linguistics.

Tom Ouyang, David Rybach, Frangoise Beaufays, and
Michael Riley. 2017. Mobile keyboard input decod-
ing with finite-state transducers.

Umapada Pal, Ramachandran Jayadevan, and Nabin
Sharma. 2012. Handwriting recognition in Indian re-
gional scripts: A survey of offline techniques. ACM
Transactions on Asian Language Information Pro-
cessing (TALIP), 11(1):1-35.

Vinodh Rajan. 2020. Aksharamukha. https://github.
com/virtualvinodh/aksharamukha.

Michael Riley, Cyril Allauzen, and Martin Jansche.
2009. OpenFst: An open-source, weighted finite-
state transducer library and its applications to speech
and language. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Tutorial
Abstracts, pages 9-10, Boulder, Colorado. Associa-
tion for Computational Linguistics.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 61-66, Jeju Island, Ko-
rea. Association for Computational Linguistics.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the Dakshina dataset. In
Proc. of 12th Language Resources and Evaluation
Conference (LREC), pages 2413-2423, Marseille,
France.

Richard G. Salomon. 1996. Brahmi and Kharoshthi. In
Peter T. Daniels and William Bright, editors, The
World's Writing Systems, pages 373-383. Oxford
University Press, New York, NY.

Royal Denzil Sequiera, Shashank S. Rao, and B. R.
Shambavi. 2014. Word-level language identifica-
tion and back transliteration of romanized text. In
Proceedings of the Forum for Information Retrieval
Evaluation, pages 70-73, Bangalore, India.

David L. Share and Peter T. Daniels. 2016. Aksha-
ras, alphasyllabaries, abugidas, alphabets and ortho-
graphic depth: Reflections on Rimzhim, Katz and
Fowler (2014). Writing systems research, 8(1):17—
31.

R. Mahesh K. Sinha. 2009. A journey from Indian
scripts processing to Indian language processing.
IEEE Annals of the History of Computing, 31(1):8—
31.

Richard Sproat. 2003. A formal computational analysis
of Indic scripts. In In International Symposium on
Indic Scripts: Past and Future, Tokyo, Japan.

Sanford B. Steever. 2019. The Dravidian Languages,
2nd edition. Routledge Language Family Series.
Routledge, New York.

Ingo Strauch. 2012. The character of the Indian
Kharostht script and the “Sanskrit Revolution”: A
writing system between identity and assimilation. In
Alexander J. de Voogt and Joachim Friedrich Quack,
editors, The Idea of Writing: Writing Across Borders,
pages 131-168. Brill, Leiden; Boston.

Terry Tai, Wojciech Skut, and Richard Sproat. 2011.
Thrax: An open source grammar compiler built on
OpenFst. In Proc. of IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), vol-
ume 12, Hawaii, USA.

Unicode Consortium. 2019. The Unicode Stan-
dard. Online: http://www.unicode.org/versions/
Unicode12.1.0/. Version 12.1.0, Mountain View,
CA.

Hans H. Wellisch. 1978. The Conversion of Scripts:
Its Nature, History, and Utilization. Information sci-
ences series. John Wiley & Sons, New York.

Sheng Yu. 1997. Regular languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook
of Formal Languages, volume 1: Word, Language,
Grammar, pages 41-110. Springer, Berlin.

Hao Zhang, Richard Sproat, Axel H Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural models of text normal-
ization for speech applications. Computational Lin-
guistics, 45(2):293-337.

Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao
Wei, Weiqiao Shan, Shuhan Zhou, Abudurexiti Re-
heman, Tao Zhou, Xin Zeng, Laohu Wang, Yongyu
Mu, Jingnan Zhang, Xiaoqgian Liu, Xuanjun Zhou,
Yingiao Li, Bei Li, Tong Xiao, and Jingbo Zhu.
2020. The NiuTrans machine translation systems for
WMT20. In Proceedings of the Fifth Conference on
Machine Translation, pages 338-345, Online. Asso-
ciation for Computational Linguistics.

23

CovRelex: A COVID-19 Retrieval System with Relation Extraction

Van-Hien Tran?
Ken Satoh?

Vu Tran'

Phuong Minh Nguyen'
Yuji Matsumoto*

Chau Minh Nguyen'
Minh Le Nguyen'

Japan Advanced Institute of Science and Technology
{vu.tran, phuongnm, chau.nguyen, nguyenml }@jaist.ac.jp
?Nara Institute of Science and Technology, Japan
tran.van_hien.tsl@is.naist.jp
3National Institute of Informatics, Japan
ksatoh@nii.ac.jp
4RIKEN Center for Advanced Intelligence Project (AIP), Japan
yuji.matsumoto@riken. jp

Abstract

This paper presents CovRelex, a scientific
paper retrieval system targeting entities and
relations via relation extraction on COVID-19
scientific papers. This work aims at building
a system supporting users efficiently in
acquiring knowledge across a huge number
of COVID-19 scientific papers published
rapidly. Our system can be accessed via
https://www.jaist.ac.jp/is/labs/
nguyen-lab/systems/covrelex/.

Keywords: COVID-19, biomedical domain,
scientific paper analysis, relation extraction,
entity recognition, document retrieval.

1 Introduction

This work aims at facilitating knowledge acqui-
sition from a huge number of COVID-19 scien-
tific papers. Due to the COVID-19 outbreak, re-
searchers have been focusing on studying the virus
and publishing a huge number of papers rapidly.
According to the estimation of Silva et al. (2020),
23,634 unique documents were published in just 6
months between January 1°¢ and June 30", 2020.
In the records of the COVID-19 Open Research
Dataset (CORD-19) Challengel, the number of col-
lected papers about COVID-19, SARS-Cov-2 and
related coronaviruses is more than 400K by January
9" 2021. The rapid speed of new publication and
the huge number of related papers challenges spe-
cialists to seek knowledge by connecting findings
across papers efficiently and timely.

'https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

24

When focusing on knowledge acquisition of
biomedical entities, several questions can be asked
regarding the entities and their relations:

* Which papers mention entity F/;?

* Which papers mention the relation 12 between
entity F and entity Fo?

* Which papers mention the relation R; be-
tween entity F; and entity F5, and the relation
Rs between entity F» and entity F3?

* What relations R, exist between entity E}
and entity F» and in which papers?

* What entity F, has relation R with entity F
and in which papers?

Such questions can be answered by our system.

2 Related Work

FACTA+ (Tsuruoka et al., 2011, 2008) was pre-
sented as a text search engine that helps users dis-
cover and visualize indirect associations between
biomedical concepts from MEDLINE abstracts.
Liu et al. (2015) introduced an online text-mining
system (PolySearch2) for identifying relationships
between biomedical entities over 43 million arti-
cles covering MEDLINE abstracts, PubMed Cen-
tral full-text articles, Wikipedia full-text articles,
US Patent abstracts, open access textbooks from
NCBI and MedlinePlus articles. More recently,
LitVar (Allot et al., 2018), a semantic search en-
gine, utilized advanced text mining techniques to
compute and extract relationships between genome

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 24-31

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

r
ReVerb, OLLIE,

1 .
| | ScispaCy I Relations
I ClauslE, Relink, I | DISEASE, PROTEIN, |
OpenlE CHEMICAL, DNA, ...
| I | |___,.___J
[——)
Relation Entity Relation
Extraction Recognition Index
CORD-19 | Relation Relation Graph T
. . . Graph — ==
Clustering Scoring Construction — ‘ -
f—
N R L ‘
| Cluster hierarchy | | PMI-derived [Linking entities = o
w/ FINCH & BERT | Informativeness || across papers I :
L S N . -

Figure 1: System Overview.

rel

argi arga

[MERS-CoV]aagp include

[feverlprseask ,

[chills/rigors]prsEasE)

[headache]prspase , non-productive [coughlprspase

[MERS-CoV]ggp is responsible lower

for causing

[respiratory
[feverlprsease and [coughlprspase

infections]prsEAsE with

Figure 2: An example of relations extracted from COVID-19 papers.

variants and other associated entities such as dis-
eases and chemicals/drugs. Wei et al. (2019) pre-
sented a web service PubTator Central (PTC) that
provides automated bioconcept annotations in full
text biomedical articles, in which bioconcepts are
extracted from state-of-the-art text mining systems.

Due to the COVID-19 outbreak, it is essential
to grasp valuable knowledge from a huge number
of COVID-19-related papers for dealing with the
pandemic effectively. Sohrab et al. (2020) intro-
duced the BENNERD system that detects named
entities in biomedical text and links them to the
unified medical language system (UMLYS) to facil-
itate the COVID-19 research. Hope et al. (2020)
created a dataset annotated for mechanism rela-
tions and trained an information extraction model
on this data. Then, they used the model to ex-
tract a Knowledge Base (KB) of mechanism and
effect relations from papers relating to COVID-19.
Zhang et al. (2020) built Covidex, a search infras-
tructure that provides information access to the
COVID-19 Open Research Dataset such as answer-
ing questions. Esteva et al. (2020) also presented
Co-Search, a retriever-ranker semantic search en-
gine designed to handle complex queries over the
COVID-19 literature. Wang et al. (2020) created
the EvidenceMiner web-based system. Given a
query as a natural language statement, EvidenceM-
iner automatically retrieves sentence-level textual
evidence from the CORD-19 corpus.

Clearly, previous works made a great effort to

25

acquire useful knowledge from the COVID-109 lit-
erature, such as recognizing biomedical entities
(Sohrab et al., 2020), extracting mechanism rela-
tions between entities (Hope et al., 2020), or retriev-
ing relevant text segments based on the user query
(Zhang et al., 2020; Wang et al., 2020). However,
there is still a lack of a system that has the ability
to automatically detect both entities with various
types and their diverse relations through papers,
especially when COVID-19 papers are published
rapidly. This motivates us to build the CovRelex
system, which aims to exploit such information.

3 Method

3.1 Overview

The core of our system is built from extracting
an enormous number of relations from COVID-19
related scientific papers (in CORD-19 corpus) by
several open domain relation extraction methods.
The extracted relations are represented not only
by their original form from the extraction methods
but also by the contained biomedical entities. Fur-
thermore, the relations are clustered and scored for
their informativeness over the corpus (Fig. 1).

A relation is a triplet in the form
(argi,rel,arge), where argi, and args are
noun phrases which may contain biomedical
entities, and rel is an expression describing the
directed relation from arg; to args (shown in
Fig. 2).

Table 1: SciSpacy models used in our system.

Name Training Data | Entity Types

en_ner_craft_ md CRAFT GGP, SO, TAXON, CHEBI, GO, CL

en_ner_jnlpba_md JNLPBA DNA, CELL.TYPE, CELL_LINE, RNA, PROTEIN

en_ner_bcScdr_md BC5CDR DISEASE, CHEMICAL

en_ner_bionlp13cg_md|BIONLP13CG |AMINO_ACID, =~ ANATOMICAL SYSTEM, CANCER, CELL,

CELLULAR_COMPONENT, DEVELOPING_ANATOMICAL_STRUCTURE,
GENE_OR_GENE_PRODUCT, IMMATERIAL_ANATOMICAL_ENTITY,

MULTI-TISSUE_STRUCTURE, ORGAN, ORGANISM,
ORGANISM_SUBDIVISION, ORGANISM_SUBSTANCE,
PATHOLOGICAL_FORMATION, SIMPLE_.CHEMICAL, TISSUE

3.2 Relation Extraction

3.3 Entity Recognition

With the objective of extracting as many relations

as possible, we employ several relation extraction
Each method has their own character-
istics, thus, may extract different kinds of rela-
tions. By combining several methods, we can ob-
tain higher extraction coverage. The methods are

methods.

briefly described as follows.

* ReVerb (Fader et al., 2011) tackles the prob-
lems of incoherent and uninformative extrac-
tions by introducing constraints on binary,

verb-based relation phrases.

e OLLIE (Mausam et al., 2012) addresses the
problems that Open IE systems such as Re-

We use biomedical entity recognition models spe-
cialized for predicting entity type and provided by
SciSpacy (Neumann et al., 2019) (Table 1). Each
of the models is trained on a different annotated
corpus, thus, covers a different set of biomedical en-
tities. By using multiple entity systems, we can ob-
tain various specialized entity information: chemi-
cals and diseases with BCD5SCDR (Li et al., 2016),
cell types, chemicals, proteins, and genes with
CRAFT (Bada et al., 2012), cell lines, cell types,
DNAs, RNAs, and proteins with JNLPBA (Col-
lier and Kim, 2004), and cancer genetics with
BioNLP13CG (Pyysalo et al., 2015).

Verb only extract relations that are mediated
by verbs. Not only by verbs, OLIEE extracts

relations mediated also by nouns, adjectives,

and more.

¢ ClauslE (Del Corro and Gemulla, 2013) is a
clause-based approach to open information ex-
traction. It separates the detection of clauses
and clause types from the actual generation of

propositions.

3.4 Relation Clustering

We build a cluster hierarchy on a subset of the ex-
tracted relations (this subset contains all relations in
which both arg; and args are biomedical entities),
so users can quickly find their interested relation
expressions or they can choose some clusters which
may contain their interested relation expressions.

* Relink (Tran and Nguyen, 2020) is a method

partly inherited from ReVerb, extracts rela-
tions from the connected phrases, not for iden-

tifying clause type like ClauselE.

* OpenlE (Angeli et al., 2015) extracts relations
by breaking a long sentence into short, co-
herent clauses, and then finds the maximally

simple relations.

The extracted relations are also tagged with biomed-
ical entities recognized by using entity recognition
models presented in the next subsection.

We utilize FINCH (Sarfraz et al., 2019), hierar-
chical clustering method, and BERT (Devlin et al.,
2019) for this task. First, BERT-Base model is used
to encode each relation as a simple sentence “ arg;
rel args” into a 768-dimensional vector. Then,
FINCH is used to build the cluster hierarchy. For
each cluster, representative expressions of the clus-
ter are selected from its rels from top informative
relations scored by the formula presented in the
next subsection. The result cluster hierarchy is
illustrated in Fig. 3.

26

EEITM had undergone CANCER |isin CANCER | be tool of cancer | identified by
cancer | be identified by cancer
be associated with cancer | had undergone cancer | be independent from

cancer | has cancer | was the most common cause of cancer

CANCER | has

be associated with cancer | had undergone cancer | be independent from
CANCER | was the most common cause of CANCER

be associated with cancer | had undergone cancer | be independent
from CANCER | has CANCER | was the most common cause of cal
is in PATHOLOGICAL F

the most common cause by PpATH

Figure 3: Illustration of cluster hierarchy. “DISEASE-0-7": the type of an entity contained in the arg; is DISEASE,
the id of the level O (root) cluster is O, the id of the level 1 cluster is 7. An expression has the form of ENTITY

TYPE (in arg;, omitted) relation/verb phrase

mers-cov
Relation

Argument 2 DISEASE

-

(in args). Expressions are separated by |.

Matching =g

Informative

@ MERS-CoV include fever, chills/rigors, headache , non-productive cough

Common symptoms in patients with MERS-CoV include fever , chills/rigors , headache , non-productive cough , dyspnea ,

shortness of breath , myalgia and gastrointestinal symptoms .

Health Care Associated Middle East Respiratory Syndrome (MERS): A Case from Iran (52

Figure 4: An example of Single-Relation Query for (mers-cov, any-relation, DISEASE).

3.5 Relation Scoring

Relations are scored for informativeness based
from Pointwise Mutual Information (PMI) (Church
and Hanks, 1990), the association ratio for
measuring word association norms, based on
the information-theoretic concept of mutual in-
formation. The informativeness of a relation
(argi,rel,args) can be regarded as PMI (Eq. 1) of
two points: arg-pair args = (argi,args) and its
relation expression rel through occurrence p(.).

p(args,rel)
PMlI(args,rel) = logy——————
()= %82 Cargs) plre)

)

It is difficult to apply Eq. 1, which computes
the occurrence by exact matching, for our system
because of the variation and noise in the contents
of the extracted relations. To mitigate the difficulty
of using exact match, we propose to use cosine
similarity with Tf-idf vectorization (Sparck Jones,
1988). While exact match counting of occurrence
indicates the presence of an instance (args or rel)
in the relation set, our use of cosine similarity
indicates the presence of the contents of the in-
stance in the relation set, thus can adapt to the
variation and noise in the contents of the relations.

27

With our approach, the relation’s informativeness
InfoScore(args, rel) is computed following Eq. 2.

S l
InfoScore(args, rel) = 1Og25 (args,rel)

(args)S(rel) @

S(args,rel) =

>

(args’,rel’)

S(args) = Z cos(v(args),v(args’))

args’

S(rel) = Z cos(v(rel),v(rel’))

rel’

cos(v(args, rel),v(args’,rel’))

where (args’,rel’) are all relations other than
(args,rel), args’ are arg-pairs in all relations
other than (args,rel), rel’ are expressions in all
relations other than (args, rel), and v(t1, to, ...t,)
is the vectorization function which concatenates
the input texts ¢, ts, ..., t, and converts the con-
catenated text into a single Tf-idf vector.

3.6 Retrieval System

The retrieval system provides two kinds of queries:
Single-Relation Query and Graph Query. While
Single-Relation Query provides simple way to

(@) Add Node Add Edge (@) Edit Node

(39) Delete selected

A
/ o) (@
mers-cov]

/,

Matching ===

Informative

———

Figure 5: Graph Query: searching for a paper containing relations matching the query graph.

the virus,

(covip- 1)

s COVIO0,)

(covip19)

CICHEMICALD

ally ill patients
y, AM; Hope, WW

egimens may be insufficient to treat

Figure 6: Example of Multi-Paper Graph Query. Left-hand side graph is the query. The right-hand side graph is
the summary of the results showing candidate entities. The highlighted nodes of the summary graph show entities
related to each other and mentioned in the two papers at the bottom.

search for specific relations, Graph Query pro-
vides a sophisticated way to search for papers con-
taining entities connected in a complex relation
graph.

3.6.1 Single-Relation Query

A query consists of partial information of a relation
which can contains keywords about arg;, args,
and rel, types of entities possibly included in the
argy or arga, or clusters which the relation belongs
to. The retrieved results are relevant relations with
their corresponding papers. An example of Single-
Relation Query is illustrated in Fig. 4. The query
relation is (mers-cov, any-relation, DISEASE).
The results are best matched relations, for in-
stance, (MERS-CoV, include, “fever, chills/rigors,
headache, non-productive cough™).

The candidate relations are retrieved based on
the keyword matching score by BM25 (Schiitze
et al., 2008) and InfoScore (Eq. 2), then filtered by
the entity types and the clusters. Keyword match-
ing score and InfoScore can be weighed for the
need of searching candidates that have high lexi-
cal matching with the query or candidates that are

28

highly informative.

3.6.2

This extends Single-Relation Query by enabling
more sophisticated paper search covering a com-
plex graph describing relations among entities.
An example of Graph Query is illustrated in
Fig. 5 with a query consists of 4 relations: (mers-
cov, cause, DISEASE), (CHEMICAL, any-relation,
mers-cov), (CHEMICAL, any-relation, DISEASE),
and (PROTEIN, any-relation, DISEASE). The re-
sult graph is built from linking entities and relations
obtained from each paper, which matches the query
graph. The entity linking is done through lexical
matching and type matching. This approach faces
the challenges from entities with synonyms and
performance of entity recognition.

One special feature of Graph Query is Multi-
Paper Graph Query which supports searching re-
lations across multiple papers. The important use
case is that interested relations are not described
in one single paper, i.e., one entity is mentioned
in different papers and thus engaged in different
relations. For example, if users want to “find some

Graph Query

Table 2: Evaluation results on relation extraction. Correct I, II, and I&II: evaluated as correct relations (can be
entailed from the corresponding sentences) by the first, the second, and both the evaluators, respectively. Overall:
evaluation on the unique relations per sentence from all methods. Kappa: Cohen’s kappa coefficient.

Method | Total Correct I Correct II | Correct I&II | Kappa
ReVerb 255 183 (72%) 224 (88%) 181 (71%) 0.47
OLLIE 398 304 (76%) 303 (76%) 275 (69%) 0.60
ClauslE | 1,061 880 (83%) 760 (72%) 720 (68%) 0.47
Relink 302 210 (70%) 193 (64%) 173 (57%) 0.58
OpenlE | 1,609 | 1,042 (65%) 901 (56%) 700 (44%) 0.30
Overall | 3477 [2479 (71%) | 2,242 (64%) | 1913 (55%) | 0.41
Table 3: Statistics of extracted relations. 4 Results
Method | Non-uniq. Unigq. Uniq. 4.1 Corpus
/corpus /corpus | /abstract . .)
ReVerb 2 3M 1M 3 We performed relation extraction and eptlty ?ecog—
OLLIE 27M 3 6M 16 nition from the CORD19 corpus provided in the
ClausIE 9 0M 6.0M 31 COVID-19 Open Redsearch Dataset Challenge up-
- dated by January 3¢, 2021. The corpus contains
Relink > 5M 4.1M 19 ~400K entries to COVID-19 related papers. Re-
OpenlE 24.4M 18.6M 84 . . . o i
lation extraction and entity recognition were per-
Overall 45.9M 33.3M 150

Table 4: Statistics of recognized entities.

Model /corpus | /abstract
en_ner_craft_md 1.8M 6
en_ner_jnlpba_md 3. 1M 11
en_ner_bc5cdr_md 1.8M 6
en_ner_bionlp13cg_md 1.4M 5
Total 6.4M 22

CHEMICAL that can treat some DISEASE caused
by COVID-19”, they will look for two relations:
(COVID-19, cause, DISEASE), and (CHEMICAL,
treat, DISEASE). In that case, the two relations
may be retrieved from two different papers. There-
fore, aggregating information scattering over multi-
ple papers is necessary for building a more compre-
hensive understanding. It is done through relation
grouping allowing users to segment the query graph
into several segments each belonging to different
papers. With the above example, users can define a
query graph (the left-hand side of Fig. 6) and our
system could find that “pneunomia” is a DISEASE
caused by COVID-19 and is treated with “Current
[piperacillin-tazobactam]cgemicar regimens” (the
right-hand side of Fig. 6) from two separate papers,
and more.

formed on the abstracts of the papers.

4.2 Relation Extraction

As shown in Table 3, we extracted 40.5 million
relations including 29.8 million unique relations.
Among the relation extraction methods, OpenlE
outputs the largest number. The other three relation
extraction methods tend to output long and com-
posite relations while OpenlE tends to break down
and output shorter and simpler relations. However,
OpenlE also outputs small variations of similar
relations.

For assessing the quality of relation extraction,
we conduct an evaluation on a small data sample
consisting of 100 papers selected from the corpus.
The evaluation was conducted by two human eval-
uators with the criteria to answer whether the rela-
tion can be entailed from the sentence.

The results (Table 2) show that the evaluation
is a difficult task. The evaluation agreement be-
tween the two evaluators is 0.41 in term of Cohen’s
kappa coefficient (McHugh, 2012). It’s consid-
ered fair agreement (Fleiss et al., 2003). Among
the relation extraction methods, OLLIE yields the
best kappa coefficient of 0.60 (good agreement),
OpenlE yields the worst coefficient of 0.30 (poor
agreement), and the others yield the coefficients of
0.47 to 0.58 (fair to good agreement). One of the
possible reasons is the complexity of biomedical
texts: sentences with 31 tokens in average and up

29

to 167 tokens in the evaluated sample, and common
use of conjunctions and nested clauses.

4.3 Entity Recognition

As shown in Table 4, a total of 6.4M entities
were recognized from the corpus with the four
entity recognition models. For each abstract of
a COVID-19 related paper, an average of 22 en-
tities were recognized. Among the four models,
en_ner_jnlpba_md outputs the largest number of
entities, about 1.7 to 2.2 times more than the other
models, where this model’s specialized entity types
are cell lines, cell types, DNAs, RNAs, and pro-
teins.

5 Conclusion

We have presented our COVID-19 scientific paper
retrieval system which focuses on analysing enti-
ties and their relations. The system is empowered
with several relation extraction and entity recogni-
tion methods. The system supports users in acquir-
ing knowledge efficiently across a huge number
of COVID-19 scientific papers published rapidly.
There, however, exist extremely challenging prob-
lems to tackle for making the system more practi-
cal: dealing with the newly created and unknown
data, solving the performance gap when utilizing
present methods, and do these in the nick of time
of fighting with pandemics.

Acknowledgment

This work was supported by JST CREST Grant
Number JPMJCR1513, Japan.

References

Alexis Allot, Yifan Peng, Chih-Hsuan Wei, Kyubum
Lee, Lon Phan, and Zhiyong Lu. 2018. LitVar: a
semantic search engine for linking genomic variant
data in PubMed and PMC. Nucleic Acids Research,
46(W1):W530-W536.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344-354, Beijing, China. Association for Computa-
tional Linguistics.

Michael Bada, Miriam Eckert, Donald Evans, Kristin
Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,

30

Judith A Blake, and Lawrence E Hunter. 2012. Con-
cept annotation in the CRAFT corpus. BMC Bioin-
formatics, 13(1).

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22-29.

Nigel Collier and Jin-Dong Kim. 2004. Introduc-
tion to the bio-entity recognition task at JNLPBA.
In Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications (NLPBA/BioNLP), pages 73-78,
Geneva, Switzerland. COLING.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Pro-
ceedings of the 22nd international conference on
World Wide Web, pages 355-366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir Radev, and
Richard Socher. 2020. Co-search: Covid-19 infor-
mation retrieval with semantic search, question an-
swering, and abstractive summarization.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1535-1545, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik.
2003. Statistical Methods for Rates and Proportions.
John Wiley & Sons, Inc.

Tom Hope, Aida Amini, David Wadden, Madeleine van
Zuylen, E. Horvitz, Roy Schwartz, and Hannaneh
Hajishirzi. 2020. Extracting a Knowledge Base of
Mechanisms from COVID-19 Papers .

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. BioCreative v CDR task cor-
pus: a resource for chemical disease relation extrac-
tion. Database, 2016:baw(068.

Yifeng Liu, Yongjie Liang, and David Wishart. 2015.
PolySearch2: a significantly improved text-mining
system for discovering associations between human
diseases, genes, drugs, metabolites, toxins and more.
Nucleic Acids Research, 43(W1):W535-W542.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 523-534, Jeju Island,
Korea. Association for Computational Linguistics.

Marry L. McHugh. 2012. Interrater reliability: the
kappa statistic. Biochemia Medica, pages 276-282.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319-327, Florence, Italy. Association
for Computational Linguistics.

Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-Pil
Choi, Jun’ichi Tsujii, and Sophia Ananiadou. 2015.
Overview of the cancer genetics and pathway cura-
tion tasks of bionlp shared task 2013. BMC bioinfor-
matics, 16(S10):S2.

Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelha-
gen. 2019. Efficient parameter-free clustering us-
ing first neighbor relations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Hinrich Schiitze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Jaime A Teixeira da Silva, Panagiotis Tsigaris, and Mo-
hammadamin Erfanmanesh. 2020. Publishing vol-
umes in major databases related to covid-19. Scien-
tometrics, pages 1-12.

Mohammad Golam Sohrab, Khoa Duong, Makoto
Miwa, Goran Topi¢, lkeda Masami, and Hiroya
Takamura. 2020. Bennerd: A neural named en-
tity linking system for covid-19. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 182-188, Online. Association for Computa-
tional Linguistics.

Karen Sparck Jones. 1988. A statistical interpretation
of term specificity and its application in retrieval. In
Document retrieval systems, pages 132—142. Taylor
Graham Publishing.

Xuan-Chien Tran and Le-Minh Nguyen. 2020. ReLink:
Open information extraction by linking phrases and
its applications. In Distributed Computing and Inter-
net Technology, pages 44—62. Springer International
Publishing.

Yoshimasa Tsuruoka, Makoto Miwa, Kaisei
Hamamoto, Jun’ichi Tsujii, and Sophia Anani-
adou. 2011. Discovering and visualizing indirect
associations between biomedical concepts. Bioin-
formatics, 27(13):1111-i119.

31

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2008. FACTA: a text search engine for find-
ing associated biomedical concepts. Bioinformatics,
24(21):2559-2560.

Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun
Guan, and Jiawei Han. 2020. Automatic textual ev-
idence mining in covid-19 literature. arXiv preprint
arXiv:2004.12563.

Chih-Hsuan Wei, Alexis Allot, Robert Leaman, and
Zhiyong Lu. 2019. PubTator central: automated
concept annotation for biomedical full text articles.
Nucleic Acids Research, 47(W1):W587-W593.

Edwin Zhang, Nikhil Gupta, Raphael Tang, Xiao Han,
Ronak Pradeep, Kuang Lu, Yue Zhang, Rodrigo
Nogueira, Kyunghyun Cho, Hui Fang, and Jimmy
Lin. 2020. Covidex: Neural ranking models and
keyword search infrastructure for the COVID-19
open research dataset. In Proceedings of the First
Workshop on Scholarly Document Processing, pages
31-41, Online. Association for Computational Lin-
guistics.

MATILDA:
Multi-AnnoTator multi-language Interactive
Light-weight Dialogue Annotator

Davide Cucurnia® Nikolai Rozanov® Irene Sucameli¢
Augusto Ciuffoletti® Maria Simi®

<>Department of Computer Science, University of Pisa, Pisa, Italy
*Wluper Ltd., London, United Kingdom
<>{d.cucurniaZ@studenti.,irene@phd.,
augusto.ciuffoletti@, maria.simiQ}lunipi.it
#nikolai}@wluper.com

Abstract

Dialogue Systems are becoming ubiquitous in
various forms and shapes, from virtual assis-
tants (like Siri, Alexa and various chat-bots)
to customer support systems embedded within
websites. Recent publications and advance-
ments with natural language modelling have
opened up NLP (and its more advanced ap-
plications like conversational Al) to a wider
audience. Unfortunately, the lack of labelled
data within this field remains a significant bar-
rier and so we have developed MATILDA
(the first multi-annotator, multi-language dia-
logue annotation tool) as an initial contribu-
tion to help the community overcome this bar-
rier. MATILDA is a tool for creating high-
quality corpora via a user-friendly interface so
as to facilitate the annotation of dialogues, re-
solve inter-annotator disagreement and man-
age multiple users at scale. We have evalu-
ated the tool on ease of use, annotation speed
and inter-annotation resolution for both ex-
perts and novices and can confidently con-
clude that MATILDA offers a novel, stream-
lined, end-to-end solution to dialogue annota-
tion and is intuitive enough to use, even for
a non-technical audience. The tool is com-
pletely open-sourced at https://github.
com/wluper/matilda and is easily adapt-
able to any language. We are also providing
a complementary tutorial video'.

1 Introduction

As a community, we have observed great advances
in the last decade that include word-embeddings
(Mikolov et al., 2013), seq-to-seq models for a
variety of tasks (Sutskever et al., 2014) and pre-
trained, transformer-based language models (De-
vlin et al., 2019). Relying on these seminal works,
a plethora of downstream tasks (e.g. NMT, Q&A,
dialogues, summarisation, etc.) have seen notable

"https://vimeo.com/500125248

32

improvements and some have even been “solved”.
Many of the advancements made in computational
modelling and power owe a lot of their success
to the careful curation and annotation of huge
datasets, which are thus equally pivotal to recent
advancements and progress in general. In partic-
ular, datasets such as (Budzianowski et al., 2018)
and (Byrne et al., 2019) have allowed data-hungry
neural-models to advance the field of task-oriented
dialogues.

In the field of annotation tools and data genera-
tion, recent advances such as (Collins et al., 2019)
show similar promise by open-sourcing technology
and developing it with modern usability-related
principles in mind. Following in the spirit of such
similar research, we present MATILDA (a full di-
alogue annotation tool specifically focused on the
inclusivity for all languages and facilitating mul-
tiple annotators). We evaluate it on a variety of
usability aspects, both with experienced and un-
trained users, and conclude that both our dialogue
annotation and creation tools are easy-to-use. Fur-
thermore, MATILDA offers more features than any
comparable tool in the research community; com-
fortably supporting multiple annotators as well as
multiple languages during the annotation process.
Therefore, we have open-sourced it and provided
precompiled docker images for easy setup.

MATILDA’s main contributions are: 1) a native
annotation tool that is quick-to-adapt®> for multi-
language support; 2) a user-friendly interface to
simply and intuitively manage multiple users as
well as easily distribute datasets to crowd-workers
for annotation; 3) task-oriented multi-speaker an-
notation capabilities (in the style of MultiWoz and
Taskmaster); 4) inter-annotator resolution; and 5)
integrated recommendations to assist annotators.

2As an example the full adaptation of the annotation tool
from English to German took roughly 30 minutes.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 32-39

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2 Related Work

Table 1 compares MATILDA with other recent an-
notation tools.

TWIST (Pluss, 2012) is a dialogue annotation
tool which consists of two stages: turn segmenta-
tion and content feature annotation. Turn segmenta-
tion allows users to create new turn segments from
raw text. After this, users can annotate sections of
text in a segment by highlighting them and select-
ing from a predefined feature list. However, this
tool doesn’t allow users to specify custom anno-
tations or labels and doesn’t support classification
or slot-value annotation. This is not compatible
with modern dialogue datasets which require such
annotations (Budzianowski et al., 2018). INCEp-
TION (Klie et al., 2018) is a semantic annotation
platform for interactive tasks that require seman-
tic resources like entity linking. It provides ma-
chine learning models to suggest annotations and
allows users to collect and model knowledge di-
rectly in the tool. GATE (Cunningham, 2002) is
an open source tool that provides predefined solu-
tions for many text processing tasks. It is powerful
because it allows annotators to enhance the pro-
vided annotation tools with their own Java code,
making it easily extensible and provides a great
number of predefined features. However, GATE
is a large and complicated tool with a significant
setup cost - its instruction manual alone is over
600 pages long>. Despite their large feature sets,
INCEpTION and GATE are not designed for an-
notating dialogue and cannot display data as turns,
an important feature for dialogue datasets. BRAT
(Stenetorp et al., 2012) and Doccano®* are web-
based annotation tools for tasks such as text classifi-
cation and sequence labelling. They have intuitive
and user-friendly interfaces which aim to make the
creation of certain types of dataset such as classi-
fication or sequence labelling datasets as fast as
possible. BRAT also supports annotation sugges-
tions by integrating ML models. However, like
INCEpTION?® and GATE?, they are not designed
for annotating dialogues and do not support the gen-

3https://gate.ac.uk/sale/tao/tao.pdf

*https://github.com/chakki-works/doccano

’A plugin allows calculation of scores not resolu-
tion: https://dkpro.github.io/dkpro-statistics/dkpro-agreement-
poster.pdf

% Again inter-annotator score calculation capabilities are
available as separate plug-in https://gate.ac.uk/releases/gate-
5.1-betal-build3397-ALL/doc/tao/splitch10.html - however
support for resolutions is not apparent

33

eration of formatted conversational data from a raw
text file such as might be outputted by a transcrip-
tion service. LIDA (Collins et al., 2019) provides
an easy-to-setup annotation tool for modern task-
oriented dialogues and also supports the integra-
tion of recommendations. However, LIDA is not
accessible for multiple users and is only intended
for the English language. MATILDA addresses
these shortcomings and adds features such as: an-
notation styles compatible with modern dialogue
datasets, inter-annotation resolution, customisable
recommendations and user administration. Dia-
logueView’s (Heeman et al., 2002) main use-cases
are focused on segmenting recorded conversations,
annotating audio files and discourse segmentation.
Granular labelling of the dialogue, recommenders,
inter-annotator agreement, and slot-value labelling
are not possible.

3 System Overview

We introduce an annotator service that extends pre-
vious successful experiences, like LIDA, by in-
troducing features that address large-scale, task-
oriented dialogue annotation projects. In particular,
we allow for distributed multi-annotators, multi-
language support, interannotator resolution and
custom recommenders to assist the annotation pro-
cess. Furthermore, our modern and modularised
implementation simplifies extension to additional
languages, use-cases and annotation styles. A typi-
cal use-case follows this workflow:

Creation of a Dataset We envision two main ways
to create a corpus: either interactively or by upload-
ing existing data. We adopt data representations
that allow backward compatibility with other tools
based on text files with a simple syntax, and a JSON
format that is easy to operate.

User Administration Once a corpus consisting of
several collections is created, administrators can
then proceed to assign those collections to one or
more different annotators. The assigned partition
will then be shown to the designated annotators
in their “Collection” view, ready to be annotated.
According to the typical use case, we need two
roles for the users, which we call Annotators and
Administrators. We want our system to include user
management with a simple interface for creation,
editing and removal.

Annotation and Supervision Each annotator has
access only to the subsets of dialogues assigned
to them to add/modify annotations and monitor

Annotation Tool Dialogue-specific An- Multi-language ~ Sup- Crowd Multi- Recommenders Inter-Annotator Language

notation port annotator Support Disagreement
Resolution

MATILDA YES YES YES YES YES PYTHON
LIDA (Collins et al., 2019) YES NO NO YES YES PYTHON
INCEpTion (Klie et al., 2018) NO NO NO YES YES/NO® JAVA
GATE (Cunningham, 2002) NO NO NO NO YES/NO * JAVA
TWIST (Pluss, 2012) YES NO NO NO NO -
BRAT (Stenetorp et al., 2012) NO NO NO YES NO PYTHON
DOCCANO? NO NO NO NO NO PYTHON
DialogueView (Heeman et al., 2002) YES NO NO NO NO TcK/TK

Table 1: Annotator Tool Comparison Table
Dialogue-specific Annotation: Support to annotate datasets such as MultiWoz or Taskmaster. Multi-language Support: The
ability to localise the annotation tool for different languages. Crowd Multi-annotator Support: The possibility to manage users
and easily deploy to many annotators in different locations. Recommenders: ML models to suggest annotations. Inter-Annotator
Disagreement Resolution: whether the system has an interface to resolve disagreements between different annotators. Language:
what programming language the system uses

Multi-user Interactive Light-weight Dialogue Annotator

contract ||
Indietro Dialogue_b2 Stima annotazione 6.7% Cambiamenti non salvati

duties ||

skill ||
usr[132,138][Office],

past_experience ||

degree || Id Turno: 3

age || sys Perfetto, in che settore preferiresti lavorare?

Ho terminato un corso professionale come tecnico di impianti elettrici e me la cavo bene con

languages || tutto quello che riguarda il pacchetto Office.

area ||
usr[41,70][tecnico di impia Id Turno: 4
company_name ||

company_size ||

location || Nuova richiesta

Figure 1: Dialogue annotation interface: filling slots by selection of text fragments.

work progress. Figure 1 shows a screenshot of the 3.1 System architecture
annotation interface and highlights the slot-filling
functionality. Administrators inspect annotators’
work and resolve conflicts in the interannotation
interface. When annotators provide diverging an-
notations, a designated supervisor provides a gold
standard either opting for one of them or intro-

MATILDA is designed as a Web Service: a browser
hosts the user interface while the server supports
data and control. Our use case envisions all com-
ponents running on user premises, but it is straight-
forward to distribute them on distinct hosts.

ducing an alternative one. Besides, the system On the server side, MATILDA is a bundle of two
computes interannotator agreement metrics, such ~ components: a web server and a database server.

as Cohen’s Kappa. Gold standard annotations pro- Each of them is encapsulated in a Docker, so
vided by supervisors are recorded separately and that complex configurations are carried out by the
do not overwrite the original ones. designer and invisible to the non-technical end-

The Interannotator is designed to confront two user. In fact, MATILDA operation depends only
or more annotated dialogue collections and resolve ~ on Docker support, which is available for major
annotation conflicts between them. MATILDA au- operating systems. In order to have MATILDA
tomatically retrieves all annotated versions of one operational, the end-user installs the Docker sup-
corpus partition present in the database; adminis- port and launches a Docker script that downloads
trators are also allowed to upload a file to add to and deploys on the user’s PC the server-side Dock-
the confrontation. This can be seen in Figure 2 ers. MATILDA is then reachable from the browser

34

1 Turnid 1

2 Turn Id 2

3 Tunid 3

4 Tun 1d 4

5 Tumnid 5

6 Tun 1d 6

7 Tunid 7

Hello, I'm your recruiter.

Hi, I'm Alessio. I'm looking for a job as @ computer technician.

Name: Dialogue_act
Name: Slot
Name: Slot
Name: Slot
Name: Slot
Name: Slot

Name: Dialogue_act

Dialogue Act

= sys_greet || 1

= sys_inform_basic || 0.3333333333333333
sys_inform_proactive || O
sys_request || 0
sys_select || 0
sys_deny [| 0

= usr_greet || 1

= usr_inform_basic || 1
usr_inform_proactive || 0

ust_request | 0

English v

Figure 2: Inter-annotation Resolution Interface.

Docker
subsygtem
MongoDB MATILDA
- user credentials - WSGI (gunicorn)

- user assignments - flask

- dialogs - backend code

- annotations - HTML templates
- metadata - JavaScript

T 27017 | 5000

Virtual Bridge HTTP

|
Browser

Figure 3: architecture

at the URL http://localhost/index.html. The
tech-inclined user has the option to configure some
features, like the use of an external database or the
access through a network interface. The installation
script and the operation manual are distributed on
GitHub nhttps://github.com/wluper/matilda,

while the Dockers are available from https://hub.

docker.com.

As seen in Figure 3, the MATILDA engine is
written in Python using the Flask framework, while
the client-side JavaScript uses the Vue framework.

35

The MongoDB database provides NoSQL access
to the dialogs, the annotations and their metadata.
This technology meets the required flexibility, al-
lowing heterogeneous types of documents and an
agile structure. The native support of JSON docu-
ments matches with the format used for the internal
representation of the dialogs. Finally, the availabil-
ity of both an open-source server and a public ser-
vice is useful when implementing either a service
on-premises, according to the reference use-case,
or, in a more advanced use-case, to implement a
cloud database for sharing dialogs.

The most stringent requirement on host hardware
is that the processor must belong to the 64-bit fam-
ily; this is inherited from Docker. To analyse the
footprint of MATILDA components, we installed it
on a system based on the Intel Celeron J3355, a 2-
core microprocessor dated 2016, created for entry
level desktop systems and with a 2GB RAM. Dur-
ing a significant processing peak, induced with an
upload, the footprint did not exceed a few percent
of hardware capacity.

The developer can find the engine source code
in the GitHub repository mentioned above; this al-
lows them to customize or to add new features to
MATILDA and to produce a new Docker. Locale-
dependent information is recorded in an indepen-

dent JSON document, and so introducing a differ-
ent localization of the interface is non-intrusive (?).

4 Evaluation

MATILDA was evaluated on two experiments: the
first evaluated MATILDA’s admin-related capabili-
ties while and the second evaluated its annotation
performance. Both experiments were conducted
across three different languages (English, Italian
and German) to assess MATILDA’s cross-language
adaptability.

4.1 Quantitative Evaluation
4.1.1 Administration and Supervision

The administration experiment involved a total of
six participants, each representing different super-
visory roles: i) an expert supervisor (ES) who is fa-
miliar with MATILDA or has relevant background
knowledge in NLP and dialogue annotation and ii)
an untrained supervisor (US) who has never used
MATILDA before and has little to no experience
with dialogue annotation in general. The initial
admin task consisted of adding two new users (Al
and A2) into MATILDA and assigning them as an-
notators, then creating a new dialogue collection
and defining its features (e.g. collection’s title, its
description, etc.) and assigning the new collection
to all the annotators. The second inter-annotator
task consisted of resolving inter-annotator conflicts
which may occur at the end of the annotation work,
which involved the supervisor comparing conflicts
on MATILDA for each annotator disagreement and
selecting one, thus creating a final, gold dataset.

During the two phases of the experiment, we
record the time needed for ES and US to com-
plete the tasks. Table 2 describes and compares
the time taken on the admin task for the two su-
pervisors across the three languages considered. It
also shows the time taken to resolve inter-annotator
disagreements as well as the total number of dis-
agreements resolved.

The quantitative evaluations show that both
trained and untrained supervisors were able to suc-
cessfully complete the predefined tasks, with the
untrained supervisors performing only marginally
worse, despite having never used an annotation tool
before. The untrained supervisors were provided
with a 15 minute guided training prior to the inter-
annotation task as they were unfamiliar with the
task (having no prior NLP knowledge or experi-
ence).

36

’ Time(min:sec) per admin task

English | Italian | German
ES 03:45 03:05 02:20
UsS 02:52 02:55 03:30
Time(min:sec) per inter-annotator task

ES 22:05 09:31 17:30
US 26:30* | 25:02 15:13*
Conflicts 38 40 25
Total Labels 130 130 130

Table 2: Comparison of the time taken by different
supervisors to carry out admin and inter-annotators res-
olution tasks. *Needed additional training before being
able to perform the task

The evaluation revealed a strong dependency on
the execution of admin tasks with the supervisor’s
familiarity with MATILDA and annotation systems
in general. However, the results also indicate that
users who are unfamiliar with annotation tools are
still able to easily use MATILDA and complete
administration and inter-annotation tasks.

4.1.2 Annotation

The second evaluation focuses on quantitatively
analysing the tool’s annotation interface. An expert
annotator (EA) and an untrained annotator (UA)
were both asked to annotate five dialogues and the
time taken to complete the task was recorded (the
results are shown in Table 3). Each dialogue, across
all languages tested, had an average of eight turns
(wherein a turn consisted of one user utterance and
system response) and twenty-four possible class
labels per turn (10 dialogue acts and 14 slots). This
complexity is comparable with those of public di-
alogue datasets, like Multiwoz or Taskmaster-1
(Budzianowski et al., 2018; Byrne et al., 2019).

Time(min:sec) per annotation task

English | Italian | German
EA | 34:27 16:35 27:55
UA | 37:30 49:48 45:00

Table 3: Time taken to annotate a set of 5 dialogues by
different native-speaker annotators

The results of this experiment show that even
untrained annotators were able to use MATILDA
to successfully complete the annotation task. In
fact, a substantial increase in the users’ annotation

speed can be observed within just a few annotations,
demonstrating a fast learning curve for MATILDA.

For expert annotators, the average annotation
time was 26:17 minutes for five dialogues (giving
an average of approximately 5:16 minutes per dia-
logue). For untrained annotators, this increases to
approximately 8:50 minutes per dialogue. There-
fore, annotating a data-set of 10,000 dialogues
(with two annotations per dialogue) can be cal-
culated as requiring 1,756 hours or 100x 8-hour
working days for two expert annotators to com-
plete on MATILDA. However, this time can be
massively reduced using untrained crowd-workers,
wherein approximately 52 untrained workers could
complete the annotation of such a dataset within
a week. Thus highlighting the importance of such
tools and software as MATILDA, that can manage,
collate and resolve annotation conflicts across the
crowd-workers.

4.2 Qualitative Evaluation & User Feedback

4.2.1 Questionnaire

In addition to the quantitative evaluations, a quali-
tative analysis was conducted in the form of a ques-
tionnaire about MATILDA’s usability, provided to
each annotator and supervisor as an an anonymous
feedback form. Each supervisor was asked to eval-
uate the following features with a Low-Medium-
High score:

* QI: ease of completing the admin task;

* Q2: ease of resolving inter-annotator con-
flicts;

* Q3: quality of the feedback provided by the

tool.

* Q4: overall usability of MATILDA admin in-
terface.

’ Supervisors evaluation

Low | Medium | High
Q1| 0.0% 16.7% | 83.3%
Q2| 167% | 50.0% | 33.3%
Q3 |333% | 50.0% | 16.7%
Q4 | 0.0% 333% | 66.7%

Table 4: Evaluation of MATILDA usability

Similarly, we ask annotators to evaluate:

* QI1: ease of annotation;

* Q2: ease of understanding how to work on
a dialogue collection and how to sent it to
supervisors at the end of the annotation;

* Q3: quality of the feedback provided by the
tool.

* QQ4: overall usability of MATILDA annotator
interface.

’ Annotators evaluation

Q1| 0.0% | 66.7% | 33.3%
Q2| 0.0% | 333% | 66.7%
Q3 | 66.6% | 16.7% | 16.7%
Q4| 0.0% | 333% | 66.7%

Table 5: Evaluation of MATILDA usability

Tables 4 and 5 show the percentages of responses
to each question for supervisors and annotators re-
spectively. Question 4 (Q4) about overall usability
shows 66.7% Good usability, 33.3% Medium us-
ability and nobody answered with Low usability
(including the untrained annotators) which confirm
the quantitative results regarding MATILDA’s low-
friction usability. Questions about the individual
aspects of the tasks (Q1 and Q2) also confirm the
overall usability of the tool, receiving mostly Good
or Medium scores. The main point for improve-
ment, according to the responses, was the level of
feedback the tool provides to the user (i.e. prompts
that show whether a user action was successful at a
task, like the successful creation of a user, etc)

4.2.2 Feedback

We have also provided the study participants the
venue to express their feedback in an unstructured
way, by prompting them, “Please provide feedback
in a couple of sentences on the usability of the
annotation and supervision aspects of the app and
the improvements you would suggest”.

The feedback can be summarised in three cate-
gories:

1. Feedback and Information Prompts by the tool
2. Improving slot-filling for the annotation tool

3. Improving the layout of the inter-annotator
resolution

The first feedback was also apparent from the
feedback forms provided in the previous section.
We have accepted this feedback to improve our

37

tool and the to-be-published version is planned to
include these improvements.

The second feedback point was very important
and the future version of the tool will work on
improving the slot-filling annotation format.

The final feedback was more of an aesthetic feed-
back about the location and visibility of certain
aspects of the interannotator resolution screen.

5 Conclusion and future work

We have presented MATILDA the first, to the best
of our knowledge, multi-annotator, multi-language
dialogue annotation tool that allows the user to
annotate, distribute annotation work among crowd-
workers or colleagues and to resolve annotation
conflicts. We evaluate the tool based on the ease
and rapidity of use and show that even untrained
novices can quickly learn to use it.

Thanks to the open-source nature of the original
LIDA project, we hope the community will pick-
up on this work both in terms of using it to create
strongly needed corpora for different languages as
well as extending it to allow even more use-cases
and more advanced annotation styles.

To this end we have conducted qualitative feed-
back sessions with study participants and provided
a potential avenue of concrete improvements. We
hope that this work will be a meaningful stepping
stone for our community to create more useful re-
sources in many languages.

6 Acknowledgements

In this work we would like to acknowledge the
great input from EACL Reviewers that helped us
push the paper to a new level.

We particularly would like to thank the thoughtful
input of our colleagues in the University of Pisa,
especially Clara Casandra and Carla Congiu.

We would also like to thank members of the
Wluper team that acted as Testers, Annotators and
Paper Reviewers. In particular, special thanks
go to Mohammed Terry-Jack, Lamia El Afani,
Andrew Burnie, Ed Collins and Maurice von
Sturm. Furthermore, additional thanks goes to the
authors and developers of the previous version
of this annotation tool - LIDA - Ed Collins and
Bingbing Zhang.

38

Furthermore, the work of Nikolai Rozanov was
done under the Research Lab of Wluper Ltd. (UK/
10195181) and part of the contribution of this lab
was supported by the Innovate UK Smart Grants:
October 2019.

References

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,
Semih Yavuz, Ben Goodrich, Amit Dubey, Kyu-
Young Kim, and Andy Cedilnik. 2019. Taskmaster-
1: Toward a realistic and diverse dialog dataset.

Edward Collins, Nikolai Rozanov, and Bingbing
Zhang. 2019. LIDA: lightweight interactive dia-
logue annotator. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019 - System Demonstrations, pages 121-126. As-
sociation for Computational Linguistics.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223-254.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Peter A. Heeman, Fan Yang, and Susan E. Strayer.
2002. DialogueView - an annotation tool for dia-
logue. In Proceedings of the Third SIGdial Work-
shop on Discourse and Dialogue, pages 50-59,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5-9.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111-3119. Curran Associates, Inc.

Brian Pluss. 2012. Twist dialogue annota-
tion tool. http://mcs.open.ac.uk/nlg/
non-cooperation/resources/user—guide.
pdf.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102-107. Association for Computational Lin-
guistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104-3112. Curran Associates, Inc.

39

AnswerQuest: A System for Generating Question-Answer Items from
Multi-Paragraph Documents

Melissa Roemmele!

Deep Sidhpura®

Steve DeNeefe! Ling Tsou'

SDL Research, Los Angeles, CA, USA
T{mroemmele,sdeneefe,ltsou}@sdl.com
®deepsidhpura777@gmail.com

Abstract

One strategy for facilitating reading compre-
hension is to present information in a question-
and-answer format. We demo a system that in-
tegrates the tasks of question answering (QA)
and question generation (QG) in order to pro-
duce Q&A items that convey the content of
multi-paragraph documents. We report some
experiments for QA and QG that yield im-
provements on both tasks, and assess how they
interact to produce a list of Q&A items for a
text. The demo is accessible at gna.sdl.com.

1 Introduction

Automated reading comprehension is one of the
current frontiers in AI and NLP research, evi-
denced by the frequently changing state-of-the-art
among competing approaches on standard bench-
mark tasks (e.g. Wang et al., 2018). These systems
aim to reach the standard of human performance,
but they also have the potential to further enhance
human reading comprehension. For instance, many
demonstrations of reading comprehension involve
eliciting answers to questions about a text. Mean-
while, educational research and conventional writ-
ing advice indicate that structuring information in
a question-and-answer format can aid comprehen-
sion (Knight, 2010; Raphael, 1982). Accordingly,
systems that present content in this format by auto-
matically generating and answering relevant ques-
tions may help users better understand the content.

The two NLP tasks essential to this objective,
question answering (QA) and question generation
(QG), have received a lot of attention in recent
years. Recent work has started to explore the inter-
section of QA and QG for the purpose of enhanc-
ing performance on one or both tasks (Sachan and
Xing, 2018; Song et al., 2018; Tang et al., 2018;
Yuan et al., 2017). Among application interfaces

©Current affiliation: eBay Inc., San Jose, CA, USA

40

that demo these tasks, most have focused on either
one or the other (Kaisser, 2008; Kumar et al., 2019).
Krishna and Iyyer (2019) presented a system that
integrated these tasks to simulate a pedagogical ap-
proach to human reading comprehension. In our
work, we demo an end-to-end system that applies
QA and QG to multi-paragraph documents for the
purpose of user content understanding. The system
generates a catalog of Q&A items that convey a
document’s content. This paper first presents some
focused contributions to the individual tasks of QA
and QG. In particular, we examine the challenging
task of QA applied to multi-paragraph documents
and show the impact of incorporating a pre-trained
text encoding model into an existing approach. Ad-
ditionally, we report a new set of results for QA
that assesses generalizability between datasets that
are typically evaluated separately. For QG, we
demonstrate the benefit of data augmentation by
seeding a model with automatically generated ques-
tions, which produces more fluent and answerable
questions beyond a model that observes only the
original human-authored data. In combining the
two tasks into a single pipeline, we show that the
information given by the generated Q&A items is
relevant to the information humans target when
formulating questions about a text.

The demo is implemented as a web application
in which users can automatically generate Q&A
pairs for any text they provide. The web applica-
tion is available at qna.sdl.com, and our code is at
github.com/roemmele/answerquest.

2 Question Answering

2.1 Model Overview

Our demo implements extractive QA, where an-
swers to questions are extracted directly from some
given reference text. State-of-the-art systems have
utilized a classification objective to predict indices

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 40-52

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

of answer spans in the text. This approach has
achieved success when the reference text is lim-
ited to a single paragraph (Devlin et al., 2019).
However, QA for multi-paragraph documents has
proven to be more difficult. Our system addresses
this challenging document-level QA task by adapt-
ing an existing method to additionally leverage a
pre-trained text encoding model.

Existing work on document-level QA has pro-
posed a pipelined approach that first applies a re-
trieval module to select the most relevant para-
graphs from the document, and then a reader mod-
ule for extracting answers from the retrieved para-
graphs (Chen et al., 2017; Yang et al., 2019). Dur-
ing training, each of the retrieved paragraphs and
the corresponding questions are observed indepen-
dently. To predict answers, the model scores can-
didate answer spans within each of the paragraphs,
ultimately predicting the one with the highest score
across all paragraphs. One problem is that the can-
didate answer scores across paragraphs might not
be comparable, since each paragraph-question pair
is treated as an independent training instance. To
address this issue, Clark and Gardner (2018) sug-
gested a shared-normalization approach (which we
refer to here as BIDAF SHARED-NORM) where
paragraph-question pairs are still processed inde-
pendently, but answer probability scores are glob-
ally normalized across the document. In their work,
they selected the top-k most relevant paragraphs for
a given question using a TF-IDF heuristic. They
then encoded the question and these paragraphs
into a neural architecture consisting of GRU lay-
ers and a Bi-Directional Attention Flow (BiDAF)
mechanism (Seo et al., 2017). On top of this model
is a linear layer that predicts the start and end token
indices of the answer within a paragraph, using
an adapted softmax function with normalization
across all top-k paragraphs for the question.

Another document-level QA system, RE?QA
(Hu et al., 2019), incorporated the text encoding
model BERT (Devlin et al., 2019). BERT has
been successfully used for numerous reading com-
prehension tasks. In contrast to BIDAF SHARED-
NORM, RE3QA combined paragraph retrieval and
answer prediction into a single end-to-end training
process, applying BERT to both steps. Because it
obtained favorable results relative to the BIDAF
SHARED-NORM approach, we were curious to as-
sess the isolated impact of BERT specifically on
the answer prediction component of the pipeline.

41

Therefore we adapted Clark and Gardner’s shared-
normalization approach by replacing their GRU
BiDAF encoder with the BERT-BASE-UNCASED
encoder. Wang et al. (2019) used a similar approach
for open-domain QA, where answers are mined
from the entirety of Wikipedia. We instead evaluate
QA with reference to a single document, for which
the impact of BERT on the shared-normalization
approach has not yet been documented.

We refer to our model here as BERT SHARED-
NORM. To rank paragraph relevance to a ques-
tion, we rely on TF-IDF similarity. During training,
we retrieved the top k=4 paragraphs. The BERT
SHARED-NORM model consists of the BERT-
BASE-UNCASED pre-trained model, which en-
codes the paragraph and question in the same man-
ner as Devlin et al.’s paragraph-level QA model.
The rest of our model is the same as BIDAF
SHARED-NORM: the softmax output layer pre-
dicts the start and end answer tokens and the same
shared-normalization objective function is applied
during training. The model can predict that a ques-
tion is ‘unanswerable’ by observing an index of 0
for the end token. During inference, the highest-
scoring answer span across paragraphs is predicted
as the answer. See Appendix A.1 for more details.

2.2 Dataset

Our QA experiments utilized the SQUAD (Ra-
jpurkar et al., 2016) and NEWSQA (Trischler et al.,
2017) datasets. SQUAD is derived from Wikipedia
articles, while NEWSQA consists of CNN news
articles. Both datasets were developed through
crowdsourcing tasks where participants authored
questions and identified their answers, resulting in
text-question-answer items where each answer is
a span within the text. There are two versions of
SQUAD. SQUAD-1.1 contains 87,599 train and
10,570 test items. SQUAD-2.0 contains an addi-
tional 42,720 train and 1,303 test items (a total of
130,319 and 11,873, respectively), distinguished
from SQUAD-1.1 by including questions that do
not have answers in the text. NEWSQA contains
107,674 and 5,988 train and test items, respectively.
As with SQUAD-2.0, some of these questions are
unanswerable. !

"The SQUAD test items we use are actually the items from
their ‘dev’ (development) set: rajpurkar.github.io/SQuAD-
explorer. Their official test set is withheld. The other pub-
lished systems we compare against also report evaluations on
this dev set, so for simplicity we refer to it here as the test set.

Similarly, we use the dev NEWSQA items as our held-out test
set: github.com/Maluuba/newsqa.

SQUAD questions pertain to a single paragraph.
Paragraphs are grouped by document and can be
concatenated for document-level QA. There are on
average 43 paragraphs per document. Paragraph
boundaries are not explicit in the NEWSQA texts,
so we treated each text as a multi-paragraph doc-
ument by splitting it into chunks of 300 tokens,
resulting in 2.55 average paragraphs per document.

2.3 Evaluation

2.3.1 Comparison with other Systems

We first evaluated our BERT SHARED-NORM
model on SQUAD-1.1 for comparison with the
BIDAF SHARED-NORM and RE3QA results re-
ported for this dataset. We used the official
SQUAD evaluation scripts provided by the web-
site. For direct comparison with BIDAF SHARED-
NORM, we replicated their setting of k=15 for para-
graph retrieval. Table 1 shows the results in terms
of the exact match (EM) and F1 accuracy of an-
swers. We improve upon the result for BIDAF
SHARED-NORM, demonstrating the beneficial im-
pact of incorporating BERT into this approach.
The BERT-based RE3QA still outperforms our
model, suggesting that its other components out-
side the BERT encoding for answer prediction ad-
ditionally contribute to its success.

Model EM F1

BIDAF SHARED-NORM | 64.08 | 72.37
RE3QA 77.90 | 84.81
BERT SHARED-NORM | 72.85 | 80.58

Table 1: QA results on SQuAD-1.1

2.3.2 Generalizability across Datasets

Our demo accepts any arbitrary text supplied by a
user, and we ultimately aim to produce informative
Q&A items for varying content domains. State-
of-the-art QA systems have matched human-level
performance on individual datasets like SQUAD,
but it is unclear how much this performance gener-
alizes across different datasets. As a narrow assess-
ment of this issue, we examined the generalizability
between SQUAD and NEWSQA by alternatively
training and evaluating BERT SHARED-NORM on
different combinations of these datasets.

Table 2 shows the results of this experi-
ment. We trained three different BERT SHARED-
NORM models on separate datasets: SQUAD-2.0,

42

NEWSQA, and SQUAD-2.0 + NEWSQA com-
bined (which we term MEGAQA). We then eval-
uated each of these models on the SQUAD-2.0
and NEWSQA test sets. Note that the experiments
in Section 2.3.1 were evaluated on SQUAD-1.1
for comparison with the other approaches. Here,
we only evaluate on SQUAD-2.0, which involves
additionally predicting when a question does not
have an answer span in the document. For these
evaluations, consistent with training, we retrieved
the top k=4 paragraphs from each document for
answer prediction.

Test Data
Train Data SQUAD-2.0 NEWSQA
EM F1 EM F1
SQUAD-2.0 | 71.37 | 74.65 | 40.88 | 48.67
NEWSQA 45.85 | 49.88 | 52.68 | 61.26
MEGAQA 70.29 | 73.55 | 53.85 | 62.46

Table 2: Generalizability of BERT SHARED-NORM
across datasets

The results reveal a generalizability problem,
where the model trained on SQUAD-2.0 fails to
perform as well on NEWSQA and vice-versa, pre-
sumably due to their domain difference (Wikipedia
vs. Newswire). However, combining the datasets
with the MEGAQA model generalizes well to both.
Related to this, Talmor and Berant (2019) found
combining multiple datasets from different do-
mains to be advantageous for BERT-based reading
comprehension models. Based on these results,
the BERT SHARED-NORM MEGAQA model is
currently integrated into our demo.

3 Question Generation

3.1 Model Overview

We follow the same paradigm of much recent
work on QG, which has applied encoder-decoder
(i.e. sequence-to-sequence) models to text-question
pairs (Du et al., 2017; Duan et al., 2017; Scialom
et al., 2019; Song et al., 2018; Zhao et al., 2018).
Similar to Scialom et al., we utilize the Transformer
architecture for the encoder and decoder layers of
the model, and enhance the decoder with a copy
mechanism. The encoder input is a single sentence
and the decoder output is a question, where the
input sentence contains the answer to the question.
Following the standard procedure for sequence-to-
sequence model training, we used the cross-entropy

of the output question tokens as the loss function.
When generating questions, we use a beam size of
5. See Appendix A.2 for further details.

3.2 Dataset

We trained and evaluated the model on SQUAD
and NEWSQA concatenated, the same datasets
used for the QA experiments. Our QG model
aims to produce questions whose answers are
contained in their corresponding input texts, so
we only included SQUAD-1.1 items and an-
swerable NEWSQA items (this excluded 32,764
NEWSQA items from the train and test sets). For
each paragraph-question-answer item, we sentence-
segmented the paragraph, isolated the sentence
with the answer span, and inserted special tokens
into the sentence (KANSWER> and </ANSWER>)
designating the start and end of the span. These
answer-annotated sentences were the model inputs
and the aligned questions were the target outputs.
We applied Byte-Pair-Encoding (BPE) tokeniza-
tion (Sennrich et al., 2016) to the inputs and targets
(see Appendix A.2). We used the same train-test
dataset splits as the QA experiments, allocating a
small subset of training items to a validation set for
hyperparameter tuning. Overall the train, valida-
tion, and test sets consisted of 160,876, 3,281, and
14,910 sentence-question pairs, respectively.

3.3 Data Augmentation Experiments

We examined three different versions of the model
described in 3.1, differentiated by their training in-
puts. The purpose of this experiment was to assess
using the output of a rule-based QG system as a
means of augmenting the training data. We specifi-
cally evaluated the three configurations below:
STANDARD: In this model, no data augmenta-
tion was applied. We trained the model directly on
the SQUAD/NEWSQA items described in 3.2.
RULEMIMIC: This model observed only the
automatically generated augmentation data, with-
out the original data. The source of the augmen-
tation data was the QG system by Heilman and
Smith (2010)2. This system applies linguistic rule-
based transformations (i.e. clause simplification,
verb decomposition, subject-auxiliary inversion,
and wh-movement) to convert a sentence into a
question answered by the sentence, then scores the
fluency of the question using a statistical model.
Du et al. (2017) found favorable results for a neu-

?Code at cs.cmu.edu/~ark/mheilman/questions

43

ral sequence-to-sequence approach relative to this
rule-based system, but we were curious about its
use as a strategy for augmenting our training data.
We anticipated that a neural model could learn to
‘mimic’ the system’s generic transformation rules
by observing its inputs and outputs. Thus, we
applied the system to the raw paragraphs in the
SQUAD/NEWSQA training set, which resulted in
1,531,233 questions, each aligned with a sentence.
We then followed the same steps described in 3.2
to tokenize the sentence and mark the answer span.
The training set for this model consisted only of
these automatically generated questions (1,500,610
train items with 30,623 used for validation), with
no human-authored questions.

AUGMENTED: This model observed both the
original data seen by the STANDARD model and the
augmentation data seen by the RULEMIMIC model,
via a two-stage fine-tuning process. After training
the RULEMIMIC model, we used its parameters to
initialize another model, then fine-tuned this new
model on the STANDARD model dataset. The hy-
pothesis behind this approach is that it can simulate
linguistic rules underlying question formulation,
while also capturing the more abstractive features
of human questions that are harder to derive using
deterministic syntactic and lexical transformations.

3.4 Evaluation

Many QG systems are evaluated using BLEU or
similar metrics that reward overall token overlap
between generated and human-authored questions.
However, Nema and Khapra (2018) argue that these
metrics are ill-suited for QG. In particular, compar-
atively fluent questions with the same answer could
have few tokens in common. Moreover, certain to-
kens within a question have far more impact than
others on its perceived quality. They encourage al-
ternative metrics that focus instead on the ‘answer-
ability’ of questions. Guided by this, we conducted
both automated and human ratings-based evalua-
tions in order to assess the answerability of our QG
output. Because our demo performs extractive QA,
our evaluations focus on whether questions are an-
swerable relative to the input text from which the
question is generated.

3.4.1 Automated Evaluation

Some work has utilized automated QA as a scoring
metric for QG systems, based on the rationale that
a QA system’s ability to predict correct answers
to generated questions indicate how well the ques-

tions are formulated to elicit these answers (Duan
et al., 2017; Zhang and Bansal, 2019). Following
this idea, we generated questions for sentence in-
puts in the SQUAD/NEWSQA test set. As with
the training inputs, these inputs were derived by
annotating the answer span of the corresponding
human-authored question for the paragraph, and
isolating the sentence containing that span. We
then provided each generated question and corre-
sponding paragraph to the BERT SHARED-NORM
MEGAQA model described in Section 2. The re-
sults for each QG model in terms of answer F1
accuracy are shown in Table 3, compared along-
side the result for human-authored questions.

As shown, the questions generated by the
RULEMIMIC model are much better at elicit-
ing the designated answers than the STANDARD
model questions, indicating that observing the
rule-generated questions alone is impactful. Ad-
ditionally, the AUGMENTED model generates
more answerable questions than the RULEMIMIC
model, showing the usefulness of combining rule-
generated questions with human-authored ques-
tions as a data augmentation strategy.

Model F1

STANDARD 0.354
RULEMIMIC | 0.503
AUGMENTED | 0.551
HUMAN 0.718

Table 3: Accuracy of QA system on QG output

3.4.2 Human Evaluation
. Answer
Model Rating Present
STANDARD 2.813 0.225
RULEMIMIC | 2.934 0.381
AUGMENTED | 3.140 0.399
HUMAN 3.776 0.793

Table 4: Human assessment of QG output

We also elicited human judgments for a subset
of the same generated questions. Participants were
recruited from an internal team of linguists as well
as Amazon Mechanical Turk (AMT). We selected
questions corresponding to 175 inputs. Table 5
in the appendix shows examples of these items.
Participants read the input sentence in its paragraph

44

context, then observed all four questions associated
with the input (one generated by each of the three
models plus the corresponding human-authored
question). The presentation order of the questions
for a given paragraph was randomized. Participants
rated the fluency and answerability of questions on
a scale of 1-4 based on the following statements:

1: Question is completely ungrammatical. It’s
impossible to know what this question is asking.

