
EACL 2021

The 16th Conference of the European Chapter
of the Association for Computational Linguistics

Proceedings of the System Demonstrations

April 19 - 23, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-05-3

ii

Introduction

Welcome to the proceedings of the EACL System Demonstration Sessions. This volume contains the
papers of the system demonstrations presented at the 16th conference of the European Chapter of the
Association for Computational Linguistics (EACL) on April 19th - April 23rd, 2021.

The EACL 2021 demonstrations track welcomed submissions ranging from early research prototypes
to mature production-ready systems. We received 56 submissions this year, of which 39 were selected
for inclusion in the program after having been reviewed by two members of the program committee.
This year, the EACL demo track received a very large amount of high-quality research papers. We
therefore decided to feature an inclusive programme where all excellent publications were chosen to be
presented at the meeting. Following current practice, we further asked the programme committee to pay
special attention to issues related to ethics. We would like to warmly thank the members of the program
committee for their timely help in reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. Because this
year the EACL conference is completely virtual, the demonstration paper talks are therefore pre-recorded
and authors are invited to present their work with posters during the two live demo sessions through
gather.town.

Dimitra Gkatzia and Djamé Seddah
EACL 2021 Demonstration Track Chairs

iii

Organizing Committee

• System Demonstration Chairs:
Dimitra Gkatzia, Djamé Seddah

• Program Committee:
Omri Abend, Nikolaos Aletras, Shlomo Argamon, Rachel Bawden, Timothée Bernard, Marie
Candito, Xavier Carreras, Alberto Cetoli, Jhih-Jie Chen, Manuel R. Ciosici, Miruna-Adriana
Clinciu, Raphael Cohen, Michael Desmond, Sourav Dutta, Catherine Finegan-Dollak, Dimitra
Gkatzia, Johannes Heinecke, Daniel Hershcovich, David M. Howcroft, Ganesh Jawahar, Giannis
Karamanolakis, Rabeeh Karimi Mahabadi, Andrew Kirby, Arne Köhn, Philippe Laban, Dong-
Ho Lee, Manling Li, Xuezhe Ma, Prodromos Malakasiotis, Yuval Marton, Ivan Vladimir Meza
Ruiz, Khalil Mrini, Pedro Javier Ortiz Suárez, Xutan Peng, Benoît Sagot, Sashank Santhanam,
Sebastin Santy, Thomas Scialom, Djamé Seddah, Somayajulu Sripada, Carl Strathearn, Simon
Wells, Guillaume Wisniewski, Runxin Xu, Hamada Zahera, Yi Zhang

v

Table of Contents

Using and comparing Rhetorical Structure Theory parsers with rst-workbench
Arne Neumann . 1

SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
Xiaopeng Lu, Kyusong Lee and Tiancheng Zhao . 7

Finite-state script normalization and processing utilities: The Nisaba Brahmic library
Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin and Brian Roark . 14

CovRelex: A COVID-19 Retrieval System with Relation Extraction
Vu Tran, Van-Hien Tran, Phuong Nguyen, Chau Nguyen, Ken Satoh, Yuji Matsumoto and Minh

Nguyen. .24

MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue Annotator
Davide Cucurnia, Nikolai Rozanov, Irene Sucameli, Augusto Ciuffoletti and Maria Simi 32

AnswerQuest: A System for Generating Question-Answer Items from Multi-Paragraph Documents
Melissa Roemmele, Deep Sidhpura, Steve DeNeefe and Ling Tsou . 40

T-NER: An All-Round Python Library for Transformer-based Named Entity Recognition
Asahi Ushio and Jose Camacho-Collados . 53

Forum 4.0: An Open-Source User Comment Analysis Framework
Marlo Haering, Jakob Smedegaard Andersen, Chris Biemann, Wiebke Loosen, Benjamin Milde,

Tim Pietz, Christian Stöcker, Gregor Wiedemann, Olaf Zukunft and Walid Maalej 63

SLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari, Ondřej Bojar, Barry Haddow and Mohammad Mahmoudi 71

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing
Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh and Thien Huu Nguyen 80

DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran Glavaš 91

A Dashboard for Mitigating the COVID-19 Misinfodemic
Zhengyuan Zhu, Kevin Meng, Josue Caraballo, Israa Jaradat, Xiao Shi, Zeyu Zhang, Farahnaz

Akrami, Haojin Liao, Fatma Arslan, Damian Jimenez, Mohanmmed Samiul Saeef, Paras Pathak and
Chengkai Li . 99

EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with Amazon Mechanical
Turk

Lorenzo Bocchi, Valentino Frasnelli and Alessio Palmero Aprosio . 106

ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali and Kareem Darwish . 113

COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
Maria Becker, Katharina Korfhage and Anette Frank . 119

vii

A description and demonstration of SAFAR framework
Karim Bouzoubaa, Younes Jaafar, Driss Namly, Ridouane Tachicart, Rachida Tajmout, hakima

khamar, hamid jaafar, Lhoussain aouragh and Abdellah Yousfi . 127

InterpreT: An Interactive Visualization Tool for Interpreting Transformers
Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard, Ana Simoes, Daniel Korat, Oren Pereg,

Gadi Singer and Moshe Wasserblat .135

Representing ELMo embeddings as two-dimensional text online
Andrey Kutuzov and Elizaveta Kuzmenko . 143

LOME: Large Ontology Multilingual Extraction
Patrick Xia, Guanghui Qin, Siddharth Vashishtha, Yunmo Chen, Tongfei Chen, Chandler May,

Craig Harman, Kyle Rawlins, Aaron Steven White and Benjamin Van Durme . 149

MadDog: A Web-based System for Acronym Identification and Disambiguation
Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang and Thien Huu Nguyen 160

Graph Matching and Graph Rewriting: GREW tools for corpus exploration, maintenance and conversion
Bruno Guillaume . 168

Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP
Rob van der Goot, Ahmet Üstün, Alan Ramponi, Ibrahim Sharaf and Barbara Plank 176

SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
Christian Haase, Saba Anwar, Seid Muhie Yimam, Alexander Friedrich and Chris Biemann . . . 198

GCM: A Toolkit for Generating Synthetic Code-mixed Text
Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja Ganu, Monojit Choudhury and Sunayana

Sitaram. .205

T2NER: Transformers based Transfer Learning Framework for Named Entity Recognition
Saadullah Amin and Guenter Neumann . 212

European Language Grid: A Joint Platform for the European Language Technology Community
Georg Rehm, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, Andrejs Vasil,jevs,

Gerhard Backfried, Jose Manuel Gomez-Perez, Ulrich Germann, Rémi Calizzano, Nils Feldhus, Ste-
fanie Hegele, Florian Kintzel, Katrin Marheinecke, Julian Moreno-Schneider, Dimitris Galanis, Penny
Labropoulou, Miltos Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris Gkoumas, Leon Vouk-
outis, Ian Roberts, Jana Hamrlova, Dusan Varis, Lukas Kacena, Khalid Choukri, Valérie Mapelli, Mick-
aël Rigault, Julija Melnika, Miro Janosik, Katja Prinz, Andres Garcia-Silva, Cristian Berrio, Ondrej
Klejch and Steve Renals . 221

A New Surprise Measure for Extracting Interesting Relationships between Persons
Hidetaka Kamigaito, Jingun Kwon, Young-In Song and Manabu Okumura 231

Paladin: an annotation tool based on active and proactive learning
Minh-Quoc Nghiem, Paul Baylis and Sophia Ananiadou . 238

Story Centaur: Large Language Model Few Shot Learning as a Creative Writing Tool
Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen and Monica Dinalescu 244

FrameForm: An Open-source Annotation Interface for FrameNet
Büşra Marşan and Olcay Taner Yıldız . 257

viii

OCTIS: Comparing and Optimizing Topic models is Simple!
Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano and ANTONIO CAN-

DELIERI . 263

ELITR Multilingual Live Subtitling: Demo and Strategy
Ondřej Bojar, Dominik Macháček, Sangeet Sagar, Otakar Smrž, Jonáš Kratochvíl, Peter Polák,

Ebrahim Ansari, Mohammad Mahmoudi, Rishu Kumar, Dario Franceschini, Chiara Canton, Ivan Si-
monini, Thai-Son Nguyen, Felix Schneider, Sebastian Stüker, Alex Waibel, Barry Haddow, Rico Sen-
nrich and Philip Williams . 271

Breaking Writer’s Block: Low-cost Fine-tuning of Natural Language Generation Models
Alexandre Duval, Thomas Lamson, Gaël de Léséleuc de Kérouara and Matthias Gallé 278

OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
Tommi Nieminen . 288

Domain Expert Platform for Goal-Oriented Dialog Collection
Didzis Goško, Arturs Znotins, Inguna Skadina, Normunds Gruzitis and Gunta Nešpore-Bērzkalne

295

Which is Better for Deep Learning: Python or MATLAB? Answering Comparative Questions in Natural
Language

Viktoriia Chekalina, Alexander Bondarenko, Chris Biemann, Meriem Beloucif, Varvara Logacheva
and Alexander Panchenko . 302

PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Written Text
Varnith Chordia . 312

Conversational Agent for Daily Living Assessment Coaching Demo
Raymond Finzel, Aditya Gaydhani, Sheena Dufresne, Maria Gini and Serguei Pakhomov 321

HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Language Processing
Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin and William Yang Wang . 329

ix

Conference Program

Using and comparing Rhetorical Structure Theory parsers with rst-workbench
Arne Neumann

SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
Xiaopeng Lu, Kyusong Lee and Tiancheng Zhao

Finite-state script normalization and processing utilities: The Nisaba Brahmic li-
brary
Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin and Brian Roark

CovRelex: A COVID-19 Retrieval System with Relation Extraction
Vu Tran, Van-Hien Tran, Phuong Nguyen, Chau Nguyen, Ken Satoh, Yuji Mat-
sumoto and Minh Nguyen

MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue An-
notator
Davide Cucurnia, Nikolai Rozanov, Irene Sucameli, Augusto Ciuffoletti and Maria
Simi

AnswerQuest: A System for Generating Question-Answer Items from Multi-
Paragraph Documents
Melissa Roemmele, Deep Sidhpura, Steve DeNeefe and Ling Tsou

T-NER: An All-Round Python Library for Transformer-based Named Entity Recog-
nition
Asahi Ushio and Jose Camacho-Collados

Forum 4.0: An Open-Source User Comment Analysis Framework
Marlo Haering, Jakob Smedegaard Andersen, Chris Biemann, Wiebke Loosen, Ben-
jamin Milde, Tim Pietz, Christian Stöcker, Gregor Wiedemann, Olaf Zukunft and
Walid Maalej

SLTEV: Comprehensive Evaluation of Spoken Language Translation
Ebrahim Ansari, Ondřej Bojar, Barry Haddow and Mohammad Mahmoudi

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Lan-
guage Processing
Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh and Thien Huu Nguyen

DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran Glavaš

A Dashboard for Mitigating the COVID-19 Misinfodemic
Zhengyuan Zhu, Kevin Meng, Josue Caraballo, Israa Jaradat, Xiao Shi, Zeyu
Zhang, Farahnaz Akrami, Haojin Liao, Fatma Arslan, Damian Jimenez, Mohan-
mmed Samiul Saeef, Paras Pathak and Chengkai Li

xi

No Day Set (continued)

EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with
Amazon Mechanical Turk
Lorenzo Bocchi, Valentino Frasnelli and Alessio Palmero Aprosio

ASAD: Arabic Social media Analytics and unDerstanding
Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali and Kareem Darwish

COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
Maria Becker, Katharina Korfhage and Anette Frank

A description and demonstration of SAFAR framework
Karim Bouzoubaa, Younes Jaafar, Driss Namly, Ridouane Tachicart, Rachida Taj-
mout, hakima khamar, hamid jaafar, Lhoussain aouragh and Abdellah Yousfi

InterpreT: An Interactive Visualization Tool for Interpreting Transformers
Vasudev Lal, Arden Ma, Estelle Aflalo, Phillip Howard, Ana Simoes, Daniel Korat,
Oren Pereg, Gadi Singer and Moshe Wasserblat

Representing ELMo embeddings as two-dimensional text online
Andrey Kutuzov and Elizaveta Kuzmenko

LOME: Large Ontology Multilingual Extraction
Patrick Xia, Guanghui Qin, Siddharth Vashishtha, Yunmo Chen, Tongfei Chen,
Chandler May, Craig Harman, Kyle Rawlins, Aaron Steven White and Benjamin
Van Durme

MadDog: A Web-based System for Acronym Identification and Disambiguation
Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang and Thien Huu
Nguyen

Graph Matching and Graph Rewriting: GREW tools for corpus exploration, main-
tenance and conversion
Bruno Guillaume

Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in
NLP
Rob van der Goot, Ahmet Üstün, Alan Ramponi, Ibrahim Sharaf and Barbara Plank

SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
Christian Haase, Saba Anwar, Seid Muhie Yimam, Alexander Friedrich and Chris
Biemann

GCM: A Toolkit for Generating Synthetic Code-mixed Text
Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja Ganu, Monojit Choudhury and
Sunayana Sitaram

xii

No Day Set (continued)

T2NER: Transformers based Transfer Learning Framework for Named Entity
Recognition
Saadullah Amin and Guenter Neumann

European Language Grid: A Joint Platform for the European Language Technology
Community
Georg Rehm, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, An-
drejs Vasil,jevs, Gerhard Backfried, Jose Manuel Gomez-Perez, Ulrich Germann,
Rémi Calizzano, Nils Feldhus, Stefanie Hegele, Florian Kintzel, Katrin Marhei-
necke, Julian Moreno-Schneider, Dimitris Galanis, Penny Labropoulou, Miltos
Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris Gkoumas, Leon Vouk-
outis, Ian Roberts, Jana Hamrlova, Dusan Varis, Lukas Kacena, Khalid Choukri,
Valérie Mapelli, Mickaël Rigault, Julija Melnika, Miro Janosik, Katja Prinz, An-
dres Garcia-Silva, Cristian Berrio, Ondrej Klejch and Steve Renals

A New Surprise Measure for Extracting Interesting Relationships between Persons
Hidetaka Kamigaito, Jingun Kwon, Young-In Song and Manabu Okumura

Paladin: an annotation tool based on active and proactive learning
Minh-Quoc Nghiem, Paul Baylis and Sophia Ananiadou

Story Centaur: Large Language Model Few Shot Learning as a Creative Writing
Tool
Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen and Monica Dinalescu

FrameForm: An Open-source Annotation Interface for FrameNet
Büşra Marşan and Olcay Taner Yıldız

OCTIS: Comparing and Optimizing Topic models is Simple!
Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano and
ANTONIO CANDELIERI

ELITR Multilingual Live Subtitling: Demo and Strategy
Ondřej Bojar, Dominik Macháček, Sangeet Sagar, Otakar Smrž, Jonáš Kratochvíl,
Peter Polák, Ebrahim Ansari, Mohammad Mahmoudi, Rishu Kumar, Dario Frances-
chini, Chiara Canton, Ivan Simonini, Thai-Son Nguyen, Felix Schneider, Sebastian
Stüker, Alex Waibel, Barry Haddow, Rico Sennrich and Philip Williams

Breaking Writer’s Block: Low-cost Fine-tuning of Natural Language Generation
Models
Alexandre Duval, Thomas Lamson, Gaël de Léséleuc de Kérouara and Matthias
Gallé

OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
Tommi Nieminen

Domain Expert Platform for Goal-Oriented Dialog Collection
Didzis Goško, Arturs Znotins, Inguna Skadina, Normunds Gruzitis and Gunta
Nešpore-Bērzkalne

Which is Better for Deep Learning: Python or MATLAB? Answering Comparative
Questions in Natural Language
Viktoriia Chekalina, Alexander Bondarenko, Chris Biemann, Meriem Beloucif,
Varvara Logacheva and Alexander Panchenko

xiii

No Day Set (continued)

PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Writ-
ten Text
Varnith Chordia

Conversational Agent for Daily Living Assessment Coaching Demo
Raymond Finzel, Aditya Gaydhani, Sheena Dufresne, Maria Gini and Serguei
Pakhomov

HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Lan-
guage Processing
Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin and William Yang Wang

xiv

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 1–6
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Using and comparing Rhetorical Structure Theory parsers with
rst-workbench

Arne Neumann
Independent researcher

rst-workbench@arne.cl

Abstract

I present rst-workbench, a software package
that simplifies the installation and usage of nu-
merous end-to-end Rhetorical Structure The-
ory (RST) parsers.1 The tool offers a web-
based interface that allows users to enter text
and let multiple RST parsers generate analy-
ses concurrently. The resulting RST trees can
be compared visually, manually post-edited (in
the browser) and stored for later usage.

1 Introduction

Rhetorical Structure Theory (RST) provides a for-
malism for hierarchical text organization that can
be applied to a wide range of natural language pro-
cessing tasks, ranging from text generation (Marcu,
1997; Konstas and Lapata, 2013) to the assessment
of conversational patterns of Alzheimer’s patients
(Abdalla et al., 2018; Paulino et al., 2018).

Most research on RST parsing is focused on
parser engineering, i.e. the evaluation of parsers
against a “gold standard” hand-annotated dataset.
Although RST corpora exist for a variety of other
languages (e.g. German, Dutch and Spanish), end-
to-end discourse parsers are usually only trained
and evaluated on English data, with the notable
exception of Braud et al. (2017a,b,c).

There are a number of RST parsers that were de-
veloped for other languages, but either are they not
publicly available (e.g. Reitter (2003) for German
and English as well as Pardo and Nunes (2008) for
Portuguese) or they do not produce complete RST
analyses, e.g. Sumita et al. (1992) for Japanese (no
intra-sentence relations) and da Cunha et al. (2012)
for Spanish (no inter-sentence relations).

1The rst-workbench and all related Docker configuration
files, images and REST API wrappers around the RST parsers
are available from https://github.com/arne-cl/
rst-workbench. An online demo is provided at https:
//rst-workbench.arne.cl/.

Compared to other NLP tasks like syntax pars-
ing, the amount of available training data is lim-
ited, with corpora being in the range from dozens
to a few hundred hand-annotated texts. There is
also little work evaluating RST parsers beyond
the Parseval-based procedure proposed by Marcu
(2000).2

For example, machine learning models are usu-
ally not compared with respect to their ability to de-
tect rare rhetorical relations. Zhang and Liu (2016)
found that rhetorical relations in RST-DT at differ-
ent levels—i.e. between clauses within sentences,
between sentences within paragraphs and between
paragraphs—all follow the same Zipf’s law–related
distribution. Individual relations show different
patterns, e.g. Attribution is more common in intra-
sentential relations than on higher levels.

In addition, no systematic review exists of the im-
pact of the preprocessing steps—sentence splitting,
syntax parsing and segmentation into Elementary
Discourse Units (EDUs)—on the quality of the re-
sulting RST parses. There is some work in this
direction, though.

For example, Surdeanu et al. (2015) imple-
mented two RST parsers that only differ in the
syntax parser used—the constituent-based RST
parser produced slightly better results, but the
dependency-based equivalent was 2.5 times faster.
Braud et al. (2017c) evaluated the influence of syn-
tactic information (using either constituency parses,
dependency parses or only POS tags) on discourse
segmentation. Rutherford et al. (2017) reviewed
the impact of different neural network architectures
on implicit discourse relation detection.

While Huber and Carenini (2020) showed that
RST parser performance can be improved by train-

2In a replication study, Morey et al. (2017) found that
most recently reported increases in RST parser performance
(9 parsers published between 2013 to 2017) are caused by
implementation differences of Marcu’s evaluation procedure.

1

ing them on large RST treebanks automatically
generated using distant supervision, I hypothesize
that RST parsers can profit even more from larger
human-annotated training corpora.

In turn, the annotation of RST corpora can likely
be sped up by leveraging RST parsers. In the same
vein that translators can produce high-quality trans-
lations by post-editing machine-translated texts
more quickly than by manual translation alone
(Gaspari et al., 2014; Koponen, 2016), I assume
that linguists can produce RST analyses faster with
machine support (i.e. by selecting the best au-
tomatic analysis from a number of RST parsers
and then post-editing it) than by relying on hand-
annotation alone.

If the goal is to make annotators use RST parsers
productively, the parsers need to be adapted to
meet their needs. While the primary focus of RST
parser development is improving upon state-of-the-
art benchmark results, this work focuses on usabil-
ity and compatibility, i.e. the parsers need to be
easy to install and run while supporting the same
format(s) that common RST annotation and visual-
ization tools use.

To achieve this, I implemented rst-workbench,
which:
• acts as a web-based front-end to six different

RST parsers,
• provides an easy way to install the parsers on

all modern desktop operating systems using
Docker containers,
• facilitates their integration into NLP pipelines

by wrapping them in REST APIs,
• enables the RST analyses produced by the

parsers to be visualized by and edited in
the rstWeb annotation tool (Zeldes, 2016) by
amending it with a REST API and by provid-
ing converters from the parsers’ output for-
mats to rstWeb’s input format.

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview of related
work, while Section 3 describes the architecture
and usage of the system. Section 4 summarizes
the main conclusions and outlines areas of future
work.

2 Related work

To the best of my knowledge, rst-workbench is the
first tool that offers a graphical user interface for
and integrates several RST parsers. Besides rst-
Web (Zeldes, 2016), which is integrated in this soft-

Figure 1: Components and workflow of the rst-
workbench.

ware, there are two other annotation tools specif-
ically made for rhetorical structures: RSTTool
(O’Donnell, 2000) and TreeAnnotator (Helfrich
et al., 2018). For visualizing RST trees and query-
ing RST corpora, there is ANNIS3 (Krause and
Zeldes, 2014).

While I implemented very minimal REST APIs
around the individual RST parsers in Python,
CLAM (van Gompel and Reynaert, 2014) could
be used to create REST API wrappers around
command-line NLP tools by writing a configura-
tion file. For simple cases, it is slightly more com-
plicated to setup than my approach (cf. Section
3.2), but it comes with many additional features
(e.g. user authentication, batch processing and a
generic web interface for each API) and can be
extended with additional format converters and vi-
sualization components.

3 Software architecture and usage

The rst-workbench provides a simple way to install
multiple RST parsers on a computer, run them as
well as visually compare and edit their analyses in
a web browser. Its architecture and usage is sum-
marized in Figure 1. Screenshots of the workflow
are provided in Figures 2 and 3.

At the core, the rst-workbench consists of six
existing open-source RST parsers—HILDA (Her-
nault et al., 2010), Feng and Hirst (2014), DPLP (Ji
and Eisenstein, 2014), Heilman and Sagae (2015),
CODRA (Joty et al., 2015) and StageDP (Wang
et al., 2017, 2018)—packaged as Docker contain-
ers to make them easily installable without any user
intervention (cf. Section 3.1).

Users do not have to learn the different

2

Figure 2: Screenshot of rst-workbench showing the re-
sult of parsing the beginning of a newspaper article
with various RST parsers.

Figure 3: Post-editing a parse result in rstWeb (here:
changing the relation that holds between two EDUs).

command-line interfaces of the parsers, but can
simply interact with them via a web browser. To
make this possible, I added a REST API to each
of the parsers, which the browser can talk to (cf.
Section 3.2).

In the browser, annotators can enter text or up-
load a plain text document. After clicking the “Run
Parsers” button, all RST parsers are started concur-
rently to analyze the given text. The results appear
asynchronously in the browser, i.e. the user sees the
result of the fastest parser immediately when it is
available and does not have to wait for the remain-
ing parsers to finish processing. Users can now
select the parse tree that most resembles their lin-
guistic intuition, and click “Edit in rstWeb” to load
the analysis into the rstWeb annotation tool. Here,
all aspects of the RST tree can be modified, e.g.
rhetorical relations between EDUs and/or larger
subtrees can be replaced (Figure 3). Afterwards,
the result can be saved locally for further inspection
or corpus creation.

The technical setup needed to integrate all these
stand-alone tools into one software package with
a unified interface is described in the following
subsections.

3.1 Docker

Docker is a tool that allows programmers to bun-
dle a piece of software with all its dependencies
into a container, which a user can reproducibly
install on any computer with Linux, Mac OSX or
Windows without having to know any details about

3

the software. The step-by-step installation process
of a software package is described in a so-called
Dockerfile, which is both readable by machines and
humans.

Installing an RST parser from a Dockerfile will
save the user the effort of finding its dependen-
cies, installation parameters and training settings.
This will not, however, reduce the run time of the
installation and training process, as that will hap-
pen on the user’s local machine. This process can
be drastically sped up by using a Docker image,
which is a compressed file that contains the results
of running a Dockerfile. I provide Docker images
for all but one of the RST parsers available in the
rst-workbench.3 If Docker is already running on
the target system, the installation of an RST parser
boils down to a one-line command.4

At this point, the parsers can be used without
tedious installation procedures, but are still only
available as individual command-line tools with
different parameters and output formats. To im-
prove their usability, I make them available as web
services with a common interface (cf. Section 3.2).
To improve their comparability, I offer a simple
way to convert their output to a common format
and generate visualizations of the resulting RST
trees (Section 3.3).