2: Question is mostly grammatical, but it doesn’t
fully make sense. It’s not clear what this question
is asking.

3: Question is strangely worded, vague, or con-
tains errors. However, I can make a guess about
what the question is asking.

4: Question is clearly worded. I understand
what this question is asking.

If the participant indicated that the question was
answerable by rating it a 3 or 4, they were then
asked if the answer to the question was contained
in the paragraph. If they indicated ‘yes’, they were
asked to verify this by selecting all text spans in
the paragraph that qualified as correct answers to
the question. Based on this, we scored a question
as having an ‘answer present’ if it was marked
as being answerable and if at least one of the
participant-selected answer spans was the same
one the question was conditioned upon when gen-
erated (signifying that the question actually elicited
the answer the model observed in the input). 41
participants assessed a total of 1,560 paragraph-
question items, with each item being rated by at
least two participants (see Appendix A.3 for inter-
rater reliability statistics). We averaged the scores
for the same questions across participants. Ta-
ble 4 shows the mean ratings and answer pres-
ence for each set of generated questions includ-
ing the HUMAN questions. In terms of ratings,
the results follow the same pattern as the auto-
mated evaluation: the RULEMIMIC questions are
rated higher than the STANDARD questions, and
the AUGMENTED questions are rated higher than
the RULEMIMIC questions. All sets of generated
questions are rated much lower than the HUMAN
questions. The models are ordered the same in
terms of answer presence, though the difference
between the RULEMIMIC and AUGMENTED mod-
els is slight. Overall these results again show the
benefit of augmenting the training data with auto-
matically generated questions. Accordingly, our
demo currently runs the AUGMENTED model.

4 Generating Q&A Pairs

We combined our best-performing QG and QA
models into a system that takes a text as input and
returns a list of Q&A pairs. Our web demo illus-
trates this system (see Appendix A.4 for details).
For our evaluations in Section 3, the QG mod-
els observed annotated answer spans upon which
the generated questions were conditioned. How-
ever, these annotations are obviously not available
by default for any arbitrary text. Consequently,
after splitting the text into sentences, we automati-
cally identify syntactic chunks and named entities
as candidate answers to questions (see Appendix
A.5 for details). For each candidate answer in a
sentence, we produce an input consisting of that
sentence annotated with that span. We also include
sentences with no answer annotations as inputs,
since they are not formally required by the model.
We provide all inputs for a given sentence to the
AUGMENTED QG model to get a list of questions
that can be passed to the QA component. Note that
even though some of the questions are already as-
sociated with annotated answers, we still apply QA
as an additional means of verifying their answer-
ability, and defer to the QA-predicted answer. To
prepare the QA inputs, for each sentence-question
item, we extend the sentence to include the sen-
tences immediately preceding and following it, so
each question becomes aligned with a 3-sentence
passage. This enables the QA system to possi-
bly retrieve additional context beyond the sentence
that it may deem as part of the answer span. We
provide these passage-question pairs to the BERT
SHARED-NORM MEGAQA model, then retain out-
put items for which answers are found. We reduce
the redundancy of items by filtering those with du-
plicate questions or answers, as well as items where
the question and answer concatenated share 60%
or more of the same tokens. In these cases, we only
retain the item with the highest QG probability.

4.1 Human Evaluation

before

after (ratio 1.0-1.7) [
after (ratio 1.7-2.4)
0.0 10.0 20.0 30.0 40.0

% correctly answered

50.0 60.0

Figure 1: Human accuracy on target questions before
and after observing generated Q&A pairs

We used our system to generate Q&A pairs for
ten texts from the SQUAD test set. Appendix

45

Table 6 shows an example of a generated Q&A
list for one text. We conducted an evaluation of
the informativeness of these pairs with 38 AMT
participants. In the first stage of the evaluation,
participants were shown only the title of one text
(e.g. “Tesla”) and the human-authored SQUAD
questions (no answers) corresponding to the text.
Without referencing any material, they were asked
to answer these target questions or respond with
“X” for questions they couldn’t answer. Because no
generated Q&A pairs were shown to participants
during this stage, the accuracy of their answers indi-
cated their prior mental knowledge of the informa-
tion in the text. In the second stage, the generated
Q&A pairs for the same text were revealed to them
and they answered the same target questions again.
Participants never observed the original text itself.
The logic of this design is that the more questions
people could correctly answer in the second stage
relative to the first, the more informative the gener-
ated Q&A list could be deemed. The ratio of gener-
ated Q&A pairs to target questions per text varied
from 1 to 2.4 (e.g. ratio = 2 for a text with 30 gener-
ated pairs and 15 target questions). Figure 1 shows
the percentage of target questions participants an-
swered correctly before and after observing the
Q&A list, grouped by ratio. The overall difference
in these conditions (14.74% vs. 50.26%) shows
that the generated items were partially informative
for answering the target questions, signifying that
the system does highlight some of the same content
people ask questions about. However, accuracy
did not markedly improve as participants saw more
items (50.18% for the lower ratio vs. 50.38% for
the higher ratio), suggesting that the information
coverage of the items could be improved. See Ap-
pendix A.6 for more details about this evaluation.

5 Conclusion and Future Work

In this paper, we present a system that automati-
cally produces Q&A pairs for multi-paragraph doc-
uments. We report some novel experiments for
QA and QG that motivate techniques for improv-
ing these tasks. We show that combining these
components can produce informative Q&A items.
Our future work will focus on more advanced mod-
eling of information structure in documents. For
example, the ideal design of Q&A items varies by
domain (e.g. news stories vs. financial reports vs.
opinion editorials), and items should target the con-
tent readers find most substantial in each domain.

References

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870-
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 845-855, Melbourne,
Australia. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1342—-1352,
Vancouver, Canada. Association for Computational
Linguistics.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866—874, Copenhagen, Denmark. Association for
Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609-617, Los Angeles, California. Associa-
tion for Computational Linguistics.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2285-2295, Florence, Italy. Association for Compu-
tational Linguistics.

Michael Kaisser. 2008. The QuALiM question answer-
ing demo: Supplementing answers with paragraphs
drawn from Wikipedia. In Proceedings of the ACL-
08: HLT Demo Session, pages 32-35, Columbus,
Ohio. Association for Computational Linguistics.

46

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Chris Knight. 2010. Question & answer article tem-
plate.

Kalpesh Krishna and Mohit Iyyer. 2019. Generat-
ing question-answer hierarchies. In Association for
Computational Linguistics.

Vishwajeet Kumar, Sivaanandh Muneeswaran, Ganesh
Ramakrishnan, and Yuan-Fang Li. 2019. Paraqg: A
system for generating questions and answers from
paragraphs. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 175-180.

Preksha Nema and Mitesh M Khapra. 2018. Towards a
better metric for evaluating question generation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

pages 3950-3959.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Taffy E Raphael. 1982. Improving question-answering
performance through instruction. Reading educa-
tion report; no. 32.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-

yond. Foundations and Trends®) in Information Re-
trieval, 3(4):333-389.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 629-640, New
Orleans, Louisiana. Association for Computational
Linguistics.

Thomas Scialom, Benjamin Piwowarski, and Jacopo
Staiano. 2019. Self-attention architectures for
answer-agnostic neural question generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6027—
6032.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and

Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context in-
formation for natural question generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 569-574, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4911-4921, Florence,
Italy. Association for Computational Linguistics.

Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo
Sun, Shujie Liu, Yuanhua Lv, and Ming Zhou. 2018.
Learning to collaborate for question answering and
asking. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1564—
1574, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191200, Vancouver, Canada. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-1JCNLP), pages 5881-5885.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with

47

Shiyue Zhang and Mohit Bansal. 2019.

BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 72—77, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-

dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 15-25,
Vancouver, Canada. Association for Computational
Linguistics.

Address-
ing semantic drift in question generation for semi-
supervised question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-1JCNLP), pages 2495-2509.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa

Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3901-3910, Brussels, Belgium. Associa-
tion for Computational Linguistics.

A Appendices

A.1 QA Model Details

The TF-IDF method for ranking paragraph rele-
vance to the question specifically uses the BM-25
ranker® (Robertson et al., 2009). We implemented
the QA model in PyTorch using the HuggingFace
Transformers library*. As described in Section 2.1,
we use the pre-trained BERT-BASE-UNCASED
model, which has 12 layers, 768 nodes per layer,
12 heads per layer, and 110M parameters overall.
The maximum sequence length for BERT-BASE-
UNCASED is 384 tokens (including both paragraph
and question tokens combined), so we truncated
paragraphs when this total was exceeded. The out-
put layer consists of a 384 x 2 matrix whose di-
mensions correspond to token indices for the start
and end of the answer span. We trained the model
in parallel across 4 Nvidia Tesla V100 GPUs with
a paragraph-question batch size of 48 with gradi-
ent accumulation at step 1 (12 paragraph-question
pairs per GPU, which was the maximum size a sin-
gle V100 GPU could accommodate). Following
Devlin et al.’s BERT-based fine-tuning procedure
for paragraph-level QA, the model was trained for
3 epochs and a learning rate of 3e-5 using Adam
optimization.

A.2 QG Model Details

We used OpenNMT-py> (Klein et al., 2017) for im-
plementation of the QG model. For BPE tokeniza-
tion, we use the OpenAl GPT-2 tokenizer imple-
mented by the HuggingFace transformers library
cited above. The vocabulary included all tokens
observed in the training data. The Transformer en-
coder and decoder each consist of 4 layers with
2048 nodes and 8 heads each. We include position
encodings on the token embeddings and a copy
attention layer in the decoder. We used a training
batch size of 4096 tokens, normalizing gradients
over tokens and computing gradients based on 4
batches. We trained for a maximum of 100,000
steps and validated every 200 steps, with early
stopping after one round of no improvement in
validation loss. We applied the other hyperparame-
ter settings recommended for training transformer
sequence-to-sequence models on the OpenNMT-py

3 pypi.org/project/rank-bm25
huggingface.co/transformers
> github.com/OpenNMT/OpenNMT-py

48

website®. This included Adam optimization with
B1 = 0.998, gradient re-normalization for norms ex-
ceeding 0, Glorot uniform parameter initialization,
0.1 dropout probability, noam decay, 8000 warmup
steps for decay, learning rate = 2, and label smooth-
ing e =0.

A.3 QG Evaluation Details

The sentence inputs for the evaluated questions
were randomly sampled after filtering for those
inside paragraphs longer than 500 characters, to
ensure participants could efficiently complete the
evaluation. AMT workers were paid $7 for their
participation in this evaluation, with the expected
time commitment of about 35 minutes.

The Cohen’s kappa inter-rater agreement on the
fluency/answerability ratings of 1-4 was 0.422, in-
dicating moderate agreement. The kappa for an-
swer presence in the paragraph was 0.465, also
indicating moderate agreement.

A.4 System Implementation Details

The system Ul is implemented using React JS with
Bootstrap CSS for styling. Figure 2 shows a screen-
shot of the interface. The QA and QG functionali-
ties run as web services implemented using Flask.

As an additional feature of the UI, users have
the option to obtain answers to their own custom
questions. They supply the question via a text box.
The QA system receives the entire document text
as input along with the question. We enforce para-
graph boundaries by splitting the document into
non-overlapping paragraphs of 300 tokens, and
then apply the BERT SHARED-NORM MEGAQA
model with top k=4 for paragraph retrieval’. If the
model predicts the answer is not in the text, the
user sees a message indicating this.

A.5 Candidate Answers for QG

We use the spaCy?® library to extract all named
entities and noun chunks. Additionally, we ex-
tract all dependency parse subtrees whose head is
labeled as one of the following: clausal comple-
ment (xcomp), attribute (attr), prepositional modi-
fied (prep), object (obj), indirect object (iobj), flat
multiword expression (flat), fixed multiword ex-
pression (fixed), clausal subject (csubj), clausal

Sopennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-
the-transformer-model

"Section 2.3.1 reported the result for k=15, but k=4 per-
forms only slightly lower (71.21 EM and 78.89 F1 vs. 72.85

and 80.58, respectively) with significantly higher efficiency.
8spacy.io

complement (ccomp), adjectival clause (acl), and
conjunct (conj). All extracted chunks are annotated
as answer spans.

A.6 Q&A List Evaluation

We truncated each of the ten SQUAD documents
to its first three paragraphs. There were on average
334.5 tokens per truncated document. For each
document we selected all SQUAD questions corre-
sponding to the first three paragraphs as the list of
target questions participants were prompted to an-
swer. There were on average 16.2 target questions
per truncated document. We provided the truncated
document to the system to generate a list of Q&A
items. As described in Section 4.1, the ratio of
generated Q&A items per target questions varied
from 1 to 2.4 with an average of 1.66, resulting
in an overall average of 26.3 generated items per
document.

Each of the 38 AMT participants answered the
target questions for a single document, so approx-
imately four participants answered each unique
list of target questions. They were paid $8 for
their participation, with the expected time com-
mitment of around 30 minutes. The instructions
emphasized that they should not use any external
information to answer the questions other than the
reference Q&A list (which was only used when
participants answered the questions for the second
time). They were told their participation would
not be judged based on the number of questions
correctly answered. Participants were not informed
that the reference Q&A items were automatically
generated.

Because all answers were provided as free text
and there could be some token variation in correct
answers for the same question (e.g. “Parliament of
the United Kingdom” vs. “UK Parliament™), we
used a fuzzy metric for judging answers as correct.
We counted a participant answer as correct if it had
at least one token in common with the answer given
in the SQUAD dataset. This is a permissive thresh-
old that can yield false positives (e.g. “300 years”
vs. “500 years”), but because it was consistently
applied across both stages of the evaluation (i.e. be-
fore and after observing the Q&A list), we deemed
it sufficient for quantifying the relative impact of
the generated items in the ‘after’ condition.

49

& DOCUMENT Done editing

Automated reading comprehension is one of the current frontiers in Al and NLP research,
evidenced by the frequently changing state-of-the-art among competing approaches on
standard benchmark tasks (e.g. Wang et al., 2018). These systems aim to reach the standard of
human performance, but they interestingly also have the potential to enhance human reading
comprehension. For instance, many demonstrations of reading comprehension involve eliciting
answers to questions about a text. Meanwhile, educational research and conventional writing
advice indicate that structuring information in a question-and-answer format can aid reader
comprehension (Knight, 2010; Raphael, 1982). Accordingly, systems that present content in this
format by automatically generating and answering relevant questions may help users better
understand the content.

Q INSIGHTS

Enter in any custom question + Add
Regenerate Questions

What is one of the current frontiers in Al and NLP research?

Automated reading comprehension

What aim to reach the standard of human performance?

standard benchmark tasks

What do demonstrations of reading comprehension involve?

eliciting answers to questions about a text

What do educational research and conventional writing advice indicate?

structuring information in a question-and-answer format can aid reader comprehension

Figure 2: Screenshot of UI with generated Q&A pairs for the displayed document

50

Input Sentence Model Output Question
By far the most famous work of STANDARD What is the name of the work of Norman art?
Norman art is the <ANSWER> RULEMIMIC | What is not a tapestry but a work of embroi-
Bayeux Tapestry </ANSWER>, dery?
which is not a tapestry but a work | AUGMENTED | What is the most famous work of Norman art?
of embroidery. HUMAN What is Norman art’s most well known piece?
Later in life, Tesla made claims STANDARD What was the name of the weapon that studying
concerning a “’teleforce” weapon the Teslaforce?
after studying the <ANSWER> RULEMIMIC | What did Tesla make claims concerning a “’tele-
Van de Graaff generator force” weapon after studying?
</ANSWER>. AUGMENTED | What did Tesla study?
HUMAN What was he studying that gave him the tele-
force weapon idea?
The Super Bowl 50 Host STANDARD How much of the Super Bowl raises?
Committee has vowed to be “the | RULEMIMIC | What will the Super Bowl 50 Host Committee
most giving Super Bowl ever”, dedicate it raises for philanthropic causes in the
and will dedicate <ANSWER> 25 Bay Area?
percent </ANSWER> of all AUGMENTED | What is the Super Bowl 50 Host Committee?
money it raises for philanthropic | HUMAN How many will the host committee dedicate to
causes in the Bay Area. local charities?
In 1899, John Jacob Astor IV STANDARD What did Jacob Astor IV do?
invested $100,000 for Tesla to RULEMIMIC | What did John Jacob Astor IV invest $100,000
further <ANSWER> develop and for in 1899?
produce a new lighting system AUGMENTED | Why did Jacob Astor IV invest $100,000?
</ANSWER>. HUMAN What did Astor expect the money be used for?
Most influential among these was | STANDARD When was the definition of the definition of
the definition of Turing machines Turing?
by Alan Turing in <ANSWER> RULEMIMIC | When turned out to be a very robust and flexible
1936 </ANSWER>, which turned simplification of a computer?
out to be a very robust and flexible | AUGMENTED | When did Alan Turing write machines?
simplification of a computer. HUMAN In what year was the Alan Turing’s definitional
model of a computing device received?
In addition to the <ANSWER> STANDARD What is the name of the Super Bow1?
Vince Lombardi </ANSWER> RULEMIMIC | Who will the winner of Super Bowl 50 also re-
Trophy that all Super Bowl ceive a large in addition to the Vince Lombardi
champions receive, the winner of Trophy that all Super Bowl champions receive?
Super Bowl 50 will also receive a | AUGMENTED | Who wrote the Super Bowl 50?
large, 18-karat gold-plated “50”. | HUMAN Who is the trophy given to the Super Bowl
champion named for?
In 1874, Tesla evaded being STANDARD What was the name of Tesla’s Army in 18747
drafted into the Austro-Hungarian | RULEMIMIC | Who was near Gracac?
Army in Smiljan by running away | AUGMENTED | Where did Tesla travel to?
to <ANSWER> Tomingaj HUMAN Where did Tesla run to avoid the army draft?

< /ANSWER>, near Gracac.

Table 5: Examples of questions produced by each evaluated QG model for the given input sentences

51

Q: What is separate from the combustion prod-
ucts?
A: working fluid

Q: Where was the water supply for driving wa-
terels?
A: factories

Q: What is solar power?
A: Non-combustion heat sources

Q: What did the mine provide?
A: water supply

Q: What is the ideal thermodynamic cycle used
for?
A: to analyze this process

Q: Where was it employed?
A: draining mine workings

Q: What is heated and transforms into steam?
A: water

Q: Where was the storage reservoir?
A: above the wheel

Q: Why is mechanical work done?
A: When expanded through pistons or turbines

Q: What was passed over the wheel?
A: Water

Q: What is then condensed and pumped back
into the boiler?
A: reduced-pressure steam

Q: When was the first railway journey?
A: 21 February 1804

Q: Who invented the first commercially true
engine?
A: Thomas Newcomen

Q: Where was the train?

A: along the tramway from the Pen-y-darren
ironworks, near Merthyr Tydfil to Abercynon in
south Wales

Q: What could generate power?
A: atmospheric engine

Q: What was built by Richard Trevithick?
A: The first full-scale working railway steam
locomotive

Q: Who proposed the piston pump?
A: Papin

Q: The design incorporated a number of what?
A: important innovations that included using
high-pressure steam which reduced the weight
of the engine and increased its efficiency

Q: What happened to Newcomen’s engine?
A: relatively inefficient

Q: What did England become the leading centre
for?

A: experimentation and development of steam
locomotives

Q: What was the engine used for?
A: pumping water

Q: Where was the railways colliery?
A: north-east England

Q: What was the vacuum worked by?
A: condensing steam under a piston within a
cylinder

Q: Who visited the Newcastle area in 18047
A: Trevithick

Q: What was the reason for draining waterel-
swheels?
A: providing a reusable water supply

Table 6: Generated Q&A list for the first three paragraphs of the SQUAD document titled “Steam engine”

52

T-NER: An All-Round Python Library
for Transformer-based Named Entity Recognition

Asahi Ushio and Jose Camacho-Collados
School of Computer Science and Informatics
Cardiff University, United Kingdom
{ushioa, camachocolladosj}@cardiff.ac.uk

Abstract

Language model (LM) pretraining has led
to consistent improvements in many NLP
downstream tasks, including named entity
recognition (NER). In this paper, we present
T-NER' (Transformer-based Named Entity
Recognition), a Python library for NER LM
finetuning. In addition to its practical utility,
T-NER facilitates the study and investigation
of the cross-domain and cross-lingual general-
ization ability of LMs finetuned on NER. Our
library also provides a web app where users
can get model predictions interactively for ar-
bitrary text, which facilitates qualitative model
evaluation for non-expert programmers. We
show the potential of the library by compil-
ing nine public NER datasets into a unified for-
mat and evaluating the cross-domain and cross-
lingual performance across the datasets. The
results from our initial experiments show that
in-domain performance is generally competi-
tive across datasets. However, cross-domain
generalization is challenging even with a large
pretrained LM, which has nevertheless capac-
ity to learn domain-specific features if fine-
tuned on a combined dataset. To facilitate
future research, we also release all our LM
checkpoints via the Hugging Face model hub?

1 Introduction

Language model (LM) pretraining has become one
of the most common strategies within the natural
language processing (NLP) community to solve
downstream tasks (Peters et al., 2018; Howard and
Ruder, 2018; Radford et al., 2018, 2019; Devlin
et al., 2019). LMs trained over large textual data
only need to be finetuned on downstream tasks
to outperform most of the task-specific designed
models. Among the NLP tasks impacted by LM

"https://github.com/asahi4l7/tner
https://huggingface.co/models?search=
asahi4l7/tner.

53

D LM finetuning

:\ LM evaluation

*cross-domain
*cross-lingual

web APP

Figure 1: System overview of T-NER.

pretraining, named entity recognition (NER) is one
of the most prevailing and practical applications.
However, the availability of open-source NER li-
braries for LM training is limited.’

In this paper, we introduce T-NER, an open-
source Python library for cross-domain analysis
for NER with pretrained Transformer-based LMs.
Figure 1 shows a brief overview of our library and
its functionalities. The library facilitates NER ex-
perimental design including easy-to-use features
such as model training and evaluation. Most no-
tably, it enables to organize cross-domain analyses
such as training a NER model and testing it on a
different domain, with a small configuration. We
also report initial experiment results, by which we
show that although cross-domain NER is challeng-
ing, if it has an access to new domains, LM can
successfully learn new domain knowledge. The
results give us an insight that LM is capable to
learn a variety of domain knowledge, but an or-
dinary finetuning scheme on single dataset most
likely causes overfitting and results in poor domain
generalization.

As a system design, T-NER is implemented in

3Recently, spaCy (https://spacy.io/) has released
a general NLP pipeline with pretrained models including a
NER feature. Although it provides a very efficient pipeline
for processing text, it is not suitable for LM finetuning or
evaluation on arbitrary NER data.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 53—62

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Pytorch (Paszke et al., 2019) on top of the Trans-
formers library (Wolf et al., 2019). Moreover, the
interfaces of our training and evaluation modules
are highly inspired by Scikit-learn (Pedregosa et al.,
2011), enabling an interoperability with recent
models as well as integrating them in an intuitive
way. In addition to the versatility of our toolkit for
NER experimentation, we also include an online
demo and robust pre-trained models trained across
domains. In the following sections, we provide a
brief overview about NER in Section 2, explain
the system architecture of T-NER with a few ba-
sic usages in Section 3 and describe experiment
results on cross-domain transfer with our library in
Section 4.

2 Named Entity Recognition

Given an arbitrary text, the task of NER consists
of detecting named entities and identifying their
type. For example, given a sentence ”Dante was
born in Florence.”, a NER model are would iden-
tify ”Dante” as a person and ”Florence” as a loca-
tion. Traditionally, NER systems have relied on a
classification model on top of hand-engineered fea-
ture sets extracted from corpora (Ratinov and Roth,
2009; Collobert et al., 2011), which was improved
by carefully designed neural network approaches
(Lample et al., 2016; Chiu and Nichols, 2016; Ma
and Hovy, 2016). This paradigm shift was mainly
due to its efficient access to contextual information
and flexibility, as human-crafted feature sets were
no longer required. Later, contextual representa-
tions produced by pretrained LMs have improved
the generalization abilities of neural network archi-
tectures in many NLP tasks, including NER (Peters
et al., 2018; Devlin et al., 2019).

In particular, LMs see millions of plain texts dur-
ing pretraining, a knowledge that then can be lever-
aged in downstream NLP applications. This prop-
erty has been studied in the recently literature by
probing their generalization capacity (Hendrycks
et al., 2020; Aharoni and Goldberg, 2020; Desai
and Durrett, 2020; Gururangan et al., 2020). When
it comes to LM generalization studies in NER, the
literature is more limited and mainly restricted to in-
domain (Agarwal et al., 2021) or multilingual set-
tings (Pfeiffer et al., 2020a; Hu et al., 2020b). Our
library facilitates future research in cross-domain
and cross-lingual generalization by providing a
unified benchmark for several languages and do-
main as well as a straightforward implementation

54

of NER LM finetuning.

3 T-NER: An Overview

A key design goal was to create a self-contained
universal system to train, evaluate, and utilize NER
models in an easy way, not only for research pur-
pose but also practical use cases in industry. More-
over, we provide a demo web app (Figure 2) where
users can get predictions from a trained model
given a sentence interactively. This way, users
(even those without programming experience) can
conduct qualitative analyses on their own or exist-
ing pre-trained models.

In the following we provide details on the techni-
calities of the package provided, including details
on how to train and evaluate any LM-based archi-
tecture. Our package, T-NER, allows practitioners
in NLP to get started working on NER with a few
lines of code while diving into the recent progress
in LM finetuning. We employ Python as our core
implementation, as is one of the most prevailing
languages in the machine learning and NLP com-
munities. Our library enables Python users to ac-
cess its various kinds of features such as model
training, in- and cross-domain model evaluation,
and an interface to get predictions from trained
models with minimum effort.

3.1 Datasets

For model training and evaluation, we compiled
nine public NER datasets from different domains,
unifying them into same format: OntoNotes5
(Hovy et al., 2006), CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003), WNUT 2017 (Derczynski
et al., 2017), WikiAnn (Pan et al., 2017), FIN (Sali-
nas Alvarado et al., 2015), BioNLP 2004 (Collier
and Kim, 2004), BioCreative V CDR* (Wei et al.,
2015), MIT movie review semantic corpus,’ and
MIT restaurant review.® These unified datasets are
also made available as part of our T-NER library.
Except for WikiAnn that contains 282 languages,
all the datasets are in English, and only the MIT
corpora are lowercased. As MIT corpora are com-

“The original dataset consists of long documents which
cannot be fed on LM because of the length, so we split them
into sentences to reduce their size.

>The movie corpus includes two datasets (eng and
trivial Ok13) coming from different data sources. While both
have been integrated into our library, we only used the largest
trivial Ok13 in our experiments.

®The original MIT NER corpora can be downloaded
from https://groups.csail.mit.edu/sls/
downloads/.

T-NER

model checkpoint: ./ckpt/ontonotes5

Insert a text to get prediction

for Best Original Song in 2012 as co-writer of the song "Real in Rio" from the animated film Rio. 4

Max sequence length: 128
. “

Result

Input sentence:
érgio Santos MendesiEE] musician. He has over F3 releases, and plays bossa nova heavily crossed with jazz and funk. He was nominated for FiNeIYer] for
Best [OfeliEIkTare) in ZUEF as co-writer of the song [EEEIMIETY" from the animated film Efe.

Entities:

*1. Sérgio Santos Mendes: person
* 2. Brazilian: group

* 3. 55: cardinal number

* 4. an Oscar: work of art

* 5. Original Song: work of art
*6.2012: date

* 7. "Real in Rio: work of art

* 8. Rio: work of art

Figure 2: A screenshot from the demo web app. In this example, the NER transformer model is fine-tuned on
OntoNotes 5 and a sample sentence is fetched from Wikipedia (en.wikipedia.org/wiki/Sergio_Mendes).

monly used for slot filling task in spoken language 3.2 Model Training
understanding (Liu and Lane, 2017), the charac-
teristics of the entities and annotation guidelines
are quite different from the other datasets, but we
included them for completeness and to analyze the
differences across datasets.

We provide modules to facilitate LM finetuning on
any given NER dataset. Following Devlin et al.
(2019), we add a linear layer on top of the last em-
bedding layer in each token, and train all weights
with cross-entropy loss. The model training compo-
Table 1 shows statistics of each dataset. In Sec- nent relies on the Huggingface transformers library
tion 4, we train models on each dataset, and assess (Wolf et al., 2019), one of the largest Python frame-
the in- and cross-domain accuracy over them. works for distributing pretrained LM checkpoint
files. Our library is therefore fully compatible with
Dataset format and customization. Users can the Transformers framework: once new model was
utilize their own datasets for both model training deployed on the Transformer hub, one can imme-
and evaluation by formatting them into the IOB diately try those models out with our library as a
scheme (Tjong Kim Sang and De Meulder, 2003) NER model. To reduce computational complexity,
which we used to unify all datasets. In the IOB in addition to enabling multi-GPU support, we im-
format, all data files contain one word per line with plement mixture precision during model training
empty lines representing sentence boundaries. At by using the apex library’.
the end of each line there is a tag which states The instance of model training in a given
whether the current word is inside a named entity ~ dataset® can be used in an intuitive way as dis-
or not. The tag also encodes the type of named played below:
entity. Here is an example from CoNLL 2003:

from tner import TrainTransformersNER

model = TrainTransformersNER (
EU B-ORG dataset="ontonotes5",
rejects O transformer="roberta-base")
German B-MISC model.train()
call O
to O With this sample code, we would finetune
boycott O _—
British B-MISC "https://github.com/NVIDIA/apex
lamb O 8To use custom datasets, the path to a custom dataset folder
o) can simply be included in the dataset argument.

55

Name Domain Entity types Data size
OntoNotes5 News, Blog, Dialogue 18 59,924/8,582/8,262
CoNLL 2003 News 4 14,041/3,250/3,453
WNUT 2017 SNS 6 1,000/1,008/1,287
WikiAnn Wikipedia (282 languages) 3 20,000/10,000/10,000
FIN Finance 4 1,164/-/303
BioNLP 2004 Biochemical 5 18,546/-/3,856
BioCreative V Biomedical 5 5,228/5,330/5,865
MIT Restaurant Restaurant review 8 7,660/-/1,521
MIT Movie Movie review 12 7,816/-/1,953

Table 1: Overview of the NER datasets used in our evaluation and included in T-NER. Data size is the number of

sentence in training/validation/test set.

RoBERTapssrp (Liu et al.,, 2019) on the
OntoNotes5 dataset. We also provide an easy ex-
tension to train on multiple datasets at the same
time:
TrainTransformersNER (
dataset=[

"ontonotesb",
1,

transformer="roberta-base")

"wnut2017"

Once training is completed, checkpoint files with
model weights and other statistics are generated.
These are automatically organized for each config-
uration and can be easily uploaded to the Hugging
Face model hub. Ready-to-use code samples can be
found in our Google Colab notebook?, and details
for additional options and arguments are included
in the github repository. Finally, our library sup-
ports Tensorboard'? to visualize learning curves.

3.3 Model Evaluation

Once a NER model is trained, users may want to
test the models in the same dataset or a different one
to assess its general performance across domains.
To this end, we implemented flexible evaluation
modules to facilitate cross-domain evaluation com-
parison, which is also aided by the unification of
datasets into the same format (see Section 3.1) with
a unique label reference lookup.
The basic usage of the evaluation module is de-
scribed below.
from tner import TrainTransformersNER
model TrainTransformersNER (

"path-to-model-checkpoint"
)

model.test ("ontonotes5")

‘https://colab.research.google.com/
drive/1AlcTbESp8W11yf1T7SyTOL4C4HG6MXYr?
usp=sharing

mwww.tensorflow.org/tensorboard

56

Here, the model would be tested on OntoNotes5
dataset, and it could be evaluated on any other test
set including custom dataset. As with the model
training module, we prepared a Google Colab note-
book!! for an example use case, and further details
can be found in our github repository.

4 Evaluation

In this section, we assess the reliability of T-NER
with experiments in standard NER datasets.

4.1 Experimental Setting
4.1.1 Implementation details

Through the experiments, we use XLM-R (Liu et al.,
2019), which has shown to be one of the most re-
liable multi-lingual pretrained LMs for discrimi-
native tasks at the moment. In all experiments we
make use of the default configuration and hyper-
pameters of Huggingface’s XLM-R implementation.
For WikiAnn/ja (Japanese), we convert the original
character-level tokenization into proper morpholog-
ical chunk by MeCab'?.

4.1.2 Evaluation metrics and protocols

As customary in the NER literature, we report span
micro-F1 score computed by seqeval'?, a Python
library to compute metrics for sequence predic-
tion evaluation. We refer to this F1 score as type-
aware F1 score to distinguish it from the the type-
ignored metric used to assess the cross-domain
performance, which we explain below.

Uhttps://colab.research.google.com/
drive/1JjHVGNFN4AUBuS-0zWJIXXe2fVBHUJ8NZ?
usp=sharing

Phttps://pypi.org/project/
mecab-python3/

Bhttps://pypi.org/project/seqeval/

In a cross-domain evaluation setting, the type-
aware F1 score easily fails to represent the cross-
domain performance if the granularity of entity
types differ across datasets. For instance, the MIT
restaurant corpus has entities such as amenity and
rating, while plot and actor are entities from the
MIT movie corpus. Thus, we report type-ignored
F1 score for cross-domain analysis. In this fype-
ignored evaluation, the entity type from both of
predictions and true labels is disregarded, reducing
the task into a simpler entity span detection task.
This evaluation protocol can be customized by the
user at test time.

4.2 Results

We conduct three experiments on the nine datasets
described in Table 1: (i) in-domain evaluation (Sec-
tion 4.2.1), (ii) cross-domain evaluation (Section
4.2.2), and (iii) cross-lingual evaluation (Section
4.2.3). While the first experiment tests our imple-
mentation in standard datasets, the second exper-
iment is aimed at investigating the cross-domain
performance of transformer-based NER models.
Finally, as a direct extension of our evaluation mod-
ule, we show the zero-shot cross-lingual perfor-
mance of NER models on the WikiAnn dataset.

4.2.1 In-domain results

The main results are displayed in Table 2, where we
report the type-aware F1 score from XLM-Rpasg
and XLM-R;arce models along with current state-
of-the-art (SoTA). One can confirm that our frame-
work with XLM-R;srce achieves a comparable
SoTA score, even surpassing it in the WNUT 2017
dataset. In general, XLM-Rsgrce performs consis-
tently better than XLM-Rp4sE but, interestingly, the
base model performs better than large on the FIN
dataset. This can be attributed to the limited train-
ing data in this dataset, which may have caused
overfitting in the large model.

Generally, it can be expected to get better accu-
racy with domain-specific or larger language mod-
els that can be integrated into our library. Nonethe-
less, our goal for these experiments were not to
achieve SoTA but rather to provide a competitive
and easy-to-use framework. In the remaining ex-
periments we report results for XLM-Ryagge only,
but the results for XLM-Rpasg can be found in the
appendix.

57

Dataset BASE LARGE SoTA
OntoNotes5 89.0 89.1 92.1
CoNLL 2003 90.8 92.9 94.3
WNUT 2017 52.8 58.5 50.3
FIN 81.3 76.4 82.7
BioNLP 2004 73.4 74.3 717.4
BioCreative V 88.0 88.6 89.9
MIT Restaurant 79.4 79.6 -
MIT Movie 69.9 71.2 -
WikiAnn/en 82.7 84.0 84.8
WikiAnn/ja 83.8 86.5 73.3
WikiAnn/ru 88.6 90.0 914
WikiAnn/es 90.9 92.1 -
WikiAnn/ko 87.5 89.6 -
WikiAnn/ar 88.9 90.3 -
Table 2: In-domain fype-aware F1 score for test set

on each dataset with current SOTA. SoTA on each
dataset is attained from the result of BERT-MRC-DSC
(Li et al., 2019) for OntoNotes5, LUKE (?) for CoNLL
2003, CrossWeigh (Wang et al., 2019) for WNUT 2017,
(Pfeiffer et al., 2020a) for WikiAnn (en, ja, ru, es,
ko, ar), (Salinas Alvarado et al., 2015) for FIN, (Lee
et al., 2020) for BioNLP 2004, (Nooralahzadeh et al.,
2019) for BioCreative V and (Pfeiffer et al., 2020a) for
WikiAnn/en.

4.2.2 Cross-domain results

In this section, we show cross-domain evalua-
tion results on the English datasets'*: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), FIN (fin). We also
report the accuracy of the same XLM-R model
trained over a combined dataset resulting from con-
catenation of all the above datasets.

In Table 3, we present the type-ignored F1 re-
sults across datasets. Overall cross-domain scores
are not as competitive as in-domain results. This
gap reveals the difficulty of transferring NER mod-
els into different domains, which may also be at-
tributed to different annotation guidelines or data
construction procedures across datasets. Especially,
training on the bionlp and bc5cdr datasets lead to
a null accuracy when they are evaluated on other
datasets, as well as others evaluated on them. Those
datasets are very domain specific dataset, as they
have entities such as DNA, Protein, Chemical, and
Disease, which results in a poor adaptation to other
domains. On the other hand, there are datasets

“We excluded the MIT datasets in this setting since they
are all lowercased.

train\test | ontonotes conll wnut wiki bionlp bcScdr fin | avg
ontonotes 91.6 654 53.6 475 0.0 0.0 18.3 | 40.8
conll 622 960 69.1 61.7 0.0 0.0 22.7 1351
wnut 41.8 857 683 545 0.0 0.0 20.0 | 31.7
wiki 328 733 53.6 934 0.0 0.0 12.2]29.6
bionlp 0.0 0.0 0.0 00 79.0 0.0 0.0 87
bc5cdr 0.0 0.0 0.0 00 0.0 888 00| 9.8
fin 482 732 609 589 0.0 0.0 82.0 | 38.1
all 909 938 609 913 78.3 84.6 75.5 | 81.7

Table 3:

Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets. We compute

average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown as all.

test
train en ja ru ko es ar
en 84.0 463 73.1 581 714 532
ja 53.0 86.5 457 571 745 554
ru 60.4 533 90.0 68.1 76.8 549
ko 57.8 62.0 68.6 89.6 662 572
es 70.5 506 75.8 61.8 921 62.1
ar 60.1 557 557 7077 79.7 90.3

Table 4: Cross-lingual type-aware F1 results on vari-
ous languages for the WikiAnn dataset.

that are more easily transferable, such as wnut and
conll. The wnut-trained model achieves 85.7 on
the conll dataset and, surprisingly, the conll-trained
model actually works better than the wnut-trained
model when evaluated on the wnut test set. This
could be also attributed to the data size, as wnut
only has 1,000 sentences, while conll has 14,041.
Nevertheless, the fact that ontonotes has 59,924
sentences but does not perform better than conll on
wnut reveals a certain domain similarity between
conll and wnut.

Finally, the model trained on the training sets
of all datasets achieves a type-ignored F1 score
close to the in-domain baselines. This indicates
that a LM is capable of learning representations of
different domains. Moreover, leveraging domain
similarity as explained above can lead to better
results as, for example, distant datasets such as
bionlp and be5cdr surely cause performance drops.
This is an example of the type of experiments that
could be facilited by T-NER, which we leave for
future work.

4.2.3 Cross-lingual results

Finally, we present some results for zero-shot cross-
lingual NER over the WikiAnn dataset, where

58

we include six distinct languages: English (en),
Japanese (ja), Russian (ru), Korean (ko), Spanish
(es), and Arabic (ar). In Table 4, we show the cross-
lingual evaluation results. The diagonal includes
the results of the model trained on the training data
of the same target language. There are a few inter-
esting findings. First, we observe a high correlation
between Russian and Spanish, which are generally
considered to be distant languages and do not share
the alphabet. Second, Arabic also transfers well to
Spanish which, despite the Arabic (lexical) influ-
ence on the Spanish language (Stewart et al., 1999),
are still languages from distant families.

Clearly, this is a shallow cross-lingual analysis,
but it highlights the possibilities of our library for
research in cross-lingual NER. Recently, (Hu et al.,
2020a) proposed a compilation of multilingual
benchmark tasks including the WikiAnn datasets
as a part of it, and XLM-R proved to be a strong
baseline on multilingual NER. This is in line with
the results of Conneau et al. (2020), which showed
a high capacity of zero-shot cross-lingual trans-
ferability. On this respect, Pfeiffer et al. (2020b)
proposed a language/task specific adapter module
that can further improve cross-lingual adaptation in
NER. Given the possibilities and recent advances
in cross-lingual language models in recent years,
we expect our library to help practitioners to exper-
iment and test these advances in NER.

5 Conclusion

In this paper, we have presented a Python library
to get started with Transformer-based NER mod-
els. This paper especially focuses on LM finetun-
ing, and empirically shows the difficulty of cross-
domain generalization in NER. Our framework is
designed to be as simple as possible so that any
level of users can start running experiments on

NER on any given dataset. To this end, we have
also facilitated the evaluation by unifying some of
the most popular NER datasets in the literature,
including languages other than English. We be-
lieve that our initial experiment results emphasize
the importance of NER generalization analysis, for
which we hope that our open-source library can
help NLP community to convey relevant research
in an efficient and accessible way.

Acknowledgements

We would like to thank Dimosthenis Antypas for
testing our library and the anonymous reviewers
for their useful comments.

References

Oshin Agarwal, Yinfei Yang, Byron C Wallace, and
Ani Nenkova. 2021. Entity-switched datasets: An
approach to auditing the in-domain robustness of
named entity recognition models. arXiv preprint
arXiv:2004.04123.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747—
7763, Online. Association for Computational Lin-
guistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNSs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357-370.

Nigel Collier and Jin-Dong Kim. 2004. Introduc-
tion to the bio-entity recognition task at JNLPBA.
In Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications (NLPBA/BioNLP), pages 73-78,
Geneva, Switzerland. COLING.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(ARTICLE):2493-2537.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6022—
6034, Online. Association for Computational Lin-
guistics.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy

59

User-generated Text, pages 140-147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Shrey Desai and Greg Durrett. 2020. Calibra-
tion of pre-trained transformers. arXiv preprint
arXiv:2003.07892.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. arXiv preprint arXiv:2004.06100.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57-60,
New York City, USA. Association for Computa-
tional Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328-339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020a. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning (ICML).

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020b. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alization. arXiv preprint arXiv:2003.11080.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260-270, San Diego, California. Association
for Computational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234-1240.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun
Liang, Fei Wu, and Jiwei Li. 2019. Dice loss
for data-imbalanced nlp tasks. arXiv preprint
arXiv:1911.02855.

Bing Liu and Ian Lane. 2017. Multi-domain adversar-
ial learning for slot filling in spoken language under-
standing. arXiv preprint arXiv:1711.11310.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064—-1074, Berlin, Ger-
many. Association for Computational Linguistics.

Farhad Nooralahzadeh, Jan Tore Lgnning, and Lilja
@vrelid. 2019. Reinforcement-based denoising of
distantly supervised ner with partial annotation. In
Proceedings of the 2nd Workshop on Deep Learning
Approaches for Low-Resource NLP (DeepLo 2019),
pages 225-233.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946-1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026-8037.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825-2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

60

22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Sebas-
tian Ruder. 2020a. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654—7673, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147—-155, Boulder, Colorado.
Association for Computational Linguistics.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Tim-
othy Baldwin. 2015. Domain adaption of named en-
tity recognition to support credit risk assessment. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2015, pages 84-90, Par-
ramatta, Australia.

Miranda Stewart et al. 1999. The Spanish language
today. Psychology Press.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Ji-
acheng Liu, and Jiawei Han. 2019. Crossweigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5157-5166.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the biocreative v chemical disease re-
lation (cdr) task. In Proceedings of the fifth BioCre-
ative challenge evaluation workshop, volume 14.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

A Appendices

In all experiments we make use of the default
configuration and hyperpameters of Huggingface’s
XLM-R implementation.

A.1 Cross-lingual Results

In this section, we show cross-lingual analysis
on XLM-Rpse, where the result is shown in Ta-
ble 5. For these cross-lingual results, we rely on
the WikiAnn dataset where zero-shot cross-lingual
NER over six distinct languages is conducted: En-
glish (en), Japanese (ja), Russian (ru), Korean (ko),
Spanish (es), and Arabic (ar).

A.2 Cross-domain Results

In this section, we show a few more results on
our cross-domain analysis, which is based on
non-lowercased English datasets: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), and FIN (fin). Table 6
shows the type-aware F1 score of the XLM-R;arce
and XLM-Rpssg models trained on all the datasets.
Furthermore, Table 7 shows additional results for
XLM-Rpasg in the type-ignored evaluation.

test
train en ja ru ko es ar
en 82.8 38.6 657 504 73.8 445
ja 53.8 839 469 60.1 713 46.3
ru 519 399 88.7 519 668 51.0
ko 547 51.6 533 875 633 523
es 65.7 440 66.5 54.1 909 594
ar 53.1 492 494 59.7 73.6 88.9
Table 5: Cross-lingual fype-aware F1 score over

WikiAnn dataset with XLM-RpssE.

Cross-domain results with lowercased datasets.
In this section, we show cross-domain results on the
English datasets including lowercased corpora such
as MIT Restaurant (restaurant) and MIT Movie
(movie). Since those datasets are lowercasd, we

61

uppercase lowercase
Datasets BASE [LARGE BASE LARGE
ontonotes 85.8 87.8 81.7 85.6
conll 87.2 90.3 82.8 87.6
wnut 49.6 55.1 437 51.3
wiki 79.1 827 752 80.8
bionlp 72.9 74.1 71.7 74.0
bcScdr 79.4 85.0 78.0 84.2
fin 72.4 724 724 73.5
restaurant - - 76.8 80.9
movie - - 67.8 71.8

Table 6: Type-aware F1 score across different test sets
of models trained on all uppercase/lowercase English
datasets with XLM-Rgasg or XLM-R; srGE.

converted all datasets into lowercase. Tables 8 and
Table 9 show the type-ignored F1 score across mod-
els trained on different English datasets including
lowercased corpora with XLM-R;sgrce and XLM-
Rpask, respectively.

train\test | ontonotes conll wnut wiki bionlp bcScdr fin | avg
ontonotes 91.8 622 51.7 447 0.0 0.0 31.8 403
conll 60.5 957 66.6 60.8 0.0 0.0 335453
wnut 413 813 63.0 563 0.0 0.0 20.5 1375
wiki 302 71.8 453 926 0.0 0.0 11.5 1359
bionlp 0.0 0.0 0.0 00 78.5 0.0 0.0]112
bceScdr 0.0 0.0 0.0 00 0.0 87.5 0.0 125
fin 49.0 735 622 60.7 0.0 0.0 828 | 469
all 89.7 924 558 893 78.2 80.0 74.8 | 80.0

Table 7: Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets with XLM-RpusE.
We compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is

shown as all.

train\test | ontonotes conll wnut wiki bionlp bcScdr fin restaurant movie | avg
ontonotes 89.3 599 50.1 447 0.0 0.0 15.1 4.5 88.6 | 39.1
conll 577 948 67.0 579 0.0 0.0 20.5 239 0.0 | 35.7
wnut 39.8 803 613 523 0.0 0.0 195 18.8 0.0 | 30.2
wiki 285 69.7 512 924 0.0 0.0 120 3.0 0.0 | 28.5
bionlp 0.0 0.0 0.0 0.0 79.0 0.0 00 0.0 00| 87
bceScdr 0.0 0.0 0.0 0.0 0.0 889 0.0 0.0 00] 9.8
fin 46 72.0 61.5 548 0.0 0.0 83.0 24.5 0.0 | 37.9
restaurant 46 217 229 223 0.0 0.0 54 83.4 0.0 | 17.8
movie 10.9 0.0 0.0 0.0 0.0 00 0.0 0.0 73.1 | 93
all 88.5 92.1 58.0 90.0 79.0 84.6 74.5 85.3 74.1 | 80.7

Table 8: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-R;srce. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown

as all.
train\test | ontonotes conll wnut wiki bionlp bcScdr fin restaurant movie | avg
ontonotes 883 567 49.0 414 0.0 0.0 11.7 4.2 88.3 | 37.7
conll 551 937 605 56.8 0.0 0.0 204 21.9 0.0 | 343
wnut 381 73.0 575 49.1 0.0 0.0 2I1.1 20.4 0.0 | 28.8
wiki 263 665 414 909 0.0 0.0 9.7 7.6 0.0 | 26.9
bionlp 0.0 0.0 0.0 0.0 78.7 00 00 0.0 0.0 | 8.7
beSedr 0.0 0.0 0.0 00 0.0 88.0 0.0 0.0 0.0 9.8
fin 413 644 458 578 0.0 0.0 81.5 22.0 0.0 | 34.8
restaurant 81 19.1 196 19.1 0.0 0.0 135 83.6 0.0 | 18.1
movie 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 | 9.7
all 86.1 89.5 499 86.2 76.9 78.8 754 82.4 722 | 77.5

Table 9: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-Rpase. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown

as all.

62

Forum 4.0: An Open-Source User Comment Analysis Framework

Marlo Haering' and Jakob Smedegaard Andersen' and Chris Biemann'
and Wiebke Loosen®? and Benjamin Milde! and Tim Pietz! and Christian Stoecker?
and Gregor Wiedemann® and Olaf Zukunft® and Walid Maalej'
Universitit Hamburg?!, Leibniz Institute for Media Research?,

Hamburg University of Applied Sciences

3

{haering, andersen,biemann,milde, S5Spietz, maalej}
@informatik.uni-hamburg.de
{w.loosen,g.wiedemann}@leibniz-hbi.de
{christian.stoecker,olaf.zukunft}@haw-hamburg.de

Abstract

With the increasing number of user comments
in diverse domains, including comments on on-
line journalism and e-commerce websites, the
manual content analysis of these comments be-
comes time-consuming and challenging. How-
ever, research showed that user comments con-
tain useful information for different domain ex-
perts, which is thus worth finding and utiliz-
ing. This paper introduces Forum 4.0, an open-
source framework to semi-automatically ana-
lyze, aggregate, and visualize user comments
based on labels defined by domain experts.
We demonstrate the applicability of Forum 4.0
with comments analytics scenarios within the
domains of online journalism and app stores.
We outline the underlying container architec-
ture, including the web-based user interface,
the machine learning component, and the task
manager for time-consuming tasks. We fi-
nally conduct machine learning experiments
with simulated annotations and different sam-
pling strategies on existing datasets from both
domains to evaluate Forum 4.0’s performance.
Forum 4.0 achieves promising classification re-
sults (ROC-AUC > 0.9 with 100 annotated
samples), utilizing transformer-based embed-
dings with a lightweight logistic regression
model. We explain how Forum 4.0’s archi-
tecture is applicable for millions of user com-
ments in real-time, yet at feasible training and
classification costs.

1 Introduction

Comment sections are omnipresent in today’s on-
line environments, for example, on news websites,
blogs, online shops, or app stores. In these sections,
users submit their feedback and opinion, request
features and information, or report issues and bugs.
Also, in social media such as Twitter or Facebook,
users regularly comment on specific topics, events,
products, or services. In many domains, includ-

ing e-commerce and journalism, users discuss with
each other, read others’ opinions to e.g. assess the
quality of the service or the product (Springer et al.,
2015; Kiimpel and Springer, 2016), and provide
feedback to other users and other domain experts
like the journalist (Héring et al., 2018), who wrote
the article or the developer who created the app
(Maalej et al., 2016b).

Even though research has criticized phenom-
ena such as “dark participation” (Frischlich et al.,
2019), comments can contain constructive infor-
mation for different domain experts in different
fields (Loosen et al., 2018; Maalej et al., 2016a).
For example, in app development, vendors use app
reviews in app stores to collect new feature ideas,
bug reports, or ideas of additional user scenarios
for their app (Stanik et al., 2019). Software vendors
consider the reviews to decide which bug or feature
request to prioritize in the next development cycle
(Martens and Maalej, 2019). In online journalism,
media outlets harness user comments to acquire a
broader perspective on additional arguments, col-
lect resonance about their articles, or identify and
contact experts or persons concerned for follow-up
stories (Loosen et al., 2018). However, the qual-
ity of the comments varies significantly, and their
amount is sometimes overwhelming, which makes
manual monitoring and analysis a real challenge
(Pagano and Maalej, 2013; Park et al., 2016a).

In this work, we propose Forum 4.0, an open-
source user comment analysis framework to semi-
automatically analyze a large number of user com-
ments for domain experts from various domains.
Forum 4.0 leverages a combination of transfer
learning (Howard and Ruder, 2018), human-in-the-
loop (Bailey and Chopra, 2018), and active learning
(Settles, 2012) strategies to automatically analyze
the comments’ content. To enable replication and
further research, we share Forum 4.0’s source code,

63

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 63—70
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

the scripts, and datasets we used for our research'
and a video, which showcases Forum 4.02.

2 Usage of Forum 4.0

We describe exemplary usage scenarios of Fo-
rum 4.0 for journalists and product managers in
their respective online journalism and app devel-
opment domains and introduce Forum 4.0’s user
interface.

2.1 Online Journalism

The manual effort for comment moderation in on-
line journalism is high (Park et al., 2016b). One
the one hand, media outlets filter hate speech (Gao
and Huang, 2017), as it might negatively affect
their credibility (Naab et al., 2020). On the other
hand, user comments can also be useful for differ-
ent journalistic purposes (Diakopoulos, 2015). For
example, journalists can obtain new perspectives
and opinions on an article, learn from users’ de-
scribed personal experiences, or identify potential
interview partners among the commenting users
(Loosen et al., 2018). Journalists can also aggregate
user comments to identify and visualize their audi-
ence’s opinion on current news topics (Wang et al.,
2013). Users can also point out errors in reporting,
contribute additional or missing sources and infor-
mation, provide new ideas for further news, or even
address the editorial team or authors directly, for
example, by criticizing the article’s quality (Héring
etal., 2018).

Journalists first define a useful user comment
label in Forum 4.0. Examples for such labels
could be: “criticism towards corona measures,” or
“pros/cons regarding a legislative proposal”. Jour-
nalists or forum moderators annotate user com-
ments regarding these labels, gradually increasing
the number of training samples. Forum 4.0 trains a
machine learning model using the annotated com-
ments and classifies all other user comments. The
automatic classification will improve with more an-
notations until it reaches sufficient precision so that
journalists can conduct quantitative and qualitative
analyses with the comments.

2.2 App Development

In app stores, product managers utilize user com-
ments for multiple purposes: users report crashes

"https://forum40.informatik.
uni-hamburg.de/git/

https://forumd0.informatik.
uni-hamburg.de/demo.mp4

64

and bugs in app reviews with valuable context in-
formation (e.g., device or app version), helping de-
velopers identifying and fixing them (Pagano and
Maalej, 2013). This is particularly helpful to ac-
quire immediate feedback after a new major release
or update (Guzman and Maalej, 2014). Addition-
ally, users suggest desired and useful app feature
ideas (Maalej et al., 2016a). Thereby, the product
managers get an overview of current app issues,
which they can consider for their further develop-
ment. In the field of mobile learning, the product
manager can utilize comments for the automatic
evaluation of education apps (Haering et al., 2021).

Similar to the online journalism domain, the
product manager can use Forum 4.0 to first cre-
ate labels for constructive app reviews. In the app
development domain, useful labels include “prob-
lems since the last app update”, “positive/negative
feedback on a certain app feature”, or “missing
or requested features”. The domain expert further
annotates app reviews, compiling a training set. Fo-
rum 4.0 trains a model and classifies the other app
reviews for the domain expert to analyze.

2.3 User Interface

Figure 1 shows Forum 4.0’s user interface. The do-
main expert can log in to create a new label or anno-
tate user comments. Below the title bar, the expert
can select a data source containing the comments
to analyze. In the figure, we selected comments
from the Austrian newspaper DER STANDARD?,
which contains the comments of the “One Million
Posts Corpus” published by Schabus et al. (2017).
Next to the data source selector, the domain expert
can create a new label or select relevant existing
labels to analyze and annotate the comments.

The pie chart shows the comment distribution
among the document categories (news article or
app categories). The bar chart shows the number of
positive classifications for the selected labels over
time with different granularity options. We train
one classification model for each label and show
the accuracy and the development of the F1-scores
with an increasing number of training samples.

The lower part of the Forum 4.0 interface lists
the actual user comments for exploration and anno-
tation. With a full-text search, the domain expert
can further filter the comment results. The list
contains the comment text, the timestamp, and a
column for each selected label. Each label column

*https://www.derstandard.at/

Forum 4.0 — Analysis of Online User Comments

- Login

| cREATE LABEL

Data source Selected labels
Der Standard - PersonalStories @

T, Data source

Familie -

Label selection

Number of Comments Over Time

QO Dpay

Month O Year

122015

Classifiers Classifier performance
Label Updated Accuracy Fi
PersonalStories 23.12.2020 B88% 0 82%
Comment List
Text search Q
PersonalStories
Comment body Date 2 é
v in der Tat - “le prénom’ u.a. mit Patrick Bruel. Sehr sehr gut 19. Feb. 2016 “
- Also bei den meisten Leuten die ich kenne dauert der Biorythmus einfach lénger als 24 Stunden. Ist glaub ich sogar wissenschaftlich 20, Mai 2016 v
erwiesen. Daraus ergibt sich, dass ohne einen Grund... x
o Das kann ich verstehen. Ich verstehe aber auch den Ansatz des Vereins. 100% Sicherheit wirds natirlich nie geben, aber beim 17. Now. 2075 v
Arbeitgeber kann ich eher Neutralitét erwarten als bei Freunden und *
Rows per page 0 v Page2 < >

Comment list

Figure 1: Main user interface of Forum 4.0.

has two sub-columns. The first sub-column with
the person symbol shows either existing human an-
notations when logged out or the own annotations
when logged in. A logged-in user can correct the
automatic classification or annotate comments as a
positive or negative sample for the selected labels.
The second sub-column with the robot icon shows
binary labels and confidence scores. The domain
expert has three sorting options for the classifi-
cations: (1) positives first, (2) negatives first, (3)
uncertain first (circle with tick mark). Forum 4.0
supports finding positive samples for rare comment
labels by suggesting semantically similar user com-
ments. Thereby, Forum 4.0 employs the rapid an-
notation approach to quickly retrieve additional
positive samples for a specific comment label.

3 Architecture

We describe Forum 4.0’s container-based architec-
ture and its machine learning pipelines.

65

3.1 Container-based Architecture

Forum 4.0 is composed of containers, interacting
with each other via a restful API. Figure 2 outlines
a UML deployment diagram.

<<host>>
Docker Host

<<WebServer>>
serving Front-End
(NodeJs)

<<WebBrowser>>
Front-End
(Vue.Js)

<<Reverseproxy>>L—jindex.htm—
(Nginx)

Tapi, <<WebServer>>

Japilembedding \ Back-End

(Flask)

TaskManager
<<WebServer>>
Embedding E bed: Ind
(Flask) m

P — —

<<WebCrawler>>
Comment Collector

Database
(Postgres)

Figure 2: Forum 4.0’s container architecture.

The Comment Collector aggregates user com-
ments from various sources, including media sites,
app stores, and social media. Forum 4.0 currently

contains the “One Million Posts Corpus” and im-
ports comments from the Google Play store and the
German news site SPIEGEL Online®.

The client accessing Forum 4.0’s web page re-
quests the Reverse Proxy, which forwards the re-
quests depending on the URL path to the respon-
sible container. The first request loads the single
page application (Flanagan and Like, 2006) from
the Front-End web server, which further communi-
cates via a restful API with the Back-End container.

The containers on the Docker host are only ac-
cessible from the outside through the reverse proxy
for security. The Back-End provides the restful
API. It invokes all machine learning, NLP, and
embedding tasks via a task manager in isolated
processes as they are time-consuming and would
exceed the HTTP request time out. It further cal-
culates the comment embedding index and queries
the database. The Embedding Container calculates
the embeddings for newly imported user comments.
This container can also run on a dedicated host to
calculate the embeddings with GPU support.

After login, the Back-End issues a JSON web
token (Janoky et al., 2018) for the Front-End. All
sensitive API endpoints of the Back-End are pro-
tected and require a valid JSON web token in the
request’s body. Protected actions include the com-
ment and document import, the creation of new
labels, and posting annotations.

3.2 Machine Learning Pipelines

Two essential parts of the architecture are the
Model Training Pipeline (Figure 3a) and the Com-
ment Import Pipeline (Figure 3b).

The Model Training Pipeline applies supervised
machine learning, and active learning strategies
(Settles, 2012) to improve the comment classifi-
cation continuously. To define a label and train
a model for the automatic classification, the do-
main expert must first log in and create a new label.
Domain experts can select the new label from the
menu and start annotating samples. The domain
expert is the human in the loop (Bailey and Chopra,
2018), who annotates and enlarges the training set
to improve the automatic classification iteratively.

Annotators can sort the user comments accord-
ing to the uncertainty score to keep the annotation
process most rewarding (Andersen et al., 2020). Fo-
rum 4.0 uses the label probability as the uncertainty
value. Uncertain instances are those whose classifi-

‘nttps://spiegel.de/

66

create label
select label

enoug

samples?

import user comment ﬂ

batch finished?
yes

train new model
evaluate model
classify comments

yes

embed user comment,

classify batch with
existing labels

(a) The Model Training
Pipeline.

(b) The Comment Import
Pipeline.

Figure 3: Machine Learning Pipelines

cation is the least confident, i.e. P(c|d) ~ 0.5 for
comment d belonging to class c.

Forum 4.0 provides rapid annotation techniques
to support and accelerate the collection of train-
ing samples. Forum 4.0 lists semantically similar
comments to an existing comment based on the
similarity of the comment embeddings. In case
the annotator found a positive training example,
chances are higher that semantically similar user
comments are also positive user comments, which
the annotator can quickly check.

We can adjust the number of required new train-
ing samples, which trigger the training of a new
model. After each annotation, Forum 4.0 checks
whether enough new training samples are available
to invoke (re-)training of the model. The task man-
ager executes each model training as a dedicated
process, logs its training, and records the evaluation
results. Forum 4.0 evaluates each model using ten-
fold cross-validation (Stone, 1974) to determine
the classification performance. The newly trained
model classifies all other user comments, which are
not part of the training set, and Forum 4.0 persists
its classification scores for that label.

The Data Import Pipeline enables the import and
processing of new user comments. After import-
ing a new user comment batch, the task manager
triggers the embedding process, which calculates
the embeddings for the imported user comments.

Forum 4.0 employs transfer learning (Howard and
Ruder, 2018) by using the embeddings of well-
established pre-trained language models, for ex-
ample, BERT embeddings (Devlin et al., 2019),
as machine learning features for the classification
model. Subsequently, all existing models classify
the new user comment batch.

4 Machine Learning Experiments

To preliminary evaluate the applicability of Fo-
rum 4.0 and the performance of its machine learn-
ing models, we conducted experiments with com-
ments from news sites and app stores. For the
online journalism domain, we used the One Mil-
lion Post (OMP) corpus (Schabus et al., 2017). It
consists of ~1M German user comments submitted
to the Austrian newspaper DER STANDARD, partly
annotated by forum moderators. For the app store
domain, we used an existing annotated app review
dataset (ARD) (Stanik et al., 2019).

We used 9,336 annotated German comments
(1,625 positives and 7,711 negatives) regarding
OMP’s “personal story” label. These user com-
ments share the users’ personal stories regarding
the respective topic, including experiences and
anecdotes. We used 6,406 annotated English app re-
views (1,437 positives and 4,969 negatives) regard-
ing the ARD’s “bug report” label. In bug reports,
users describe problems with the app that should
be fixed, such as a crash, an erroneous behavior, or
a performance issue.

We simulated the human annotator, who gradu-
ally annotates a batch of user comments, triggering
a new training and evaluation cycle. We trained
the classifier on the training set and evaluated the
model on the remaining comments. We started our
first training with ten samples and triggered new
training for every ten new annotations.

Forum 4.0 allows random sampling and uncer-
tainty sampling for new annotations, which we
compared in our experiments. With random sam-
pling, we randomly chose and added ten new sam-
ples to our training set. With uncertainty sampling,
we added the user comments for which the classi-
fier’s output is closest to 0.5. We stopped adding
more user comments to the training set as soon as
the balanced accuracy score converged.

We evaluated the classification model on the re-
maining user comments after each training, using
the balanced accuracy, F1-score, and the Receiver
Operating Characteristics (ROC-AUC) metrics.

67

For the comment embeddings, we used two
different multi-lingual pre-trained language mod-
els to embed the comments: (1) BERT (Devlin
et al., 2019) is based on a transformer architec-
ture, which learns contextual relations between
sub-(word) units in a text. We used an average to-
ken embedding of the four last layers of the BERT
model as the comment embeddings. (2) Sentence-
BERT (S-BERT) (Reimers and Gurevych, 2019)
is based on a modification of the BERT network
and infers semantically meaningful sentence em-
beddings. We used a lightweight logistic regression
model as a classifier due to performance require-
ments for quick updates of machine labels during
human-in-the-loop coding. To assess the feasibility
of our architecture, we further timed the model’s
training and evaluation. To mitigate the noise of
our results, we performed 50 rounds for each ex-
periment. The line plots show the average results
of all rounds and the standard deviation.

5 Experiments Results

Figure 4 shows the balanced accuracy, ROC-AUC,
and F1-scores for all our classification experiments.
Overall, all classification metrics improve with in-
creasing training data. Additionally, the uncertainty
sampling strategy outperforms random sampling,
and the S-BERT embeddings outperform the BERT
embeddings given the same sampling strategy. All
evaluation metrics significantly improve within the
first 100 training samples and converge afterward.

On the OMP dataset, we achieved a balanced ac-
curacy of 0.86 with 100 training samples using un-
certainty sampling and S-BERT embeddings. With
500 training samples, we reached 0.91. Within the
first 100 training samples, S-BERT embeddings
outperformed the BERT embeddings. We achieved
a similar F1-score as Schabus et al. (2017) with
~50 training samples (0.70) and outperformed their
model using 500 training samples with an F1-score
of 0.82. On the app review dataset, we achieved
a balanced accuracy of 0.92, a ROC-AUC of 0.96,
and an F1-score of 0.85 using 500 training samples.

Figure 5 shows the time measurements for train-
ing the logistic regression model. In all cases, the
training size has a linear increase. Overall, the
training time with the S-BERT embeddings (0.1s
for 500 samples) takes a shorter time than training
with the BERT embeddings (0.4s for 500 samples)
on both datasets. We also measured the classifica-
tion time on the remaining test set, which takes less

1.0 PersonalStories 1.0 Bug Report
>0.9 0.9
1* 1<
e e
3 3
E 0.8 é(‘-j 0.8
3 model 3 model
0.7 — BERT |207 —— BERT
© SBERT | .8 SBERT
S 0.6 strategy 8 0.6 strategy
! — rnd : — rnd
-=- unc --=- unc
0.5 0.5
100 200 300 400 500 100 200 300 400 500
#Training Data #Training Data
1.0 1.0
0.9 0.9 #
§ 0.8 § 0.8
Q model Q model
207 — BerT |20.7 —— BERT
SBERT SBERT
0.6 strategy 0.6 strategy
— rnd — rnd
=== unc --=- unc
0.5 0.5
100 200 300 400 500 100 200 300 400 500
#Training Data #Training Data
1.0 1.0
model
—— BERT
0.9 SBERT 0.9
strategy
0.8l — md e 081 T e
- VL T s e T e
w _/7,_,—/—/_/ w Vs model
0.71 7 0.71 7 —— BERT
i / SBERT
0.6 ,,’ 0.611 strategy
i ' IC — rnd
“‘ i ---- unc
0.5+ 0.5

100 200 300 400 500 100 200 300 400 500
#Training Data #Training Data

Figure 4: Balanced accuracy (top), ROC-AUC (cen-
ter), and F1-scores (bottom) for all classification exper-
iments on the OMP (left column) and the ARD (right
column).

than ~3ms on the OMP (~8,000 test samples) and
the ARD (~6,000 test samples) dataset.

6 Related Work

Previous work in the app development domain au-
tomatically analyzed comments on apps includ-
ing, app reviews (Guzman and Maalej, 2014; Dhi-
nakaran et al., 2018; Harman et al., 2012) and
tweets (Guzman et al., 2016; Williams and Mah-
moud, 2017), to understand and summarize users’
needs and support development decisions (Stanik
and Maalej, 2019). A typical analysis goal is to
reduce the noisy user feedback and classify the
remaining ones into bug reports, feature requests,
and experience reports (Maalej et al., 2016a).
Similarly, in online journalism, previous work
aimed to reduce noise and hate speech (Gao and
Huang, 2017), identify high-quality contributions
(Park et al., 2016a; Diakopoulos, 2015; Wang and
Diakopoulos, 2021), summarize the audiences’ sen-
timent (Wang et al., 2013), or identify comments,
which address journalistic aspects (Haring et al.,
2018). Park et al. (2018) and Fast et al. (2016)
developed a prototype, which supports the analysis

PersonalStories Bug Report

model
—— BERT
SBERT

model
—— BERT
SBERT

=
o
g
=}

£08 strategy £08 strategy
g — rnd qé — rnd
= 0.6 ---unc 2 0.6 -~ unc
=) =)

£ £

£04 £04

e g

[= [=

o
N
o
N

100 200 300 400 500 100 200 300 400 500
#Training Data #Training Data

o
o

Figure 5: Training time of the logistic regression
model.

of documents and comments regarding a custom
concept based on seed terms.

Forum 4.0 builds upon this previous work and
features a domain-independent comment analysis
framework for domain experts. Domain experts can
create or reuse useful labels, annotate user com-
ments regarding these labels, and train machine-
learning models, which automatically classify the
comments for further utilization.

7 Conclusion

We presented Forum 4.0, an open-source frame-
work to semi-automatically analyze user comments
in various domains including, online journalism
and app store. Domain experts can flexibly define
or reuse comment analysis dimensions as classi-
fication labels in our framework. Forum 4.0’s ar-
chitecture leverages state-of-the-art semantic text
embeddings with a lightweight logistic regression
model to address the labeling flexibility and the
scalability requirements for an application to mil-
lions of user comments. Forum 4.0 starts a new
model training after the domain expert annotated
additional comments for the concerned label. Fo-
rum 4.0 evaluates each new model and classifies
the remaining user comments for further analysis.

We achieved promising results with our machine
learning experiments in both domains with differ-
ent semantic embedding and sampling strategies
already after n > 100 annotations with a low train-
ing time (t = 0.1s). Our evaluation suggests that
Forum 4.0 can also be applied at a larger scale with
millions of user comments.

Acknowledgments

This work is partly funded by the Hamburg’s
ahoi.digital program in the Forum 4.0 project.

References

Jakob Smedegaard Andersen, Tom Schéner, and Walid
Maalej. 2020. Word-Level Uncertainty Estimation
for Black-Box Text Classifiers using RNNs. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 5541-5546,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Katherine Bailey and Sunny Chopra. 2018. Few-
shot text classification with pre-trained word em-
beddings and a human in the loop. arXiv preprint
arXiv:1804.02063.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, MN, USA. Associ-
ation for Computational Linguistics.

Venkatesh T. Dhinakaran, Raseshwari Pulle, Nirav
Ajmeri, and Pradeep K. Murukannaiah. 2018. App
Review Analysis Via Active Learning: Reducing Su-
pervision Effort without Compromising Classifica-
tion Accuracy. In 2018 IEEE 26th International
Requirements Engineering Conference (RE), pages
170-181, Banff, AB. IEEE.

Nicholas Diakopoulos. 2015. Picking the NYT picks:
Editorial criteria and automation in the curation of
online news comments. #ISOJ, page 147.

Ethan Fast, Binbin Chen, and Michael S. Bernstein.
2016. Empath: Understanding topic signals in large-
scale text. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems,
pages 4647-4657, San Jose, CA, USA. ACM.

David Flanagan and Will Sell Like. 2006. Javascript:
The definitive guide, 5th.

Lena Frischlich, Svenja Boberg, and Thorsten Quandt.
2019. Comment Sections as Targets of Dark Par-
ticipation? Journalists’ Evaluation and Moderation
of Deviant User Comments. Journalism Studies,
20(14):2014-2033.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP
2017, pages 260-266, Varna, Bulgaria. INCOMA
Ltd.

Emitza Guzman, Rana Alkadhi, and Norbert Seyff.
2016. A Needle in a Haystack: What Do Twitter
Users Say about Software? In 2016 IEEE 24th
International Requirements Engineering Conference
(RE), pages 96—105, Beijing, China.

69

Emitza Guzman and Walid Maalej. 2014. How Do
Users Like This Feature? A Fine Grained Sentiment
Analysis of App Reviews. In 2014 IEEE 22nd Int.
Requirements Engineering Conf. (RE), pages 153—
162, Karlskrona, Sweden.

Marlo Haering, Muneera Bano, Didar Zowghi,
Matthew Kearney, and Walid Maalej. 2021. Au-
tomating the evaluation of education apps with app
store data. IEEE Transactions on Learning Tech-
nologies (TLT), pages 1-12.

Marlo Hiring, Wiebke Loosen, and Walid Maalej.
2018. Who is Addressed in This Comment?: Au-
tomatically Classifying Meta-Comments in News
Comments. Proc. ACM Hum.-Comput. Interact.,
2(CSCW):67:1-67:20.

Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012.
App Store Mining and Analysis: MSR for App
Stores. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, MSR
12, pages 108-111, Piscataway, NJ, USA. IEEE,
IEEE Press.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328-339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Laszl6 Viktor Janoky, Janos Levendovszky, and
Péter Ekler. 2018. An analysis on the revok-
ing mechanisms for JSON Web Tokens. Inter-
national Journal of Distributed Sensor Networks,

14(9):155014771880153.

Anna Sophie Kiimpel and Nina Springer. 2016.
Qualitdt kommentieren. Die Wirkung von
Nutzerkommentaren auf die Wahrnehmung jour-
nalistischer Qualitit. Studies in Communication —
Media, 5(3):353-366.

Wiebke Loosen, Marlo Hiring, Zijad Kurtanovié, Lisa
Merten, Julius Reimer, Lies van Roessel, and Walid
Maalej. 2018. Making sense of user comments:
Identifying journalists’ requirements for a comment
analysis framework. SCM Studies in Communica-
tion and Media, 6(4):333-364.

Walid Maalej, Zijad Kurtanovi¢, Hadeer Nabil, and
Christoph Stanik. 2016a. On the automatic classi-
fication of app reviews. Requirements Engineering,
21(3):311-331.

Walid Maalej, Maleknaz Nayebi, Timo Johann, and
Guenther Ruhe. 2016b. Toward data-driven require-
ments engineering. IEEE Software, 33(1):48-54.

Daniel Martens and Walid Maalej. 2019. Release
early, release often, and watch your users’ emotions:
Lessons from emotional patterns. [EEE Software,
36(5):32-37.

Teresa K. Naab, Dominique Heinbach, Marc Ziegele,
and Marie-Theres Grasberger. 2020. Comments
and Credibility: How Critical User Comments De-
crease Perceived News Article Credibility. Journal-
ism Studies, 21(6):783-801.

Dennis Pagano and Walid Maalej. 2013. User feedback
in the appstore: An empirical study. In 2013 21st
IEEE International Requirements Engineering Con-
ference (RE), pages 125-134, Rio de Janeiro, Brasil.

Deokgun Park, Seungyeon Kim, Jurim Lee, Jaegul
Choo, Nicholas Diakopoulos, and Niklas Elmqvist.
2018. ConceptVector: Text visual analytics via in-
teractive lexicon building using word embedding.
IEEE transactions on visualization and computer
graphics, 24(1):361-370.

Deokgun Park, Simranjit Sachar, Nicholas Diakopou-
los, and Niklas Elmqvist. 2016a. Supporting com-
ment moderators in identifying high quality online
news comments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’16, page 1114-1125, New York, NY,
USA. Association for Computing Machinery.

Deokgun Park, Simranjit Sachar, Nicholas Diakopou-
los, and Niklas Elmqvist. 2016b. Supporting com-
ment moderators in identifying high quality online
news comments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Sys-
tems, pages 1114-1125, San Jose, CA, USA. ACM.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-1IJCNLP), pages
3982-3992, Hong Kong, China. Association for
Computational Linguistics.

Dietmar Schabus, Marcin Skowron, and Martin Trapp.
2017. One million posts: A data set of German on-
line discussions. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and

70

Development in Information Retrieval, pages 1241—
1244, Miyazaki, Japan. ACM Press.

Burr Settles. 2012. Active Learning. Morgan & Clay-
pool Publishers.

Nina Springer, Ines Engelmann, and Christian Pfaffin-
ger. 2015. User comments: Motives and inhibitors
to write and read. Information, Communication &

Society, 18(7):798-815.

Christoph Stanik, Marlo Haering, and Walid Maale;j.
2019. Classifying multilingual user feedback using
traditional machine learning and deep learning. In
IEEFE 27th International Requirements Engineering
Conference Workshops, pages 220-226, Jeju Island,
South Korea.

Christoph Stanik and Walid Maalej. 2019. Require-
ments intelligence with OpenReq analytics. In 2019
IEEE 27th International Requirements Engineering
Conference (RE), pages 482—483, Jeju Island, South
Korea.

Mervyn Stone. 1974. Cross-Validatory Choice and As-
sessment of Statistical Predictions. Journal of the
Royal Statistical Society: Series B (Methodological),
36(2):111-133.

Changbo Wang, Zhao Xiao, Yuhua Liu, Yanru Xu,
Aoying Zhou, and Kang Zhang. 2013. SentiView:
Sentiment Analysis and Visualization for Internet
Popular Topics. [EEE Transactions on Human-
Machine Systems, 43(6):620-630.

Yixue Wang and Nicholas Diakopoulos. 2021. The
Role of New York Times Picks in Comment Quality
and Engagement. In Hawaii International Confer-
ence on System Sciences, page to appear, Hawaii.

Grant Williams and Anas Mahmoud. 2017. Mining
Twitter feeds for software user requirements. In
2017 IEEE 25th International Requirements Engi-
neering Conference (RE), pages 1-10, Lisbon, Por-
tugal.

SLTEV: Comprehensive Evaluation of Spoken Language Translation

Ebrahim Ansari
Charles University MFF UFAL
and IASBS

Barry Haddow
University of Edinburgh

Ondrej Bojar
Charles University
MFF UFAL

Mohammad Mahmoudi
TIASBS

surname@ufal .mff.cuni.cz except bhaddowled.ac.uk

Abstract

Automatic evaluation of Machine Translation
(MT) quality has been investigated over sev-
eral decades. Spoken Language Translation
(SLT), especially when simultaneous, needs to
consider additional criteria and does not have
a standard evaluation procedure and a widely
used toolkit. To fill the gap, we introduce
SLTEV, an open-source tool for assessing SLT
in a comprehensive way. SLTEV reports the
quality, latency, and stability of an SLT can-
didate output based on the time-stamped tran-
script and reference translation into a target
language. For quality, we rely on sacreBLEU
which provides MT evaluation measures such
as chrF or BLEU. For latency, we propose two
new scoring techniques. For stability, we ex-
tend the previously defined measures with a
normalized Flicker in our work. We also pro-
pose a new averaging of older measures.

A preliminary version of SLTEV was used in
the IWSLT 2020 SHARED TASK. Moreover,
a growing collection of test datasets directly
accessible by SLTEV are provided for system
evaluation comparable across papers.

1 Introduction

Spoken Language Translation (SLT), i.e. transla-
tion of human speech across languages, is an appli-
cation at least as important as Machine Translation
(MT). Many approaches have been examined so
far, ranging from translation of transcript chunks
(Fiigen et al., 2008; Bangalore et al., 2012) to fully
end-to-end, speech-to-speech neural systems, (Jia
et al., 2019). In recent years, simultaneous trans-
lation systems aim at behavior similar to human
interpreters, digesting and producing an infinite se-
quence of words. Some systems (Grissom II et al.,
2014; Gu et al., 2017; Arivazhagan et al., 2019b;
Press and Smith, 2018; Xiong et al., 2019; Ma
et al., 2019; Zheng et al., 2019) do not consider
any revision of their outputs and can be evaluated

71

in two main criteria: quality and latency, allowing
users to trade a bigger delay (including waiting for
more input text) for a more accurate translation. Si-
multaneous translation systems aimed at automatic
subtitling (Niehues et al., 2016; Miiller et al., 2016;
Niehues et al., 2018; Arivazhagan et al., 2019a)
may revise their outputs, demanding a new eval-
uation measure: the stability, i.e. the amount of
revision. Trading these qualities for one another is
again possible: It is obvious that if a system cre-
ates the translations with a longer Delay or revises
them more (higher Flicker), the quality of the fi-
nal translation (i.e., the output text) can be better.
Given the existence of three evaluation criteria and
a multitude of possible definitions for each of them,
the need for some robust and standard metrics to
evaluate SLT is inevitable.

Recently, the MT community tackled a similar
problem (i.e., the inconsistency in the reporting of
BLEU scores) by introducing a tool named sacre-
BLEU (Post, 2018) with a canonical implementa-
tion of the widely user metric. In this work, we
propose SLTEV,! an open-source tool to calculate
the quality of SLT systems based on three different
criteria: translation quality, latency, and stability,
in a standardized way. Furthermore, we comple-
ment SLTEV with a growing collection of freely-
available test sets for Automatic Speech Recogni-
tion (ASR), MT and SLT for a number of languages,
so that these technologies can be evaluated in com-
parable settings, similarly to what the WMT news
test sets (Barrault et al., 2020) offer in MT.

2 Related Work

SLTEV is designed to be versatile enough to score
automatic SLT as well as transcribed human inter-
pretation. Shimizu et al. (2014) are probably the
first to score human interpretation with automatic

"https://github.com/ELITR/SLTev

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 71-79

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

50
65
119
195
102

Good

Good mor

Good morning how

Good morning. How are you?
Good morning.

i AYATY YT Y

i ATATYYYY

102 218 How are you? I 220 102 218 Wie geht es dir? Ich
102 195 How are you? 220 102 195 Wie geht es dir?
195 239 Tam 245 195 239 Ich bin

(a) Time-stamped transcript (b) SLT candidate output

50
65
119
195
102

Gut

Guten Morgen!

Guten wie morgen

Guten Morgen! Wie geht es dir?
Guten Morgen!

Figure 1: Example of SLTEV file formats. All timestamps in centiseconds.

measures but they segment the output manually and
assess only the quality using BLEU (Papineni et al.,
2002), WER (Matusov et al., 2005), TER (Snover
et al., 2006), and RIBES (Isozaki et al., 2010).

Most SLT evaluations require sentence segmen-
tation of the candidate to match the reference one.
Using mwerSegmenter (Matusov et al., 2005), they
re-segment the candidate automatically, minimiz-
ing WER against the reference. We complement
this approach with time-based segmentation.

Niehues et al. (2016) introduced the retranslation
approach to simultaneous SLT, and define latency
based on the time between a word expected and
actually displayed, considering only the final ver-
sion of the word, not early revisions. They did
not provide any evaluation of stability. However,
in follow-up work (Niehues et al., 2018) they as-
sess the level of SLT stability (i.e., the number of
corrections) by measuring the overlap between con-
secutive updates. As soon as a word is changed, all
the following words are counted as updated, sug-
gesting than any word change forces the user to
reread all the rest.

Gu et al. (2017) consider two versions of de-
lay when assessing their reinforcement learning
based simultaneous SLT model: Average Propor-
tion (of waiting compared to producing words) and
Consecutive Wait (the silence duration so far), and
prescribe a target value for each of them to steer the
learning, also balancing it with quality estimated
by smoothed BLEU (Lin and Och, 2004). Since
their model does not allow corrections, they do not
require a measure of stability.

The delay measures of (Gu et al., 2017) were
criticised by Ma et al. (2019) when they introduced
their wait-k model. They defined a measure Aver-
age Lag (AL), which measures how far, in words,
the translation is behind an ideal wait-£ model.
Since wait-k does not allow corrections, they do
not need a stability measure. AL was improved
by Cherry and Foster (2019), with Differentiable
Average Lag (DAL), which not only is differen-

72

tiable, but fixes some undesirable behaviour of AL
around sentence boundaries. However DAL, like
AL, is defined in terms of word count and on seg-
mented text (although it could be extended to fix
these shortcomings).

Arivazhagan et al. (2019a) extended the retrans-
lation model of Niehues et al. (2016), and so
needed a measure of stability. For evaluation, they
check the output of ASR and the output of the MT
system as recorded over time in their simple log-
ging system. They assess the quality, latency, and
stability (i.e., Flicker). The quality is estimated us-
ing BLEU after mwerSegmenter re-segmentation.
For the assessment of latency (translation lag) and
stability (the number of erased tokens in tempo-
rary translations per final target token, “Normal-
ized Erasure” in the paper), they do not use any
segmentation at all and instead calculate the scores
for ten-minute long audio chunks.

The closest to our work is SIMULEVAL (Ma
et al., 2020), a client-server toolkit measuring the
latency of SLT including any network effects be-
tween the evaluated system (client) and the mock
user (SIMULEVAL server). SIMULEVAL offers a
nice visualization interface but the required client-
server approach may be unsuitable for research
prototypes solving SLT only partially. Most impor-
tantly, updates of output (Flicker) are not supported
and no test set for reproducible scoring is provided.

3 Input Formats

SLTEV can evaluate separate ASR and MT systems
as well as cascaded and end-to-end SLT systems.
We focus on SLT here. Three input files are used
for SLT evaluation: a time-stamped golden tran-
script in the source language (Section 3.1), a refer-
ence translation (or translations in multi-reference
format; Section 3.2) and candidate output (Sec-
tion 3.3) in the target language. The intermediate
ASR output can be provided as the fourth input file
to calculate the accuracy of the ASR system if it
was part of the cascade (Section 3.3).

3.1 File Format of Time-Stamped Transcript

Time-stamped transcript files (golden transcript
and ASR output, both in the source language) are
line-oriented text files. The lines contain gradually
growing “partial” (P) segments, until the segment
is “completed” (C);? see Figure 1 (a). All lines are
equipped with timestamps measured in centisec-
onds from the start of the sound file: the start time
and end time of the given segment.

Partial segments add one or more words at once,
sub-word updates are possible but SLTEV is not
ready for them. We expect that a well-aligned tran-
script file (such as the golden reference) should
have the exact same number of completed (C) seg-
ments as the reference translation file.

3.2 File Format of the Reference Translation

Each line of the reference translation file shows the
translation of the corresponding complete (C) line
in the time-stamped transcript file. The number of
lines in the reference translation thus equals the
number of C lines in the time-stamped transcript.

3.3 File Format of ASR, MT or SLT Output

An ideal SLT system will report all the details as in
Figure 1 (b): partial (P) vs. complete (C) flag, the
display time when the segment was produced and
the start time and end time indicating the time span
supposedly containing the given message. Partial
segments allow the user to provide finer timing
information and to provide revisions of outputs,’
trading lower Delay for higher Flicker.

For the output of ASR, the segment is in the
source language. For the output of MT as the sec-
ond step or the output of end-to-end SLT, the seg-
ment is in the target language but the start and end
timestamps should reflect the span in the original
sound, i.e., when the source was uttered.

Again, “P”artial candidates allow for revising the
output so far, and the “C”omplete candidates are
required. The concatenation of all the (C) segments
corresponds to the whole document but their num-
ber and segmentation may differ from the reference
one. If the ASR, MT or SLT outputs lack some of
the timestamp information, zeros should be used
for format consistency. SLTEV then calculates lim-
ited results based on the provided information.

>We use the term “segment” for generality but typically,
completed segments correspond to sentences. Usually, a sen-
tence ends with a punctuation mark.

3Revisions do not occur in golden transcripts but we want
the same format to suit both golden and candidate outputs.

73

4 Proposed Metrics

In this section, all evaluation metrics and strate-
gies introduced in our evaluation framework are de-
scribed. Our evaluations are based on three criteria:
latency, stability, and the quality of MT outputs.

4.1 Delay to Assess Latency

In our point of view, latency should reflect the de-
lay with which the recipient receives the message
from the sender. Words are reasonable smallest
units that the message can be broken into but there
is not a 1-to-1 correspondence between source and
target words. Ideally, we would know the align-
ment between the source words and the words in
the candidate translation, and we would have exact
timing information for both.

Defining latency as the sum of how long we
had to wait for a target word given the time of
the corresponding source word* would render the
values dependent on the language pair in question.
When translating, e.g., from English into German,
all verbs in subordinate clauses would increase the
value of latency because they simply have to appear
at the end of the German clause, so the recipient
receives them much later than their English source
verb was uttered. We thus focus on the extra delay
beyond what the language pair implies.

We propose two approaches to delay calculation.
Both measure the difference between the time that
a target word was displayed and an estimate of
when it should have been displayed but differ in
estimating the expected display time:> The first
one is proportional while the second one uses au-
tomatic word alignment between the source and
reference translations to account for word order
differences across languages, see Sections 4.2.1
and 4.2.2 below.

Both approaches produce a two-dimensional ma-
trix T'(i, 7) storing the expected time of the jth
word of the reference sentence .

“In this calculation, we only include reference words which
also appear in the SLT output, because they are the only ones
that contribute meaningfully to the delay. A reference word
which never appears in the SLT output has an infinite delay,
and a word appearing in the output but not in the reference
is, well, unexpected, so no delay makes sense. We acknowl-
edge that this design decision brings the risk of gaming Delay
by producing words different from the reference; this would
however lead to a clear loss in Quality.

SIf the reference translation was also time-stamped at the
word level, this estimate would be easier to make but we do not
assume that. We are however experimenting with reference
interpretation, where a human interpreter produces translation
in time. This exploration is left for future.

Given T, our Delay is calculated by summing
differences between the expected word emission
time in 7" and the reported emission time in the
segments of the SLT candidate output. If the SLT
system predicts the word earlier than its expected
time, its delay is set to zero, not negative.

4.2 Segmentation Strategies

Note that delay calculation operates on the indi-
vidual segments of the transcript. We use two
segmentation strategies to re-segment the candi-
date to match the reference as described below. In
both cases, only completed (C) segments are re-
segmented, but partial (P) segments are used to
estimate timings of individual words.

Time-Based Segmentation: Using the starting
time and ending time of each segment in the ref-
erence transcript, the corresponding words in the
SLT output are selected (i.e., words with their time
between the starting and ending time). To compen-
sate for minor timing errors, we expand this span
by one word in each direction in the SLT output.
All the words from the starting to the ending one
are taken as the candidate segment, see Figure 3.

Word-Based Segmentation: We use the 1-1
correspondence between segments in the golden
source transcript and reference translation. We ap-
ply mwerSegmenter to re-segment candidate trans-
lation (the concatenation of “C” segments) to match
exactly the segmentation of the reference transla-
tion and then work with source—candidate segment
pairs. Again, minor mwerSegmenter errors are com-
pensated by expanding candidate segments by one
word at each end, see Figure 4.

4.2.1 Proportional Delay Calculation

We need to attribute an “expected” time to each
word in the reference and then compare it with the
time the word was displayed in SLT output.

For proportional delay calculation, we first es-
timate the timing of each source word based on
partial (P) segments® in the golden transcript and
then attribute these times to words in the reference
translation, proportionally along the sequence of
words.” This is an oversimplification because word
alignment is not monotonic and also because the
reference translation was created in written form
with access to the full source, so even the first word

SPartial segments provide more accurate word-level timing
but we can and do resort to equidistant division of the complete
segment time span if golden transcript lacks partial segments.

"Word lengths could be used as an additional refinement.

of the reference may well be influenced by some
late source words.

Formally, we are populating table 7'(i, j) with
expected times of jth word in the ith segment of the
reference translation. First we estimate the times
of source words in the ith complete segment of the
golden transcript based on starting and ending time
of the (partial) source segment where the source
word first appeared. For example, when three new
words are added in a partial segment ending at to
compared to the previous partial segment which
ended at ¢1, we need to divide the time interval (¢1,
t2) among these three words. We estimate that the
first word appeared at t1 + (t2 — t1)/3, the second
one at t] + 2 x (to — t1)/3 and the last one at ¢o.

This source word timing is transferred to the
target word timing proportionally. With [; being
the length in words of source segment ¢ and m; the
corresponding reference length, we denote P =
j *1;/m; as a shortcut for the fractional index of
the source word which corresponds to the 7 word
in the reference segment :. We then define:

T(i,5) = t|p| + ((trp) — tp)) * (P — | P]))
()

t is the expected time of the zth word of the
source sentence i and |- |, [-] round to the nearest
integer.

To see how the proportional delay calculation
works in practice, consider the example in Figure 2.
We first need to estimate the times for each source
word. Since the first source partial segment consists
of 3 words, we estimate the times of “We”,“would”
and “like” by dividing the 760-827 interval into
three equal parts, whereas the other source words
are assigned to the end timestamps of their time in-
tervals, since they appear in individual increments.
The estimated source times are therefore:

We | would | like | to | introduce | our | company

782 805 827 | 846 919 961 1062

In order to perform the proportional delay cal-
culation, we note that the source-reference length
ratio is 7/6, so that the value P in Equation 1 is
equal to 75 /6 for the 5 reference word. Substitut-
ing into Equation 1 gives the following expected
times for the reference words:

Wir | wiirden | gern | unser | Unternehmen | vorstellen

786 812 836 895 954 1062

Comparing the expected times with the actual
times in Figure 2b, we can see that the total delay

760
760
760
760
760

827
847
919
961
1062

‘We would like

We would like to

We would like to introduce

‘We would like to introduce our

‘We would like to introduce our company.

[@Ba"Ra-Ra-Ra-]

(a) Time-stamped golden source transcript

P 800 720 760 Wir

P 870 720 860 Wir mochten

P 910 720 905 Wir mochten vorstellen

C 1200 720 1110 Wir mochten unser Unternehmen vorstellen.
(b) SLT output

Wir wiirden gern unser Unternehmen vorstellen ‘

(c) Reference

Figure 2: Example for proportional delay calculation.

is given by:
(800—786)+(1200—895)4(1200—954)40 = 565

In this sum, “wiirden” and “gern” are not included
at all because they do not appear in the hypothesis.
“unser” and “Unternehmen” both appeared at the
same time 1200 and “vorstellen” has zero delay,
since it arrives at 910, before its expected time.

4.2.2 Delay Calculation using Alignments

The SLT system should not be expected to produce
any word earlier than the reference produced it,
e.g. due to grammatical constraints of the target
language. (If it does, we do not penalize it. Giving
a bonus for such an earlier appearance is yet to be
considered.)

We use the word alignment between source
words (which are time-stamped in the golden tran-
script) and reference words to attribute timing in-
formation to reference words, see “Table T” in the
middle of Figures 3 and 4.

We set the expected time of each reference word
as the maximum of the timestamp of the last source
word aligned to this reference word (the reference
translator “had to wait” for the respective source
piece of information) and the expected time of the
preceding reference word (the translator “had to
postpone” any words he or she already knew until
the missing one became available to respect tar-
get language grammatical order). With this defini-
tion, any SLT system is allowed to “wait” for the
source or “postpone” its output without penaliza-
tion same as the reference translator did. E.g. the
word “vorstellen” (introduce) is expected at 1062
in the proportional delay calculation (upper Tables
T). Based on alignment only, it would be expected
at 919 (struck out in the figures), because that is
the time when the aligned “introduce” appeared
but we max it out to 1062 because the preceding
“Unternehmen” (company) was available only at
1062.

75

For “unser”, SLTEV selects the expected time
as the maximum between 895 (its expectation time
under proportional delay) and 961 (the time that
its aligned source word “our” appeared) . In other
words, SLTEV gives more time to the SLT system
to display the “unser” because its aligned word is
output a bit later than the proportional expectation
of “unser”. Under the alignment-based delay, we
do not expect that the word will be output earlier
than its alignment indicates.

Technically, we rely on automatic word align-
ments by MGIZA (Gao and Vogel, 2008) which
is a multi-threaded version of GIZA++ (Och and
Ney, 2003), aligning the completed segments of
the golden source transcript and the reference trans-
lation. The effect of alignment errors on the relia-
bility of the evaluation is yet to be explored.

4.2.3 Multi-Reference Delay Calculation

With multiple references, we create a separate table
T for each and calculate the delay of each seg-
ment individually, taking the minimum across all
references. The final delay is the sum of these
minima. We use this strategy for both delay cal-
culation methods and both segmentation strategies
introduced above.

4.3 Flicker to Assess Stability

For systems that revise their outputs, (in)stability
of the output is important because it could distract
the user. Following Niehues et al. (2018), “flicker”
commonly reflects the number of words after the
first difference between two consecutive output up-
dates. We report two variants of Flicker:

Average revision count per segment:

The revision count RC for each completed
(“C”) segment k is calculated as: RCY
2?22 (|Si_1| — ‘LCP(SZ'_l, Si)), where s; is the
tth partial segment preceding the current complete
segment k£ and ny is the number of partial segments
between complete segments k — 1 and k. LCP gets
the longest common prefix. If segment k£ has no

Time-Stamped Transcript (English) a) delay values in proportional calculation

P 760 827 We would ke wir | wirden | gem | unser | U™ Lorstelien wir | wirden [gem | unser | 9™ Lorstelier| ~sum
P 760 846 We would like to
REteG Proportional delay calculation
P 760 919 We would ke to introduce
P 760 961 We would like to introduce our 786 | 812 | 836 | 895 | 954 | 1062 14 0 0 305 | 246 0 565
760 1062 We would like to in r company.
€ 760 1062 We would like to iniroduce our company et
lignment-based
e wr b) delay val ! t-based calculati
values in alignment- jon

Reference (German) elay values in alignment-based calculatio

would wirden Wi irdl untem- o relle| sum
Wir wiirden gern unser Unternehmen vorstellen. }— Ir[Wareen | gemn | Unser | gpmen /orstelien su

like gem —‘ 786 ‘ 812 | 836 | 961 | 1062 | o9 }—— 14 o o 230 | 138 0 301

Table T
> unser

SLT Output (German)
; ;
C740680 710 Hej Untern- +
P 800 720 760 Wir ehmen Untern-
e o b Hei | Wir [mochten| unser | 9™ Lorstellen Also
P 910 720 905 Wir machten vorstellen
I T T o i mbchten unser Untemehmen vorstelen. orstellen| 710 | 758 | 860 | 1032 | 1110 | 905 | 1220 | estimated time
P 1400 1190 1351 Also miissen wir
740 | 800 | 870 | 1200 | 1200 | 910 | 1315 | display time

Time-based

Table SLT

Figure 3: Time-based segmentation for proportional (a) and alignment-based (b) delay calculation. Using time-
stamped transcript and reference translation, Table T is pre-computed. Then using timings in SLT output, word-

level timestamps are estimated (“Table SLT”). The a) and b) value of delay is the sum of differences between
expected word times in Table T and display times in Table SLT.

Time-Stamped Transcript (English)

a) delay values in proportional calculation

b 760 827 We would ke — wir [wirden | gen | unser | U™ Lorstelen wir | wirden [gem | unser | 9™ Lorsteller} ~sum
P 760 846 We would like to Proportional delay caloulat
IP 760 919 We would like to introduce roportional delay caloulation
IP 760 961 We would like to introduce our 786 | 812 | 836 | 895 | 954 | 1062 14 0 0 305 | 246 0 565
IC 760 1062 We would like to introduce our company.
Table T
lig based
we Wir
b) delay values in alignment-based calculation
Reference (German)
) would wirden Wir | wirden | gem | unser | UMM Lorstelien sum

Wir wiirden gern unser Unternehmen vorstellen. ehmen

like ———> gem —‘ 786 | 812 | 836 | 961 | 1062 1%232 }—— 14 0 0 239 | 138 0 391

Table T

to > unser
SLT Output (German)
C 740 680 710 Hej. Untern-
P 800 720 760 Wir ehmen
P 870 720 860 Wir mdchten our -1 | €—— segmented by mwerSegmenter — | +1
P 910720 905 Wir mdchten vorstellen
IC 1200 720 1110 Wir méchten unser Unternehmen vorstellen. : o Untern-
1P 1315 1190 1220 Also lcompany| orstellen Hej | Wir [mschten| unser |0 horstelle Also
P 1400 1190 1351 Also miissen wir
740 | 800 | 870 | 1200 | 1200 | 910 | 1315 | display time

Word-based

using mwerSegmenter T T
Table SLT

Figure 4: Word-based segmentation (mwerSegmenter) for proportional (a) and alignment-based (b) delay calcu-
lation. The main difference from Figure 3 is in finding the span of words that form the candidate segment, i.e.
contribute to “Table SLT”. Table SLT now needs to contain only display time of words.

preceding partial segments, RC}, is zero. Aver-
age revision count is calculated as: + Zszl RCy,
where K is the total number of complete segments.

A disadvantage of this strategy is that if the sys-
tem makes a little change (1-2 chars) at the start of
the sentence, it gets heavily penalised.

Normalized revision count:

Similar to Arivazhagan et al. (2019a), nor-
malized revision is the total revision count
(& | RCy,) divided by the output length (sum
of lengths of completed segments).

4.4 sacreBLEU to Assess Quality

Early versions of SLTEV used NLTK (Bird et al.,
2009) implementation of BLEU but it behaved
badly on empty segments and used a less common
tokenization scheme. We fully switched to sacre-

76

BLEU, calculating three variants of the score: (1)
disregarding segmentation, we concatenate all com-
pleted segments and evaluate them against the con-
catenated reference as if it was a single segment, (2)
force the candidate to reference segmentation us-
ing mwerSegmenter and calculate standard BLEU,
(3) time-span quality. The third option divides the
whole document into chunks of a fixed duration
(e.g. 30 seconds) and treats all words in that span
as a single segment. These single-segment BLEUs
are reported, providing an estimate of translation
quality over time, and also averaged for a summary.

If multiple references are available, we pass
them to sacreBLEU which follows standard multi-
reference BLEU and chrF calculations. In word-
based segmentation, we use the first reference as
the basis for mwerSegmenter re-segmentation.

5 A Growing Test Set

To allow for continued and comparable evalua-
tion of SLT by the research community, we cre-
ate and keep extending a publicly available dataset
which contains source audio, time-stamped golden
transcripts and reference translations for different
types of inputs called elitr-testset.® The
dataset currently focuses on European languages,
as needed by the ELITR project (Bojar et al., 2020,
2021), but it is designed to be easily extensible
in both languages and domains. With the help of
commit IDs, full reproducibility of evaluations is
ensured, even as the dataset will be growing.

In simple words, the elitr—testset is an
assorted collection of documents, with inputs and
expected outputs for ASR, MT and/or SLT systems.
We expect our users to pick a relevant subset of
these documents depending on their application
needs and evaluate on this subset. For compara-
bility, we standardize some of these selections by
introducing the concept of “indices”.

Each index is simply a file list of documents and
itis also versioned inthe elitr-testset. For
example, we provide indices of documents which
are good for purposes like: (1) SLT of English into
Czech/German in the auditing domain, (2) English
ASR in the computational linguistics domain, and
(3) Czech/German ASR, regardless of the domain.

Another feature of elitr-testset is a col-
lection of automatic checks that verify formal in-
tegrity of the documents (e.g. character encoding,
line ends, number of lines) before every commit.

All datasets included in elitr-testset are
free for public use but some indices include confi-
dential files.

SLTEV can be used as a stand-alone tool to eval-
uate ASR, MT or SLT using source, candidate and
reference files you provide, or it can be used very
conveniently with elitr-testset. Running
SLTev —-g index-name will provide you with
input files that your system should process and a
second run of SLTEV will report your system’s
scores for the given index.

5.1 Practical Check

A preliminary version of SLTEV evaluated the sub-
mitted systems participating in the “Non-Native
Speech Translation” shared task of IWSLT 2020

*https://github.com/ELITR/
elitr-testset/

77

(Ansari et al., 2020). We ran simplified configura-
tions of SLTEV (i.e., without calculating Delay and
Flicker) for systems that did not provide enough
information in their output.

Five teams from three institutions took part in the
IWSLT 2020 SHARED TASK which was designed
for English-Czech and English-German language
pairs. The main test sets used in the shared task
(and now included in elitr-testset) were:

Antrecorp: 37 files each of which is an up to 90-
second mock business presentation given by high
school students in very noisy conditions. None of
the speakers is a native speaker of English and their
English contains many lexical, grammatical and
pronunciation errors as well as disfluencies due to
the spontaneous nature of the speech.

KhanAcademy: six files each of which is an ed-
ucational video. The speaker is not a native speaker
of English but his accent is generally rather good.

SAQ: six files illustrating interpretation needs of
the Supreme Audit Office of the Czech Republic.
The speakers’ nationality affects their accent. The
Dutch file is a recording of a remote conference
call with further distorted sound quality.

6 Conclusion

In this paper, we introduced SLTEV, a framework
for comprehensive and fine-grained evaluation of
the output of simultaneous SLT systems, i.e., sys-
tems for live speech translation, and their compo-
nents (ASR, MT). In contrast to text translation sys-
tems, simultaneous SLT systems cannot be judged
just based on translation quality. For example, if the
system waits for the whole sentence to be analyzed
and processed, the translation quality will likely be
better but the high latency may not be acceptable
to the end user. SLTEV evaluates quality, latency,
and stability (the number of corrections the system
makes). In order to tackle the problem of the out-
put segmentation, we proposed a new time-based
segmentation method, in addition to the classical
re-segmentation strategy of mwerSegmenter.

We complement the release of SLTEV with
elitr-testset, a publicly available dataset of
source speech and reference translations, so that
truly comparable evaluations are available for the
research community. SLTEV directly accesses this
growing collection for easy and comparable scor-
ing of your systems in various domains. We used a
preliminary version of SLTEV to evaluate systems
in one of the IWSLT 2020 shared tasks.

Acknowledgments

This work has received funding from the
European Union’s Horizon 2020 Research
and Innovation Programme under Grant Agreement
No 825460 (ELITR) and the grant 19-26934X
(NEUREM3) of the Czech Science Foundation.

The authors are grateful to Rishu Kumar, Do-
minik Machéacek, Sangeet Sagar, Matuis Zilinec,
and other members of the ELITR project for their
valuable technical support on SLTEV and their help
in improving it.

References

Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,
Ondrej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stiiker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN. In Proceedings of the 17th In-
ternational Conference on Spoken Language Trans-
lation, pages 1-34, Online. Association for Compu-
tational Linguistics.

Naveen Arivazhagan, Colin Cherry, Te I, Wolfgang
Macherey, Pallavi Baljekar, and George Foster.
2019a. Re-translation strategies for long form, si-
multaneous, spoken language translation.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019b.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313—1323, Florence,
Italy. Association for Computational Linguistics.

Srinivas Bangalore, Vivek Kumar Rangarajan Srid-
har, Prakash Kolan, Ladan Golipour, and Aura
Jimenez. 2012. Real-time incremental speech-to-
speech translation of dialogs. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 437—
445, Montréal, Canada. Association for Computa-
tional Linguistics.

Loic Barrault, Magdalena Biesialska, Ondfej Bojar,
Marta R. Costa-jussa, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubesi¢, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (wmt20). In Proceedings of the

78

Fifth Conference on Machine Translation, pages 1—
55, Online. Association for Computational Linguis-
tics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Ondfej Bojar, Dominik Machacek, Sangeet Sagar,
Otakar Smrz, Jona$ Kratochvil, Ebrahim Ansari,
Dario Franceschini, Chiara Canton, Ivan Simonini,
Thai-Son Nguyen, Felix Schneider, Sebastian
Stiicker, Alex Waibel, Barry Haddow, Rico Sennrich,
and Philip Williams. 2020. ELITR: European live
translator. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 463—464, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

Ondfej Bojar, Dominik Machddek, Sangeet Sagar,
Otakar Smrz, Jond$ Kratochvil, Peter Poldk,
Ebrahim Ansari, Mohammad Mahmoudi, Rishu Ku-
mar, Dario Franceschini, Chiara Canton, Ivan Si-
monini, Thai-Son Nguyen, Felix Schneider, Sebas-
tian Stiiker, Alex Waibel, Barry Haddow, Rico Sen-
nrich, and Philip Williams. 2021. ELITR Multilin-
gual Live Subtitling: Demo and Strategy. In Pro-
ceedings of the System Demonstrations of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, Kyiv, Ukraine.
Association for Computational Linguistics.

Colin Cherry and George Foster. 2019. Thinking slow
about latency evaluation for simultaneous machine
translation.

Christian Fiigen, Alex Waibel, and Muntsin Kolss.
2008. Simultaneous translation of lectures and
speeches. Springer Netherlands, Machine Transla-
tion, MTSN 2008, Springer, Netherland, 21(4).

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. Association for Com-
putational Linguistic, 8(1):49—-57.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until
the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1342—
1352, Doha, Qatar. Association for Computational
Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053-1062, Valencia, Spain.
Association for Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language

pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944-952, Cambridge, MA. Association
for Computational Linguistics.

Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019. Direct speech-to-speech translation with a
sequence-to-sequence model.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL-04), pages 605-612, Barcelona, Spain.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuangiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025-3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144—150, Online. Associa-
tion for Computational Linguistics.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005. Evaluating machine transla-
tion output with automatic sentence segmentation.
In International Workshop on Spoken Language
Translation, pages 148—154, Pittsburgh, PA, USA.

Markus Miiller, Thai Son Nguyen, Jan Niehues, Eunah
Cho, Bastian Kriiger, Thanh-Le Ha, Kevin Kilgour,
Matthias Sperber, Mohammed Mediani, Sebastian
Stiiker, and Alex Waibel. 2016. Lecture translator
- speech translation framework for simultaneous lec-
ture translation. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 82-86, San Diego, California. Association for
Computational Linguistics.

J. Niehues, T. S. Nguyen, E. Cho, T.-L. Ha, K. Kilgour,
M. Miiller, M. Sperber, S. Stiiker, and A. Waibel.
2016. Dynamic transcription for low-latency speech
translation. In 17th Annual Conference of the
International Speech Communication Association,
INTERSPEECH 2016, Hyatt Regency San Fran-
ciscoSan Francisco; United States; 8 September
2016 through 16 September 2016, volume 08-12-
September-2016 of Proceedings of the Annual Con-
ference of the International Speech Communication
Association. Ed. : N. Morgan, pages 2513-2517. In-
ternational Speech and Communication Association,
Baixas.

79

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Interspeech
2018, Hyderabad, India.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ofir Press and Noah A. Smith. 2018. You may not need
attention.

Hiroaki Shimizu, Graham Neubig, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2014. Col-
lection of a simultaneous translation corpus for com-
parative analysis. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 670-673, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223-231.

Hao Xiong, Ruiqing Zhang, Chuangiang Zhang,
Zhongjun Hea, Hua Wu, and Haifeng Wang. 2019.
Dutongchuan: Context-aware translation model for
simultaneous interpreting.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1349-1354,
Hong Kong, China. Association for Computational
Linguistics.

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual
Natural Language Processing

Minh Van Nguyen, Viet Lai, Amir Pouran Ben Veyseh, Thien Huu Nguyen
Department of Computer and Information Science
University of Oregon, Eugene, Oregon, USA
{minhnv, vietl, apouranb, thien}@cs.uoregon.edu

Abstract

We introduce Trankit, a light-weight
Transformer-based Toolkit for multilingual
Natural Language Processing (NLP). It
provides a trainable pipeline for fundamen-
tal NLP tasks over 100 languages, and 90
pretrained pipelines for 56 languages. Built
on a state-of-the-art pretrained language
model, Trankit significantly outperforms
prior multilingual NLP pipelines over sen-
tence segmentation, part-of-speech tagging,
morphological feature tagging, and depen-
dency parsing while maintaining competitive
performance for tokenization, multi-word
token expansion, and lemmatization over 90
Universal Dependencies treebanks. Despite
the use of a large pretrained transformer, our
toolkit is still efficient in memory usage and
speed. This is achieved by our novel plug-
and-play mechanism with Adapters where a
multilingual pretrained transformer is shared
across pipelines for different languages.
Our toolkit along with pretrained models
and code are publicly available at: https:
//github.com/nlp-uoregon/trankit.

A demo website for our toolkit is also available
at: http://nlp.uoregon.edu/trankit.
Finally, we create a demo video for Trankit at:
https://youtu.be/q0KGP3zGjGc.

1 Introduction

Many efforts have been devoted to developing
multilingual NLP systems to overcome language
barriers (Aharoni et al., 2019; Liu et al., 2019a;
Taghizadeh and Faili, 2020; Zhu, 2020; Kanayama
and Iwamoto, 2020; Nguyen and Nguyen, 2021). A
large portion of existing multilingual systems has
focused on downstream NLP tasks that critically
depend on upstream linguistic features, ranging
from basic information such as token and sentence
boundaries for raw text to more sophisticated struc-
tures such as part-of-speech tags, morphological

80

features, and dependency trees of sentences (called
fundamental NLP tasks). As such, building effec-
tive multilingual systems/pipelines for fundamental
upstream NLP tasks to produce such information
has the potentials to transform multilingual down-
stream systems.

There have been several NLP toolkits that con-
cerns multilingualism for fundamental NLP tasks,
featuring spaCy', UDify (Kondratyuk and Straka,
2019), Flair (Akbik et al., 2019), CoreNLP (Man-
ning et al., 2014), UDPipe (Straka, 2018), and
Stanza (Qi et al., 2020). However, these toolk-
its have their own limitations. spaCy is designed to
focus on speed, thus it needs to sacrifice the per-
formance. UDify and Flair cannot process raw text
as they depend on external tokenizers. CoreNLP
supports raw text, but it does not offer state-of-
the-art performance. UDPipe and Stanza are the
recent toolkits that leverage word embeddings, i.e.,
word2vec (Mikolov et al., 2013) and fastText (Bo-
janowski et al., 2017), to deliver current state-of-
the-art performance for many languages. However,
Stanza and UDPipe’s pipelines for different lan-
guages are trained separately and do not share any
component, especially the embedding layers that
account for most of the model size. This makes
their memory usage grow aggressively as pipelines
for more languages are simultaneously needed and
loaded into the memory (e.g., for language learn-
ing apps). Most importantly, none of such toolk-
its have explored contextualized embeddings from
pretrained transformer-based language models that
have the potentials to significantly improve the per-
formance of the NLP tasks, as demonstrated in
many prior works (Devlin et al., 2019; Liu et al.,
2019b; Conneau et al., 2020).

In this paper, we introduce Trankit, a multi-
lingual Transformer-based NLP Toolkit that over-

"https://spacy.io/

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 80-90

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Input:

Raw Sentence/Document String

o ————————————————] ——— - -

Shared
Multilingual

Joint Token and Sentence
Splitter

Pretrained
Transformer

\4

Named Entity
Recognizer

2 POS,Morphological Tagging,

Language=1,L

Multi-word
Token Expander

Joint Model for

and Dependency Parsing

Lemmatizer

o ——— - —

Output:

| TS - ———

Hierarchical Native Python Dictionary

Figure 1: Overall architecture of Trankit. A single multilingual pretrained transformer is shared across three
components (pointed by the red arrows) of the pipeline for different languages.

comes such limitations. Our toolkit can process
raw text for fundamental NLP tasks, supporting 56
languages with 90 pre-trained pipelines on 90 tree-
banks of the Universal Dependency v2.5 (Zeman
et al., 2019). By utilizing the state-of-the-art multi-
lingual pretrained transformer XLM-Roberta (Con-
neau et al., 2020), Trankit advances state-of-the-
art performance for sentence segmentation, part-
of-speech (POS) tagging, morphological feature
tagging, and dependency parsing while achieving
competitive or better performance for tokenization,
multi-word token expansion, and lemmatization
over the 90 treebanks. It also obtains competitive
or better performance for named entity recognition
(NER) on 11 public datasets.

Unlike previous work, our token and sentence
splitter is wordpiece-based instead of character-
based to better exploit contextual information,
which are beneficial in many languages. Consider-
ing the following sentence:

“John Donovan from Argghhh! has put out a ex-
cellent slide show on what was actually found and
fought for in Fallujah.”

As such, Trankit correctly recognizes this as a sin-
gle sentence while character-based sentence split-
ters of Stanza and UDPipe are easily fooled by the
exclamation mark “/”, treating it as two separate
sentences. To our knowledge, this is the first work
to successfully build a wordpiece-based token and
sentence splitter that works well for 56 languages.

Figure 1 presents the overall architecture
of Trankit pipeline that features three novel

81

transformer-based components for: (i) the joint
token and sentence splitter, (ii) the joint model
for POS tagging, morphological tagging, depen-
dency parsing, and (iii) the named entity recog-
nizer. One potential concern for our use of a large
pretrained transformer model (i.e., XML-Roberta)
in Trankit involves GPU memory where different
transformer-based components in the pipeline for
one or multiple languages must be simultaneously
loaded into the memory to serve multilingual tasks.
This could extensively consume the memory if dif-
ferent versions of the large pre-trained transformer
(finetuned for each component) are employed in
the pipeline. As such, we introduce a novel plug-
and-play mechanism with Adapters to address this
memory issue. Adapters are small networks in-
jected inside all layers of the pretrained transformer
model that have shown their effectiveness as a light-
weight alternative for the traditional finetuning
of pretrained transformers (Houlsby et al., 2019;
Peters et al., 2019; Pfeiffer et al., 2020a,b). In
Trankit, a set of adapters (for transfomer layers)
and task-specific weights (for final predictions) are
created for each transformer-based component for
each language while only one single large mul-
tilingual pretrained transformer is shared across
components and languages. Adapters allow us to
learn language-specific features for tasks. During
training, the shared pretrained transformer is fixed
while only the adapters and task-specific weights
are updated. At inference time, depending on the
language of the input text and the current active

component, the corresponding trained adapter and
task-specific weights are activated and plugged into
the pipeline to process the input. This mechanism
not only solves the memory problem but also sub-
stantially reduces the training time.

2 Related Work

There have been works using pre-trained trans-
formers to build models for character-based word
segmentation for Chinese (Yang, 2019; Tian et al.,
2020; Che et al., 2020); POS tagging for Dutch,
English, Chinese, and Vietnamese (de Vries et al.,
2019; Tenney et al., 2019; Tian et al., 2020; Che
et al., 2020; Nguyen and Nguyen, 2020); mor-
phological feature tagging for Estonian and Per-
sian (Kittask et al., 2020; Mohseni and Tebbifakhr,
2019); and dependency parsing for English and
Chinese (Tenney et al., 2019; Che et al., 2020).
However, all of these works are only developed for
some specific language, thus potentially unable to
support and scale to the multilingual setting.
Some works have designed multilingual
transformer-based systems via multilingual train-
ing on the combined data of different languages
(Tsai et al., 2019; Kondratyuk and Straka, 2019;
Ustiin et al., 2020). However, multilingual
training is suboptimal (see Section 5). Also, these
systems still rely on external resources to perform
tokenization and sentence segmentation, thus
unable to consume raw text. To our knowedge, this
is the first work to successfully build a multilingual
transformer-based NLP toolkit where different
transformer-based models for many languages can
be simultaneously loaded into GPU memory and
process raw text inputs of different languages.

3 Design and Architecture

Adapters. Adapters play a critical role in making
Trankit memory- and time-efficient for training and
inference. Figure 2 shows the architecture and the
location of an adapter inside a layer of transformer.
We use the adapter architecture proposed by (Pfeif-
fer et al., 2020a,b), which consists of two projection
layers Up and Down (feed-forward networks), and
a residual connection.

¢; = AddNorm(r;), h; = Up(ReLU(Down(c;))) 4+ i (1)

where r; is the input vector from the transformer
layer for the adapter and h; is the output vector
for the transformer layer 7. During training, all the
weights of the pretrained transformer (i.e., gray

82

Add & Norm

Feed-forward
Add & Norm

I Multi-Head Attention |

t t 1

Adapter]

Add & Norm |

]
e o e e e

Figure 2: Left: location of an adapter (green box) in-
side a layer of the pretrained transformer. Gray boxes
represent the original components of a transformer
layer. Right: the network architecture of an adapter.

boxes) are fixed and only the adapter weights of
two projection layers and the task-specific weights
outside the transformer (for final predictions) are
updated. As demonstrated in Figure 1, Trankit
involves six components described as follows.

Multilingual Encoder with Adapters. This is
our core component that is shared across different
transformer-based components for different lan-
guages of the system. Given an input raw text s,
we first split it into substrings by spaces. After-
ward, Sentence Piece, a multilingual subword tok-
enizer (Kudo and Richardson, 2018; Kudo, 2018),
is used to further split each substring into word-
pieces. By concatenating wordpiece sequences for
substrings, we obtain an overall sequence of word-
pieces W = [wi,wy, ..., wg] for s. In the next
step, w is fed into the pretrained transformer, which
is already integrated with adapters, to obtain the
wordpiece representations:

I,m l,m
x7 = Transformer(wi.x; 0,'5)

@
Here, Olﬁ; represents the adapter weights for lan-
guage [and component m of the system. As such,
we have specific adapters in all transformer layers
for each component m and language /. Note that if
K is larger than the maximum input length of the
pretrained transformer (i.e., 512), we further divide
w into consecutive chunks; each has the length less
than or equal to the maximum length. The pre-
trained transformer is then applied over each chunk
to obtain a representation vector for each wordpiece
in w. Finally, xllT(will be sent to component m to
perform the corresponding task.

Joint Token and Sentence Splitter. Given the
wordpiece representations mll’?(for this component,

each vector xim for w; € w will be consumed by
a feed-forward network with softmax in the end to
predict if w; is the end of a single-word token, the
end of a multi-word token, or the end of a sentence.
The predictions for all wordpieces in w will then be
aggregated to determine token, multi-word token,
and sentence boundaries for s.

Multi-word Token Expander. This component is
responsible for expanding each detected multi-word
token (MWT) into multiple syntactic words>. We
follow Stanza to deploy a character-based seq2seq
model for this component. This decision is made
based on our observation that the task is done best
at character level, and the character-based model
(with character embeddings) is very small.

Joint Model for POS Tagging, Morphological
Tagging and Dependency Parsing. In Trankit,
given the detected sentences and tokens/words, we
use a single model to jointly perform POS tag-
ging, morphological feature tagging and depen-
dency parsing at sentence level. Joint modeling
mitigates error propagation, saves the memory, and
speedups the system. In particular, given a sen-
tence, the representation for each word is computed
as the average of its wordpieces’ transformer-based
representations in a:llrl”(Lett.n = [t1,t2,...,tN]
be the representations of the words in the sen-
tence. We compute the following vectors using
feed-forward networks FFN,:

7"7;?]\0]8 = FFNupns (tl:N)7 szpj\(;s = FFNacpos (tlzN)

- FFNufeats (tlzN)a 7"361{?7 = [t’rcls; FFNdep(tlzN)}

ufeats
TN

Vectors for the words in 7777, 710, rqff;\?ats are
then passed to a softmax layer to make predic-
tions for UPOS, XPOS, and UFeats tags for each
word. For dependency parsing, we use the classi-
fication token <s> to represent the root node, and
apply Deep Biaffine Attention (Dozat and Man-
ning, 2017) and the Chu-Liu/Edmonds algorithm
(Chu, 1965; Edmonds, 1967) to assign a syntac-
tic head and the associated dependency relation to
each word in the sentence.

Lemmatizer. This component receives sentences
and their predicted UPOS tags to produce the
canonical form for each word. We also employ a
character-based seq2seq model for this component
as in Stanza.

2For languages (e.g., English, Chinese) that do not require
MWT expansion, tokens and words are the same concepts.

83

Named Entity Recognizer. Given a sentence, the
named entity recognizer determines spans of en-
tity names by assigning a BIOES tag to each token
in the sentence. We deploy a standard sequence
labeling architecture using transformer-based rep-
resentations for tokens, involving a feed-forward
network followed by a Conditional Random Field.

4 Usage

Detailed documentation for Trankit can be found
at: https://trankit.readthedocs.io.

Trankit Installation. Trankit is written in
Python and available on PyPI: nhttps://pypi.
org/project/trankit/. Users can install our

toolkit via pip using:
pip install trankit

Initialize a Pipeline. Lines 1-4 in Figure 3 shows
how to initialize a pretrained pipeline for English; it
is instructed to run on GPU and store downloaded
pretrained models to the specified cache directory.
Trankit will not download pretrained models if they
already exist.

Multilingual Usage. Figure 3 shows how to ini-
tialize a multilingual pipeline and process inputs of
different languages in Trankit:

from trankit import Pipeline

p ipeline(lang glish', gpu=True, cache_dir="./c 2')
langs ['arabic’, 'chinese', 'dutch']
for lang in langs:

p.add(lang)

p.se 3¢t (~abic')
ar = p.ner(' il il L - < <)

Figure 3: Multilingual pipeline initialization.

Basic Functions. Trankit can process inputs which
are untokenized (raw) or pretokenized strings, at
both sentence and document levels. Figure 4 illus-
trates a simple code to perform all the supported
tasks for an input text. We organize Trankit’s out-
puts into hierarchical native Python dictionaries,
which can be easily inspected by users. Figure 5
demonstrates the outputs of the command line 6 in
Figure 4.

Training your own Pipelines. Trankit also pro-
vides a trainable pipeline for 100 languages via the
class TPipeline. This ability is inherited from

Treebank System | Tokens | Sents. | Words | UPOS | XPOS | UFeats | Lemmas | UAS | LAS
Overall (90 treebanks) Trankit | 99.23 | 91.82 | 99.02 | 95.65 | 94.05 | 93.21 94.27 | 87.06 | 83.69
Stanza 99.26 | 88.58 | 98.90 | 94.21 | 92.50 | 91.75 94.15 | 83.06 | 78.68

Trankit | 99.93 | 96.59 | 99.22 | 96.31 | 94.08 | 94.28 94.65 | 88.39 | 84.68

Arabic-PADT Stanza 99.98 | 80.43 | 97.88 | 94.89 | 91.75 | 91.86 93.27 | 83.27 | 79.33
UDPipe | 99.98 | 82.09 | 94.58 | 90.36 | 84.00 | 84.16 88.46 | 72.67 | 68.14

Trankit | 97.01 | 99.7 | 97.01 | 94.21 | 94.02 | 96.59 97.01 | 85.19 | 82.54

Chinese-GSD Stanza 92.83 | 98.80 | 92.83 | 89.12 | 88.93 | 92.11 92.83 | 72.88 | 69.82
UDPipe | 90.27 | 99.10 | 90.27 | 84.13 | 84.04 | 89.05 90.26 | 61.60 | 57.81

Trankit | 98.48 | 88.35 | 98.48 | 95.95 | 95.71 | 96.26 96.84 | 90.14 | 87.96

English-EWT Stanza 99.01 | 81.13 | 99.01 | 9540 | 95.12 | 96.11 97.21 | 86.22 | 83.59
UDPipe | 98.90 | 77.40 | 98.90 | 93.26 | 92.75 | 94.23 95.45 | 80.22 | 77.03

spaCy 97.44 | 63.16 | 97.44 | 86.99 | 91.05 - 87.16 | 55.38 | 37.03

Trankit | 99.7 | 96.63 | 99.66 | 97.85 - 97.16 97.80 | 94.00 | 92.34

French-GSD Stanza 99.68 | 94.92 | 99.48 | 97.30 - 96.72 97.64 | 91.38 | 89.05
UDPipe | 99.68 | 93.59 | 98.81 | 95.85 - 95.55 96.61 87.14 | 84.26

spaCy 99.02 | 89.73 | 94.81 | 89.67 - - 88.55 | 75.22 | 66.93

Trankit | 99.94 | 99.13 | 99.93 | 99.02 | 98.94 | 98.8 99.17 | 94.11 | 9241

Spanish-Ancora Stanza 99.98 | 99.07 | 99.98 | 98.78 | 98.67 | 98.59 99.19 | 92.21 | 90.01
UDPipe | 99.97 | 98.32 | 99.95 | 98.32 | 98.13 | 98.13 98.48 | 88.22 | 85.10

spaCy 99.95 | 97.54 | 99.43 | 93.43 - - 80.02 | 89.35 | 83.81

Table 1: Systems’ performance on test sets of the Universal Dependencies v2.5 treebanks. Performance for Stanza,
UDPipe, and spaCy is obtained using their public pretrained models. The overall performance for Trankit and
Stanza is computed as the macro-averaged F1 over 90 treebanks. Detailed performance of Trankit for 90 supported

treebanks can be found at our documentation page.

from trankit import Pipeline

1e(lang="er

doc "Hel

p = Piy , gpu=True, cache_dir=". he')

all = p(doc)

Figure 4: A function performing all tasks on the input.

the XLLM-Roberta encoder which is pretrained on
those languages. Figure 6 illustrates how to train a
token and sentence splitter with TPipeline.

Demo Website. A demo website for Trankit to
support 90 pretrained pipelines is hosted at: http:
//nlp.uoregon.edu/trankit. Figure 7 shows its
interface.

5 System Evaluation

5.1 Datasets & Hyper-parameters

To achieve a fair comparison, we follow Stanza (Qi
et al., 2020) to train and evaluate all the models
on the same canonical data splits of 90 Universal
Dependencies treebanks v2.5 (UD2.5)3 (Zeman
et al., 2019), and 11 public NER datasets pro-
vided in the following corpora: AQMAR (Mo-
hit et al., 2012), CoNLL0O2 (Tjong Kim Sang,
2002), CoNLLO3 (Tjong Kim Sang and De Meul-

3We skip 10 treebanks whose languages are not supported
by XLM-Roberta.

84

// Output
{

, // input string
": [// list of sentences

c1, : , : (o, 6), P

A~~~

: 2, // sentence index
’ : (7, 23), // sentence span
>: [// list of tokens

: 1, // token index

: 3, : ,) N r
: (7, 11), // document-level span of the token
‘: (0, 4) // sentence-level span of the token

S
:4...}

RSN
~
o

]
}
]
}

Figure 5: Output from Trankit. Some parts are col-
lapsed to improve visualization.

der, 2003), GermEvall4 (Benikova et al., 2014),
OntoNotes (Weischedel et al., 2013), and WikiNER
(Nothman et al., 2012). Hyper-parameters for all
models and datasets are selected based on the de-
velopment data in this work.

5.2 Universal Dependencies performance

Table 1 compares the performance of Trankit and
the latest available versions of other popular toolk-
its, including Stanza (v1.1.1) with current state-
of-the-art performance, UDPipe (v1.2), and spaCy
(v2.3) on the UD2.5 test sets. The performance
for all systems is obtained using the official scorer

System Tokens | Sents. | Words | UPOS | XPOS | UFeats | Lemmas | UAS | LAS
Trankit (plug-and-play with adapters) | 99.05 | 95.12 | 98.96 | 9543 | 89.02 | 92.69 93.46 | 86.20 | 82.51
Multilingual 96.69 | 88.95 | 96.35 | 91.19 | 84.64 | 88.10 90.02 | 72.96 | 68.66
No-adapters 95.06 | 89.57 | 94.08 | 88.79 | 82.54 | 83.76 88.33 | 66.63 | 63.11

Table 2: Model performance on 9 different treebanks (macro-averaged F1 score over test sets).

from trankit import TPipeline

tp = TPipe (training_config={

trainer.

ain()

Figure 6: Training a token and sentence splitter using
the CONLL-U formatted data (Nivre et al., 2020).

of the CONLL 2018 Shared Task*. On five illus-
trated languages, Trankit achieves competitive per-
formance on tokenization, MWT expansion, and
lemmatization. Importantly, Trankit outperforms
other toolkits over all remaining tasks (e.g., POS
and morphological tagging) in which the improve-
ment boost is substantial and significant for sen-
tence segmentation and dependency parsing. For
example, English enjoys a 7.22% improvement for
sentence segmentation, a 3.92% and 4.37% im-
provement for UAS and LAS in dependency pars-
ing. For Arabic, Trankit has a remarkable improve-
ment of 16.16% for sentence segmentation while
Chinese observes 12.31% and 12.72% improve-
ment of UAS and LAS for dependency parsing.

Over all 90 treebanks, Trankit outperforms the
previous state-of-the-art framework Stanza in most
of the tasks, particularly for sentence segmenta-
tion (+3.24%), POS tagging (+1.44% for UPOS
and +1.55% for XPOS), morphological tagging
(+1.46%), and dependency parsing (+4.0% for
UAS and +5.01% for LAS) while maintaining the
competitive performance on tokenization, multi-
word expansion, and lemmatization.

5.3 NER results

Table 3 compares Trankit with Stanza (v1.1.1),
Flair (v0.7), and spaCy (v2.3) on the test sets of
11 considered NER datasets. Following Stanza, we
report the performance for other toolkits with their
pretrained models on the canonical data splits if
they are available. Otherwise, their best configura-
tions are used to train the models on the same data
splits (inherited from Stanza). Also, for the Dutch

‘nttps://universaldependencies.org/
conlll8/evaluation.html

datasets, we retrain the models in Flair as those
models (for Dutch) have been updated in version
v0.7. As can be seen, Trankit obtains competitive
or better performance for most of the languages,
clearly demonstrating the benefit of using the pre-
trained transformer for multilingual NER.

Language | Corpus Trankit | Stanza | Flair | spaCy
Arabic AQMAR 74.8 743 | 74.0 -
Chinese OntoNotes 80.0 79.2 - 69.3
Dutch CoNLLO02 91.8 89.2 | 91.3 | 738
WikiNER 94.8 94.8 | 948 | 90.9
English CoNLLO03 92.1 92.1 | 92.7 | 81.0
OntoNotes 89.6 88.8 | 89.0 | 854
French WikiNER 92.3 929 | 925 | 88.8
German CoNLLO03 84.6 819 | 825 | 639
GermEval14 86.9 852 | 854 | 684
Russian WikiNER 92.8 92.9 - -
Spanish | CoNLL02 88.9 88.1 | 873 | 775

Table 3: Performance (F1) on NER test sets.

System GPU CPU

UD NER UD NER
Trankit | 4.50x | 1.36x | 19.8x | 31.5%
Stanza 3.22x | 1.08x | 10.3x | 17.7x
UDPipe - - 4.30x% -
Flair - 1.17x - 51.8x

Table 4: Run time on processing the English EWT tree-
bank and the English Ontonotes NER dataset. Mea-
surements are done on an NVIDIA Titan RTX card.

85

Model Package Trankit Stanza
Multilingual Transformer | 1146.9MB -
Arabic 38.6MB 393.9MB
Chinese 40.6MB 225.2MB
English 47.9MB 383.5MB
French 39.6MB 561.9MB
Spanish 37.3MB 556.1MB
Total size [1350.9MB [2120.6MB

Table 5: Model sizes for five languages.

5.4 Speed and Memory Usage

Table 4 reports the relative processing time for
UD and NER of the toolkits compared to spaCy’s
CPU processing time’. For memory usage com-
parison, we show the model sizes of Trankit and

3spaCy can process 8140 tokens and 5912 tokens per sec-
ond for UD and NER, respectively.

Text to annotate

Michael helped
been happier.

english

q

shoot the majority of my firm's website and we could not have

punct

Michael helped shoot the

(PROPNJ“ """ NVERB "™ *|VERBY [DETI" de‘ \NOUN/ [ADP](PRONJ" nmod:poss NOUNY *****[PART)

ma]orlty of my

punct

CCONJ -/AUX ART

PUNCT
we could not have been happler

onj

nmod

nmod:poss
OUN

firm 's webs;te

Figure 7: Demo website for Trankit.

Stanza for several languages in Table 5. As can be
seen, besides the multilingual transformer, model
packages in Trankit only take dozens of megabytes
while Stanza consumes hundreds of megabytes for
each package. This leads to the Stanza’s usage of
much more memory when the pipelines for these
languages are loaded at the same time. In fact,
Trankit only takes 4.9GB to load all the 90 pre-
trained pipelines for the 56 supported languages.

5.5 Ablation Study

This section compares Trankit with two other pos-
sible strategies to build a multilingual system for
fundamental NLP tasks. In the first strategy (called
“Multilingual’), we train a single pipeline where
all the components in the pipeline are trained with
the combined training data of all the languages.
The second strategy (called “No-adapters™) in-
volves eliminating adapters from XLM-Roberta in
Trankit. As such, in “No-adapters”, pipelines are
still trained separately for each language; the pre-
trained transformer is fixed; and only task-specific
weights (for predictions) in components are up-
dated during training.

For evaluation, we select 9 treebanks for 3 differ-
ent groups, i.e., high-resource, medium-resource,
and low-resource, depending on the sizes of the
treebanks. In particular, the high-resource group
includes Czech, Russian, and Arabic; the medium-
resource group includes French, English, and Chi-
nese; and the low-resource group involves Belaru-

86

sian, Telugu, and Lithuanian. Table 2 compares the
average performance of Trankit, “Multilingual”,
and “No-adapters”. As can be seen, “Multilingual”
and “No-adapters” are significantly worse than the
proposed adapter-based Trankit. We attribute this
to the fact that multilingual training might suffer
from unbalanced sizes of treebanks, causing high-
resource languages to dominate others and impair-
ing the overall performance. For “No-adapters”,
fixing pretrained transformer might significantly
limit the models’ capacity for multiple tasks and
languages.

6 Conclusion and Future Work

We introduce Trankit, a transformer-based multi-
lingual toolkit that significantly improves the per-
formance for fundamental NLP tasks, including
sentence segmentation, part-of-speech, morpho-
logical tagging, and dependency parsing over 90
Universal Dependencies v2.5 treebanks of 56 dif-
ferent languages. Our toolkit is fast on GPUs and
efficient in memory use, making it usable for gen-
eral users. In the future, we plan to improve our
toolkit by investigating different pretrained trans-
formers such as mBERT and XLM-Robertaj;ge.
We also plan to provide Named Entity Recognizers
for more languages and add modules to perform
more NLP tasks.

References

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3874-3884, Minneapolis, Minnesota. Association
for Computational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 54—59, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-d named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), pages 2524—
2531, Reykjavik, Iceland. European Languages Re-
sources Association (ELRA).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Wanxiang Che, Yunlong Feng, Libo Qin, and Ting Liu.
2020. N-Itp: A open-source neural chinese language
technology platform with pretrained models. arXiv
preprint arXiv:2009.11616.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

87

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In Proceedings of the International Conference on
Machine Learning.

Hiroshi Kanayama and Ran Iwamoto. 2020. How uni-
versal are Universal Dependencies? exploiting syn-
tax for multilingual clause-level sentiment detection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4063—4073, Mar-
seille, France. European Language Resources Asso-
ciation.