3.2 Web application and REST APIs

With rst-workbench, I aim to make RST parsers
more accessible to a wider audience, by providing
a common (graphical) interface for them. I chose to
implement this in form of a web application, which
talks to the individual RST parsers via REST (Field-
ing, 2000), a simple text-based protocol commonly
used by programs running on different computers
to communicate with each other via the Internet.
I implemented REST interfaces for each of the
parsers using the Python hug library5. They re-
ceive requests containing the text to be analyzed,
run the actual (command-line) RST parsers in the
background on the given input, capture their out-

3All Docker images for the rst-workbench are available
at https://hub.docker.com/u/nlpbox. I can’t pro-
vide an image for the HILDA RST parser (Hernault et al.,
2010), as its license does not allow its source code to be
freely distributed. Nevertheless, if you have access to the
HILDA source code, you can simply build an image us-
ing the Dockerfile provided at https://github.com/
NLPbox/hilda-docker.

4For example docker run
nlpbox/heilman-sagae-2015 for the (Heilman
and Sagae, 2015) parser.

5http://www.hug.rest/

puts and send them back to the requesting program.
Using REST allows the user to run the parsers

on different machines than the web application (in
case one computer does not have enough RAM or
processing power to run all RST parsers at the same
time) and even to use the parsers as web services
without the front-end, e.g. to integrate them into
custom NLP pipelines. It also simplifies the pro-
cess of adding more parsers to the rst-workbench,
as it only needs to know where the parsers run and
which output format they use.

3.3 discoursegraphs and rstWeb

The interoperability of RST tools is hindered by
the lack of a standard format for encoding RST
analyses. While corpora are either using the LISP-
like dis or the XML-based rs3 format, RST
parsers are using a plethora of custom formats.
rst-workbench is able to convert many of them
into rs3—the format supported by RST annotation
tools like RSTTool (O’Donnell, 2000) and rstWeb
(Zeldes, 2016)— by utilizing a REST service I im-
plemented on top of the discoursegraphs converter
library (Neumann, 2015, 2016), which supports all
RST file formats of the given parsers.

Using the rs3 format and integrating rstWeb into
the rst-workbench allows it to leverage rstWeb’s
capabilities to visualize and (post)-edit RST trees.6

4 Conclusions

In this paper, I presented a software package that
simplifies the installation, usage and visual com-
parison of RST parsers. I showed how it can help
linguists to produce manual RST analyses with less
effort.

I plan to integrate the rst-workbench directly into
rstWeb to facilitate corpus annotation projects. In
rstWeb, an “administrator” can create an annota-
tion project, upload documents to be annotated and
assign them to annotators. With an integrated rst-
workbench, the administrator could precompute
and store the automatic RST analyses once for all
annotators, which would reduce wait time for the
annotators and allow them to work without switch-
ing browser tabs and tools.

In the current setup, analyzing a text with all
parsers may take up to two minutes. Most of this

6To achieve this, I added a REST interface to rstWeb. For
lack of time, it is not yet part of the official rstWeb source code,
but is available here: https://github.com/arne-cl/
rstWeb/tree/add-rest-api

4

time is spent on loading the models of the underly-
ing syntax parsers. This can be drastically reduced
by “outsourcing” the syntax parsers into their own
web services, as I have already done for DPLP.7

References
Mohamed Abdalla, Frank Rudzicz, and Graeme Hirst.

2018. Rhetorical structure and Alzheimers disease.
Aphasiology, 32(1).

Chloé Braud, Maximin Coavoux, and Anders Søgaard.
2017a. Cross-lingual RST Discourse Parsing. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 292–304,
Valencia, Spain. Association for Computational Lin-
guistics.

Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017b. Cross-lingual and cross-domain discourse
segmentation of entire documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 237–243, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017c. Does syntax help discourse segmentation?
Not so much. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2432–2442, Copenhagen, Den-
mark. Association for Computational Linguistics.

Iria da Cunha, Eric SanJuan, Juan-Manuel Torres-
Moreno, M. Teresa Cabré, and Gerardo Sierra. 2012.
A Symbolic Approach for Automatic Detection of
Nuclearity and Rhetorical Relations among Intra-
sentence Discourse Segments in Spanish. In Pro-
ceedings of the 13th International Conference in
Computational Linguistics and Intelligent Text Pro-
cessing (CICLing 2012).

Vanessa Wei Feng and Graeme Hirst. 2014. A Linear-
Time Bottom-Up Discourse Parser with Constraints
and Post-Editing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 511–
521, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Roy Thomas Fielding. 2000. Architectural Styles and
the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine.

Federico Gaspari, Antonio Toral, Sudip Kumar Naskar,
Declan Groves, and Andy Way. 2014. Perception
vs Reality: Measuring Machine Translation Post-
Editing Productivity. In Proc. Third Workshop on
Post-Editing Technology and Practice.

7See the Dockerfile in https://github.com/
NLPbox/dplp-docker.

Maarten van Gompel and Martin Reynaert. 2014.
CLAM: Quickly deploy NLP command-line tools
on the web. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: System Demonstrations, pages 71–75,
Dublin, Ireland. Dublin City University and Associ-
ation for Computational Linguistics.

Michael Heilman and Kenji Sagae. 2015. Fast Rhetor-
ical Structure Theory Discourse Parsing. arXiv
preprint arXiv:1505.02425.

Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy
Lücking, and Alexander Mehler. 2018. TreeAnno-
tator: Versatile Visual Annotation of Hierarchical
Text Relations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC-2018), Miyazaki, Japan. Euro-
pean Languages Resources Association (ELRA).

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue & Discourse, 1(3).

Patrick Huber and Giuseppe Carenini. 2020. MEGA
RST Discourse Treebanks with Structure and Nucle-
arity from Scalable Distant Sentiment Supervision.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7442–7457, Online. Association for Computa-
tional Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion Learning for Text-level Discourse Parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13–24, Baltimore, Maryland.
Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A Novel Discriminative Framework
for Rhetorical Analysis. Computational Linguistics,
41(3):385–435.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing Document Plans for Concept-to-Text Generation.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1503–1514, Seattle, Washington, USA. Association
for Computational Linguistics.

Maarit Koponen. 2016. Is machine translation post-
editing worth the effort? A survey of research into
post-editing and effort. The Journal of Specialised
Translation, 25:131–148.

Thomas Krause and Amir Zeldes. 2014. ANNIS3: A
new architecture for generic corpus query and visu-
alization. Literary and Linguistic Computing.

Daniel Marcu. 1997. The Rhetorical Parsing, Summa-
rization, and Generation of Natural Language Text.
Ph.D. thesis, Department of Computer Science. Uni-
versity of Toronto.

5

Daniel Marcu. 2000. The rhetorical parsing of unre-
stricted texts: a surface-based approach. Computa-
tional Linguistics, 26(3):395–448.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? A replication study of recent re-
sults on the RST-DT. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1319–1324, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Arne Neumann. 2015. discoursegraphs: A graph-
based merging tool and converter for multilayer
annotated corpora. In Proceedings of the 20th
Nordic Conference of Computational Linguistics
(NODALIDA 2015), pages 309–312, Vilnius, Lithua-
nia. Linköping University Electronic Press, Sweden.

Arne Neumann. 2016. Merging and validating het-
erogenous, multi-layered corpora with discourseg-
raphs. Journal for Language Technology and Com-
putational Linguistics, 31(1):101–115.

Michael O’Donnell. 2000. RSTTool 2.4 - A markup
Tool for Rhetorical Structure Theory. In INLG’2000
Proceedings of the First International Conference
on Natural Language Generation, pages 253–256,
Mitzpe Ramon, Israel. Association for Computa-
tional Linguistics.

Thiago Alexandre Salgueiro Pardo and Maria das
Graças Volpe Nunes. 2008. On the Development
and Evaluation of a Brazilian Portuguese Discourse
Parser. RITA, 15(2):43–64.

Anayeli Paulino, Gerardo Sierra, Laura Hernández-
Domı́nguez, Iria da Cunha, and Gemma Bel-Enguix.
2018. Rhetorical relations in the speech of
Alzheimers patients and healthy elderly subjects: An
approach from the RST. Computación y Sistemas,
22(3).

David Reitter. 2003. Simple Signals for Com-
plex Rhetorics: On Rhetorical Analysis with Rich-
Feature Support Vector Models. LDV Forum, 18(1).

Attapol Rutherford, Vera Demberg, and Nianwen Xue.
2017. A Systematic Study of Neural Discourse
Models for Implicit Discourse Relation. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 281–291, Valencia,
Spain. Association for Computational Linguistics.

K. Sumita, K. Ono, T. Chino, T. Ukita, and S. Amano.
1992. A Discourse Structure Analyzer for Japanese
Text. In Proceedings International Conference on
Fifth Generation Computer Systems, pages 1133–
1140.

Mihai Surdeanu, Tom Hicks, and Marco Antonio
Valenzuela-Escárcega. 2015. Two Practical Rhetor-
ical Structure Theory Parsers. In Proceedings of

the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 1–5, Denver, Colorado. As-
sociation for Computational Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017. A
Two-Stage Parsing Method for Text-Level Discourse
Analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 184–188, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward Fast and Accurate Neural Discourse Seg-
mentation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 962–967, Brussels, Belgium. Association
for Computational Linguistics.

Amir Zeldes. 2016. rstWeb - A Browser-based Anno-
tation Interface for Rhetorical Structure Theory and
Discourse Relations. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 1–5, San Diego, California. Associ-
ation for Computational Linguistics.

Hongxin Zhang and Haitao Liu. 2016. Quantitative As-
pects of RST Rhetorical Relations across Individual
Levels. Glottometrics, 33:8–24.

6

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 7–13
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

SF-QA: Simple and Fair Evaluation Library for Open-domain Question
Answering

Xiaopeng Lu2∗, Kyusong Lee1 and Tiancheng Zhao1

SOCO Inc.
1{kyusongl,tianchez}@soco.ai

Language Technologies Institute, Carnegie Mellon University
2xiaopen2@andrew.cmu.edu

Abstract

Although open-domain question answering
(QA) draws great attention in recent years, it
requires large amounts of resources for build-
ing the full system and it is often difficult to
reproduce previous results due to complex con-
figurations. In this paper, we introduce SF-QA:
simple and fair evaluation framework for open-
domain QA. SF-QA framework modularizes
the pipeline open-domain QA system, which
makes the task itself easily accessible and re-
producible to research groups without enough
computing resources. The proposed evalua-
tion framework is publicly available and any-
one can contribute to the code and evaluations.

1 Introduction

Open-domain Question Answering (QA) is the task
of answering open-ended questions by utilizing
knowledge from a large body of unstructured texts,
such as Wikipedia, world-wide-web and etc. This
task is challenging because researchers have to
face issues in both scalability and accuracy. In
the last few years, rapid progress has been made
and the performance of open-domain QA systems
has been improved significantly (Chen et al., 2017;
Qi et al., 2019; Yang et al., 2019). Several dif-
ferent approaches were proposed, including two-
stage ranker-reader systems (Chen et al., 2017),
end-to-end models (Seo et al., 2019) and retrieval-
free models (Raffel et al., 2019). Despite people’s
increasing interest in open-domain QA research,
there are still two main limitations in current open-
domain QA research communities that makes re-
search in this area not easily accessible:

The first issue is the high cost of ranking large
knowledge sources. Most of the prior research
used Wikipedia dumps as the knowledge source.
For example, the English Wikipedia has more than
∗ This work was done during an internship at SOCO

7 million articles and 100 million sentences. For
many researchers, indexing data of this size with
a classic search engine (e.g., Apache Lucene (Mc-
Candless et al., 2010)) is feasible but becomes im-
practical when indexing with a neural ranker that
requires weeks to index with GPU acceleration
and consumes very large memory space for vec-
tor search. Therefore, research that innovates in
ranking mostly originates from the industry.

The second issue is about reproducibility. Open-
domain QA datasets are collected at different
time, making it depends on different versions
of Wikipedia as the correct knowledge source.
For example, SQuAD (Rajpurkar et al., 2016)
uses the 2016 Wikipedia dump, and Natural
Question (Kwiatkowski et al., 2019) uses 2018
Wikipedia dump. Our experiments found that a
system’s performance can vary greatly when using
the wrong version of Wikipedia. Moreover, index-
ing the entire Wikipedia with neural methods is
expensive, so it is hard for researchers to utilize
others’ new rankers in their future research. Lastly,
the performance of an open-domain QA system de-
pends on many hyperparameters, e.g. the number
of passages passed to the reader, fusion strategy,
etc., which is another confounding factor to repro-
duce a system’s results.

Thus, this work proposes SF-QA (Simple and
Fair Question-Answering), a Python library to
solve the above challenges for two-stage QA sys-
tems. The key idea of SF-QA is to provide pre-
indexed large knowledge sources as public APIs
or cached ranking results; a hub of reader models;
and a configuration file that can be used to pre-
cisely reproduce an open-domain QA system for a
task. The pre-indexed knowledge sources enable re-
searchers to build on top of the previously proposed
rankers without worrying about the tedious work
needed to index the entire Wikipedia. Then the
executable configuration file provides a complete

7

snapshot that captures all of the hyperparameters
in order to reproduce a result.

Experiments are conducted to validate the effec-
tiveness of SF-QA. We show that one can easily re-
produce previous state-of-the-art open-domain QA
results on four QA datasets, namely Open SQuAD,
Open Natural Questions, Open CMRC, and Open
DRCD. More datasets will be included in the fu-
ture. Also, we illustrate several use cases of SF-QA,
such as efficient reader comparison, reproducible
research, open-source community, and knowledge-
empowered applications.

SF-QA is also completely open-sourced 1 and
encourages the research community to contribute
their rankers or readers into the repository, so that
their methods can be used by the rest of the com-
munity.

In short, the contributions of this paper include:

1. The proposed open-source SF-QA project that
provides a complete pipeline for simplifying
open-domain QA research.

2. A hub of pre-indexed Wikipedia at different
years with different ranking algorithms as pub-
lic APIs or cached results.

3. Experiments and tutorials that explain use
cases and scenarios of SF-QA and validate
its effectiveness.

2 Related Work

Existing deep learning open-domain QA ap-
proaches can be broadly divided into three cate-
gories.

2.1 Two-stage Approach
Recent open-domain QA systems mostly use a
two-stage ranker-reader approach. Dr.QA (Chen
et al., 2017) uses a modified TF-IDF bag-of-words
method as the first-stage retriever. Selected docu-
ments are then fed into an RNN-based document
reader to extract the final answer span. Wang et al.
(2018) leverage reinforcement learning to update
both ranker and reader components and shows im-
provement over Dr.QA in open-domain QA task.
Lee et al. (2018) focuses on the ranker improve-
ment and uses a learned reranker to boost first stage
answer recall.

Some other works focus on second-stage reader
improvement. Yang et al. (2019) adopts a BERT-
based reader model (Devlin et al., 2018) instead
1 https://github.com/soco-ai/SF-QA.git

of the previous RNN-based model and that signif-
icantly improved the end-to-end performance. To
deal with span extraction in a multi-document set-
ting, Wang et al. (2019) uses the global normaliza-
tion approach (Clark and Gardner, 2017) to make
the span scores comparable among candidate docu-
ments, which improved the performance by a large
amount.

The graph-based ranker-reader approach has also
been explored recently. Asai et al. (2019) proposes
a graph-based retriever to retrieve supporting doc-
uments recursively based on entity link evidence,
and then uses a BERT-based reader model to com-
plete open-domain QA task.

2.2 End-to-End Approach

Open-domain QA using the end-to-end approach
was not feasible for a long time, because this needs
humongous memory to index the corpus and do the
vector search. With the emergence of a large pre-
trained language model (PLM), researchers revisit
this idea and make the end-to-end open-domain
QA feasible. Lee et al. (2019) proposed Open-
retrieval QA (ORQA) model, which updates the
ranker and reader model in an end-to-end fashion
by pre-training the model with an Inverse Cloze
Task (ICT). Seo et al. (2019) experiments with
considering open-domain QA task as a one-stage
problem, and indexing corpus at phrase level di-
rectly. This approach shows promising inference
speed with compromise in worse performance.

2.3 Retrieval-free Approach

Pre-trained language models have got rapid de-
velopment in recent years. Querying a language
model directly to get phrase-level answers becomes
a possibility. The T5 model (11B version) (Raf-
fel et al., 2019) can reach comparative scores on
several open-domain QA datasets, compared with
two-stage approaches with far less number of pa-
rameters (∼330M). However, as reported in Guu
et al. (2020), decreasing the number of parame-
ters hurts the model performance drastically. This
leaves large room for future research on how to
make retrieval-free open-domain QA feasible in
the real-world setting.

3 The Proposed Method

3.1 Background

A typical ranker-reader-based open-domain QA
system operates as follows: first, a large text

8

Figure 1: Overall pipeline for open-domain QA

knowledge-base is indexed by a ranker, e.g. a full-
text search engine. Given a query, the ranker can
return a list of relevant passages that may contain
the correct answer. How to choose the size of a
passage is still an open research question and many
choices are available, e.g. paragraph, fixed-size
chunks, and sentences. Note that it is not necessary
that the ranker needs to return the final passages in
one-shot: advanced ranker can iteratively refine the
passage list to support multi-hop reasoning (Yang
et al., 2018; Asai et al., 2019).

Then given the returned passages, a machine
reader model will process all passages jointly and
extract potential phrase-level answers from them.
A fusion strategy is needed to combine candidate
answers and scores from each passage and to cre-
ate a final list of N-best phrase-level answers by
reading these passages. The reason to combine
ranker with the reader is to solve the scalability
challenge since the state-of-the-art readers are pro-
hibitively slow to process very large corpus in real-
time (Chen et al., 2017; Devlin et al., 2018).

3.2 The Proposed Library Overview

SF-QA is a library that is designed to make it easy
to evaluate and reproduce open-domain systems
that use ranker-reader architecture. SF-QA de-
creases the cost of indexing, hosting, and query-
ing large unstructured text knowledge base, e.g.
Wikipedia, and also provides a complete configu-
ration snapshot that can be used to replicate a QA
system’s performance. It is also a place for open-
domain QA researchers to share their work, no mat-
ter it is innovating in better information retrieval or
it is in stronger machine reading comprehension.

There are four main components in SF-QA:
ranker service, reader hub, evaluation, and
pipeline configuration.

3.3 Ranker Service

The goal of the ranker service is to reduce the
cost and time to index and query large knowledge
source for open-domain QA research using a vari-
ety of ranking technologies. Up to date, we have
included the BM25 (Robertson et al., 2009) and
SPARTA (Zhao et al., 2020) ranking methods with
several configurations detailed below. More meth-
ods will be included and we also welcome commu-
nity contributions.

Currently, SF-QA supports four ways of docu-
ment splitting for indexing:

1. Sentence: sentence-level indexing

2. Paragraph: paragraph-level indexing

3. Chunk: fixed word size indexing

4. Context: context-level indexing, where the
full sentence is always kept, with a maximum
number of tokens

Also, Wikipedia dumps at different times are
indexed separately so that users can choose to use
the same dump as benchmark datasets used. The
following versions are included:

1. English Wikipedia: 2016/2018/2020

2. Chinese Wikipedia: 2017/2018/2020

The returned passage is in the following JSON
format: {〈question id〉: [“score”: 42.86,“an-
swer”: “Super Bowl V, the fifth edition of the Super
Bowl...”, ...]}, which contains all question ids as
key, and top-k retrieved documents and scores as
value.

There are two methods to use the ranking results:
cached ranking results and ranking API.

9

3.3.1 Cached Ranking Results
The fastest way to use ranking service for exper-
iments is via cached ranking results. SF-QA pro-
vides top-K ranked passages in JSON format for
training, validation and test (if publicly available)
set. One can directly use the cached results for
training or for testing, saving time, and resources
for processing the raw data. Another use case is
one may use more computationally expensive re-
ranking methods to re-rank the top-K passages and
then feed them into the reader component.

3.3.2 Ranking APIs
The cached results are very useful for researchers
who work on existing datasets and who do not need
to have a live system. However, only cached results
do not work for new datasets or live QA system that
needs to handle user queries. Therefore, SF-QA
also provides public API as a service to solve this
need. The API is available as a RESTful API and
can be reached via HTTPs. Detailed connection
documentation can be found on the GitHub.

3.4 Reader Hub
Reader hub allows SF-QA’s user to specify which
reader model to use to extract phrase-level answers.
One can either uses their own models by imple-
menting an abstract function or directly load any
reader models that are compatible with the Hug-
ging Face Transformer library (Wolf et al., 2019).
SF-QA also includes its own reader model that
is optimized for open-domain QA. For example,
it offers a BERT reader that is globally normal-
ized (Wang et al., 2019), which provides more reli-
able answer scores to compare multiple candidates’
answers from different passages.

Moreover, the reader hub allows the user to de-
fine the fusion mechanism that combines the rank-
ing results with reading results. The current im-
plementation supports a linear combination with
two free variables, namely the type of score and
the weight on reader score. Concretely, the final
answer score is computed as follows:

y = (1− α)yreader + αyrank (1)

where α is a coefficient between 0 and 1. yreader is
the reader score, which can either be logits or prob-
ability after the softmax layer. yranker is the ranker
score, which depends on the ranking method. One
may also specify different normalization strategies
to normalize the score from ranker or reader. Nor-
malization strategies include z-normalization, floor

normalization etc. Lastly, one may easily add their
own strategy by overriding the fusion function.

3.5 Evaluation

SF-QA evaluation is designed to offer a multilin-
gual and comprehensive evaluation script that com-
putes the performance of an open-domain QA sys-
tem and also outputs useful intermediate metrics
that are useful for analysis and visualization. For
language support, SF-QA evaluation supports En-
glish and Chinese. For metrics, it has the most
common EM (exact match) and F1 score for the
final performance. It also provides other relevant
metrics. The following is a list of metrics that are
in the output:

• Exact match (EM)

• F-1 Score

• Ranking recall at K

• Oracle ranker score

• Mean reciprocal rank (MRR)

3.6 Pipeline Configurations

The pipeline configuration file is in YAML format,
which defines all the hyperparameter for an open-
domain QA system to do a forward inference. One
can set the configuration for data, ranker ID, and
reader ID, fusion strategy and etc. Therefore, the
easiest way to share an open-domain QA system for
results replication is via providing the right YAML
configuration. The following is an example.

config.yaml
data :

lang : en
name: squad
s p l i t : dev−v1 . 1

ranker :
use cached : F a l s e
model:

name: s p a r t a
es index name : en−wiki −2016

reader :
model id : squad−c o n t e x t−s p a n b e r t

param:
n gpu: 2
s c o r e w e i g h t : 0 . 8
top k : 10

10

4 Use Cases

SF-QA is designed to be modular and ready to
use, with the hope that it can connect people from
researchers interested in Question Answering (QA),
Information Retrieval (IR), and developers from
industries. In this section, we illustrate several use
cases of SF-QA.

4.1 Efficient Reader Comparison

In open-domain QA, the first stage ranker con-
sumes humongous resources in both time, memory,
and storage. For researchers without enough com-
puting power, it is not feasible to start open-domain
QA research, even if they only want to improve
the system on the reader stage. SF-QA provides
solutions for researchers with this need. In SF-
QA, existing publicly available open-domain QA
datasets are already indexed with multiple rankers
used in previous open-domain QA research work,
currently including BM25 (Robertson et al., 2009),
and SPARTA (Zhao et al., 2020), both with dif-
ferent granularity options. Researchers can call
the RESTful API to get the cached ranking results
directly if they want to focus on existing open-
domain QA datasets, for example, Open SQuAD,
Open CMRC, etc. Alternatively, they can call the
backend live ranker to get the top retrieved results
regarding the input query. We design SF-QA to be
completely modular: the researcher is able to pick
up a cached ranker and plug in their own reader
model to evaluate the open-domain QA results.

4.2 Reproducible Research

Reproducibility is another problem that existed in
current open-domain QA research. Since the first-
stage retriever model needs researchers to collect
large-scale data by themselves, it is hard to keep
all the settings the same to make fair comparisons.
In SF-QA, we collected data following the earli-
est works’ setting (Chen et al., 2017; Yang et al.,
2019; Kwiatkowski et al., 2019). Therefore, re-
searchers can check SF-QA to get data specifica-
tions for existing models. Moreover, parameter set-
tings for different models are recorded and saved
in another separate configuration file, as shown in
the section3.6. Therefore, any existing models in
the current SF-QA project can be directly repro-
duced, which would greatly facilitate researchers
in establishing benchmark scores and doing fair
comparisons.