Claudia Kittask, Kirill Milintsevich, and Kairit Sirts.
2020. Evaluating multilingual bert for estonian.
Volume, 328:19-26.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66—
75, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2019a.
Neural cross-lingual event detection with minimal
parallel resources. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP), pages 738-748, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual

Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55—60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Proceedings of the Conference on Neural
Information Processing Systems.

Behrang Mohit, Nathan Schneider, Rishav Bhowmick,
Kemal Oflazer, and Noah A. Smith. 2012. Recall-
oriented learning of named entities in Arabic
Wikipedia. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, pages 162—173, Avi-
gnon, France. Association for Computational Lin-
guistics.

Mahdi Mohseni and Amirhossein Tebbifakhr. 2019.
MorphoBERT: a Persian NER system with BERT
and morphological analysis. In Proceedings of
The First International Workshop on NLP Solutions
for Under Resourced Languages (NSURL 2019) co-
located with ICNLSP 2019 - Short Papers, pages 23—
30, Trento, Italy. Association for Computational Lin-
guistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1037—
1042, Online. Association for Computational Lin-
guistics.

Minh Van Nguyen and Thien Huu Nguyen. 2021. Im-
proving cross-lingual transfer for event argument
extraction with language-universal sentence struc-
tures. In Proceedings of the Sixth Arabic Natural
Language Processing Workshop (WANLP) at EACL
2021.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034—4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2012. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligence, 194:151-175.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7-14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

88

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aish-
warya Kamath, Ivan Vuli¢, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
AdapterHub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 46—54, Online. Asso-
ciation for Computational Linguistics.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654-7673, Online. Association for Computa-
tional Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101-
108, Online. Association for Computational Lin-
guistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197-207,
Brussels, Belgium. Association for Computational
Linguistics.

Nasrin Taghizadeh and Heshaam Faili. 2020. Cross-
lingual adaptation using universal dependencies.
arXiv preprint arXiv:2003.10816.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xi-
aojun Quan, Tong Zhang, and Yonggang Wang.
2020. Joint Chinese word segmentation and part-
of-speech tagging via two-way attentions of auto-
analyzed knowledge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8286—-8296, Online. Association
for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3632—
3636, Hong Kong, China. Association for Computa-
tional Linguistics.

Ahmet Ustiin, Arianna Bisazza, Gosse Bouma, and
Gertjan van Noord. 2020. UDapter: Language adap-
tation for truly Universal Dependency parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2302-2315, Online. Association for Computa-
tional Linguistics.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. Bertje: A dutch bert model.
arXiv preprint arXiv:1912.09582.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0. Lin-
guistic Data Consortium.

Haiqin Yang. 2019. Bert meets chinese word segmen-
tation. arXiv preprint arXiv:1909.09292.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noémi
Aepli, Zeljko Agié, Lars Ahrenberg, Gabrielé Alek-
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, FElena Bad-
maeva, Miguel Ballesteros, Esha Banerjee, Se-
bastian Bank, Verginica Barbu Mititelu, Victo-
ria Basmov, Colin Batchelor, John Bauer, San-
dra Bellato, Kepa Bengoetxea, Yevgeni Berzak, Ir-
shad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Bi-
agetti, Eckhard Bick, Agné Bielinskiené, Rogier
Blokland, Victoria Bobicev, Loic Boizou, Emanuel
Borges Volker, Carl Borstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Kristina
Brokaité, Aljoscha Burchardt, Marie Candito,
Bernard Caron, Gauthier Caron, Tatiana Cavalcanti,
Giilsen Cebiroglu Eryigit, Flavio Massimiliano Cec-
chini, Giuseppe G. A. Celano, Slavomir Cépls,
Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Jayeol Chun, Alessandra T. Cignarella, Sil-
vie Cinkova, Aurélie Collomb, Cagri Coltekin,
Miriam Connor, Marine Courtin, Elizabeth David-
son, Marie-Catherine de Marneffe, Valeria de Paiva,
Elvis de Souza, Arantza Diaz de Ilarraza, Carly
Dickerson, Bamba Dione, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Olga Erina, TomaZ Erjavec, Aline
Etienne, Wograine Evelyn, Richard Farkas, Hec-
tor Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Kazunori Fujita, Katarina Gajdosova, Daniel

&9

Galbraith, Marcos Garcia, Moa Géirdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gokirmak,
Yoav Goldberg, Xavier Gémez Guinovart, Berta
Gonzalez Saavedra, Bernadeta Gricitté, Matias Gri-
oni, Normunds Griizitis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan
Haji¢ jr., Mika Himéldinen, Linh Ha My, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke,
Felix Hennig, Barbora Hladk4, Jaroslava Hlavacova,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, Olajidé
Ishola, Tomas Jelinek, Anders Johannsen, Fredrik
Jgrgensen, Markus Juutinen, Hiiner Kagikara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Ka-
hane, Hiroshi Kanayama, Jenna Kanerva, Boris
Katz, Tolga Kayadelen, Jessica Kenney, Vaclava
Kettnerova, Jesse Kirchner, Elena Klementieva,
Arne Kohn, Kamil Kopacewicz, Natalia Kotsyba,
Jolanta Kovalevskaite, Simon Krek, Sookyoung
Kwak, Veronika Laippala, Lorenzo Lambertino, Lu-
cia Lam, Tatiana Lando, Septina Dian Larasati,
Alexei Lavrentiev, John Lee, Phuong Lé Hong,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae
Lim, Maria Liovina, Yuan Li, Nikola Ljubesié, Olga
Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Citdlina
Maranduc, David Marecek, Katrin Marheinecke,
Héctor Martinez Alonso, André Martins, Jan Masek,
Yuji Matsumoto, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendonga, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missild, Catdlin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Tomohiko Morioka, Shinsuke
Mori, Shigeki Moro, Bjartur Mortensen, Bohdan
Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Miiiirisep, Pinkey Nainwani,
Juan Ignacio Navarro Horfliacek, Anna Nedoluzhko,
Gunta Nespore-Bérzkalne, Luong Nguyén Thi,
Huyén Nguyén Thi Minh, Yoshihiro Nikaido, Vi-
taly Nikolaev, Rattima Nitisaroj, Hanna Nurmi,
Stina Ojala, Atul Kr. Ojha, Adédayo Oluiokun,
Mai Omura, Petya Osenova, Robert Ostling, Lilja
@vrelid, Niko Partanen, Elena Pascual, Marco
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Lapiniska, Siyao Peng,
Cenel-Augusto Perez, Guy Perrier, Daria Petrova,
Slav Petrov, Jason Phelan, Jussi Piitulainen,
Tommi A Pirinen, Emily Pitler, Barbara Plank,
Thierry Poibeau, Larisa Ponomareva, Martin Popel,
Lauma Pretkalnina, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepidrkowski, Tiina Puolakainen,
Sampo Pyysalo, Peng Qi, Andriela Riébis, Alexan-
dre Rademaker, Loganathan Ramasamy, Taraka
Rama, Carlos Ramisch, Vinit Ravishankar, Livy
Real, Siva Reddy, Georg Rehm, Ivan Riabov,
Michael RieBler, Erika Rimkuté, Larissa Rinaldi,
Laura Rituma, Luisa Rocha, Mykhailo Romanenko,
Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga
Rudina, Jack Rueter, Shoval Sadde, Benoit Sagot,

Shadi Saleh, Alessio Salomoni, Tanja SamardZi¢,
Stephanie Samson, Manuela Sanguinetti, Dage
Sirg, Baiba Saulite, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko
Shimada, Hiroyuki Shirasu, Muh Shohibussirri,
Dmitry Sichinava, Aline Silveira, Natalia Silveira,
Maria vSimi, Radu Simionescu, Katalin Simko,
Maria Simkova, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadova, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szant6, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zderika
UreSova, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wréblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdenék Zabokrtsk}’/, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

Xingran Zhu. 2020. Cross-lingual word sense disam-

biguation using mbert embeddings with syntactic
dependencies. arXiv preprint arXiv:2012.05300.

90

DEBIE: A Platform for Implicit and Explicit Debiasing
of Word Embedding Spaces

Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran Glavas
Data and Web Science Group
School of Business Informatics and Mathematics
University of Mannheim
nfriedri@mail.uni-mannheim.de
{anne, simone, goran}@informatik.uni-mannheim.de

Abstract

Recent research efforts in NLP have demon-
strated that distributional word vector spaces
often encode stereotypical human biases, such
as racism and sexism. With word represen-
tations ubiquitously used in NLP models and
pipelines, this raises ethical issues and jeop-
ardizes the fairness of language technologies.
While there exists a large body of work on
bias measures and debiasing methods, to date,
there is no platform that would unify these re-
search efforts and make bias measuring and
debiasing of representation spaces widely ac-
cessible. In this work, we present DEBIE, the
first integrated platform for (1) measuring and
(2) mitigating bias in word embeddings. Given
an (i) embedding space (users can choose be-
tween the predefined spaces or upload their
own) and (ii) a bias specification (users can
choose between existing bias specifications or
create their own), DEBIE can (1) compute sev-
eral measures of implicit and explicit bias and
modify the embedding space by executing two
(mutually composable) debiasing models. DE-
BIE’s functionality can be accessed through
four different interfaces: (a) a web applica-
tion, (b) a desktop application, (c) a REST-ful
API, and (d) as a command-line application.'
DEBIE is available at: debie.informatik.
uni-mannheim.de

1 Introduction

Ethical and fair natural language processing is an
essential precondition for widespread societal adop-
tion of language technologies. In recent years, how-
ever, distributional language representations built
from large corpora have been shown to encode
human-like biases, like racism and sexism (Boluk-
basi et al., 2016; Zhao et al., 2019; Lauscher et al.,

Videos demonstrating the usage of the DEBIE application
and command-line tool are available athttps://tinyurl.
com/y2ymujus

91

2020a; Nadeem et al., 2020, inter alia). At the
word level, most embedding spaces, across a range
of embedding models and languages (Lauscher and
Glavas, 2019), encode human biases that can be
exemplified in biased analogies, such as the fa-
mous example of sexism: man — prognm} ~
womahh — homemaker (Bolukbasi et al., 2016).
While this is not surprising, given the distribu-
tional nature of word representation models (Har-
ris, 1954) it is — depending on the sociotechnical
context — an undesired artefact of distributional rep-
resentation learning (Blodgett et al., 2020) which
can, in turn, lead to unfair decisions in downstream
applications. A number of different measures for
quantifying biases in representation spaces have
been proposed in recent years (Caliskan et al., 2017;
Gonen and Goldberg, 2019; Dev and Phillips, 2019;
Garg et al., 2018; Lauscher et al., 2020a) and even
more models for removing or attenuating such bi-
ases have been developed (Zhao et al., 2019; Bordia
and Bowman, 2019; Dinan et al., 2020; Webster
et al., 2020; Qian et al., 2019, inter alia). What is
still missing, however, is the ability to seamlessly
apply different bias measures and debiasing models
on arbitrary embedding spaces and for custom (i.e.,
user-specified) bias specifications.

In this work, we address this gap by introduc-
ing DEBIE, the first integrated platform offering
bias measurement and mitigation for arbitrary static
embedding spaces and bias specifications. The DE-
BIE platform is grounded in the general framework
for implicit and explicit debiasing of word embed-
ding spaces (Lauscher et al., 2020a). Within this
framework, an implicit bias consists of measur-
able discrepancies between two target term sets,
which can, for instance, describe a dominant and
a minoritized social group (D’Ignazio and Klein,
2020). In contrast, an explicit bias is a bias between
such target term sets towards certain attribute terms
groups. Our platform allows for both implicit and

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 91-98

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

explicit bias specifications, incorporating a range
of different measures for quantifying embedding
space bias (Caliskan et al., 2017; Gonen and Gold-
berg, 2019; Dev and Phillips, 2019) and a pair of
mutually composable methods for bias mitigation.
DEBIE’s functionality for measuring and mitigat-
ing biases in distributional word vector spaces is
accessible via four different interfaces: as a web
application, desktop application, via a RESTful ap-
plication programming interface (API), and as a
command-line tool. We believe that DebIE will,
by offering to test arbitrary embedding spaces for
custom user-defined biases, stimulate a wider ex-
ploration of the presence of a broader set of human
biases in distributional representation spaces.

2 Related Work

First, we describe related research on bias evalu-
ation and debiasing and then turn our attention to
existing bias mitigation platforms.

Bias Measures and Mitigation Methods.
There is an extensive body of research on bias
detection and bias mitigation in natural language
processing. Due to space limitations, here we
only provide a brief overview and refer the
reader to a recent survey of the field for more
information (Blodgett et al., 2020). Bolukbasi et al.
(2016) were the first to show stereotypical bias
to exist in word embedding models and proposed
hard debiasing, the first word embedding bias
mitigation algorithm. Subsequently, Caliskan
et al. (2017) introduced the well-known Word
Embedding Association Test (WEAT), inspired
by the Implicit Association Test (Nosek et al.,
2002), which measures biased associations in
human subjects in terms of response times when
exposed to sets of stimuli. WEAT, in turn, reflects
the strength of associations in terms of semantic
similarity between word vectors. McCurdy and
Serbetci (2017) study gender bias with WEAT
in three other languages (Dutch, German, and
Spanish). Extending upon this, Lauscher and
Glavas (2019) translated the WEAT tests to 6 more
languages (German, Spanish, Italian, Russian,
Croatian, Turkish), allowing for multilingual and
cross-lingual analysis of biases captured by the
specifications of the original WEAT. They later
extended the set of supported languages with
Arabic (Lauscher et al., 2020b).

Dev and Phillips (2019) proposed a linear pro-
jection model for debiasing along with two bias

92

evaluation measures: the Embedding Coherence
Test (ECT) and the Embedding Quality Test (EQT)
and propose methods for removing the (explicit)
bias based on computing the direction vector of
the bias. While their method successfully removes
the explicit bias, i.e., bias between sets of rarget
terms (e.g., male terms like man, father, and boy
vs. female terms like woman, mother, and girl)
with respect to sets of attribute terms (e.g., profes-
sion terms, such as scientist or artist), Gonen and
Goldberg (2019) show that implicit bias between
the sets of target terms remains even after (explicit
debiasing) and that the terms from one target set are
still clearly discernible from the terms of the other
set in the embedding space. Based on this finding,
Lauscher et al. (2020a) systematized the preceding
work and proposed a general framework for bias
measurement and debiasing, encompassing a range
of existing and newly proposed measures and mit-
igation methods, which operate either on explicit
or implicit bias specifications. Their framework
arguably allows for a more holistic assessment of
bias in word vector spaces and ensures interoper-
ability between bias mitigation models and bias
specifications. Our DEBIE platform makes this
holistic framework for measuring and mitigating
biases widely accessible and applicable (1) for arbi-
trary user-defined bias specification to (2) arbitrary
pretrained word embedding spaces.

Bias mitigation platforms. The landscape of the
off-the-shelf solutions for measuring and mitigat-
ing bias for machine learning applications is ex-
tremely scarce. To the best of our knowledge, the
only such tool is Al Fairness 360 (Bellamy et al.,
2018), an extensible open-source toolkit which of-
fers a set of algorithms for detecting and mitigating
unwanted bias in datasets and machine learning
models. It addresses bias by integrating fairness al-
gorithms along the machine learning pipeline, i.e.,
fair pre-processing, fair in-processing, and fair post-
processing. In contrast, DEBIE specifically targets
biases in distributional word vector spaces (as an
ubiquitous component of modern NLP pipelines)
by integrating a series of word embedding bias tests
and mitigation algorithms not covered by more gen-
eral tools like Al Fairness 360.

3 DEBIE: System Description

We first explain the two types of bias specifications
support by DEBIE (implicit and explicit), then pro-
ceed to describe the concrete bias specifications

and debiasing algorithms bundles in the system.
Finally, we provide details of DEBIE’s architecture
and interfaces through which the bias measuring
and mitigation functionality can be accessed. All
code is publicly available on GitHub.?

3.1 Implicit and Explicit Bias Specifications

DEBIE supports measuring of implicit or explicit
biases for a given word embedding space and, re-
spectively, implicit or explicit debiasing of the
given space. Both implicit bias specifications By
and explicit bias specifications Bg specify two
sets of rarget terms, 17 and 15 that capture the
dimension of the bias. For example, if measuring
a gender bias, T would contain male terms (e.g.,
man, father) and T female terms (e.g., woman,
girl, grandma).> While an implicit bias specifi-
cation is fully specified with the two target lists,
B; = (Th,T5), an explicit specification addition-
ally requires two sets of attributes A; and Ao,
Bp = (T1,T3, A1, Ag), capturing the groups of
terms towards which the target groups are expected
to exhibit significantly different level of associa-
tion. For example, for a gender bias, one would
expect male terms to be more strongly associated
with career terms (e.g., A1 could contain terms
like programmer), whereas female terms could be
closer to family-related terms (e.g., A2 could con-
tain terms like homemaker). The input for DEBIE
consists of an embedding space X € R? and a bias
specification, (implicit or explicit). Explicit debias-
ing methods (i.e., methods that operate on explicit
bias specifications) cannot be executed when the
provided bias specification is implicit (B7).*

3.2 Bias Measures

DEBIE provides three measures that capture ex-
plicit bias (i.e., apply only if an explicit bias speci-
fication is provided), and two tests that measure im-
plicit bias. Because debiasing methods (see §3.3)
make perturbations to the embedding space, we
additionally couple the bias tests with measures of
semantic quality of the distributional space.

https://github.com/umanlp/
debie-frontend
https://github.com/umanlp/debie-backend

3The bias measures implemented in DEBIE do not require
the terms between the target lists to be paired. Accordingly,
the two lists also do not need to be of the same length.

“Conversely, implicit debiasing methods, i.e., ones that
require only 77 and 7%, can be applied if an explicit specifica-
tion is provided. In that case, we simply convert B to By by
discarding the provided attribute sets.

93

Word Embedding Association Test (WEAT).
Given an explicit bias test specification Bg
(Tl,TQ,Al,AQ), WEAT (Caliskan et al., 2017)
computes the effect size quantifying the amount
of bias as follows:

S(T17T27A17A2) :Z S(thAhAz) 72 s(t27A17A2)7

t1€Ty to€Ts

with associative difference of term ¢ given as:

1 1
s(t,Al,Ag):m Zcos(t,al)—m Zcos(t,ag),
1 2

a1 €Ay ag€Ay

with t as the word embedding of the target term
t and cos as the cosine of the angle between
the two vectors. To estimate the significance of
the effect size, we follow Caliskan et al. (2017)
and compute the non-parametric permutation test
in which the s(T,T5, A1, A2) is compared to
s(X1, Xo, A1, As), where (X1, X2) denotes a ran-
dom, equally-sized split of terms from 77 U T5.

Embedding Coherence Test (ECT). Given an ex-
plicit bias specification with a single attribute set
Br = (Tl, Ts, A) with A = A; U Ay, ECT (Dev
and Phillips, 2019) quantifies the presence of the
bias as the (lack of) correlation of the distances
of the mean vectors of the target term sets 77 and
T2 with the attribute terms in A. The lower the
correlation, the higher the bias. To this end, we
compute the mean vectors t; and t2 as averages
of the vector representations of the terms in 77 and
T5. Next, we compute two vectors containing the
cosine similarities of each of the terms in A with
t1, as well as with to, respectively. The final score
is Spearman’s rank correlation coefficient of the
obtained vectors of cosine similarity scores.

Bias Analogy Test (BAT). BAT (Lauscher et al.,
2020a) assesses the amount of biased analogies
that can be retrieved from an embedding space
based on the explicit bias specification B
(Th,Ts, A1, A2). We first create all possible bi-
ased analogies from Bg: t; — ty =~ a; — as for
(t1,t2,a1,a2) € T1 x Ty x Ay x Ag. Next, from
each of these analogies, two query vectors are com-
puted: q; =t; —to +asandqs = a; —t; + to
for each 4-tuple (t1,t2,a1,as). We then rank all
attribute vectors in X according to the Euclidean
distance to the query vector. We report the percent-
age of cases in which: (1) a; is ranked higher than
aterm ab € Ag \ {az} for q; and (2) ag is ranked
higher than a term a} € A; \ {a1} for qa.

Implicit Bias Tests (IBT). As proposed by Gonen
and Goldberg (2019), the amount of implicit bias
corresponds to the accuracy with which two target
term sets can be separated. We report the score
of two methods: (1) clustering accuracy with K-
Means++ (Arthur and Vassilvitskii, 2007), and (2)
classification accuracy based on Support Vector
Machines with Gaussian kernel. We carry out the
latter via leave-one-out cross-validation (i.e., we
train on all words from both target lists, leaving
one term for prediction).

Semantic Quality Tests (SQ). The debiasing
models (3.3) modify the embedding space. While
they reduce the bias, they may reduce the general
semantic quality of the embedding space, which
could be detrimental for model performance in
downstream applications. This is why we couple
the bias tests with measures of semantic word simi-
larity on two established word-similarity datasets:
SimLex-999 (Hill et al., 2015) or WordSim-353
(Finkelstein et al., 2001). We compute the Spear-
man correlation between the human similarity
scores assigned to word pairs and corresponding
cosines computed from the embedding space.

3.3 Debiasing Methods

DEBIE encompasses implementations of two de-
biasing models from (Lauscher et al., 2020a), for
which an implicit bias specification suffices:

General Bias Direction Debiasing (GBDD). As
an extension of the linear projection model of Dev
and Phillips (2019), GBDD relies on identifying
the bias direction in the distributional space. Let
(ti,t}) be word pairs with t. € T, t} € Ty, re-
spectively. First, we obtain partial bias direction
vectors bj; by computing the difference between
the respective vectors for each pair b;; = tzi - tg.
We then stack all partial direction vector, obtaining
the bias matrix B. The global bias direction vector
b then corresponds to the top singular value of B,
i.e., the first row of matrix V', with UXV' T as the
singular value decomposition of B. We then obtain
the debiased version of the space X as:

GBDD(X) = X — (X, b)b,
with (X, b) denoting dot products between rows of

X and b. As such, the closer the word embedding
is to the bias direction, the more it gets corrected.

Note that any explicit bias specification is trivially re-
duced to an implicit one by discarding the attribute term sets.

94

Bias Alignment Model (BAM). Inspired by previ-
ous work on projection-based cross-lingual word
embedding spaces (Smith et al., 2017; Glavas et al.,
2019), BAM focuses on implicit debiasing by treat-
ing the target term sets 77, and 75 of an implicit
bias specification By as “translations” of each other
and learning the linear projection of the embedding
spaces w.r.t. itself (Lauscher et al., 2020a). First,
we build all possible word pairs (¢}, té), th e 1,
té € T> and stack the respective word vectors of
the left and right pairs to obtain matrices X7, and
X,. We then learn the orthogonal mapping matrix
Wx =UV T, withUZV T as the singular value
decomposition of X, X,_ZTI . In the last step, the
original space and its “translation” X = XWx
(which is equally biased), are averaged to obtain
the debiased embedding space:

BAM(X) = %(X X W),

Note that DEBIE can trivially compose the two de-
biasing models — the resulting space after applying
GBDD (BAM) can be the input for BAM (GBDD).

3.4 Integrated Data

DEBIE is designed as a general tool, which allows
user to upload their own embedding spaces and de-
fine their own bias specifications for testing and/or
debiasing. Nonetheless, we include into the plat-
form a set of commonly used bias specifications
and word embedding spaces. Concretely, DEBIE
includes the whole WEAT test collection (Caliskan
et al., 2017), containing the explicit bias specifica-
tions summarized in Table 1. DEBIE also comes
with three word embedding spaces, pretrained with
different models: (1) fastText (Bojanowski et al.,
2017),° (2) GloVe (Pennington et al., 2014),” and
(3) CBOW (Mikolov et al., 2013).8 All three spaces
are 300-dimensional and their vocabularies are lim-
ited to 200K most frequent words.

3.5 System Architecture

DEBIE’s architecture, illustrated in Figure 1, ad-
heres to the principles of modern extensible web
application design and consists of four components:
(1) the backend, (2) the frontend, which together

*https://dl.fbaipublicfiles.com/
fasttext/vectors—-wiki/wiki.en.vec

"nttp://nlp.stanford.edu/data/glove.6B.
zip

8https://drive.google.com/file/d/
0B7XkCwpI5SKDYNINUTT1SS21pOmM/edit 2usp=
sharing

Test Type Target Set #1 Target Set #2 Attribute Set #1 Attribute Set #2
1 Universal Flowers (e.g., aster, tulip) Insects (e.g., ant, flea) Pleasant (e.g., health, love) Unpleasant (e.g., abuse)
2 | Militant Instruments (e.g., cello, guitar) Weapons (e.g., gun, sword) Pleasant Unpleasant
3 | Racist Euro-American names (e.g., Adam) Afro-American names (e.g., Jamel) Pleasant (e.g., caress) Unpleasant (e.g., abuse)
4 | Racist Euro-American names (e.g., Brad) ~ Afro-American names (e.g., Hakim) Pleasant Unpleasant
5 | Racist Euro-American names Afro-American names Pleasant (e.g., joy) Unpleasant (e.g., agony)
6 | Gender Male names (e.g., John) Female names (e.g., Lisa) Career (e.g. management) Family (e.g., children)
7 | Gender Math (e.g., algebra, geometry) Arts (e.g., poetry, dance) Male (e.g., brother, son) Female (e.g., woman, sister)
8 | Gender Science (e.g., experiment) Arts Male Female
9 | Disease Physical condition (e.g., virus) Mental condition (e.g., sad) Long-term (e.g., always) Short-term (e.g., occasional)
10 | Age Older names (e.g., Gertrude) Younger names (e.g., Michelle) Pleasant Unpleasant
Table 1: WEAT bias test specifications provided by DEBIE.
Frontend Backend Data Layer
HTML
AN
@ python @ python
Bootstrap Evaluation Engine Debiasing Engine Vector Data
Stylesheets
(T
(Flask 0
— -
Fetch API REST API Il Utz
Server Layer
Requests h‘
Sunicorn
Web Server WSGI Server

Figure 1: Software Architecture of the DEBIE platform.

represent the core of the application, (3) the data
layer, and (4) the server layer facing the web.

Backend. DEBIE’s backend consists of two
main modules: (1) the bias evaluation engine,
which computes the bias test scores (see §3.2), and
(2) the debiasing engine, which runs the word em-
bedding debiasing models (see §3.3). The backend
interacts with the data layer for retrieving data (bias
specifications and vectors from embedding spaces)
and its functionality is exposed via a RESTful API,
which offers endpoints for programmatically (i)
uploading and retrieving data as well as for (ii)
running bias evaluation and (iii) debiasing.

There are dedicated controllers and handlers
for each of this primary functionalities: vector re-
trieval, bias evaluation, and debiasing. These are
responsible for computing results and delivering
content to relevant web pages. The second group of
controllers and handlers is responsible for retriev-
ing data out of integrated and external embedding
spaces and for parsing and generating JSON data.
All bias measures and debiasing methods are im-
plemented as separate modules so that the platform
can be extended seamlessly with additional bias

95

measures and debiasing models. A new bias mea-
sure or a new debiasing model can be integrated by
simply adding the computation scripts (i.e., a func-
tion that implements the functionality) and adapt-
ing the responsible handler. The backend is purely
implemented in Python.

Frontend, Data Layer, and Server Layer. The
frontend is written in HTML and plain JavaScript,
and relies on the Bootstrap library.” The fetch
functionality is used for sending requests to the
RESTful API of the backend. For the visualization
of embedding spaces (see bottom part of Figure 2),
we rely on the the chart . js library.'?

Embedding spaces are stored as two files: (1)
the .vocab file is the serialized dictionary that maps
words to indices of the embedding matrix; (2) the
.vectors file is an embedding matrix (serialized 2D
numpy array) rows of which are the actual word
vectors. At the start of the web applicatiob, all bias
specifications and intergated embedding spaces are
fully loaded into the memory completely.

DEBIE is hosted on a Linux server, running De-

‘https://getbootstrap.com/
Yhttps://www.chartis.org/

Step 3.1 Selected Bias Specification

L WEAT T7 - Gender vs. Math

Choose methad(s):

Al ECT BAT WEAT K-Means++ SVM Classifier SimLex-999 Wordsim-353 I Evaluate I

For more information about the offered evaluation methods
Evaluation results:
ECT Score:
ECT P-Value:
BAT Score:
WEAT effect:size:
WEAT P-Valuez

K-Means+ + result:

I Continue with Debiasing I

Step 4: Debiasing
PRIp——

BAM GBDD BAMoGEDD GBDDoBAM
For more information sbout the ffered debiasing models

GBDD Debiasing Results:

Biased Embedding Space: Debiased Embedding Space:

Figure 2: DEBIE’S web UL

bian 10 as the operating system. The python WSGI-
server gunicorn is used to serve the RESTful
API. We opt for nginx as the web server for host-
ing the frontend and redirecting the API-requests
to the internal endpoints of the WSGI-server.

3.6 Accessibility: Interfaces

Users can interact with DEBIE through four dif-
ferent interfaces. The simplest way is by using
the provided web interface. For programmatic ac-
cess, we offer the RESTful-API accessible directly
via HTTP requests. As a third option, a desktop
version of the tool is available for download: this
tools runs completely offline and, depending on the
hardware, may perform faster. Finally, we offer a
command-line interface intended for shell usage.

Web User Interface. DEBIE is primarily imag-
ined as a web application with a full extendable
web user interface (see Figure 2). The web-UI en-
ables users to evaluate and debias with predefined
or custom bias specifications. Designed as a one-
page application, the web Ul guides the user via
five simple steps through the full process:

96

Step 1: Selection of the Embedding Space. In the
first step, the user has to select with which embed-
ding space to work. The users can select one of
three integrated embedding spaces (§3.4) uploaded
or their own pretrained vector space.

Step 2: Selection of the Bias Specification. The user
next chooses a bias specification: they can select
one of the integrated WEAT bias specifications or
define a bias specification of their own.

Step 3: Selection and Computation of the Bias
Tests. The user next selects bias measures/scores
(see §3.2) to be applied on the selected embedding
space given the selected bias specification. The
bias (and semantic similarity) scores are displayed
in a table (see the upper part of Figure 2) and can
also be exported as in the JSON format.

Step 4: Selection and Execution of Debiasing Al-
gorithms. The user can next choose to debias the
selected embedding space (Step 1) based on the
selected bias specification (Step 2). To this ef-
fect, the user can choose between GBDD, BAM,
or one of their compositions (GBDDoBAM or
BAMoGBDD). The debiased embeddings space
can be downloaded. To visualize the differences
between the original (biased) and debiased embed-
ding space, we visualize the 2D PCA-compressions
of the terms from the bias specification in both
spaces (see bottom part of Figure 2).

Step 5: Computation of Bias Tests on the Debiased
space. Finally, the user can evalute the effects of de-
biasing with the desired set of bias measures. This
is like Step 3, only now we subject to testing the
debiased instead of the original embedding space.

RESTful API. For programmatic access, we of-
fer a RESTful APIL. The API can deliver vector
representations of words, compute and fetch the
bias evaluation scores, as well as debiased word
embeddings based on a provided bias specifica-
tion. The API endpoints are accessible online.'!
API documentation is available in the swagger
format on the DEBIE website.!?

Desktop Application. We offer an adapted
offline-version of the web application providing
the same functionality, runnable on Windows OS.
The desktop app has been created with the python
module f1laskwebgui, using the source files of

Uhttp://debie.informatik.uni-mannheim.
de:8000/REST/

Phttp://debie.informatik.uni-mannheim.
de:8000/swagger/

the web application. The desktop application is
available both as a windows executable file (. exe)
and as a python script.

Command-line Interface. Finally, we expose
DEBIE’s functionality through a command-line in-
terface, intended for shell (e.g., bash) usage. We
employ the Python framework c1ick to parse the
command line arguments.

4 Ethical Considerations

Given the high sensitivity of the issue of bias in
text representations, we would like the reader to
consider the following three aspects.

(i) Our platform allows for measuring and mit-
igating biases based on bias specifications, which
need to be defined by the user. In actual deploy-
ment scenarios, those specifications need to be
designed with extreme care and the concrete so-
ciotechnical environment in mind. For instance, it
would be wrong to assume that by using one of the
predefined gender bias specifications provided with
this platform, all stereotypical gender associations
will be removed from the representation space. In
contrast, for each individual application scenario,
the user should make sure that the bias specification
matches the bias evaluation and debiasing intent.

(i) Though the user’s main role is to choose
appropriate bias specifications, we think it is impor-
tant that the user has enough technical proficiency
to understand potential issues of the provided mea-
sures and mitigation methods.

(iii) The gender bias specifications from previous
work provided with this platform only consider bias
between male and female term sets, i.e., they follow
a binary notion of gender. However, it is important
to keep in mind that gender is a spectrum. We fully
acknowledge the importance of the inclusion of
all gender identities, e.g., nonbinary, gender fluid,
polygender, etc., in language technologies.

5 Conclusion

We have presented DEBIE, an integrated platform
for measuring and attenuating implicit and explicit
biases in distributional word vector spaces. Via
four different interfaces, we enable fast and easy
access to a variety of bias measures and debiasing
methods, allowing users to experiment with arbi-
trary embedding spaces and bias specifications. We
hope DEBIE facilitates an exploration of a wider
set of human biases in language representations.

Acknowledgments

Anne Lauscher and Goran Glava$ are supported
by the Eliteprogramm of the Baden-Wiirttemberg
Stiftung (AGREE grant). We would like to thank
the anonymous reviewers for their helpful com-
ments.

References

David Arthur and Sergei Vassilvitskii. 2007. K-
means++: The advantages of careful seeding. In
Proceedings of SODA, pages 1027-1035.

Rachel Bellamy, Kuntal Dey, Michael Hind, Samuel
Hoffman, Stephanie Houde, Kalapriya Kannan,
Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, Seema Nagar, Karthikeyan
Natesan Ramamurthy, John Richards, Diptikalyan
Saha, Prasanna Sattigeri, Moninder Singh, Ramazon
Kush, and Yunfeng Zhang. 2018. Ai fairness 360:
An extensible toolkit for detecting, understanding,
and mitigating unwanted algorithmic bias.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. In Pro-
ceedings of the 58th Meeting of the Association for
Computational Linguistics, pages 5454-5476, On-
line. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135-146.

Tolga Bolukbasi, Kai Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? Debiasing word embeddings. pages 4356—
4364.

Shikha Bordia and Samuel Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Student Research Work-
shop, pages 7-15.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora necessarily contain human bi-
ases. Science, 356:183-186.

Sunipa Dev and Jeff Phillips. 2019. Attenuating bias
in word vectors. In Proceedings of Machine Learn-

ing Research, volume 89 of Proceedings of Machine
Learning Research, pages 879—-887. PMLR.

Catherine D’Ignazio and Lauren F Klein. 2020. The
power chapter. In Data Feminism. The MIT Press.

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-
banek, Douwe Kiela, and Jason Weston. 2020.
Queens are powerful too: Mitigating gender bias in
dialogue generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8173-8188, On-
line. Association for Computational Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406—
414.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):3635—
3644.

Goran Glavas, Robert Litschko, Sebastian Ruder, and
Ivan Vuli¢. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of ACL, pages 710-721.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
Pig: Debiasing Methods Cover up Systematic Gen-
der Biases in Word Embeddings But do not Remove
Them. In Proceedings of NAACL-HLT, pages 609—
614.

Zellig S. Harris. 1954. Distributional structure. Word,
10(23):146-162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665-695.

Anne Lauscher and Goran Glavas. 2019. Are We Con-
sistently Biased? Multidimensional Analysis of Bi-
ases in Distributional Word Vectors. pages 85-91.

Anne Lauscher, Goran Glavas, Simone Paolo Ponzetto,
and Ivan Vulié. 2020a. A general framework for im-
plicit and explicit debiasing of distributional word
vector spaces. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI),
pages 8131-8138.

Anne Lauscher, Rafik Takieddin, Simone Paolo
Ponzetto, and Goran Glavas. 2020b. AraWEAT:
Multidimensional analysis of biases in Arabic word
embeddings. In Proceedings of the Fifth Arabic
Natural Language Processing Workshop, pages 192—
199, Barcelona, Spain (Online). Association for
Computational Linguistics.

Katherine McCurdy and Oguz Serbetci. 2017. Gram-
matical gender associations outweigh topical gender
bias in crosslinguistic word embeddings. In Pro-
ceedings of WiNLP.

98

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NeurIPS, pages 3111-3119.

Moin Nadeem, Anna Bethke, and Siva Reddy.
2020. Stereoset: Measuring stereotypical bias
in pretrained language models. arXiv preprint
arXiv:2004.09456.

Brian A. Nosek, Anthony G. Greenwald, and
Mahzarin R. Banaji. 2002. Harvesting implicit
group attitudes and beliefs from a demonstration
web site. Group Dynamics, 6:101-115.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532—
1543.

Yusu Qian, Urwa Muaz, Ben Zhang, and Jaec Won
Hyun. 2019. Reducing gender bias in word-level
language models with a gender-equalizing loss func-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Stu-
dent Research Workshop, pages 223-228.

Samuel L. Smith, David H.P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In Proceedings of ICLR.

Kellie Webster, Xuezhi Wang, lan Tenney, Alex Beu-
tel, Emily Pitler, Ellie Pavlick, Jilin Chen, and Slav
Petrov. 2020. Measuring and reducing gendered
correlations in pre-trained models. arXiv preprint
arXiv:2010.06032.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender bias in contextualized word embeddings. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 629-634.

A Dashboard for Mitigating the COVID-19 Misinfodemic

Zhengyuan Zhu', Kevin Meng?, Josue Caraballo', Israa Jaradat!,
Xiao Shi!, Zeyu Zhang!, Farahnaz Akrami', Haojin Liao', Fatma Arslan’,
Damian Jimenez', Mohammed Samiul Saeef!, Paras Pathak', and Chengkai Li!

'The University of Texas at Arlington
*Massachusetts Institute of Technology

Abstract

This paper describes the current milestones
achieved in our ongoing project that aims
to understand the surveillance of, impact
of, and effective interventions against the
COVID-19 misinfodemic on Twitter. Specif-
ically, it introduces a public dashboard
which, in addition to displaying case counts
in an interactive map and a navigational
panel, also provides some unique features
not found in other places. Particularly, the
dashboard uses a curated catalog of COVID-
19 related facts and debunks of misinfor-
mation, and it displays the most prevalent
information from the catalog among Twit-
ter users in user-selected U.S. geographic
regions. The paper explains how to use
BERT-based models to match tweets with
the facts and misinformation and to detect
their stance towards such information. The
paper also discusses the results of prelim-
inary experiments on analyzing the spatio-
temporal spread of misinformation.

1 Introduction

Alongside the COVID-19 pandemic, there is a
raging global misinfodemic (Mian and Khan,
2020; Roozenbeek et al., 2020) just as deadly.
As fear grows, false information related to the
pandemic goes viral on social media and threat-
ens to affect an overwhelmed population. Such
misinformation misleads the public on how the
virus is transmitted, how authorities and people
are responding to the pandemic, as well as its
symptoms, treatments, and so on. This onslaught
exacerbates the vicious impact of the virus, as
the misinformation drowns out credible informa-
tion, interferes with measures to contain the out-
break, depletes resources needed by those at risk,
and overloads the health care system. Although

99

health misinformation is not new (Oyeyemi et al.,
2014), such a dangerous interplay between a pan-
demic and a misinfodemic is unprecedented. It
calls for studying not only the outbreak but also
its related misinformation; the fight on these two
fronts must go hand-in-hand.

This demo paper describes the current mile-
stones achieved in our ongoing project that aims
to understand the surveillance of, impact of, and
effective interventions against the COVID-19
misinfodemic. 1) For surveillance, we seek to
discover the patterns by which different types of
COVID-19 misinformation spread. 2) To under-
stand the impact of misinformation, we aim to
compare the spreading of the SARS-CoV-2 virus
and misinformation and derive their correlations.
3) To understand what types of interventions are
effective in containing misinformation, we will
contrast the spreading of misinformation before
and after debunking efforts. 4) To understand
whether the outcomes related to 1), 2) and 3) dif-
fer by geographical locations and demographic
groups, we will study the variability of misinfor-
mation and debunking efforts across geographi-
cal and demographic groups.

While we continue to pursue these directions,
we have built an online dashboard at https://
idir.uta.edu/covid-19/ to directly benefit the pub-
lic. A screencast video of the dashboard is at
bit.ly/3c6v5xf. The dashboard provides a map,
a navigation panel, and timeline charts for look-
ing up numbers of cases, deaths, and recoveries,
similar to a number of COVID-19 tracking dash-
boards. '?* However, our dashboard also pro-
vides several features not found in other places.

"https://www.covid19-trials.com/
Zhttps://coronavirus.jhu.edu/map.html
3https://www.cdc.gov/covid-data-tracker/index.html

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 99-105

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Figure 1: The user interface of the dashboard for mitigating the COVID-19 misinfodemic

1) It displays the most prevalent factual infor-
mation among Twitter users in any user-selected
U.S. geographic region. 2) The “factual infor-
mation” comes from a catalog that we manually
curated. It includes statements from authoritative
organizations, verdicts, debunks, and explana-
tions of (potentially false) factual claims from
fact-checking websites, and FAQs from credible
sources. The catalog’s entries are further orga-
nized into a taxonomy. For simplicity, we refer to
it as the catalog and taxonomy of COVID-19 facts
or just facts in ensuing discussion. 3) The dash-
board displays COVID-19 related tweets from
local authorities of user-selected geographic re-
gions. 4) It embeds a chatbot built specifically for
COVID-19 related questions. 5) It shows case-
statistics from several popular sources which
sometimes differ.

The codebase of the dashboard’s frontend,
backend, and data collection tools are open-
sourced at https://github.com/idirlab/covid19.
All collected data are at https://github.com/
idirlab/covid19data. Particularly, the cata-
log and taxonomy of facts are also available
through a SPARQL endpoint at https://cokn.org/
deliverables/7-covid19-kg/ and the correspond-
ing RDF dataset can be requested there.

What is particularly worth noting about the
underlying implementation of the dashboard is
the adaptation of state-of-the-art textual semantic
similarity and stance detection models. Tweets

are first passed through a claim-matching model,
which selects the tweets that semantically match
the facts in our catalog. Then, the stance detec-
tion model determines whether the tweets agree
with, disagree with, or merely discuss these facts.
This enables us to pinpoint pieces of misinforma-
tion (i.e., tweets that disagree with known facts)
and analyze their spread.

A few studies analyzed and quantified the
spread of COVID-19 misinformation on Twit-
ter (Kouzy et al., 2020; Memon and Carley, 2020;
Al-Rakhami and Al-Amri, 2020) and other social
media platforms (Brennen et al., 2020). However,
these studies conducted mostly manual inspec-
tion of small datasets, while our system automati-
cally sifts through millions of tweets and matches
tweets with our catalog of facts.

2 The Dashboard

Figure 1 shows the dashboard’s user interface,
with its components highlighted.

Geographic region selection panel (Compo-
nent 1). A user can select a specific country, a
U.S. state, or a U.S. county by using this panel
or the interactive map (Component 2). Once a
region is selected, the panel shows the counts
of confirmed cases, deaths and recovered cases
for the region in collapsed or expanded modes.
When a region is expanded by the user, counts
from all available sources are displayed; on the
other hand, if it is collapsed, only counts from

100

the default (which the user can customize) data
source are displayed. These sources do not pro-
vide identical numbers.

Interactive map (Component 2). On each
country and each U.S. state, a red circle is dis-
played, with an area size proportional to its num-
ber of confirmed cases. When a state is selected,
the circle is replaced with its counties’ polygons
in different shades of red, proportional to the
counties’ confirmed cases.

Timeline chart (Component 3). It plots the
counts of the selected region over time and can
be viewed in linear or logarithmic scale.

Panel of facts (Component 4). For the se-
lected region, this panel displays facts from our
catalog, and the distribution of people discussing,
agreeing, or disagreeing with them on Twitter. A
large number of people refuting these facts would
indicate wide spread of misinformation. To avoid
repeating misconceptions, the dashboard displays
facts from authoritative sources only.

Government tweets (Component 5). It dis-
plays COVID-19 related tweets in the past seven
days from officials of the user-selected geo-
graphic region. These tweets are from a curated
list of 3,744 Twitter handles that belong to gov-
ernments, officials, and public health authorities
at U.S. federal and state levels.

Chatbot (Component 6). This component
embeds the Jennifer Chatbot built by the New
Voices project of the National Academies of
Sciences, Engineering and Medicine (Li et al.,
2020), which was built specifically for answer-
ing COVID-19 related questions. As part of the
collaborative team behind this chatbot, we are
expanding it using the aforementioned catalog.

3 The Datasets

The dashboard uses the following three datasets.
1) Counts of confirmed cases, deaths, and re-
coveries. We collected these counts daily from
Johns Hopkins University, * the New York Times
(NYT) 3 and the COVID Tracking Project. ©
These sources provide statistics at various ge-
ographic granularities (country, state, county).
2) Tweets. We are using a collection of
approximately 250 million COVID-19 related

*https://github.com/CSSEGISandData/COVID- 19
Shttps://github.com/nytimes/covid- 19-data
®https://covidtracking.com/

tweets from January 1st, 2020 to May 16th, 2020,
obtained from (Banda et al., 2020) (version 10.0).
We removed tweets and Twitter handles (and their
tweets) that do not have location information, re-
sulting in 34.6 million remaining tweets. We then
randomly selected 10.4% of each month’s tweets,
leading to 3.6 million remaining tweets. We used
the OpenStreetMap (Quinion et al., 2020) API
to map the locations of Twitter accounts from
user-entered free text to U.S. county names. We
used the ArcGIS API 7 to map the locations of
tweets from longitude/latitude to counties.

3) A catalog and a taxonomy of COVID-19
related facts.

The manually curated catalog currently has
9,512 entries from 21 credible websites, includ-
ing statements from authoritative organizations
(e.g., WHO, CDC), verdicts, debunks, and ex-
planations of factual claims (of which the truth-
fulness varies) from fact-checking websites (e.g.,
the IFCN CoronaVirusFacts Alliance Database, 8
PolitiFact), and FAQs both from credible sources
(e.g., FDA, NYT) and a dataset curated by (Wei
et al., 2020).

We organized the entries in this catalog into
a taxonomy of categories, by integrating and
consolidating the available categories from a
number of source websites, placing entries from
other websites into these categories or creating
new categories, and organizing the categories
into a hierarchical structure based on their in-
clusion relationship. The taxonomy is as fol-
lows, in the format of {level-1 categories [level-
2 categories (level-3 categories)]}: °
{Animals, Basic Information [Causes, Definition, Dis-
ease Alongside, Recovery, Spreading, Symptoms, Test-
ing], Cases, Contribution, Diplomacy, Economics/Finance
[Crisis, Grants/Stimulus, Tax, Unemployment], Family
Preparation, Funeral, Government Control [Administra-
Staff), Law, Medical
Support, Military], Mental Health, Prevention [Actions

tion (Lockdown, Reopen,

to Prevent (Hand Hygiene, Isolation, Masks,

Social Distancing), Medication, Vaccines], Reli-
gion, Schools/Universities, Travel, Treatment [Medication,
Minor Symptom, Severe Symptom], Violence/Crime}.

We also stored the catalog and the taxonomy

https://developers.arcgis.com/python/guide/
reverse-geocoding/

8https://www.poynter.org/
ifcn-covid- 19-misinformation/

Not every level-1 or level-2 category has subcategories.

101

& —0 A
/' Closed & S > Th
e R
tweets matehing | | sentence @ @ agree
CBER_ embedding
model
: & Y
g‘@}i\‘gwmdueauh CD o*—e _Eesue \-fstanc.ewf
: ig.irgil.uzatmn . *—o similarity S detection —
authoritative organizations - BERT model
& et claim X
ot (XS l%atc,hﬁlg L, segt(ejr:l(_:e
FA?Qwebsltes BERT embedding @ O disagree
[romer @) —> model
fact-checking websites @ s J f P i WP T WON i M s
; =y

Figure 2: Matching tweets with facts and stance detection

Tweet Fact Taxonomy Similarity Stance
Categories

Coronavirus cannot be passed by There has been no evidence that pets such ~ Animals, 0.817 agree

dogs or cats but they can test posi- as dogs or cats can spread the coronavirus. ~ Spreading

tive.

More people die from the flu in the Right now, it appears that COVID-19, the = Cases 0.816 disagree

U.S. in 1 day than have died of the
Coronavirus across the world ever.

disease caused by the new coronavirus,
causes more cases of severe disease and

more deaths than the seasonal flu.

Table 1: Example results of matching tweets with facts and stance detection

as an RDF dataset, in which each entry of the cat-
alog is identified by a unique resource identifier
(URD). It is connected to a mediator node that rep-
resents the multiary relation associated with the
entry. For example, Figure 3 shows a question
about COVID-19, its answer and source, and the
lowest-level taxonomy nodes that the entry be-
longs to, all connected to a mediator node. This
RDF dataset, with 12 relations and 78,495 triples,
is published in four popular RDF formats—N-
Triples, Turtle, N3, and RDF/XML. Furthermore,
we have set up a SPARQL query endpoint at
https://cokn.org/deliverables/7-covid19-kg/ us-
ing OpenLink Virtuoso.'’

4 Matching Tweets with Facts and
Stance Detection

Given the catalog of COVID-19 related facts F
and the tweets 7', we first employ claim-matching
to locate a set of tweets t/ € T that discuss each
fact f € F. Next, we apply stance detection
on pairs p/ = {(t,f) | t € t/} to determine
whether each ¢ is agreeing with, disagreeing with,
or neutrally discussing f. Finally, aggregate re-
sults are displayed on Component 4 of the dash-
board to summarize the public’s view on each
fact. Figure 2 depicts the overall claim-matching

Ohttps://virtuoso.openlinksw.com/

and stance detection pipeline. For both tasks, we
employed Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019).
Table 1 shows some example results of claim
matching and stance detection.

How does COVID-19
type spread?
T question

/ Human coronaviruses

—answer_detail| typically spread through the

\ air by coughing and ...

source.

URI —URI>! mediator
node

lllinois Department of Public
Health

Figure 3: An entry of the catalog stored in RDF

Claim matching.

We generate sentence embeddings s’ and s/,
for t and f respectively, using the mean-tokens
pooling strategy in Sentence-BERT (Reimers and
Gurevych, 2019). The relevance between ¢ and f
is then calculated as:

St'Sf

Rt’f _
[> [Is 7]

(eY)
Given R"f, we model claim-matching as a rank-
ing task on the relevance between facts and
tweets. Thus, the output of this stage is t/ =
{t € T|R" > 6} for each fact f € F, where
the threshold € is 0.8 in our implementation.

102

Stance detection. Given t/, we detect the
stance that each tweet ¢ takes toward fact f.
There could be 3 classes of stance: agree (¢ sup-
ports f), discuss (¢ neutrally discusses f), and
disagree (t refutes f). For this task, we obtained
a pre-trained BERT .5, model ' and trained it
on the Fake-News Challenge Stage 1 (FNC-1)
dataset. '> We denote this model Stance-BERT.

We first pre-process p/ to conform with BERT
input conventions by 1) applying W (-), the Word-
Piece tokenizer (Wu et al., 2016), 2) applying
C(ay,az,...,ay), a function that concatenates
arguments in appearance order, and 3) insert-
ing specialized BERT tokens [CLS] and [SEP].
Since BERT has a maximum input length of
M = 512 and some facts can exceed this limit,
we propose a sliding-window approach inspired
by (Devlin et al., 2019) to form input x/:

x! = {{C(CLS], W (0), [SEP, W (f)ses.ies 411,
ser) jo<i< [y e} @

where S defines the distance between successive
windows and L = M — (|W(t)| + 3) is the se-
quence length available for each fact. If ¢ % S+ L
is an out-of-bounds index for W(f), the extra
space is padded using null tokens.

Each element w € x/ contains a set of win-
dows representing a tweet-fact pair. Each win-
dow w; € w is passed into Stance-BERT, which
returns probability distributions (each containing
3 entries, 1 for each class) y{; for each window.

Stance aggregation. For each fact f,
the stance detection results are accumu-
lated to generate scores Sé, where C €
{agree, discuss, disagree} that denote the per-
centage of tweets that agree, discuss, and dis-
agree with f: 13

> [argmaxo({gh, | wi € w}) = C]

[xf]

3

where o (-) is a function that averages the model’s
output scores for each class across all windows
of tweet-fact pair. The 3 final stance scores are
passed to the dashboard’s panel of facts (Compo-
nent 4) for display.
https://github.com/google-research/bert

Phttp://www.fakenewschallenge.org/
3We use the Iverson bracket: [P] = 1if P is true, else 0

5 [Evaluation and Results

5.1 Performance of Claim Matching

To evaluate the performance of the claim match-
ing component, we first created a Cartesian prod-
uct of the 3.6 million tweets with 500 “facts”
from the catalog (see Section 3 for description
of datasets), followed by randomly selecting 800
tweet-fact pairs from the Cartesian product. To
retain a balanced dataset, 400 pairs were drawn
from those pairs scored over 0.8 by the claim
matching component, and another 400 pairs were
drawn from the rest. To obtain the ground-truth
labels on these 800 pairs, we used three human
annotators. 183 pairs were labeled “matched”
(i.e., the tweet and the fact have matching top-
ics) and 617 pairs “unmatched”. Table 2 shows
the claim matching component’s performance
on these 800 pairs, measured by precision@k
and nDCG @k(normalized Discounted Cumula-
tive Gain at k). Both precision@k and nDCG@k
are metrics of ranking widely used in classifi-
cation problem, the order of top k prediction is
considered in nDCG @k but not in precision @k.

Metric @5 @10 @20 @50 @100
Precision 080 080 0.70 056 0.52
nDCG 062 072 078 0.81 0.83

Table 2: Performance of claim matching on the 800 tweet-
fact pairs

5.2 Performance of Stance-BERT

F1 score

Model - -

agree discuss disagree macro
Stance-BERTyindow (FNC-1) 0.65 0.45 0.84 0.65
Stance-BERT yyn(FNC-1) 0.66 0.41 0.82 0.63
(Xu et al., 2018)(FNC-1) 0.55 0.15 0.73 0.48

Stance-BERTyingow (COVID-19) 075 0.03 058 045

Table 3: Performance of Stance-BERT on the FNC-1 test
dataset and 200 matched tweet-fact pairs

Table 3 shows Stance-BERT’s performance on
the FNC-1 competition test dataset and our tweet-
fact pairs, using F1 scores for all 3 classes as
well as macro-F1. On FNC-1, we tested 2 vari-
ations of the same model: Stance-BERT indow>
which uses the sliding-window approach (Sec-
tion 4), and Stance-BERT,ync, @a model that trun-
cates/discards all inputs after M tokens but is
otherwise identical to Stance-BERT indow- Both
variants significantly outperformed the method

103

used in (Xu et al., 2018), one of the recent com-
petitive methods on FNC-1.

Note that FNC-1 also includes a fourth “un-
related” class that we discarded, since we al-
ready have a claim-matching component. Be-
cause other recent stance detection methods (Mo-
htarami et al., 2018; Fang et al., 2019) only re-
ported macro-F1 scores calculated using all four
classes including “unrelated”, we cannot report
a direct comparison with their methods. How-
ever, we argue that our macro-F1 of 0.65 remains
highly competitive. The model of (Xu et al.,
2018) achieved a 0.98 F1 score on “unrelated”,
which suggests that “unrelated” (i.e., separating
related and unrelated pairs) is far easier than the
other 3 classes (i.e., discerning between different
classes of related pairs). Given that Stance-BERT
significantly outperformed (Xu et al., 2018) on all
other 3 classes, it is plausible that Stance-BERT
will remain a top performer under all four classes.

To evaluate Stance-BERT’s performance on
our tweet-fact pairs, the three human annotators
produced ground-truth labels on another set of
481 randomly selected tweet-fact pairs. 200 pairs
are labeled as “matched”. These 200 pairs are
further labeled as “agree”/“discuss”/“disagree”,
in a distribution of 110/73/17 tweet-fact pairs.
Ultimately, we discovered that Stance-BERT per-
forms remarkably well on “agree” and “disagree”
classes but falters on “discuss”.

5.3 Misinformation Analysis

Monthly Cumulative Misinformation Count
10000

1000

100

Number of Misinformation Tweets

1 w
01-01-2020 02-01-2020 03-01-2020 04-01-2020 05-01-2020 05-17-2020

—e—United States United Kingdom India

Canada +-Australia Philippines

Figure 4: 6 countries with the most misinformation tweets

Figure 4 is the cumulative timeline for the top-
6 countries with the most COVID-19 misinfor-
mation tweets in the dataset. “Misinformation
tweets” refer to tweets that go against known
facts as judged by our stance detection model.

We also conducted a study on the correla-

tion between misinformation tweet counts and
COVID-19 case counts. We looked at the per-
centage of cases relative to a country’s popula-
tion size, and the percentage of misinformation
tweets relative to the total number of tweets from
a country. The Pearson correlation coefficients
between them are in Table 4. We find that the
number of misinformation tweets most positively
correlates with the number of confirmed cases.
In contrast, its correlation with the number of
recovered cases is weaker.

Country Confirm Death Recover
United States 0.763 0.738 0.712
United Kingdom 0.862 0.833 -
India 0.794 0.798 0.755
Canada 0.706 0.667 0.663
Australia 0.954 0.922 0.887
Philippines 0.720 0.696 0.618

Table 4: Correlation between the percentage of con-
firmed/deceased/recovered cases and the percentage of mis-
information tweets. The number of recovered cases in U.K.
after April 13th is missing from the data source.

Finally, we manually categorized the misin-
formation tweets based on the taxonomy (Sec-
tion 3). Table 5 lists the five most frequent cate-
gories of misinformation tweets. These five cat-
egories make up 49.9% of all misinformation
tweets, with the other 50.1% being spread out
over the other 33 categories.

Category Count Percentage
Definition 2503 15.1
Spreading 2118 12.7
Other 1450 8.7
Testing 1301 7.8
Disease Alongside 936 5.6
Total 8308 49.9

Table 5: Most frequent categories of misinformation tweets

6 Conclusion

This paper introduces an information dashboard
constructed in the context of our ongoing project
regarding the COVID-19 misinfodemic. Going
forward, we will focus on developing the dash-
board at scale, including more comprehensive
tweet collection and catalog discovery and collec-
tion. We will also introduce more functions into
the dashboard that are aligned with our project
goal of studying the surveillance of, impact of,
and intervention on COVID-19 misinfodemic.

104

References

Mabrook S Al-Rakhami and Atif M Al-Amri. 2020.
Lies kill, facts save: Detecting covid-19 misin-
formation in twitter. [EEE Access, 8:155961—
155970.

Juan M. Banda, Ramya Tekumalla, Guanyu Wang,
Jingyuan Yu, Tuo Liu, Yuning Ding, Katya Arte-
mova, Elena Tutubalin, and Gerardo Chowell.
2020. A large-scale COVID-19 twitter chatter
dataset for open scientific research - an interna-
tional collaboration.

J Scott Brennen, Felix M Simon, Philip N Howard,
and Rasmus Kleis Nielsen. 2020. Types, sources,
and claims of COVID-19 misinformation. Reuters
Institute.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language un-
derstanding. In NAACL, pages 4171-4186.

Wei Fang, Moin Nadeem, Mitra Mohtarami, and
James Glass. 2019. Neural multi-task learning for
stance prediction. In EMNLP Workshop on Fact
Extraction and Verification, pages 13—19.

Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem,
Molly B El Alam, Basil Karam, Elio Adib, Jabra
Zarka, Cindy Traboulsi, Elie W Akl, and Khalil
Baddour. 2020. Coronavirus goes viral: quanti-
fying the COVID-19 misinformation epidemic on
twitter. Cureus, 12(3).

Yunyao Li, Tyrone Grandison, Patricia Silveyra,
Ali Douraghy, Xinyu Guan, Thomas Kieselbach,
Chengkai Li, and Haiqi Zhang. 2020. Jennifer for
COVID-19: An nlp-powered chatbot built for the
people and by the people to combat misinforma-
tion. In ACL Workshop on Natural Language Pro-
cessing for COVID-19, pages 1-9.

Shahan Ali Memon and Kathleen M Carley. 2020.
Characterizing covid-19 misinformation commu-
nities using a novel twitter dataset. arXiv preprint
arXiv:2008.00791.

Areeb Mian and Shujhat Khan. 2020. Coronavirus:
the spread of misinformation. BMC medicine,
18(1):1-2.

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
Nakov, Lluis Marquez, and Alessandro Moschitti.
2018. Automatic stance detection using end-to-
end memory networks. In NAACL, pages 767—
776.

Sunday Oluwafemi Oyeyemi, Elia Gabarron, and
Rolf Wynn. 2014. Ebola, twitter, and misinforma-
tion: a dangerous combination?. BMJ, 349:g6178.

Brian Quinion, Sarah Hoffmann, and Marc T. Met-
ten. 2020. Nominatim: A search engine for open-
streetmap data.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In EMNLP-IJCNLP, pages 3973-3983.

Jon Roozenbeek, Claudia R Schneider, Sarah Dry-
hurst, John Kerr, Alexandra LJ Freeman, Gabriel
Recchia, Anne Marthe Van Der Bles, and Sander
Van Der Linden. 2020. Susceptibility to misinfor-
mation about covid-19 around the world. Royal
Society open science, 7(10):201199.

Jerry Wei, Chengyu Huang, Soroush Vosoughi, and
Jason Wei. 2020. What are people asking about
covid-19? a question classification dataset. arXiv
preprint arXiv:2005.12522.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Brian Xu, Mitra Mohtarami, and James Glass. 2018.
Adversarial domain adaptation for stance detec-
tion. In NeurIPS.

105

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

EasyTurk: A User-Friendly Interface for High-Quality
Linguistic Annotation with Amazon Mechanical Turk

Lorenzo Bocchi, Valentino Frasnelli
Dept. of Psychology and Cognitive Science

University of Trento
Rovereto (Trento), Italy

[name.surname]@studenti.unitn.it

Abstract

Amazon Mechanical Turk (AMT) has re-
cently become one of the most popular crowd-
sourcing platforms, allowing researchers from
all over the world to create linguistic datasets
quickly and at a relatively low cost. Amazon
provides both a web interface and an API for
AMT, but they are not very user-friendly and
miss some features that can be useful for NLP
researchers. In this paper, we present Easy-
Turk, a free tool that improves the potential of
Amazon Mechanical Turk by adding to it some
new features. The tool is free and released un-
der an open source license.

A video showing EasyTurk and its features is
available on YouTube.!

1 Introduction

In the last years, deep learning algorithms have
achieved state-of-the-art results in most NLP tasks
such as textual inference, machine translation, hate
speech detection (Socher et al., 2012). Despite their
accuracy, deep learning algorithms have a major
downside, i.e. they require large amounts of data to
be trained, making the data bottleneck issue even
more problematic than with other machine learn-
ing algorithms like SVM (Gheisari et al., 2017).
The need to leverage large amounts of manually
annotated data has become a major challenge for
the NLP community, since linguistic annotation
performed by domain experts is both expensive
and time-consuming. This explains why crowd-
sourcing platforms, offering access to a large pool
of potential annotators, have been successfully used
for the creation of annotated datasets.

Amazon Mechanical Turk (AMT) is probably
the most widely used platform of this kind, en-
abling the distribution of low-skill but difficult-to-
automate tasks to a network of humans who could

'"https://youtu.be/OmKJOrNpGSs

106

Alessio Palmero Aprosio
Digital Humanities Unit
Fondazione Bruno Kessler
Trento, Italy
aprosio@fbk.eu

work in parallel, when and where they prefer, for
a certain amount of money. The availability of a
lot of workers at the same time allows researchers
all over the world to annotate large datasets in a
fraction of the time and the money needed doing
it through the recruitment of domain experts. Fur-
thermore, crowd-workers are spread all over the
world, offering the possibility to have annotation
performed in different languages by native speak-
ers. In the last years, AMT turned out to be suc-
cessful in a wide range of NLP annotations, such as
named entities from e-mails (Lawson et al., 2010)
or medical texts (Yetisgen et al., 2010), subjectivity
word sense disambiguation (Akkaya et al., 2010),
image captioning (Rashtchian et al., 2010), and
much more.

Unfortunately, annotations obtained by AMT
workers are often of low quality, since: (i) they are
non-expert and therefore they can make mistakes
in annotations; (ii) some of them are spammers
who try to maximise the earnings by submitting
random answers as quickly as possible. Mitigat-
ing the effect of errors in datasets annotated by
crowd-workers is one of the biggest challenge in
using AMT. One mitigation strategy adopted by re-
searchers is usually to collect multiple annotations
of the same instance, and apply different methods
to deal with this information redundancy. Most of
the times, majority voting seems to be an appro-
priate strategy, i.e. the final label assigned to an
instance is the one provided by the majority of the
workers, even if they are not all in agreement. How-
ever, if spammers always choose the same answer
to finish the task quicker, this strategy would finally
assign a wrong label to the textual instance.

While past works have described how to suc-
cessfully deal with non-expertness (Callison-Burch,
2009; Mohammad and Turney, 2010), it is more
challenging to identify spammers. Some tools
(Hovy et al., 2013) deal with the problem offline,

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099

Proceedings of the 16th Conference of the European Chapter of the Associaffon for Computational Linguistics: System Demonstrations, pages 106-112
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

when the task is completed, trying to identify spam-
mers using redundant annotations and comparing
the answers given by all crowd-workers. In this
context, spammers are correctly identified, but they
are nevertheless paid because their annotations are
filtered out after the task is closed.

Another idea to find spammers is to use a gold
standard, a set of very easy-to-understand instances,
previously annotated by an expert, that a careful
worker should not miss. In this paradigm, when
a worker gives the wrong answer to a gold ques-
tion, one may infer that the annotator is trying to
cheat and should be blocked. The AMT API pro-
vide a way to do it automatically, but the feature
is not included in the web interface, therefore the
only way to get this result is by writing a program
(in Python, php, or any supported language) that
checks whether the gold instances have been an-
swered correctly or not.

In this paper, we describe EasyTurk, both a web
interface and a powerful API that tackles all these
issues and enhances the experience of using AMT.
The tool can aggregate more than one instance
of a task in a single page shown to the worker,
concealing also gold standard instances. Further-
more, EasyTurk can be configured to take an ac-
tion, e.g. block a worker when he or she misses
too many gold answers, marking the already-given
questions as not reliable. Finally, the software is
open source and its user-friendly interface has been
implemented using most recent guidelines for us-
ability and responsiveness.

2 Amazon Mechanical Turk

Amazon Mechanical Turk? is an online market-
place for hiring workers and submit to them atomic
tasks that are usually easy for humans but difficult
for machines. The atomic unit of work is called
Human Intelligent Task (HIT).

AMT has two kinds of users: requesters and
workers. The formers create the HITs (using the
API or the web interface) and upload them to the
Amazon servers, along with the fee that will pay for
each of them to be completed. The latters search
the HIT database, choose the preferred tasks and
complete them in exchange for monetary compen-
sation.

Requesters can restrict the range of workers al-
lowed to complete the task, based on demography,
school level, spoken languages, and so on. Some

http://www.mturk.com/

107

requirements are free for the requester (for example
the living country of the worker), but normally they
raise the price of the HITs. Requesters can also
assign custom qualifications to workers in order to
filter out them during the submission of the HITs
to the system.

The platform also provides an automatic mecha-
nism that allows multiple unique workers to com-
plete the same HIT. This is useful, for example in
NLP tasks, for which requesters usually need more
than one answer for each HIT, so that the majority
label can be selected, resulting in a higher-quality fi-
nal annotation thanks to the ‘wisdom of the crowd’.
Each annotation instance (a pair worker-HIT) is
called assignment.

Requesters have the option of rejecting the an-
swer of a particular worker, in which case they are
not paid. The above-described custom qualifica-
tions can be used to filter out, for a particular task,
workers who did not reach sufficient accuracy in
previous HITs. In specific cases, for example as a
consequence of particularly sloppy annotations, a
worker can be blocked and is not able to perform
HITs for the requester anymore.

One of the main issues with using AMT is that
some features are available only using the API,
while others can be used only in the web interface.
For example, through the web interface a requester
can upload a TSV file with the data to be annotated,
or select which qualifications the workers should
have to complete the HITs. These two features are
not available in the API, but one can automatise ac-
ceptance/rejection of the worker job only through
it. Given the above constraints, we developed Easy-
Turk so to allow non-skilled users to submit HITs
without using a specific programming language,
such as Python or Java, while using the features
available through APIs.

3 Description of EasyTurk

EasyTurk is composed of three modules: (i) the
web interface; (ii) the API; (iii) the server. Most
of the features included in EasyTurk are accessible
directly from the web interface, but are managed
by the server.

3.1 More annotations in one HIT

The original web interface of AMT has a power-
ful graphical editor for the templates, used by the
requester to display the data they want the worker
to annotate. After creating the template file, one

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

EasyTurk

€ Test experiment

Title:
Jelly Bean
Descriptic Shuffle base CSV data: © Yes O No

prova
Keywords: Golden data per HIT: 1

HIT settings

Lorem, ips
Creationd Shuffle gold CSV data: © Yes () No

2020-10-1

Home Workers Create Project Eb

_+ [Rl

X

zed help?

Action for the leftover records: Fill last HIT with previous training v

CSV statu: With these settings you'll have 20 HITs
Data: uplo:
Rows: 176

Gold: uplo:
Rows: 24

You'll be able to revert these changes and re-upload your files

.