4.3 Knowledge-empowered Applications

SF-QA framework also considers the needs from
an industry perspective. To show the potential of
open-domain QA and to encourage more people to
join the development of this task, we also provide
a RESTful API (with a ready-to-use open-domain
QA model in the backend) for users to ask ques-
tions and get the phrase-level answers directly as
output. We also provide a tutorial to demonstrate
that SF-QA can be seamlessly incorporated into
RASA (Bocklisch et al., 2017), a popular open-
source chatbot building platform, with only a few
lines of code. We hope that this effort can attract
people from different backgrounds to open-domain
QA research.

5 Experiment Results

Reported Reproduced
EM F1 EM F1

Bertserini (Yang
et al., 2019)

38.6 46.1 41.2 48.6

+DS (Xie et al.,
2020)

51.2 59.4 51.6 59.2

Multipassage (Wang
et al., 2019)

53.0 60.9 53.2 60.7

SpartaQA (Zhao
et al., 2020)

59.3 66.5 59.3 66.5

Table 1: Comparison between reported performance
and reproduced performance on Open SQuAD.

5.1 Reproducing Prior Art

Results in Table 1 shows the performance compar-
ison between several reported open-domain QA
systems and our reproduced results. The first exper-
iment conducted is to reproduce some prior results
using SF-QA. We choose Bertserini (Yang et al.,
2019), Bertserini with distant supervision (Xie
et al., 2020), Multi-passage Bert (Wang et al.,
2019), and SPARTA (Zhao et al., 2020) as three
benchmark systems to reproduce.

To reproduce Bertserini (Yang et al., 2019), we
follow the implementation described in the original
paper and first index the 2016 English Wikipedia
in paragraph level to get 29.5M documents in total.
A BERT-base-cased model is trained with global
normalization, following descriptions in the pa-
per. We observe a slight improvement in the open-
domain QA result, which may due to the usage of
a newer version of the BM25 retriever. The same

11

Indexing Uploading Retrieval Reader Total
Traditional
Approach

16.2 h 5.2 h 6.1 h 4.4 h 21.9 h

SF-QA - - - 4.4 h 4.4h

Table 2: Time elapsed to evaluate open-domain QA using Open SQuAD development set

open-domain QA setting wiki 2016* wiki 2018 wiki 2020
EM F1 R@1 EM F1 R@1 EM F1 R@1

BM25 + SpanBERT 49.2 56.7 41.9 45.8 53.8 39.4 41.5 49.5 35.4
Sparta + SpanBERT 59.3 66.5 50.8 46.5 54.4 39.3 46.4 53.9 42.2

Table 3: Open SQuAD performance using Wikipedia dumps from different years. * represents the dump which
SQuAD originally used for annotation.

phenomenon has also been reported in (Xie et al.,
2020).

For Bertserini with distant supervision (Xie et al.,
2020), we follow the two-stage distant supervision
strategy proposed by the original author, where
the model was first fine-tuned using the origi-
nal SQuAD dataset, and then fine-tuned on the
distantly supervised data retrieved from the full
Wikipedia. The score we get matches the score
reported by the original author.

To reproduce Multi-passage BERT (Wang et al.,
2019), we first index the Wikipedia corpus using
chunk size equals to 100, with a stride of 50 words.
A BERT reranker is then trained to rerank the re-
trieved top 100 documents and the top 30 docu-
ments are passed to the reader. In the reader train-
ing stage, we train the model using BERT-large-
cased model, also with global normalization to
make the span score comparable. Our reproduced
score matches the score reported in the original
paper.

For SpartaQA, we follow the original author’s
implementation on SPARTA retriever, and index
the Wikipedia in the context level with a size of 150.
During the reader stage, a SpanBERT (Joshi et al.,
2020) model is used to train the model with dis-
tantly supervised data retrieved from Wikipedia
with global normalization strategy. The score
matches the reported score.

5.2 Time saved by SF-QA

This experiment shows results for elapsed time
to evaluate open domain question answering with
and without the SFQA evaluation framework (Ta-
ble 2). Traditionally, we need to build the com-
plete pipeline in order to evaluate the open-domain
QA as following steps: (1) Indexing: converting
full Wikipedia into sparse or dense representations;

(2) Uploading: inserting the text and representa-
tions to Elasticsearch (or similar database); 3) Re-
triever: retrieval n-best candidates from Elastic-
search; 4) Reader: span prediction using machine
reading comprehension. We use GeForce RTX
2080 Ti GPU to index the entire Wikipedia dump
of the total 89,544,689 sentences. The total amount
of elapsed time for open-domain QA is 29 hours
without using SF-QA for one experimental setting.
In comparison to this, using cached retrieved re-
sults provided from SF-QA saves repetitive work
in heavy indexing, and it only takes ∼ 4 hours to
get the final scores.

5.3 Model Accuracy v.s. Corpus release year
We conduct the last experiment to test the robust-
ness of the state-of-the-art system against temporal
shifting. Results are reported in Table 3. We ob-
serve that model accuracy is largely affected by the
version of the Wikipedia dump, showing that it is
essential to track the version of the input data and
make sure that all open-domain QA researches are
reproducible starting from the data input level.

6 Conclusion

In conclusion, this paper presents SF-QA, a novel
evaluation framework to make open-domain QA
research simple and fair. This framework fixes the
gap among researchers from different fields, and
make the open-domain QA more accessible. We
show the robustness of this framework by success-
fully reproducing several existing models in open-
domain QA research. We hope that SF-QA can
make the open-domain QA research more accessi-
ble and make the evaluation easier. We expect to
further improve our framework by including more
models in both ranker and reader side, and encour-
age community contributions to the project as well.

12

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2019. Learn-
ing to retrieve reasoning paths over wikipedia
graph for question answering. arXiv preprint
arXiv:1911.10470.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management. arXiv
preprint arXiv:1712.05181.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics,
7:453–466.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. arXiv preprint arXiv:1810.00494.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Michael McCandless, Erik Hatcher, Otis Gospodnetić,
and O Gospodnetić. 2010. Lucene in action, vol-
ume 2. Manning Greenwich.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. arXiv preprint arXiv:1910.07000.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4430–4441.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R 3:
Reinforced ranker-reader for open-domain question
answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for
open-domain question answering. arXiv preprint
arXiv:1908.08167.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

Yuqing Xie, Wei Yang, Luchen Tan, Kun Xiong,
Nicholas Jing Yuan, Baoxing Huai, Ming Li, and
Jimmy Lin. 2020. Distant supervision for multi-
stage fine-tuning in retrieval-based question answer-
ing. In Proceedings of The Web Conference 2020,
pages 2934–2940.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee.
2020. Sparta: Efficient open-domain question an-
swering via sparse transformer matching retrieval.
arXiv preprint arXiv:2009.13013.

13

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 14–23
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Finite-state script normalization and processing utilities:
The Nisaba Brahmic library

Cibu Johny† Lawrence Wolf-Sonkin‡ Alexander Gutkin† Brian Roark‡

Google Research
†United Kingdom and ‡United States

{cibu,wolfsonkin,agutkin,roark}@google.com

Abstract
This paper presents an open-source library
for efficient low-level processing of ten ma-
jor South Asian Brahmic scripts. The library
provides a flexible and extensible framework
for supporting crucial operations on Brahmic
scripts, such as NFC, visual normalization,
reversible transliteration, and validity checks,
implemented in Python within a finite-state
transducer formalism. We survey some com-
mon Brahmic script issues that may adversely
affect the performance of downstream NLP
tasks, and provide the rationale for finite-state
design and system implementation details.

1 Introduction

The Unicode Standard separates the representation
of text from its specific graphical rendering: text
is encoded as a sequence of characters, which, at
presentation time are then collectively rendered
into the appropriate sequence of glyphs for display.
This can occasionally result in many-to-one map-
pings, where several distinctly-encoded strings can
result in identical display. For example, Latin
script letters with diacritics such as “é” can gener-
ally be encoded as either: (a) a pair of the base let-
ter (e.g., “e” which is U+0065 from Unicode’s Ba-
sic Latin block, corresponding to ASCII) and a dia-
critic (in this case U+0301 from the Combining Dia-
critical Marks block); or (b) a single character that
represents the grapheme directly (U+00E9 from the
Latin-1 Supplement Unicode block). Both encod-
ings yield visually identical text, hence text is of-
ten normalized to a conventionalized normal form,
such as the well-known Normalization Form C
(NFC), so that visually identical words are mapped
to a conventionalized representative of their equiv-
alence class for downstream processing. Critically,
NFC normalization falls far short of a complete
handling of such many-to-one phenomena in Uni-
code.

In addition to such normalization issues, some
scripts also have well-formedness constraints, i.e.,
not all strings of Unicode characters from a single
script correspond to a valid (i.e., legible) grapheme
sequence in the script. Such constraints do not ap-
ply in the basic Latin alphabet, where any permuta-
tion of letters can be rendered as a valid string (e.g.,
for use as an acronym). The Brahmic family of
scripts, however, including the Devanagari script
used to write Hindi, Marathi and many other South
Asian languages, do have such constraints. These
scripts are alphasyllabaries, meaning that they are
structured around orthographic syllables (akṣara)
as the basic unit.1 One or more Unicode characters
combine when rendering one of thousands of leg-
ible akṣara, but many combinations do not corre-
spond to any akṣara. Given a token in these scripts,
one may want to (a) normalize it to a canonical
form; and (b) check whether it is a well-formed
sequence of akṣara.
Brahmic scripts are heavily used across South

Asia and have official status in India, Bangladesh,
Nepal, Sri Lanka and beyond (Cardona and Jain,
2007; Steever, 2019). Despite evident progress
in localization standards (Unicode Consortium,
2019) and improvements in associated technolo-
gies such as inputmethods (Hinkle et al., 2013) and
character recognition (Pal et al., 2012), Brahmic
script processing still poses important challenges
due to the inherent differences between these writ-
ing systems and those which historically have been
more dominant in information technology (Sinha,
2009; Bhattacharyya et al., 2019).
In this paper, we present Nisaba, an open-source

software library,2 which provides processing utili-
ties for ten major Brahmic scripts of South Asia:
Bengali, Devanagari, Gujarati, Gurmukhi, Kan-
nada, Malayalam, Oriya (Odia), Sinhala, Tamil,

1See §3 for details on the scripts.
2https://github.com/google-research/nisaba/

14

and Telugu. In addition to string normaliza-
tion and well-formedness processing, the library
also includes utilities for the deterministic and re-
versible romanization of these scripts, i.e., translit-
eration from each script to and from the Latin
script (Wellisch, 1978). While the resulting roman-
izations are standardized in a way that may or may
not correspond to how native speakers tend to ro-
manize the text in informal communication (see,
e.g., Roark et al., 2020), such a default romaniza-
tion can permit easy inspection of an approximate
version of the linguistic strings for those who read
the Latin script but not the specific Brahmic script
being examined.
As a whole, the library provides important utili-

ties for language processing applications of South
Asian languages using Brahmic scripts. The de-
sign is based on the observation that, while there
are considerable superficial differences between
these scripts, they follow the same encodingmodel
in Unicode, and maintain a very similar char-
acter repertoire having evolved from the same
source — the Brāhmī script (Salomon, 1996; Fe-
dorova, 2012). This observation lends itself to the
script-agnostic design (outlined in §4) that, unlike
other approaches reviewed in §2, is based on the
weighted finite state transducer (WFST) formal-
ism (Mohri, 2004). The details of our system are
provided in §5.

2 Related Work

The computational processing of Brahmic scripts
is not a new topic, with the first applications
dating back to the early formal syntactic work
by Datta (1984). With an increased focus on the
South Asian languages within the NLP commu-
nity, facilitated by advances in machine learning
and the increased availability of relevant corpora,
multiple script processing solutions have emerged.
Some of these toolkits, such as statistical ma-
chine translation-based Brahmi-Net (Kunchukut-
tan et al., 2015), are model-based, while oth-
ers, such as URoman (Hermjakob et al., 2018),
IndicNLP (Kunchukuttan, 2020), and Akshar-
mukha (Rajan, 2020), employ rules. The main fo-
cus of these libraries is script conversion and ro-
manization. In this capacity they were success-
fully employed in diverse downstream multilin-
gual NLP tasks such as neural machine transla-
tion (Zhang et al., 2020; Amrhein and Sennrich,
2020), morphological analysis (Hauer et al., 2019;

Murikinati et al., 2020), named entity recogni-
tion (Huang et al., 2019) and part-of-speech tag-
ging (Cardenas et al., 2019).
Similar to the software mentioned above, our li-

brary does provide romanization, but unlike some
of the packages, such as URoman, we guarantee
reversibility from Latin back to the native script.
Similar to others we do not focus on faithful in-
vertible transliteration of named entities which
typically requires model-based approaches (Se-
quiera et al., 2014). Unlike the IndicNLP pack-
age, our software does not provide morphologi-
cal analysis, but instead offers significantly richer
script normalization capabilities than other pack-
ages. These capabilities are functionally sepa-
rated into normalization to Normalization Form
C (NFC) and visual normalization. Additionally,
our library provides extensive script-specific well-
formedness grammars. Finally, in contrast to these
other approaches, grammars in our library are
maintained separately from the code for compila-
tion and application, allowing for maintenance of
existing scripts and languages plus extension to
new ones without having to modify any code. This
is particularly important given that Unicode stan-
dards do change over time and there remain many
languages left to cover.
To the best of our knowledge this is the first

publicly available general finite-state grammar ap-
proach for low-level processing of multiple Brah-
mic scripts since the early formal syntactic work
by Datta (1984) and is the first such library de-
signed based on an observation by Sproat (2003)
that the fundamental organizing principles of the
Brahmic scripts can be algebraically formalized.
In particular, all the core components of our li-
brary (inverse romanization, normalization and
well-formedness) are compactly and efficiently
represented as finite state transducers. Such for-
malization lends itself particularly well to run-time
or offline integration with any finite state process-
ing pipeline, such as decoder components of in-
put methods (Ouyang et al., 2017; Hellsten et al.,
2017), text normalization for automatic speech
recognition and text-to-speech synthesis (Zhang
et al., 2019), among other natural language and
speech applications.

3 Brahmic Scripts: An Overview

The scripts of interest have evolved from the an-
cient Brāhmī writing system that was recorded

15

Name Id iv dv c co

Bengali BENG 16 13 43 5
Devanagari DEVA 19 17 45 4
Gujarati GUJR 16 15 39 5
Gurmukhi GURU 12 9 39 8
Kannada KNDA 17 15 39 3
Malayalam MLYM 16 16 38 10
Oriya ORYA 14 13 38 5
Sinhala SINH 18 17 41 2
Tamil TAML 12 11 27 1
Telugu TELU 16 15 38 5

Table 1: Sizes of core graphemic classes: Independent
vowels (iv), dependent vowel diacritics (dv), conso-
nants (c), coda symbols (co).

from the 3rd century BCE and fell out of use
by the 5th century CE (Salomon, 1996; Strauch,
2012; Fedorova, 2012). The main unit of lin-
ear graphemic representation in Brahmic scripts
is known by its traditional Sanskrit-derived name
akṣara . As Bright (1999) notes, it is often trans-
lated as “syllable” although it does not bear di-
rect correspondence to a syllable of speech, but
rather to an orthographic syllable. The structure,
or “grammar” of an akṣara is based on the follow-
ing common principles: an akṣara often consists
of a consonant symbol 𝐶, by default bearing an
unmarked inherent vowel or attached diacritic (de-
pendent) vowel sign 𝑣 (𝐶𝑣); but it may also be an
independent vowel symbol 𝑉 , or a consonant sym-
bol with its inherent vowel “muted” by a special
virama diacritic ∅ (𝐶∅). In any of these preceding
scenarios, the base consonant 𝐶 can be replaced
by a consonant cluster where all but the last conso-
nant lose their inherent vowel. When the individ-
ual component consonants of the cluster combine
to form a composite form, precluding the use of an
overt virama diacritic, this is known as a “conso-
nant conjunct” (e.g., 𝐶∅

𝑖 𝐶∅
𝑗 𝐶𝑘 vs [𝐶𝑖𝐶𝑗𝐶𝑘]3) (Fe-

dorova, 2013; Bright, 1999; Coulmas, 1999; Share
and Daniels, 2016).
The elements of the akṣara grammar described

above can be grouped into several natural classes.
The sizes of the core classes are shown in Ta-
ble 1 for each writing system and its correspond-
ing ISO 15924 identifier in uppercase format (ISO,
2004). The major classes are the independent vow-
els (e.g., the Devanagari diphthongऔ), the depen-
dent vowel diacritics (e.g., the Gujarati ી), and the
consonants (e.g., the Gurmukhi ੜ). Another im-
portant class consists of the coda consonant sym-

3Here, surrounding the consonants in square brackets will
serve to indicate that the enclosed consonants form a conjunct
together.

Visual Legacy sequence NFC normalized

ऩ NA NUKTA (U+0928 U+093C) NNNA (U+0929)
क़ QA (U+0958) KA NUKTA (U+0915 U+093C)

Table 2: NFC examples for Devanagari.

bols, like anusvara, chandrabindu, and visarga,
which modify the akṣara as a whole (and follow
and vowel signs in the memory representation). Fi-
nally, there is a class of special characters, such as
the religious symbol Om ॐ, that behave like inde-
pendent akṣara. 4

Unicode Normalization Unicode defines sev-
eral normalization formswhich are used for check-
ing whether the two Unicode strings are equiv-
alent to each other (Unicode Consortium, 2019).
In our library we support Normalization Form C
(NFC) which is well suited for comparing visu-
ally identical strings. This normalization gener-
ally converts strings to the equivalent form that
uses composite characters. Table 2 shows two ex-
amples of legacy sequences corresponding canon-
ically equivalent forms for Devanagari.

Visual Normalization Aswas mentioned above,
an akṣara may be represented by multiple Unicode
character sequences and the goal of NFC normal-
ization is to convert them to their unique canonical
form. However, there are many Unicode character
sequences that fall outside the scope of NFC algo-
rithm. We provide visual normalization that, in ad-
dition to providing the NFC functionality, also sup-
ports transforming such legacy sequences. Some
of the rules are provided as “Do Not Use” tables by
the Unicode Consortium (2019) that recommends
transformations from legacy sequences to their cor-
responding canonical form, such as Devanagari {
अ (U+0905), ॅ (U+0945) } → ॲ (U+0972). We also
included transformations for visually identical se-
quences (under many implementations) which are
commonly found on the Web, such as Devanagari
{ ऐ (U+0910), े (U+0947) } → ऐ (U+0910).5

Well-formedness Check A well-formedness ac-
ceptor verifies whether the given text is readable in
a particular script or not. It would be hard for the
native reader to visually parse the text if the script
rules are not followed. For example, the reader

4These classes are documented in https://github.com/
google-research/nisaba/blob/main/nisaba/brahmic/
mappings.md.

5Here the combining vowel sign U+0947 does not affect
the compound glyph’s visual appearance hence is removed.

16

Script ID Visual Character(s) Translit.

BENG ৎ KHANDA TA ⟨tⸯ⟩
DEVA इ Non-word initial VOWEL I ⟨.i⟩
GUJR ૐ Religious sign OM ⟨ōm̐ ⟩
GURU ੱ ADDAK ⟨˖⟩
MLYM ൻ CHILLU N ⟨nⸯ⟩
SINH ඥ JNYA ⟨ᵑǰ⟩
TAML ஃப VISARGA, PA ⟨f⟩

Table 3: Examples for additions to ISO 15919.

does not expect two vowels signs on a single con-
sonant and such a thing may not even be possible
to reasonably draw. Furthermore, unlike the Latin
script, acronyms are not written using arbitrary let-
ter sequences, they are formed only as a sequence
of akṣara. Our approach verifies whether the text is
a sequence of well-formed akṣara using the gram-
mar described above.

Reversible ISO Transliteration ISO 15919 rep-
resents a unified 8-bit Latin transliteration scheme
formajor SouthAsian Brahmic scripts (ISO, 2001).
Since it has not been updated with the characters
that were introduced to the Unicode standard af-
ter 2001, we have added additional mappings, with
some examples shown in Table 3. These additions
are crucial because they allow us to reverse the
romanizations to get the original Brahmic strings
back reliably. This property allows various data
processing pipelines to use the romanized text as
an internal representation and convert it back to the
original native script at the output stage.

Language-specific Logic Several South Asian
languages often share the same script with some,
often minor, language-specific differences. Our
library supports language-specific customizations
that can be combined with language-agnostic
script logic. For example, the modern Bengali–
Assamese script (Beng) is shared by both Bengali
and Assamese languages, among others (Brandt
and Sohoni, 2018). For both of these languages
our library provides customizations,6 such as
the transformations required for visual normal-
ization of Assamese that transform Bengali let-
ter ra into its Assamese equivalent when it par-
ticipates in a consonant conjunct (which gener-
ally occurs when following or preceding virama,
e.g., { র (U+09B0), ◌্ (U+09CD) } → { ৰ (U+09F0),
◌্ (U+09CD) }).

6https://github.com/google-research/nisaba/
tree/main/nisaba/brahmic/data/lang

𝑞1 𝑞2 𝑞3

U+0AA6
દ

U+0AB8
સ

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7
0xE0 0xAA 0xA6 0xE0 0xAA 0xB8

દ સ

Figure 1: String acceptors for Gujarati word દસ (⟨dasa⟩,
“ten”) over an alphabet of Unicode code points (top) and
bytes (bottom).

Require: FSAs: consonant, vowel, vowel_sign, coda, standalone, virama,
dead_consonant, accept.

1: function 𝒲(consonant, vowel, vowel_sign, coda, standalone, virama,
dead_consonant, accept)

2: cluster ← (consonant + virama)∗ + consonant
3: codable ← (vowel ∪ (cluster + vowel_sign?) ∪ accept) ∪ coda?

4: akshara ← codable ∪ (cluster + virama + dead_consonant?)
5: 𝑇 ← akshara ∪ standalone
6: return 𝑇 + ⊳ Kleene plus

Figure 2: Simplified construction of the well-formed
automaton 𝒲.

4 The Finite-State Approach

The Brahmic script manipulation operations
described above have a natural intepretation
grounded in formal language theory. We treat the
text corpus in a given script as a set of strings
over some finite alphabet Σ that defines a set of
admissable script symbols. The set of zero or
more strings is known as language which, in its
simplest (regular) form, can be succintly described
(or recognized) by a finite state automaton (FSA)
or acceptor (Yu, 1997). Two simple FSAs that
represent the Gujarati word દસ are shown in
Figure 1, where the top automaton represents the
word over an alphabet of Unicode code points
for Gujarati, while the bottom one represents the
same string over the corresponding byte symbols
in UTF-8 encoding (Unicode Consortium, 2019).
Our library supports both representations.
The akṣara grammar outlined in the previous

section can be expressed via elementary formal op-
erations on the FSAs that describe grammar con-
stituents. Such set-theoretic operations include
union (∪), concatenation (+) and closure, where
closure is defined as an arbitrary natural number
of concatenations of a language 𝐿 over Σ with it-
self, either accepting an empty input {𝜖} or not,
denoted 𝐿∗ (Kleene star) and 𝐿+ (Kleene plus),
respectively (Kuich and Salomaa, 1986). These
operations represent non-trivial automata which
are compiled offline resulting in compact and ef-
ficient representations. A simplified process for
constructing the automaton 𝒲 to perform the well-

17

𝑞0 𝑞2 𝑞3 𝑞4

𝑞1

𝑞5

එ/⟨e⟩

ද/⟨d⟩ ෙ/⟨e⟩ ක/⟨k⟩

ක/⟨k⟩

𝜖/⟨a⟩

Figure 3: Romanization of Sinhala words එක (“one”)
and දෙක (“two”) into ⟨eka⟩ and ⟨deka⟩, respectively.

formed check from the previous section is shown
in Figure 2. In this simplified example, the paths
through the automaton that define a legal conso-
nant cluster (line 2 of the algorithm) are repre-
sented by a sub-automaton that recognizes the lan-
guage that consists of strings formed from the con-
sonant and virama symbols only, where each con-
sonant, apart from the last one, must be followed
by the virama that removes an inherent vowel.
The rest of the operations on the Brahmic scripts,

namely the normalization and transliteration, in-
volve modifications of the Brahmic script inputs.
Such operations are naturally expressed by finite
state transducers (FSTs), which are a generaliza-
tion of the FSA concept used to encode string-
string relations (or transductions), by modifying
the automata arcs to have pairs of labels from in-
put and output alphabets, instead of single labels.
A trivial romanization in our representation of the
two Sinhala words එක (⟨eka⟩, “one”) and දෙක
(⟨deka⟩, “two”) is shown in Figure 3. Note the
“vocalization” of the final consonant by insertion
of a schwa via an input 𝜖-transition. Also note that
the path accepting the second word is longer. The
word දෙක consists of three akṣara and requires
modification of the inherent vowel by the depen-
dent vowel in order to produce ⟨de⟩.
The basic operations on the FSAs outlined

above also extend to the FST case and allow
for similarly succinct final compiled representa-
tions (Mohri, 2000), such as the simplified con-
struction of the ISO romanization transducer ℐ for
converting from Brahmic scripts to Latin alpha-
bet, shown in Figure 4. An important extension
of FSAs and FSTs are the weighted finite state au-
tomata (WFSAs) and transducers (WFSTs) (Mohri,
2004, 2009) that equip each arc in the automaton or
transducer with a weight, thus allowing optimiza-
tion and search algorithms to compute the costs of
distinct paths, which can be used to determine their
relative importance. We useweights in some of our
grammars to indicate the relative priority of a par-
ticular akṣara modification. For example, in Fig-
ure 4, the paths corresponding to consonants fol-
lowed by dependent vowels (line 6) have priority

Require: FSTs: consonant, vowel, vowel_sign, coda, standalone, virama.