Time allntted ner assinnment:

Figure 1: Selection box for mixing gold and unknown data.

can upload a text document with the data (usually
a CSV or XML file), and then AMT submits the
HITs (one per file record/line) to the workforce.

In NLP, it often happens that a task corresponds
to a binary assignment, meaning that an instance is
labeled with a value in the set true/false. Usually
researchers have a list of instances in one single
file (for example a JSON or CSV file). Submitting
the record one by one, one per HIT, would be more
expensive for the requester and time-consuming
for workers, because they would need to click the
confirm button after each instance annotation and
wait for the new HIT to load, even if it is just a
sentence or a short string.

In EasyTurk the requester can go beyond this
limitation easily, by creating a template with mul-
tiple slots for the data. Then, using a sequential
naming standard (for example, textl, text?2,
text3, etc.), the tool will automatically infer the
number of records to fill in the template.

3.2 Upload of a gold standard

In AMT, the requester has two options to check
the annotation accuracy. First, they can perform an
offline check (after the whole task has ended) using
the information obtained by majority voting (Hovy
et al., 2013). As an alternative, AMT provides a
mechanism to check the answer of a HIT against
a gold standard. Depending on the worker answer,
the system can accept or reject the HIT automati-
cally. As outlined in Section 2, this is one of the

features available only in the API, and missing in
the web interface.

In EasyTurk, the requester can optionally add a
document with some additional data containing the
correct annotation. When populating the template,
they can select how many gold instances need to
be added for each HIT (see Figure 1), and decide
- among a set of available options - the behavior
of the system when the worker misses the gold
instance(s).

In order to avoid that a worker is blocked or
restricted for having missed a single answer, the
system can check the accuracy of the workers on a
span of HITs, and then take action after the worker
completed at least that span (see Figure 2).

3.3 Automatic block/restrict the workers

When a worker misses a considerable amount of
gold instances, the requester can decide what will
be the behavior of the tool. Figure 2 shows the
range of possible options. First of all, one has to
decide whether to accept or reject the assignment.
In the second case, the worker can be restricted or
blocked. With restriction, it is intended that this
worker cannot participate any more in the tasks of
the current project, but they are allowed to com-
plete HITs when a new project from the same re-
quester is submitted to AMT. EasyTurk uses AMT
qualifications to this purpose.> When a worker is

3A qualification is a custom property that a requester can
assign to one or more workers. In EasyTurk, each project is as-

108

3

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

[NC.U‘_,S:E, EasyTurk

& Test experiment

Title:

Jelly Bean
Description:

prova

Keywords:

Lorem, ipsum, dolor,
Creation date: Field:
2020-10-1515:09:28 oo

Set layout for the project

text#
CSV status

Data: uploaded
Rows: 176

Gold: uploaded
Rows: 24

How to convert answers:

If ansi#_yyes = true then

If ans#_y.yes = false then

HITs status:
20 HITs created.

Reject if gold is wrong and extend HITto 1

Home Workers Create Project [

-]

Status:
HITs created. Ready to set the layout.

Need help?

Value:

Annof

Annof

Sorry, you did not answer correctly to the gold question(s).

Accept if gold is right

Restrict + the worker if he/she spends less than 30

[L2LE-Ge | the worker if he/she misclassifies the gold
Block
Reject pending assignments from blocked users

Description v

sentence ~

tation = 1

L]

tation = 0

assignments (min 1). Reason of reject:

seconds on a HIT.

3

timeson 10 consecutive HITs.

Proceed Cancel

Figure 2: Selection box for managing the behavior of the tool depending on the workers’ answers.

blocked, instead, they will not see any more any
HIT submitted by the requester. Both properties
(restriction and block) are reversible.

To limit spammers (see Section 1), a worker can
be blocked/restricted also when HITs are being sub-
mitted by a worker too fast, showing for example
that the worker is not even reading the instances
before annotation.

3.4 User management

When running EasyTurk, the user is asked to pro-
vide an administration password. With this cre-
dentials, the administrator can create new users,
each of which having its own username and pass-
word. Each user is then linked to its AMT API keys,
allowing a single instance of EasyTurk to serve dif-
ferent users having different AMT accounts. A flag
can be set to switch a user to work on the Sandbox
version of AMT.

sociated with a qualification: when a requester wants to restrict
a worker, the tool assigns the qualification to the worker, and
consequently the task is hidden in the AMT worker console
for them.

109

3.5 The web interface

The web interface of EasyTurk is written using
VueJS.* The structure of the website is build with
Tailwind CSS?, the design is inspired by Material
Design.°

Through the interface, requesters can group
HITs into projects, and follow all the steps from the
project definition to the visualisation of the results.

Project definition. The general information about
the project (description, reward, time alotted
for the workers, layout, qualifications needed,
and so on) are given and a project is created.

Data insertion. In this phase, a file with the data
is uploaded to the system (plus an additional
file, if needed, for the gold standard, see Sec-
tion 3.2).

HITSs generation. The HITs are generated by
grouping the data (depending on how many
items the requester wants for each HIT) and
optionally mixing it with the gold standard
(Figure 1).

*nttps://vuejs.org/

Shttps://tailwindcss.com/
*https://material.io/

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Condition management. The requester sets the
tool behaviour in specific cases, for instance
when a worker misses the gold standard (Fig-
ure 2).

HITs submission. The HITs are submitted to
AMT in bunches of predetermined size (set
by the requester).

HITs monitoring. The dot matrix interface gives
an overview on how the task is going (see
Figure 3). In this phase, the requester can
control all the aspects of the annotations: the
approval rate, the speed, the workers, and so
on.

Retrieval of Results. The resulting annotations
(even when the gold is missed or the HIT is
rejected) can be visualised and downloaded in
JSON format.

In developing EasyTurk, we wanted to stress the
importance of having a readable overview of how
the annotation is going, from the HITs submission
to the retrieval of the results. We found the dot ma-
trix chart’ to be an effective solution to achieve this
goal (see Figure 3). Each dot represents a HIT and
is painted with a different color depending on how
many assignments have been rejected or whether
the gold instances have been missed. Different col-
orization strategies have been chosen to highlight
the different status of the HITs: unassigned, pend-
ing, completed. Using this interface, a considerable
presence of red dots may point out that the gold
standard was ambiguous, allowing the requester to
tune it better in the future.

3.6 The API

An API supporting the web interface and written in
php is included in the EasyTurk package. It can be
used also as a standalone program to integrate the
features of the tool into third-part packages. Since
the web interface relies on this API to work prop-
erly, it is mandatory to install it to take advantage
of the web interface.

3.7 The server

The last part of EasyTurk is a server script, written
in php. It performs all the tasks needed to update
the information based on the AMT APIs (for ex-
ample, the status of a HIT or the triggering of the
actions described in Section 3.3).

"https://datascientist.reviews/
dot-matrix—-chart/

110

EasyTurk can also be configured to work with
Amazon Simple Notification Service® (SNS), so
that most of the information about the HITs can be
updated almost in real time.

4 Release

EasyTurk is completely free, available on GitHub,”
and released as open-source under the Apache 2.0
license.'? The web interface is developed in VuelS
and needs NodeJS!! to be compiled and launched.

Both the API and the server are written in php'?
and need a machine with at least version 7 of the in-
terpreter and MySQL server'? installed. The server
can be run as a service and does not need other
particular dependencies to work. The API, instead,
must be configured to work in a web server (such
as Apache!* or Nginx!d).

5 Related Work

Since 2005, when AMT was released, an increasing
number of researchers has used this platform for re-
search purposes. In particular, the NLP community
has taken advantage of AMT to bring linguistic
resources to a new scale, also with the support of
Amazon. For example, in 2010 Amazon sponsored
a workshop during the NAACL conference, where
researchers were given 100 dollars of credit on
the platform to run an annotation task and answer
some meta-research questions, such as how non-
expert workers can perform complex annotations,
or how can one ensure high quality annotations
from crowd-sourced contributors.

Some past works have dealt with the above-
mentioned issues related to crowd-worker quality.
In (Hovy et al., 2013), the authors present a soft-
ware that, after a round of annotations using AMT,
tries to understand which workers perform better
and, consequently, which are the best annotations
to consider and which to discard when there is re-
dundancy, in an unsupervised fashion. In (Wais
et al., 2010), the efficiency of AMT is analysed
over 100,000 local business listings for an online
directory. A mechanism for filtering low-quality
workers in order to build a reliable workforce that

8https://aws.amazon.com/it/sns/
‘https://github.com/dhfbk/easyturk
Ohttps://www.apache.org/licenses
Uhttps://nodejs.org/it/
Phttps://www.php.net/
Bhttps://www.mysql.com/
“https://httpd.apache.org/
Bhttps://www.nginx.com/

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

:@ EasyTurk

Home Workers Create Project [=

You are using the sandbox version

€ HITs results (project ID: 62)

View: Dot Matrix v

vVeeevevVvVvVvVvVvVvVvevvvVvew

Legend

Completed HITs

More rejected More approved

More approved

Incomplete HITs

New HITs

——
More rejected

Figure 3: The dot matrix showing the HITs.

has high accuracy is described, to understand better
the problem of quality control in crowdsourcing
systems.

Some attempts have also been done to improve
the potential of AMT by writing new frameworks
on top of the AMT API. CloudResearch, formerly
TurkPrime, (Litman et al., 2017) was born for this
purpose and at the time of launch was free to use
for researchers. Now it is part of a bigger company
and is not free any more. LingoTurk (Pusse et al.,
2016) is an open-source, freely available crowd-
sourcing client/server system aimed primarily at
psycholinguistic experimentation, where custom
and specialized user interfaces are required but not
supported by popular crowdsourcing task manage-
ment platforms. OpenMTurk (Feeney et al., 2018)
is a free and open-source administration tool for
managing research studies using AMT. TurKit (Lit-
tle et al., 2010) is a toolkit for prototyping and
exploring truly algorithmic human computation,
while maintaining a straightforward imperative pro-
gramming style. Turktools (Erlewine and Kotek,
2016) is a set of free, open-source tools that allow
linguists to post studies online and simplify the
interaction with AMT. TurkGate'® provides better
control and verification of workers’ access to an
external site and allows the grouping of HITs, so
that workers may only access one survey within a
group. AMTIL,!7 developed at the Allen Institute
for Al is a command-line interface for AMT that

https://github.com/gideongoldin/
TurkGate
"https://github.com/allenai/amti

111

emphasizes the ability to quickly iterate on and run
reproducible crowdsourcing experiments.

Finally, AMT is integrated to add human annota-
tions in more complex tools. Qurk (Marcus et al.,
2011), for example, is a query system for managing
annotation workflows.

6 Conclusion and Future Work

In this paper, we presented EasyTurk, a free pro-
gram that improves the potential of Amazon Me-
chanical Turk by adding some features which are
not present out-of-the-box. In particular, the re-
quester has now the ability to insert multiple in-
stances of the task in a single HIT, and option-
ally mix them with a gold standard, that can be
used to track the accuracy of the workers. Finally,
when some events are triggered (for example a
worker answering too quickly to a HIT or missing
the gold standard), EasyTurk can be programmed
to take an action such as reject the assignment, or
block/restrict the worker.

The tool is free and open source, and can be
downloaded from GitHub and installed locally.

In the future, we are planning to implement new
features. For example, the system can intercept
spammers using also a particular pattern of answers
(for example a set of HIT where the same answer
is always selected). We also would like to include
in EasyTurk a collection of templates for basic
annotations (for example, yes/no, a set of possible
answers, a free text, and so on), so that requesters
do not need any more to create their template on
the AMT website.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References

Cem Akkaya, Alexander Conrad, Janyce Wiebe, and
Rada Mihalcea. 2010. Amazon mechanical turk for
subjectivity word sense disambiguation. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pages 195-203, Los Angeles. Association
for Computational Linguistics.

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using amazon’s me-
chanical turk. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language
Processing: Volume I - Volume 1, EMNLP °09, page
286-295, USA. Association for Computational Lin-
guistics.

Michael Yoshitaka Erlewine and Hadas Kotek. 2016.
A streamlined approach to online linguistic surveys.
Natural Language & Linguistic Theory, 34(2):481—
495.

Justin Feeney, Gordon Pennycook, and Matthew Box-
tel. 2018. OpenMTurk: An Open-Source Admin-
istration Tool for Designing Robust MTurk Studies.
SSRN Electronic Journal.

M. Gheisari, G. Wang, and M. Z. A. Bhuiyan. 2017. A
survey on deep learning in big data. In 2017 IEEE
International Conference on Computational Science
and Engineering (CSE) and IEEE International Con-
ference on Embedded and Ubiquitous Computing
(EUC), volume 2, pages 173-180.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120-1130, Atlanta, Georgia.
Association for Computational Linguistics.

Nolan Lawson, Kevin Eustice, Mike Perkowitz, and
Meliha Yetisgen-Yildiz. 2010. Annotating large
email datasets for named entity recognition with me-
chanical turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 71—
79, Los Angeles. Association for Computational Lin-
guistics.

Leib Litman, Jonathan Robinson, and Tzvi Abberbock.
2017. TurkPrime.com: A versatile crowdsourcing
data acquisition platform for the behavioral sciences.
Behavior Research Methods, 49(2):433-442.

Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2010. Turkit: Human computa-
tion algorithms on mechanical turk. In Proceedings
of the 23nd Annual ACM Symposium on User In-
terface Software and Technology, UIST *10, page
57-66, New York, NY, USA. Association for Com-
puting Machinery.

112

Adam Marcus, Eugene Wu, Samuel Madden, and
Robert Miller. 2011. Crowdsourced databases:
Query processing with people. pages 211-214.

Saif Mohammad and Peter Turney. 2010. Emotions
evoked by common words and phrases: Using me-
chanical turk to create an emotion lexicon. In Pro-
ceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Gener-
ation of Emotion in Text, pages 26-34, Los Angeles,
CA. Association for Computational Linguistics.

Florian Pusse, Asad Sayeed, and Vera Demberg. 2016.
LingoTurk: managing crowdsourced tasks for psy-
cholinguistics. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 57-61, San Diego, California. Association for
Computational Linguistics.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and
Julia Hockenmaier. 2010. Collecting image annota-
tions using Amazon’s mechanical turk. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pages 139-147, Los Angeles. Association
for Computational Linguistics.

Richard Socher, Yoshua Bengio, and Christopher D.
Manning. 2012. Deep learning for nlp (without
magic). In Tutorial Abstracts of ACL 2012, ACL
12, page 5, USA. Association for Computational
Linguistics.

Paul Wais, Shivaram Lingamneni, Duncan Cook, Ja-
son Fennell, Benjamin Goldenberg, Daniel Lubarov,
David Marin, and Hari Simons. 2010. Towards
building a high-quality workforce with mechanical
turk. In In Proc. NIPS Workshop on Computational
Social Science and the Wisdom of Crowds.

Meliha Yetisgen, Imre Solti, Fei Xia, and Scott Hal-
grim. 2010. Preliminary experience with amazon’s
mechanical turk for annotating medical named enti-
ties.

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

ASAD: Arabic Social media Analytics and unDerstanding

Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali, Kareem Darwish
Qatar Computing Research Institute
Hamad bin Khalifa University
Doha, Qatar
{sahassan2, hmubarak, aabdelali, kdarwish}@hbku.edu.qga

Abstract

This system demonstration paper describes the
Arabic Social media Analysis and unDerstand-
ing (ASAD) toolkit, which is a suite of seven
individual modules that allows users to deter-
mine dialects, sentiment, news category, offen-
siveness, hate speech, adult content, and spam
in Arabic tweets!. The suite is made available
through a web API and a web interface where
users can enter text or upload files.

1 Introduction

Since Arabic is spoken across a vast region, the
Arabic Twittersphere presents a valuable scope into
social and linguistic phenomena, such as the mul-
titude of dialects being used across different re-
gions. The Arabic Social Media and unDerstanding
(ASAD) suite 2, which we present herein, offers
valuable tools for exploring such phenomena and
for the automated processing of Arabic social me-
dia texts. Specifically, ASAD offers dialect identifi-
cation, sentiment analysis, news category detection,
offensive language detection, including hate speech
and vulgar language, and spam detection. These
tools are valuable for many downstream NLP ap-
plication. For example, dialect identification can
help improve author profiling and machine trans-
lation (Abdelali et al., 2020). Sentiment analysis
can aid in quantifying public opinions (Abu Farha
and Magdy, 2019). Detecting news categories can
aid in content analysis. Further, offensive language
and spam detection can help identify potentially
malicious content on social media. Although there
has been a growing interest in analyzing Arabic
social media, there is a deficiency in publicly avail-
able tools or such tools are not integrated into one
framework or toolkit. For example, we are not

"We will add more functionalities in the future.
’Demonstration: https://www.youtube.com/
watch?v=Boe_JYWK7cM

113

aware of any publicly available systems for offen-
sive language, hate speech, adult content, or spam.
Similarly, ADIDA (Obeid et al., 2019) and CAMeL
(Obeid et al., 2020) dialect identification systems
were not trained with Twitter data. Thus, ASAD
fills an important gap in the Arabic social media
analysis space. For ease of use, we make ASAD
available via an i) online interface where users can
enter text or upload files, and ii) web APIs that
accept POST requests, making ASAD accessible
from any programming language.

During the development of ASAD, we weighed
different trade-off between effectiveness and effi-
ciency to achieve competitive results at low compu-
tational costs. Thus, ASAD utilizes Support Vector
Machine (SVM) classification for six out of the
seven modules. As we show later, with the excep-
tion of dialect identification, we achieve results that
are comparable or slightly lower than deep neural
network models (DNN), namely fine-tuned BERT,
while being significantly more efficient with no
need for GPUs. Due to a larger difference in per-
formance, we deploy a fine-tuned BERT model for
dialect identification only. We hope that ASAD will
aid researchers, analysts, and system integrators in
incorporating Arabic social media analytics and
understanding into their models and applications.
We also hope that ASAD will motivate researchers
to build similar suites for other languages.

2 Related Work

Analysis of Arabic social media has gained much
recent interest. Offensive language and hate
speech detection have yielded datasets, shared tasks
(Mubarak et al., 2020b; Zampieri et al., 2020),
and strong systems based on machine learning
and contextual embedding models (Hassan et al.,
2020a,b). Sentiment analysis is a well addressed
problem yielding datasets (Elmadany et al., 2018)

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 113—118

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

and systems based on and deep learning techniques
(Abu Farha and Magdy, 2019) among others. Fine-
tuned BERT models have been used for identifying
categories of news posts on social media (Chowd-
hury et al., 2020). Adult content and spam detec-
tion have been relatively less explored with the
focus mainly on creating resources (Alshehri et al.,
2018; Al Twairesh et al., 2016; Mubarak et al.,
2017, 2021, 2020a). Dialect ID has been the focus
of the MADAR project (Bouamor et al., 2019) and
other works (Abdelali et al., 2020; Abdul-Mageed
et al., 2020; Zaidan and Callison-Burch, 2011).

Despite the abundance of literature in the afore-
mentioned topics, there has been very little effort
toward making tools available for public use. Most
of the tools available in Arabic NLP tasks concen-
trate on NLP tasks such as segmentation, parsing,
lemmatization, and POS tagging (Pasha et al., 2014;
Abdelali et al., 2016; Darwish and Mubarak, 2016;
Darwish et al., 2014). Along with text processing
tools, CAMeL Tools (Obeid et al., 2020) allows
sentiment analysis and dialect ID via a Python pack-
age. ADIDA (Obeid et al., 2019) is a web interface
for dialect ID. The dialect ID systems of CAMeL
Tools and ADIDA are based a parallel corpus of 25
Arabic city dialects in the travel domain.

3 Datasets

Dialect ID: We use the QADI dataset containing
dialectal tweets from 18 countries (Abdelali et al.,
2020). The training set contains 540K tweets auto-
matically tagged for dialect and the test set contains
3.3K manually annotated tweets by native speakers
from the 18 countries.

Sentiment Analysis: We use the ArSAS dataset
(Elmadany et al., 2018) that contains 21K tweets
that are labeled as Positive, Negative, Mixed or
Neutral. We merge the Mixed and Neutral classes
together (resulting in three classes) and split the
data into 80/20 training and test splits.

News Categorization We use an in-house anno-
tated dataset consisting of 30K news items from
Aljazeera channel®. 80% of the data are used for
training and 20% are used for testing. These news
are manually annotated for different categories,
namely: politics, economy, sports, culture-art, etc.

Offensive Language Detection: We use data
of OffensEval 2020 shared task (Zampieri et al.,

3 .
www.aljazeera.net

114

2020). The data consists of 8K tweets for training
and 2K tweets tweets for testing that were manually
annotated with whether they are offensive or not.

Hate Speech Detection: There are limited pub-
licly available data for Arabic hate speech detection
(Mubarak et al., 2020b). We use a publicly avail-
able dataset* that consists of tweet IDs annotated
for whether they contain hate speech or not. Ig-
noring tweets that were not available at download
time, we end up with 6.9K tweets.> We use 80% of
the data for training and 20% for testing.

Adult Content Detection: We use the dataset
presented in Mubarak et al. (2021). The data con-
tains 50K tweets split into 80% for training and
20% for testing. Around 6K tweets (12% of all
tweets) are manually verified to contain adult con-
tent. The rest are random tweets that are assumed
not contain adult material since the percentage of
adult content in tweets is very small.

Spam Detection: We use the dataset presented
in Mubarak et al. (2020a). The dataset contains
9.8K tweets from 80 spam accounts (manually ver-
ified) that post spam tweets, along with 86K ran-
dom tweets for training. The test set contains 2.7K
tweets from 20 spam accounts (manually verified)
that post spam tweets along with 25.6K random
tweets. The assumption is that tweets from spam
accounts are spam and that the vast majority of ran-
dom tweets are not spam, because the percentage
of spam is very small.

4 Classification Models

Some state-of-the-art (SOTA) techniques use com-
plex models, typically DNN models, to achieve the
best results. For ASAD, we want to have models
that are small in size and easy to deploy while pro-
viding good results. To this end, we compare per-
formances of fine-tuned BERT models and SVMs
with character n-gram vectors weighted by term
frequency-inverse document frequency (tf-idf) as
features. As we show, the SVM models we em-
ploy are competitive with SOTA DNN models for
majority of the modules of ASAD. The range of
n-gram can influence the size of models and their
performance. For each component in our suite, we
experimented with different ranges of n-gram and
calculated model size along with respective perfor-
mance. Table 1 illustrates this study for offensive

“https://github.com/raghadsh/Arabic-Hate-speech
SWe plan to merge other datasets in future.

Classifier | Features | Size (classifier + vectorizer) | Acc% P R F1
SVM WI[1-3] 30.7 MB 86.6 | 789 | 82.6 | 80.5
SVM C[1-3] 3.9MB 91.2 | 88.8 | 82.4 | 85.0
SVM C[2-4] 14.5 MB 91.6 | 89.2 | 83.4 | 85.8
SVM C[2-5] 37.5 MB 92.0 | 89.1 | 85.1 | 86.9
SVM C[2-6] 73.4 MB 91.8 | 87.6 | 86.4 | 87.0
SVM C[2-7] 120.5 MB 91.8 | 869 | 88.1 | 87.4

Table 1: Comparison of size vs performance on offensiveness detection. Ideal setting is bolded.

Module Classes | Classifier | Features | Acc% P R F1 | BERT F1
Dialect ID 18 SVM C[2-4] 545 | 60.9 | 546 | 54.1 60.6
Sentiment 3 SVM C[1-3] 755 | 74.6 | 732 | 73.7 75.8
News Category 16 SVM C[2-4] 842 | 573 | 541 | 54.8 55.9
Offensiveness 2 SVM C[1-3] 91.2 | 88.8 | 824 | 85.0 86.6
Hate Speech 2 SVM C[2-4] 79.1 | 744 | 762 | 75.2 75.1
Adult Content 2 SVM C[1-3] 954 |91.9 | 85.79 | 88.5 88.1
Spam 2 SVM C[1-3] 994 | 993 | 973 | 98.3 98.9

Table 2: Performance of different ASAD modules compared to fine-tuned BERT models.

language detection (C and W refer to character
and word, [a-b] denotes n-gram ranging from a
to b. P, R and F1 stand for macro-averaged preci-
sion, recall and F1 respectively). We can see that
going from an n-gram range of C[1-3] to C[2-7] in-
creases model size (classifier + vectorizer) from 3.9
MB to 120.5 MB while improving the F1 score by
2.4. Although C[2-7] is a better system, C[1-3] is
more suitable for deployment due to its small size.
Table 2 lists performance of SVMs version com-
pared to using BERT. When comparing to BERT
models, we fine-tuned AraBERT(Antoun et al.,
2020), a BERT-based model, pre-trained on Arabic
news articles and Arabic Wikipedia. We fine-tune
AraBERT by adding a fully-connected dense layer
followed by a softmax classifier, minimizing the
binary cross-entropy loss function for the training
data. We use the PyTorch® implementation by Hug-
gingFace’ as it provides pre-trained weights and
vocabulary. Aside from dialect ID, SVM models
either beat BERT models or are within 1-2% away.
We suspect that the SVM models were competitive
because they were trained on Twitter data as op-
posed to BERT, which is trained on more formal
text. For dialect ID, we opt to use the fine-tuned
AraBERT model because it outperforms SVMs by
a larger margin of 6.5%.

*https://pytorch.org/
"https://github.com/huggingface/
transformers

115

5 Interface

Design The ASAD web interface is available at:
http://asad.qcri.org/

The user can select any of the modules from the
tabs and test the performance on random samples
and classify them to easily understand the different
modules. The user can type a text to be classified.
The classification results appear in a table so that
earlier results can be referred to. We recognize that
users may want to classify many tweets in one go
without having to type them one at a time. To allow
this, the users can upload a text file. Each line is
classified by our system and users can download a
file that contains predicted class and class probabil-
ities. To prevent excessive usage, we limit allowed
files to have at most 100 lines. We also use Google
reCaptcha V23 to prevent bots from abusing our
file upload system. Figure 1 shows the common
layout for all components except for Dialect ID.
For Dialect ID, we use a map to visualize results.
To this end, we provide a heatmap showing the
distribution of probabilities for different dialects.
This allows users to easily determine which part
of the world the input text is likely to come from.
Figure 2 illustrates layout for dialect ID. We also
allow users to send feedback to us. This will help
us improve ASAD in the future.

$https://developers.google.com/
recaptcha/

ASAD: Arabic Social media Analytics and unDerstanding

Dialect Sentiment News Category

Ay L el A b P> oty e o)l s s @ <LFSURL

I'm not a robot

oA
Teme

Offensive Language

Enter Arabic text or upload file for offensiveness detection. Disclaimer: Samples may contain offensiveness.

Upload Arabic text file. Input should be separated by newline. File can contain at most 100 lines.

Choose File | No file chosen

Adult Content

@«

Q Random Sample

Hate Speech Spam

Q, Classify file content

Offensive?

ol me iy b 5ELL L Gl L4 S L URL | OFF: 55%, NOT: 45%

il S e S B DSl s

1 i b iy b S sy 5onsQ | OFF: 97%, NOT: 3%

el 2 o)l R

NOT: 100%, OFF: 0%

Text

Hate speech?

25l Pkl gdat il gl JU 0 Baa | HS: 71%, NOT: 29%

Text

Adult content?

138 g e Jlat ol It 5@ @ 1 e Znd a0 | ADULT: 100%, NOT: 0%

Text

Spam?

llall Wi g el A (s f Gl A0S 825y el 8 53 30) U sl il) Aoy i) CLat 45 o e il @) s A g lis o Juas)

SPAM: 100%, NOT: 0%

Gl)y iVl y

Text Sentiment
26503) Al S it 55 il) i | POS: 71%, NEUT/MIXED: 27%, NEG: 2%
g Y g o 8 08,20 b gl y k30 i e 8 Sy 0l ol e s s all s a3 30 20 | NEG: 48%, NEUT/MIXED: 35%, POS: 17%
Text News Category

8 il Y e a3 3 (5305 330000 £l Akal) 713081 o sl) g el il 8 e e A At ebel) A0S g s

disasters: 79%, society: 6%, politics: 2%,
Others:13%

Figure 1: ASAD interface for Offensiveness module (top half) and outputs of other modules (lower half)

Enter Arabic text or upload file for dialect identification.

A s i g S A et 2Kl e g i jla gl

1eCAPTCHA
Priacy - Tems.

I'm not a robot

Upload Arabic text file. Input should be separated by newline. File can contain at most 100 lines.

Choose File | No file chosen

Dialect Probabilities: KW: 87%, QA: 6%, BH: 2%, Others: 3%

Q, Classify file content

Figure 2: ASAD interface for Dialect ID module

Implementation We use Flask®, a lightweight
web application framework for backend develop-
ment. Input from the user is first transformed into
n-gram vectors using tf-idf vectorizer and then
are passed to the classifiers (described in Section
4). The classifiers return predicted labels along-
side probabilities of different classes. The class
probabilities were calculated using Platt calibration
(Platt, 1999). We use scikit-learn'? to train all the

https://palletsprojects.com/p/flask/
Ohttps://scikit-learn.org/stable/index.
html

116

SVM classifiers and vectorizers. We use javascript
for functionality at frontend and for communica-
tion between the frontend and the backend. To
display probabilities on a map for the dialect ID
module, we use the heatmap layer plugin'' with
leaflet.js'? and OpenStreetMap!>.

"https://www.patrick-wied.at/static/
heatmapjs/plugin-leaflet—-layer.html

Phttps://leafletis.com/

Bhttps://www.openstreetmap.org/#map=8/
25.322/51.197

Module API URL Body of request
Dialect ID https://asad.qcri.org.com/dialect

Sentiment https://asad.qgcri.org/sentiment

News Category | https://asad.qcri.org/news KEY : text
Offensiveness https://asad.gcri.org/offensive VALUE : arabic_text
Hate Speech https://asad.qgcri.org/hate_speech

Adult Content https://asad.qgcri.org/adult

Spam https://asad.qgcri.org/spam

Table 3: API endpoints for ASAD

Figure 3: Example usage of ASAD Dialect ID API

Web API To facilitate using ASAD from differ-
ent programming languages, we provide Web APIs
via POST requests. Table 3 lists available API
routes and Figure 3 illustrates example usage. Re-
sponse from ASAD contains predicted class and
class probabilities.

6 Conclusion

We presented ASAD, a system that can be used
for analysis of tweets in multiple ways. Using one
system, users can detect offensive language, hate
speech, sentiment, news category, adult content,
spam, and also identify dialects. For the ease of
usage, our system can be both accessed via Web
APIs and an online interface. In the future, we plan
to release ASAD through the pip Python packaging
tool.

References

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and
Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11-16, San Diego, California. Asso-
ciation for Computational Linguistics.

Ahmed Abdelali, Hamdy Mubarak, Younes Samih,
Sabit Hassan, and Kareem Darwish. 2020. Ara-
bic dialect identification in the wild. ArXiv,
abs/2005.06557.

117

Muhammad Abdul-Mageed, Chiyu Zhang, Houda
Bouamor, and Nizar Habash. 2020. Nadi 2020: The
first nuanced arabic dialect identification shared task.
In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 97—-110.

Ibrahim Abu Farha and Walid Magdy. 2019. Mazajak:
An online Arabic sentiment analyser. In Proceed-
ings of the Fourth Arabic Natural Language Process-
ing Workshop, pages 192—-198, Florence, Italy. Asso-
ciation for Computational Linguistics.

Nora Al Twairesh, Mawaheb Al Tuwaijri, Afnan
Al Moammar, and Sarah Al Humoud. 2016. Arabic
spam detection in twitter. In The 2nd Workshop on
Arabic Corpora and Processing Tools 2016 Theme:
Social Media, page 38.

Ali Alshehri, El Moatez Billah Nagoudi, Hassan
Alhuzali, and Muhammad Abdul-Mageed. 2018.
Think before your click: Data and models for adult
content in arabic twitter.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In Proceedings of The 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, pages 9-15.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The MADAR shared task on Arabic fine-
grained dialect identification. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop, pages 199-207, Florence, Italy. Association
for Computational Linguistics.

Shammur Absar Chowdhury, Ahmed Abdelali, Ka-
reem Darwish, Jung Soon-Gyo, Joni Salminen, and
Bernard J. Jansen. 2020. Improving Arabic text cate-
gorization using transformer training diversification.

In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 226-236, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Kareem Darwish, Ahmed Abdelali, and Hamdy
Mubarak. 2014. Using stem-templates to improve
arabic pos and gender/number tagging. In LREC,
pages 2926-2931. Citeseer.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa:
A new fast and accurate arabic word segmenter. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1070-1074.

AbdelRahim A. Elmadany, Hamdy Mubarak, and
Walid Magdy. 2018. An arabic speech-act and sen-
timent corpus of tweets. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). European
Language Resources Association (ELRA). The 3rd
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, OSACT3 ; Conference date: 08-05-
2018.

Sabit Hassan, Younes Samih, Hamdy Mubarak, and
Ahmed Abdelali. 2020a. ALT at SemEval-2020
task 12: Arabic and English offensive language iden-
tification in social media. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
1891-1897, Barcelona (online). International Com-
mittee for Computational Linguistics.

Sabit Hassan, Younes Samih, Hamdy Mubarak, Ahmed
Abdelali, Ammar Rashed, and Shammur Absar
Chowdhury. 2020b. ALT submission for OSACT
shared task on offensive language detection. In Pro-
ceedings of the 4th Workshop on Open-Source Ara-
bic Corpora and Processing Tools, with a Shared
Task on Offensive Language Detection, pages 61-65,
Marseille, France. European Language Resource As-
sociation.

Hamdy Mubarak, Ahmed Abdelali, Sabit Hassan, and
Kareem Darwish. 2020a. Spam detection on ara-
bic twitter. In Social Informatics, pages 237-251,
Cham. Springer International Publishing.

Hamdy Mubarak, Kareem Darwish, and Walid Magdy.
2017. Abusive language detection on arabic social
media. In Proceedings of the First Workshop on Abu-
sive Language Online, pages 52—56.

Hamdy Mubarak, Kareem Darwish, Walid Magdy,
Tamer Elsayed, and Hend Al-Khalifa. 2020b.
Overview of osact4 arabic offensive language detec-
tion shared task. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection.

Hamdy Mubarak, Sabit Hassan, and Ahmed Abdelali.
2021. Adult content detection on arabic twitter:
Analysis and experiments. In Proceedings of the

118

Sixth Arabic Natural Language Processing Work-
shop.

Ossama Obeid, Mohammad Salameh, Houda Bouamor,
and Nizar Habash. 2019. ADIDA: Automatic di-
alect identification for Arabic. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 6—11, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash.
2020. CAMeL tools: An open source python toolkit
for Arabic natural language processing. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 7022-7032, Marseille,
France. European Language Resources Association.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool
for morphological analysis and disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 1094-1101, Reykjavik, Ice-
land. European Languages Resources Association
(ELRA).

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In ADVANCES IN LARGE MAR-
GIN CLASSIFIERS, pages 61-74. MIT Press.

Omar F Zaidan and Chris Callison-Burch. 2011. The
Arabic Online Commentary Dataset: an Annotated
Dataset of Informal Arabic With High Dialectal Con-
tent. In Proceedings of the Conference of the Asso-
ciation for Computational Linguistics (ACL), pages
37-41.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Cagr1 Coltekin.
2020. SemEval-2020 Task 12: Multilingual Offen-
sive Language Identification in Social Media (Offen-
sEval 2020). In Proceedings of SemEval.

CoCo-EXx: A Tool for Linking Concepts from Texts to ConceptNet

Maria Becker, Katharina Korfhage, and Anette Frank
Department of Computational Linguistics, Heidelberg University, Germany

(mbecker, korfhage,

Abstract

In this paper we present COCO-EX, a tool
for Extracting Concepts from texts and link-
ing them to the ConceptNet knowledge graph.
CoCo-EX extracts meaningful concepts from
natural language texts and maps them to con-
junct concept nodes in ConceptNet, utilizing
the maximum of relational information stored
in the ConceptNet knowledge graph. CoCo-
EX takes into account the challenging charac-
teristics of ConceptNet, namely that — unlike
conventional knowledge graphs — nodes are
represented as non-canonicalized, free-form
text. This means that i) concepts are not nor-
malized; ii) they often consist of several differ-
ent, nested phrase types; and iii) many of them
are uninformative, over-specific, or misspelled.
A commonly used shortcut to circumvent these
problems is to apply string matching. We com-
pare COCO0-EX to this method and show that
CoCo0-EX enables the extraction of meaning-
ful, important rather than overspecific or unin-
formative concepts, and allows to assess more
relational information stored in the knowledge
graph. !

1 Introduction

ConceptNet (Speer et al., 2017) is a semantic net-
work which contains general commonsense facts
about the world, e.g. Birds can fly or Comput-
ers are used for sending e-mails (Liebermann,
2008). It originates from the crowdsourcing project
Open Mind Common Sense (Speer et al., 2008)
that acquired commonsense knowledge from con-
tributions over the web. The current version also
includes expert-created resources such as Word-
Net (Fellbaum, 1998) and JMDict (Breen, 2004),
other crowdsourced resources such as Wiktionary,

'We provide a demo video
youtube.com/watch?v=bgqVhE2vRI9A&feature=
youtu.be) and the code (https://github.com/
Heidelberg—-NLP/CoCo-Ex) for COCO-EX.

(https://www.

119

frank)@cl.uni-heidelberg.de

knowledge obtained through games with a pur-
pose such as Verbosity, and automatically extracted
knowledge (cf. Speer et al. (2008)). Knowledge
facts in ConceptNet are represented as triples, e.g.
[dog IS A ,domestic animal]. The current version,
ConceptNet 5, comprises 37 relations, such as
USEDFOR, ISA, PARTOF, or LOCATEDAT.
ConceptNet has been proven a useful resource
of background knowledge for various NLP down-
stream tasks, and is thus widely used, e.g., for
reading comprehension (Mihaylov and Frank,
2018), machine comprehension (Wang et al., 2018;
Gonziélez et al., 2018), dialog modelling (Young
et al., 2018), argument classification (Paul et al.,
2020), textual entailment (Weissenborn et al.,
2018), question answering (Ostermann et al., 2018)
or for explaining sentiment (Paul and Frank, 2019).
As opposed to conventional knowledge bases
such as NELL (Carlson et al., 2010), Freebase
(Bollacker et al., 2008), or YAGO (Nickel et al.,
2012), the nodes in ConceptNet are represented as
non-canonicalized, free-form text. This means that
(I) concept nodes are not normalized: e.g. bake
cake, bake cakes, baking cake, and baking cakes
are represented as distinct nodes; likewise bin bag,
binbag, bin bags, and bin-bag are separate nodes
in ConceptNet. (II) concept nodes often consist of
multi-word expressions, which can be very long
and complex. Often they consist of several nested
phrase types, e.g., buying the ingredients of the
recipe, or a friend was celebrating a birthday. (III)
Since large parts of ConceptNet have been crowd-
sourced, it contains noise (e.g., typos), uninfor-
mative concepts (e.g., there, it’s), or very specific
concepts (e.g., the second concept in the triple:
[compute, HASPROP,more complex than pencil)).
These specific properties lead to a larger amount
of nodes and a substantially sparser graph com-
pared to conventional knowledge bases. This in
turn is challenging for tasks such as knowledge

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 119-126

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

base completion (cf. Li et al. (2016); Saito et al.
(2018); Bosselut et al. (2019); Malaviya et al.
(2020)); the semantic representation of nodes and
edges (Speer and Lowry-Duda, 2017); or the learn-
ing of new relations (dos Santos et al., 2015; Becker
et al., 2019; Trisedya et al., 2019).

Moreover, non-canonicalized nodes become
challenging when merging knowledge bases, as
in Faralli et al. (2020), who introduce a graph
database merging multiple hypernymy graphs ex-
tracted from ConceptNet, DBpedia, WebIsAGraph,
WordNet, and Wikipedia. They find that only 25%
of the edges connect nodes from ConceptNet to
other databases, which can be traced back to the
fact that ConceptNet nodes are non-canonicalized,
as opposed to common knowledge bases.

Finally, free-form concept nodes become prob-
lematic when we aim to project a ConceptNet
subgraph from natural language texts by mapping
phrases from natural language text to nodes in Con-
ceptNet. In recent approaches, simple string match-
ing has been applied to perform such a mapping
(e.g. Lin et al. (2019); Wang et al. (2020)). Given
the non-normalized nature of the concepts in Con-
ceptNet, this can, however, result in an incomplete
and noisy mapping: e.g., if the word “brains” oc-
curs in a text, it can be mapped to the Concept-
Net node brains (which is connected by 131 edges
within ConceptNet), but not to brain (which is con-
nected by 1799 edges). Therefore, a lot of rela-
tional knowledge stored in ConceptNet gets lost
when mapping natural language text to concepts in
ConceptNet via string matching. Moreover, since
ConceptNet contains many nodes that don’t rep-
resent meaningful concepts (e.g. yes, there, it’s,
the), simple string matching can lead to the extrac-
tion of concepts that will most likely be useless for
downstream applications.

Motivated by these observations, we built a Con-
cept Extraction Tool for ConceptNet, CoCo-Ex,
which we present in this paper. COCO-EX is a
tool written in Python 3.6 that selects meaningful
concepts, possibly consisting of multiple tokens
from natural language texts; it maps them to a col-
lection of concept nodes in ConceptNet, utilizing
the maximum of relational information stored in
the knowledge graph. It is thus perfectly suited for
identifying and extracting concepts from natural
language texts and mapping them to ConceptNet,
e.g., to project knowledge subgraphs from texts
(Paul and Frank, 2019), or for detecting and classi-

fying knowledge relations instantiated within texts
(Becker et al., 2019).

We describe our Concept Extraction Tool COCo-
EX in Section 2. In Section 3 we evaluate the bene-
fits of COC0-EX in a practical application scenario,
comparing it to simple string matching, by evalu-
ating the retrieved concepts and their connectivity
both automatically and manually. We conclude
with a summary and results in Section 4.

2 CoCo-Ex: Extracting Concepts from
Text and Mapping them to ConceptNet

CoCo0-EX is a pipeline implementation compris-
ing several stages as shown in Figure 1.

In Step 1, we extract candidate phrases from a
given text, which we preprocess in Step 2. In Step
3, we map the preprocessed phrases to ConceptNet
concepts, which we preprocess in the same manner:
We first create a dictionary based on ConceptNet,
where we gather all concepts that are conceptually
related (that is, referring to a similar or the same
entity or event), but represented as distinct nodes.
In this dictionary we then look up the preprocessed
candidate phrases and get all ConceptNet nodes
which contain them. In order to avoid obtaining
conceptually unrelated nodes, in Step 4 we estab-
lish a method that allows us to filter out nodes that
are not similar enough to the candidate phrase using
similarity metrics and vector space representations.

Step 1: Extracting Candidate Phrase Types.
We start by extracting candidate phrases from a
given text using the Stanford Constituency parser
(Mi and Huang, 2015). We extract noun phrases,
verb phrases and adjective phrases.> We find that
some verb phrases are very long and specific and
therefore unlikely to find exact matches in Concept-
Net (e.g., “be sorted into different wheelie bins”).
Yet, ConceptNet concepts often consist of general
verb-object phrases, such as walk the dog; cook
dinner; bake a cake. To accommodate for this, we
create, for every verbal phrase we extract from the
text, additional versions (i.e., chunks) that exclude
subordinated prepositional phrases and/or noun
phrases (e.g., for “be sorted into different wheelie
bins” we additionally extract “be sorted into” and
“be sorted”). Addressing the fact that nodes in Con-
ceptNet are of different lengths and often consist

2We extract leaves (= tokens) of all subtrees that have
one of the following phrase types or POS-tags: "NP’, *VP’,
*ADIJP’, °11’, CJIR’, °JIS’, NN, ’NNS’, "NNP’, "NNPS’,
’VB’, ’VBG’, ’VBD’, "VBN’, ’VBP’, ’'VBZ’.

120

STEP 1 STE

Input Sentence

[Our [neighbor]]
[walks [his
[lovely Jdog]]l]
to [the [park]]
[every
[Sunday]].

- our neighbor

- neiﬁ(hbor

- walks his lovely dog
- his lovely dog

- Iéwelydog

- o%
- walks dog
- thekpark

- lovely di
- dog
- walk doy

- every Sunday - park

unday - Sunday

Cndidate
Phrases

- neighbor

P2

- walk lovely dog

og

8

STEP 3 STEP 4

Phrases to CN Mapping to CN

Dictionary

ConceptNet Dictionary
- neighbor: {neighbor,

nsighbour, neighbors,
all of my rieighbors...J

- neighbor, neighbour,
neighbors

- lovely dog, lovely
ogs

dog:

- do% dodgs,ado

- E/a a dog, walk the
o]

- park, parks
- Sunéay

dogs, walking a Hog,
Ralkthadas e
 lovely: -

Figure 1: Our pipeline for extracting and mapping phrases from texts to nodes in ConceptNet.

of several nested phrases, we keep all the original
complex verbal phrases; the reduced chunks; and
the split-off nested, subordinated phrases, which
we again split into chunks (here: “different wheelie

LR N3

bins”, “wheelie bins”, and ’bins”).

Step 2: Preprocessing Candidate Phrase Types
and ConceptNet Nodes. Next, we preprocess
the candidate phrases we extracted from the text
to prepare the mapping in Step 3. We apply spacy
(Honnibal and Montani, 2017) to lemmatize the
candidate phrases extracted from the texts, and re-
move articles, pronouns, adverbs, conjunctions, in-
terjections and punctuation. The very same process
we apply in Step 3 to nodes in ConceptNet, which
are not normalized, in order to build a dictionary
from ConceptNet.

Step 3: Matching Candidate Phrase Types to
a Dictionary Based on ConceptNet. We then
map the preprocessed phrases to the preprocessed
ConceptNet concepts as follows: We create a dic-
tionary based on ConceptNet where we collect all
concepts that are conceptually related — in the sense
that they involve at least one common content word
— but are represented as distinct nodes in Concept-
Net. L.e., we aim to subsume, e.g., dog, dogs, nice
dog, and my neighbour’s dog under one entry in the
dictionary (cf. Figure 2). In our dictionary, keys
are lemmatized words contained in concept node
phrases (e.g. (dog) for the concept my dog), and
the corresponding value assigned to a key is a list
of all ConcepNet nodes that contain this lemma
(e.g. dog, dogs, my dog, my neigbor’s dog), as de-
termined by the lemmatization of the nodes (see
Step 2 for the applied process). Therefore, in our
dictionary all ConceptNet nodes that contain the
same lemma, the lemma of the key, are clustered
together in one entry. Note that we lemmatize the
ConcepNet nodes only for the purpose of mapping
and clustering, while they remain unchanged (in
their original form and inflection) as values in the

121

dictionary. I.e., we compare a key (lemma) to the
lemmatized version of the concepts, and include all
nodes, or concept phrases in their original, inflected
form, that contain this lemma.

An example of how we create an entry in the
dictionary is given in Figure 2 and Figure 3: for
the key (dog), all conceptually related nodes are
retrieved from ConceptNet (Figure 2) by matching
the (lemmatized) key and the lemmatized Concept-
Net concepts (Figure 3, left side). All the retrieved
ConceptNet nodes that contain the key lemma in
their lemmatized form are stored as the key’s values
(middle of Figure 3). In case the lemmatized candi-
date phrase from the text contains further lemmas,
we apply the same procedure for each of these, and
construct additional entries, if they have not yet
been created and stored.

Using this dictionary we are now able to assess
the maximum of relational information stored in the
ConceptNet knowledge graph for a given candidate
phrase from a text, since it allows us to jointly look
up the in- and outgoing edges of all values (nodes)
assigned to the same key, e.g., [dogs,ISA,domestic
animal]; [dog,HASPROPERTY nice]; ..) (Figure
3, right-hand side). In case a candidate phrase
contains multiple lemmas, we collect the union
of ConceptNet nodes defined for the respective
lemmas (keys) as their values, and apply a filtering
step, which we describe below, to select the concept
nodes that best correspond to the complex phrase.

Specifically, when looking up extracted can-
didate phrases that contain a single lemma (e.g.
(dog)), we consider the complete list of nodes
stored in the dictionary for that lemma (key) —
that is, all concepts containing (inflected versions
of) (dog), including also multiword phrases which
are linked with other keys. When looking up ex-
tracted candidate phrases that contain more than
one lemma (e.g. “walk the dog”), we obtain sets
of ConceptNet nodes (values) that are defined for
each (non-stopword) lemma (key) — here: (dog)

- AN
N
nicedog)
2

Figure 2: Collecting conceptually related nodes in Con-
ceptNet, here: for the phrase ”the dog”.

and (walk) — and retrieve all ConceptNet nodes
from their respective list of values. From these
sets, instead of building their union, we construct
their intersection, which yields the set of phrases
from all keys’ values that contain the maximum of
lemmas contained in the candidate phrase.

For our example “walk the dog”, we would ob-
tain the two lemmas (walk) and (dog), together
with their values:

(walk) — walk, walks, walking, walking home,
walking a dog, long walk, walk the dog, ... ; and

(dog) — dog, dogs, nice dog, my neigbor’s dog,
walking a dog, walk the dog, ...;

and extract walking a dog and walk the dog that
are contained as values in both keys.

During the mapping process that collects values
(ConceptNet concepts) for the lemmatized keys of
candidate phrases, we are also resolving ambigui-
ties. E.g., the forms fly or flies can be either a noun
or a verb. We resolve this ambiguity by comparing
the POS tags obtained during preprocessing the ex-
tracted candidate phrases to the POS tags that are
associated with concepts in ConceptNet.? Specifi-
cally, we retrieve POS information for the extracted
candidate phrases by applying the POS tagger im-
plemented in spacy (Honnibal and Montani, 2017)
on the sentence level, while for ConceptNet nodes
we assess the POS labels available as metadata. In
case we find several concepts with the same sur-
face form but different POS tags in ConceptNet
(e.g. fly/noun and fly/verb), we use the POS anno-
tations from the extracted candidate phrases and
from ConceptNet tags to restrict the mapping to
matching POS, hence we do not include any con-
cepts with conflicting POS information in the list

3We find POS information for a majority of concepts con-
tained in ConceptNet, as used in specific tuples. In cases where
this information is not given, we do not apply any filtering.

122

Relational knowledge
retrievable from CN

Lemmatized CN nodes CN dictionary entry

control the house)

>
2 <dog> [dogs, IsA, domestic animal)
— [dog, HasProperty, nice]

- dog
Z5959]% E dogs [dog, CapableOf, bark]
el i o doo 2| dog [leash, UsedFor, dog]

nice dog - nice dog & | nice do [children, Desires, nice dog]

my neighbor’s dog =2 g PN 9

> neighbor dog < | my neighbor’s dog [my neighbor’s dog, UsedFor,

eighbor dog Ei

I}
>

Figure 3: Example of the ConceptNet Dictionary en-
try for (dog). Left: lemmatized ConceptNet nodes
(grey) that contain (dog) (underlined); middle: CN dic-
tionary entry (containing the original CN nodes); right:
relational knowledge (in- and outgoing edges for each
value (CN node) assigned to the key) which can be re-
trieved from ConceptNet based on the dictionary entry.

of values for the phrase’s keys.

To summarize, the dictionary we obtain from
Step 3 allows us to look up concepts for any pre-
processed candidate phrases, and obtain from it
all ConceptNet nodes which contain them or in-
flected versions of them. In case of multiple lem-
mas contained in a candidate phrase, we retrieve
all nodes that contain all lemmas included in the
given phrase, by computing an intersection over the
values associated with all keys (lemmas) evoked
by the phrase.* Since we lemmatize both the Con-
ceptNet nodes and the extracted candidate phrases
as described above, we maximize the number of
matches, and hence, the associated ConceptNet re-
lation tuples, while selecting maximally specific
nodes. At the same time, since we construct chun-
ked phrases from the extracted concepts, we also al-
low for more constrained matches (limited, e.g., to
single lemmata) with equally constrained Concept-
Net concepts, preventing over-specific phrases and
an ensuing loss of recall. Finally, we apply POS fil-
tering, and hence avoid the retrieval of ConceptNet
concepts that do not match the POS category of the
concepts mentioned in the candidate phrase, rely-
ing on the sentential context of the phrase candidate
for disambiguation.

Step 4: Constraining the Mapping to Concept-
Net Concepts. While in Step 3 we constrain the
selected concept nodes by intersection in case the
phrase candidate contains multiple lemmata, we
still obtain many ConceptNet nodes when mapping
short phrases containing a single content word to
ConceptNet, since we retrieve all nodes that in-
clude the lemma of the candidate phrase. In prac-
tice, this yields a huge set of concepts that contain

“This holds as long as the lemmas identified in the textual
phrases can be identified within ConceptNet’s concept nodes.

not only this lemma, but many other content words
not present in the candidate phrase — possibly con-
ceptually unrelated nodes that we want to omit. For
example, if the candidate phrase is “dog”, we map
it to the ConceptNet nodes dog and dogs, but also
conceptually not strictly related nodes such as feed-
ing my dogs, dogs are my favourite animals, it’s
raining cats and dogs, etc. We therefore establish a
method that allows us to filter out nodes that are not
similar enough to the candidate phrase, and hence
are assumed to be conceptually unrelated, which
we describe in the following.

We filter the nodes (values) for each lemma (key)
by calculating the similarity between the Concept-
Net concepts and the extracted candidate phrase.
We calculate similarity in terms of length (by token
or char length) and in terms of semantic similarity
(using word embeddings and similarity metrics).
We experimented with different similarity metrics:
we tried Dice Coefficient (Sgrensen, 1948), Jac-
card Coefficient (Jaccard, 1902), Minimum Edit
Distance, Word Mover’s Distance (Kusner et al.,
2015), and Cosine Distance, with different similar-
ity thresholds. For the metrics that require word
representations in vector space (Word Mover’s Dis-
tance and and Cosine Distance), we tried differ-
ent embeddings (Numberbatch (Speer et al., 2017),
Word2Vec trained on GoogleNews (Mikolov et al.,
2013), and GloVe (Pennington et al., 2014)), where
we compute representations for multiword terms
by averaging their embeddings. We also consider
differences in phrase lengths: here we compare the
length of the ConceptNet nodes’ concept phrases to
the length of the candidate phrase — by number of
tokens and of characters. E.g. when comparing the
candidate phrase “my dog” to the nodes (a) dogs
and (b) many dogs, we obtain for (a) a difference
in the number of tokens by 1 and of characters by
1, and for (b) in the number of tokens by 0 and of
characters by 3.

We evaluated the output of several configurations
manually in terms of how well the filtered nodes fit
the extracted candidate phrase, and found the fol-
lowing configurations to yield the highest coverage
and lowest noise: we allow for a maximum token
length difference of 1 and/or a maximum character
difference of 10, and a minimum Dice coefficient
of 0.85. The other configurations are implemented
as well (as command line parameters), so users can
experiment with different settings easily.

123

‘ Str-Match CoCo-Ex

CommonsenseQA Questions 99,217 88,631
Answers 106,681 116,941
OpenBookQA Questions 38,415 38,485
Answers 53,748 61,313

Table 1: Number of concepts linked to ConceptNet
by simple string matching vs. using CoOCo-EX. Com-
monsenseQA contains 12,247 questions with 5 answer
choices each, and OpenBookQA provides 6,000 4-way
multiple-choice questions.

3 Applications

Recent approaches that map natural language text
to nodes in ConceptNet apply simple string match-
ing. Wang et al. (2020) for example use Concept-
Net in order to retrieve multi-hop knowledge paths
as background information for improving the task
of question answering. They map concepts that ap-
pear in questions and answers from the two bench-
mark datasets, CommonsenseQA (Talmor et al.,
2019) and OpenBookQA (Mihaylov et al., 2018),
to ConceptNet using plain string matching.

Irrespective of the question answering task, we
want to evaluate the two methods of linking con-
cepts from texts to ConceptNet (plain string match-
ing vs. COC0-EX) by comparing the number of
concepts that could be retrieved from ConceptNet
by both methods, respectively; and by evaluating
the quality of the retrieved concepts, with regard
to their coverage and informativity, as well as the
amount of utilized relational knowledge from the
ConceptNet knowledge graph.

We reimplement the string matching method and
make it comparable to COC0O-EX by retrieving all
noun phrases, verb phrases and adjective phrases
and their nested phrases (as we do for CoCo-
EX). Additionally, as in COC0-EX, we filter these
phrases by removing articles, pronouns, adverbs,
conjunctions, interjections and punctuation, and
keep the original phrases and the chunked versions.

The counts of concepts retrieved by simple
string matching vs. using COC0-EX are displayed
in Table 1. We find that for the CommonsenseQA
dataset, more concepts are linked to ConceptNet
from the questions when using string matching,
while with COC0-EX we can link more concepts
from the answers (Table 1). For OpenBookQA, the
number of extracted concepts for the questions are
similar for both methods, while again we can link
more concepts from the answers with COC0-EX.

For evaluating concept quality, we set up a

Str-Matching | CoCo-EX

CommonsenseQA

Coverage (binary)

Ratio of Informative (Wanted) Concepts (total and %)
Connecting Edges of Informative Concepts (total/avg-question)

17 of 25 (68%)
152 of 220 (69%)
151,526/6,061

20 of 25 (80%)
190 of 192 (99%)
185,663/7,427

OpenBookQA

Coverage (binary)

Ratio of Informative (Wanted) Concepts (total and %)
Connecting Edges of Informative Concepts (total/avg-question)

16 of 25 (64%)
92 of 148 (62%)
91,938/3,678

14 of 25 (56%)
104 of 145 (72%)
110,039/4,402

Table 2: Manual evaluation of linked concepts from 25 questions for each dataset. For each question, our annotators
evaluated if all meaningful concepts were extracted (Coverage; in a binary evaluation setup yes/no); and how many
of the extracted concepts are informative (wanted) (Ratio wanted/wanted+unwanted) . For all informative (wanted)
concepts, we then looked up the number of edges connecting these nodes in ConceptNet (in- and outgoing edges).

small annotation experiment where we provided
our annotators with 50 questions randomly sampled
from CommonsenseQA and OpenBookQA. For
each question, our annotators evaluated whether
all meaningful concepts were extracted (coverage,
in a binary setting (yes/no)); and if/how many in-
formative (and thus, wanted) concepts are among
the extracted concepts (which can be interpreted as
reverse precision).’ For each dataset, two annota-
tors with linguistic background performed annota-
tions. We measure annotator agreement in terms
of Cohen’s Kappa and achieve an agreement of
78%. Remaining conflicts were resolved by an ex-
pert annotator (one of the authors). The number
of concepts that could be accessed in ConceptNet
we evaluate automatically, in terms of the number
of in- and outgoing edges connecting the node(s)
which have been annotated as informative (wanted),
identified by simple string matching vs. all nodes
obtained by CoC0-EX through keys and values.

The results of our manual evaluation experiment
are displayed in Table 2. We find that the coverage
(if all meaningful concepts were extracted, evalu-
ated in a binary setting: yes/no) is higher for Com-
monsenseQA when using COC0-EX and higher
for OpenBooksQA when applying string matching.

Next, we evaluate the informativeness of the
extracted concepts. We find that the ratio between
informative (wanted) and uninformative concepts
(unwanted) is much better when using CoC0-EX
opposed to simple string matching on both datasets
(cf. Table 2). Finally, we also evaluate the amount
of relational information stored in the ConceptNet
knowledge graph which can be retrieved by looking

>Qur annotation manual can be found here: https://
github.com/Heidelberg-NLP/CoCo-Ex/blob/
master/CoCo-Ex_Annotation_Manual.pdf

up in- and outgoing nodes from the nodes rated as
informative. Here we find that with COC0-EX,
much more relational information of ConceptNet
can be accessed, indicating again the superiority of
this method compared to simple string matching.

4 Conclusion

In this paper we presented COC0-EX, a tool for
Extracting Concepts from texts and linking them to
the ConceptNet knowledge graph. As opposed to
the common shortcut method of simply matching
strings from texts to ConceptNet nodes, COCO-
EX extracts meaningful concepts from texts and
maps them to collections of concept nodes in Con-
ceptNet, which enables us to assess the maximum
of relational information stored in the ConceptNet
knowledge graph. CoCo0-EX takes into account
that concepts in ConceptNet are represented as non-
canonicalized, free-form text and are often com-
plex, noisy, uninformative, and/or over-specific.
We evaluated COC0-EX against the method of sim-
ple string matching, which confirmed our hypothe-
ses that (i) COC0-EX improves the precision of
mapping by enabling the extraction of meaningful,
important rather than overspecific or uninformative
concepts, and (ii) allows to utilize the maximum
of relational information stored in the knowledge
graph, a step towards overcoming the well-known
sparsity issue of commonsense knowledge graphs
such as ConceptNet.

Acknowledgements

This work was funded by the DFG within the
project ExpLAIN as part of the Priority Program
RATIO (SPP-1999). We thank our annotators for
their contribution.

124

References

Maria Becker, Michael Staniek, Vivi Nastase, and
Anette Frank. 2019. Assessing the difficulty of clas-
sifying ConceptNet relations in a multi-label classifi-
cation setting. In RELATIONS - Workshop on mean-
ing relations between phrases and sentences, pages
1-15, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A Col-
laboratively Created Graph Database for Structuring
Human Knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, pages 1247-1250,
New York, NY, USA. ACM.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 47624779,
Florence, Italy. Association for Computational Lin-
guistics.

Jim Breen. 2004. JMdict: a Japanese-multilingual dic-
tionary. In Proceedings of the Workshop on Multi-
lingual Linguistic Resources, pages 65-72, Geneva,
Switzerland. COLING.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hr-
uschka Jr., and T.M. Mitchell. 2010. Toward an ar-
chitecture for never-ending language learning. In
Proceedings of the Conference on Artificial Intelli-
gence (AAAI), pages 1306—1313. AAAI Press.

Stefano Faralli, Paola Velardi, and Farid Yusifli. 2020.
Multiple knowledge GraphDB (MKGDB). In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 2325-2331, Marseille,
France. European Language Resources Association.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

José-Angel Gonzalez, Lluis-F. Hurtado, and Ferran Pla.
2018. ELiRF-UPV at SemEval-2019 task 3: Snap-
shot ensemble of hierarchical convolutional neural
networks for contextual emotion detection. In Pro-
ceedings of the 13th International Workshop on
Semantic Evaluation, pages 195-199, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing.

Paul Jaccard. 1902. Lois de distribution florale dans
la zone alpine, volume 38. Bulletin de la Société
Vaudoise des Sciences Naturelles.

125

Matt J. Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From Word Embeddings To Doc-
ument Distances. In Proceedings of the 32nd Inter-

national Conference on Machine Learning (ICML),
pages 957-966.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense Knowledge Base Completion.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1445-1455, Berlin, Germany.
Association for Computational Linguistics.

Henry Liebermann. 2008. Usable AI Requires Com-
monsense Knowledge. In Workshop on Usable arti-
ficial intelligence, held in conjunction with the Con-
ference on Human Factors in Computing Systems
(CHI), pages 1-5.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. KagNet: Knowledge-aware graph
networks for commonsense reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2829-2839, Hong
Kong, China. Association for Computational Lin-
guistics.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Choi Yejin. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 2925-2933.

Haitao Mi and Liang Huang. 2015. Shift-reduce con-
stituency parsing with dynamic programming and
POS tag lattice. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1030-1035, Denver, Col-
orado. Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381-2391, Brussels, Belgium. Association
for Computational Linguistics.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821-832, Melbourne, Australia.
Association for Computational Linguistics.

Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations, pages 1-12.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing yago: Scalable machine
learning for linked data. In Proceedings of the
21st International Conference on World Wide Web,
WWW 12, page 271-280, New York, NY, USA. As-
sociation for Computing Machinery.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018. SemEval-
2018 task 11: Machine comprehension using com-
monsense knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
pages 747-757, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Debjit Paul and Anette Frank. 2019. Ranking and Se-
lecting Multi-Hop Knowledge Paths to Better Pre-
dict Human Needs. In Proceedings of the Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, volume 1,
pages 3671-3681, Minneapolis, Minnesota, USA.

Debjit Paul, Juri Opitz, Maria Becker, Jonathan Kobbe,
Graeme Hirst, and Anette Frank. 2020. Argu-
mentative Relation Classification with Background
Knowledge. In Proceedings of the 8th International
Conference on Computational Models of Argument
(COMMA 2020), pages 319-330.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532—1543.

Itsumi Saito, Kyosuke Nishida, Hisako Asano, and
Junji Tomita. 2018. Commonsense knowledge base
completion and generation. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 141-150, Brussels, Belgium.
Association for Computational Linguistics.

Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2015.
Classifying relations by ranking with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 626—634, Beijing, China. Associa-
tion for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. In Proceedings of 315t AAAI
Conference on Artificial Intelligence, pages 444—
451.

Robyn Speer, Catherine Havasi, and Henry Lieberman.
2008. AnalogySpace: Reducing the Dimensional-
ity of Common Sense Knowledge. In Proceedings
of the 23rd National Conference on Artificial Intelli-
gence - Volume 1, pages 548-553. AAAI Press.

Robyn Speer and Joanna Lowry-Duda. 2017. Concept-
Net at SemEval-2017 Task 2: Extending Word Em-
beddings with Multilingual Relational Knowledge.

126

In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 85—
89, Vancouver, Canada. Association for Computa-
tional Linguistics.

Thorvald Sgrensen. 1948. A method of establishing
groups of equal amplitude in plant sociology based
on similarity of species and its application to anal-

yses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab. 5 (4): 1-34.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149-4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural relation extrac-
tion for knowledge base enrichment. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 229-240, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and
Jingming Liu. 2018. Yuanfudao at SemEval-2018
task 11: Three-way attention and relational knowl-
edge for commonsense machine comprehension. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 758762, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro
Szekely, and Xiang Ren. 2020. Connecting the dots:
A knowledgeable path generator for commonsense
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4129-4140, Online. Association for Computational
Linguistics.

Dirk Weissenborn, Tomas Kocisky, and Chris Dyer.
2018. Dynamic Integration of Background Knowl-
edge in Neural NLU Systems. In International Con-
ference on Learning Representations (ICLR) 2018.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting End-to-End Dialog Systems with Common-
sense Knowledge. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 4970—4977.

000
001
002

9% Rachida Tajmout !, Hakima Khamar 2, Hamid Jaafar 3, Si Lhoussain Aouragh ¢, Abdellah Yousfi 5

004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

A description and demonstration of SAFAR framework

Karim Bouzoubaa !, Younes Jaafar !, Driss Namly !, Ridouane Tachicart !,

! Mohammadia School of Engineers, Mohammed V University in Rabat, Morocco
2 Faculty of Letters and Human Sciences, Mohammed Vth University, Rabat, Morocco
3 Polidisciplinary faculty of Safi, Caddi Ayyad University, Morocco
4 Faculty of Legal, Economic and Social Sciences - Sale, Mohammed V University in Rabat, Morocco.
3 Faculty of Legal, Economic and Social Sciences - Souissi, Mohammed V University in Rabat, Morocco.

karim.bouzoubaa@emi.ac.ma; jayounes@yahoo.fr; namly driss@yahoo.fr; tachicart@gmail.com; tajmoutrachida@yahoo.ft;
khamarhaki@gmail.com; jaafarhamid1973@gmail.com; jaafarhamid1973@gmail.com; l.aouragh@umb5r.ac.ma;

yousfi240ma@yahoo.fr

Abstract

Several tools and resources have been
developed to deal with Arabic NLP.
However, a homogenous and flexible
Arabic environment that gathers these
components is rarely available. In this
perspective, we introduce SAFAR which is
a monolingual framework developed in
accordance with software engineering
requirements and dedicated to Arabic
language, especially, the modern standard
Arabic and Moroccan dialect. After one
decade of integration and development,
SAFAR possesses today more than 50 tools
and resources that can be exploited either
using its API or using its web interface.

1 Introduction

NLP infrastructures, referred also as NLP
architectures, represent an efficient way for
standardization, optimization = of efforts,
collaboration and acceleration of developments in
the field of NLP. For the last decade, the NLP
research community witnessed an extensive
release of these infrastructures. Some become very
famous such as GATE' or Stanford CoreNLP?,
while others existed only for a very short time.
Some are multilingual while others are not, some
are targeting multiple domains while others are
not, etc.

However, it is known that only a few of them are
dedicated to only one language such as AraNLP
(Althobaiti et al. 2014) or "ITU Turkish Natural
Language Processing Pipeline" (G. Eryigit, 2014).
On another hand, the literature shows that existing
infrastructures are using randomly three different
namings: "toolkit", "platform" and "Framework".
From the Software Engineering (SE) perspective,

! https://gate.ac.uk
2 https://stanfordnlp.github.io/CoreNLP/

127

these namings have different meanings. It is then
necessary to first define them before presenting,
categorizing, and benchmarking NLP
infrastructures. Briefly speaking®, a toolkit is a set
of tools within a single box used for a particular
purpose. A platform consists of several
interoperable tools with a homogeneous structure
but without providing any API to extend their
components. A framework is a layered structure
developed to be used as a support and guide to
build NLP programs and tools.

In this work, we focus on the Arabic language
infrastructures. We demonstrate that the "Software
Architecture for ARabic" (SAFAR) framework® is
one of the most interesting frameworks to consider
when developing any Arabic NLP component.
The rest of this article is as follows. Section 2
presents SAFAR in terms of principles,
architecture and standards. Section 3 describes
SAFAR content. Section 4 is dedicated to SAFAR
use and exploitation. Finally, in the last section, we
conclude the paper.

2 SAFAR framework

2.1 Principles

In most cases, the development of Arabic NLP
applications requires the use of several tools at
once, each dealing with a certain level of language.
Generally, these tools are heterogeneous and raise
many SE problems such as interoperability,
reusability, portability, etc. Moreover, researchers
are usually in need not only of tools but also of
Language Resources (LRs).

To overcome the above-mentioned SE issues and
to suit the needs of the ANLP community in terms
of processing Arabic effectively and providing
reusable LRs, we developed SAFAR as a software

3 https://whatis.techtarget.com/
4 http://arabic.emi.ac.ma/safar

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 127-134

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

architecture for Arabic with the following

principles:
e Integrate not only tools and programs but
also LRs;

e Structure the architecture to integrate two
types of Arabic, namely MSA, and
dialects;

e Respect the Arabic language features in
the structure of the architecture;

e Develop tools or LRs when available
ones are not satisfactory;

e Provide the architecture to be exploited
not only by computer scientists but also
by linguists;

e Involve in our team computer scientists,
statisticians and linguists.

In general, our philosophy is not to develop
ourselves all the NLP layers and modules, but to
integrate existing ones consistently. Consequently,
our approach consists in providing the
specifications in terms of APIs for each module of
our architecture and also providing (if any)
implementations of these APIs with tools that have
proved to be efficient and published under a free
license such as GNU GPL, Apache or Non-
Commercial Software. Indeed, the main challenge
faced during this integration process is to develop
bridges between different programming languages
for tools and data structures for resources to use
them in a single environment. However, when
modules and LRs are not available, we develop
them from scratch inside SAFAR. It is worth
mentioning that after a certain threshold of
maturity (for instance, it is the case of stemming as
per the third release), it is useless to continue
integrating every new implementation of a given
level, with the flexibility that the framework is
open enough to allow researchers to do it if needed.

2.2 Architecture

SAFAR is a Java-based framework dedicated to
Arabic Natural Language Processing. As shown in
Figure 1, SAFAR has several layers that provide
services directly usable by other layers in
accordance with the relationships modeled with
arrows in the figure.

® http://www.alecso.org/site/

128

e Basic: designed to implement tools
dealing with morphology, syntax and
semantics;

e Tools: includes a set of technical services
and pre-processing tools as well as
machine and deep learning utilities;

e Resources: provides services for
maintaining, consulting and managing
Arabic language resources such as
corpora, dictionaries and ontologies;

e Application: contains high-level
applications such as sentiment analysis or
Question/Answering systems;

e Client applications: interacts with all
other layers to serve clients via web
applications, web services, etc.

S

Client
applications:

Basic Services

1
1

1

1

1

1

|
1

Syntactic |

!

L Morphology i
- i

1

1

1

|

1

1

1

GDE

Web
Web2.0
Mobile
Soap client

rResources services:
L Rersource: lexicon, corpus,
L/

[Tools: Statistics, Benchmark, ... }

- J

Figure 1: SAFAR framework general architecture.

2.3 Standards

Concerning the respect of international standards,
and in order to facilitate their use in different
contexts, we adopt the interoperability guides for
all SAFAR components. Indeed, SAFAR tools
input/output and LRs are formatted using the XML
representation standard. In addition to the respect
of representation standard, we use structuring
standards such as Arab League Educational,
Cultural and Scientific Organization (ALECSO)’
recommendations for the design of Arabic
morphological analyzers, Lexical Markup
Framework (ISO 24613:2008) (LMF) for lexicons
and Text Encoding Initiative (Lou Burnard et al.
2008) (TEI) for corpora.

3 SAFAR content

As previously explained, the structure of SAFAR
is split into three main packages: MSA, Dialects
and Machine learning models. Since Dialects are

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

numerous, we have been interested so far to
integrate only the Moroccan dialect even if the
architecture is flexible enough to embed any other
dialects.

3.1 MSA

This package is the most populated one. Indeed, for
almost two decades the research community spent
all their efforts in developing components (tools
and resources) for this type of Arabic.

Table 1 shows all the integrated tools for MSA®.
These tools have been widely used by the ANLP
community and it will be very advantageous to use
them within a homogenous and flexible
framework. Other tools have been developed from
scratch such as “SAFAR stemmer”, “SAFAR POS
tagger”, etc. Tools starting with “SAFAR” in the

table have been developed from scratch by our
research team for one of the following reasons 1)
available tools return incorrect results, 2) there are
no similar tools within the community, or 3)
existing tools cannot be reused in several technical
environments. In addition, the integration of
multiple implementations for the same layer allows
their benchmarking. Thus, we were able to make a
detailed evaluation and/or comparison of stemmers
(Jaafar and Bouzoubaa, 2016), morphological
analyzers (Jaafar and Bouzoubaa, 2014) and
parsers (Jaafar and Bouzoubaa, 2017).

The column “Per” indicates how many researchers
have been involved in the development/integration
of the corresponding tool. The "Vr" column
indicates SAFAR version from which the tool is
present.

Layer | Package Implementation name Reference Per | Vr
key words extractor | SAFAR key words_extractor 313
stopwords_analyzer | SAFAR stopwords analyzer 313
moajam_moaassir SAFAR moajam moaassir 2 1
moajam_tafaoli SAFAR moajam_tafaoli 2 1
Light summarization | SAFAR light summarization 2 |2
morphosyntactic SAFAR morphosyntactic processor 2 1
stem_counter SAFAR stem_counter 2 1

Farasa parser Zhang et al. 2015 2 |2

Syntax Stanford parser Green and Manning 2010 2 |3
Farasa POS tagger Zhang et al. 2015 2 1

SAFAR POS tagger 313

App Alkhalil analyzer Boudlal, et al. 2010 2 | 2
Alkhalil 2 analyzer Boudchiche et al. 2017 2 |2

BAMA (Aramorph) analyzer Buckwalter 2002 2 |1

MADAMIRA analyzer Pasha, et al. 2014 2 |1

Farasa lemmatizer Abdelali, et al. 2016 2 13

Morphology SAFAR lemmatizer Namly .et al. 2020 313
ISRI stemmer Algasaier 2005 2 |2

Khoja stemmer Khoja 2002 2 |1

Light10 stemmer Larkey et al. 2007 2 |1

Motaz stemmer Motaz and Ashour 2010 2 |2

Tashaphyne stemmer Zerrouki 2012 2 |2

SAFAR stemmer Jaafar et al. 2016 2 |2

StopWords SAFAR StopWords remover 313
SAFAR Analyzers benchmark Jaafar and Bouzoubaa, 2014 2 |2

Benchmark SAFAR Stemmers benchmark Jaafar et al. 2016 2 |2
SAFAR Parsers benchmark Jaafar and Bouzoubaa, 2017 2 12

Util Normalization SAFAR Normalizer 3 1
Splitting SAFARS sentence Splitter 2 |1
Tokenization SAFAR Tokenizer 2 1
Pattern detector SAFAR Pattern detector 2 13
Transliteration SAFAR Transliterator 2 1

Table 1: MSA tools implemented in SAFAR

€ Almost all integrated MSA tools have their own license.
Users are invited to be aware of these third party licenses and
respect them.

129

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

On another hand, Table 2 shows all integrated
resources for MSA. The LRs building process is
based on the Arabic language structure. The
concatenative inflection denotes that the lemma
concatenates to affixes to produce the stem, which
in turn concatenates to clitics to yield the word.
And according to their features, a lemma is either
a verb, a noun or a particle. From this, we identify
the basic components taking part in the
composition of the Arabic words which are the
lemmas (particle, verb and noun), stems and clitics.
Thus, SAFAR follows the above Arabic language
structure for lexical resources and contains the
three basic alphabets (Loukili and Bouzoubaa
2011, Namly et al. 2016), clitics (Namly et al.
2015) and particles lexicon. We also make use of
existing and known dictionaries (Contemporary
and Interactive). It is worth mentioning that
SAFAR contains currently one of the most
comprehensive lexicons with more than 7 million
stems and corresponding lemmas (Namly et al.
2019).

On another hand, because of the importance of
ontologies in many NLP processes, we enriched
and integrated the existing Arabic WordNet
(Abouenour et al. 2013) (AWN). We note that
enriched AWN is approved as the official version
of the Global WordNet association’.

Finally, we also developed and integrated corpora
used as reference and evaluation corpora. Indeed,
as mentioned above, these corpora as exploited to
benchmark integrated tools at the stemming and
morphological levels.

SAFAR resources are freely available for the
community. They can be downloaded from our
team website®. Indeed, in order to contribute in
their wide dissemination within the community,
we advertise on SAFAR resources in some well-
known catalogs and repositories such as European
Language Resources Association (ELRA)® and
Common Language Resources and Technology
Infrastructure (CLARIN)'.

Finally, let us mention that a more detailed survey
and a software engineering comparative study
with similar Arabic frameworks can be found in
(Jaafar and Bouzoubaa, 2018).

Layer Package | Processing level Implementation name Size!! Per | Vr

Alphabet SAFAR Alphabet 42 3 1

Clitics SAFAR Clitics 167 3 1

Particles SAFAR Particles 413 5 1

Lexicon | Contemporary Contemporary dictionary 32.300 2 2

Resource Interactive Interactive dictionary 61.101 2 2
CALEM SAFAR Stems Lemmas 7.133.106 | 3 3

Arabic WordNet SAFAR Arabic WordNet 56.164 3 2

NAFIS SAFAR Stemming gold standard 172 4 3

Corpus Morpho evaluation | morphological analysis evaluation 100 3 2

Stems evaluation Quranic stemming evaluation 1000 3 2

Table 2: MSA resources implemented in SAFAR
Also, a corpus for language identification tasks
3.2 Moroccan Dialect

Besides being interested in processing the
Arabic language, we take into consideration the
informal variety of Moroccan Arabic dialect (MD).
Regarding resources, a Moroccan dialect
electronic Dictionary (Tachicart et al. 2014)
(MDED) has been developed containing almost
12,000 entries with useful annotations. Another
lexicon is the Moroccan reference vocabulary
(Tachicart et al. 2019) (MRV), which compiles
4.5M possible Moroccan words with respect to a
normalization guideline.

7 http://globalwordnet.org/resources/arabic-wordnet/
8 http://arabic.emi.ac.ma/alelm/?q=Resources
9 http://www.elra.info/en/

1480

is available with SAFAR. It is composed of 57k
comments collected from social media and then
manually classified into three categories: MSA,
MD, and code-switched. Besides and based on
neural models, a lexicon of orthographic variants
that covers almost 54% of the MRV has been
generated. It can be useful for several dialectal
NLP tasks such as spelling normalization.

Table 3 shows all integrated resources for the
Moroccan dialect. Concerning tools, a language
identification system (Tachicart et al. 2018) has
been developed and integrated within SAFAR in

Whttps://www.clarin.eu
" Entries for lexicons and words for corpora

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

order to distinguish between MD and MSA.
Besides, we developed and integrated a spelling
normalization systems that helps to convert a given

Moroccan dialectal word into its standard form
without taking into consideration the word context.

Layer Package | Processing level Implementation name Size? Per | Vr
Mded SAFAR Mded 12.000 |2 3
Resources Lexicon | Moroccan vocabulary SAFAR MRV 4.500.000| 2 3
Orthographic variants SAFAR OV 2.385.000| 2 3
Corpus | LID SAFAR Lang. Identification 519.000 | 2 3
Util LID sys | SAFAR Lang. Identification | SAFAR Lang. Identification -- 2 3
Spell Spelling normalization SAFAR SPELL -- 2 4
Table 3: Moroccan dialect resources and tools implemented in SAFAR
3.3 Machine learning models specifying appropriate parameters according to

Our tools have been developed combining both the
rule-based approach, embedded in lexicons and
hardcoded, and the ML approach. Thus, SAFAR
includes a set of popular ML libraries (Table 4)
geared at different purposes, without the need to
perform external tasks. For instance, the SAFAR
POS tool exploited weka to output a Decision tree
model (Tnaji et al., 2020), the SAFAR lemmatizer
exploited HMM (Namly et al., 2020), while the
Spelling normalization for the Moroccan dialect
used fastText (Tachicart and Bouzoubaa, 2019).
Consequently, a researcher making use of SAFAR
has the possibility to code calling all integrated
Arabic NLP tools and resources in addition to
exploiting the integrated ML libraries.

Implementation name Type Per | Vr
Hidden markov model Model 3 3
Language model Model 2 3
Levenshtein Model 2 3
Weka Tool 1 3
FastText Tool 1 3

Table 4: Machine learning models and tools in SAFAR

4 SAFAR use and exploitation

As previously mentioned, SAFAR tools and
integrated resources can be exploited either as an
API or from client applications.

4.1 API

For each level of processing, we standardize all
aspects shared by the same type of tools according
to APIs and models so that they become
homogenous and flexible in their exploitation. This
ensures the standardization inside SAFAR. Users
have several possibilities when calling methods by

12 http://arabic.emi.ac.ma/safar-api/SAFAR_v3 jar
13 https://checkstyle.sourceforge.io/

their needs.

The execution of a normalizer within SAFAR can
be simple as calling ‘“normalizer.normalize(text)”.
If the normalization should be customized,
overloaded methods can be called. It is worth
mentioning that when developing the SAFAR
API 2 | we fully respect “Checkstyle” * and
“FindBugs” '* which are two development tools
that help adhering to coding standards.

Users could also easily create customizable
pipelines where the output of one component is the
input of another (Jaafar and Bouzoubaa, 2015). All
these aspects of SAFAR help solving SE issues
especially the interoperability, the reuse and the

flexibility of exploitation.
The pipeline

c static void main(final String[] args) {

(new SAFARNormalizer()).normalize(text);

vice remover = ParticleFactory.
getParticleImplementation () ;

String cleanedText = remover.removeStopWords (normalizedText) ;

1/ ze the text

tokens = (new SAFARTokenizer ()).tokenize (cleanedText) ;

/ ng

Sstring[] stems = new String[tokens.length];

IStemmer stemmer = StemmerFactory.getLightlOImplementation();

for(int i = 0; i < stems.length; i++){

stems[i] = stemmer.stem(tokens[i]).get(0).

getListStemmerAnalysis () .get (0) .getMorpheme () ;

}

// Detecting sentiments of stems

ILexiconService sentimentFactory = SentimentsDictFactory
.getSentimentsImplementation() ;

for (String stem: stems){

System.out.println(stem + " : " + sentimentFactory

.isLexicalEntry(stem)) ;
}
}

The output
T >
Jib @t
J>yo : N/A
due> 1 P
)5 b p

Figure 2: A pipeline using SAFAR API.

As mentioned in Figure 2, at line 3, we specify the
input text. At line 5, we call the

14 http://findbugs.sourceforge.net/

131

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

“SAFARNormalizer” tool to normalize the text. At
line 7 we call SAFAR “IParticleService” (Namly,
et al. 2015) in order to delete stop words. At line
10, we instantiate the “SAFARTokenizer” tool
which takes a text as input and outputs all tokens
of the text. At line 13, we proceed to stemming
tokens by calling the “IStemmer” service and
specifying the Light10 stemmer in this case. At line
18, we call “ILexiconService” to detect stems
sentiments and then print the sentiments of each
word according to the predefined lexicon.
Executing the whole process with another stemmer
is simply to keep the same code and change only
line 13 such as “.getKhojalmpletation”.

4.2 Web application

For non-developers such as linguists, SAFAR
framework can be executed using an online
application '* in which all SAFAR levels are
developed as online processing. Accessing the
website allows the user to have access to all tools
and resources mentioned above. Results can be
either printed on the same page or downloaded as
XML files.

: Software Architecture For ARabic

ggyell aell 2IU Eqlleall g Bia

Morphology / Analyzer

Textfile

Output of Alkhalil

Word Vowled Stem Pattern Root Type oS prefix Suffix O
eilan A £59)0 %0 A
plaall sian ¥ (W)onlel sl
. Stog)lan s yeoyeerd
Polaol) sid 5 |

oSt owst owikr s s o

ot oust |

st

580 5,20 M|
Vs aaza (1a) el ol

MEE | Js;

& elan Jss

ol owsh owsi s G2
Mei s

N S50 g lan Jab s
FNC e A

om0 |
399 3050 (la8)p il 5

Figure 3: Alkhalil morphological analysis within
SAFAR web.

As an example, Figure 3 shows the online
morphological analysis for the word “c>SL” (they
eat). After selecting the morphological analyzer to
use via the drop-down menu (Alkhalil in this case)
and clicking on the “Analyze & display” button,
the output is displayed in a table format.

15 http://arabic.emi.ac.ma:8080/SW_V3/

162

Language Identification System

Navigations @ Rule based classifier () Statistical classifier

sl Byl UL 2o o0 Bl aulo Bpmilly pgaslS Ll pllasl cslllg)l UL paill sla
MCA Corpus

Language Identification

Detect language | MCA

MSA: Modem Standard Arabic MCA: [Moroccan Colloquial Arabic]|

Copyright © 2017 IBTIKARAT research group | Mohammacia School of Engineers | Mohamed V University | Rabat-Morocco

Figure 4: Language identification system.

Furthermore, the language identification system
(Tachicart et al. 2018) demonstrated in Figure 4,
aims to distinguish between Moroccan Dialect and
MSA using two different methods. Indeed, the first
is rule-based and relies on stop word frequency,
while the second is statically-based and is based on
an SVM machine learning classifier.

5 Conclusion

SAFAR is a monolingual framework dedicated to
Arabic language. It is considered as a repository
and collaborative work where multiple developers
of Arabic tools and resources can meet and share
their products. It is in its second decade of
existence and integrates more than 50 tools and
resources. The next steps of our journey are to:

e Concentrate on less considered layers such
as semantics and applications;

e Integrate and develop other tools and
resources for dialects and standard Arabic;

e Build bridges with multilingual or other
language frameworks for developers
interested to consider more than one
language in their projects such as machine
translation.

References

Abdelali, A., Darwish, K., Durrani, N., and Mubarak,
H. 2016. Farasa: A fast and furious segmenter for
Arabic. In Proceedings of the 2016 conference of the
North American chapter of the association for
computational linguistics: Demonstrations, pp. 11-
16.

Abouenour, L., Bouzoubaa, K., and Rosso, P. 2013.
On the evaluation and improvement of Arabic
WordNet coverage and usability. Language
Resources and Evaluation, vol. 47, n° 13, pp. 891-
917.

015
015
015
015
015
015
015
015
015
015
016
016
016
016
016
016
016
016
016
016
017
017
017
017
017
017
017
017
017
017
018
018
018
018
018
018
018
018
018
018
019
019
019
019
019
019
019
019
019
019

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

Algasaier, H. The ISRI Arabic Stemmer. 2005.
http://www.nltk.org/ modules/nltk/stem/isri.html
(accessed February 1, 2015).

Althobaiti, M., Kruschwitz, U., and Poesio, M. 2014.
AraNLP: a Java-Based Library for the Processing of
Arabic Text. In Proceedings of the 9th Language
Resources and Evaluation Conference (LREC’14),
Reykjavik, Iceland.

Boudchiche, M., Mazroui, A., Bebah, M. O. A. O.,
Lakhouaja, A., and Boudlal, A. 2017. AlKhalil
Morpho Sys 2: A robust Arabic morphosyntactic
analyzer. Journal of King Saud University-
Computer and Information Sciences 29, no. 2: 141-
146.

Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A.,
Bebah, M. O. A. O., and Shoul, M. 2010. Alkhalil
Morpho Sysl: A Morphosyntactic analysis System
for Arabic texts. Proceedings of the 1lth
International Arab Conference on Information
Technology (ACIT’10). Benghazi. 1-6.

Buckwalter, T. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0." Linguistic
Data Consortium.

Green, S., and Manning, C. D. 2010. Better Arabic
parsing: baselines, evaluations, and analysis. The
23rd International Conference on Computational
Linguistics (COLING '10). Beijing: Association for
Computational Linguistics. 394-402.

Jaafar, Y. and Bouzoubaa, K. 2014. Benchmark of
Arabic morphological analyzers: Challenges and
Solutions. 9th International Conference on
Intelligent Systems: Theories and Applications
(SITA'14), Rabat,

Jaafar, Y. and Bouzoubaa, K. 2015. Arabic Natural
Language Processing from Software Engineering to
Complex Pipelines Cicling Cairo, Egypt.

Jaafar, Y., Namly, D., Bouzoubaa, K., Yousfi, A. 2016.
Enhancing Arabic Stemming Process Using
Resources and Benchmarking Tool. King Saud
University - Computer and Information Sciences
(JKSU-CIS).

Jaafar, Y., and Bouzoubaa, K. 2017. A New Tool for
Benchmarking and Assessing Arabic Syntactic
Parsers. 6th International Conference on Arabic
Language Processing CITALA 2017, Fes, Morocco
Fes, Morocco.

Jaafar, Y., Nasri, M., and Bouzoubaa, K. 2018.
Semantic Analysis of Arabic Texts within SAFAR
Framework. In proceedings of the 5th International
IEEE Congress on Information Science and
Technology (CIST'18), Marrakech, Morocco.

Jaafar, Y., and Bouzoubaa, K. (2018). A Survey and
Comparative Study of Arabic NLP Architectures. In:
Shaalan K., Hassanien A., and Tolba F. 2018. (eds)
Intelligent Natural Language Processing: Trends

133

and Applications. Studies in Computational
Intelligence, volume 740. Springer, Cham.

Khoja, S. Khoja stemmer. 2002.
http://zeus.cs.pacificu.edu/shereen/research. htm#ste
mming (accessed February 1, 2015).

Larkey, L. S., Ballesteros, L., and Connell, M. E. 2007.
Light Stemming for Arabic Information Retrieval. In
Arabic computational morphology: knowledge-
based and empirical methods, 221-243. Springer
Netherlands.

Lou B., and Syd, B. 2008. TEI P5: Guidelines for
electronic text encoding and interchange". TEI
Consortium.

Loukili,T., and Bouzoubaa, K. 2011. Structuration et
Standardisation des ressources linguistiques de
I'Arabe - cas de l'alphabet, préfixes et suffixes,
Journées Doctorales en Technologies de
I'Information et Communication, Tangier, Morocco,
7/2011.

Saad, M. K., and Ashour, W. M. 2010. Arabic
morphological tools for text mining. 6th
International Conference on Electrical and
Computer Systems (EECS’10). Lefke, North Cyprus.

Namly, D., Bouzoubaa, K., Tajmout, R., Tahir, Y., and
Khamar, H. 2015. A Complex Arabic stop-words list
design. The Second National Doctoral Symposium
On Arabic Language Engineering (JDILA'2015)
ENSA of Fez USMBA.

Namly, D., Regragui, Y., and Bouzoubaa, K. 2016.
Interoperable Arabic language resources building
and exploitation in SAFAR platform. In Proceeding
of the 13th ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA°16),
Agadir, Morocco.

Namly, D., Bouzoubaa, K., El Jihad, A., and Aouragh,
S. L. (2020). Improving Arabic Lemmatization
Through a Lemmas Database and a Machine-
Learning Technique. In Recent Advances in NLP:
The Case of Arabic Language, pp. 81-100. Springer,
Cham.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A.,
Eskander, R., Habash, N., Pooleery, M., Rambow,
O., and Roth R. M. 2014. MADAMIRA: A Fast,
Comprehensive Tool for Morphological Analysis
and Disambiguation of Arabic. In Proceedings of the
9th Language Resources and Evaluation Conference
(LREC’14), Reykjavik, Iceland.

Giilsen, E. 2014. ITU Turkish NLP Web Service. in
European Chapter of the Association for
Computational Linguistics, Sweden

Tachicart, R., Bouzoubaa, K., and Jaafar, H. 2014.
Building a Moroccan dialect electronic Dictionary
(MDED). In Proceedings of the 5th International
Conference on Arabic Language Processing
(CITALA'14), Oujda, Morocco.

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

Tachicart, R., and Bouzoubaa, K. 2019. Towards
Automatic Normalization of the Moroccan Dialectal
Arabic User Generated Text. In Arabic Language
Processing: From Theory to Practice, Springer
International Publishing, 2019, pp. 264-275.

Tachicart, R., Bouzoubaa, K., Aouragh, S. L., and
Jaafar, H. 2018. Automatic Identification of
Moroccan Colloquial Arabic. Arabic Language
Processing: From Theory to Practice, Springer
International Publishing, Cham, vol. 782, pp. 201-
214.

Tnaji, K., Bouzoubaa, K., and Aouragh, S.L. 2021, A
light Arabic POS Tagger using a hybrid approach. In
the international conference on digital technologies
and applications, January 29-30, 2021.

Zerrouki, T. Tashaphyne 0.2. 2012.
https://pypi.python.org/pypi/Tashaphyne. Retrieved
April 14, 2016.

Zhang, Y., Li, C., Barzilay, R., and Darwish, K. 2015.
Randomized greedy inference for joint
segmentation, POS tagging and dependency parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pp. 42-52.

184

InterpreT: An Interactive Visualization Tool for Interpreting
Transformers

Vasudev Lal', Arden Ma', Estelle Aflalo', Phillip Howard',
Ana Paula Q Simoes', Daniel Korat?, Oren Pereg®, Gadi Singer', Moshe Wasserblat?
ntel Labs, Cognitive Computing Research, USA
’Intel Labs, Artificial Intelligence Lab, Israel
{firstname.lastname}@intel.com

Abstract

With the increasingly widespread use of
Transformer-based models for NLU/NLP
tasks, there is growing interest in understand-
ing the inner workings of these models, why
they are so effective at a wide range of tasks,
and how they can be further tuned and im-
proved. To contribute towards this goal of en-
hanced explainability and comprehension, we
present InterpreT, an interactive visualization
tool for interpreting Transformer-based mod-
els. In addition to providing various mech-
anisms for investigating general model be-
haviours, novel contributions made in Inter-
preT include the ability to track and visual-
ize token embeddings through each layer of
a Transformer, highlight distances between
certain token embeddings through illustrative
plots, and identify task-related functions of at-
tention heads by using new metrics. Inter-
preT is a task agnostic tool, and its functional-
ities are demonstrated through the analysis of
model behaviours for two disparate tasks: As-
pect Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC).

1 Introduction

In recent years, Transformer-based models
(Vaswani et al., 2017) such as BERT (Devlin
et al.,, 2019), GPT-2 (Radford et al., 2019),
XLNET (Yang et al., 2019) and RoBERTa (Liu
et al., 2019) have demonstrated state-of-the-art
performance in many NLP tasks and have become
the gold standard. However, there are many open
questions regarding the behavior of these models.
Phenomena such as why Transformers perform
well on specific examples but not others, as well
as how their internal mechanisms facilitate their
ability to generalize to new tasks and settings
(or lack therof) are not yet fully understood.
Observations and insights which help answer

135

these questions will be pivotal in driving the
construction of more powerful and robust models.

The pursuit of such answers have spurred the
development of a wide variety of analytical stud-
ies and tools to enable the visualization of infor-
mation encapsulated in Transformer-based mod-
els. Clark et al. (2019), studied the attention mech-
anisms of a pre-trained BERT model to find that
certain heads correspond to specific linguistic pat-
terns. Jawahar et al. (2019) investigated the distri-
bution of phrase-level information throughout the
layers of BERT using t-SNE (van der Maaten and
Hinton, 2008). The visualization tools of Aken
et al. (2020) and Reif et al. (2019) perform a layer-
wise analysis of BERT’s hidden states to under-
stand the internal workings of Transformer-based
models that are fine-tuned for question-answering
tasks. Other tools, such as Vig (2019), focus
on visualizations of the attention matrices of pre-
trained Transformer models. In the work of Ten-
ney et al. (2020), the authors introduce an inter-
active platform for the visualization and interpre-
tation of NLP models. The tool includes, among
other capabilities, attention visualizations, embed-
ding space visualizations, and aggregate analysis.
Other related tools include those by Wallace et al.
(2019) and Hoover et al. (2020). The increasingly
large body of work on the interpretability and eval-
vation of Transformer-based models reveals the
growing need for the development of tools and
systems to aid in the fine-grained analysis and un-
derstanding of these models and their performance
on complex language understanding tasks.

With this goal in mind, we present InterpreT!,
a tool for interpreting Transformers. A key con-
tribution of InterpreT is that it is a single system
that enables users to track hidden representations

!The source code for InterpreT, along with a live demo
and screencast describing its functionality is available at
https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 135-142

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

of tokens throughout each layer of a Transformer
model, as well as visualize and analyze attention
head behaviors. Similarly to Tenney et al. (2020),
InterpreT enables dynamic point selection, aggre-
gation of attention head statistics, visualization of
attention head matrices, and the ability to compare
models. Novel contributions made in InterpreT
include the ability to track and visualize token
embeddings through each layer of a Transformer
(Section 3.2), highlight distances between certain
token embeddings through illustrative plots (Sec-
tion 3.6), and identify task-related functions of at-
tention heads by using new metrics (Section 3.3).

Section 4 demonstrates how the new features
introduced in InterpreT can be used to obtain
novel insights into the underlying mechanisms
used by Transformers to tackle diverse tasks such
as Aspect-Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC). More
generally, these demonstrations illustrate how
such features enable rich, granular analysis of
Transformer models.

2 System Design and Workflow

The system flow consists of two main stages: of-
fline extraction of model specific and task specific
information such as targets, predictions, relevant
hidden states, and attention matrices (henceforth
referred to as “collateral”) and running the appli-
cation itself. During the offline stage, the extracted
hidden states are processed using t-SNE before be-
ing saved to a file. The collateral generated for a
specific model and task is independent of collat-
eral from other models and tasks, which enables
the user to either run the app to examine a sin-
gle model or to compare two different models that
were evaluated on the same task and data. In this
latter case, the collateral files for the two models
are linked at runtime. A detailed specification for
the collateral, along with the source code used to
run InterpreT can be found in our GitHub.

3 Application Features

3.1 Overview

Key features of InterpreT include plots for the vi-
sualization and tracking of t-SNE representations
of hidden states through the layers of a Trans-
former, a plot presenting summary statistics, cus-
tom metrics to quantify attention head behavior,
and attention matrix visualizations. In addition,

136

InterpreT includes a multi-select feature that en-
ables groups of examples to be selected in the t-
SNE plot and used as input to other plots in the ap-
plication, as well as the flexibility to be used both
for analyzing a single model and for visualizing
the differences in behaviors between two models.
In general, the core functionalities present in In-
terpreT are model and task agnostic, working for
a wide-variety of architectures, sequence lengths,
and tasks.

3.2 t-SNE Embeddings

A central component of InterpreT is the abil-
ity to visualize the contextualized embeddings of
specific tokens throughout the layers of a Trans-
former. Following van Aken et al. (2019) and
Jawahar et al. (2019), we use t-SNE to project
hidden representations of tokens after each Trans-
former layer onto a two-dimensional space, creat-
ing disjoint t-SNE spaces for each layer of each
model. In the resulting t-SNE plot, token embed-
dings can be visualized for a specific model and
layer, and colored using various color schemes
(Figure 1d). An example selected in the t-SNE
plot is tracked and continues to be highlighted in
the new t-SNE space when the model or the layer
is changed.

3.3 Head Summary

InterpreT includes a head summary plot that dis-
plays attention head summary statistics for each
head and layer (Figure 1b). For a given sen-
tence, all attention weights are obtained in a
matrix of size (num-_layers x num_heads x
sentence_length x sentence_length) and com-
pute statistics over the final two dimensions, yield-
ing a summary plot of size (num_layers x
num_heads). The following statistics are cur-
rently supported:

The Standard Deviation of an attention head is
generated by calculating the standard deviation of
the corresponding attention matrix weights. Intu-
itively, the standard deviation of an attention head
increases as the attention patterns become less uni-
form, allowing a user to easily identify heads that
exhibit interesting behaviors.

The Attention Matrix Correlation is obtained
by computing the correlation between an atten-
tion matrix and an arbitrary, same-size matrix. In
Section 4.1.2, this correlation is computed using a
binary matrix that encodes syntactic dependency
relations, analogous to the parse matrix used in

intelai InterpreT

An Interactive Visualization Tool for Interpreting Transformers

Selected Sentence

() [CLS] jane gave joan candy because she wasn " t hungry . [SEP]

spanl span2 target

Summary Table
pred: pretrained SERT acc: pretrained BERT pred: Finetuned SERT acc: finetuned SERT
she 1 0 B 1 1

Joan she e e 1 e 1

Head Summary
Metrics

pretrained BERT_std -

Colorscale Range

® o Omanual

(b)

layer_no

head_no

Attention Matrix/Map
pretrained BERT - map x -

[cLs]
jane

gave gave
loan/lnan
candy candy
because because !
She//she
was was

hungry = hungry

[cLs]
jane

(c)

[SEP] [SEP]

Selected Models
prefrained BERT: <path_to_model_collateral>

finetuned BERT: <path_to_model_collateral>

t-SNE Embeddings

Model
pretrained BERT x v

Coloring

pred -
Layer Selector

o 1 2 3 4 5 6 7 8 9 10 " 12
Plotting Goreferent Span Tokens

* True/ves
Ambiguous
s, False/No

Selected Sentence .

RN

~100 s

-100 -50 [l 50 100

Average t-SNE Distance Per Layer
target X v

Average distance between span tokens, grouped by target, per layer

100

Average Distance Between Spans (t-SNE)

b
3

0 2 a 6 8 10 12

Layer

—— True Coreferent Spans —— False Coreferent Spans —— Delta (Red - Blue)

Figure (1) The InterpreT user interface (rearranged for print) for the task of coreference resolution (see Section
4.2). The Ul includes a short description of the currently selected models and example at the top, along with the

main features (a-e) described in Section 3.

Pereg et al. (2020). This formulation of a “gram-
mar correlation” metric provides an indicator of
an attention head’s ability to identify syntactic re-
lations in a sentence.

The Task-Specific Attention Intensity option
allows a user to define and display custom met-
rics that highlight specific attention patterns. In
Section 4.2.2, a “coreference intensity” metric is
devised to pinpoint attention heads with an affin-
ity for identifying coreference relationships. For
this metric, each entry in the summary plot repre-
sents the attention weight between the coreferent
spans being evaluated (if the span contains more
than one token, the maximum is taken), for each
head of each layer.

When running InterpreT with two models, the
head summary plot can be used to visualize differ-
ences in the summary statistics between both mod-
els. As mentioned previously, the multi-select fea-
ture can be used with any of the summary statistic
options. When using multi-select, the statistics are
averaged over the selected examples, enabling the

user to analyze general trends in attention behav-
ior.

3.4 Attention Matrix/Map

Similarly to other systems, InterpreT provides the
ability to display the attention patterns and weights
exhibited by specific attention heads, which can be
selected by clicking on a specific head and layer in
the head summary plot. These attention patterns
can be displayed as either a heatmap (“matrix”
view) or a token “map” (“map” view) visualization
used in Clark et al. (2019). There is an option to
switch between the two views in-app (Figure 1c).
These visualizations can become unwieldy when
using large sequence lengths, but this will not af-
fect the functionality of the rest of the system.

3.5 Summary Table

A short summary table is provided, which contains
task-specific information such as predicted token
classifications and the gold (target) labels for the
selected sentence/example (Figure 1a).

137

® laptops
restaurants

Selected Sentence
e,

e laptops
o restaurants
Aa

(a)

f1_LIBERT

;
s
o,

Figure (2) Baseline (a) and LIBERT (b,c) final layer t-SNE embeddings of aspect terms colored by domain (a,b)
and aspect extraction sentence level F1 score (c) as seen in InterpreT.

3.6 Average t-SNE Distance Per Layer

To complement t-SNE visualization of the hidden
states, InterpreT also introduces a novel plot show-
ing the average t-SNE space distance between spe-
cific groups of terms across all of the Transform-
ers’ layers (Figure le). Section 4.2.1 demonstrates
how information conveyed in this plot contributes
towards novel interpretations of the inner work-
ings of BERT.

4 Use Cases

The examples presented in this section focus on
the analysis of bidirectional encoders using Inter-
preT, however the system can be applied to gener-
ative models or encoder-decoder architectures as
well, so long as the appropriate collateral can be
generated. Further examples of use cases along
with instructions on how to use InterpreT for cus-
tom applications is detailed in our GitHub.

4.1 Cross-Domain Aspect Based Sentiment
Analysis (ABSA)

A fundamental task in fine-grained sentiment anal-
ysis is the extraction of aspect and opinion terms.
For example, in the sentence “The chocolate cake
was incredible”, the aspect term is chocolate cake
and the opinion term is incredible. Supervised
learning approaches have shown promising results
in single-domain setups where the training and the
testing data are from the same domain. However,
these approaches typically do not scale across do-
mains, where only unlabeled data is available for
the target domain. It has been shown that syntax,
which is a basic trait of language and is therefore
domain invariant, can help bridge the gap between
domains (Ding et al., 2017; Wang and Jialin Pan,
2018).

In a recent work (Pereg et al., 2020), externally
generated dependency relations are integrated into
a pre-trained BERT model through the addition

138

of a 13th attention head which incorporates the
dependency relations into its Syntactically-Aware
Self-Attention Mechanism. This model is referred
to as Linguistically Informed BERT (LIBERT).
InterpreT is used to analyze LIBERT and a Base-
line model that shares the same size and structure
as LIBERT but does not incorporate syntactic in-
formation for the cross-domain ABSA task, where
both models are fine-tuned on laptop reviews and
are evaluated on restaurant reviews (Pontiki et al.,
2014, 2015; Wang et al., 2016). LIBERT and
the Baseline model achieved aspect extraction F1
scores of 0.5143 and 0.4254 respectively on vali-
dation data from the restaurant domain.

4.1.1 Visualizing the Domain Gap

InterpreT is used to visualize how the incorpo-
ration of dependency relations in LIBERT con-
tributes to bridging the gap between domains. Fig-
ure 2 depicts the final layer aspect term t-SNE em-
beddings from the restaurant and laptop domains
produced by LIBERT and Baseline. The plot of
the Baseline embeddings (2a) gives a prototypical
depiction of the “domain gap” challenge present
in cross-domain setups, through the clear separa-
tion of in-domain (blue) and out-of-domain (red)
aspects. Conversely, the plot of LIBERT’s embed-
dings (2b) demonstrates how LIBERT has learned
to push the embeddings of some aspect terms from
the out-of-domain region into the in-domain re-
gion, effectively overcoming the “domain gap”
challenge for these examples. Furthermore, in the
plot colored by the aspect extraction F1 score (2c),
it is seen that LIBERT achieves a high F1 score on
the out-of-domain examples that now overlap with
in-domain examples, highlighting the usefulness
of such visualizations for analyzing model perfor-
mance and extensibility.

Metrics Colorscale Range

LIBERT_grammar_cor 02

Opauto ® Manual
02

layer_no

7 8 10 11 12 13

6

head_no

9

(a)

##ten
#ittive
and

at /
##ten
#ittive=
and
reaHy/

[SEP]

Iy
persona
##ble

persona
##ble

[SEF]

(b)

Figure (3) InterpreT’s Head Summary plot displaying aggregated grammar correlation using multi-selection for
LIBERT (a) along with an example of the the attention matrix of selected attention head (head 13 in layer 4) (b).

4.1.2 Grammar Correlation

A key feature of InterpreT is the addition of met-
rics to help identify attention heads which carry
out specific functions. For analyzing LIBERT, the
“grammar correlation” metric described in Sec-
tion 3.3 is used to identify attention heads with an
affinity for detecting syntactic relations. Figure 3a
demonstrates the result of using multi-selection to
compute the average grammar correlation in each
of LIBERTs attention heads aggregated over mul-
tiple examples.

As expected, the Syntactically-Aware Self At-
tention head (head 13) tends to show much higher
grammar correlation than the regular Self Atten-
tion heads. Utilizing the granularity provided in
the head summary plot, it is observed that LIB-
ERT’s 13th head seems to only express an affinity
for parsing syntactic relations in layers 2,3,4, and
11. This is unexpected behavior, as the syntax in-
formation is relayed identically to the 13th head
across all layers. To investigate further, InterpreT
can be used to display attention matrices from
head 13 in layers that have high grammar corre-
lation. One such attention matrix, for an out-of-
domain example, is displayed in Figure 3b. In this
attention matrix visualization, it can be seen how
LIBERT’s 13th head identifies syntactic relations
such as the adjectival modifier relation between
“staff” and “attentive”, and how this can be use-
ful for the cross-domain ABSA task where “staft”
and “attentive” are aspect and opinion terms (re-
spectively) in an out-of-domain example.

139

4.2 Coreference Resolution in the Winograd
Schema Challenge (WSC)

In this section, the utility of InterpreT is show-
cased for a markedly different task: coreference
resolution. Coreference resolution is a challeng-
ing NLP task that often requires a nuanced under-
standing of context and sentence semantics. This
task is the basis of the Winograd Schema Chal-
lenge (WSC) from the SuperGLUE benchmark
(Alex Wang, 2020), where the goal is to deter-
mine whether or not a pronoun is the correct ref-
erent of a given noun phrase. In this analysis of
WSC, InterpreT demonstrates how information in
the attention matrices and the hidden states of a
Transformer can be used to understand the implicit
mechanisms contributing to its ability to identify
coreferent terms. BERT-base (uncased) is chosen
for this analysis and is fine-tuned using the WSC
task training set.

Example Coreference Candidates
(Fred, he) (George, he)
“... got back” False True
“..gotup” True True

Table (1) Predictions of the fine-tuned BERT model
for the two examples. The values in bold are correct
predictions.

4.2.1 Spatial Convergence of Coreferent
Terms

While analyzing WSC with InterpreT, the sys-
tem’s wide-ranging capabilities gave rise to a
novel observation, wherein it was discovered that a
fine-tuned BERT model pushes closer together the
embeddings of terms it predicts to be coreferent.
Figure 4a displays the average distance per layer

Average distance between span tokens, grouped by pred, per layer

Predicted NOT to be Coreferent Spans
Predicted to be Coreferent Spans

Delta (Red - Blue)

Average Distance Between Spans (TSNE)

Metrics Colorscale Range

finetuned BERT_coreference.

02
® auto

O Manual

head_no

(b)

Figure (4) InterpreT summary plots for WSC. These plots display summary statistics for the average predicted
span token distance per layer (a) and coreference intensity metric (b) for fine-tuned BERT aggregated over the full

dataset.

fred watched tv while george went out to buy groceries . after an hour he got back .

® True/Yes 0
® Ambiguous ..
2 False/No - L4
Selected Sent: .
electe entence] B fredl
: AL

. . . 1 3 -
-, .
s o ®, e’ .
b ® . * . He george
t-SNE x - g
(a)
[CLs] [cLs)
fred. fred
watched watched
vy, v
while, while
george george
wents, went
outs, out
to~ to
buy~ buy
groceries groceries
after- —= after
an- an
hour: hy
I I
got— — —— got
back- \ba(k

[SEP] [SEP]

©

fred watched tv while george went out to buy groceries . after an hour he got up .

® True/Yes op
® Ambiguous o6
A‘a False/No . o’
Selected Sentence .
. .
> . e - et
; - . . . * oy o+
Q@
- L]
- v 9 [
. ., -, -~
. . ° T fred
. .
. o, e g * .
oo O 11 ®e
C George o
L .
t-SNE x e
[cLs] [cLs]
fred fred
watched- watched
s, v
while- while

george
went
out

~to
buy
groceries

buy-~
groceries

after- ~after
o NN

hour -
he——-_Ahe
got.
up-

an

[SEPj

(@

Figure (5) InterpreT plots tracking specific examples in WSC. These plots depict the final layer t-SNE embed-
dings and attention map visualizations of head 10 layer 7 for the following examples: “Fred watched TV while
George went out to buy groceries. After an hour he got back” (a,c), and “Fred watched TV while George went out
to buy groceries. After an hour he got up.” (b,d). In (a) and (b), the yellow stars indicate candidate mention spans,

and “He” and “George” are almost overlapping.

between terms which BERT predicts to be coref-
erent (blue) and terms which BERT predicts to not
be coreferent (red), aggregated over the full WSC
dataset. It is observed that in BERT’s final layers,
the model learns to modify the hidden representa-
tions of terms to increase or decrease the distance
between them based on whether or not it predicts

140

they are coreferents. This behavior can also be
seen in the green trace, which measures the dif-
ference in the average distance of terms predicted
to be coreferent and those that are not predicted to
be coreferent.

Additionally, Figures 5a and 5b show a specific
example of this phenomenon with the sentences:

“Fred watched TV while George went out to buy
groceries. After an hour he got back” (Figure 5a
and Table 1) and “Fred watched TV while George
went out to buy groceries. After an hour he got
up.” (Figure 5b and Table 1). These two exam-
ples show how changing a single token (“back”
became “up”) significantly alters the sentence se-
mantics, as in the first example, “he” refers to
“George”, and in the second example “he” refers
to “Fred”. InterpreT enables us to visualize this
behavior using the t-SNE plots. Figure 5a show
how for the first example, “he” and “George” are
much closer together than “he” and “Fred” are.
Figure 5b shows how in the second example, the
change from “he got back™ to “he got up” is re-
flected in BERT’s behavior, where the representa-
tion of “Fred” to be pushed much closer to “he”
than in the first example.

4.2.2 Attention Patterns between Coreferent
Terms

Another feature of InterpreT is the ability to utilize
custom metrics, such as the “coreference inten-
sity”” metric described in Section 3.3. Coreference
intensity is visualized using the head summary
plot in Figure 4b. The figure shows that the fine-
tuned model highlights attention heads that seem
to perform well as coreferent predictors. Darker
shades of red correspond to higher attention be-
tween the two coreferents being evaluated. It ap-
pears that the heads which are the most involved
in the coreference resolution task after fine-tuning
are the 7th head of layer 10 and the 3rd head of
layer 11.

This new metric is used to examine the example
previously presented with “Fred”, “George”, and
“he”. Figures 5c and 5d show the attention ma-
trix visualizations for the head selected in Figure
4b (head 7 in layer 10). The token map visualiza-
tion depicts how “he” attends heavily to “George”
in the first example (5c¢) while attending to both
“Fred” and “George” in the second example (5d).

5 Conclusion and Future Work

InterpreT is a generic system for interpreting
Transformers, as evident through its suite of tools
for understanding general model behaviors and
for enabling granular analysis of attention patterns
and hidden states for individual examples. The
capabilities provided by InterpreT empower users
with new insights into what their models are learn-
ing, as illustrated in the visualization of the mit-

141

igation of the “domain gap” for ABSA and in
the novel discovery of the spatial convergence of
coreferent terms in WSC. These examples show-
case how the fine-grained analysis enabled by In-
terpreT affords a higher level of insight that is
indispensable for interpreting model behavior for
complex language understanding tasks.

InterpreT is an ongoing development effort. Fu-
ture work will include support for additional use
cases as well as additional analysis and interactiv-
ity features, such as the ability to dynamically add
and modify examples while the app is running.

6 Acknowledgements

We thank the anonymous reviewers for their com-
ments and suggestions.

References

Betty van Aken, Benjamin Winter, Alexander Loser,
and Felix A. Gers. 2019. How does bert answer
questions? Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge
Management.

Betty van Aken, Benjamin Winter, Alexander Loser,
and Felix A. Gers. 2020. Visbert: Hidden-state vi-
sualizations for transformers. In Companion Pro-
ceedings of the Web Conference 2020, WWW 20,
page 207-211, New York, NY, USA. Association for
Computing Machinery.

Nikita Nangia Amanpreet Singh Julian Michael Felix
Hill Omer Levy Samuel R. Bowman Alex Wang,
Yada Pruksachatkun. 2020. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. In Black-
BoxNLP@ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-
rent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Association
for the Advancement of Artificial Intelligence, pages
3436—3442.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 187-196, On-
line. Association for Computational Linguistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3651-3657, Florence, Italy. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605.

Oren Pereg, Daniel Korat, and Moshe Wasserblat.
2020. Syntactically aware cross-domain aspect and
opinion terms extraction. In Proceedings of the 28th
International Conference on Computational Lin-
guistics, pages 1772—-1777, Barcelona, Spain (On-
line). International Committee on Computational
Linguistics.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 task 12: Aspect based sentiment
analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 486—495, Denver, Colorado. Association for
Computational Linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 task 4:
Aspect based sentiment analysis. In Proceedings of
the 8th International Workshop on Semantic Evalua-
tion (SemEval 2014), pages 27-35, Dublin, Ireland.
Association for Computational Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
bert. In Advances in Neural Information Process-
ing Systems, volume 32, pages 8594-8603. Curran
Associates, Inc.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for nlp models. In Proceedings of

142

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Jesse Vig. 2019. Visualizing attention in transformer-
based language representation models.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7-12, Hong Kong, China. Association for Compu-
tational Linguistics.

Wenya Wang and Sinno Jialin Pan. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1—-11.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2016. Recursive neural conditional
random fields for aspect-based sentiment analysis.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
616-626, Austin, Texas. Association for Computa-
tional Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understand-
ing. Cite arxiv:1906.08237Comment: Pre-
trained models and code are available at
https://github.com/zihangdai/xInet.

Representing ELMo embeddings as two-dimensional text online

Andrey Kutuzov
University of Oslo
andreku@ifi.uio.no

Abstract

We describe a new addition to the WebVectors
toolkit which is used to serve word embedding
models over the Web. The new ELMoViz mod-
ule adds support for contextualized embedding
architectures, in particular for ELMo mod-
els. The provided visualizations follow the
metaphor of ‘two-dimensional text’ by show-
ing lexical substitutes: words which are most
semantically similar in context to the words
of the input sentence. The system allows the
user to change the ELMo layers from which
token embeddings are inferred. It also con-
veys corpus information about the query words
and their lexical substitutes (namely their fre-
quency tiers and parts of speech). The mod-
ule is well integrated into the rest of the We-
bVectors toolkit, providing lexical hyperlinks
to word representations in static embedding
models. Two web services have already imple-
mented the new functionality with pre-trained
ELMo models for Russian, Norwegian and En-
glish.

1 Introduction

In this demo paper we describe a new module re-
cently added to the free and open-source WebVec-
tors toolkit (Kutuzov and Kuzmenko, 2017)!. Web-
Vectors allows to easily deploy services to demon-
strate the abilities of static distributional word rep-
resentations (word embeddings) (Bengio et al.,
2003; Mikolov et al., 2013) via web browsers. It
currently powers at least two embedding model
hubs:

» NLPL WebVectors?, featuring models for En-
glish, Norwegian and other languages, trained
within the Nordic Language Processing Labo-
ratory initiative.

'A screencast is available at https: //www.youtube.

com/watch?v=dDugoV1r_wk.

http://vectors.nlpl.eu/explore/
embeddings/

Elizaveta Kuzmenko
University of Trento
lizaku77@gmail.com

| syntagmatic dimension

The subject matter of linguistics comprises all manifestations of human speech.

a subject saciology inclusies any symbels human being address
science represents every signs persan statement
anthropoiogy covers some kinds individual conversation

pychology consistsof both examples cultural letter

paradigmatic
dimension
i

Figure 1: Metaphor of two-dimensional text; borrowed
from (Biemann and Riedl, 2013).

* RusVectores®, featuring models for the Rus-
sian language.

The new module (we name it ELMoViz) adds
the functionality to study, probe and compare re-
cently introduced contextualized embedding (or
‘token-based’) models (Melamud et al., 2016). In
particular, at this point we provide support for the
ELMo architecture (Peters et al., 2018a) based on
deep recurrent neural networks. In the future, we
plan to add support for Transformer-based models
like BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020). ELMo architecture is significantly
less computationally expensive than Transformers,
while being almost on par in terms of performance.
Thus, it yields rich possibilities in the context of
non-commercial web services.

For analyzing ELMo representations of an ar-
bitrary input text, we offer the metaphor of ‘two-
dimensional text’ first proposed in (Biemann and
Riedl, 2013) (see Figure 1). This allows a sort
of ‘visualization’ for contextualized embeddings
through finding words which are most semanti-
cally similar to the input words in their current
contexts. From the linguistic point of view, these
are ‘paradigmatic replacements’ (Saussure, 1916)
— words that can to some extent substitute target
words. The two dimensions here are the syntag-
matic one (horizontal) which describes the linear or-
der of the sentence, and the paradigmatic one (ver-
tical) which describes semantic classes to which

‘https://rusvectores.org/

143

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 143—-148

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

the words in the sentence belong to. The generated
substitutes in the vertical axis can also be thought
of as ‘semantic variations’ of the input sentence.

The rest of the paper is organized as follows. In
Section 2 we describe the background for this work,
including the WebVectors framework, and explain
the need to develop additional functionality in order
to handle contextualized embeddings. Section 3
describes in detail this functionality, both from the
point of view of the end user and from the point
of view of deployment logistics. In Section 4, we
conclude and outline future work.

2 Background

Since the widespread adoption of prediction-based
word embeddings (Mikolov et al., 2013) started,
there has always been a need to efficiently serve
and demonstrate these representations over the Web.
Researchers and practitioners need this for quick
experimentation and testing hypotheses by com-
paring different distributional models. Those who
teach natural language processing and computa-
tional linguistics need ways to show the students
how dense distributional representations capture
lexical semantics without installing any software or
downloading any models (often it is desirable that
this is shown for a particular language or domain).

In turn, language teachers value tools to demon-
strate lexical variety and degrees of similarity for
words in a foreign language. To this extent, serving
word embeddings over the Web can help both the
teachers with preparing educational materials and
the students with grasping the concepts in a foreign
language.

The WebVectors framework we presented in (Ku-
tuzov and Kuzmenko, 2017) is aimed at all these
purposes. It allows to quickly deploy a stable and
robust web service featuring operations on vector
semantic models, including querying, visualization
and comparison, all available to users of any com-
puter literacy level. It extended already existing
embedding visualization services like Embedding
Projector* by providing users with the ability to
find nearest semantic neighbors of query words,
perform vector math operations over embeddings,
etc. Since being first presented in 2016, WebVectors
keeps adding new functionality, and now it offers
filtering nearest associates by part of speech tags or
corpus frequency, and can generate semantic ego
graphs, among other features (see Figure 2).

*nttps://projector.tensorflow.org/

WebVectors ~ Simi

144

What words are related to «Vvirus» in model «English Wikipedia»?

Word frequency

@ iuso

@adenovius S

@ pathogen
@ pathogan

@ retrovirus

0.6854 @ panvoyirus

0.6699

5 1 06686

.h-mwi".lmm%n"‘"'”“b
@ vaccinia

0.6667

06

o Similarity threshold | Show tags

About the word

Figure 2: Screenshot of a WebVectors instance at http:
//vectors.nlpl.eu/explore/embeddings/

Until the introduction of ELMoViz, these fea-
tures were limited to the so-called ‘static word
embeddings’, that is, architectures like word2vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017) or GloVe (Pennington et al., 2014). In these
architectures, after the training is finished, each
word type in the vocabulary is rigidly associated
with a single dense vector. However, in the recent
years NLP saw a surge of pre-trained ‘contextual-
ized’ embedding architectures, like ELMo (Peters
et al., 2018a), BERT (Devlin et al., 2019), GPT-3
(Brown et al., 2020) and many others. One of the
changes these deep learning models brought was
that even at inference time, each word token rep-
resentation (embedding) depends on its immediate
context. This means that ambiguous words will
receive different representations depending on the
sense in which they are used, which opens rich new
possibilities for natural language understanding.

Libraries used in WebVectors to deal with static
word embeddings (Gensim, (Rehiifek and Sojka,
2010)) were not fit to power operations on contex-
tualized models. That is why we decided to imple-
ment an entirely new WebVectors module, which
would take a query phrase as an input, and produce
paradigmatic replacements (lexical substitutions)
for each content word in this phrase, based on a
given pre-trained contextualized ELMo language
model.

One can find a number of existing frameworks
for online experimentation with contextualized
models: among others, we should mention Lan-
guage Interpretability Tool (Tenney et al., 2020),
exBert by (Hoover et al., 2019) and the hosted infer-

ence API at the HuggingFace Community Model
Hub (Wolf et al., 2020). However, these projects
are aimed exclusively at the Transformer-based ar-
chitectures. The system we present in this demo
paper, on the other hand, is aimed more towards
RNN-based architectures like ELMo. As it was
shown, for example, in the field of semantic change
detection (Kutuzov and Giulianelli, 2020), ELMo
can often outperform BERT or be on par with it,
while requiring significantly less computational re-
sources. We believe it is especially important for
teaching activities.

Additionally, our system is more lexically ori-
ented and is integrated with the existing WebVectors
functionality, as we will show in the next section.

3 System description

After turning on the contextualized embedding re-
lated functionality in the WebVectors configuration
file,> the person deploying the service has to pro-
vide three data sources for each ELMo model:

1. a pre-trained ELMo model itself in the stan-
dard format (» .HDF5 file with the weights
and options. json file with the model ar-
chitecture description);

. atab-separated frequency dictionary file to use
when determining the frequency tier of word
types (it is recommended to derive it from the
same corpus the ELMo model was trained on,
but technically this is not required);

. a set of static (type-based) word embeddings
produced by averaging contextualized token
embeddings inferred with the same ELMo
model.

The last item of this list requires some explana-
tion. Our aim is to provide the end user with a set
of lexical substitutes for each word token in con-
text from the input sentence (see Figure 3). With
static embedding architectures, this boils down to
looking up the vector of the target word x and then
finding n other words in the model vocabulary with
the vectors closest to z. However, this is obviously
impossible with contextualized language models:
there are no static vector lookup tables to begin
with. One can easily infer contextualized represen-
tations for each word in the input sentence: but

3In principle, it is also possible to use only ELMoViz,
without other WebVectors modules.

145

Lexical substitutes for words from your query:
Word frequency

Grion Geaium

Low

John still remembers cell phone number

Luke realizes telephone numbers

Thomas neverinekss sees

phones

discovers
Kknows

admits

Substitute queries history

Scientists proved that cell tissue can regenerate

monstrated cellular

scientists grow

cells membrane

Figure 3: Examples of two-dimensional text inferred
from an ELMo model (n = 5).

what to compare them with in order to illustrate
their meaning?

To cope with this issue, we adopted the approach
described in (Liu et al., 2019). They employed
the so called type-level context averaging in order
to align pre-trained contextualized models cross-
linguistically. In our case, we needed only the
first stage of their workflow. The idea is to obtain
static type-level word representations located in
the same vector space as the contextualized embed-
dings. Given a large enough reference text corpus
and a pre-trained contextualized language model,
one takes the average of all token representations
for each target word occurrence in the corpus. This
averaged type embedding is comparable to contex-
tualized token embeddings routinely produced by
the model.

In practice, we found that one does not even
need to average token embeddings: it is enough
to sum them, and then unit-normalize the resulting
summed vector. As for the list of target words, we
simply use top 10 000 (or any other amount found
suitable) most frequent words from the correspond-
ing ELMo model vocabulary or from a reference
corpus (excluding functional parts of speech and
digits). Low frequent words are usually not needed
in this case anyway, since the quality of their em-
beddings is also lower. We provide a simple script
to extract type embeddings from an ELMo model
and a given corpus in our GitHub repository.®

As a result, when an end user enters an input
phrase or sentence (typically from 5 to 15 words),

®https://github.com/akutuzov/
webvectors/tree/master/elmo/

WebVectors produces contextualized token embed-
dings for each token in the query, and finds top n
words in the type embedding model, which are the
closest (by cosine similarity) to each of the token
embeddings. These predictions are lexical substi-
tutes or paradigmatic replacements; they demon-
strate what other words could fill these positions in
the query, depending on the context.

Another option to produce such substitutes
would be to feed the input sentence to the ELMo
model and then for each word token choose the
strongest activations at the final softmax layer of
the language model and map them to words in the
model vocabulary. However, in practice we found
that this approach is slightly slower than the one
described above. Additionally, ELMo models are
often published online without the vocabulary they
were trained on. Since the input layer of ELMo is
purely character-based, it does not hinder inferring
token embeddings, but it effectively blocks using
these weights as language models per se. Our ap-
proach allows one to use any given ELMo model
with any desired corpus to produce a set of refer-
ence type embeddings.

System maintainers can provide several models
for the service to work with, including models for
different languages; one of the models should be
specified in the configuration files as the default
one. When entering the query sentence, users can
choose the model which will process the input.

Apart from choosing between different models,
WebVectors also allows users to choose the exact
ELMo layer from which token representations will
be inferred; it was shown in (Peters et al., 2018b)
that different neural network layers convey infor-
mation related to different linguistic tiers: syntax,
semantics, pragmatics, etc. At this point, one can
choose between the top ELMo layer and the aver-
age of all layers. Note that for all operations with
pre-trained ELMo models we use simple_elmo:
a lightweight TensorFlow-based Python package
also developed by us.” If need be, simple_elmo
can also be used as a standalone library to handle
ELMo models.

Both the words from the input sentence and the
lexical substitutes are colored according to their
frequency tier in the reference corpus (for
‘high’, blue for ‘mid’ and red for ‘low’), in accor-
dance with other WebVectors components. Simi-
larly, each word is hyperlinked to its ‘landing page’

"https://pypi.org/project/simple—elmo/

146

bound to one of the static embedding models served
by a particular WebVectors installation (like the one
in Figure 2), allowing easy and playful exploration
of the semantic space. The font size of the lexical
substitute corresponds to cosine similarity between
the token embedding and the substitute type em-
bedding: thus, users can instantly see what word
tokens the model is unsure about. The service per-
forms fast under-the-hood part-of-speech tagging
of the query,? so for functional words we always
yield themselves as substitutes (see ‘her’, ‘that’ and
‘can’ in Figure 3). They are also uncolored and not
hyperlinked, so that a user might focus on con-
tent words, while at the same time still having an
impression of ‘full sentence variations’.

The users should be aware that the lexical sub-
stitutes potentially contain all the biases inherited
from the corpus the model was trained on. Thus,
the paradigmatic axis might include slander words
and stereotypes, if they were frequent enough in the
data. We did not address this issue in the present
work, but we advise the users to take this into
account when dealing with any unsupervised lan-
guage models.

Importantly, we keep a short history of substitute
queries, so that it is possible to see at a glance the
changes brought by a different context, a different
word order or a different contextualized model (if
the web service offers several models). Figure 4
shows an example from our Russian live demo at
the RusVectorées web service. In the first sentence,
the word 3axnanky ‘zakladku’ is used in the newer
sense of ‘a secret place to store illegal drugs’, while
in the second sentence it is used in the older sense
of ‘the act of founding a building’. The generated
substitutes reflect the differences in word meaning
depending on the context. In the first example the
substitutes include such words as ‘meeting, sale,
operation’, and in the second example the substi-
tutes are ‘opening, building, repair’.

4 Conclusion

The described system for generating two-
dimensional text using pre-trained ELMo models
is now deployed at the two model hubs mentioned
in Section 1. NLPL WebVectors features ELMo
models trained on English Wikipedia and on
Norwegian corpora’, while RusVectores features a

8Using UDPipe (Straka and Strakov4, 2017).
*http://vectors.nlpl.eu/explore/
embeddings/en/contextual

Lexical substitutes for words from your query:
Word frequency

GHion B

BYepa B noawvesne ocTaBUNn 3aKnagky C HapKOTUKaMu

Buepa 5 nove Hawnm BcTpesy ¢ peHbramm

ceronHa 5 spanum younn npozaxy ¢ monsum
onHaxa 8 Homepe oTkpEIM nepenasy ¢ opywiem
HHHHHH B KaGuHete

HeniasHo s otaxe swm

Substitute queries history

BYepa nposenu TOPMEeCTBEHHYIO 3aKnagky Xpama

nposomn meneaoo cobopa

ApoBORRT

Figure 4: History of lexical substitute queries with a
Russian ELMo model.

model trained on concatenated Russian Wikipedia
and Russian National Corpus.'”

The presented component for the WebVectors
framework allows users to explore pre-trained
ELMo models and to visualize contextualized em-
beddings as a two-dimensional text for faster anal-
ysis of early research prototypes. While previously
the framework provided interface only to static
vector semantic models, introducing support for
contextualized architectures allows for more intri-
cate exploration of linguistic phenomena, such as
lexical ambiguity and contextual semantic change.

We hope that the new functionality will provide
language teachers, NLP researchers and practition-
ers with a powerful tool to study word meaning
in context and at the same time keep the audi-
ence up-to-date with recent advances in the field
of distributional semantics and deep learning based
NLP. A separate important contribution is our
simple_elmo library which makes using ELMo
models in Python much easier, especially for re-
searchers with linguistic background.

In the future, we plan to add support for other
contextualized embedding architectures like BERT,
to allow inter-architectural comparisons. Another
interesting room for future work is integrating with
other exploratory services for neural NLP models,
like the ones mentioned in Section 2.

Ynttps://rusvectores.org/en/
contextual/

147

References

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137-1155.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2d! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55-95.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2019. exbert: A visual analysis tool to
explore learned representations in transformers mod-
els. arXiv preprint arXiv:1910.05276.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-
UvA at SemEval-2020 task 1: Contextualised em-
beddings for lexical semantic change detection. In
Proceedings of the Fourteenth Workshop on Seman-
tic Evaluation, pages 126—134, Barcelona (online).
International Committee for Computational Linguis-
tics.

Andrey Kutuzov and Elizaveta Kuzmenko. 2017.
Building web-interfaces for vector semantic models
with the webvectors toolkit. In Proceedings of the
Software Demonstrations of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 99-103.

Qianchu Liu, Diana McCarthy, Ivan Vuli¢, and Anna
Korhonen. 2019. Investigating cross-lingual align-
ment methods for contextualized embeddings with
token-level evaluation. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 33—43, Hong Kong,
China. Association for Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51-61, Berlin,
Germany. Association for Computational Linguis-
tics.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746-751, Atlanta,
Georgia. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532—1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume I (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499-1509, Brussels, Belgium. Association
for Computational Linguistics.

Radim Rehiifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta. ELRA.

Ferdinand de Saussure. 1916. Course in general lin-
guistics. Duckworth.

Milan Straka and Jana Strakova. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88—99, Vancouver, Canada.
Association for Computational Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language
interpretability tool: Extensible, interactive visual-
izations and analysis for NLP models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 107—118. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

148

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

LOME: Large Ontology Multilingual Extraction

Patrick Xia'*, Guanghui Qin'*, Siddharth Vashishtha®
Yunmo Chen!, Tongfei Chen', Chandler May', Craig Harman'
Kyle Rawlins', Aaron Steven White?, Benjamin Van Durme!

! Johns Hopkins University, 2 University of Rochester
{paxia,gin, vandurme}@jhu.edu

Abstract

We present LOME, a system for performing
multilingual information extraction. Given a
text document as input, our core system iden-
tifies spans of textual entity and event men-
tions with a FrameNet (Baker et al., 1998)
parser. It subsequently performs coreference
resolution, fine-grained entity typing, and tem-
poral relation prediction between events. By
doing so, the system constructs an event and
entity focused knowledge graph. We can fur-
ther apply third-party modules for other types
of annotation, like relation extraction. Our
(multilingual) first-party modules either out-
perform or are competitive with the (monolin-
gual) state-of-the-art. We achieve this through
the use of multilingual encoders like XLM-R
(Conneau et al., 2020) and leveraging multi-
lingual training data. LOME is available as a
Docker container on Docker Hub. In addition,
a lightweight version of the system is accessi-
ble as a web demo.

1 Introduction

As information extraction capabilities continue to
improve due to advances in modeling, encoders,
and data collection, we can now look (back) to-
ward making richer predictions at the document-
level, with a large ontology, and across multiple
languages. Recently, Li et al. (2020) noted that
despite a growth of open-source NLP software in
general, there is still a lack of available software for
knowledge extraction. We wish to provide a start-
ing point that allows others to build increasingly
comprehensive document-level knowledge graphs
of events and entities from text in many languages.'

Therefore, we demonstrate LOME, a system for
multilingual information extraction with large on-
tologies. Figure 1 shows the high-level pipeline

*Equal Contribution

"Information on using the Docker container, web demo,
and demo video at https://nlp. Jhu.edu/demos.

149

by following a multilingual input example. A
sentence-level parser identifies both INGESTION
events and their arguments. To connect these events
cross-sententially, the system clusters coreferent
mentions and predicts the temporal relations be-
tween the events. LOME, which supports fine-
grained entity types, additionally labels entities
like the rabbit with LIVING_THING/ANIMAL.

Several prior packages have also used advances
in state-of-the-art models to build comprehensive
information extraction systems. Li et al. (2019)
present an event, relation, and entity extraction and
coreference system for three languages: English,
Russian, and Ukrainian. Li et al. (2020, GAIA) ex-
tend that work to support cross-media documents.
However, both of these systems consist of language-
specific models that operate on monolingual docu-
ments after first identifying the language. On the
other hand, work prioritizing coverage across tens
or hundreds of languages is limited in their scope
in extraction (Akbik and Li, 2016; Pan et al., 2017).

Like prior work, LOME is focused on extracting
entities and events from raw text documents. How-
ever, LOME is language-agnostic; all components
prioritize multilinguality. Using XLM-R (Conneau
et al., 2020) as the underlying encoder paves the
way for both training on multilingual data (where
it exists) and inference in many languages.”> Our
pipeline includes a full FrameNet parser for events
and their arguments, neural coreference resolution,
an entity typing model over large ontologies, and
temporal resolution between events.