1: function ℐ(consonant, vowel, vowel_sign, coda, standalone, virama)
2: del_virama ← virama × Ø ⊳ Delete virama
3: ins_schwa ← Ø × {⟨a⟩} ⊳ Insert inherent vowel
4: deweight ← (𝜖, 𝜖, 𝑤 ↓) ⊳ De-prioritize the path
5: 𝑇 ← (
6: (consonant + vowel_sign) ∪ ⊳ (ஸ,⟨sa⟩) + (◌ு,⟨u⟩) → (ஸு,⟨su⟩)
7: (consonant + del_virama + deweight) ∪
8: (consonant + ins_schwa + deweight) ∪
9: (vowel + deweight) ∪ coda ∪ standalone ∪
10: …) ⊳ Further logic
11: return 𝑇 ∗ ⊳ Kleene star

Figure 4: Simplified construction of the transliteration
transducer ℐ.

over the akṣara-initial independent vowels (line 9).
The two remaining operations on akṣara,

namely NFC and visual normalization, are repre-
sented in our library using the context-dependent
rewrite rules from the formal approach pop-
ularized by Chomsky and Halle (1968). The
normalization rules are represented as a sequence
{𝜙 → 𝜓/𝜆 __ 𝜌}, where the source 𝜙 is rewritten
as 𝜓 if its left and right contexts are 𝜆 and 𝜌. For
an earlier example from §3, a single NFC normal-
ization rule rewrites the Devanagari string 𝜙 = “न”
(na, U+0928) + “़” (nukta sign, U+093C) into its
canonical composition 𝜓 = “ऩ” (nnna, U+0929).
Kaplan and Kay (1994) proposed an algorithm
for compiling such sequences into an FST. This
approach was further improved and extended
to WFSTs by Mohri and Sproat (1996), whose
algorithm we use to compile sequences of NFC
and visual normalization rules into transducers
denoted 𝒩 and 𝒱.
Finally, the transducers representing language-

specific customizations of a particular script op-
eration are compiled by composing the generic
language-agnostic transducer, such as the Devana-
gari visual normalizer, with the transducer rep-
resenting transformations that capture language-
specific use of the script, e.g., Devanagari for
Nepali.

5 System Details and Demo

The core of the Nisaba Brahmic script manipula-
tion library resides under the brahmic directory
of the distribution. In this section we provide de-
tails for how to build and use the library and also
explore its application to visual normalization of
Wikipedia-based text in 9 of these scripts.

Prerequisites We use Bazel (Google, 2020) as
a primary build environment. For compiling the

18

Op. Symb. Prop. Script
BENG DEVA GUJR GURU KNDA MLYM ORYA SINH TAML TELU

𝑁𝑠 127 130 113 93 119 122 105 122 75 112Unicode 𝑁𝑎 475 546 476 418 487 522 452 513 326 485
𝑁𝑠 248 235 195 171 210 201 178 192 126 181ℐ

Byte 𝑁𝑎 384 399 334 288 350 345 305 339 229 318

𝒩
Unicode 𝑁𝑠 9 17 1 8 21 8 9 17 11 4

𝑁𝑎 158 248 75 78 349 261 160 352 228 163

Byte 𝑁𝑠 31 55 1 28 70 27 31 55 37 14
𝑁𝑎 1,812 1,841 255 1,047 2,884 2,322 1,813 2,611 3,098 1,543
𝑁𝑠 103 51,710 98 119 1764 287 60 182 209 57Unicode 𝑁𝑎 2,423 121,157 2,234 2,322 6,136 3,021 1,732 2,129 1,280 2,249
𝑁𝑠 369 165,168 356 425 5,611 965 232 624 703 225𝒱

Byte 𝑁𝑎 18,896 266,441 18,684 20,733 30,422 18,598 16,146 15,363 11,830 18,717

𝒲
Unicode 𝑁𝑠 11 7 7 7 10 10 7 7 4 6

𝑁𝑎 427 446 388 341 465 485 380 361 158 335

Byte 𝑁𝑠 38 23 21 23 33 33 22 22 11 19
𝑁𝑎 297 321 284 257 309 297 279 195 130 239

Table 4: Properties of script FSTs arranged by operation and symbol types (Unicode code points and UTF-8 bytes),
where ℐ denotes the ISO transliteration operation, 𝒩 is the NFC normalization, 𝒱 denotes visual normalization,
and 𝒲 is the well-formed check. The numbers of states and arcs are denoted by 𝑁𝑠 and 𝑁𝑎, respectively.

OpenFst

Pynini Thrax

Brahmic
Offline: Compile

OpenFst

Pynini

Brahmic
Runtime: Python

OpenFst

Thrax

Brahmic
Runtime: C++

Figure 5: Software dependency diagrams for the three
modes of operation: compile stage (left), Python run-
time (center) and C++ run-time (right).

automata and transducers we employ Pynini7, a
Python library for constructing finite-state gram-
mars and for performing operations on WF-
STs (Gorman, 2016; Gorman and Sproat, in press).
In addition, the library depends on Thrax8, an older
relative of Pynini, that provides a custom gram-
mar manipulation language for WFSTs (Tai et al.,
2011; Roark et al., 2012). Although Thrax has
been mostly superseded by Pynini, we still rely on
some of its utilities for unit testing and its C++ run-
time components. At their core, both Pynini and
Thrax depend on the OpenFst library9 for the im-
plementation of most WFST algorithms (Allauzen
et al., 2007; Riley et al., 2009). The overall depen-
dency diagram is shown on the left-hand side of
Figure 5 (the minimal dependency on Thrax is in-
dicated by a dotted arrow). At build time, Bazel
pulls in these dependencies remotely from their re-
spective repositories.

7http://pynini.opengrm.org/
8http://thrax.opengrm.org
9http://www.openfst.org

Compiling the Transducers Figure 6 presents
the sequence of steps to compile the transduc-
ers, including downloading the repository (line 2),
compiling the library and its artifacts (line 5) and
running the unit tests (line 7). The artifacts are
compiled by Bazel using Pynini and consist of the
finite state archive (FAR) files that contain collec-
tions of WFSTs (Roark et al., 2012). For each
of the four Brahmic script operations we generate
two FAR files: one for WFSTs over the byte al-
phabet, and another over the Unicode code point
alphabet.10 Each FAR file contains ten script-
specific transducers whose names correspond to
the upper-case ISO 15924 script codes. Since the
transliteration operation is bidirectional, the name
of each script-specific transliteration transducer
has the prefix FROM_ for the native-to-Latin direc-
tion, and TO_ for the inverse. The numbers of states
(𝑁𝑠) and arcs (𝑁𝑎) of the resulting transliteration
(ℐ), NFC (𝒩), visual normalization (𝒱) transduc-
ers and well-formedness acceptors (𝒲) for each
script and alphabet type are shown in Table 4.

Offline and Online Usage Once the transduc-
ers are compiled, they can be applied offline to
the input files using the rewrite-tester tool pro-
vided by Thrax, as shown in lines 8–13 of the ex-
ample in Figure 6, where the visual normalization
transducer 𝒱 for Kannada that resides in the vi-
sual_norm.far archive is applied to words in in-
put file words.txt.
We provide lightweight run-time interfaces for

10The Unicode code point FARs rather misleadingly have
the suffix utf8 in their name for historical reasons.

19

1 # Download Nisaba repository.
2 git clone https://github.com/google-research/nisaba.git
3 cd nisaba
4 # Compile the transducers and tests.
5 bazel build -c opt //nisaba/brahmic/...
6 # Run the unit tests.
7 bazel test -c opt //nisaba/brahmic/...
8 # Compile Thrax rewrite helper tool.
9 bazel build -c opt @org_opengrm_thrax//:rewrite-tester
10 # Run visual normalization for Kannada.
11 bazel-bin/external/org_opengrm_thrax/rewrite-tester \
12 --far=bazel-bin/nisaba/brahmic/visual_norm.far \
13 --rules=KNDA < words.txt

Figure 6: Compiling the transducers.

import unittest
from nisaba import brahmic

class BrahmicTest(unittest.TestCase):
def testBasicOperations(self):
Check romanization.
iso_to_deva = brahmic.IsoTo(’Deva’)
self.assertEqual(’क् ़लब’,

iso_to_deva.ApplyOnText(’⟨kˑlaba⟩’))
Check valid inputs.
wellformed_mlym = brahmic.WellFormed(’Mlym’)
self.assertTrue(wellformed_mlym.AcceptText(’സ്വരം’))
Visual normalizer.
visual_norm_deva = brahmic.VisualNorm(’Deva’)
self.assertEqual(’औ’, visual_norm_deva.ApplyOnText(’औ’))

Figure 7: Run-time Python interface example.

both Python and C++, their dependencies shown
in the center and the right-hand side of Figure 5,
respectively. The Python interface is provided via
several wrappers around the pynini.Fst abstrac-
tion, with a simple example shown in Figure 7.
In addition to performing simple operations on in-
dividual strings, more WFST-specific operations,
such as transducer composition, are provided by
Pynini. The C++ interface is provided by the Gram-
mar helper class, shown in Figure 8, that includes
the necessary methods for initializing the WFSTs
and performing rewrites (for transducers) and ac-
ceptance tests (for acceptors). In addition, many
more operations on WFSTs are available through
the OpenFst library, if required.

Prevalence of Normalization To demonstrate
the prevalence of text requiring normalization in

#include <string>

// Generic wrapper around FST archive with Brahmic transducers.
class Grammar {
public:
// Constructs given the FAR path, its name and the name of WFST.
Grammar(const std::string& far_path, const std::string& far_name,

const std::string& fst_name);
// Initializes the transducer.
bool Load();
// Rewrites <input> into <output>.
bool Rewrite(const std::string& input, std::string *output) const;
// Checks whether the grammar accepts <input>.
bool Accept(const std::string& input) const;

};

Figure 8: Run-time C++ interface.

% Changed
Language Script Types Tokens

Bengali BENG 0.53 0.06
Gujarati GUJR 0.46 0.09
Hindi DEVA 1.41 0.18
Kannada KNDA 4.19 1.66
Malayalam MLYM 6.33 4.19
Marathi DEVA 1.51 0.40
Punjabi GURU 1.67 0.33
Sinhala SINH 3.55 0.71
Tamil TAML 0.59 0.17
Telugu TELU 1.97 0.63

Table 5: Percentage of types and tokens changed by vi-
sual normalization from native script Wikipedia train-
ing partitions of the Dakshina dataset.

these scripts, we normalized publicly available cor-
pora and measured how frequently words in the
samples were modified. The Dakshina dataset
(Roark et al., 2020) includes (among other things)
collections of monolingual Wikipedia sentences in
12 South Asian languages, 10 of which use Brah-
mic scripts. We applied visual normalization to the
training partitions of the collections in these 10 lan-
guages, and Table 5 presents the percentage of both
types and tokens that were changed by the normal-
ization.11 Malayalam is the languagewith the high-
est percentage of both types and tokens changed by
visual normalization, largely due to frequent con-
version to chillu letters from alternative encodings.
For example, the relatively frequent word തൻ്റെ
(“yours”) is normalized to the encoding with the
chillu letterൻ instead of ന.

6 Conclusion and Future Work

We presented finite-state automata-based utilities
for processing the major Brahmic scripts. The fi-
nite state transducer formalism provides an effi-
cient and scalable framework for expressing Brah-
mic script operations and is suitable for many NLP
applications, such as those reported in Kumar et al.
(2020) and Kakwani et al. (2020), which may ben-
efit from the reduction in “noise” present in unnor-
malized text. In the future, we will continue to im-
prove the support for existing scripts and extend
our work to other Brahmic scripts.

11Tokenization was simply based on whitespace, with no
other processing such as punctuation separation, so the total
number of distinct types is accordingly relatively high. The
texts from that dataset were already NFC normalized.

20

Acknowledgments

The authors would like to thank Işın Demirşahin
for valuable discussion on this project.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In International Conference on Implemen-
tation and Application of Automata, pages 11–23.
Springer.

Chantal Amrhein and Rico Sennrich. 2020. On Roman-
ization for model transfer between scripts in neural
machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2461–2469, Online. Association for Computational
Linguistics.

Pushpak Bhattacharyya, Hema Murthy, Surangika
Ranathunga, and Ranjiva Munasinghe. 2019. Indic
language computing. Communications of the ACM,
62(11):70–75.

Carmen Brandt and Pushkar Sohoni. 2018. Script and
identity – the politics of writing in South Asia: an in-
troduction. South Asian History and Culture, 9(1):1–
15.

William Bright. 1999. A matter of typology: Alphasyl-
labaries and abugidas. Written Language& Literacy,
2(1):45–55.

Ronald Cardenas, Ying Lin, Heng Ji, and JonathanMay.
2019. A grounded unsupervised universal part-of-
speech tagger for low-resource languages. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2428–2439,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

George Cardona and Danesh Jain. 2007. The Indo-
Aryan Languages. Routledge Language Family Se-
ries. Routledge, New York.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Florian Coulmas. 1999. The Blackwell Encyclopedia of
Writing Systems. John Wiley & Sons, Oxford.

A. K. Datta. 1984. A generalized formal approach
for description and analysis of major Indian scripts.
IETE Journal of Research, 30(6):155–161.

Liudmila L Fedorova. 2012. The development of
structural characteristics of Brahmi script in deriva-
tive writing systems. Written Language & Literacy,
15(1):1–25.

Liudmila L. Fedorova. 2013. The development of
graphic representation in abugida writing: The ak-
shara’s grammar. Lingua Posnaniensis, 55(2):49–
66.

Google. 2020. Bazel. http://bazel.build. [Online],
Accessed: 2020-12-10.

Kyle Gorman. 2016. Pynini: A Python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80, Berlin,
Germany. Association for Computational Linguis-
tics.

Kyle Gorman and Richard Sproat. in press. Finite-State
Text Processing. Human Language Technologies.
Morgan & Claypool, Williston, VT.

Bradley Hauer, Amir Ahmad Habibi, Yixing Luan,
Rashed Rubby Riyadh, andGrzegorz Kondrak. 2019.
Cognate projection for low-resource inflection gen-
eration. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 6–11, Florence, Italy. Asso-
ciation for Computational Linguistics.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Al-
lauzen, Françoise Beaufays, Tom Ouyang, Michael
Riley, and David Rybach. 2017. Transliterated mo-
bile keyboard input via weighted finite-state trans-
ducers. In Proceedings of the 13th International
Conference on Finite State Methods and Natural
Language Processing (FSMNLP 2017), pages 10–
19, Umeå, Sweden. Association for Computational
Linguistics.

Ulf Hermjakob, Jonathan May, and Kevin Knight.
2018. Out-of-the-box universal Romanization tool
uroman. In Proceedings of ACL 2018, System
Demonstrations, pages 13–18, Melbourne, Australia.
Association for Computational Linguistics.

Lauren Hinkle, Albert Brouillette, Sujay Jayakar, Leigh
Gathings, Miguel Lezcano, and Jugal Kalita. 2013.
Design and evaluation of soft keyboards for Brahmic
scripts. ACMTransactions on Asian Language Infor-
mation Processing (TALIP), 12(2):1–37.

Xiaolei Huang, Jonathan May, and Nanyun Peng. 2019.
What matters for neural cross-lingual named entity
recognition: An empirical analysis. In Proceedings
of the 2019 Conference on EmpiricalMethods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6395–6401, Hong Kong,
China. Association for Computational Linguistics.

ISO. 2001. ISO 15919: Transliteration of Devana-
gari and related Indic scripts into Latin characters.
https://www.iso.org/standard/28333.html. Interna-
tional Organization for Standardization.

ISO. 2004. ISO 15924: Codes for the representation of
names of scripts. https://www.iso.org/obp/ui/#iso:
std:iso:15924:ed-1:v1:en. International Organiza-
tion for Standardization.

21

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N. C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. iNLPSuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian
languages. In Proc. of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, EMNLP 2020, pages 4948–4961, Online
Event. Association for Computational Linguistics.

RonaldM. Kaplan andMartin Kay. 1994. Regular mod-
els of phonological rule systems. Computational
Linguistics, 20(3):331–378.

Werner Kuich and Arto Salomaa. 1986. Semirings, Au-
tomata, Languages, volume 5 ofMonographs in The-
oretical Computer Science. Springer, Berlin.

Saurav Kumar, Saunack Kumar, Diptesh Kanojia, and
Pushpak Bhattacharyya. 2020. “A passage to In-
dia”: Pre-trained word embeddings for Indian lan-
guages. InProc. of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), pages
352–357, Marseille, France. European Language Re-
sources association.

Anoop Kunchukuttan. 2020. The IndicNLP Li-
brary. https://github.com/anoopkunchukuttan/
indic_nlp_library.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-net: A transliteration
and script conversion system for languages of the In-
dian subcontinent. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Demonstra-
tions, pages 81–85, Denver, Colorado. Association
for Computational Linguistics.

Mehryar Mohri. 2000. Minimization algorithms for se-
quential transducers. Theoretical Computer Science,
234(1-2):177–201.

Mehryar Mohri. 2004. Weighted finite-state transducer
algorithms. An overview. In Carlos Martín-Vide,
Victor Mitrana, and Gheorghe Păun, editors, For-
mal Languages and Applications, pages 551–563.
Springer, Berlin; Heidelberg.

Mehryar Mohri. 2009. Weighted automata algorithms.
InManfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, Mono-
graphs in Theoretical Computer Science, pages 213–
254. Springer.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In 34th An-
nual Meeting of the Association for Computational
Linguistics, pages 231–238, Santa Cruz, California,
USA. Association for Computational Linguistics.

Nikitha Murikinati, Antonios Anastasopoulos, and Gra-
ham Neubig. 2020. Transliteration for cross-lingual
morphological inflection. In Proceedings of the

17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 189–197, Online. Association for Computa-
tional Linguistics.

Tom Ouyang, David Rybach, Françoise Beaufays, and
Michael Riley. 2017. Mobile keyboard input decod-
ing with finite-state transducers.

Umapada Pal, Ramachandran Jayadevan, and Nabin
Sharma. 2012. Handwriting recognition in Indian re-
gional scripts: A survey of offline techniques. ACM
Transactions on Asian Language Information Pro-
cessing (TALIP), 11(1):1–35.

Vinodh Rajan. 2020. Aksharamukha. https://github.
com/virtualvinodh/aksharamukha.

Michael Riley, Cyril Allauzen, and Martin Jansche.
2009. OpenFst: An open-source, weighted finite-
state transducer library and its applications to speech
and language. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Tutorial
Abstracts, pages 9–10, Boulder, Colorado. Associa-
tion for Computational Linguistics.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 61–66, Jeju Island, Ko-
rea. Association for Computational Linguistics.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the Dakshina dataset. In
Proc. of 12th Language Resources and Evaluation
Conference (LREC), pages 2413–2423, Marseille,
France.

Richard G. Salomon. 1996. Brahmi and Kharoshthi. In
Peter T. Daniels and William Bright, editors, The
World’s Writing Systems, pages 373–383. Oxford
University Press, New York, NY.

Royal Denzil Sequiera, Shashank S. Rao, and B. R.
Shambavi. 2014. Word-level language identifica-
tion and back transliteration of romanized text. In
Proceedings of the Forum for Information Retrieval
Evaluation, pages 70–73, Bangalore, India.

David L. Share and Peter T. Daniels. 2016. Aksha-
ras, alphasyllabaries, abugidas, alphabets and ortho-
graphic depth: Reflections on Rimzhim, Katz and
Fowler (2014). Writing systems research, 8(1):17–
31.

R. Mahesh K. Sinha. 2009. A journey from Indian
scripts processing to Indian language processing.
IEEE Annals of the History of Computing, 31(1):8–
31.

22

Richard Sproat. 2003. A formal computational analysis
of Indic scripts. In In International Symposium on
Indic Scripts: Past and Future, Tokyo, Japan.

Sanford B. Steever. 2019. The Dravidian Languages,
2nd edition. Routledge Language Family Series.
Routledge, New York.

Ingo Strauch. 2012. The character of the Indian
Kharoṣṭhī script and the “Sanskrit Revolution”: A
writing system between identity and assimilation. In
Alexander J. de Voogt and Joachim Friedrich Quack,
editors, The Idea of Writing: Writing Across Borders,
pages 131–168. Brill, Leiden; Boston.

Terry Tai, Wojciech Skut, and Richard Sproat. 2011.
Thrax: An open source grammar compiler built on
OpenFst. In Proc. of IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), vol-
ume 12, Hawaii, USA.

Unicode Consortium. 2019. The Unicode Stan-
dard. Online: http://www.unicode.org/versions/
Unicode12.1.0/. Version 12.1.0, Mountain View,
CA.

Hans H. Wellisch. 1978. The Conversion of Scripts:
Its Nature, History, and Utilization. Information sci-
ences series. John Wiley & Sons, New York.

Sheng Yu. 1997. Regular languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook
of Formal Languages, volume 1: Word, Language,
Grammar, pages 41–110. Springer, Berlin.

Hao Zhang, Richard Sproat, Axel H Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural models of text normal-
ization for speech applications. Computational Lin-
guistics, 45(2):293–337.

Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao
Wei, Weiqiao Shan, Shuhan Zhou, Abudurexiti Re-
heman, Tao Zhou, Xin Zeng, Laohu Wang, Yongyu
Mu, Jingnan Zhang, Xiaoqian Liu, Xuanjun Zhou,
Yinqiao Li, Bei Li, Tong Xiao, and Jingbo Zhu.
2020. The NiuTrans machine translation systems for
WMT20. In Proceedings of the Fifth Conference on
Machine Translation, pages 338–345, Online. Asso-
ciation for Computational Linguistics.

23

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 24–31
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

CovRelex: A COVID-19 Retrieval System with Relation Extraction

Vu Tran1 Van-Hien Tran2 Phuong Minh Nguyen1 Chau Minh Nguyen1

Ken Satoh3 Yuji Matsumoto4 Minh Le Nguyen1

1Japan Advanced Institute of Science and Technology
{vu.tran,phuongnm,chau.nguyen,nguyenml}@jaist.ac.jp

2Nara Institute of Science and Technology, Japan
tran.van hien.ts1@is.naist.jp
3National Institute of Informatics, Japan

ksatoh@nii.ac.jp
4RIKEN Center for Advanced Intelligence Project (AIP), Japan

yuji.matsumoto@riken.jp

Abstract

This paper presents CovRelex, a scientific
paper retrieval system targeting entities and
relations via relation extraction on COVID-19
scientific papers. This work aims at building
a system supporting users efficiently in
acquiring knowledge across a huge number
of COVID-19 scientific papers published
rapidly. Our system can be accessed via
https://www.jaist.ac.jp/is/labs/

nguyen-lab/systems/covrelex/.

Keywords: COVID-19, biomedical domain,
scientific paper analysis, relation extraction,
entity recognition, document retrieval.

1 Introduction

This work aims at facilitating knowledge acqui-
sition from a huge number of COVID-19 scien-
tific papers. Due to the COVID-19 outbreak, re-
searchers have been focusing on studying the virus
and publishing a huge number of papers rapidly.
According to the estimation of Silva et al. (2020),
23,634 unique documents were published in just 6
months between January 1st and June 30th, 2020.
In the records of the COVID-19 Open Research
Dataset (CORD-19) Challenge1, the number of col-
lected papers about COVID-19, SARS-Cov-2 and
related coronaviruses is more than 400K by January
9th, 2021. The rapid speed of new publication and
the huge number of related papers challenges spe-
cialists to seek knowledge by connecting findings
across papers efficiently and timely.

1https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

When focusing on knowledge acquisition of
biomedical entities, several questions can be asked
regarding the entities and their relations:

• Which papers mention entity E1?

• Which papers mention the relation R between
entity E1 and entity E2?

• Which papers mention the relation R1 be-
tween entity E1 and entity E2, and the relation
R2 between entity E2 and entity E3?

• What relations Rx exist between entity E1

and entity E2 and in which papers?

• What entity Ex has relation R with entity E1

and in which papers?

Such questions can be answered by our system.

2 Related Work

FACTA+ (Tsuruoka et al., 2011, 2008) was pre-
sented as a text search engine that helps users dis-
cover and visualize indirect associations between
biomedical concepts from MEDLINE abstracts.
Liu et al. (2015) introduced an online text-mining
system (PolySearch2) for identifying relationships
between biomedical entities over 43 million arti-
cles covering MEDLINE abstracts, PubMed Cen-
tral full-text articles, Wikipedia full-text articles,
US Patent abstracts, open access textbooks from
NCBI and MedlinePlus articles. More recently,
LitVar (Allot et al., 2018), a semantic search en-
gine, utilized advanced text mining techniques to
compute and extract relationships between genome

24

Relation
Extraction

Entity
Recognition

Relation
Index

Relation
Clustering

Relation
Scoring

Graph
Construction

CORD-19

ReVerb, OLLIE,
ClausIE, Relink,

OpenIE

ScispaCy
DISEASE, PROTEIN,
CHEMICAL, DNA, …

PMI-derived
Informativeness

Cluster hierarchy
w/ FINCH & BERT

Linking entities
across papers

Relations

Graph

Figure 1: System Overview.

arg1 rel arg2

[MERS-CoV]GGP include [fever]DISEASE , [chills/rigors]DISEASE ,
[headache]DISEASE , non-productive [cough]DISEASE

[MERS-CoV]GGP is responsible
for causing

lower [respiratory infections]DISEASE with
[fever]DISEASE and [cough]DISEASE

Figure 2: An example of relations extracted from COVID-19 papers.

variants and other associated entities such as dis-
eases and chemicals/drugs. Wei et al. (2019) pre-
sented a web service PubTator Central (PTC) that
provides automated bioconcept annotations in full
text biomedical articles, in which bioconcepts are
extracted from state-of-the-art text mining systems.

Due to the COVID-19 outbreak, it is essential
to grasp valuable knowledge from a huge number
of COVID-19-related papers for dealing with the
pandemic effectively. Sohrab et al. (2020) intro-
duced the BENNERD system that detects named
entities in biomedical text and links them to the
unified medical language system (UMLS) to facil-
itate the COVID-19 research. Hope et al. (2020)
created a dataset annotated for mechanism rela-
tions and trained an information extraction model
on this data. Then, they used the model to ex-
tract a Knowledge Base (KB) of mechanism and
effect relations from papers relating to COVID-19.
Zhang et al. (2020) built Covidex, a search infras-
tructure that provides information access to the
COVID-19 Open Research Dataset such as answer-
ing questions. Esteva et al. (2020) also presented
Co-Search, a retriever-ranker semantic search en-
gine designed to handle complex queries over the
COVID-19 literature. Wang et al. (2020) created
the EvidenceMiner web-based system. Given a
query as a natural language statement, EvidenceM-
iner automatically retrieves sentence-level textual
evidence from the CORD-19 corpus.

Clearly, previous works made a great effort to

acquire useful knowledge from the COVID-19 lit-
erature, such as recognizing biomedical entities
(Sohrab et al., 2020), extracting mechanism rela-
tions between entities (Hope et al., 2020), or retriev-
ing relevant text segments based on the user query
(Zhang et al., 2020; Wang et al., 2020). However,
there is still a lack of a system that has the ability
to automatically detect both entities with various
types and their diverse relations through papers,
especially when COVID-19 papers are published
rapidly. This motivates us to build the CovRelex
system, which aims to exploit such information.

3 Method

3.1 Overview

The core of our system is built from extracting
an enormous number of relations from COVID-19
related scientific papers (in CORD-19 corpus) by
several open domain relation extraction methods.
The extracted relations are represented not only
by their original form from the extraction methods
but also by the contained biomedical entities. Fur-
thermore, the relations are clustered and scored for
their informativeness over the corpus (Fig. 1).

A relation is a triplet in the form
(arg1, rel, arg2), where arg1, and arg2 are
noun phrases which may contain biomedical
entities, and rel is an expression describing the
directed relation from arg1 to arg2 (shown in
Fig. 2).

25

Table 1: SciSpacy models used in our system.

Name Training Data Entity Types

en ner craft md CRAFT GGP, SO, TAXON, CHEBI, GO, CL

en ner jnlpba md JNLPBA DNA, CELL TYPE, CELL LINE, RNA, PROTEIN

en ner bc5cdr md BC5CDR DISEASE, CHEMICAL

en ner bionlp13cg md BIONLP13CG AMINO ACID, ANATOMICAL SYSTEM, CANCER, CELL,
CELLULAR COMPONENT, DEVELOPING ANATOMICAL STRUCTURE,
GENE OR GENE PRODUCT, IMMATERIAL ANATOMICAL ENTITY,

MULTI-TISSUE STRUCTURE, ORGAN, ORGANISM,
ORGANISM SUBDIVISION, ORGANISM SUBSTANCE,
PATHOLOGICAL FORMATION, SIMPLE CHEMICAL, TISSUE

3.2 Relation Extraction
With the objective of extracting as many relations
as possible, we employ several relation extraction
methods. Each method has their own character-
istics, thus, may extract different kinds of rela-
tions. By combining several methods, we can ob-
tain higher extraction coverage. The methods are
briefly described as follows.

• ReVerb (Fader et al., 2011) tackles the prob-
lems of incoherent and uninformative extrac-
tions by introducing constraints on binary,
verb-based relation phrases.

• OLLIE (Mausam et al., 2012) addresses the
problems that Open IE systems such as Re-
Verb only extract relations that are mediated
by verbs. Not only by verbs, OLIEE extracts
relations mediated also by nouns, adjectives,
and more.

• ClausIE (Del Corro and Gemulla, 2013) is a
clause-based approach to open information ex-
traction. It separates the detection of clauses
and clause types from the actual generation of
propositions.

• Relink (Tran and Nguyen, 2020) is a method
partly inherited from ReVerb, extracts rela-
tions from the connected phrases, not for iden-
tifying clause type like ClauseIE.

• OpenIE (Angeli et al., 2015) extracts relations
by breaking a long sentence into short, co-
herent clauses, and then finds the maximally
simple relations.

The extracted relations are also tagged with biomed-
ical entities recognized by using entity recognition
models presented in the next subsection.

3.3 Entity Recognition

We use biomedical entity recognition models spe-
cialized for predicting entity type and provided by
SciSpacy (Neumann et al., 2019) (Table 1). Each
of the models is trained on a different annotated
corpus, thus, covers a different set of biomedical en-
tities. By using multiple entity systems, we can ob-
tain various specialized entity information: chemi-
cals and diseases with BCD5CDR (Li et al., 2016),
cell types, chemicals, proteins, and genes with
CRAFT (Bada et al., 2012), cell lines, cell types,
DNAs, RNAs, and proteins with JNLPBA (Col-
lier and Kim, 2004), and cancer genetics with
BioNLP13CG (Pyysalo et al., 2015).

3.4 Relation Clustering

We build a cluster hierarchy on a subset of the ex-
tracted relations (this subset contains all relations in
which both arg1 and arg2 are biomedical entities),
so users can quickly find their interested relation
expressions or they can choose some clusters which
may contain their interested relation expressions.

We utilize FINCH (Sarfraz et al., 2019), hierar-
chical clustering method, and BERT (Devlin et al.,
2019) for this task. First, BERT-Base model is used
to encode each relation as a simple sentence “ arg1
rel arg2” into a 768-dimensional vector. Then,
FINCH is used to build the cluster hierarchy. For
each cluster, representative expressions of the clus-
ter are selected from its rels from top informative
relations scored by the formula presented in the
next subsection. The result cluster hierarchy is
illustrated in Fig. 3.

26

Figure 3: Illustration of cluster hierarchy. “DISEASE-0-7”: the type of an entity contained in the arg1 is DISEASE,
the id of the level 0 (root) cluster is 0, the id of the level 1 cluster is 7. An expression has the form of ENTITY
TYPE (in arg1, omitted) relation/verb phrase ENTITY TYPE (in arg2). Expressions are separated by |.

Figure 4: An example of Single-Relation Query for (mers-cov, any-relation, DISEASE).

3.5 Relation Scoring
Relations are scored for informativeness based
from Pointwise Mutual Information (PMI) (Church
and Hanks, 1990), the association ratio for
measuring word association norms, based on
the information-theoretic concept of mutual in-
formation. The informativeness of a relation
(arg1, rel, arg2) can be regarded as PMI (Eq. 1) of
two points: arg-pair args = (arg1, arg2) and its
relation expression rel through occurrence p(.).

PMI(args, rel) = log2
p(args, rel)

p(args) p(rel)
(1)

It is difficult to apply Eq. 1, which computes
the occurrence by exact matching, for our system
because of the variation and noise in the contents
of the extracted relations. To mitigate the difficulty
of using exact match, we propose to use cosine
similarity with Tf-idf vectorization (Sparck Jones,
1988). While exact match counting of occurrence
indicates the presence of an instance (args or rel)
in the relation set, our use of cosine similarity
indicates the presence of the contents of the in-
stance in the relation set, thus can adapt to the
variation and noise in the contents of the relations.

With our approach, the relation’s informativeness
InfoScore(args, rel) is computed following Eq. 2.

InfoScore(args, rel) = log2
S(args, rel)

S(args)S(rel)
(2)

S(args, rel) =
∑

(args′,rel′)

cos(v(args, rel), v(args′, rel′))

S(args) =
∑

args′
cos(v(args), v(args′))

S(rel) =
∑

rel′
cos(v(rel), v(rel′))

where (args′, rel′) are all relations other than
(args, rel), args′ are arg-pairs in all relations
other than (args, rel), rel′ are expressions in all
relations other than (args, rel), and v(t1, t2, ...tn)
is the vectorization function which concatenates
the input texts t1, t2, ..., tn and converts the con-
catenated text into a single Tf-idf vector.

3.6 Retrieval System
The retrieval system provides two kinds of queries:
Single-Relation Query and Graph Query. While
Single-Relation Query provides simple way to

27

Figure 5: Graph Query: searching for a paper containing relations matching the query graph.

Figure 6: Example of Multi-Paper Graph Query. Left-hand side graph is the query. The right-hand side graph is
the summary of the results showing candidate entities. The highlighted nodes of the summary graph show entities
related to each other and mentioned in the two papers at the bottom.

search for specific relations, Graph Query pro-
vides a sophisticated way to search for papers con-
taining entities connected in a complex relation
graph.

3.6.1 Single-Relation Query

A query consists of partial information of a relation
which can contains keywords about arg1, arg2,
and rel, types of entities possibly included in the
arg1 or arg2, or clusters which the relation belongs
to. The retrieved results are relevant relations with
their corresponding papers. An example of Single-
Relation Query is illustrated in Fig. 4. The query
relation is (mers-cov, any-relation, DISEASE).
The results are best matched relations, for in-
stance, (MERS-CoV, include, “fever, chills/rigors,
headache, non-productive cough”).

The candidate relations are retrieved based on
the keyword matching score by BM25 (Schütze
et al., 2008) and InfoScore (Eq. 2), then filtered by
the entity types and the clusters. Keyword match-
ing score and InfoScore can be weighed for the
need of searching candidates that have high lexi-
cal matching with the query or candidates that are

highly informative.

3.6.2 Graph Query

This extends Single-Relation Query by enabling
more sophisticated paper search covering a com-
plex graph describing relations among entities.
An example of Graph Query is illustrated in
Fig. 5 with a query consists of 4 relations: (mers-
cov, cause, DISEASE), (CHEMICAL, any-relation,
mers-cov), (CHEMICAl, any-relation, DISEASE),
and (PROTEIN, any-relation, DISEASE). The re-
sult graph is built from linking entities and relations
obtained from each paper, which matches the query
graph. The entity linking is done through lexical
matching and type matching. This approach faces
the challenges from entities with synonyms and
performance of entity recognition.

One special feature of Graph Query is Multi-
Paper Graph Query which supports searching re-
lations across multiple papers. The important use
case is that interested relations are not described
in one single paper, i.e., one entity is mentioned
in different papers and thus engaged in different
relations. For example, if users want to “find some

28

Table 2: Evaluation results on relation extraction. Correct I, II, and I&II: evaluated as correct relations (can be
entailed from the corresponding sentences) by the first, the second, and both the evaluators, respectively. Overall:
evaluation on the unique relations per sentence from all methods. Kappa: Cohen’s kappa coefficient.

Method Total Correct I Correct II Correct I&II Kappa
ReVerb 255 183 (72%) 224 (88%) 181 (71%) 0.47
OLLIE 398 304 (76%) 303 (76%) 275 (69%) 0.60
ClausIE 1,061 880 (83%) 760 (72%) 720 (68%) 0.47
Relink 302 210 (70%) 193 (64%) 173 (57%) 0.58
OpenIE 1,609 1,042 (65%) 901 (56%) 700 (44%) 0.30
Overall 3,477 2,479 (71%) 2,242 (64%) 1,913 (55%) 0.41

Table 3: Statistics of extracted relations.

Method Non-uniq.
/corpus

Uniq.
/corpus

Uniq.
/abstract

ReVerb 2.3M 1.7M 8
OLLIE 4.7M 3.6M 16
ClausIE 9.0M 6.9M 31
Relink 5.5M 4.1M 19
OpenIE 24.4M 18.6M 84
Overall 45.9M 33.3M 150

Table 4: Statistics of recognized entities.

Model /corpus /abstract
en ner craft md 1.8M 6
en ner jnlpba md 3.1M 11
en ner bc5cdr md 1.8M 6
en ner bionlp13cg md 1.4M 5
Total 6.4M 22

CHEMICAL that can treat some DISEASE caused
by COVID-19”, they will look for two relations:
(COVID-19, cause, DISEASE), and (CHEMICAL,
treat, DISEASE). In that case, the two relations
may be retrieved from two different papers. There-
fore, aggregating information scattering over multi-
ple papers is necessary for building a more compre-
hensive understanding. It is done through relation
grouping allowing users to segment the query graph
into several segments each belonging to different
papers. With the above example, users can define a
query graph (the left-hand side of Fig. 6) and our
system could find that “pneunomia” is a DISEASE
caused by COVID-19 and is treated with “Current
[piperacillin-tazobactam]CHEMICAL regimens” (the
right-hand side of Fig. 6) from two separate papers,
and more.

4 Results

4.1 Corpus

We performed relation extraction and entity recog-
nition from the CORD19 corpus provided in the
COVID-19 Open Research Dataset Challenge up-
dated by January 3rd, 2021. The corpus contains
≈400K entries to COVID-19 related papers. Re-
lation extraction and entity recognition were per-
formed on the abstracts of the papers.

4.2 Relation Extraction

As shown in Table 3, we extracted 40.5 million
relations including 29.8 million unique relations.
Among the relation extraction methods, OpenIE
outputs the largest number. The other three relation
extraction methods tend to output long and com-
posite relations while OpenIE tends to break down
and output shorter and simpler relations. However,
OpenIE also outputs small variations of similar
relations.

For assessing the quality of relation extraction,
we conduct an evaluation on a small data sample
consisting of 100 papers selected from the corpus.
The evaluation was conducted by two human eval-
uators with the criteria to answer whether the rela-
tion can be entailed from the sentence.

The results (Table 2) show that the evaluation
is a difficult task. The evaluation agreement be-
tween the two evaluators is 0.41 in term of Cohen’s
kappa coefficient (McHugh, 2012). It’s consid-
ered fair agreement (Fleiss et al., 2003). Among
the relation extraction methods, OLLIE yields the
best kappa coefficient of 0.60 (good agreement),
OpenIE yields the worst coefficient of 0.30 (poor
agreement), and the others yield the coefficients of
0.47 to 0.58 (fair to good agreement). One of the
possible reasons is the complexity of biomedical
texts: sentences with 31 tokens in average and up

29

to 167 tokens in the evaluated sample, and common
use of conjunctions and nested clauses.

4.3 Entity Recognition
As shown in Table 4, a total of 6.4M entities
were recognized from the corpus with the four
entity recognition models. For each abstract of
a COVID-19 related paper, an average of 22 en-
tities were recognized. Among the four models,
en ner jnlpba md outputs the largest number of
entities, about 1.7 to 2.2 times more than the other
models, where this model’s specialized entity types
are cell lines, cell types, DNAs, RNAs, and pro-
teins.

5 Conclusion

We have presented our COVID-19 scientific paper
retrieval system which focuses on analysing enti-
ties and their relations. The system is empowered
with several relation extraction and entity recogni-
tion methods. The system supports users in acquir-
ing knowledge efficiently across a huge number
of COVID-19 scientific papers published rapidly.
There, however, exist extremely challenging prob-
lems to tackle for making the system more practi-
cal: dealing with the newly created and unknown
data, solving the performance gap when utilizing
present methods, and do these in the nick of time
of fighting with pandemics.

Acknowledgment

This work was supported by JST CREST Grant
Number JPMJCR1513, Japan.

References
Alexis Allot, Yifan Peng, Chih-Hsuan Wei, Kyubum

Lee, Lon Phan, and Zhiyong Lu. 2018. LitVar: a
semantic search engine for linking genomic variant
data in PubMed and PMC. Nucleic Acids Research,
46(W1):W530–W536.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354, Beijing, China. Association for Computa-
tional Linguistics.

Michael Bada, Miriam Eckert, Donald Evans, Kristin
Garcia, Krista Shipley, Dmitry Sitnikov, William A
Baumgartner, K Bretonnel Cohen, Karin Verspoor,

Judith A Blake, and Lawrence E Hunter. 2012. Con-
cept annotation in the CRAFT corpus. BMC Bioin-
formatics, 13(1).

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22–29.

Nigel Collier and Jin-Dong Kim. 2004. Introduc-
tion to the bio-entity recognition task at JNLPBA.
In Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications (NLPBA/BioNLP), pages 73–78,
Geneva, Switzerland. COLING.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Pro-
ceedings of the 22nd international conference on
World Wide Web, pages 355–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir Radev, and
Richard Socher. 2020. Co-search: Covid-19 infor-
mation retrieval with semantic search, question an-
swering, and abstractive summarization.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1535–1545, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik.
2003. Statistical Methods for Rates and Proportions.
John Wiley & Sons, Inc.

Tom Hope, Aida Amini, David Wadden, Madeleine van
Zuylen, E. Horvitz, Roy Schwartz, and Hannaneh
Hajishirzi. 2020. Extracting a Knowledge Base of
Mechanisms from COVID-19 Papers .

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. BioCreative v CDR task cor-
pus: a resource for chemical disease relation extrac-
tion. Database, 2016:baw068.

Yifeng Liu, Yongjie Liang, and David Wishart. 2015.
PolySearch2: a significantly improved text-mining
system for discovering associations between human
diseases, genes, drugs, metabolites, toxins and more.
Nucleic Acids Research, 43(W1):W535–W542.

30

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 523–534, Jeju Island,
Korea. Association for Computational Linguistics.

Marry L. McHugh. 2012. Interrater reliability: the
kappa statistic. Biochemia Medica, pages 276–282.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association
for Computational Linguistics.

Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Sung-Pil
Choi, Jun’ichi Tsujii, and Sophia Ananiadou. 2015.
Overview of the cancer genetics and pathway cura-
tion tasks of bionlp shared task 2013. BMC bioinfor-
matics, 16(S10):S2.

Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelha-
gen. 2019. Efficient parameter-free clustering us-
ing first neighbor relations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Jaime A Teixeira da Silva, Panagiotis Tsigaris, and Mo-
hammadamin Erfanmanesh. 2020. Publishing vol-
umes in major databases related to covid-19. Scien-
tometrics, pages 1–12.

Mohammad Golam Sohrab, Khoa Duong, Makoto
Miwa, Goran Topić, Ikeda Masami, and Hiroya
Takamura. 2020. Bennerd: A neural named en-
tity linking system for covid-19. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 182–188, Online. Association for Computa-
tional Linguistics.

Karen Sparck Jones. 1988. A statistical interpretation
of term specificity and its application in retrieval. In
Document retrieval systems, pages 132–142. Taylor
Graham Publishing.

Xuan-Chien Tran and Le-Minh Nguyen. 2020. ReLink:
Open information extraction by linking phrases and
its applications. In Distributed Computing and Inter-
net Technology, pages 44–62. Springer International
Publishing.

Yoshimasa Tsuruoka, Makoto Miwa, Kaisei
Hamamoto, Jun’ichi Tsujii, and Sophia Anani-
adou. 2011. Discovering and visualizing indirect
associations between biomedical concepts. Bioin-
formatics, 27(13):i111–i119.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2008. FACTA: a text search engine for find-
ing associated biomedical concepts. Bioinformatics,
24(21):2559–2560.

Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun
Guan, and Jiawei Han. 2020. Automatic textual ev-
idence mining in covid-19 literature. arXiv preprint
arXiv:2004.12563.

Chih-Hsuan Wei, Alexis Allot, Robert Leaman, and
Zhiyong Lu. 2019. PubTator central: automated
concept annotation for biomedical full text articles.
Nucleic Acids Research, 47(W1):W587–W593.

Edwin Zhang, Nikhil Gupta, Raphael Tang, Xiao Han,
Ronak Pradeep, Kuang Lu, Yue Zhang, Rodrigo
Nogueira, Kyunghyun Cho, Hui Fang, and Jimmy
Lin. 2020. Covidex: Neural ranking models and
keyword search infrastructure for the COVID-19
open research dataset. In Proceedings of the First
Workshop on Scholarly Document Processing, pages
31–41, Online. Association for Computational Lin-
guistics.

31

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 32–39
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

MATILDA:
Multi-AnnoTator multi-language Interactive

Light-weight Dialogue Annotator
Davide Cucurnia♦ Nikolai Rozanov♠ Irene Sucameli♦

Augusto Ciuffoletti♦ Maria Simi♦
♦Department of Computer Science, University of Pisa, Pisa, Italy

♠Wluper Ltd., London, United Kingdom
♦{d.cucurnia2@studenti.,irene@phd.,

augusto.ciuffoletti@, maria.simi@}unipi.it
♠{nikolai}@wluper.com

Abstract

Dialogue Systems are becoming ubiquitous in
various forms and shapes, from virtual assis-
tants (like Siri, Alexa and various chat-bots)
to customer support systems embedded within
websites. Recent publications and advance-
ments with natural language modelling have
opened up NLP (and its more advanced ap-
plications like conversational AI) to a wider
audience. Unfortunately, the lack of labelled
data within this field remains a significant bar-
rier and so we have developed MATILDA
(the first multi-annotator, multi-language dia-
logue annotation tool) as an initial contribu-
tion to help the community overcome this bar-
rier. MATILDA is a tool for creating high-
quality corpora via a user-friendly interface so
as to facilitate the annotation of dialogues, re-
solve inter-annotator disagreement and man-
age multiple users at scale. We have evalu-
ated the tool on ease of use, annotation speed
and inter-annotation resolution for both ex-
perts and novices and can confidently con-
clude that MATILDA offers a novel, stream-
lined, end-to-end solution to dialogue annota-
tion and is intuitive enough to use, even for
a non-technical audience. The tool is com-
pletely open-sourced at https://github.

com/wluper/matilda and is easily adapt-
able to any language. We are also providing
a complementary tutorial video1.

1 Introduction

As a community, we have observed great advances
in the last decade that include word-embeddings
(Mikolov et al., 2013), seq-to-seq models for a
variety of tasks (Sutskever et al., 2014) and pre-
trained, transformer-based language models (De-
vlin et al., 2019). Relying on these seminal works,
a plethora of downstream tasks (e.g. NMT, Q&A,
dialogues, summarisation, etc.) have seen notable

1https://vimeo.com/500125248

improvements and some have even been “solved”.
Many of the advancements made in computational
modelling and power owe a lot of their success
to the careful curation and annotation of huge
datasets, which are thus equally pivotal to recent
advancements and progress in general. In partic-
ular, datasets such as (Budzianowski et al., 2018)
and (Byrne et al., 2019) have allowed data-hungry
neural-models to advance the field of task-oriented
dialogues.

In the field of annotation tools and data genera-
tion, recent advances such as (Collins et al., 2019)
show similar promise by open-sourcing technology
and developing it with modern usability-related
principles in mind. Following in the spirit of such
similar research, we present MATILDA (a full di-
alogue annotation tool specifically focused on the
inclusivity for all languages and facilitating mul-
tiple annotators). We evaluate it on a variety of
usability aspects, both with experienced and un-
trained users, and conclude that both our dialogue
annotation and creation tools are easy-to-use. Fur-
thermore, MATILDA offers more features than any
comparable tool in the research community; com-
fortably supporting multiple annotators as well as
multiple languages during the annotation process.
Therefore, we have open-sourced it and provided
precompiled docker images for easy setup.

MATILDA’s main contributions are: 1) a native
annotation tool that is quick-to-adapt2 for multi-
language support; 2) a user-friendly interface to
simply and intuitively manage multiple users as
well as easily distribute datasets to crowd-workers
for annotation; 3) task-oriented multi-speaker an-
notation capabilities (in the style of MultiWoz and
Taskmaster); 4) inter-annotator resolution; and 5)
integrated recommendations to assist annotators.