Our system is designed to be modular: each
component is trained independently and tuned on
task-specific data. To communicate between mod-
ules, we use CONCRETE (Ferraro et al., 2014), a
data schema used in other text processing systems
(Peng et al., 2015). One advantage of using a stan-

2XLM-R itself is trained on CommonCrawl data spanning
one hundred languages.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 149—159

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

‘ ; Multilingual coreference
‘ Multilingual ‘ { resolution
Raw Text . g. FrameNet Parser —
‘ Tokenization ‘ |
The rabbit ate a carrot. Therabbit ate a carrot. Fine-grained hierarchical entity
%%E% 77}(BF 7K tvp|ng
Translation: The rabbit water
Entities Events
— . Temporal relation prediction
It\:l\e ra.bblt (aanlmalll)-dL Before Ingestion:
entions: “The rabbit
Ingestor:5% F
u’ n%% n -
S —— - Ingestion:
carrot.” Ingestor: The rabbit B Third-party systems (e.g.
| Mentions: I Ingestible: a carrot relation extraction)

Figure 1: Architecture of LOME. The system processes text documents as input and first uses a FrameNet parser
to detect entities and events. Then, a suite of models enrich the entities and events with additional predictions.
Each individual model can be trained and tuned independently, ensuring modularity of the pipeline. Annotations
between models are transferred using CONCRETE, a data schema for NLP.

dardized data schema is that it enables modular-
ization and extension. Unless there are annotation
dependencies, individual modules can be inserted,
replaced, merged, or bypassed depending on the
application. We discuss two example applications
of our CONCRETE-based modules, one of which
further extracts relations and the other performs
cross-sentence argument linking for events.

2 Tasks

The overarching application of LOME is to ex-
tract an entity- and event-centric knowledge graph
from a textual document. In particular, we are inter-
ested in using these graphs to support a multilingual
schema learning task (KAIROS?) for which data
has been annotated by the LDC (Cieri et al., 2020).
As aresult, some parts of LOME are designed for
compatibility with the KAIROS event and entity
ontology. Nonetheless, there is significant overlap
with publicly available datasets, which we describe
for those tasks.

Figure 1 presents the architecture of our pipeline.
Besides the FrameNet parser, which is run first, the
remaining modules can be run in any order, if at all.
In addition, our use of a standardized data schema
for communication allows for the integration of
third-party systems. In this section, we will go into

3This goal is to develop a system that identifies, links, and
temporally sequences complex events. More information at
https://www.darpa.mil/program/knowledge—
directed-artificial-intelligence-—
reasoning-over—-schemas.

150

further detail for each task.

2.1 FrameNet Parsing

FrameNet parsing is a semantic role labeling style
task. The goal is to find all the frames and their
roles, as well as the trigger spans associated with
them in a sentence. Frames are concepts, such as
events or entities, in a sentences. Every frame is
associated with some roles, and both of them are
triggered by spans in the sentence.

Unlike most previous work (Yang and Mitchell,
2017; Peng et al., 2018; Swayamdipta et al., 2018),
our system is not conditioned on the trigger spans
or frames. We perform “full parsing” (Das et al.,
2014), where the input is a raw sentence, and the
output is the complete structure predictions.

As the first model in the whole pipeline system,
the trigger spans found by the FrameNet parser will
be used as candidate spans for all other tasks.

2.2 Entity Coreference Resolution

In coreference resolution, the goal is to cluster
spans in the text that refer to the same entity. Neural
models for doing so typically encode the text first
before identifying possible mentions (Lee et al.,
2017; Joshi et al., 2019, 2020). These spans are
scored pairwise to determine whether two spans
refer to each other. These scores then determine
coreference clusters by decoding under a variety of
strategies (Lee et al., 2018; Xu and Choi, 2020).
In this work, we choose a constant-memory vari-
ant of that model which also achieves high per-

uonunwiwe

Figure 2: A portion of the AIDA entity type ontology.

formance (Xia et al., 2020). The motivation here
is robustness: we prioritize the ability to soundly
run on all document lengths over slightly better
performing but fragile systems. In addition, be-
cause this coreference resolution model is part of
a broader entity-centric system, the module used
in this system does not perform the mention de-
tection step (which is left to the FrameNet parser).
Instead, both training and inference assumes given
mentions, and the task we are concerned about in
this paper is mention linking.

2.3 Entity Typing

Entity typing assigns a fine-grained semantic la-
bel to a span of text, where the span is a men-
tion of some entity found by the FrameNet parser.
Traditionally, labels include PER, GPE, ORG, etc.,
but recent work in fine-grained entity typing seek
to classify spans into types defined by hierar-
chical type ontologies (e.g. BBN (Weischedel
and Brunstein, 2005), FIGER (Ling and Weld,
2012), UltraFine* (Choi et al., 2018), COLLIE
(Allen et al., 2020)). Such ontologies refine
coarse types like PER to fine-grained types such
as /person/artist/singer that sits on a
type hierarchy. A portion of the AIDA ontology
(LDC2019EQ7) is illustrated in Figure 2.

To support fine-grained ontologies, we employ a
recent coarse-to-fine-decoding entity typing model
(Chen et al., 2020a) that is specifically designed
to assign types that are defined by hierarchical on-
tologies. The use of a coarse-to-fine model also
allows users to select between coarse- and fine-
grained types. We swap the underlying encoder
from ELMo (Peters et al., 2018) to XLM-R to be
able to assign types over mentions in different lan-

*UltraFine is slightly different in that the types are buck-
eted into 3 categories of different granularity, but without
explicit subtyping relations.

151

guages using a single multilingual model, and to
enable transfer between languages.

The base typing model in Chen et al. (2020a)
supports entity typing on entity mentions. We ex-
tend this model to gain the ability to perform entity
typing on entities, i.e. clusters of entity mentions.
Since our decoder is coarse-to-fine and predicts a
type at each level of the type hierarchy, we employ
Borda voting on each level. Specifically, given
a coreference chain comprising mentions my.... 5,
and the score for mention m; being typed as type
t as s; ¢+, we perform Borda counting to select the
most confident type t* = argmax; » , r(i,t) over
all ¢’s in a specific type level, where r(i,t) =
1/rank(s;) is the ranking relevance score used
in Borda counting.

2.4 Temporal Relation Extraction

The task of temporal relation extraction focuses
on finding the chronology of events (e.g., Before,
After, Overlaps) in text. Extracting temporal rela-
tion is useful for various downstream tasks — cu-
rating structured clinical data (Savova et al., 2010;
Soysal et al., 2018), text summarization (Glavas
and §najder, 2014; Kedzie et al., 2015), question-
answering (Llorens et al., 2015; Zhou et al., 2019),
etc. The task is most commonly viewed as a clas-
sification task where given a pair of events and its
textual context, the temporal relation between them
needs to be identified.

The construction of the TimeBank corpus (Puste-
jovsky et al., 2003) largely spurred the research in
temporal relation extraction. It included 14 tem-
poral relation labels. Other corpora (Verhagen
et al., 2007, 2010; Sun et al., 2013; Cassidy et al.,
2014) reduced the number of labels to a smaller
number owing to lower inter-annotator agreements
and sparse annotations. Various types of models
(Chambers et al., 2014; Cheng and Miyao, 2017;
Leeuwenberg and Moens, 2017; Ning et al., 2017;
Vashishtha et al., 2019; Zhou et al., 2021) have
been used in the recent years to extract temporal
relations from text.

In this work, we use Vashishtha et al. (2019)’s
best model and retrain it using XLM-R. We evaluate
their model using the transfer learning approach
described in their work and retrain it on TimeBank-
Dense (TBD) (Cassidy et al., 2014). TBD uses a
reduced set of 5 temporal relation labels — before,
after, includes, is_included, and vague.

3 System Design

3.1 Modularization

Our system is modularized into separate models
and libraries that communicate with each other
using CONCRETE, a data format for richly anno-
tating natural language documents (Ferraro et al.,
2014). Each component is independent of each
other, which allows for both inserting additional
modules or deleting those provided in the default
pipeline. We choose this loosely-affiliated design
to enable both faster and independent prototyping
of individual components, as well as better com-
partmentalization of our models.

We emphasize that the system is a pipeline:
while individual modules can be further improved,
the system is not designed to be trained end-to-
end and benchmarking the richly-annotated output
depends on the application and priorities. In this
paper, we only benchmark individual components
and describe a couple of applications.

3.2 System Inputs and Qutputs

The system can consume, as input, either tokenized
or untokenized text, which is first tokenized ei-
ther by whitespace or with a multilingual tokenizer,
PolyGlot.> However, this tokenization is not nec-
essarily used by all modules, which may choose to
either operate on the raw text itself or on a Sentence-
Piece (Kudo and Richardson, 2018) retokenization.
The system outputs a CONCRETE communica-
tion file for each input document. This output
file contains annotations including entities, events,
coreference, entity types, and temporal relations.
This schema used is entirely self-contained and the
well-documented library also contains tools for vi-
sualizing and inspecting CONCRETE files.® For the
web demo, the output is displayed in the browser.

4 Evaluation Benchmarks

4.1 FrameNet Span Finding

The FrameNet parser is comprised of an XLM-R
encoder, a BIO tagger, and a typing module. It en-
codes the input sentences into a list of vectors, used
by both the BIO tagger and the typing module. The
goal of BIO tagger is to find trigger spans, which
are then labeled by the typing module. To parse a
sentence, we run the model to find all frames, and
then find their roles conditioned on the frames.

Shttps://github.com/aboSamoor/polyglot
*http://hltcoe.github.io/concrete/

We train the FrameNet parser on the FrameNet
v1.7 corpus following Das et al. (2014), with statis-
tics in Table 1. We evaluate the results with exact
matching as our metric,’” and get 56.34 labeled F1
or 66.41 unlabeled F1. Since we are not aware of
previous work on both full parsing and a metric for
its evaluation, we do not have a baseline. However,
we can force the model to perform frame identifica-
tion given the trigger span, like prior work. These
results are shown in Table 2.

Sentences # Frames # Roles
train 3120 18604 32419
dev 311 2209 3853
test 1333 6687 11277

Table 1: Statistics of FrameNet v1.7

Model Accuracy
Yang and Mitchell (2017) 88.2
Hermann et al. (2014) 88.4
Peng et al. (2018) 90.0
This work 91.3

Table 2: Result on frame identification

4.2 Coreference Resolution

We retrain the model by Xia et al. (2020) with XLM-
R (large) as the underlying encoder and with addi-
tional multilingual data. The model is a constant-
memory variant of neural coreference resolution
models. We refer the reader to Xia et al. (2020) for
model and training details.

Unlike that work, we operate under the assump-
tion that we are provided gold spans. This is moti-
vated by the location of coreference in LOME. In
addition, while they use a frozen encoder, we found
that finetuning improves performance.® Finally, we
train on the full OntoNotes 5.0 (Weischedel et al.,
2013; Pradhan et al., 2013), a subset of SemEval
2010 Task 1 (Recasens et al., 2010), and two ad-
ditional sources of Russian data, RuCor (Toldova
et al., 2014) and AnCor (Budnikov et al., 2019).

We benchmark the performance of our model on
each language. We report the average F1 of MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAF,, (Luo, 2005) by language in Table 3.
We can compare the model’s performance to mono-
lingual gold-only baselines, where they exist. For

7 A role is considered to be correctly predicted only when

its frame is precisely predicted.
8We use AdamW and a learning rate of 5 x 107°.

152

English, we trained an identical model but instead
use SpanBERT (Joshi et al., 2020), an English-only
encoder finetuned for English OntoNotes corefer-
ence. That model achieves 92.2 average (dev.) F1,
compared to our 92.7. There is also a comparable
system for Russian AnCor from Le et al. (2019),
which achieves 79.9 F1 using the model from Lee
et al. (2018) and RuBERT (Kuratov and Arkhipov,
2019). This shows that our single, multilingual
model, can perform similarly to monolingual mod-
els, with the advantage that our model does not
need to perform language ID. This finding mirrors
prior findings showing multilingual encoders are
strong cross-lingually (Wu and Dredze, 2019).

Language # Training # Eval Docs Avg. F1
Arabic® 359 44 71.3
Catalan® 829 142 58.7
Chinese® 1810 252 90.8
Dutch® 145 23 63.5
English® 2802 343 92.7
Italian® 80 17 47.2
Russian® 573 127 713
Spanish® 875 140 63.5

Table 3: Average F1 scores by language with gold
mentions. The superscripts O indicates data from
OntoNotes 5.0 (dev), s indicates data from SemEval
2010 Task 1 (dev), and A is the AnCor data (test).

4.3 Entity Typing

We retrain the coarse-to-fine entity typer by Chen
et al. (2020a) with XLM-R as the underlying en-
coder, and using the AIDA ontology as the type
label inventory. The dataset annotated from AIDA
is relatively small. To make the model more ro-
bust, we pre-train the model using extra training
data from GAIA (Li et al., 2020), where they ob-
tained YAGO fine-grained types (Suchanek et al.,
2008) from the results of Freebase entity linking,
and mapped these types to the AIDA ontology.
After pre-training, we fine-tune the model using
the AIDA M18 and M36 data with 3-fold cross-
validation, where each fold is distinct in the topics
of these documents. The sizes of these datasets are
shown in Table 4.

Our models perform well in these datasets. Us-
ing one third of the AIDA M36 data as dev, our
method obtained 60.1% micro-F; score;’ with pre-
training using GAIA extra data, we get 76.5%.

Our system can also be extended to support other

°Please refer to Chen et al. (2020a) for the exact definitions
of the evaluation metric.

Data source Language # of entities
English 4,433
AIDA M18 Russian 4,826
LDC2019E07 Ukrainian 4,261
English 703
AIDAMS6 o ish 557
LDC2020E29 Russian 729
English 42.8M
GAIA Spanish 11.1M
Russian 2.4M

Table 4: Statistics of the datasets used for training our
entity typing model.

commonly used fine-grained entity type ontologies.
We report the results in micro-F; in Table 5.

Ontology Prior state-of-the-art Ours
BBN 78.1 (Lin and Ji, 2019) 80.5
FIGER 79.8 (Lin and Ji, 2019) 80.8
UltraFine 40.1 (Onoe and Durrett, 2019) 41.5

Table 5: Performance of our hierarchical entity typing
model across several typing ontologies.

4.4 Temporal Relation Extraction

We retrain Vashishtha et al. (2019)’s best fine-
grained temporal relation model on UDS-T
(Vashishtha et al., 2019) using XLM-R (large).
We then use their transfer learning approach and
train an SVM model on event-event relations in
TimeBank-Dense (TBD) to predict categorical tem-
poral relation labels. With this approach, we see a
micro-F1 score of 56 on the test set of TBD.!?

For better performance, we train the same model
on additional TempEval3 (TE3) dataset (UzZaman
et al., 2013). Since TE3 and TBD use a different
set of temporal relations, we consider only those
instances that are labeled with 4 temporal relations
from both TE3 and TBD for joint training — be-
fore, after, includes (container), and is_included
(contained). We retrain Vashishtha et al. (2019)’s
transfer learning model on the combined TE3 and
TBD dataset considering only these 4 relations and
evaluate on their combined test set.!! Results on
the combined test set are reported in Table 6. We
use this model as the default temporal relation ex-
traction model in LOME.

9The train and dev set of TBD has a total of 4,590 instances
and the test set has 1,405 instances of event-event relations.

""We consider only event-event relations and the combined
dataset has 5,987 (1,249) instances in the train (test) set.

153

We also test our default model on a Chinese tem-
poral relation extraction dataset (Li et al., 2016).12
In the zero-shot setting, we get a micro F1 score
of 52.6 on the provided dataset, as compared to a
majority baseline of 37.5.!% Similar to the default
temporal system in LOME, we use the XLM-R ver-
sion of Vashishtha et al. (2019)’s model obtaining
relation embeddings for the Chinese dataset and
train an SVM model using the transfer learning
approach to get a micro F1 score of 64.4.'4

Relation Precision Recall F1
before 68 89 77
after 74 69 71
includes 83 5 10
is_included 44 15 22

Table 6: Result on the combined test set of TempEval3
and TimeBank-Dense when trained with just 4 tempo-
ral relation labels

5 Extensions

5.1 Incorporating third-party systems

Besides the core components described above,
we also discuss the viability of including addi-
tional modules that may not fit directly in the
core pipeline but can be included depending on
the downstream application. For example, the sys-
tem described above does not predict any relation
information, which is needed for the motivating
application of downstream schema inference. To
do so, we wrote a CONCRETE and Docker wrapper
around OnelE (Lin et al., 2020) and attached it at
the end of the pipeline. With our CONCRETE based
design, the integration of any third-party module
can be done via implementing the AnnotateCommu-
nicationService service interface, which can ensure
compatibility between LOME and external mod-
ules. The OnelE wrapper is one example of an
external module.

5.2 Mix and Match Modules: SM-KBP

As another example application, we reconfigured
our pipeline for the NIST SM-KBP 2020 Task 1

2We remove the instances with unknown relation from
the dataset and convert the predictions with includes and
is_included relations to the overlaps relation to match the
label set of their dataset with our system.

"3The authors were able to provide only half of the dataset
with 10,476 event-event pairs, from which we ignore instances
with unknown relation, resulting into 9,362 instances.

'“The results are the average of the 5-fold cross validation
splits provided by Li et al. (2016).

evaluation, which aims to produce document-level
knowledge graphs.!> Each given document may be
in English, Russian, or Spanish. On a development
set consisting solely of text-only documents,'® we
started with initial predictions made by GAIA (Li
et al., 2020), for entity clusters, entity types, events
and relations. Our goal was to recluster and relabel
the a dataset for knowledge extraction.

Our pipeline consisted of the multilingual coref-
erence resolution (using the predetermined men-
tion from GAIA) and hierarchical entity typing
models discussed in this paper, followed by a sepa-
rate state-of-the-art argument linking model (Chen
et al., 2020b). We found improved performance'”
with entity coreference (from 29.1 F1 to 33.3 F1),
especially in Russian (from 26.2 F1 to 33.3 F1),
likely due to our use of multilingual data and con-
textualized encoders. The improved entity clusters
also led to downstream improvements in entity typ-
ing and argument linking. This example highlights
the ability to pick out subcomponents of LOME
and customize according to the downstream task.

6 Usage

We present two methods to interact with the
pipeline. The first is a Docker container which
contains the libraries, code, and trained models of
our pipeline. This is intended to run on batches of
documents. As a lighter demo of some of the sys-
tem capabilities, we also have a web demo intended
to interactively run on shorter documents.

Docker Our Docker image'® consists of the four
core modules: FrameNet parser, coreference reso-
lution, entity typing, and temporal resolution. Fur-
thermore, there are two options for entity typing:
a fine-grained hierarchical model (with the AIDA
typing ontology) and a coarse-grained model (with
the KAIROS typing ontology). The container and
documentation is available on Docker Hub.

As some modules depend on GPU libraries,
the image also requires NVIDIA-Docker support.
Since there is a high start-up (time) cost for using
Docker and loading models, we recommend using
this container for batch processing of documents.
Further instructions for running can be found on
the LOME Docker Hub page.

Bhttps://tac.nist.gov/2020/KBP/SM-
KBP/index.html

' AIDA M36, LDC2020E29.

This evaluation metric is specific to the NIST SM-KBP

2020 task. It takes entity types into account.
Bhttps://hub.docker.com/r/hltcoe/lome

154

Web Demo We make a few changes for the web
demo.!” To reduce latency, we preload the models
into memory and we do not write the CONCRETE
communications to disk. At the cost of modular-
ity, this makes the demo lightweight and fast, al-
lowing us to run it on a single 16GB CPU-only
server. To present the predictions, our front-end
uses AllenNLP-demo.?’

In addition, the web demo is currently limited
to FrameNet parsing and coreference resolution, as
other models will increase latency and may impede
usability. The web demo is intended to highlight
only some of the system’s capabilities, like its abil-
ity to process multilingual documents.

7 Conclusions

To facilitate increased interest in multilingual
document-level knowledge extraction with large
ontologies, we create and demonstrate LOME, a
system for event and entity knowledge graph cre-
ation. Given input text documents, LOME runs a
full FrameNet parser, coreference resolution, fine-
grained entity typing, and temporal relation predic-
tion. Furthermore, each component uses XLM-R,
allowing our system to support a broader set of lan-
guages than previous systems. The pipeline uses a
standardized data schema, which invites extending
the pipeline with additional modules. By releasing
both a Docker image and presenting a lightweight
web demo, we hope to enable the community to
build on top of LOME for even more comprehen-
sive information extraction.

Acknowledgments

We thank Anton Belyy, Kenton Murray, Manling
Li, Varun Iyer, and Zhuowan Li for helpful discus-
sions and feedback. This work was supported in
part by DARPA AIDA (FA8750-18-2-0015) and
KAIROS (FA8750-19-2-0034). The views and con-
clusions contained in this work are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, or endorsements of DARPA or the U.S.
Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright annota-
tion therein.

Yhttps://nlp. jhu.edu/demos/lome/
®nttps://github.com/allenai/allennlp-
demo.

155

References

Alan Akbik and Yunyao Li. 2016. POLYGLOT: Multi-
lingual semantic role labeling with unified labels. In
Proceedings of ACL-2016 System Demonstrations,
pages 1-6, Berlin, Germany. Association for Com-
putational Linguistics.

James Allen, Hannah An, Ritwik Bose, Will de Beau-
mont, and Choh Man Teng. 2020. A broad-coverage
deep semantic lexicon for verbs. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 3243-3251, Marseille, France. Euro-
pean Language Resources Association.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The First Interna-
tional Conference on Language Resources and Eval-
uation Workshop on Linguistics Coreference, pages

563-566.

Collin E. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, Volume 1, pages 86-90,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

A. E. Budnikov, S Yu Toldova, D. S. Zvereva, D. M.
Maximova, and M. I. Tonov. 2019. Ru-eval-2019:
Evaluating anaphora and coreference resolution for
russian. In Computational Linguistics and Intellec-
tual Technologies - Supplementary Volume.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 501-506, Baltimore, Maryland. Association
for Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the

Association for Computational Linguistics, 2:273—
284.

Tongfei Chen, Yunmo Chen, and Benjamin Van Durme.
2020a. Hierarchical entity typing via multi-level
learning to rank. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8465-8475, Online. Association for
Computational Linguistics.

Yunmo Chen, Tongfei Chen, and Benjamin Van Durme.
2020b. Joint modeling of arguments for event un-
derstanding. In Proceedings of the First Workshop
on Computational Approaches to Discourse, pages
96-101, Online. Association for Computational Lin-
guistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional LSTM over depen-
dency paths. In Proceedings of the 55th Annual

Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1-6, Van-
couver, Canada. Association for Computational Lin-
guistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87-96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Christopher Cieri, James Fiumara, Stephanie Strassel,
Jonathan Wright, Denise DiPersio, and Mark Liber-
man. 2020. A progress report on activities at the
Linguistic Data Consortium benefitting the LREC
community. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3449—
3456, Marseille, France. European Language Re-
sources Association.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguis-
tics, 40(1):9-56.

Francis Ferraro, Max Thomas, Matthew R. Gormley,
Travis Wolfe, Craig Harman, and Benjamin Van
Durme. 2014. Concretely annotated corpora. In 4th
Workshop on Automated Knowledge Base Construc-
tion (AKBC).

Goran Glava$ and Jan gnajder. 2014. Event graphs
for information retrieval and multi-document sum-
marization. Expert Systems with Applications,
41(15):6904-6916.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1448-1458, Baltimore, Mary-
land. Association for Computational Linguistics.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64—77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International

156

Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5803-5808, Hong Kong,
China. Association for Computational Linguistics.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz.
2015. Predicting salient updates for disaster summa-
rization. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1608-1617, Beijing, China. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language. In Computational Linguistics and
Intellectual Technologies, pages 333-339.

T. A. Le, M. A. Petrov, Y. M. Kuratov, and M. S. Burt-
sev. 2019. Sentence level representation and lan-
guage models in the task of coreference resolution
for russian. In Computational Linguistics and Intel-
lectual Technologies, pages 364-373.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
Iution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188—197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687-692, New Orleans, Louisiana. Association for
Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 1150-1158, Valencia, Spain. Associa-
tion for Computational Linguistics.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019. Multilingual entity, relation, event and hu-
man value extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 110-115, Minneapolis, Minnesota.
Association for Computational Linguistics.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77-86, Online. Association
for Computational Linguistics.

Peifeng Li, Qiaoming Zhu, Guodong Zhou, and
Hongling Wang. 2016. Global inference to Chi-
nese temporal relation extraction. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 1451-1460, Osaka, Japan. The COLING
2016 Organizing Committee.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6197—
6202, Hong Kong, China. Association for Computa-
tional Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999-8009, Online. Association for
Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada., pages 94—100.

Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. 2015. SemEval-2015 task 5: QA Tem-
pEval - evaluating temporal information understand-
ing with question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 792-800, Denver, Colorado.
Association for Computational Linguistics.

Xiaoqgiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25-32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1027-1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to

denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North

157

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2407-2417, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel

Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946-1958, Vancouver,
Canada. Association for Computational Linguistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and

Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1492-1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas An-

drews, Jay DeYoung, Max Thomas, Matthew R.
Gormley, Travis Wolfe, Craig Harman, Benjamin
Van Durme, and Mark Dredze. 2015. A concrete
Chinese NLP pipeline. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 86—90, Denver, Colorado. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,

Hwee Tou Ng, Anders Bjorkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143—-152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-

drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003. The Timebank corpus. In Corpus
linguistics, volume 2003, page 40. Lancaster, UK.

Marta Recasens, Lluis Marquez, Emili Sapena,

M. Antonia Marti, Mariona Taulé, Véronique
Hoste, Massimo Poesio, and Yannick Versley. 2010.
SemEval-2010 task 1: Coreference resolution in
multiple languages. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
1-8, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507-513.

Ergin Soysal, Jinggi Wang, Min Jiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua
Xu. 2018. Clamp-a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331-336.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. YAGO: A large ontology from
wikipedia and wordnet. Journal of Web Semantics,
6(3):203-217.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
12b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806-813.

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3772-3782, Brussels, Belgium. Association
for Computational Linguistics.

S Toldova, A. Roytberg, Alina Ladygina, Maria Vasi-
lyeva, Ilya Azerkovich, Matvei Kurzukov, G. Sim,
D.V. Gorshkov, A. Ivanova, Anna Nedoluzhko,
and Y. Grishina. 2014. Ru-eval-2014: Evaluat-
ing anaphora and coreference resolution for rus-
sian. Computational Linguistics and Intellectual
Technologies, pages 681-694.

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. SemEval-2013 task 1: TempEval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 1—
9, Atlanta, Georgia, USA. Association for Computa-
tional Linguistics.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2906-2919, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. SemEval-2007 task 15: TempEval tempo-
ral relation identification. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 75-80, Prague, Czech

158

Republic. Association for Computational Linguis-
tics.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 57-62, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Ralph Weischedel and Ada Brunstein. 2005. BBN pro-
noun coreference and entity type corpus. Philadel-
phia: Linguistic Data Consortium.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release 5.0. Lin-
guistic Data Consortium, Philadelphia, PA.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833-844, Hong Kong, China. Association for Com-
putational Linguistics.

Patrick Xia, Jodo Sedoc, and Benjamin Van Durme.
2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617-8624, Online. As-
sociation for Computational Linguistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527-8533, Online. Association for Computa-
tional Linguistics.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1247-1256, Copenhagen, Denmark. Association for
Computational Linguistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan
Roth. 2019. “Going on a vacation” takes longer
than “going for a walk”™: A study of temporal com-
monsense understanding. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3363-3369, Hong Kong,
China. Association for Computational Linguistics.

Yichao Zhou, Yu Yan, Rujun Han, J Harry Caufield,
Kai-Wei Chang, Yizhou Sun, Peipei Ping, and Wei
Wang. 2021. Clinical temporal relation extrac-
tion with probabilistic soft logic regularization and
global inference. In Proceedings of AAAI 2021.

159

MadDog:
A Web-based System for Acronym Identification and Disambiguation

Amir Pouran Ben Veyseh', Franck Dernoncourt?,
Walter Chang?, and Thien Huu Nguyen'
! Department of Computer and Information Science, University of Oregon,
Eugene, OR 97403, USA
2 Adobe Research, San Jose, CA, USA
{apouranb, thien}@cs.uoregon.edu,
{franck.dernoncourt, wachang}@adobe.com

Abstract

Acronyms and abbreviations are the short-
form of longer phrases and they are ubiqui-
tously employed in various types of writing.
Despite their usefulness to save space in writ-
ing and time in reading, they also provide chal-
lenges for understanding the text especially if
the acronym is not defined in the text or if it
is used far from its definition in long texts. To
alleviate this issue, there are considerable ef-
forts both from the research community and
software developers to build systems for identi-
fying acronyms and finding their correct mean-
ings in the text. However, none of the exist-
ing works provide a unified solution capable of
processing acronyms in various domains and
to be publicly available. Thus, we introduce
MadDog, the first web-based acronym iden-
tification and disambiguation system which
can process acronyms from various domains
including scientific, biomedical, and general
domains. The web-based system is publicly
available at http://iq.cs.uoregon.edu:
5000 and a demo video is available at https:
//youtu.be/Iksh7LqIl42M. The system
source code is also available at https://
github.com/amirveyseh/MadDog.

1 Introduction

Textual contents such as books, articles, reports,
and web-blogs in various domains are replete with
phrases that are commonly used by people in that
field. In order to save space in text writing and also
facilitate communication among people who are al-
ready familiar with these phrases, the shorthanded
form of long phrases, known as acronyms and ab-
breviations, are frequently used. However, the use
of acronyms could also introduce challenges to un-
derstand the text, especially for newcomers. More
specifically, two types of challenges might hinder
reading text with acronyms. First, in long docu-
ments, e.g., a book chapter, an acronym might be

160

defined somewhere in the text and used several
times throughout the document. For someone who
is not familiar with the definition of the acronym
and interested in reading a part of the document, it
might be time-consuming to find the definition of
the acronym in the document. To solve this prob-
lem, an automatic acronym identification tool is re-
quired whose goal is to find all acronyms and their
definitions that are locally provided in the same
document. Second, some of the acronyms might
not be even defined in the document itself. These
acronyms are commonly used by writers in a spe-
cific domain. To find the correct meaning of them,
a reader must look-up the acronym in a dictionary
of acronyms. However, due to the shorter length
of acronyms compared to their long-form, multiple
phrases might be shortened with the same acronym,
thereby, they will be ambiguous. In these cases,
a deep understanding of the domain is required
to recognize the correct meaning of the acronym
among all possible long-forms. To solve this issue,
a system capable of disambiguating an acronym
based on its context is necessary.

Each of the aforementioned problems, i.e.,
acronym identification (Al) and acronym disam-
biguation (AD), has been extensively studied by the
research community or software developers. One
of the methods which are widely used in acronym
identification research is proposed by Schwartz and
Hearst (2002). This is a rule-based model that uti-
lizes character-match between acronym letters and
their context to find the acronym and its long-form
in text. Later, some feature-based models have
been also used for acronym identification (Kuo
et al., 2009; Liu et al., 2017). In addition, some of
the existing software employs regular expressions
for acronym identification in the biomedical do-
main (Gooch, 2011). Acronym disambiguation is
also approached with feature-based models (Wang
et al., 2016) or more advanced deep learning meth-

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 160—167

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

ods (Wu et al., 2015; Ciosici et al., 2019). The ma-
jority of deep models employ word embeddings to
compute the similarity between the candidate long-
form and the acronym context. In addition to the
existing research for AD, there is some web-based
software that employ dictionary look-up to expand
an acronym to its long-form (ABBREX?2018). Note
that the methods based on dictionary look-up are
not able to disambiguate the acronym if it has mul-
tiple meanings.

Despite the progress made on the Al and AD
task in the last two decades, there are some lim-
itations in the prior works that prevent achieving
a functional system to be used in practice. More
specifically, considering the research on the AD
task, all of the prior works employ a small-size
dataset covering a few hundred to a few thousand
long-forms in a specific domain. Therefore, the
models trained in these works are not capable to
expand all acronyms of a domain or acronyms in
other domains other than the one used in the train-
ing set. Although in the recent work (Wen et al.,
2020), authors proposed a big dataset for acronym
disambiguation in the medical domain with more
than 14 million samples, it is still limited to a spe-
cific domain (i.e., medical domain). Another lim-
itation in prior works is that they do not provide
a unified system capable of performing both tasks
in various domains and to be publicly available.
To our knowledge, the only exiting web-based sys-
tem for Al and AD is proposed by Ciosici and
Assent (2018). For acronym identification, this
system employs the rule-based model introduced
by (Schwartz and Hearst, 2002). To handle corner
cases, they add extra rules in addition to Schwartz’s
rules in their system. Unfortunately, they do not
provide detailed information about these corner
cases and extra rules or any evaluation to assess
the performance of the model. For acronym dis-
ambiguation, they resort to a statistical model in
which a pre-computed vector representation for
each candidate long-form is employed to compute
the similarity between candidate long-form with
the context of the ambiguous acronym represented
using another vector. However, there are two limi-
tations with this approach: first, the pre-computed
long-form vectors are obtained via only Wikipedia,
thus limiting this system to the general domain and
incapable of disambiguating acronyms in other do-
mains such as scientific papers or biomedical texts;
Second, the AD model based on the pre-computed

161

vectors is a statistical model and is not benefiting
from the advanced deep architectures, thereby it
might have inferior performance compared to a
deep AD model.

To address the shortcomings and limitations of
the prior research works or systems for Al and
AD, in this work, we introduce a web-based sys-
tem for acronym identification and disambigua-
tion that is capable of recognizing and expand-
ing acronyms in multiple domains including gen-
eral (e.g., Wikipedia articles), scientific (e.g., com-
puter science papers), biomedical (e.g., Medline
abstracts), or financial (e.g., financial discussions
in Reddit). Note that the proposed system is capa-
ble to identify acronyms and their long-forms in
all Latin-script languages. More specifically, for
acronym identification, we propose a rule-based
model by extending the set of rules proposed by
(Schwartz and Hearst, 2002). We empirically show
that the proposed model outperforms both the previ-
ous rule-based model and also the existing state-of-
the-art deep learning models for acronym identifica-
tion on the recent benchmark dataset SciAl (Pouran
Ben Veyseh et al., 2020d). Next, we use a large
dataset created from corpora in various domains
for acronym disambiguation to train a deep model
for this task. Specifically, we employ a sequential
deep model to encode the context of the ambigu-
ous acronym and solve the AD task using a feed-
forward multi-class classifier. We also evaluate the
performance of the proposed acronym disambigua-
tion model on the recent benchmark dataset SciAD
(Pouran Ben Veyseh et al., 2020d).

To summarize, our contributions are:

* The first web-based multi-domain acronym
identification and disambiguation system

» Extensive evaluation of the proposed model
on the two benchmark datasets SciAl and
SciAD

2 System Description

The proposed system is a web-based system con-
sisting of two major components: (i) Acronym
Identification which consists of a set of prioritized
rules to recognize the mentions of acronyms and
their long-forms in the text; (ii) Acronym Expan-
sion which involves a dictionary look-up to expand
acronyms with only one possible long-form and
a pre-trained deep learning model to predict the
long-form of an ambiguous acronym using its con-
text. The system takes as input a piece of text

and returns the text with highlighted acronyms in
which the user can click on the acronyms and their
long-form will be shown in a pop-up window. The
acronym glossary extracted from the text is also
shown at the end of the text. Note that users can
also enable/disable the acronym expansion compo-
nent. This section studies the details of the afore-
mentioned components.

2.1 Acronym Identification

Acronym Identification aims to find the mentions
of acronyms and their long-forms in text. This is
the first stage in the proposed system to identify
the acronyms and their immediate definitions. Gen-
erally, this task is modeled as a sequence labeling
problem. In our system, we employ a rule-based
model to extract acronyms and their meanings from
a given text. In particular, the proposed Al model
is a collection of rules mainly inspired by the rule
introduced in (Schwartz and Hearst, 2002). More
specifically, the following rules are employed in
the proposed Al model:

* Acronym Detector: This rule identifies all
acronyms in text, regardless of having an im-
mediate definition or not. Specifically, all
words that at least 60% of their characters are
upper-cased letters and the number of their
characters is between 2 and 10 are recognized
as an acronym (i.e., short-form).

Bounded Schwartz’s: Similar to (Schwartz
and Hearst, 2002), we look for immediate
definitions of detected acronyms if they fol-
low one of the templates long-form (short-
form) or short-form (long-form). In partic-
ular, considering the first template, we take
the min(|A| + 5,2 % |A|) words, where | A|
is the number of characters in the acronym,
that appear immediately before the parenthe-
ses as the candidate long-form!. Then, a
sub-sequence of the candidate long-form that
some of its characters could form the acronym
is selected as the long-form. However, despite
the original Schwartz’s rule that does not re-
strict the first and last word of the long-form
to be used in the acronym, we enforce this
restriction. This modification could fix erro-
neous long-form detection by Schwartz’s rule.
For instance, in the phrase User-guided Social

"Note that we use the same candidate long-form in other
rules too.

162

Media Crawling method (USMC), the modi-
fied rule identifies the long-form User-guided
Social Media Crawling, excluding the leading
word method.

Character Match: While the Bounded
Schwartz’ rule could identify the majority
of the long-forms, it might also introduce
some noisy meanings. For instance, in the
phrase Analyzing Avatar Boundary Matching
(AABM), the Bounded Schwartz’s rule iden-
tifies Avatar Boundary Matching as the long-
form of AABM, missing the starting word An-
alyzing. To solve this issue and increase the
model’s accuracy, we also employ a character
match rule that assesses if the initials of the
words in the candidate long-form could form
the acronym. In the given example, it identi-
fies the full phrase Analyzing Avatar Bound-
ary Matching as the long-form. Since this
rule is more restricted and it has higher preci-
sion than Bounded Schwartz’s rule, in our sys-
tem, it has a higher priority than the Bounded
Schwartz’s rule.

Initial Capitals: One issue with the proposed
Character Matching rule is that if there is a
word in the long-form that is not used in the
acronym, the rule fails to correctly identify the
long-form. For instance, in the phrase Analy-
sis of Avatar Boundary Matching (AABM) the
Character Matching rule fails due to the exis-
tence of the word of. To mitigate this issue,
we propose another high-precision rule, Ini-
tial Capitals. In this rule, if the concatenation
of the initials of the words of the candidate
long-form which are upper-cased could form
the acronym, the candidate is selected as the
expanded form of the acronym. This rule has
the highest priority in our system.

In addition to the mentioned general rules, we
also add some other rules to handle the special
cases, e.g., acronyms with a hyphen, roman num-
bers, definitions provided in some templates, for
example, CNN stands for convolution neural net-
work.

In the web-based system, the user could enter the
text and the system recognizes both acronyms with-
out any definition in text and also acronyms that
are locally defined with their identified long-forms.
Users could also click on each detected acronym
to see its definition in a pop-up window. Also, a

Acronym Long-form Rule
AABM Analyzing Avatar Boundary Matching Character Match
ABBREX Abbreviation Expander Bounded Schwartz’s
AD acronym disambiguation Character Match
Al Acronym identification Character Match
BADREX Biomedical Abbreviations using Bounded Schwartz’s
Dynamic Regular Expressions
BIiLSTM | Bi - directional Long ShortTerm Memory | Bounded Schwartz’s
DOG Diverse acrOnym Glossary Bounded Schwartz’s
MAD Massive Acronym Disambiguation Capital Initials
MF most frequent Character Match
USMC User - guided Social Media Crawling Capital Initials

Table 1: The acronym glossary extracted from the text
of this paper using MadDog.

To address the shortcomings and limitations of the prior research works or systems

for AT and AD , in this work , we introduce web - based system for acronym

identification and disambiguation that is capable of recognizing and expanding

acronyms in multiple domains ... The obtained glossary , namedas Diverse

acrOnym Glossary (DOG), contains426,389 unique acronyms and 3,781,739

uniquelong - forms ... his dataset contains 46 mil - lion records and we call it

Massive Acronym Disambiguation (MAD) dataset .

‘ Return ‘

Processing Time: 114 ms

Glossary:

DOG : Diverse acrOnym Glossary (detected by: Pipeline (Bounded Schwartz))

MAD : Massive Acronym Disambiguation (detected by: Pipeline (Capital Initials))
) Incorrect prediction?

© Correct prediction?

This text can be publicly released

Feedback:

‘ Submit ‘

Figure 1: A screenshot of acronym identification by
MadDog. It identifies all acronyms and their local-long
forms. This interface highlights the detected acronyms
and by clicking on them, a pop-up window shows the
recognized meaning of the acronym.

glossary of detected acronyms and their long-forms
is shown at the bottom of the page. A screenshot
of the output of the system is shown in Figure 1.
Moreover, Table 1 shows the glossary extracted
from the text of this paper using the rule-based
component of the system. In section 3 we com-
pare the performance of the proposed rule-based
model with the existing state-of-the-art models for
Al (Pouran Ben Veyseh et al., 2020d).

2.2 Acronym Expansion

Although the proposed rule-based model is effec-
tive to recognize locally defined acronyms, it might
not be able to expand acronyms that don’t have any
immediate definition in the text itself. To alleviate
this issue and expand acronyms even without local
definition, two resources are required: (i) A dictio-
nary that provides the list of possible expansion for

163

a given acronym; (ii) A model to exploit the context
of the given acronym and choose the most likely
expansion for a given acronym. For the acronym
dictionary, we employ the glossary obtained by
exploiting our proposed rule-based Al model on
corpora in various domains (i.e., Wikipedia, Arxiv
papers, Reddit submissions, Medline abstracts, and
PMC OA subset). The obtained glossary, named
as Diverse acrOnym Glossary (DOG), contains
426,389 unique acronyms and 3,781,739 unique
long-forms. Note that the previously available web-
based acronym disambiguation system (Ciosici and
Assent, 2018) employed only Wikipedia corpus,
therefore, it covers limited domains and acronyms
compared to our system.

In DOG, the average number of long-forms per
acronym is 6.9 and 81,372 ambiguous acronyms
exist. Due to this ambiguity, a simple dictionary
look-up is not sufficient for acronym expansion in
the web-based system that uses DOG to expand
acronyms with non-local definitions. In order to
tackle this problem, we propose to train a super-
vised model in which the input is the text and the
position of the ambiguous acronym in it and the
model predicts the correct long-form among all
possible candidates. To train this model, we use
an automatically labeled dataset obtained by ex-
tracting samples from large corpora for each long-
form in DOG. This dataset contains 46 million
records and we call it the Massive Acronym Disam-
biguation (MAD) dataset. To split the dataset into
train/dev/test splits, we use 80% of samples of each
long-form for training, 10% for the development
set, and 10% for the test set. It is noteworthy that
to facilitate training, before splitting the dataset
into train/dev/test splits, we first create chunks of
size 100,000 samples in which all samples of an
acronym are assigned to the same chunk. Since
each acronym appears only in one chuck, we train
a separate acronym disambiguation model for each
chunk. During inference, we first identify which
chuck the ambiguous acronym belongs to, then,
we use the corresponding model to predict the ex-
panded form of the acronym.

In this work, we use a deep sequential model
to be trained on the MAD dataset for acronym
disambiguation. More specifically, given the in-
put text 7' = [wy, wa, ..., w,] with the ambigu-
ous acronym w,, we first represent each word
using the corresponding GloVe embedding, i.e.,
X = [z1,29,...,2,). Afterward, the vectors

Model Acronym Long Form
P R Fl1 P R F1 Macro F1
NOA [80.31 18.08 29.51 [88.97 1401 2420| 2685
ADE | 7928 86.13 8257|9836 5734 7245| 7937
UAD [86.11 9148 8872|9651 6438 7724 | 84.09
BIOADI |[83.11 8721 85119043 7379 7749] 8235
LNCRF | 8451 9045 87.37 [95.13 69.18 80.10 | 83.73
LSTM-CRF | 88.58 86.93 87.75| 8533 8538 8536 | 86.55
MadDog | 89.98 87.56 8875|9645 79.53 87.18 | 88.12

Table 2: Performance of models for acronym identification (AI)

However , President H
control after seizing st
November 1986 sealin
government by Act of
Minister 's Office and
body . The AFD provi

ig.cs.uoregon.edu:5000 says years , on 10

< ntial system of
ated into the Prime
his government
lons .

Disambiguation: Armed Forces Division

Meanings:

Armed Forces Division : 0.009713674286665384

Alliance for Democracy : 0.009708700998788714
Anchorage Fire Department : 0.009708699336768654
Armed Forces Day : 0.009708698826182135

Agency for Development: 0.009708690637869942 -

| Return |
Processing Time: 164
Glossary:

AFD : Armed Forces T
NSC : National Securi

Figure 2: Sorted list of candidate long-forms along
with their scores for the acronym AFD in the sentence
After 1991, the presidential system of government by
Act of Parliament was abolished, and by October 1994,
the AFD was integrated into the Prime Minister’s Of-
fice and concurrently the combined armed forces au-
thority was transferred to this government body.

X are consumed by a Bi-directional Long Short-
Term Memory network (BiLSTM) to encode the
sequential order of the words. Next, we take
the hidden states of the BiLSTM neurons, i.e.,
H = [hy, ha, ..., hy], and compute the text repre-
sentation by computing the max-pool of the vectors
H,ie,h = MAX _POOL(hy,ha,..., hy,). Fi-
nally, the concatenation of the text representation,
i.e., h, and the acronym representation, i.e., hq,
is fed into a 2-layer feed-forward neural network
whose final layer dimension is equal to the total
number of long-forms in the dataset (i.e., dataset
chunks explained above).

In the proposed system, the long-form of
acronyms predicted by the acronym disambigua-
tion model is presented in the glossary at the end
of the page (See Figure 1). Moreover, by clicking
on the acronym word in text, a pop-up window
shows the model’s prediction and also the sorted
list of other candidate long-forms for the selected
acronym. An example is shown in Figure 2. In the
provided example, the system correctly predicts
Gross Domestic Production as the long-form of the
ambiguous acronym GDP. We name the proposed
acronym identification and disambiguation system

[under full civilian

as MadDog.

3 Evaluation

This section provides more insight into the per-
formance of the proposed acronym identification
and disambiguation models. To evaluate the per-
formance of the models in comparison with other
state-of-the-art Al and AD models, we report the
performance of the proposed models on SciAl and
SciAD benchmark datasets (Pouran Ben Veyseh
et al., 2020d). We also compare the performance of
the proposed model with the baselines provided in
the recent work (Pouran Ben Veyseh et al., 2020d).
More specifically, on SciAl, we compare our model
with rule-based models NOA (Charbonnier and
Wartena, 2018), ADE (Li et al., 2018) and UAD
(Ciosici et al., 2019); and also the feature-based
models BIOADI (Kuo et al., 2009) and LNCRF
(Liu et al., 2017); and finally the SOTA deep model
LSTM-CRF (Pouran Ben Veyseh et al., 2020d). For
evaluation metrics, following prior work, we report
precision, recall, and F1 score for the acronym and
long-form prediction and also their macro-averaged
F1 score. The results are shown in Table 2. This
table shows that our model outperforms both rule-
based and more advanced feature-based or deep
learning models. More interestingly, while the pro-
posed model has comparable precision with the
existing rule-based models, it enjoys higher recall.

To assess the performance of the proposed
acronym disambiguation model, we evaluate its per-
formance on the benchmark dataset SciAD (Pouran
Ben Veyseh et al., 2020d) and compare it with the
existing state-of-the-art models. Specifically, we
compare the model with non-deep learning mod-
els including most frequent (MF) meaning (Pouran
Ben Veyseh et al., 2020d), feature-based model
(i.e., ADE (Li et al., 2018)), and deep learning
models including NOA (Charbonnier and Wartena,
2018), UAD (Ciosici et al., 2019), BEM (Blevins

164

Model P R FI
MF [89.03 422 57.26
ADE | 86.74 4325 57.72
NOA | 7814 3506 4840
UAD | 89.01 70.08 7837
BEM | 86.75 3594 50.82

DECBAE | 88.67 7432 80.86
GAD | 89.27 76.66 81.90
MadDog | 92.27 85.01 88.49

Table 3: Performance of models for acronym disam-
biguation (AD)

and Zettlemoyer, 2020), DECBAE (Jin et al., 2019)
and GAD (Pouran Ben Veyseh et al., 2020d). The
results are shown in Table 3. This table demon-
strates the effectiveness of the proposed model
compared with the baselines. Our hypothesis for
the higher performance of the proposed model is
the massive number of training examples for all
acronyms which results in low generalization error.

4 Related Work

Acronym identification (AI) and acronym disam-
biguation (AD) are two well-known tasks with
several prior works in the past two decades. For
Al both rule-based models (Park and Byrd, 2001;
Wren and Garner, 2002; Schwartz and Hearst,
2002; Adar, 2004; Nadeau and Turney, 2005; Ao
and Takagi, 2005; Kirchhoff and Turner, 2016) and
supervised feature-based or deep learning mod-
els (Kuo et al., 2009; Liu et al., 2017; Pouran
Ben Veyseh et al., 2020d, 2021) are utilized. Due
to the higher accuracy of rule-based models, they
are dominantly used in the majority of the related
works, especially to automatically create acronym
dictionary (Ciosici et al., 2019; Li et al., 2018;
Charbonnier and Wartena, 2018). However, the
existing works prepare a small-size dictionary in a
specific domain. In contrast, in this work, we first
improve the existing rules for acronym identifica-
tion, then, we use a diverse acronym glossary in our
system. For acronym disambiguation, prior works
employ either feature-based models (Wang et al.,
2016; Li et al., 2018) or deep learning methods
(Wu et al., 2015; Antunes and Matos, 2017; Char-
bonnier and Wartena, 2018; Ciosici et al., 2019;
Pouran Ben Veyseh et al., 2021). In this work, we
also employ a sequential deep learning model for
AD. However, unlike prior work that proposes an
acronym disambiguation model for a specific do-

165

main and limited acronyms, our proposed model
covers more acronyms and it is able to expand an
acronym in various domains.

Another common limitation of the existing
research-based models for Al and AD is that
they do not provide any publicly available sys-
tem that could be quickly incorporated into a text-
processing application. Although there is some
software for acronym identification such as expand-
ing Biomedical Abbreviations using Dynamic Reg-
ular Expressions (BADREX) (Gooch, 2011) or Ab-
breviation Expander (ABBREX) (ABBREX2018),
unfortunately, they are incapable of acronym dis-
ambiguation. To our knowledge, the most simi-
lar work to ours is proposed by Ciosici and As-
sent (2018). Specifically, similar to our work, this
web-based system is able to identify and expand
acronym in text. A rule-based model is employed
for Al and this model is also used to create a dic-
tionary of acronyms. For AD, unlike our work
that trains a deep model, they use word embed-
ding similarity to predict the most likely expansion.
However, there are some limitations to this previ-
ous system. Firstly, it is restricted to the general
domain (i.e., Wikipedia) and it covers a limited
number of acronyms. Second, it does not provide
any analysis and evaluations of the performance
of the proposed model. Lastly, it is not publicly
available anymore. The proposed MadDog system
could be useful for many downstream applications
including definition extraction (Pouran Ben Veyseh
et al., 2020a; Spala et al., 2020, 2019), informa-
tion extraction (Pouran Ben Veyseh et al., 2019,
2020b,c) or question answering (Perez et al., 2020)

5 System Deployment

MadDog is purely written in Python 3 and could
be run as a FLASK (Grinberg, 2018) server. For
text toknization, it employs SpaCy 2 (Honnibal
and Montani, 2017). Also, the trained acronym
expansion model requires PyTorch 1.7 and 64 GB
of disk space. Note that all acronyms with their
long-forms are encoded in the trained model so they
can perform both the dictionary look-up operation
and the disambiguation task. Moreover, the trained
models could be loaded both on GPU and CPU.

6 Conclusion

In this work, we propose a new web-based system
for acronym identification and disambiguation. For
Al, we employ a refined set of rules which is shown

to be more effective than the previous rule-based
and deep learning models. Moreover, using a mas-
sive acronym disambiguation dataset with more
than 46 million records in various domains, we
train a supervised model for acronym disambigua-
tion. The experiments on the existing benchmark
datasets reveal the efficacy of the proposed AD
model. In future, we aim to prepare the proposed
model to be integrated into an e-reader where the
readers can quickly hover the acronym and find the
correct meaning for that. This system could help
save time for reading technical documents that are
replete with acronyms.

Acknowledgments

This work has been supported by Adobe Research
Gifts and the Army Research Office (ARO) grant
WOI11NF-17-S-0002. This research is also based
upon work supported by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
IARPA Contract No. 2019-19051600006 under
the Better Extraction from Text Towards Enhanced
Retrieval (BETTER) Program. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or
implied, of ARO, ODNI, IARPA, the Department
of Defense, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein. This doc-
ument does not contain technology or technical
data controlled under either the U.S. International
Traffic in Arms Regulations or the U.S. Export Ad-
ministration Regulations.

References

ABBREX2018. Abbrex. 2018. abbrex - the abbrevia-
tion expander. In BMC bioinformatics.

Eytan Adar. 2004. Sarad: A simple and robust abbrevi-
ation dictionary. In Bioinformatics.

Rui Antunes and Sérgio Matos. 2017. Biomedical
word sense disambiguation with word embeddings.
In International Conference on Practical Applica-
tions of Computational Biology & Bioinformatics.

Hiroko Ao and Toshihisa Takagi. 2005. Alice: an al-
gorithm to extract abbreviations from medline. In
Journal of the American Medical Informatics Asso-
ciation.

166

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of word sense disambiguation
with gloss informed bi-encoders. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006-1017, On-
line. Association for Computational Linguistics.

Jean Charbonnier and Christian Wartena. 2018. Us-
ing word embeddings for unsupervised acronym dis-
ambiguation. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2610-2619, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Manuel R. Ciosici and Ira Assent. 2018. Abbreviation
expander - a web-based system for easy reading of
technical documents. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations, pages 1-4, Santa Fe,
New Mexico. Association for Computational Lin-
guistics.

Manuel R Ciosici, Tobias Sommer, and Ira Assent.
2019. Unsupervised abbreviation disambiguation.
In arXiv preprint arXiv:1904.00929.

Phil Gooch. 2011. Badrex: In situ expansion and coref-
erence of biomedical abbreviations using dynamic
regular expressions.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. ” O’Reilly
Media, Inc.”.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep con-
textualized biomedical abbreviation expansion. In
arXiv preprint arXiv:1906.03360.

Katrin Kirchhoff and Anne M Turner. 2016. Unsuper-
vised resolution of acronyms and abbreviations in
nursing notes using document-level context models.
In Proceedings of the Seventh International Work-
shop on Health Text Mining and Information Anal-
ySis.

Cheng-Ju Kuo, Maurice HT Ling, Kuan-Ting Lin, and
Chun-Nan Hsu. 2009. Bioadi: a machine learning
approach to identifying abbreviations and definitions
in biological literature. In BMC bioinformatics.

Yang Li, Bo Zhao, Ariel Fuxman, and Fangbo Tao.
2018. Guess me if you can: Acronym disambigua-
tion for enterprises. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1308—
1317, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jie Liu, Caihua Liu, and Yalou Huang. 2017. Multi-
granularity sequence labeling model for acronym ex-
pansion identification. In Information Sciences.

David Nadeau and Peter D Turney. 2005. A supervised
learning approach to acronym identification. In Con-
ference of the Canadian Society for Computational
Studies of Intelligence.

Youngja Park and Roy J. Byrd. 2001. Hybrid text min-
ing for finding abbreviations and their definitions. In
Proceedings of the 2001 Conference on Empirical
Methods in Natural Language Processing.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised ques-
tion decomposition for question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8864—8880, Online. Association for Computa-
tional Linguistics.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020a. A joint model
for definition extraction with syntactic connection
and semantic consistency. In AAAL

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020b. Exploiting
the syntax-model consistency for neural relation ex-
traction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8021-8032, Online. Association for Computa-
tional Linguistics.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Thien
Huu Nguyen, Walter Chang, and Leo Anthony Celi.
2021. Acronym identification and disambiguation
shared tasks for scientific document understanding.
In Proceedings of the Ist workshop on Scientific
Document Understanding.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
My Thai, Dejing Dou, and Thien Nguyen. 2020c.
Multi-view consistency for relation extraction via
mutual information and structure prediction. In
AAAL

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, and Thien Huu Nguyen. 2020d.
What does this acronym mean? introducing a new
dataset for acronym identification and disambigua-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3285—
3301, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Amir Pouran Ben Veyseh, Thien Nguyen, and Dejing
Dou. 2019. Improving cross-domain performance
for relation extraction via dependency prediction
and information flow control. In IJCAL

Ariel S Schwartz and Marti A Hearst. 2002. A simple
algorithm for identifying abbreviation definitions in
biomedical text. In Biocomputing 2003.

Sasha Spala, Nicholas Miller, Franck Dernoncourt, and
Carl Dockhorn. 2020. SemEval-2020 task 6: Defini-
tion extraction from free text with the DEFT corpus.
In Proceedings of the Fourteenth Workshop on Se-
mantic Evaluation.

167

Sasha Spala, Nicholas A. Miller, Yiming Yang, Franck
Dernoncourt, and Carl Dockhorn. 2019. DEFT: A
corpus for definition extraction in free- and semi-
structured text. In Proceedings of the 13th Linguistic
Annotation Workshop.

Yue Wang, Kai Zheng, Hua Xu, and Qiaozhu Mei.
2016. Clinical word sense disambiguation with in-
teractive search and classification. In AMIA Annual
Symposium Proceedings.

Zhi Wen, Xing Han Lu, and Siva Reddy. 2020.
MeDAL: Medical abbreviation disambiguation
dataset for natural language understanding pretrain-
ing. In Proceedings of the 3rd Clinical Natural
Language Processing Workshop, pages 130-135,
Online. Association for Computational Linguistics.

Jonathan D Wren and Harold R Garner. 2002. Heuris-
tics for identification of acronym-definition patterns
within text: towards an automated construction of
comprehensive acronym-definition dictionaries. In
Methods of information in medicine.

Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu.
2015. Clinical abbreviation disambiguation using
neural word embeddings. In Proceedings of BioNLP
15, pages 171-176, Beijing, China. Association for
Computational Linguistics.

Graph Matching and Graph Rewriting:
GREW tools for corpus exploration, maintenance and conversion

Bruno Guillaume
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Bruno.Guillaume@inria.fr

Abstract

This article presents a set of tools built around
the Graph Rewriting computational frame-
work which can be used to compute com-
plex rule-based transformations on linguistic
structures. Application of the graph matching
mechanism for corpus exploration, error min-
ing or quantitative typology are also given.

1 Introduction

The motivation of GREW is to have an effective tool
to design rule-based transformations of linguistic
structures. When designing GREW, our goal was
to be able to manipulate at least syntactic and se-
mantic representations of natural language (one of
the first application of GREW was the modeling
of a syntax-semantics interface). In a naive view,
we can say that syntactic structures are trees and
semantic ones are graphs. Then, if we want to
work with both kinds of structures in a common
framework, we can use the fact that a tree can be
considered as a graph and hence consider that all
structures are graphs. '

Now, if we consider all structures as graphs,
how to describe rule-based transformation on these
structures? In practice, these transformations can
of course be computed with some programs but
when it becomes complex and implies many rules,
it is difficult to maintain and to debug. To deal
with this, we propose to use the graph rewriting
formalism to describe these transformations.

Graph rewriting is a well-defined mathematical
formalism and we know that any computable trans-
formation can be expressed by a graph rewriting
system. In this approach, a global transformation
is decomposed in a successive application of small
and local transformations which are described by

"We may lose information if the order between the child
nodes of a given node (see Section 2).

168

rules; linguistic transformations can be decom-
posed in a modular way in atomic steps which are
easier to manage.

Several graph rewriting tools already exist but
some specificities of NLP made it useful to build a
system dedicated to this domain. In GREW tools,
a built-in notion of feature structure is available
and rules can be parametrised by lexical informa-
tion. Moreover, transformations on dependency
structures often requires to change head of sub-
structures and a dedicated command ease this kind
of operation (see Section 3.5).

In Section 2, we give a more precise definition
of our graphs and graph rewriting framework and
the next parts present examples about rewriting
(Section 3) and about matching (Section 4).

2 Graphs and graph rewriting

The book (Bonfante et al., 2018) gives a complete
description of the graphs and graph rewriting sys-
tem used in GREW. We give here a short descrip-
tion on the main aspects.

In our framework, a graph is defined by a set
of nodes labelled by non-recursive feature struc-
ture and a set of labelled edges (note that edges
encode relations and hence, we do not consider
multiple edges with the same label on the same
pair of nodes). In addition to the usual graph math-
ematical definition of graphs, we also add a notion
of order on nodes. For each graph, a sub-part of the
nodes are ordered. The subset of ordered nodes can
contains all the nodes (for instance in dependency
structures like in Figure 1); it can be empty (for
instance in semantic graphs like AMR structures
shown in Section 4.2); but we can also have struc-
tures where a strict subpart is ordered, for instance
with phrase structure trees where lexical nodes are
ordered following the tokens order in the input sen-
tence whereas non-lexical nodes are unordered.

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 168175

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Global transformations of graphs are decom-
posed in small steps; each step is described as a
rule. A rule encodes a local transformation and is
composed in two parts: the left-hand side which
expresses the conditions for the application of the
rule and the right-hand part which describes the
modifications to be done on the graph.

Formally, the conditions of application are de-
scribed by a pattern which is itself a graph. Graph
matching is used to decide if a pattern can be found
in a graph. The pattern can be refined by a set
of NAP (negative application patterns) which are
used to filter out some occurrences given by the
first pattern. The main pattern is introduced by the
keyword pattern and NAPs are introduced with
the keyword without (see examples in the next
section).

To avoid complex mathematical definitions and
to propose an operational way to modify graph,
GREW describes the modifications of the graph
through a sequence of atomic commands for edge
deletion, edge creation, feature updating. ..

When the number of rules increases, it may be-
come tricky to control the order in which they
should be applied; a dedicated notion of rewrit-
ing strategies was design to let the user control
these applications.

When using rewriting, confluence and termina-
tion are important aspects. These questions are
discussed on examples in the next section.

3 Graph rewriting in practice

The goal of this section is to present through exam-
ples the usage of the rewriting part of GREW. Some
important concepts like confluence and termination
will be also discussed.

3.1 First rules

The conversion between different formats is one
the common usage of GREW. We will use the ex-
ample of the conversion from one dependency an-
notation format (used in the Sequoia project (Can-
dito and Seddah, 2012)) to Universal Dependencies
(UD) (Nivre et al., 2016). The Figure 1 shows the
annotations of a French sentence in both formats.

The whole transformation is decomposed into
small steps which are described by rules. When
GREW is used to rewrite an input graph, a strategy
describes how rules should be applied. In the first
examples below, the strategy consists in just one
rule.

169

In our conversion example, we need a rule to
change the POS for adjectives: a is used in Sequoia
and apJ in UD. The GREW rule for this transfor-
mation is:

rule adj {
pattern { N [upos=A]
commands { N.upos

}
ADJ }

}

The application of this rule on the input graph
produces, as expected the graph below:

[

Deux
deux
D

suj

i
sont
étre
\

obip

] mod
0 V0
montrées du

de

montrer
\ P+D

aot
s
—|
autres photos
autre photo
ADJ N

¥
doigt
doigt
N

We can then imagine others similar rules for
other POS tags: p is Sequoia becomes app in UD,

N is Sequoia becomes noun in UD.

rule prep {

pattern { N

[upos=P] }

commands { N.upos = ADP }
}
rule noun {
pattern { N [upos=N] }
commands { N.upos = NOUN }

}

But applying the rule prep to the input graph
produces an empty set and the application of noun
the input graph produced two different graphs (one
with photos tagged as noun, the other with doigt
tagged as NoOUN)!

In fact, the result of the application of a rule on a
graph is a set of graphs, one for each occurence of
the pattern found in the input graph. This set is then
empty if the pattern is not found (like pattern (N
[upos=P]}) or contains two graphs if the pattern
if found twice (like pattern {N [upos=N]}). To
iterate the application of a rule, one has to use more
complex strategies.

The strategy onf (noun) 2 iterates the application
of the strategy noun on the input graph. With the
same input graph (of Figure 1), the application
of GREW with the strategy onf (noun) produces a
graph where the two nouns have the new tag NOUN.

Note that onf (.. .) always outputs exactly one
graph. With the strategy onf (prep) for instance,
the rewriting process will output one graph, identi-
cal to the input graph, obtained after 0 application
of the prep rule.

In previous examples, we considered rules sep-
arately, but in a global transformation all the pre-
vious rules must be used in the same global trans-
formation. A solution to use several rules in the

2Onfstandsfor“onenormalform”;itwillbeexplained
more in detail later with other strategies.

det

suj

mod aux.pass mod obj.p
[:ﬁ” I 1] r M)
Deux autres photos sont montrées du doigt
deux autre photo étre montrer de doigt
D A N \2 \Y P+D N
obl:mod
nummod nsubjipass case l
amod aux:pass det
N I [=
Deux autres photos sont montrées de le doigt

deux autre photo étre montrer de le doigt

NUM ADJ NOUN

AUX

VERB ADP DET NOUN

Figure 1: Annotation of the sentence Deux autres photos sont montrées du doigt [en: Two other photos are pointed

out] in Sequoia (above) and in UD (below)

same rewriting process is to put them in the same

package construction, for instance with the 3 rules

above:

package POS {
rule adj {

rule prep {
rule noun {

The package name pos can be used as a strategy
name for rewriting. Applying the package pos cor-
responds to the application of one of the rules of the
package. With our input graph, it produces three
different graphs, obtained either by the application
of the rule adj or by the two possible applications
of the rule noun.

In order to iterate the package, we need the strat-
egy onf (Pos). As before with onf, exactly one
graph is produced with three successive applica-
tions of the rules:

i

Deux autres photos
deux autre photo
D ADJ NOUN

obip

| —= 0
du

de
P+D

s
awcpass
‘ .
sont montrées
étre montrer
A\ \2

M
doigt
doigt
NOUN

3.2 Termination

One key problem that may arise when using rewrit-
ing is the non-termination of the process. If we
go on with the previous example about POS and
consider verbs: the same tag v should be converted
to AUx or to VERB. One way to decide that the new
POS must be aux is the presence of the relation
aux.pass. We can propose the rule:

rule aux_1 {

pattern { M —-[aux.pass]—-> N }

commands { N.upos AUX }
}

But the process of rewriting with strategy
onf (aux_1) is not terminating because nothing pre-
vents the rule to be applied again and again, the
pattern is still present after the application of the

170

rule. In practice, a bound can be set on the number
of rules applied® and an error is thrown when this
bound is reached, in order to avoid non-terminating
computation.

A way to solve this problem is to make the pat-
tern stricter. With the rule below and the strategy
onf (aux_2), the expected output is obtained after
one application of the rule.

rule aux_2 {

pattern { M —-[aux.pass]—> N; N[upos=V]
commands { N.upos AUX }
}

}

Of course, in a more general setting, we can
have loops which imply more than one rule and
which are more difficult to manage. Unfortunately,
it is not possible to decide algorithmically if some
rewriting system is terminating or not.

Anyway, in NLP applications like conversions
from format A to format B, it is often easy to en-
sure termination be defining measure which stands
for the fact that we are “closer” to the B format
after each rule application. For instance, in all the
non-looping rules above, if we count the number
of Sequoia POS tag in the graph, it is strictly de-
creasing at each rule application.

3.3 Confluence

Another well-known issue with rewriting is the
problem of confluence. As said earlier, the Sequoia
tag V may be converted to AUX or VERB. A naive
way to encode this in rules is to write the package:

package v_1 {
rule aux {

pattern { N [upos = V] }
commands { N.upos = AUX }
}
rule verb {
pattern { N [upos = V] }
commands { N.upos = VERB }

}

310,000 by default

The two rules overlap: each time a POS v is
found, both rules can be used and produces a dif-
ferent output! We call this kind of system non-
confluent. Anyway, the strategy onf (v_1) still pro-
duced exactly one graph by choosing (in a way
which cannot be controlled) one of the possible
ways to rewrite.

What should we do with non-confluent system?
There are two possible situations: (1) The two rules
are correct and there is a real (linguistic) ambiguity
and all solutions must be considered or (2) There
is no ambiguity, the rules must be corrected.

In our example, we are clearly in the second case,
but we consider briefly the other case for the ex-
planation on how to deal with really non-confluent
setting. Let us suppose that we are interested in
all possible solutions. GREW provides a strategy
Tter (v_1) to do this: this strategy applied to the
same input graph produces 4 different graphs with
different combinations of either aux or VERB for the
two words sont and montrées.

Of course, in our POS tags conversion example,
the correct solution is to design more carefully our
two rules, in order to produce the correct output:

package v_2 {

rule aux {

pattern {N[upos=V];
commands { N.upos=AUX }
rule verb {

pattern { N [upos=V] }
without { M -[aux.pass]-> N }
commands { N.upos=VERB } }

}

M -[aux.pass]—> N}

}

Here, the two rules are clearly exclusive: the
same clause M -[aux.pass]-> N is used first in
the pattern part of rule aux and in the without
part of rule verb. With these two new rules, the
system is confluent, and there is only one possible
output. This can be tested with the Tter (v_2) strat-
egy which produces all possible graphs, exactly one
in this case.