2As an example the full adaptation of the annotation tool
from English to German took roughly 30 minutes.

32

2 Related Work

Table 1 compares MATILDA with other recent an-
notation tools.

TWIST (Pluss, 2012) is a dialogue annotation
tool which consists of two stages: turn segmenta-
tion and content feature annotation. Turn segmenta-
tion allows users to create new turn segments from
raw text. After this, users can annotate sections of
text in a segment by highlighting them and select-
ing from a predefined feature list. However, this
tool doesn’t allow users to specify custom anno-
tations or labels and doesn’t support classification
or slot-value annotation. This is not compatible
with modern dialogue datasets which require such
annotations (Budzianowski et al., 2018). INCEp-
TION (Klie et al., 2018) is a semantic annotation
platform for interactive tasks that require seman-
tic resources like entity linking. It provides ma-
chine learning models to suggest annotations and
allows users to collect and model knowledge di-
rectly in the tool. GATE (Cunningham, 2002) is
an open source tool that provides predefined solu-
tions for many text processing tasks. It is powerful
because it allows annotators to enhance the pro-
vided annotation tools with their own Java code,
making it easily extensible and provides a great
number of predefined features. However, GATE
is a large and complicated tool with a significant
setup cost - its instruction manual alone is over
600 pages long3. Despite their large feature sets,
INCEpTION and GATE are not designed for an-
notating dialogue and cannot display data as turns,
an important feature for dialogue datasets. BRAT
(Stenetorp et al., 2012) and Doccano4 are web-
based annotation tools for tasks such as text classifi-
cation and sequence labelling. They have intuitive
and user-friendly interfaces which aim to make the
creation of certain types of dataset such as classi-
fication or sequence labelling datasets as fast as
possible. BRAT also supports annotation sugges-
tions by integrating ML models. However, like
INCEpTION5 and GATE6, they are not designed
for annotating dialogues and do not support the gen-

3https://gate.ac.uk/sale/tao/tao.pdf
4https://github.com/chakki-works/doccano
5A plugin allows calculation of scores not resolu-

tion: https://dkpro.github.io/dkpro-statistics/dkpro-agreement-
poster.pdf

6Again inter-annotator score calculation capabilities are
available as separate plug-in https://gate.ac.uk/releases/gate-
5.1-beta1-build3397-ALL/doc/tao/splitch10.html - however
support for resolutions is not apparent

eration of formatted conversational data from a raw
text file such as might be outputted by a transcrip-
tion service. LIDA (Collins et al., 2019) provides
an easy-to-setup annotation tool for modern task-
oriented dialogues and also supports the integra-
tion of recommendations. However, LIDA is not
accessible for multiple users and is only intended
for the English language. MATILDA addresses
these shortcomings and adds features such as: an-
notation styles compatible with modern dialogue
datasets, inter-annotation resolution, customisable
recommendations and user administration. Dia-
logueView’s (Heeman et al., 2002) main use-cases
are focused on segmenting recorded conversations,
annotating audio files and discourse segmentation.
Granular labelling of the dialogue, recommenders,
inter-annotator agreement, and slot-value labelling
are not possible.

3 System Overview

We introduce an annotator service that extends pre-
vious successful experiences, like LIDA, by in-
troducing features that address large-scale, task-
oriented dialogue annotation projects. In particular,
we allow for distributed multi-annotators, multi-
language support, interannotator resolution and
custom recommenders to assist the annotation pro-
cess. Furthermore, our modern and modularised
implementation simplifies extension to additional
languages, use-cases and annotation styles. A typi-
cal use-case follows this workflow:
Creation of a Dataset We envision two main ways
to create a corpus: either interactively or by upload-
ing existing data. We adopt data representations
that allow backward compatibility with other tools
based on text files with a simple syntax, and a JSON
format that is easy to operate.
User Administration Once a corpus consisting of
several collections is created, administrators can
then proceed to assign those collections to one or
more different annotators. The assigned partition
will then be shown to the designated annotators
in their “Collection” view, ready to be annotated.
According to the typical use case, we need two
roles for the users, which we call Annotators and
Administrators. We want our system to include user
management with a simple interface for creation,
editing and removal.
Annotation and Supervision Each annotator has
access only to the subsets of dialogues assigned
to them to add/modify annotations and monitor

33

Annotation Tool Dialogue-specific An-
notation

Multi-language Sup-
port

Crowd Multi-
annotator Support

Recommenders Inter-Annotator
Disagreement
Resolution

Language

MATILDA YES YES YES YES YES PYTHON
LIDA (Collins et al., 2019) YES NO NO YES YES PYTHON
INCEpTion (Klie et al., 2018) NO NO NO YES YES/NO3 JAVA
GATE (Cunningham, 2002) NO NO NO NO YES/NO 4 JAVA
TWIST (Pluss, 2012) YES NO NO NO NO -
BRAT (Stenetorp et al., 2012) NO NO NO YES NO PYTHON
DOCCANO3 NO NO NO NO NO PYTHON
DialogueView (Heeman et al., 2002) YES NO NO NO NO TcK/TK

Table 1: Annotator Tool Comparison Table
Dialogue-specific Annotation: Support to annotate datasets such as MultiWoz or Taskmaster. Multi-language Support: The

ability to localise the annotation tool for different languages. Crowd Multi-annotator Support: The possibility to manage users
and easily deploy to many annotators in different locations. Recommenders: ML models to suggest annotations. Inter-Annotator
Disagreement Resolution: whether the system has an interface to resolve disagreements between different annotators. Language:

what programming language the system uses

Figure 1: Dialogue annotation interface: filling slots by selection of text fragments.

work progress. Figure 1 shows a screenshot of the
annotation interface and highlights the slot-filling
functionality. Administrators inspect annotators’
work and resolve conflicts in the interannotation
interface. When annotators provide diverging an-
notations, a designated supervisor provides a gold
standard either opting for one of them or intro-
ducing an alternative one. Besides, the system
computes interannotator agreement metrics, such
as Cohen’s Kappa. Gold standard annotations pro-
vided by supervisors are recorded separately and
do not overwrite the original ones.

The Interannotator is designed to confront two
or more annotated dialogue collections and resolve
annotation conflicts between them. MATILDA au-
tomatically retrieves all annotated versions of one
corpus partition present in the database; adminis-
trators are also allowed to upload a file to add to
the confrontation. This can be seen in Figure 2

3.1 System architecture

MATILDA is designed as a Web Service: a browser
hosts the user interface while the server supports
data and control. Our use case envisions all com-
ponents running on user premises, but it is straight-
forward to distribute them on distinct hosts.

On the server side, MATILDA is a bundle of two
components: a web server and a database server.

Each of them is encapsulated in a Docker, so
that complex configurations are carried out by the
designer and invisible to the non-technical end-
user. In fact, MATILDA operation depends only
on Docker support, which is available for major
operating systems. In order to have MATILDA
operational, the end-user installs the Docker sup-
port and launches a Docker script that downloads
and deploys on the user’s PC the server-side Dock-
ers. MATILDA is then reachable from the browser

34

Figure 2: Inter-annotation Resolution Interface.

Figure 3: architecture

at the URL http://localhost/index.html. The
tech-inclined user has the option to configure some
features, like the use of an external database or the
access through a network interface. The installation
script and the operation manual are distributed on
GitHub https://github.com/wluper/matilda,
while the Dockers are available from https://hub.

docker.com.
As seen in Figure 3, the MATILDA engine is

written in Python using the Flask framework, while
the client-side JavaScript uses the Vue framework.

The MongoDB database provides NoSQL access
to the dialogs, the annotations and their metadata.
This technology meets the required flexibility, al-
lowing heterogeneous types of documents and an
agile structure. The native support of JSON docu-
ments matches with the format used for the internal
representation of the dialogs. Finally, the availabil-
ity of both an open-source server and a public ser-
vice is useful when implementing either a service
on-premises, according to the reference use-case,
or, in a more advanced use-case, to implement a
cloud database for sharing dialogs.

The most stringent requirement on host hardware
is that the processor must belong to the 64-bit fam-
ily; this is inherited from Docker. To analyse the
footprint of MATILDA components, we installed it
on a system based on the Intel Celeron J3355, a 2-
core microprocessor dated 2016, created for entry
level desktop systems and with a 2GB RAM. Dur-
ing a significant processing peak, induced with an
upload, the footprint did not exceed a few percent
of hardware capacity.

The developer can find the engine source code
in the GitHub repository mentioned above; this al-
lows them to customize or to add new features to
MATILDA and to produce a new Docker. Locale-
dependent information is recorded in an indepen-

35

dent JSON document, and so introducing a differ-
ent localization of the interface is non-intrusive (?).

4 Evaluation

MATILDA was evaluated on two experiments: the
first evaluated MATILDA’s admin-related capabili-
ties while and the second evaluated its annotation
performance. Both experiments were conducted
across three different languages (English, Italian
and German) to assess MATILDA’s cross-language
adaptability.

4.1 Quantitative Evaluation

4.1.1 Administration and Supervision
The administration experiment involved a total of
six participants, each representing different super-
visory roles: i) an expert supervisor (ES) who is fa-
miliar with MATILDA or has relevant background
knowledge in NLP and dialogue annotation and ii)
an untrained supervisor (US) who has never used
MATILDA before and has little to no experience
with dialogue annotation in general. The initial
admin task consisted of adding two new users (A1
and A2) into MATILDA and assigning them as an-
notators, then creating a new dialogue collection
and defining its features (e.g. collection’s title, its
description, etc.) and assigning the new collection
to all the annotators. The second inter-annotator
task consisted of resolving inter-annotator conflicts
which may occur at the end of the annotation work,
which involved the supervisor comparing conflicts
on MATILDA for each annotator disagreement and
selecting one, thus creating a final, gold dataset.

During the two phases of the experiment, we
record the time needed for ES and US to com-
plete the tasks. Table 2 describes and compares
the time taken on the admin task for the two su-
pervisors across the three languages considered. It
also shows the time taken to resolve inter-annotator
disagreements as well as the total number of dis-
agreements resolved.

The quantitative evaluations show that both
trained and untrained supervisors were able to suc-
cessfully complete the predefined tasks, with the
untrained supervisors performing only marginally
worse, despite having never used an annotation tool
before. The untrained supervisors were provided
with a 15 minute guided training prior to the inter-
annotation task as they were unfamiliar with the
task (having no prior NLP knowledge or experi-
ence).

Time(min:sec) per admin task

English Italian German
ES 03:45 03:05 02:20
US 02:52 02:55 03:30

Time(min:sec) per inter-annotator task

ES 22:05 09:31 17:30
US 26:30∗ 25:02 15:13∗

Conflicts 38 40 25
Total Labels 130 130 130

Table 2: Comparison of the time taken by different
supervisors to carry out admin and inter-annotators res-
olution tasks. ∗Needed additional training before being
able to perform the task

The evaluation revealed a strong dependency on
the execution of admin tasks with the supervisor’s
familiarity with MATILDA and annotation systems
in general. However, the results also indicate that
users who are unfamiliar with annotation tools are
still able to easily use MATILDA and complete
administration and inter-annotation tasks.

4.1.2 Annotation

The second evaluation focuses on quantitatively
analysing the tool’s annotation interface. An expert
annotator (EA) and an untrained annotator (UA)
were both asked to annotate five dialogues and the
time taken to complete the task was recorded (the
results are shown in Table 3). Each dialogue, across
all languages tested, had an average of eight turns
(wherein a turn consisted of one user utterance and
system response) and twenty-four possible class
labels per turn (10 dialogue acts and 14 slots). This
complexity is comparable with those of public di-
alogue datasets, like Multiwoz or Taskmaster-1
(Budzianowski et al., 2018; Byrne et al., 2019).

Time(min:sec) per annotation task

English Italian German
EA 34:27 16:35 27:55
UA 37:30 49:48 45:00

Table 3: Time taken to annotate a set of 5 dialogues by
different native-speaker annotators

The results of this experiment show that even
untrained annotators were able to use MATILDA
to successfully complete the annotation task. In
fact, a substantial increase in the users’ annotation

36

speed can be observed within just a few annotations,
demonstrating a fast learning curve for MATILDA.

For expert annotators, the average annotation
time was 26:17 minutes for five dialogues (giving
an average of approximately 5:16 minutes per dia-
logue). For untrained annotators, this increases to
approximately 8:50 minutes per dialogue. There-
fore, annotating a data-set of 10,000 dialogues
(with two annotations per dialogue) can be cal-
culated as requiring 1,756 hours or 100x 8-hour
working days for two expert annotators to com-
plete on MATILDA. However, this time can be
massively reduced using untrained crowd-workers,
wherein approximately 52 untrained workers could
complete the annotation of such a dataset within
a week. Thus highlighting the importance of such
tools and software as MATILDA, that can manage,
collate and resolve annotation conflicts across the
crowd-workers.

4.2 Qualitative Evaluation & User Feedback
4.2.1 Questionnaire
In addition to the quantitative evaluations, a quali-
tative analysis was conducted in the form of a ques-
tionnaire about MATILDA’s usability, provided to
each annotator and supervisor as an an anonymous
feedback form. Each supervisor was asked to eval-
uate the following features with a Low-Medium-
High score:

• Q1: ease of completing the admin task;

• Q2: ease of resolving inter-annotator con-
flicts;

• Q3: quality of the feedback provided by the
tool.

• Q4: overall usability of MATILDA admin in-
terface.

Supervisors evaluation

Low Medium High
Q1 0.0% 16.7% 83.3%
Q2 16.7% 50.0% 33.3%
Q3 33.3% 50.0% 16.7%
Q4 0.0% 33.3% 66.7%

Table 4: Evaluation of MATILDA usability

Similarly, we ask annotators to evaluate:

• Q1: ease of annotation;

• Q2: ease of understanding how to work on
a dialogue collection and how to sent it to
supervisors at the end of the annotation;

• Q3: quality of the feedback provided by the
tool.

• Q4: overall usability of MATILDA annotator
interface.

Annotators evaluation

Q1 0.0% 66.7% 33.3%
Q2 0.0% 33.3% 66.7%
Q3 66.6% 16.7% 16.7%
Q4 0.0% 33.3% 66.7%

Table 5: Evaluation of MATILDA usability

Tables 4 and 5 show the percentages of responses
to each question for supervisors and annotators re-
spectively. Question 4 (Q4) about overall usability
shows 66.7% Good usability, 33.3% Medium us-
ability and nobody answered with Low usability
(including the untrained annotators) which confirm
the quantitative results regarding MATILDA’s low-
friction usability. Questions about the individual
aspects of the tasks (Q1 and Q2) also confirm the
overall usability of the tool, receiving mostly Good
or Medium scores. The main point for improve-
ment, according to the responses, was the level of
feedback the tool provides to the user (i.e. prompts
that show whether a user action was successful at a
task, like the successful creation of a user, etc)

4.2.2 Feedback
We have also provided the study participants the
venue to express their feedback in an unstructured
way, by prompting them, “Please provide feedback
in a couple of sentences on the usability of the
annotation and supervision aspects of the app and
the improvements you would suggest”.

The feedback can be summarised in three cate-
gories:

1. Feedback and Information Prompts by the tool

2. Improving slot-filling for the annotation tool

3. Improving the layout of the inter-annotator
resolution

The first feedback was also apparent from the
feedback forms provided in the previous section.
We have accepted this feedback to improve our

37

tool and the to-be-published version is planned to
include these improvements.

The second feedback point was very important
and the future version of the tool will work on
improving the slot-filling annotation format.

The final feedback was more of an aesthetic feed-
back about the location and visibility of certain
aspects of the interannotator resolution screen.

5 Conclusion and future work

We have presented MATILDA the first, to the best
of our knowledge, multi-annotator, multi-language
dialogue annotation tool that allows the user to
annotate, distribute annotation work among crowd-
workers or colleagues and to resolve annotation
conflicts. We evaluate the tool based on the ease
and rapidity of use and show that even untrained
novices can quickly learn to use it.

Thanks to the open-source nature of the original
LIDA project, we hope the community will pick-
up on this work both in terms of using it to create
strongly needed corpora for different languages as
well as extending it to allow even more use-cases
and more advanced annotation styles.

To this end we have conducted qualitative feed-
back sessions with study participants and provided
a potential avenue of concrete improvements. We
hope that this work will be a meaningful stepping
stone for our community to create more useful re-
sources in many languages.

6 Acknowledgements

In this work we would like to acknowledge the
great input from EACL Reviewers that helped us
push the paper to a new level.

We particularly would like to thank the thoughtful
input of our colleagues in the University of Pisa,
especially Clara Casandra and Carla Congiu.

We would also like to thank members of the
Wluper team that acted as Testers, Annotators and
Paper Reviewers. In particular, special thanks
go to Mohammed Terry-Jack, Lamia El Afani,
Andrew Burnie, Ed Collins and Maurice von
Sturm. Furthermore, additional thanks goes to the
authors and developers of the previous version
of this annotation tool - LIDA - Ed Collins and
Bingbing Zhang.

Furthermore, the work of Nikolai Rozanov was
done under the Research Lab of Wluper Ltd. (UK/
10195181) and part of the contribution of this lab
was supported by the Innovate UK Smart Grants:
October 2019.

References

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,
Semih Yavuz, Ben Goodrich, Amit Dubey, Kyu-
Young Kim, and Andy Cedilnik. 2019. Taskmaster-
1: Toward a realistic and diverse dialog dataset.

Edward Collins, Nikolai Rozanov, and Bingbing
Zhang. 2019. LIDA: lightweight interactive dia-
logue annotator. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7,
2019 - System Demonstrations, pages 121–126. As-
sociation for Computational Linguistics.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223–254.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Peter A. Heeman, Fan Yang, and Susan E. Strayer.
2002. DialogueView - an annotation tool for dia-
logue. In Proceedings of the Third SIGdial Work-
shop on Discourse and Dialogue, pages 50–59,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9.

38

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Brian Pluss. 2012. Twist dialogue annota-
tion tool. http://mcs.open.ac.uk/nlg/
non-cooperation/resources/user-guide.
pdf.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

39

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 40–52
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

AnswerQuest: A System for Generating Question-Answer Items from
Multi-Paragraph Documents

Melissa Roemmele† Deep Sidhpura3 Steve DeNeefe† Ling Tsou†

SDL Research, Los Angeles, CA, USA
†{mroemmele,sdeneefe,ltsou}@sdl.com

3deepsidhpura777@gmail.com

Abstract

One strategy for facilitating reading compre-
hension is to present information in a question-
and-answer format. We demo a system that in-
tegrates the tasks of question answering (QA)
and question generation (QG) in order to pro-
duce Q&A items that convey the content of
multi-paragraph documents. We report some
experiments for QA and QG that yield im-
provements on both tasks, and assess how they
interact to produce a list of Q&A items for a
text. The demo is accessible at qna.sdl.com.

1 Introduction

Automated reading comprehension is one of the
current frontiers in AI and NLP research, evi-
denced by the frequently changing state-of-the-art
among competing approaches on standard bench-
mark tasks (e.g. Wang et al., 2018). These systems
aim to reach the standard of human performance,
but they also have the potential to further enhance
human reading comprehension. For instance, many
demonstrations of reading comprehension involve
eliciting answers to questions about a text. Mean-
while, educational research and conventional writ-
ing advice indicate that structuring information in
a question-and-answer format can aid comprehen-
sion (Knight, 2010; Raphael, 1982). Accordingly,
systems that present content in this format by auto-
matically generating and answering relevant ques-
tions may help users better understand the content.

The two NLP tasks essential to this objective,
question answering (QA) and question generation
(QG), have received a lot of attention in recent
years. Recent work has started to explore the inter-
section of QA and QG for the purpose of enhanc-
ing performance on one or both tasks (Sachan and
Xing, 2018; Song et al., 2018; Tang et al., 2018;
Yuan et al., 2017). Among application interfaces

3Current affiliation: eBay Inc., San Jose, CA, USA

that demo these tasks, most have focused on either
one or the other (Kaisser, 2008; Kumar et al., 2019).
Krishna and Iyyer (2019) presented a system that
integrated these tasks to simulate a pedagogical ap-
proach to human reading comprehension. In our
work, we demo an end-to-end system that applies
QA and QG to multi-paragraph documents for the
purpose of user content understanding. The system
generates a catalog of Q&A items that convey a
document’s content. This paper first presents some
focused contributions to the individual tasks of QA
and QG. In particular, we examine the challenging
task of QA applied to multi-paragraph documents
and show the impact of incorporating a pre-trained
text encoding model into an existing approach. Ad-
ditionally, we report a new set of results for QA
that assesses generalizability between datasets that
are typically evaluated separately. For QG, we
demonstrate the benefit of data augmentation by
seeding a model with automatically generated ques-
tions, which produces more fluent and answerable
questions beyond a model that observes only the
original human-authored data. In combining the
two tasks into a single pipeline, we show that the
information given by the generated Q&A items is
relevant to the information humans target when
formulating questions about a text.

The demo is implemented as a web application
in which users can automatically generate Q&A
pairs for any text they provide. The web applica-
tion is available at qna.sdl.com, and our code is at
github.com/roemmele/answerquest.

2 Question Answering

2.1 Model Overview

Our demo implements extractive QA, where an-
swers to questions are extracted directly from some
given reference text. State-of-the-art systems have
utilized a classification objective to predict indices

40

of answer spans in the text. This approach has
achieved success when the reference text is lim-
ited to a single paragraph (Devlin et al., 2019).
However, QA for multi-paragraph documents has
proven to be more difficult. Our system addresses
this challenging document-level QA task by adapt-
ing an existing method to additionally leverage a
pre-trained text encoding model.

Existing work on document-level QA has pro-
posed a pipelined approach that first applies a re-
trieval module to select the most relevant para-
graphs from the document, and then a reader mod-
ule for extracting answers from the retrieved para-
graphs (Chen et al., 2017; Yang et al., 2019). Dur-
ing training, each of the retrieved paragraphs and
the corresponding questions are observed indepen-
dently. To predict answers, the model scores can-
didate answer spans within each of the paragraphs,
ultimately predicting the one with the highest score
across all paragraphs. One problem is that the can-
didate answer scores across paragraphs might not
be comparable, since each paragraph-question pair
is treated as an independent training instance. To
address this issue, Clark and Gardner (2018) sug-
gested a shared-normalization approach (which we
refer to here as BIDAF SHARED-NORM) where
paragraph-question pairs are still processed inde-
pendently, but answer probability scores are glob-
ally normalized across the document. In their work,
they selected the top-k most relevant paragraphs for
a given question using a TF-IDF heuristic. They
then encoded the question and these paragraphs
into a neural architecture consisting of GRU lay-
ers and a Bi-Directional Attention Flow (BiDAF)
mechanism (Seo et al., 2017). On top of this model
is a linear layer that predicts the start and end token
indices of the answer within a paragraph, using
an adapted softmax function with normalization
across all top-k paragraphs for the question.

Another document-level QA system, RE3QA
(Hu et al., 2019), incorporated the text encoding
model BERT (Devlin et al., 2019). BERT has
been successfully used for numerous reading com-
prehension tasks. In contrast to BIDAF SHARED-
NORM, RE3QA combined paragraph retrieval and
answer prediction into a single end-to-end training
process, applying BERT to both steps. Because it
obtained favorable results relative to the BIDAF
SHARED-NORM approach, we were curious to as-
sess the isolated impact of BERT specifically on
the answer prediction component of the pipeline.

Therefore we adapted Clark and Gardner’s shared-
normalization approach by replacing their GRU
BiDAF encoder with the BERT-BASE-UNCASED

encoder. Wang et al. (2019) used a similar approach
for open-domain QA, where answers are mined
from the entirety of Wikipedia. We instead evaluate
QA with reference to a single document, for which
the impact of BERT on the shared-normalization
approach has not yet been documented.

We refer to our model here as BERT SHARED-
NORM. To rank paragraph relevance to a ques-
tion, we rely on TF-IDF similarity. During training,
we retrieved the top k=4 paragraphs. The BERT
SHARED-NORM model consists of the BERT-
BASE-UNCASED pre-trained model, which en-
codes the paragraph and question in the same man-
ner as Devlin et al.’s paragraph-level QA model.
The rest of our model is the same as BIDAF
SHARED-NORM: the softmax output layer pre-
dicts the start and end answer tokens and the same
shared-normalization objective function is applied
during training. The model can predict that a ques-
tion is ‘unanswerable’ by observing an index of 0
for the end token. During inference, the highest-
scoring answer span across paragraphs is predicted
as the answer. See Appendix A.1 for more details.

2.2 Dataset

Our QA experiments utilized the SQUAD (Ra-
jpurkar et al., 2016) and NEWSQA (Trischler et al.,
2017) datasets. SQUAD is derived from Wikipedia
articles, while NEWSQA consists of CNN news
articles. Both datasets were developed through
crowdsourcing tasks where participants authored
questions and identified their answers, resulting in
text-question-answer items where each answer is
a span within the text. There are two versions of
SQUAD. SQUAD-1.1 contains 87,599 train and
10,570 test items. SQUAD-2.0 contains an addi-
tional 42,720 train and 1,303 test items (a total of
130,319 and 11,873, respectively), distinguished
from SQUAD-1.1 by including questions that do
not have answers in the text. NEWSQA contains
107,674 and 5,988 train and test items, respectively.
As with SQUAD-2.0, some of these questions are
unanswerable.1

1The SQUAD test items we use are actually the items from
their ‘dev’ (development) set: rajpurkar.github.io/SQuAD-
explorer. Their official test set is withheld. The other pub-
lished systems we compare against also report evaluations on
this dev set, so for simplicity we refer to it here as the test set.
Similarly, we use the dev NEWSQA items as our held-out test
set: github.com/Maluuba/newsqa.

41

SQUAD questions pertain to a single paragraph.
Paragraphs are grouped by document and can be
concatenated for document-level QA. There are on
average 43 paragraphs per document. Paragraph
boundaries are not explicit in the NEWSQA texts,
so we treated each text as a multi-paragraph doc-
ument by splitting it into chunks of 300 tokens,
resulting in 2.55 average paragraphs per document.

2.3 Evaluation

2.3.1 Comparison with other Systems

We first evaluated our BERT SHARED-NORM

model on SQUAD-1.1 for comparison with the
BIDAF SHARED-NORM and RE3QA results re-
ported for this dataset. We used the official
SQUAD evaluation scripts provided by the web-
site. For direct comparison with BIDAF SHARED-
NORM, we replicated their setting of k=15 for para-
graph retrieval. Table 1 shows the results in terms
of the exact match (EM) and F1 accuracy of an-
swers. We improve upon the result for BIDAF
SHARED-NORM, demonstrating the beneficial im-
pact of incorporating BERT into this approach.
The BERT-based RE3QA still outperforms our
model, suggesting that its other components out-
side the BERT encoding for answer prediction ad-
ditionally contribute to its success.

Model EM F1
BIDAF SHARED-NORM 64.08 72.37
RE3QA 77.90 84.81
BERT SHARED-NORM 72.85 80.58

Table 1: QA results on SQuAD-1.1

2.3.2 Generalizability across Datasets

Our demo accepts any arbitrary text supplied by a
user, and we ultimately aim to produce informative
Q&A items for varying content domains. State-
of-the-art QA systems have matched human-level
performance on individual datasets like SQUAD,
but it is unclear how much this performance gener-
alizes across different datasets. As a narrow assess-
ment of this issue, we examined the generalizability
between SQUAD and NEWSQA by alternatively
training and evaluating BERT SHARED-NORM on
different combinations of these datasets.

Table 2 shows the results of this experi-
ment. We trained three different BERT SHARED-
NORM models on separate datasets: SQUAD-2.0,

NEWSQA, and SQUAD-2.0 + NEWSQA com-
bined (which we term MEGAQA). We then eval-
uated each of these models on the SQUAD-2.0
and NEWSQA test sets. Note that the experiments
in Section 2.3.1 were evaluated on SQUAD-1.1
for comparison with the other approaches. Here,
we only evaluate on SQUAD-2.0, which involves
additionally predicting when a question does not
have an answer span in the document. For these
evaluations, consistent with training, we retrieved
the top k=4 paragraphs from each document for
answer prediction.

Train Data
Test Data

SQUAD-2.0 NEWSQA
EM F1 EM F1

SQUAD-2.0 71.37 74.65 40.88 48.67
NEWSQA 45.85 49.88 52.68 61.26
MEGAQA 70.29 73.55 53.85 62.46

Table 2: Generalizability of BERT SHARED-NORM
across datasets

The results reveal a generalizability problem,
where the model trained on SQUAD-2.0 fails to
perform as well on NEWSQA and vice-versa, pre-
sumably due to their domain difference (Wikipedia
vs. Newswire). However, combining the datasets
with the MEGAQA model generalizes well to both.
Related to this, Talmor and Berant (2019) found
combining multiple datasets from different do-
mains to be advantageous for BERT-based reading
comprehension models. Based on these results,
the BERT SHARED-NORM MEGAQA model is
currently integrated into our demo.

3 Question Generation

3.1 Model Overview

We follow the same paradigm of much recent
work on QG, which has applied encoder-decoder
(i.e. sequence-to-sequence) models to text-question
pairs (Du et al., 2017; Duan et al., 2017; Scialom
et al., 2019; Song et al., 2018; Zhao et al., 2018).
Similar to Scialom et al., we utilize the Transformer
architecture for the encoder and decoder layers of
the model, and enhance the decoder with a copy
mechanism. The encoder input is a single sentence
and the decoder output is a question, where the
input sentence contains the answer to the question.
Following the standard procedure for sequence-to-
sequence model training, we used the cross-entropy

42

of the output question tokens as the loss function.
When generating questions, we use a beam size of
5. See Appendix A.2 for further details.

3.2 Dataset

We trained and evaluated the model on SQUAD
and NEWSQA concatenated, the same datasets
used for the QA experiments. Our QG model
aims to produce questions whose answers are
contained in their corresponding input texts, so
we only included SQUAD-1.1 items and an-
swerable NEWSQA items (this excluded 32,764
NEWSQA items from the train and test sets). For
each paragraph-question-answer item, we sentence-
segmented the paragraph, isolated the sentence
with the answer span, and inserted special tokens
into the sentence (<ANSWER> and</ANSWER>)
designating the start and end of the span. These
answer-annotated sentences were the model inputs
and the aligned questions were the target outputs.
We applied Byte-Pair-Encoding (BPE) tokeniza-
tion (Sennrich et al., 2016) to the inputs and targets
(see Appendix A.2). We used the same train-test
dataset splits as the QA experiments, allocating a
small subset of training items to a validation set for
hyperparameter tuning. Overall the train, valida-
tion, and test sets consisted of 160,876, 3,281, and
14,910 sentence-question pairs, respectively.

3.3 Data Augmentation Experiments

We examined three different versions of the model
described in 3.1, differentiated by their training in-
puts. The purpose of this experiment was to assess
using the output of a rule-based QG system as a
means of augmenting the training data. We specifi-
cally evaluated the three configurations below:

STANDARD: In this model, no data augmenta-
tion was applied. We trained the model directly on
the SQUAD/NEWSQA items described in 3.2.

RULEMIMIC: This model observed only the
automatically generated augmentation data, with-
out the original data. The source of the augmen-
tation data was the QG system by Heilman and
Smith (2010)2. This system applies linguistic rule-
based transformations (i.e. clause simplification,
verb decomposition, subject-auxiliary inversion,
and wh-movement) to convert a sentence into a
question answered by the sentence, then scores the
fluency of the question using a statistical model.
Du et al. (2017) found favorable results for a neu-

2Code at cs.cmu.edu/∼ark/mheilman/questions

ral sequence-to-sequence approach relative to this
rule-based system, but we were curious about its
use as a strategy for augmenting our training data.
We anticipated that a neural model could learn to
‘mimic’ the system’s generic transformation rules
by observing its inputs and outputs. Thus, we
applied the system to the raw paragraphs in the
SQUAD/NEWSQA training set, which resulted in
1,531,233 questions, each aligned with a sentence.
We then followed the same steps described in 3.2
to tokenize the sentence and mark the answer span.
The training set for this model consisted only of
these automatically generated questions (1,500,610
train items with 30,623 used for validation), with
no human-authored questions.

AUGMENTED: This model observed both the
original data seen by the STANDARD model and the
augmentation data seen by the RULEMIMIC model,
via a two-stage fine-tuning process. After training
the RULEMIMIC model, we used its parameters to
initialize another model, then fine-tuned this new
model on the STANDARD model dataset. The hy-
pothesis behind this approach is that it can simulate
linguistic rules underlying question formulation,
while also capturing the more abstractive features
of human questions that are harder to derive using
deterministic syntactic and lexical transformations.

3.4 Evaluation

Many QG systems are evaluated using BLEU or
similar metrics that reward overall token overlap
between generated and human-authored questions.
However, Nema and Khapra (2018) argue that these
metrics are ill-suited for QG. In particular, compar-
atively fluent questions with the same answer could
have few tokens in common. Moreover, certain to-
kens within a question have far more impact than
others on its perceived quality. They encourage al-
ternative metrics that focus instead on the ‘answer-
ability’ of questions. Guided by this, we conducted
both automated and human ratings-based evalua-
tions in order to assess the answerability of our QG
output. Because our demo performs extractive QA,
our evaluations focus on whether questions are an-
swerable relative to the input text from which the
question is generated.

3.4.1 Automated Evaluation
Some work has utilized automated QA as a scoring
metric for QG systems, based on the rationale that
a QA system’s ability to predict correct answers
to generated questions indicate how well the ques-

43

tions are formulated to elicit these answers (Duan
et al., 2017; Zhang and Bansal, 2019). Following
this idea, we generated questions for sentence in-
puts in the SQUAD/NEWSQA test set. As with
the training inputs, these inputs were derived by
annotating the answer span of the corresponding
human-authored question for the paragraph, and
isolating the sentence containing that span. We
then provided each generated question and corre-
sponding paragraph to the BERT SHARED-NORM

MEGAQA model described in Section 2. The re-
sults for each QG model in terms of answer F1
accuracy are shown in Table 3, compared along-
side the result for human-authored questions.

As shown, the questions generated by the
RULEMIMIC model are much better at elicit-
ing the designated answers than the STANDARD

model questions, indicating that observing the
rule-generated questions alone is impactful. Ad-
ditionally, the AUGMENTED model generates
more answerable questions than the RULEMIMIC

model, showing the usefulness of combining rule-
generated questions with human-authored ques-
tions as a data augmentation strategy.

Model F1
STANDARD 0.354
RULEMIMIC 0.503
AUGMENTED 0.551
HUMAN 0.718

Table 3: Accuracy of QA system on QG output

3.4.2 Human Evaluation

Model Rating
Answer
Present

STANDARD 2.813 0.225
RULEMIMIC 2.934 0.381
AUGMENTED 3.140 0.399
HUMAN 3.776 0.793

Table 4: Human assessment of QG output

We also elicited human judgments for a subset
of the same generated questions. Participants were
recruited from an internal team of linguists as well
as Amazon Mechanical Turk (AMT). We selected
questions corresponding to 175 inputs. Table 5
in the appendix shows examples of these items.
Participants read the input sentence in its paragraph

context, then observed all four questions associated
with the input (one generated by each of the three
models plus the corresponding human-authored
question). The presentation order of the questions
for a given paragraph was randomized. Participants
rated the fluency and answerability of questions on
a scale of 1-4 based on the following statements:

1: Question is completely ungrammatical. It’s
impossible to know what this question is asking.

2: Question is mostly grammatical, but it doesn’t
fully make sense. It’s not clear what this question
is asking.

3: Question is strangely worded, vague, or con-
tains errors. However, I can make a guess about
what the question is asking.

4: Question is clearly worded. I understand
what this question is asking.

If the participant indicated that the question was
answerable by rating it a 3 or 4, they were then
asked if the answer to the question was contained
in the paragraph. If they indicated ‘yes’, they were
asked to verify this by selecting all text spans in
the paragraph that qualified as correct answers to
the question. Based on this, we scored a question
as having an ‘answer present’ if it was marked
as being answerable and if at least one of the
participant-selected answer spans was the same
one the question was conditioned upon when gen-
erated (signifying that the question actually elicited
the answer the model observed in the input). 41
participants assessed a total of 1,560 paragraph-
question items, with each item being rated by at
least two participants (see Appendix A.3 for inter-
rater reliability statistics). We averaged the scores
for the same questions across participants. Ta-
ble 4 shows the mean ratings and answer pres-
ence for each set of generated questions includ-
ing the HUMAN questions. In terms of ratings,
the results follow the same pattern as the auto-
mated evaluation: the RULEMIMIC questions are
rated higher than the STANDARD questions, and
the AUGMENTED questions are rated higher than
the RULEMIMIC questions. All sets of generated
questions are rated much lower than the HUMAN

questions. The models are ordered the same in
terms of answer presence, though the difference
between the RULEMIMIC and AUGMENTED mod-
els is slight. Overall these results again show the
benefit of augmenting the training data with auto-
matically generated questions. Accordingly, our
demo currently runs the AUGMENTED model.

44

4 Generating Q&A Pairs

We combined our best-performing QG and QA
models into a system that takes a text as input and
returns a list of Q&A pairs. Our web demo illus-
trates this system (see Appendix A.4 for details).

For our evaluations in Section 3, the QG mod-
els observed annotated answer spans upon which
the generated questions were conditioned. How-
ever, these annotations are obviously not available
by default for any arbitrary text. Consequently,
after splitting the text into sentences, we automati-
cally identify syntactic chunks and named entities
as candidate answers to questions (see Appendix
A.5 for details). For each candidate answer in a
sentence, we produce an input consisting of that
sentence annotated with that span. We also include
sentences with no answer annotations as inputs,
since they are not formally required by the model.
We provide all inputs for a given sentence to the
AUGMENTED QG model to get a list of questions
that can be passed to the QA component. Note that
even though some of the questions are already as-
sociated with annotated answers, we still apply QA
as an additional means of verifying their answer-
ability, and defer to the QA-predicted answer. To
prepare the QA inputs, for each sentence-question
item, we extend the sentence to include the sen-
tences immediately preceding and following it, so
each question becomes aligned with a 3-sentence
passage. This enables the QA system to possi-
bly retrieve additional context beyond the sentence
that it may deem as part of the answer span. We
provide these passage-question pairs to the BERT
SHARED-NORM MEGAQA model, then retain out-
put items for which answers are found. We reduce
the redundancy of items by filtering those with du-
plicate questions or answers, as well as items where
the question and answer concatenated share 60%
or more of the same tokens. In these cases, we only
retain the item with the highest QG probability.

4.1 Human Evaluation

Figure 1: Human accuracy on target questions before
and after observing generated Q&A pairs

We used our system to generate Q&A pairs for
ten texts from the SQUAD test set. Appendix

Table 6 shows an example of a generated Q&A
list for one text. We conducted an evaluation of
the informativeness of these pairs with 38 AMT
participants. In the first stage of the evaluation,
participants were shown only the title of one text
(e.g. “Tesla”) and the human-authored SQUAD
questions (no answers) corresponding to the text.
Without referencing any material, they were asked
to answer these target questions or respond with
“X” for questions they couldn’t answer. Because no
generated Q&A pairs were shown to participants
during this stage, the accuracy of their answers indi-
cated their prior mental knowledge of the informa-
tion in the text. In the second stage, the generated
Q&A pairs for the same text were revealed to them
and they answered the same target questions again.
Participants never observed the original text itself.
The logic of this design is that the more questions
people could correctly answer in the second stage
relative to the first, the more informative the gener-
ated Q&A list could be deemed. The ratio of gener-
ated Q&A pairs to target questions per text varied
from 1 to 2.4 (e.g. ratio = 2 for a text with 30 gener-
ated pairs and 15 target questions). Figure 1 shows
the percentage of target questions participants an-
swered correctly before and after observing the
Q&A list, grouped by ratio. The overall difference
in these conditions (14.74% vs. 50.26%) shows
that the generated items were partially informative
for answering the target questions, signifying that
the system does highlight some of the same content
people ask questions about. However, accuracy
did not markedly improve as participants saw more
items (50.18% for the lower ratio vs. 50.38% for
the higher ratio), suggesting that the information
coverage of the items could be improved. See Ap-
pendix A.6 for more details about this evaluation.

5 Conclusion and Future Work

In this paper, we present a system that automati-
cally produces Q&A pairs for multi-paragraph doc-
uments. We report some novel experiments for
QA and QG that motivate techniques for improv-
ing these tasks. We show that combining these
components can produce informative Q&A items.
Our future work will focus on more advanced mod-
eling of information structure in documents. For
example, the ideal design of Q&A items varies by
domain (e.g. news stories vs. financial reports vs.
opinion editorials), and items should target the con-
tent readers find most substantial in each domain.

45

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 845–855, Melbourne,
Australia. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1342–1352,
Vancouver, Canada. Association for Computational
Linguistics.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866–874, Copenhagen, Denmark. Association for
Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609–617, Los Angeles, California. Associa-
tion for Computational Linguistics.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2285–2295, Florence, Italy. Association for Compu-
tational Linguistics.

Michael Kaisser. 2008. The QuALiM question answer-
ing demo: Supplementing answers with paragraphs
drawn from Wikipedia. In Proceedings of the ACL-
08: HLT Demo Session, pages 32–35, Columbus,
Ohio. Association for Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Chris Knight. 2010. Question & answer article tem-
plate.

Kalpesh Krishna and Mohit Iyyer. 2019. Generat-
ing question-answer hierarchies. In Association for
Computational Linguistics.

Vishwajeet Kumar, Sivaanandh Muneeswaran, Ganesh
Ramakrishnan, and Yuan-Fang Li. 2019. Paraqg: A
system for generating questions and answers from
paragraphs. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 175–180.

Preksha Nema and Mitesh M Khapra. 2018. Towards a
better metric for evaluating question generation sys-
tems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3950–3959.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Taffy E Raphael. 1982. Improving question-answering
performance through instruction. Reading educa-
tion report; no. 32.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 629–640, New
Orleans, Louisiana. Association for Computational
Linguistics.

Thomas Scialom, Benjamin Piwowarski, and Jacopo
Staiano. 2019. Self-attention architectures for
answer-agnostic neural question generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6027–
6032.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

46

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context in-
formation for natural question generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 569–574, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4911–4921, Florence,
Italy. Association for Computational Linguistics.

Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo
Sun, Shujie Liu, Yuanhua Lv, and Ming Zhou. 2018.
Learning to collaborate for question answering and
asking. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1564–
1574, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200, Vancouver, Canada. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5881–5885.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with

BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 72–77, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 15–25,
Vancouver, Canada. Association for Computational
Linguistics.

Shiyue Zhang and Mohit Bansal. 2019. Address-
ing semantic drift in question generation for semi-
supervised question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2495–2509.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3901–3910, Brussels, Belgium. Associa-
tion for Computational Linguistics.

47

A Appendices

A.1 QA Model Details

The TF-IDF method for ranking paragraph rele-
vance to the question specifically uses the BM-25
ranker3 (Robertson et al., 2009). We implemented
the QA model in PyTorch using the HuggingFace
Transformers library4. As described in Section 2.1,
we use the pre-trained BERT-BASE-UNCASED

model, which has 12 layers, 768 nodes per layer,
12 heads per layer, and 110M parameters overall.
The maximum sequence length for BERT-BASE-
UNCASED is 384 tokens (including both paragraph
and question tokens combined), so we truncated
paragraphs when this total was exceeded. The out-
put layer consists of a 384 x 2 matrix whose di-
mensions correspond to token indices for the start
and end of the answer span. We trained the model
in parallel across 4 Nvidia Tesla V100 GPUs with
a paragraph-question batch size of 48 with gradi-
ent accumulation at step 1 (12 paragraph-question
pairs per GPU, which was the maximum size a sin-
gle V100 GPU could accommodate). Following
Devlin et al.’s BERT-based fine-tuning procedure
for paragraph-level QA, the model was trained for
3 epochs and a learning rate of 3e-5 using Adam
optimization.

A.2 QG Model Details

We used OpenNMT-py5 (Klein et al., 2017) for im-
plementation of the QG model. For BPE tokeniza-
tion, we use the OpenAI GPT-2 tokenizer imple-
mented by the HuggingFace transformers library
cited above. The vocabulary included all tokens
observed in the training data. The Transformer en-
coder and decoder each consist of 4 layers with
2048 nodes and 8 heads each. We include position
encodings on the token embeddings and a copy
attention layer in the decoder. We used a training
batch size of 4096 tokens, normalizing gradients
over tokens and computing gradients based on 4
batches. We trained for a maximum of 100,000
steps and validated every 200 steps, with early
stopping after one round of no improvement in
validation loss. We applied the other hyperparame-
ter settings recommended for training transformer
sequence-to-sequence models on the OpenNMT-py

3pypi.org/project/rank-bm25
4huggingface.co/transformers
5github.com/OpenNMT/OpenNMT-py

website6. This included Adam optimization with
β1 = 0.998, gradient re-normalization for norms ex-
ceeding 0, Glorot uniform parameter initialization,
0.1 dropout probability, noam decay, 8000 warmup
steps for decay, learning rate = 2, and label smooth-
ing ε = 0.

A.3 QG Evaluation Details
The sentence inputs for the evaluated questions
were randomly sampled after filtering for those
inside paragraphs longer than 500 characters, to
ensure participants could efficiently complete the
evaluation. AMT workers were paid $7 for their
participation in this evaluation, with the expected
time commitment of about 35 minutes.

The Cohen’s kappa inter-rater agreement on the
fluency/answerability ratings of 1-4 was 0.422, in-
dicating moderate agreement. The kappa for an-
swer presence in the paragraph was 0.465, also
indicating moderate agreement.

A.4 System Implementation Details
The system UI is implemented using React JS with
Bootstrap CSS for styling. Figure 2 shows a screen-
shot of the interface. The QA and QG functionali-
ties run as web services implemented using Flask.

As an additional feature of the UI, users have
the option to obtain answers to their own custom
questions. They supply the question via a text box.
The QA system receives the entire document text
as input along with the question. We enforce para-
graph boundaries by splitting the document into
non-overlapping paragraphs of 300 tokens, and
then apply the BERT SHARED-NORM MEGAQA
model with top k=4 for paragraph retrieval7. If the
model predicts the answer is not in the text, the
user sees a message indicating this.

A.5 Candidate Answers for QG
We use the spaCy8 library to extract all named
entities and noun chunks. Additionally, we ex-
tract all dependency parse subtrees whose head is
labeled as one of the following: clausal comple-
ment (xcomp), attribute (attr), prepositional modi-
fied (prep), object (obj), indirect object (iobj), flat
multiword expression (flat), fixed multiword ex-
pression (fixed), clausal subject (csubj), clausal

6opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-
the-transformer-model

7Section 2.3.1 reported the result for k=15, but k=4 per-
forms only slightly lower (71.21 EM and 78.89 F1 vs. 72.85
and 80.58, respectively) with significantly higher efficiency.

8spacy.io

48

complement (ccomp), adjectival clause (acl), and
conjunct (conj). All extracted chunks are annotated
as answer spans.

A.6 Q&A List Evaluation
We truncated each of the ten SQUAD documents
to its first three paragraphs. There were on average
334.5 tokens per truncated document. For each
document we selected all SQUAD questions corre-
sponding to the first three paragraphs as the list of
target questions participants were prompted to an-
swer. There were on average 16.2 target questions
per truncated document. We provided the truncated
document to the system to generate a list of Q&A
items. As described in Section 4.1, the ratio of
generated Q&A items per target questions varied
from 1 to 2.4 with an average of 1.66, resulting
in an overall average of 26.3 generated items per
document.

Each of the 38 AMT participants answered the
target questions for a single document, so approx-
imately four participants answered each unique
list of target questions. They were paid $8 for
their participation, with the expected time com-
mitment of around 30 minutes. The instructions
emphasized that they should not use any external
information to answer the questions other than the
reference Q&A list (which was only used when
participants answered the questions for the second
time). They were told their participation would
not be judged based on the number of questions
correctly answered. Participants were not informed
that the reference Q&A items were automatically
generated.

Because all answers were provided as free text
and there could be some token variation in correct
answers for the same question (e.g. “Parliament of
the United Kingdom” vs. “UK Parliament”), we
used a fuzzy metric for judging answers as correct.
We counted a participant answer as correct if it had
at least one token in common with the answer given
in the SQUAD dataset. This is a permissive thresh-
old that can yield false positives (e.g. “300 years”
vs. “500 years”), but because it was consistently
applied across both stages of the evaluation (i.e. be-
fore and after observing the Q&A list), we deemed
it sufficient for quantifying the relative impact of
the generated items in the ‘after’ condition.

49

Figure 2: Screenshot of UI with generated Q&A pairs for the displayed document

50

Input Sentence Model Output Question
By far the most famous work of
Norman art is the <ANSWER>
Bayeux Tapestry </ANSWER>,
which is not a tapestry but a work
of embroidery.

STANDARD What is the name of the work of Norman art?
RULEMIMIC What is not a tapestry but a work of embroi-

dery?
AUGMENTED What is the most famous work of Norman art?
HUMAN What is Norman art’s most well known piece?

Later in life, Tesla made claims
concerning a ”teleforce” weapon
after studying the <ANSWER>
Van de Graaff generator
</ANSWER>.

STANDARD What was the name of the weapon that studying
the Teslaforce?

RULEMIMIC What did Tesla make claims concerning a ”tele-
force” weapon after studying?

AUGMENTED What did Tesla study?
HUMAN What was he studying that gave him the tele-

force weapon idea?
The Super Bowl 50 Host
Committee has vowed to be “the
most giving Super Bowl ever”,
and will dedicate <ANSWER> 25
percent </ANSWER> of all
money it raises for philanthropic
causes in the Bay Area.