Of course, the strategy onf (v_2) produces the
same output in this setting. When a package p is
confluent, the two strategies onf (p) and Iter (p)
give the same result. In practice, the strategy
onf (p) must be preferred because it is much more
efficient to compute.

34

In Figure 1, we can observe that in addition to a dif-
ferent POS tagset, the UD format also uses a differ-
ent tokenisation. The word du of the input sentence
is a token with a POS p+D in Sequoia but this is in

More commands

171

fact an amalgam of two lexical units: a preposition
and a determiner*. In UD, such combined tag are
not allowed and the sentence is annotated with two
tokens de and le for the word du. Hence, we have
to design a rule to make this new tokenisation. The
rule below computes this transformation:

rule amalgam {

pattern {
N [form = "du", upos = "P+D"];
N -[obj.p]-> M }

commands {
add_node D :> N;
N.form = "de"; N.upos = ADP;
D.form = "le"; D.upos = DET;

add_edge M —-[det]-> D

—-—

This is our first rule with more than one com-
mands. In general, the transformation is described
by a sequence of commands which are applied suc-
cessively to the current graph. The application of
this rule to our input graph builds:

det

— |
autres photos
autre photo
A N

obip

det

s
axpass o

§ Jf J

sont montrées de

étre montrer de
\ \% ADP

l

Deux
deux
D

!
le
DET

)
doigt
doigt
N

Note that N -[obj.p]-> M is not required to
find a place where the rule must be applied, but
we need it to get access to the node with identifier
M and to define properly the command add_edge.

3.5 Changing head

For transformation between different syntactic an-
notation frameworks, we often have to deal with
the fact that heads of constituents may change. For
instance, with the sentence je vois que tu es malade
[en: I see that you are sick]. The head of the clause
que tu es malade is es in Sequoia and malade in UD.
In practice, we have to realise the transformation
between the two graphs described by Figure 2.
We can use what was presented before to re-
move the edge ats, to add a new edge cop and
to change the POS of es; but we need something
more: moving all other edges incident to the old
head es towards the new head malade. GREW pro-
vides a dedicated command shift to compute this.
In the rule below, the command shift v ==> ATS
means: change all edges starting (resp. ending) on
the node v to make them start (resp. end) on ATs.

rule ats {
pattern {
V[upos=VERB];
e: V —-[ats]—-> ATS }

“This is exactly what the tag P+D means.

ccomp

mark

nsubj [nsubj 1 ats
! . ! }
je vois que tu es malade

PRON VERB SCONJ PRON VERB ADJ
ccomp
mark
[ot 1

nsubj cop
! . [¢
je vois que tu es malade

PRON VERB SCONJ PRON AUX ADJ

Figure 2: Graph transformation for head changes

commands {
del_edge e;
shift V ==> ATS;
add_edge ATS —[copl—-> V;
V.upos AUX }

}

3.6 More strategies

Above, we have seen how to handle atomic trans-
formations through rules. But, in order to define
a complete transformation system, some larger set
of rules are needed. It is important to be able to
control the order in which subset of rules should
applied. In practice, large transformation system
are divided in several steps and sub-systems are
applied successively. In our example (Sequoia to
UD), the global transformation can be divided into:
1) change POS and tokenisation, 2) change rela-
tion labels, 3) make needed head changes. The
can be expressed in GREW by a strategy Seq (pPOs,
relations, heads),\NheKEPOS,relations and
heads correspond to dedicated subset of rules.

4 Application of graph matching

Graph matching is a subpart of the system used to
describe left part of rewriting rules, but it is also
useful alone as a way to make requests on a graph
or a set of graphs. In practice, it can be used for
searching examples of a given construction, for
checking consistencies of annotations or for error
mining. This subpart of GREW is now proposed as
a separate tool, named GREW-MATCH and freely
available as a web service’. This graph matching
system is also available in the ARBORATORGREW
tool (Guibon et al., 2020)°.

A screenshot of the GREW-MATCH interface is
shown in Figure 3. With the top bar and the list

Shttp://match.grew. fr
*https://arborator.github.io

172

on the left, the user can chose a corpus (all 183
UD and SUD 2.7 corpora and a few other freely
available corpora can be requested). A Request is
entered and the user can visualise the occurrences
found in the corpora with elements of the pattern
highlighted in the sentence.

4.1 Error mining

It is difficult in general to ensure consistent annota-
tions in large corpora. GREW-MATCH can be used
to detect this kind of inconsistencies by making
linguistic observation on some corpus. The Fig-
ure 3 illustrates the first step of such usage with
the request: find nsub; relations where there is a
Number disagreement (the head and the dependant
of the relation both have a Number feature but with
different values). In version 2.7 of UD_ENGLISH-
GUM, 120 occurrences of the pattern are found,
but there are not all errors, as the example of the
figure shows. We can then refine the request by
adding some negative patterns (with the without
keyword), for instance to exclude occurrences with
a copula linked to the head:

pattern {

M -[nsubj]l-> N;

M.Number <> N.Number;
without { M —-[cop]l-> C }

}

The new request returns 25 occurrences which
can be manually inspected: we have found a mix
of annotation errors, irregularities (institution plu-
ral name used as a singular the United Nations
rates...) or misspelled sentences. The same ap-
proach can be used for many aspect: searching
for verbs without subjects, for unwanted multiple
relation (more than one obj on the same node).

4.2 data exploration

More generally, GREW-MATCH can be used for
any kind of data exploration. Here, we use the
example of AMR (Banarescu et al., 2013) annota-
tions, this will allow us to show examples where
the graph matching used cannot be reduced as a
tree matching. Two corpora are available from
the AMR website’: the English translation of the
Saint-Exupéry’s novel The Little Prince and some
PubMed articles. With the pattern below, we search
for a node which is the ArRGo argument of two dif-
ferent related concepts.

pattern { P1 -> P2;

P1 —-[ARGO]-> N; P2 —-[ARGO]-> N; }

"https://amr.isi.edu/

Grew-match

ubD 2.7

£ UD_Afrikaans-AfriBooms@2.7

= UD_Akuntsu-TuDeT@2.7 (@ (E

= UD_Albanian-TSA@2.7

= UD_Amharic-ATT@2.7

i Ancient Greek

£ UD_Apurina-UFPA@2.7

i Arabic

£ UD_Armenian-ArmTDP@2.7
= UD_Assyrian-AS@2.7

= UD_Bambara-CRB@2.7

= UD_Basque-BDT@2.7

= UD_Belarusian-HSE@2.7
= UD_Bhojpuri-BHTB@2.7
= UD_Breton-KEB@2.7

= UD_Bulgarian-BTB@2.7

0|®0

AMR

UD_English-GUM@2.7 (5961 trees, 119346 tokens]

pattern { M -[nsubj]-> N; M.Number <>

Y o

N.Number }

120 occurrences [0.0ss]

Basic n-grams Clusters
Search for a form

‘Search for a lemma

Search for a POS (upos)

‘Search for a dependency relation

Filter with NAP (Negative Application Patterns)

(o> Loz Lo 2]
4/ 10 "We are a Golony.
GUM_bio_moreau-11
GUM_whow_arrogant-43 oo
GUM_whow_arrogant-7
GUM _fiction_veronique-38
GUM._interview_dungeon-74
GUM._bio_hadid-22
GUM_fiction_beast-39 N]
GUM_fiction_veronique-41 Inet e
GUM._fiction_honour-32 Sration 68566 upos=PRON
GUM _interview_stardust-15 riened
Entity=(person-36)
Number=Plur

Person=
PronType=Prs

are
upos=AUX Upos=DET
lemma=be lemma=a
Mood=ind Definite=Ind
Tense=Pres Entity=(place-37
VerbForm=Fin PronType=Art

upos=PUNCT
lemmas=

Number=Sing

Figure 3: GREW-MATCH main interface

211 occurrences of this pattern are found in The
Little Prince. Two of them are showed below, for
the two sentences: “What are you trying to say?”
and “I administer them,” replied the businessman.

label = try-01 label = reply-01
/\RGI ARG2
label = say-01 2RG label = administer-01 RGO
ARGl ARGO ARG1 ARGO
label = amr-unknown label = they _

label = you label = businessman

4.3 Typology

The pattern matching mechanism is also available
in a count subcommand for GREW. Given a set
of corpora and a set of requests, a table with the
number of occurrences of each pattern on each
corpora is returned. For instance, with the two
patterns below, we can compute the ratio of nsubj
relations which are use with or without a copula
construction.

pattern { M —-[nsubj]-> N; M —-[cop]—-> *}
and

pattern { M —-[nsubj]-> N }

without { M —[cop]-> * }

The chart below shows these ratios, sorted by
increasing values on the 141 corpora of UD 2.7
with more than 1000 sentences. Most corpora have
a ratio between 0% and 25% with all value repre-
sented and a few corpora have a significantly higher
proportion. 3 are above 30%: FAROESE-OFT

173

with 67%, FRENCH-FQB with 43% and PERSIAN-
SERAII with 34%.

70 %
60 %
50 %
40 %
30 %
20%
10 %

0%

5 Related works

5.1 Rule-based transformations of linguistic
structures

Many implementations of graph rewriting or graph
transformation exist in other research areas. But the
massive usage of feature structures in linguistic unit
description, the usage of dedicated technical for-
mats like CoNLL-U or the need for specific kinds
of transformations (like the shift operation de-
scribed above) make general graph transformation
system difficult to use in NLP applications. Such
applications would require several encodings of the
data and they will not allow for a straightforward
expression of linguistic transformations. Among
existing rule-based software for transformations of
linguistic structures, we can cite OGRE®(Ribeyre,
2016) and Depedit’.

8https://gitlab.etermind.com/cribeyre/
OGRE

‘https://corpling.uis.georgetown.edu/
depedit

OGRE uses a notion of rules which is very closed
to the ones used in GREW, but it does not pro-
vide interface with lexicons and there is no notion
of strategies for the description of complex graph
transformations which imply a large number of
rules.

Depedit can be used as a separate tool or as a
Python library. It is specifically designed to manip-
ulate only dependency trees. Contrary to GREW,
it does not proposed a built-in notion of strategies
and does not handle not confluent rewriting pro-
cessing. Moreover, the notion of rules is also more
restricted: there are no NAP and it is not possi-
ble to express additional contraints on morpholog-
ical features like the one we used in Section 4.1:
M.Number <> N.Number.

5.2 Tools for corpora querying

A large number of online query tools are available
online. Some of them have a more restrictive query
language like SETS'? or Kontext'!. In these two
tool, there is no notion of NAP and the kind of
contraints that can be expressed is limited.

The PML Tree Query'? and INESS'? offers a
query language with the same expressive power
as the one proposed in GREW. An advantage of
GREW is that it is interfaced in the larger annotation
tool ARBORATORGREW !4, With ARBORATOR-
GREW, the user may query on his own treebank
and then have access to a manual editing mode on
the query output or to automatic updating through
GREW rules.

6 Conclusion

GREW was used in many tasks of corpus conver-
sion. It is used for instance for conversion between
UD and SUD (Gerdes et al., 2018, 2019): all UD
corpora are converted into SUD with it. GREW
is implemented in Ocaml and is quite efficient:
for instance the conversion of UD 2.7 (1.48M sen-
tences, 26.5M tokens) into SUD uses 100 rules and
takes 5,500 seconds on a labtop (around 267 graphs
rewritten by second).

GREW is available as a command line program
or through a Python library. Installation proce-
Ohttp://depsearch-depsearch.rahtiapp.

fi/ds_demo
Uhttp://lindat.mff.cuni.cz/services/
kontext
Phttp://lindat.mff.cuni.cz/services/
pmltg
Bhttp://clarino.uib.no/iness
“nttps://arborator.github.io

dures and usage documentation are given on the
GREW website: https://grew.fr. A web-based
interface for the usage of the rewriting part of the
software will be provided soon.

In this article, examples are given on dependency
syntax and on semantic representations like AMR.
A more complete set of examples is given in (Bon-
fante et al., 2018). Many other linguistic structures
can be encoded as graphs and we plan to extend
the experiments to other kind of semantic represen-
tations.

Acknowledgments

Thanks to all GREW users for their feedback and
their requests which helps improve the software.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—186.

Guillaume Bonfante, Bruno Guillaume, and Guy Per-
rier. 2018. Application of Graph Rewriting to Nat-
ural Language Processing, volume 1 of Logic, Lin-
guistics and Computer Science Set. ISTE Wiley.

Marie Candito and Djamé Seddah. 2012. Le corpus
Sequoia : annotation syntaxique et exploitation pour
I’adaptation d’analyseur par pont lexical. In TALN
2012 - 19e conférence sur le Traitement Automa-
tique des Langues Naturelles, Grenoble, France.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2018. SUD or Surface-Syntactic Uni-
versal Dependencies: An annotation scheme near-
isomorphic to UD. In Universal Dependencies
Workshop 2018, Brussels, Belgium.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2019. Improving Surface-syntactic
Universal Dependencies (SUD): surface-syntactic
relations and deep syntactic features. In TLT 2019
- 18th International Workshop on Treebanks and Lin-
guistic Theories, Paris, France.

Gaél Guibon, Marine Courtin, Kim Gerdes, and Bruno
Guillaume. 2020. When Collaborative Treebank Cu-
ration Meets Graph Grammars. In LREC 2020 -
12th Language Resources and Evaluation Confer-
ence, Marseille, France.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies

174

vl: A multilingual treebank collection. In Proceed-
ings of LREC 2016, pages 1659—-1666.

Corentin Ribeyre. 2016. Méthodes d’analyse super-
visée pour linterface syntaxe-sémantique : De la
réécriture de graphes a l’analyse par transitions.
Ph.D. thesis, Université Paris 7 Diderot & Inria.

175

Massive Choice, Ample Tasks (MACHAMP):
%? A Toolkit for Multi-task Learning in NLP @

Rob van der Goot® Ahmet Ustiin® Alan Ramponi ® @

Ibrahim Sharaf®

Barbara Plank ®
@IT University of Copenhagen ®University of Groningen @ University of Trento

@ Fondazione the Microsoft Research - University of Trento COSBI
a.ustun@rug.nl,
ibrahim.sharaf@factmata.com,

robv@itu.dk,

Abstract

Transfer learning, particularly approaches that
combine multi-task learning with pre-trained
contextualized embeddings and fine-tuning,
have advanced the field of Natural Language
Processing tremendously in recent years. In
this paper we present MACHAMP, a toolkit
for easy fine-tuning of contextualized embed-
dings in multi-task settings. The benefits of
MACHAMP are its flexible configuration op-
tions, and the support of a variety of natural
language processing tasks in a uniform toolkit,
from text classification and sequence labeling
to dependency parsing, masked language mod-
eling, and text generation.!

1 Introduction

Multi-task learning (MTL) (Caruana, 1993, 1997)
has developed into a standard repertoire in natu-
ral language processing (NLP). It enables neural
networks to learn tasks in parallel (Caruana, 1993)
while leveraging the benefits of sharing parameters.
The shift—or “tsunami” (Manning, 2015)—of deep
learning in NLP has facilitated the wide-spread
use of MTL since the seminal work by Collobert
et al. (2011), which has led to a multi-task learning
“wave” (Ruder and Plank, 2018) in NLP. It has since
been applied to a wide range of NLP tasks, devel-
oping into a viable alternative to classical pipeline
approaches. This includes early adoption in Recur-
rent Neural Network models, e.g. (Lazaridou et al.,
2015; Chrupata et al., 2015; Plank et al., 2016;
S@dgaard and Goldberg, 2016; Hashimoto et al.,
2017), to the use of large pre-trained language
models with multi-task objectives (Radford et al.,
2019; Devlin et al., 2019). MTL comes in many fla-
vors, based on the type of sharing, the weighting of

'The code is available at:
com/machamp-nlp/machamp (v0.2), and an instruc-
tional video at https://www.youtube.com/watch?
v=DauTEdMhUDTI.

https://github.

176

@Factmata
alan.ramponi@unitn.it
bapl@itu.dk

losses, and the design and relations of tasks and lay-
ers. In general though, outperforming single-task
settings remains a challenge (Martinez Alonso and
Plank, 2017; Clark et al., 2019). For an overview
of MTL in NLP we refer to Ruder (2017).

As a separate line of research, the idea of lan-
guage model pre-training and contextual embed-
dings (Howard and Ruder, 2018; Peters et al., 2018;
Devlin et al., 2019) is to pre-train rich representa-
tion on large quantities of monolingual or multilin-
gual text data. Taking these representations as a
starting point has led to enormous improvements
across a wide variety of NLP problems. Related to
MTL, recent research effort focuses on fine-tuning
contextualized embeddings on a variety of tasks
with supervised objectives (Kondratyuk and Straka,
2019; Sanh et al., 2019; Hu et al., 2020).

We introduce MACHAMP, a flexible toolkit for
multi-task learning and fine-tuning of NLP prob-
lems. The main advantages of MACHAMP are:

» Ease of configuration, especially for dealing
with multiple datasets and multi-task setups;

Support of a wide range of NLP tasks, in-
cluding a variety of sequence labeling ap-
proaches, text classification, dependency pars-
ing, masked language modeling, and text gen-
eration (e.g., machine translation);

Support of the initialization and fine-tuning of
any contextualized embeddings from Hugging
Face (Wolf et al., 2020).

As a result, the flexibility of MACHAMP sup-
ports up-to-date, general-purpose NLP (see Sec-
tion 2.2). The backbone of MACHAMP is Al-
lenNLP (Gardner et al., 2018), a PyTorch-based
(Paszke et al., 2019) Python library containing mod-
ules for a variety of deep learning methods and
NLP tasks. It is designed to be modular, high-

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 176-197

April 19 - 23, 2021. ©2021 Association for Computational Linguistics

negative VERB PRON ADV PUNCT

N
; UPOS Dec
De

timent
coder

der

<CLS> Smell

ya

Figure 1: Overview of MACHAMP, when training
jointly for sentiment analysis and POS tagging. A
shared encoding representation and task-specific de-
coders are exploited to accomplish both tasks.

level and flexible. It should be noted that con-
temporary to MACHAMP, jiant (Pruksachatkun
et al., 2020) was developed, and AllenNLP in-
cluded multi-task learning as well since release 2.0.
MACHAMP distinguishes from the other toolkits
by supporting simple configurations, and a variety
of multi-task settings.

2 Model

In this section we will discuss the model, its sup-
ported tasks, and possible configuration settings.

2.1 Model overview

An overview of the model is shown in Figure 1.
MACHAMP takes a pre-trained contextualized
model as initial encoder, and fine-tunes its layers by
applying an inverse square root learning rate decay
with linear warm-up (Howard and Ruder, 2018),
according to a given set of downstream tasks. For
the task-specific predictions, each task has its own
decoder, which is trained for the corresponding
task. The model defaults to the embedding-specific
tokenizer in Hugging Face (Wolf et al., 2020).2
When multiple datasets are used for training,
they are first separately split into batches so that
each batch only contains instances from one dataset.
Batches are then concatenated and shuffled before
training. This means that small datasets will be un-
derrepresented, which can be overcome by smooth-
ing the dataset sampling (Section 3.2.2). During de-

2This includes both the pre-tokenization (in the traditional
sense) and the subword segmentation.

177

coding, the loss function is only activated for tasks
which are present in the current batch. By default,
all tasks have an equal weight in the loss function.
The loss weight can be tuned (Section 3.2.1).

2.2 Supported task types
We here describe the tasks MACHAMP supports.

SEQ For traditional token-level sequence predic-
tion tasks, like part-of-speech tagging. MACHAMP
uses greedy decoding with a softmax output layer
on the output of the contextual embeddings.

STRING2STRING An extension to SEQ, which
learns a conversion for each input token to its
label. Instead of predicting the labels directly,
the model can now learn to predict the conver-
sion. This strategy is commonly used for lemma-
tization (Chrupata, 2006; Kondratyuk and Straka,
2019), where it greatly reduces the label vocabulary.
We use the transformation algorithm from UDPipe-
Future (Straka, 2018), which was also used by Kon-
dratyuk and Straka (2019).

SEQ_BIO A variant of SEQ which exploits con-
ditional random fields (Lafferty et al., 2001) as
decoder, masked to enforce outputs following the
BIO tagging scheme.

MULTISEQ An extension to SEQ which supports
the prediction of multiple labels per token. Specif-
ically, for some sequence labeling tasks it is un-
known beforehand how many labels each token
should get. We compute a probability score for
each label, employing binary cross-entropy as loss,
and outputting all the labels that exceed a certain
threshold. The threshold can be set in the dataset
configuration file.

DEPENDENCY For dependency parsing,
MACHAMP uses the deep biaffine parser (Dozat
and Manning, 2017) as implemented by Al-
lenNLP (Gardner et al., 2018), with the Chu-
Liu/Edmonds algorithm (Chu, 1965; Edmonds,
1967) for decoding the tree.

MLM For masked language modeling, our imple-
mentation follows the original BERT settings (De-
vlin et al., 2019). The chance that a token is masked
is 15%, of which 80% are masked with a [MASK]

token, 10% with a random token, and 10% are left
unchanged. We do not include the next sentence
prediction task following Liu et al. (2019), for sim-
plicity and efficiency. We use a cross entropy loss,

smell VERB
ya PRON
later ADV

! PUNCT

(a) Example of a token-level file format (e.g., for POS tagging),
where words are in column word_idx=0, and a single layer
of corresponding annotations is in column column_idx=1.

smell ya later ! negative

(b) Example of a sentence-level file format (e.g., for sentiment
classification), where only a sentence is required and is defined
in column O (i.e., sent_idxs=[0]) and a single layer of
annotation is in the second column (column_idx=1).

Figure 2: Examples of data file formats.

and the language model heads from the defined
Hugging Face embeddings (Wolf et al., 2020). It
assumes raw text files as input, sono column_idx
has to be defined (See Section 3.1).

CLASSIFICATION For text classification, it pre-
dicts a label for every text instance by using the em-
bedding of the first token, which is commonly a spe-
cial token (e.g. [CLS] or <s>). For tasks which
model a relation between multiple sentences (e.g.,
textual entailment), a special token (e.g. [SEP])
is automatically inserted between the sentences to
inform the model about the sentence boundaries.

SEQ2SEQ For text generation, MACHAMP em-
ploys the sequence to sequence (encoder-decoder)
paradigm (Sutskever et al., 2014). We use a re-
current neural network decoder, which suits the
auto-regressive nature of the machine translation
tasks (Cho et al., 2014) and an attention mechanism
to avoid compressing the whole source sentence
into a fixed-length vector (Bahdanau et al., 2015).

3 Usage

To use MACHAMP, one needs a configuration
file, input data and a command to start the training
or prediction. In this section we will describe each
of these requirements.

3.1 Data format

MACHAMP supports two types of data formats for
annotated data,> which correspond to the level of
annotation (Section 2.2). For token-level tasks, we

3The MLM task does not require annotation, thus a raw
text file can be provided.

178

will use the term “token-level file format”, whereas
for sentence-level task, we will use “sentence-level
file format”.

The token-level file format is similar to the tab-
separated CoNLL format (Tjong Kim Sang and
De Meulder, 2003). It assumes one token per line
(on a column index word_idx), with each annota-
tion layer following each token separated by a tab
character (each on a column index column_idx)
(Figure 2a). Token sequences (e.g., sentences) are
delimited by an empty line. Comments are lines
on top of the sequence (which have a different
number of columns with respect to “token lines”).*
It should be noted that for dependency parsing,
the format assumes the relation label to be on the
column_idx and the head index on the following
column. Further, we also support the UD format
by removing multi-word tokens and empty nodes
using the UD-conversion-tools (Agic et al., 2016).

The sentence-level file format (used for text clas-
sification and text generation) is similar (Figure 2b),
and also supports multiple inputs having the same
annotation layers. A list of one or more column
indices can be defined (i.e., sent_idxs) to en-
able modeling the relation between any arbitrary
number of sentences.

3.2 Configuration

The model requires two configuration files, one that
specifies the datasets and tasks, and one for the hy-
perparameters. For the hyperparameters, a default
option is provided (configs/params. json,
see Section 4).

3.2.1 Dataset configuration

An example of a dataset configuration file is
shown in Figure 3. On the first level, the dataset
names are specified (i.e., “UD” and “RTE”), which
should be unique identifiers. Each of these
datasets needs at least a train_data_path,
a validation_data_path, a word_idx or
sent_idxs, and a list of tasks (corresponding
to the layers of annotation, see Section 3.1).

For each of the defined tasks, the user is required
to define the task_type (Section 2.2), and the
column index from which to read the relevant labels
(i.e., column_idx). On top of this template, the
following options can be passed on the task level:

“We do not identify comments based on lines starting with
a ‘#’, because datasets might have tokens that begin with ‘#’.

{ "uD": {
"train_data_path":
"validation_data_path":
"word_idx": 1,
"tasks": {

"lemma": {
"task_type":
"column_idx":

I

"upos": {
"task_type":
"column_idx":

"data/ewt.train",
"data/ewt.dev",

"string2string",
2

"Seq" 4
3
}orod
"RTE": {
"train_data_path":
"validation_data_path":
"sent_idxs": [0,1],
"tasks": {
"rte": {
"task_type":
"column_idx":

}

"data/RTE.train",
"data/RTE.dev",

"classification",
2

Frod

Figure 3: Example dataset configuration file to predict
UPOS, lemmas, and textual entailment simultaneously.

Metric For each task type, a commonly used met-
ric is set as default metric. However, one can over-
ride the default by specifying a different metric at
the task level. Supported metrics are ‘acc’, ‘las’,
‘micro-f1°, ‘macro-f1’, ‘span_f1’, "'multi_span_f1°,
’bleu’ and ’perplexity’.

Loss weight In multi-task settings, not all tasks
might be equally important, or some tasks might
just be harder to learn, and therefore should gain
more weight during training. This can be tuned by
setting the Loss_weight parameter on the task
level (by default the value is 1.0 for all tasks).

Dataset embedding Ammar et al. (2016) have
shown that embedding which language an instance
belongs to can be beneficial for multilingual mod-
els. Later work (Stymne et al., 2018; Wagner et al.,
2020) has also shown that more fine-grained dis-
tinctions on the dataset level® can be beneficial
when training on multiple datasets within the same
language (family). In previous work, this embed-
ding is usually concatenated to the word embedding
before the encoding. However, in contextualized
embeddings, the word embeddings themselves are
commonly used as encoder, hence we concatenate
the dataset embeddings in between the encoder and
the decoder. This parameter is set on the dataset

SThese are called treebank embeddings in their work.
We will use the more general term ‘“dataset embeddings”,
which would often roughly correspond to languages and/or
domains/genres.

179

Size

Treebanks

Figure 4: Effect of the sampling parameter o on the
training sets of Universal Dependencies 2.6 data.

level with dataset_embed_idx, which speci-
fies the column to read the dataset ID from. Setting
dataset_embed_idx to -1 will use the dataset
name as specified in the json file as ID.

Max sentences In order to limit the maximum
number of sentences that are used during training,
max_sents is used. This is done before the sam-
pling smoothing (Section 3.2.2), if both are enabled.
It should be noted that the specified number will be
taken from the top of the dataset.

3.2.2 Hyperparameter configuration

Whereas most of the hyperparameters can simply
be changed from the default configuration provided
in configs/params. json, we would like to
highlight two main settings.

Pre-trained embeddings The name/path to pre-
trained Hugging Face embeddings® can be set in the
configuration file at the transformer_model
key; transformer_dim might be adapted ac-
cordingly to reflect the embeddings dimension.

Dataset sampling To avoid larger datasets from
overwhelming the model, MACHAMP can re-
sample multiple datasets according to a multino-
mial distribution, similar as used by Conneau and
Lample (2019). MACHAMP performs the sam-
pling on the batch level, and shuffles after each
epoch (so it can see a larger variety of instances for
downsampled datasets). The formula is:

(e7

pi 2§
where p; is the probability that a random sample is

from dataset ¢, and « is a hyperparameter that can
be set. Setting a=1.0 means using the default sizes,

A

ey

®https://huggingface.co/models

Parameter Value Range Task Reference MACHAMP
Optimizer Adam EWT2.2 Kondratyuk et al. (2019)

Bi, B2 0.9, 0.99 UPOS* 96.82 97.07

Lemma* 97.97 98.14

groP;’“t 02'(2) 0.1,02,03 Feats* 97.27 97.41

pochs LAS* 89.38 89.80

Batch size 32 -

Learning rate (LR) le-4 1le-3, le-4, le-5 GI(‘};E A Devlin et al. (22})95) 537

LR.scheduler slanted triangular MNLI 86.7 83.9

Weight decay 0.01 MNLI-mis 85.9 82.7

Decay factor 0.38 .35,.38, .5 MRPC 89.3 87.2

Cut fraction 0.2 1,.2,.3 QNLI 92.7 90.8

QQP 72.1 69.1

o . . RTE 70.1 60.0

Table 1: Final parameter settings, incl. tested ranges. SST.2 94.9 9.5
WMT14 Liu et al. (2020)

and a=0.0 results in one average amount of batches IW];SI\L’II?IES Zaheer et al. (23?81) 247

for each dataset, similar to Sanh et al. (2019). The EN-VI 9927 2472

effect of different settings of o for the Universal De-
pendencies 2.6 data is shown in Figure 4. Smooth-
ing can be enabled in the hyperparameters configu-
ration file at the sampling_smoothing key.

3.3 Training

Given the setup illustrated in the previous sections,
a model can be trained via the following command.
It assumes the configuration (Figure 3) is saved in
configs/upos—-lemma-rte. json.

python3 train.py --dataset_config \
configs/upos—lemma-rte. json

By default, the model and the logs will be written
to logs/<JSONNAME>/<DATE>. The name
of the directory can be set manually by providing

——name <NAME>. Further, -—device <ID>
can be used to specify which GPU to use, otherwise
the CPU will be used. As a default, train.py
uses configs/params. json for the hyper-
parameters, but this can be overridden by using

——parameters_config <CONFIG FILE>.

3.4 Inference

Prediction can be done with:

python3 predict.py \
logs/<NAME>/<DATE>/model.tar.gz \
<INPUT FILE> <OUTPUT FILE>

It requires the path to the best model (serial-
ized during training) stored as model.tar.gz
in the logs directory as specified above. By de-
fault, the data is assumed to be in the same format
as the training data (i.e., with the same number
of column_idx columns), but -—raw_text can
be specified to read a data file containing raw texts
with one sentence per line. For models trained

Table 2: Scores of single task models on test data for
three popular datasets and a variety of tasks. *one joint
model. For the GLUE data, BERT-large (English) and
tokenized BLEU are used for fair comparison.

on multiple datasets (as “UD” and “RTE” in Fig-
ure 3), ——dataset <NAME> can be used to spec-
ify which dataset to use in order to predict all tasks
within that dataset.

4 Hyperparameter Tuning

In this section we describe the procedure how
we determined robust default parameters for
MACHAMP; note that the goal is not to beat the
state-of-the-art, but to reach competitive perfor-
mance for multiple tasks simultaneously.’

For the tuning of hyperparameters, we used the
GLUE classification datasets (Wang et al., 2018;
Warstadt et al., 2019; Socher et al., 2013; Dolan
and Brockett, 2005; Cer et al., 2017; Williams et al.,
2018; Rajpurkar et al., 2018; Bentivogli et al., 2009;
Levesque et al., 2012) and the English Web Tree-
bank (EWT 2.6) (Silveira et al., 2014) with multilin-
gual BERT® (mBERT) as embeddings.’ For each
of these setups, we averaged the scores over all
datasets/tasks and perform a grid search. The best
hyperparameters across all datasets are reported in
Table 1 and are the defaults values for MACHAMP.

"Compared to MACHAMP v0.1 (van der Goot et al., 2020)
we removed parameters with negligible effects (word dropout,
layer dropout, adaptive softmax, and layer attention).

$https://github.com/google-research/
bert/blob/master/multilingual .md

"We capped the dataset sizes to a maximum of 20,000
sentences for efficiency reasons.

180

Setup UD (LAS) GLUE (Acc)
Single 72.22 82.38
All 72.82 80.96
Smoothed 73.74 81.87
Dataset embed.* 72.76 -
Sep. decoder* 73.69 -

Table 3: Average results over all development sets.
Dataset embeddings and a separate decoder have not
been tested in GLUE, because each dataset is annotated
for a different task. *includes dataset smoothing.

5 Evaluation

5.1 Single task evaluation

As a starting point, we evaluate single task mod-
els to ensure our implementations are competitive
with the state-of-the-art. We report scores on de-
pendency parsing (EWT), the GLUE classifica-
tion tasks, and machine translation (WMT14 DE-
EN (Bojar et al., 2014), IWSLT15 EN-VI (Cettolo
et al., 2014)) using mBERT as our embeddings.'®
Table 2 reports our results on the test sets com-
pared to previous work. For all UD tasks, we score
slightly higher, whereas for GLUE tasks we score
consistently lower compared to the references. This
is mostly due to differences in fine-tuning strate-
gies, as implementations themselves are highly sim-
ilar. Scores on the machine translation tasks show
the largest drops, indicating that task-specific fine-
tuning and pre-processing might be necessary.

5.2 Multi-dataset evaluation

We evaluate the effect of a variety of multi-dataset
settings on all GLUE and UD treebanks (v2.7) on
the test splits. It should be noted that the UD tree-
banks all have the same tasks, as opposed to GLUE.
First, we jointly train on all datasets (ALL), then
we attempt to improve performance on smaller sets
by enabling the sampling smoothing (SMOOTHED,
Section 3.2.2, we set &« = 0.5). Furthermore, we at-
tempt to improve the performance by informing the
decoder of the dataset through dataset embeddings
(DATASET EMBED., Section 3.2.1) or by giving
each dataset its own decoder (SEP. DECODER). Re-
sults (Table 3) show that multi-task learning is only
beneficial for performance when training on the
same set of tasks (i.e., UD), dataset smoothing is
helpful, dataset embeddings and separate decoders
do not improve upon smoothing on average.

10For the sake of comparison we use BERT-large for GLUE,
and EWT version 2.2.

181

Model\Size 0 <lk <10k >10k
Single 435 151 579 80.1
All 445 37.1 664 803
Smoothed 443 454 67.1 80.3
Dataset embed.* 439 36.5 67.8 81.0
Sep. decoder* 451 377 665 809

Table 4: Average LAS scores on test splits of UD
treebanks grouped by training size (in number of sen-
tences). *includes dataset smoothing.

For analysis purposes, we group the UD tree-
banks based on training size, and also evaluate UD
treebanks which have no training split (zero-shot).
For the zero-shot experiments, we select a proxy
parser based on word overlap of the first 10 sen-
tences of the target test data and the source training
data.!! Results on the UD data (Table 4) show that
multi-task learning is mostly beneficial for medium-
sized datasets (< 1k and <10k). For these datasets,
the combination of smoothing and dataset embed-
dings are the most promising settings. Perhaps
surprisingly, the zero-shot datasets (<1k) have a
higher LAS as compared to the small datasets and
using a separate decoder based on the proxy tree-
bank is the best setting; this is mainly because for
many small datasets there is no other in-language
training treebank. For the GLUE tasks (Table 5,
Appendix), multi-task learning is only beneficial
for the RTE data. This is to be expected, as the
tasks are different in this setup, and training data is
generally larger. Dataset smoothing here prevents
the model from dropping too much in performance,
as it outperforms ALL for 7 out of 9 tasks.

6 Conclusion

We introduced MACHAMP, a powerful toolkit for
multi-task learning supporting a wide range of
NLP tasks. We also provide initial experiments
demonstrating the usefulness of some of its op-
tions. We learned that multi-task learning is mostly
beneficial for setups in which multiple datasets
are annotated for the same set of tasks, and that
dataset embeddings can still be useful when em-
ploying contextualized embeddings. However, the
current experiments are just scratching the surface
of MACHAMP’s capabilities, as a wide variety of
tasks and multi-task settings is supported.

Scores on individual sets and proxy treebanks can be
found in the Appendix.

Acknowledgments

We would like to thank Anouck Braggaar, Max
Miiller-Eberstein and Kristian Ngrgaard Jensen
for testing development versions. Furthermore,
we thank Rik van Noord for his participation in
the video, and providing an early use-case for
MACHAMP (van Noord et al., 2020). This re-
search was supported by an Amazon Research
Award, an STSM in the Multi3Generation COST
action (CA18231), a visit supported by COSBI,
grant 9063-00077B (Danmarks Frie Forsknings-
fond), and Nvidia corporation for sponsoring Titan
GPUs. We thank the NLPL laboratory and the HPC
team at ITU for the computational resources used
in this work.

References

Anne Abeillé, Lionel Clément, and Alexandra Kinyon.
2000. Building a treebank for French. In Pro-
ceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Noémi Aepli and Simon Clematide. 2018. Parsing
approaches for Swiss German. In Proceedings of
the 3rd Swiss Text Analytics Conference (SwissText),
Winterthur, Switzerland.

Zeljko Agié, Anders Johannsen, Barbara Plank, Héctor
Martinez Alonso, Natalie Schluter, and Anders
Se¢gaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics, 4:301—
312.

Zeljko Agié¢ and Nikola Ljubegi¢. 2015. Universal De-
pendencies for Croatian (that work for Serbian, too).
In The 5th Workshop on Balto-Slavic Natural Lan-
guage Processing, pages 1-8, Hissar, Bulgaria. IN-
COMA Ltd. Shoumen, BULGARIA.

Lars Ahrenberg. 2015. Converting an English-Swedish
parallel treebank to Universal Dependencies. In Pro-
ceedings of the Third International Conference on
Dependency Linguistics (Depling 2015), pages 10—
19, Uppsala, Sweden. Uppsala University, Uppsala,
Sweden.

Linda Alfieri and Fabio Tamburini. 2016. (almost) au-
tomatic conversion of the Venice Italian Treebank
into the merged Italian Dependency Treebank for-
mat. In CLiC-it/EVALITA.

Ika Alfina, Indra Budi, and Heru Suhartanto. 2020.
Tree rotations for dependency trees: Converting the
head-directionality of noun phrases. Journal of
Computer Science, 16(11):1585-1597.

182

Héctor Martinez Alonso and Daniel Zeman. 2016.
Universal Dependencies for the AnCora treebanks.
Procesamiento del Lenguaje Natural, 57:91-98.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431-444.

Angelina Aquino, Franz de Leon, and Mary Ann
Bacolod. 2020. UD_Tagalog-Ugnayan. https:
//github.com/UniversalDependencies/UD_
Tagalog—-Ugnayan.

Carolina Coelho Aragon. 2018. Variacdes estilisticas e
sociais no discurso dos falantes akuntsd. Polifonia,
25(38.1):90-103.

Maria Jesus Aranzabe, Aitziber Atutxa, Kepa Ben-
goetxea, Arantza Diaz de Ilarraza, lakes Goenaga,
Koldo Gojenola, and Larraitz Uria. 2015. Auto-
matic conversion of the Basque dependency tree-
bank to universal dependencies. In Proceedings of
the fourteenth international workshop on treebanks
an linguistic theories (TLT14), pages 233-241.

Masayuki Asahara, Hiroshi Kanayama, Takaaki
Tanaka, Yusuke Miyao, Sumire Uematsu, Shinsuke
Mori, Yuji Matsumoto, Mai Omura, and Yugo Mu-
rawaki. 2018. Universal Dependencies version 2 for
Japanese. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Elena Badmaeva and Francis M. Tyers. 2017. Depen-
dency treebank for Buryat. In Proceedings of the
15th International Workshop on Treebanks and Lin-
guistic Theories (TLT15), pages 1-12.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, Conference Track Proceedings, San
Diego, CA, USA.

David Bamman and Gregory Crane. 2011. The ancient
Greek and Latin dependency treebanks. In Lan-
guage technology for cultural heritage, pages 79-98.
Springer.

Verginica Barbu Mititelu, Radu Ion, Radu Simionescu,
Elena Irimia, and Cenel-Augusto Perez. 2016. The
Romanian treebank annotated according to Univer-
sal Dependencies. In Proceedings of the tenth inter-
national conference on natural language processing

(hrtal2016).

Colin Batchelor. 2019. Universal dependencies for
Scottish Gaelic: syntax. In Proceedings of the
Celtic Language Technology Workshop, pages 7-15,
Dublin, Ireland. European Association for Machine
Translation.

Shabnam Behzad and Amir Zeldes. 2020. A cross-
genre ensemble approach to robust Reddit part of
speech tagging. In Proceedings of the 12th Web as
Corpus Workshop, pages 50-56, Marseille, France.
European Language Resources Association.

Eduard Bejcek, Eva Hajicovd, Jan Haji¢, Pavlina
Jinova, Vaclava Kettnerova, Veronika Kolarova,
Marie Mikulov4, Jifi Mirovsky, Anna Nedoluzhko,
Jarmila Panevov4, et al. 2013. Prague dependency
treebank 3.0.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fiftth PASCAL recognizing textual entailment chal-
lenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA.

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,
Jing Xian Wang, Lucia Lam, Keiko Sophie Mori,
Sebastian Garza, and Boris Katz. 2016. Universal
Dependencies for learner English. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 737-746, Berlin, Germany. Association for
Computational Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987-998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,
Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma, Ash-
wini Vaidya, Sri Ramagurumurthy Vishnu, et al.
2016. The hindi/urdu treebank project. In Hand-
book of Linguistic Annotation. Springer Press.

Agne Bielinskiene, Loic Boizou, and Jolanta Ko-
valevskaite. 2016. Lithuanian dependency treebank.
In Human Language Technologies—The Baltic Per-
spective: Proceedings of the Seventh International
Conference Baltic HLT 2016, volume 289, page 107.
10S Press.

Su Lin Blodgett, Johnny Wei, and Brendan O’Connor.
2018. Twitter Universal Dependency parsing for
African-American and mainstream American En-
glish. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1415-1425, Melbourne,
Australia. Association for Computational Linguis-
tics.

Ondfej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ale$
Tamchyna. 2014. Findings of the 2014 workshop on

183

statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Guillaume Bonfante, Bruno Guillaume, and Guy Per-
rier. 2018. Application of Graph Rewriting to Natu-
ral Language Processing. Wiley Online Library.

Emanuel Borges Volker, Maximilian Wendt, Felix Hen-
nig, and Arne Kohn. 2019. HDT-UD: A very large
Universal Dependencies treebank for German. In
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019), pages 46-57,
Paris, France. Association for Computational Lin-
guistics.

Cristina Bosco, Felice Dell’Orletta, Simonetta Monte-
magni, Manuela Sanguinetti, and Maria Simi. 2014.
The EVALITA 2014 dependency parsing task. In
EVALITA 2014 Evaluation of NLP and Speech Tools
for Italian, pages 1-8. Pisa University Press.

Gosse Bouma and Gertjan van Noord. 2017. Increas-
ing return on annotation investment: The automatic
construction of a Universal Dependency treebank
for Dutch. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 19-26, Gothenburg, Sweden. Association for
Computational Linguistics.

Anouck Braggaar and Rob van der Goot. 2021. Chal-
lenges in annotating and parsing spoken, code-
switched, Frisian-Dutch data. In Proceedings of the
Second Workshop on Domain Adaptation for Natu-
ral Language Processing.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther Konig, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic interpretation of a ger-
man corpus. Research on language and computa-
tion, 2(4):597-620.

Bernard Caron, Marine Courtin, Kim Gerdes, and Syl-
vain Kahane. 2019. A surface-syntactic UD tree-
bank for Naija. In Proceedings of the 18th Interna-
tional Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2019), pages 13-24, Paris,
France. Association for Computational Linguistics.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In Proceedings of the

Tenth International Conference on Machine Learn-
ing, pages 41-48, Amherst, MA, USA.

Rich Caruana. 1997. Multitask learning. In Learning
to learn, pages 95—133. Springer.

Flavio Massimiliano Cecchini, Marco Passarotti, Paola
Marongiu, and Daniel Zeman. 2018. Challenges in
converting the index Thomisticus treebank into Uni-
versal Dependencies. In Proceedings of the Sec-
ond Workshop on Universal Dependencies (UDW
2018), pages 27-36, Brussels, Belgium. Association
for Computational Linguistics.

Slavomir Cépls. 2018. Constituent order in Maltese: A
quantitative analysis.

Daniel Cer, Mona Diab, Eneko Agirre, Ifligo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 1lth International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Ozlem Cetinoglu and Cagr1 Coltekin. 2019. Chal-
lenges of annotating a code-switching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 82-90, Paris, France. Association for
Computational Linguistics.

Mauro Cettolo, Niehues Jan, Stiiker Sebastian, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2014. The IWSLT 2014 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, Lake Tahoe, CA, USA.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Grzegorz Chrupata, Akos Kaddr, and Afra Alishahi.
2015. Learning language through pictures. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 112—
118, Beijing, China. Association for Computational
Linguistics.

Grzegorz Chrupata. 2006. Simple data-driven context-
sensitive lemmatization. SEPLN, 37:121-127.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica, 14:1396—-1400.

Jayeol Chun, Na-Rae Han, Jena D. Hwang, and
Jinho D. Choi. 2018. Building Universal Depen-
dency treebanks in Korean. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Alessandra Teresa Cignarella, Cristina Bosco, and
Paolo Rosso. 2019. Presenting TWITTIRO-UD:
An Italian Twitter treebank in Universal Dependen-
cies. In Proceedings of the Fifth International Con-
ference on Dependency Linguistics (Depling, Syn-
taxFest 2019), pages 190-197, Paris, France. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931-5937, Florence, Italy.
Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493—
2537.

Cagn Coltekin. 2015. A grammar-book treebank of
Turkish. In Proceedings of the 14th workshop on
Treebanks and Linguistic Theories (TLT 14), pages
35-49.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
70597069, Vancouver, Canada.

Sam Davidson, Dian Yu, and Zhou Yu. 2019. De-
pendency parsing for spoken dialog systems. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1513—
1519, Hong Kong, China. Association for Computa-
tional Linguistics.

Mehmet Oguz Derin. 2020. UD_OId_Turkish-
Tonqg. https://github.com/
UniversalDependencies/UD_Ol1d_
Turkish-Tonqgq.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Cheikh Bamba Dione. 2019. Developing Universal De-
pendencies for Wolof. In Proceedings of the Third
Workshop on Universal Dependencies (UDW, Syn-
taxFest 2019), pages 12-23, Paris, France. Associ-
ation for Computational Linguistics.

Peter Dirix, Liesbeth Augustinus, Daniel van Niekerk,
and Frank Van Eynde. 2017. Universal Dependen-
cies for Afrikaans. In Proceedings of the NoDaLiDa
2017 Workshop on Universal Dependencies (UDW
2017), pages 38-47, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Kaja Dobrovoljc, Tomaz Erjavec, and Simon Krek.
2017. The Universal Dependencies treebank for
Slovenian. In Proceedings of the 6th Workshop on
Balto-Slavic Natural Language Processing, pages

184

33-38, Valencia, Spain. Association for Computa-
tional Linguistics.

Kaja Dobrovoljc and Joakim Nivre. 2016. The Univer-
sal Dependencies treebank of spoken Slovenian. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1566-1573, PortoroZ, Slovenia. European
Language Resources Association (ELRA).

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005), pages 9-16, Jeju Is-
land, Korea.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of 5th International Conference
on Learning Representations, ICLR 2017, Confer-
ence Track Proceedings, Toulon, France.

Kira Droganova, Olga Lyashevskaya, and Daniel Ze-
man. 2018. Data conversion and consistency of
monolingual corpora: Russian UD treebanks. In
Proceedings of the 17th international workshop on
treebanks and linguistic theories (tlt 2018), 155,
pages 53-66.

Puneet Dwivedi and Guha Easha. 2017. Universal De-
pendencies for Sanskrit. International Journal of
Advance Research, Ideas and Innovations in Tech-
nology, 3(4).

Hanne Eckhoff, Kristin Bech, Gerlof Bouma, Kris-
tine Eide, Dag Haug, Odd Einar Haugen, and Mar-
ius Jghndal. 2018. The PROIEL treebank family:
a standard for early attestations of Indo-European

languages. Language Resources and Evaluation,
52(1):29-65.

Hanne Martine Eckhoff and Aleksandrs Berdicevskis.
2015. Linguistics vs. digital editions: The Tromsg
Old Russian and OCS treebank. Scripta & e-Scripta,
14(15):9-25.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233-240.

Marhaba Eli, Weinila Mushajiang, Tuergen Yibulayin,
Kahaerjiang Abiderexiti, and Yan Liu. 2016. Uni-
versal dependencies for Uyghur. In Proceedings
of the Third International Workshop on World-
wide Language Service Infrastructure and Sec-
ond Workshop on Open Infrastructures and Anal-
ysis Frameworks for Human Language Technolo-
gies (WLSI/OIAF4HLT2016), pages 44-50, Osaka,
Japan. The COLING 2016 Organizing Committee.

Marilia Fernanda Pereira de Freitas. 2017. A posse em
apurind: Descri¢do de construgdes atributivas e pred-
icativas em comparagdo com outras linguas aruak.
Belém: Programa de Pos-Graduagcdo em Letras,
Universidade Federal do Pard (Tese de Doutorado).

185

Marcos Garcia. 2016. Universal dependencies guide-
lines for the Galician-TreeGal treebank. Technical
report, Technical Report, LyS Group, Universidade
da Coruna.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1-
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Fabricio Ferraz Gerardi. 2020. UD_Tupinamba-
TuDeT. https://github.com/
UniversalDependencies/UD_
Tupinamba-TuDeT.

Fabricio Ferraz Gerardi. 2021. The structure of

Mundurukd.

Memduh Gokirmak and Francis M. Tyers. 2017. A
dependency treebank for Kurmanji Kurdish. In
Proceedings of the Fourth International Conference
on Dependency Linguistics (Depling 2017), pages
64-72, Pisa,Italy. Linkoping University Electronic
Press.

Xavier Gémez Guinovart. 2017. Recursos integra-
dos da lingua galega para a investigacion lingiiistica.
Gallaecia. Estudos de lingiiistica portuguesa e
galega. Santiago de Compostela: Universidade de
Santiago, pages 1037-1048.

Rob van der Goot and Gertjan van Noord. 2018. Mod-
eling input uncertainty in neural network depen-
dency parsing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4984-4991, Brussels, Belgium.
Association for Computational Linguistics.

Rob van der Goot, Ahmet Ustiin, Alan Ramponi, and
Barbara Plank. 2020. Massive choice, ample tasks
(MaChAmp): A toolkit for multi-task learning in
NLP. arXiv preprint arXiv:2005.14672v2.

Normunds Gruzitis, Lauma Pretkalnina, Baiba Saulite,
Laura Rituma, Gunta Nespore-Berzkalne, Arturs
Znotins, and Peteris Paikens. 2018. Creation of a
balanced state-of-the-art multilayer corpus for NLU.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Bruno Guillaume, Marie-Catherine de Marneffe, and
Guy Perrier. 2019. Conversion et améliorations
de corpus du Francais annotés en Universal De-
pendencies. Traitement Automatique des Langues,
60(2):71-95.

Jan Haji¢, Otakar Smrz, Petr Zemdanek, Petr Pajas,
Jan §naidauf, Emanuel Beska, Jakub Kracmar, and
Kamila Hassanova. 2009. Prague Arabic depen-
dency treebank 1.0.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1923-1933, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Dag TT Haug and Marius Jghndal. 2008. Creating
a parallel treebank of the old Indo-European Bible
translations. In Proceedings of the second workshop

on language technology for cultural heritage data
(LaTeCH 2008), pages 27-34.

Johannes Heinecke and Francis M. Tyers. 2019. De-
velopment of a Universal Dependencies treebank for
Welsh. In Proceedings of the Celtic Language Tech-
nology Workshop, pages 21-31, Dublin, Ireland. Eu-
ropean Association for Machine Translation.

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann,
and Paul Widmer. 2020. The treebank of Vedic
Sanskrit. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5137—
5146, Marseille, France. European Language Re-
sources Association.

Barbora Hladk4, Jan Haji¢, Jirka Hana, Jaroslava
Hlavacov4, Jifi Mirovsky, and Jan Raab. 2008. The
Czech academic corpus 2.0 guide. The Prague Bul-
letin of Mathematical Linguistics, 89(1):41-96.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328-339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gen-
eralization. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume
119, pages 4411-4421.

Anton Karl Ingason, Eirikur Régnvaldsson, Einar Freyr
Sigurosson, and Joel C. Wallenberg. 2020. The
Faroese parsed historical corpus. CLARIN-IS, Stof-
nun Arna Magntssonar.

0Ol4jidé Ishola and Daniel Zeman. 2020. Yorub4 de-
pendency treebank (YTB). In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 5178-5186, Marseille, France. Euro-
pean Language Resources Association.

Tomas Jelinek. 2017. FicTree: A manually annotated
treebank of Czech fiction. In ITAT, pages 181-185.

Anders Johannsen, Héctor Martinez Alonso, and Bar-
bara Plank. 2015. Universal dependencies for Dan-
ish. In International Workshop on Treebanks and
Linguistic Theories (TLT14), page 157.

186

Hildur J6nsdéttir and Anton Karl Ingason. 2020. Cre-
ating a parallel Icelandic dependency treebank from
raw text to Universal Dependencies. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 2924-2931, Marseille, France.
European Language Resources Association.

Jenna Kanerva. 2020. UD_Finnish-OOD. https:
//github.com/UniversalDependencies/UD_
Finnish-0OD.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Kamil Kopacewicz. UD_Akkadian-
PISANDUB. https://github.
com/UniversalDependencies/UD_
Akkadian—PISANDUB.

2018.

Natalia Kotsyba, Bohdan Moskalevskyi, Mykhailo
Romanenko, Halyna Samoridna, Ivanka Kosovska,
Olha Lytvyn, Oksana Orlenko, Hanna Brovko,
Bohdana Matushko, Natalia Onyshchuk, Valeriia
Pareviazko, Yaroslava Rychyk, Anastasiia Stet-
senko, Snizhana Umanets, and Larysa Masenko.
2018. UD_Ukrainian-IU. https://github.com/
UniversalDependencies/UD_Ukrainian-1IU.

Vincent KriZ, Barbora Hladka, and Zdenka Uresova.
2016. Czech legal text treebank 1.0. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2387—
2392.

Anne Lacheret-Dujour, Sylvain Kahane, and Paola
Pietrandrea. 2019. Rhapsodie: A prosodic and syn-
tactic treebank for spoken French, volume 89. John
Benjamins Publishing Company.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML

"01, page 282-289, San Francisco, CA, USA.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with a
multimodal skip-gram model. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 153-163, Den-
ver, Colorado. Association for Computational Lin-
guistics.

John Lee, Herman Leung, and Keying Li. 2017. To-
wards Universal Dependencies for learner Chinese.
In Proceedings of the NoDaLiDa 2017 Workshop

on Universal Dependencies (UDW 2017), pages 67—
71, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The Winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning,
Rome, Italy.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jian-
feng Gao. 2020. Very deep transformers for
neural machine translation. arXiv preprint
arXiv:2008.07772v2.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing tweets
into Universal Dependencies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 965-975, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Mikko Luukko, Aleksi Sahala, Sam Hardwick, and
Krister Lindén. 2020. Akkadian treebank for early
neo-assyrian royal inscriptions. In Proceedings
of the 19th International Workshop on Treebanks
and Linguistic Theories, pages 124—134, Diisseldorf,
Germany. Association for Computational Linguis-
tics.

Olga Lyashevskaya. 2019. A reusable tagset for the
morphologically rich language in change: A case of
Middle Russian. In Proceedings of the International
Conference Dialogue 2019, pages 422-434.

Olga Lyashevskaya, Angelika Peljak-Lapifiska, and
Daria Petrova. 2017. UD_Belarusian-HSE. https:
//github.com/UniversalDependencies/UD_
Belarusian—-HSE.

Olga Lyashevskaya and Dmitry Sichinava.
2017. UD_Lithuanian-HSE. https:
//github.com/UniversalDependencies/
UD_Lithuanian—-HSE

Teresa Lynn and Jennifer Foster. 2016. Universal de-
pendencies for irish. In CLTW.

Aibek Makazhanov, Aitolkyn Sultangazina, Olzhas
Makhambetov, and Zhandos Yessenbayev. 2015.
Syntactic annotation of Kazakh: Following the Uni-
versal Dependencies guidelines. a report. In 3rd
International Conference on Turkic Languages Pro-
cessing, (TurkLang 2015), pages 338-350.

Christopher D Manning. 2015. Computational linguis-
tics and deep learning. Computational Linguistics,
41(4):701-707.

187

Catalina Maranduc, Cenel-Augusto Perez, and Radu
Simionescu. 2016. Social media-processing Roma-
nian chat and discourse analysis. Computacion y Sis-
temas, 20(3):405-414.

Héctor Martinez Alonso and Barbara Plank. 2017.
When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, Valencia, Spain.
Association for Computational Linguistics.

Héctor Martinez Alonso, Djamé Seddah, and Benoit
Sagot. 2016. From noisy questions to Minecraft
texts: Annotation challenges in extreme syntax sce-
nario. In Proceedings of the 2nd Workshop on Noisy
User-generated Text (WNUT), pages 13-23, Osaka,
Japan. The COLING 2016 Organizing Committee.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Tickstrom, Claudia Bedini, Nuria
Bertomeu Castell6, and Jungmee Lee. 2013. Uni-
versal Dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92-97, Sofia, Bulgaria.
Association for Computational Linguistics.

Maria Mitrofan, Verginica Barbu Mititelu, and Grigo-
rina Mitrofan. 2019. MoNERo: a biomedical gold
standard corpus for the Romanian language. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 71-79, Florence, Italy. Association for
Computational Linguistics.

Foroushani Mojiri, Hossein Amir, Hamid Aghaei,
and Amir Ahmadi. 2020. UD_Soi-AHA. https:
//github.com/UniversalDependencies/UD_
Soi-AHA.

AmirHossein Mojiri Foroushani, Hamid Aghaei, and
Amir Ahmadi. 2020a. UD_Khunsari-AHA. https:
//github.com/UniversalDependencies/UD_
Khunsari-AHA.

AmirHossein Mojiri Foroushani, Hamid Aghaei, and
Amir Ahmadi. 2020b. UD_Nayini-AHA. https:
//github.com/UniversalDependencies/UD_
Nayini-AHA.

Kadri Muischnek, Kaili Miiiirisep, Tiina Puolakainen,
Eleri Aedmaa, Riin Kirt, and Dage Sirg. 2014. Esto-
nian dependency treebank and its annotation scheme.
In Proceedings of 13th workshop on treebanks and
linguistic theories (TLT13), pages 285-291.

Kadri Muischnek, Kaili Miiiirisep, and Dage Dage
Sarg. 2019. CG roots of UD treebank of Estonian
web language. In Proceedings of the NoDaLiDa
2019 Workshop on Constraint Grammar-Methods,
Tools and Applications, 30 September 2019, Turku,
Finland, 168, pages 23-26. Linkoping University
Electronic Press.

Robert Munro. 2020. Human-in-the-loop machine
learning. SI: O’REILLY MEDIA.

Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-
Huyen Nguyen, Van-Hiep Nguyen, and Hong-
Phuong Le. 2009. Building a large syntactically-
annotated corpus of Vietnamese. In Proceedings of
the Third Linguistic Annotation Workshop (LAW III),
pages 182-185, Suntec, Singapore. Association for
Computational Linguistics.

Rik van Noord, Antonio Toral, and Johan Bos. 2020.
Character-level representations improve DRS-based
semantic parsing Even in the age of BERT. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4587—4603, Online. Association for Computa-
tional Linguistics.

Atul Kr. Ojha and Daniel Zeman. 2020. Universal
Dependency treebanks for low-resource Indian lan-
guages: The case of Bhojpuri. In Proceedings of the
WILDRES- 5th Workshop on Indian Language Data:
Resources and Evaluation, pages 33-38, Marseille,
France. European Language Resources Association
(ELRA).

Mai Omura, Yuta Takahashi, and Masayuki Asahara.
2017. Universal dependency for modern Japanese.
In Proceedings of the 7th Conference of Japanese
Association for Digital Humanities (JADH2017),
pages 34-36.

Robert Ostling, Carl Borstell, Moa Girdenfors, and
Mats Wirén. 2017. Universal Dependencies for
Swedish Sign Language. In Proceedings of the
21st Nordic Conference on Computational Linguis-
tics, pages 303-308, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Lilja @vrelid and Petter Hohle. 2016. Universal Depen-
dencies for Norwegian. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 1579-1585, Por-
toroZ, Slovenia. European Language Resources As-
sociation (ELRA).

Lilja @vrelid, Andre Késen, Kristin Hagen, Anders
Ngklestad, Per Erik Solberg, and Janne Bondi Jo-
hannessen. 2018. The LIA treebank of spoken Nor-
wegian dialects. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi syntax: Annotating dependency, lex-
ical predicate-argument structure, and phrase struc-
ture. In The 7th International Conference on Natu-
ral Language Processing, pages 14—17.

Niko Partanen, Rogier Blokland, KyungTae Lim,
Thierry Poibeau, and Michael RieBler. 2018. The
first Komi-Zyrian Universal Dependencies tree-
banks. In Proceedings of the Second Workshop on

188

Universal Dependencies (UDW 2018), pages 126—
132, Brussels, Belgium. Association for Computa-
tional Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8026-8037. Vancouver,
Canada.

Agnieszka Patejuk and Adam Przepidrkowski. 2018.
From Lexical Functional Grammar to Enhanced
Universal Dependencies: Linguistically informed
treebanks of Polish. Institute of Computer Science,
Polish Academy of Sciences, Warsaw.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jussi Piitulainen and Hanna Nurmi. 2017.
UD _Finnish-FTB. https://github.com/
UniversalDependencies/UD_Finnish-FTB.

Tommi A Pirinen. 2019. Building minority depen-
dency treebanks, dictionaries and computational
grammars at the same time—an experiment in Kare-
lian treebanking. In Proceedings of the Third Work-
shop on Universal Dependencies (UDW, SyntaxFest
2019), pages 132-136, Paris, France. Association
for Computational Linguistics.

Barbara Plank, Anders Sggaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 412-418, Berlin,
Germany. Association for Computational Linguis-
tics.

Prokopis Prokopidis and Haris Papageorgiou. 2017.
Universal Dependencies for Greek. In Proceedings
of the NoDaLiDa 2017 Workshop on Universal De-
pendencies (UDW 2017), pages 102-106, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:

System Demonstrations, pages 109—117, Online. As-
sociation for Computational Linguistics.

Sampo Pyysalo, Jenna Kanerva, Anna Missili,
Veronika Laippala, and Filip Ginter. 2015. Univer-
sal Dependencies for Finnish. In Proceedings of the
20th Nordic Conference of Computational Linguis-
tics (NODALIDA 2015), pages 163—172, Vilnius,
Lithuania. Linkoping University Electronic Press,
Sweden.

Peng Qi and Koichi Yasuoka. 2019.
UD_Chinese-GSDSimp. https://github.
com/UniversalDependencies/UD_
Chinese-GSDSimp.

Alexandre Rademaker, Fabricio Chalub, Livy Real,
Claudia Freitas, Eckhard Bick, and Valeria de Paiva.
2017. Universal Dependencies for Portuguese. In
Proceedings of the Fourth International Confer-
ence on Dependency Linguistics (Depling 2017),
pages 197-206, Pisa,Italy. Linkoping University
Electronic Press.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuUAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784—
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taraka Rama and Sowmya Vajjala. 2017. A Telugu
treebank based on a grammar book. In Proceedings
of the 16th International Workshop on Treebanks
and Linguistic Theories, pages 119-128, Prague,
Czech Republic.

Loganathan Ramasamy and Zdenék Zabokrtsky. 2012.
Prague dependency style treebank for Tamil. In
Proceedings of Eighth International Conference on
Language Resources and Evaluation (LREC 2012),
pages 1888—1894, Istanbul, Turkey.

Vinit Ravishankar. 2017. A Universal Dependencies
treebank for Marathi. In Proceedings of the 16th
International Workshop on Treebanks and Linguistic
Theories, pages 190-200, Prague, Czech Republic.

Ines Rehbein, Josef Ruppenhofer, and Bich-Ngoc Do.
2019. tweeDe — a Universal Dependencies treebank
for German tweets. In Proceedings of the 18th Inter-
national Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2019), pages 100—108, Paris,
France. Association for Computational Linguistics.

Eirikur Rognvaldsson, Anton Karl Ingason, Einar Freyr
Sigurosson, and Joel Wallenberg. 2012. The Ice-
landic parsed historical corpus (IcePaHC). In Pro-
ceedings of the Eighth International Conference

189

on Language Resources and Evaluation (LREC’12),
pages 1977-1984, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044-1054, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jack Rueter and Niko Partanen. 2019. Survey of Uralic
Universal Dependencies development. In Workshop
on Universal Dependencies, page 78. The Associa-
tion for Computational Linguistics.

Jack Rueter, Niko Partanen, and Larisa Ponomareva.
2020. On the questions in developing computational
infrastructure for Komi-permyak. In Proceedings of
the Sixth International Workshop on Computational
Linguistics of Uralic Languages, pages 15-25, Wien,
Austria. Association for Computational Linguistics.

Jack Rueter and Francis Tyers. 2018. Towards an open-
source universal-dependency treebank for Erzya. In
Proceedings of the Fourth International Workshop
on Computational Linguistics of Uralic Languages,
pages 106-118.

Jack Michael Rueter. 2018. Mordva.
Languages. Routledge.

In The Uralic

Mohammad Sadegh Rasooli, Pegah Safari, Amirsaeid
Moloodi, and Alireza Nourian. 2020. The Per-
sian dependency treebank made universal. arXiv e-
prints, pages arXiv—2009.

Alessio Salomoni. 2019. UD_German-LIT. https:
//github.com/UniversalDependencies/UD_
German—-LIT.

Tanja Samardzi¢, Mirjana Starovi¢, Zeljko Agié, and
Nikola Ljubesi¢. 2017. Universal Dependencies
for Serbian in comparison with Croatian and other
Slavic languages. In Proceedings of the 6th Work-
shop on Balto-Slavic Natural Language Processing,
pages 39-44, Valencia, Spain. Association for Com-
putational Linguistics.

Stephanie Samson and Cagn Coltekin. 2020.
UD_Tagalog-TRG. https://github.com/
UniversalDependencies/UD_Tagalog—-TRG.

Manuela Sanguinetti and Cristina Bosco. 2014. To-
wards a Universal Stanford Dependencies paral-
lel treebank. In Proceedings of the 13th Work-
shop on Treebanks and Linguistic Theories (TLT-13).
Springer.

Manuela Sanguinetti, Cristina Bosco, Alberto Lavelli,
Alessandro Mazzei, Oronzo Antonelli, and Fabio
Tamburini. 2018. PoSTWITA-UD: an Italian Twit-
ter treebank in Universal Dependencies. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6949-6956, Honolulu, Hawaii, USA.

Kengatharaiyer Sarveswaran and Gihan Dias. 2020.
ThamizhiUDp: A dependency parser for Tamil.
arXiv preprint arXiv:2012.13436.

Kevin Scannell. 2020. Universal Dependencies for
Manx Gaelic. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020),
pages 152—157, Barcelona, Spain (Online). Associ-
ation for Computational Linguistics.

Djamé Seddah and Marie Candito. 2016. Hard
time parsing questions: Building a QuestionBank
for French. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2366-2370, PortoroZ,
Slovenia. European Language Resources Associa-
tion (ELRA).

Mojgan Seraji, Filip Ginter, and Joakim Nivre. 2016.
Universal Dependencies for Persian. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
2361-2365, Portoroz, Slovenia. European Language
Resources Association (ELRA).

Binyam Ephrem Seyoum, Yusuke Miyao, and Baye Yi-
mam Mekonnen. 2018. Universal Dependencies for
Ambharic. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Tatiana Shavrina and Olga Shapovalova. 2017. To
the methodology of corpus construction for ma-
chine learning:“Taiga” syntax tree corpus and parser.
In Proceedings of “CORPORA-2017" International
Conference, pages 78-84.

Mo Shen, Ryan McDonald, Daniel Zeman, and
Peng Qi. 2016. UD_Chinese-GSD. https:
//github.com/UniversalDependencies/UD_
Chinese-GSD.

Timothy Shopen. 2018. UD_Warlpiri-UFAL. https:
//github.com/UniversalDependencies/UD_
Lithuanian—-HSE.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Chris Manning. 2014. A gold stan-
dard dependency corpus for English. In Proceedings

190

of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2897—
2904, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Kiril Simov, Petya Osenova, Alexander Simov, and
Milen Kouylekov. 2005. Design and implementa-
tion of the Bulgarian HPSG-based treebank. Jour-
nal of Research on Language and Computation. Spe-
cial Issue, pages 495-522.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Anders Sggaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231-235, Berlin,
Germany. Association for Computational Linguis-
tics.

Achim Stein and Sophie Prévost. 2013. Syntactic anno-
tation of medieval texts. New methods in historical
corpora, 3:275.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197-207,
Brussels, Belgium. Association for Computational
Linguistics.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with hetero-
geneous treebanks. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 619—
625, Melbourne, Australia. Association for Compu-
tational Linguistics.

Umut Sulu