STANDARD How much of the Super Bowl raises?
RULEMIMIC What will the Super Bowl 50 Host Committee

dedicate it raises for philanthropic causes in the
Bay Area?

AUGMENTED What is the Super Bowl 50 Host Committee?
HUMAN How many will the host committee dedicate to

local charities?
In 1899, John Jacob Astor IV
invested $100,000 for Tesla to
further <ANSWER> develop and
produce a new lighting system
</ANSWER>.

STANDARD What did Jacob Astor IV do?
RULEMIMIC What did John Jacob Astor IV invest $100,000

for in 1899?
AUGMENTED Why did Jacob Astor IV invest $100,000?
HUMAN What did Astor expect the money be used for?

Most influential among these was
the definition of Turing machines
by Alan Turing in <ANSWER>
1936 </ANSWER>, which turned
out to be a very robust and flexible
simplification of a computer.

STANDARD When was the definition of the definition of
Turing?

RULEMIMIC When turned out to be a very robust and flexible
simplification of a computer?

AUGMENTED When did Alan Turing write machines?
HUMAN In what year was the Alan Turing’s definitional

model of a computing device received?
In addition to the <ANSWER>
Vince Lombardi </ANSWER>
Trophy that all Super Bowl
champions receive, the winner of
Super Bowl 50 will also receive a
large, 18-karat gold-plated “50”.

STANDARD What is the name of the Super Bowl?
RULEMIMIC Who will the winner of Super Bowl 50 also re-

ceive a large in addition to the Vince Lombardi
Trophy that all Super Bowl champions receive?

AUGMENTED Who wrote the Super Bowl 50?
HUMAN Who is the trophy given to the Super Bowl

champion named for?
In 1874, Tesla evaded being
drafted into the Austro-Hungarian
Army in Smiljan by running away
to <ANSWER> Tomingaj
</ANSWER>, near Gračac.

STANDARD What was the name of Tesla’s Army in 1874?
RULEMIMIC Who was near Gračac?
AUGMENTED Where did Tesla travel to?
HUMAN Where did Tesla run to avoid the army draft?

Table 5: Examples of questions produced by each evaluated QG model for the given input sentences

51

Q: What is separate from the combustion prod-
ucts?
A: working fluid

Q: Where was the water supply for driving wa-
terels?
A: factories

Q: What is solar power?
A: Non-combustion heat sources

Q: What did the mine provide?
A: water supply

Q: What is the ideal thermodynamic cycle used
for?
A: to analyze this process

Q: Where was it employed?
A: draining mine workings

Q: What is heated and transforms into steam?
A: water

Q: Where was the storage reservoir?
A: above the wheel

Q: Why is mechanical work done?
A: When expanded through pistons or turbines

Q: What was passed over the wheel?
A: Water

Q: What is then condensed and pumped back
into the boiler?
A: reduced-pressure steam

Q: When was the first railway journey?
A: 21 February 1804

Q: Who invented the first commercially true
engine?
A: Thomas Newcomen

Q: Where was the train?
A: along the tramway from the Pen-y-darren
ironworks, near Merthyr Tydfil to Abercynon in
south Wales

Q: What could generate power?
A: atmospheric engine

Q: What was built by Richard Trevithick?
A: The first full-scale working railway steam
locomotive

Q: Who proposed the piston pump?
A: Papin

Q: The design incorporated a number of what?
A: important innovations that included using
high-pressure steam which reduced the weight
of the engine and increased its efficiency

Q: What happened to Newcomen’s engine?
A: relatively inefficient

Q: What did England become the leading centre
for?
A: experimentation and development of steam
locomotives

Q: What was the engine used for?
A: pumping water

Q: Where was the railways colliery?
A: north-east England

Q: What was the vacuum worked by?
A: condensing steam under a piston within a
cylinder

Q: Who visited the Newcastle area in 1804?
A: Trevithick

Q: What was the reason for draining waterel-
swheels?
A: providing a reusable water supply

Table 6: Generated Q&A list for the first three paragraphs of the SQUAD document titled “Steam engine”

52

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 53–62
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

T-NER: An All-Round Python Library
for Transformer-based Named Entity Recognition

Asahi Ushio and Jose Camacho-Collados
School of Computer Science and Informatics

Cardiff University, United Kingdom
{ushioa,camachocolladosj}@cardiff.ac.uk

Abstract

Language model (LM) pretraining has led
to consistent improvements in many NLP
downstream tasks, including named entity
recognition (NER). In this paper, we present
T-NER1 (Transformer-based Named Entity
Recognition), a Python library for NER LM
finetuning. In addition to its practical utility,
T-NER facilitates the study and investigation
of the cross-domain and cross-lingual general-
ization ability of LMs finetuned on NER. Our
library also provides a web app where users
can get model predictions interactively for ar-
bitrary text, which facilitates qualitative model
evaluation for non-expert programmers. We
show the potential of the library by compil-
ing nine public NER datasets into a unified for-
mat and evaluating the cross-domain and cross-
lingual performance across the datasets. The
results from our initial experiments show that
in-domain performance is generally competi-
tive across datasets. However, cross-domain
generalization is challenging even with a large
pretrained LM, which has nevertheless capac-
ity to learn domain-specific features if fine-
tuned on a combined dataset. To facilitate
future research, we also release all our LM
checkpoints via the Hugging Face model hub2

1 Introduction

Language model (LM) pretraining has become one
of the most common strategies within the natural
language processing (NLP) community to solve
downstream tasks (Peters et al., 2018; Howard and
Ruder, 2018; Radford et al., 2018, 2019; Devlin
et al., 2019). LMs trained over large textual data
only need to be finetuned on downstream tasks
to outperform most of the task-specific designed
models. Among the NLP tasks impacted by LM

1https://github.com/asahi417/tner
2https://huggingface.co/models?search=

asahi417/tner.

Figure 1: System overview of T-NER.

pretraining, named entity recognition (NER) is one
of the most prevailing and practical applications.
However, the availability of open-source NER li-
braries for LM training is limited.3

In this paper, we introduce T-NER, an open-
source Python library for cross-domain analysis
for NER with pretrained Transformer-based LMs.
Figure 1 shows a brief overview of our library and
its functionalities. The library facilitates NER ex-
perimental design including easy-to-use features
such as model training and evaluation. Most no-
tably, it enables to organize cross-domain analyses
such as training a NER model and testing it on a
different domain, with a small configuration. We
also report initial experiment results, by which we
show that although cross-domain NER is challeng-
ing, if it has an access to new domains, LM can
successfully learn new domain knowledge. The
results give us an insight that LM is capable to
learn a variety of domain knowledge, but an or-
dinary finetuning scheme on single dataset most
likely causes overfitting and results in poor domain
generalization.

As a system design, T-NER is implemented in

3Recently, spaCy (https://spacy.io/) has released
a general NLP pipeline with pretrained models including a
NER feature. Although it provides a very efficient pipeline
for processing text, it is not suitable for LM finetuning or
evaluation on arbitrary NER data.

53

Pytorch (Paszke et al., 2019) on top of the Trans-
formers library (Wolf et al., 2019). Moreover, the
interfaces of our training and evaluation modules
are highly inspired by Scikit-learn (Pedregosa et al.,
2011), enabling an interoperability with recent
models as well as integrating them in an intuitive
way. In addition to the versatility of our toolkit for
NER experimentation, we also include an online
demo and robust pre-trained models trained across
domains. In the following sections, we provide a
brief overview about NER in Section 2, explain
the system architecture of T-NER with a few ba-
sic usages in Section 3 and describe experiment
results on cross-domain transfer with our library in
Section 4.

2 Named Entity Recognition

Given an arbitrary text, the task of NER consists
of detecting named entities and identifying their
type. For example, given a sentence ”Dante was
born in Florence.”, a NER model are would iden-
tify ”Dante” as a person and ”Florence” as a loca-
tion. Traditionally, NER systems have relied on a
classification model on top of hand-engineered fea-
ture sets extracted from corpora (Ratinov and Roth,
2009; Collobert et al., 2011), which was improved
by carefully designed neural network approaches
(Lample et al., 2016; Chiu and Nichols, 2016; Ma
and Hovy, 2016). This paradigm shift was mainly
due to its efficient access to contextual information
and flexibility, as human-crafted feature sets were
no longer required. Later, contextual representa-
tions produced by pretrained LMs have improved
the generalization abilities of neural network archi-
tectures in many NLP tasks, including NER (Peters
et al., 2018; Devlin et al., 2019).

In particular, LMs see millions of plain texts dur-
ing pretraining, a knowledge that then can be lever-
aged in downstream NLP applications. This prop-
erty has been studied in the recently literature by
probing their generalization capacity (Hendrycks
et al., 2020; Aharoni and Goldberg, 2020; Desai
and Durrett, 2020; Gururangan et al., 2020). When
it comes to LM generalization studies in NER, the
literature is more limited and mainly restricted to in-
domain (Agarwal et al., 2021) or multilingual set-
tings (Pfeiffer et al., 2020a; Hu et al., 2020b). Our
library facilitates future research in cross-domain
and cross-lingual generalization by providing a
unified benchmark for several languages and do-
main as well as a straightforward implementation

of NER LM finetuning.

3 T-NER: An Overview

A key design goal was to create a self-contained
universal system to train, evaluate, and utilize NER
models in an easy way, not only for research pur-
pose but also practical use cases in industry. More-
over, we provide a demo web app (Figure 2) where
users can get predictions from a trained model
given a sentence interactively. This way, users
(even those without programming experience) can
conduct qualitative analyses on their own or exist-
ing pre-trained models.

In the following we provide details on the techni-
calities of the package provided, including details
on how to train and evaluate any LM-based archi-
tecture. Our package, T-NER, allows practitioners
in NLP to get started working on NER with a few
lines of code while diving into the recent progress
in LM finetuning. We employ Python as our core
implementation, as is one of the most prevailing
languages in the machine learning and NLP com-
munities. Our library enables Python users to ac-
cess its various kinds of features such as model
training, in- and cross-domain model evaluation,
and an interface to get predictions from trained
models with minimum effort.

3.1 Datasets

For model training and evaluation, we compiled
nine public NER datasets from different domains,
unifying them into same format: OntoNotes5
(Hovy et al., 2006), CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003), WNUT 2017 (Derczynski
et al., 2017), WikiAnn (Pan et al., 2017), FIN (Sali-
nas Alvarado et al., 2015), BioNLP 2004 (Collier
and Kim, 2004), BioCreative V CDR4 (Wei et al.,
2015), MIT movie review semantic corpus,5 and
MIT restaurant review.6 These unified datasets are
also made available as part of our T-NER library.
Except for WikiAnn that contains 282 languages,
all the datasets are in English, and only the MIT
corpora are lowercased. As MIT corpora are com-

4The original dataset consists of long documents which
cannot be fed on LM because of the length, so we split them
into sentences to reduce their size.

5The movie corpus includes two datasets (eng and
trivia10k13) coming from different data sources. While both
have been integrated into our library, we only used the largest
trivia10k13 in our experiments.

6The original MIT NER corpora can be downloaded
from https://groups.csail.mit.edu/sls/
downloads/.

54

Figure 2: A screenshot from the demo web app. In this example, the NER transformer model is fine-tuned on
OntoNotes 5 and a sample sentence is fetched from Wikipedia (en.wikipedia.org/wiki/Sergio_Mendes).

monly used for slot filling task in spoken language
understanding (Liu and Lane, 2017), the charac-
teristics of the entities and annotation guidelines
are quite different from the other datasets, but we
included them for completeness and to analyze the
differences across datasets.

Table 1 shows statistics of each dataset. In Sec-
tion 4, we train models on each dataset, and assess
the in- and cross-domain accuracy over them.

Dataset format and customization. Users can
utilize their own datasets for both model training
and evaluation by formatting them into the IOB
scheme (Tjong Kim Sang and De Meulder, 2003)
which we used to unify all datasets. In the IOB
format, all data files contain one word per line with
empty lines representing sentence boundaries. At
the end of each line there is a tag which states
whether the current word is inside a named entity
or not. The tag also encodes the type of named
entity. Here is an example from CoNLL 2003:

EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
. O

3.2 Model Training
We provide modules to facilitate LM finetuning on
any given NER dataset. Following Devlin et al.
(2019), we add a linear layer on top of the last em-
bedding layer in each token, and train all weights
with cross-entropy loss. The model training compo-
nent relies on the Huggingface transformers library
(Wolf et al., 2019), one of the largest Python frame-
works for distributing pretrained LM checkpoint
files. Our library is therefore fully compatible with
the Transformers framework: once new model was
deployed on the Transformer hub, one can imme-
diately try those models out with our library as a
NER model. To reduce computational complexity,
in addition to enabling multi-GPU support, we im-
plement mixture precision during model training
by using the apex library7.

The instance of model training in a given
dataset8 can be used in an intuitive way as dis-
played below:

from tner import TrainTransformersNER
model = TrainTransformersNER(

dataset="ontonotes5",
transformer="roberta-base")

model.train()

With this sample code, we would finetune
7https://github.com/NVIDIA/apex
8To use custom datasets, the path to a custom dataset folder

can simply be included in the dataset argument.

55

Name Domain Entity types Data size
OntoNotes5 News, Blog, Dialogue 18 59,924/8,582/8,262
CoNLL 2003 News 4 14,041/3,250/3,453
WNUT 2017 SNS 6 1,000/1,008/1,287
WikiAnn Wikipedia (282 languages) 3 20,000/10,000/10,000
FIN Finance 4 1,164/-/303
BioNLP 2004 Biochemical 5 18,546/-/3,856
BioCreative V Biomedical 5 5,228/5,330/5,865
MIT Restaurant Restaurant review 8 7,660/-/1,521
MIT Movie Movie review 12 7,816/-/1,953

Table 1: Overview of the NER datasets used in our evaluation and included in T-NER. Data size is the number of
sentence in training/validation/test set.

RoBERTaBASE (Liu et al., 2019) on the
OntoNotes5 dataset. We also provide an easy ex-
tension to train on multiple datasets at the same
time:

TrainTransformersNER(
dataset=[

"ontonotes5", "wnut2017"
],

transformer="roberta-base")

Once training is completed, checkpoint files with
model weights and other statistics are generated.
These are automatically organized for each config-
uration and can be easily uploaded to the Hugging
Face model hub. Ready-to-use code samples can be
found in our Google Colab notebook9, and details
for additional options and arguments are included
in the github repository. Finally, our library sup-
ports Tensorboard10 to visualize learning curves.

3.3 Model Evaluation
Once a NER model is trained, users may want to
test the models in the same dataset or a different one
to assess its general performance across domains.
To this end, we implemented flexible evaluation
modules to facilitate cross-domain evaluation com-
parison, which is also aided by the unification of
datasets into the same format (see Section 3.1) with
a unique label reference lookup.

The basic usage of the evaluation module is de-
scribed below.

from tner import TrainTransformersNER
model = TrainTransformersNER(

"path-to-model-checkpoint"
)

model.test("ontonotes5")

9https://colab.research.google.com/
drive/1AlcTbEsp8W11yflT7SyT0L4C4HG6MXYr?
usp=sharing

10www.tensorflow.org/tensorboard

Here, the model would be tested on OntoNotes5
dataset, and it could be evaluated on any other test
set including custom dataset. As with the model
training module, we prepared a Google Colab note-
book11 for an example use case, and further details
can be found in our github repository.

4 Evaluation

In this section, we assess the reliability of T-NER
with experiments in standard NER datasets.

4.1 Experimental Setting

4.1.1 Implementation details
Through the experiments, we use XLM-R (Liu et al.,
2019), which has shown to be one of the most re-
liable multi-lingual pretrained LMs for discrimi-
native tasks at the moment. In all experiments we
make use of the default configuration and hyper-
pameters of Huggingface’s XLM-R implementation.
For WikiAnn/ja (Japanese), we convert the original
character-level tokenization into proper morpholog-
ical chunk by MeCab12.

4.1.2 Evaluation metrics and protocols
As customary in the NER literature, we report span
micro-F1 score computed by seqeval13, a Python
library to compute metrics for sequence predic-
tion evaluation. We refer to this F1 score as type-
aware F1 score to distinguish it from the the type-
ignored metric used to assess the cross-domain
performance, which we explain below.

11https://colab.research.google.com/
drive/1jHVGnFN4AU8uS-ozWJIXXe2fV8HUj8NZ?
usp=sharing

12https://pypi.org/project/
mecab-python3/

13https://pypi.org/project/seqeval/

56

In a cross-domain evaluation setting, the type-
aware F1 score easily fails to represent the cross-
domain performance if the granularity of entity
types differ across datasets. For instance, the MIT
restaurant corpus has entities such as amenity and
rating, while plot and actor are entities from the
MIT movie corpus. Thus, we report type-ignored
F1 score for cross-domain analysis. In this type-
ignored evaluation, the entity type from both of
predictions and true labels is disregarded, reducing
the task into a simpler entity span detection task.
This evaluation protocol can be customized by the
user at test time.

4.2 Results

We conduct three experiments on the nine datasets
described in Table 1: (i) in-domain evaluation (Sec-
tion 4.2.1), (ii) cross-domain evaluation (Section
4.2.2), and (iii) cross-lingual evaluation (Section
4.2.3). While the first experiment tests our imple-
mentation in standard datasets, the second exper-
iment is aimed at investigating the cross-domain
performance of transformer-based NER models.
Finally, as a direct extension of our evaluation mod-
ule, we show the zero-shot cross-lingual perfor-
mance of NER models on the WikiAnn dataset.

4.2.1 In-domain results

The main results are displayed in Table 2, where we
report the type-aware F1 score from XLM-RBASE

and XLM-RLARGE models along with current state-
of-the-art (SoTA). One can confirm that our frame-
work with XLM-RLARGE achieves a comparable
SoTA score, even surpassing it in the WNUT 2017
dataset. In general, XLM-RLARGE performs consis-
tently better than XLM-RBASE but, interestingly, the
base model performs better than large on the FIN
dataset. This can be attributed to the limited train-
ing data in this dataset, which may have caused
overfitting in the large model.

Generally, it can be expected to get better accu-
racy with domain-specific or larger language mod-
els that can be integrated into our library. Nonethe-
less, our goal for these experiments were not to
achieve SoTA but rather to provide a competitive
and easy-to-use framework. In the remaining ex-
periments we report results for XLM-RLARGE only,
but the results for XLM-RBASE can be found in the
appendix.

Dataset BASE LARGE SoTA
OntoNotes5 89.0 89.1 92.1
CoNLL 2003 90.8 92.9 94.3
WNUT 2017 52.8 58.5 50.3
FIN 81.3 76.4 82.7
BioNLP 2004 73.4 74.3 77.4
BioCreative V 88.0 88.6 89.9
MIT Restaurant 79.4 79.6 -
MIT Movie 69.9 71.2 -
WikiAnn/en 82.7 84.0 84.8
WikiAnn/ja 83.8 86.5 73.3
WikiAnn/ru 88.6 90.0 91.4
WikiAnn/es 90.9 92.1 -
WikiAnn/ko 87.5 89.6 -
WikiAnn/ar 88.9 90.3 -

Table 2: In-domain type-aware F1 score for test set
on each dataset with current SoTA. SoTA on each
dataset is attained from the result of BERT-MRC-DSC
(Li et al., 2019) for OntoNotes5, LUKE (?) for CoNLL
2003, CrossWeigh (Wang et al., 2019) for WNUT 2017,
(Pfeiffer et al., 2020a) for WikiAnn (en, ja, ru, es,
ko, ar), (Salinas Alvarado et al., 2015) for FIN, (Lee
et al., 2020) for BioNLP 2004, (Nooralahzadeh et al.,
2019) for BioCreative V and (Pfeiffer et al., 2020a) for
WikiAnn/en.

4.2.2 Cross-domain results
In this section, we show cross-domain evalua-
tion results on the English datasets14: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), FIN (fin). We also
report the accuracy of the same XLM-R model
trained over a combined dataset resulting from con-
catenation of all the above datasets.

In Table 3, we present the type-ignored F1 re-
sults across datasets. Overall cross-domain scores
are not as competitive as in-domain results. This
gap reveals the difficulty of transferring NER mod-
els into different domains, which may also be at-
tributed to different annotation guidelines or data
construction procedures across datasets. Especially,
training on the bionlp and bc5cdr datasets lead to
a null accuracy when they are evaluated on other
datasets, as well as others evaluated on them. Those
datasets are very domain specific dataset, as they
have entities such as DNA, Protein, Chemical, and
Disease, which results in a poor adaptation to other
domains. On the other hand, there are datasets

14We excluded the MIT datasets in this setting since they
are all lowercased.

57

train\test ontonotes conll wnut wiki bionlp bc5cdr fin avg
ontonotes 91.6 65.4 53.6 47.5 0.0 0.0 18.3 40.8
conll 62.2 96.0 69.1 61.7 0.0 0.0 22.7 35.1
wnut 41.8 85.7 68.3 54.5 0.0 0.0 20.0 31.7
wiki 32.8 73.3 53.6 93.4 0.0 0.0 12.2 29.6
bionlp 0.0 0.0 0.0 0.0 79.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.8 0.0 9.8
fin 48.2 73.2 60.9 58.9 0.0 0.0 82.0 38.1
all 90.9 93.8 60.9 91.3 78.3 84.6 75.5 81.7

Table 3: Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets. We compute
average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown as all.

test
train en ja ru ko es ar
en 84.0 46.3 73.1 58.1 71.4 53.2
ja 53.0 86.5 45.7 57.1 74.5 55.4
ru 60.4 53.3 90.0 68.1 76.8 54.9
ko 57.8 62.0 68.6 89.6 66.2 57.2
es 70.5 50.6 75.8 61.8 92.1 62.1
ar 60.1 55.7 55.7 70.7 79.7 90.3

Table 4: Cross-lingual type-aware F1 results on vari-
ous languages for the WikiAnn dataset.

that are more easily transferable, such as wnut and
conll. The wnut-trained model achieves 85.7 on
the conll dataset and, surprisingly, the conll-trained
model actually works better than the wnut-trained
model when evaluated on the wnut test set. This
could be also attributed to the data size, as wnut
only has 1,000 sentences, while conll has 14,041.
Nevertheless, the fact that ontonotes has 59,924
sentences but does not perform better than conll on
wnut reveals a certain domain similarity between
conll and wnut.

Finally, the model trained on the training sets
of all datasets achieves a type-ignored F1 score
close to the in-domain baselines. This indicates
that a LM is capable of learning representations of
different domains. Moreover, leveraging domain
similarity as explained above can lead to better
results as, for example, distant datasets such as
bionlp and bc5cdr surely cause performance drops.
This is an example of the type of experiments that
could be facilited by T-NER, which we leave for
future work.

4.2.3 Cross-lingual results
Finally, we present some results for zero-shot cross-
lingual NER over the WikiAnn dataset, where

we include six distinct languages: English (en),
Japanese (ja), Russian (ru), Korean (ko), Spanish
(es), and Arabic (ar). In Table 4, we show the cross-
lingual evaluation results. The diagonal includes
the results of the model trained on the training data
of the same target language. There are a few inter-
esting findings. First, we observe a high correlation
between Russian and Spanish, which are generally
considered to be distant languages and do not share
the alphabet. Second, Arabic also transfers well to
Spanish which, despite the Arabic (lexical) influ-
ence on the Spanish language (Stewart et al., 1999),
are still languages from distant families.

Clearly, this is a shallow cross-lingual analysis,
but it highlights the possibilities of our library for
research in cross-lingual NER. Recently, (Hu et al.,
2020a) proposed a compilation of multilingual
benchmark tasks including the WikiAnn datasets
as a part of it, and XLM-R proved to be a strong
baseline on multilingual NER. This is in line with
the results of Conneau et al. (2020), which showed
a high capacity of zero-shot cross-lingual trans-
ferability. On this respect, Pfeiffer et al. (2020b)
proposed a language/task specific adapter module
that can further improve cross-lingual adaptation in
NER. Given the possibilities and recent advances
in cross-lingual language models in recent years,
we expect our library to help practitioners to exper-
iment and test these advances in NER.

5 Conclusion

In this paper, we have presented a Python library
to get started with Transformer-based NER mod-
els. This paper especially focuses on LM finetun-
ing, and empirically shows the difficulty of cross-
domain generalization in NER. Our framework is
designed to be as simple as possible so that any
level of users can start running experiments on

58

NER on any given dataset. To this end, we have
also facilitated the evaluation by unifying some of
the most popular NER datasets in the literature,
including languages other than English. We be-
lieve that our initial experiment results emphasize
the importance of NER generalization analysis, for
which we hope that our open-source library can
help NLP community to convey relevant research
in an efficient and accessible way.

Acknowledgements

We would like to thank Dimosthenis Antypas for
testing our library and the anonymous reviewers
for their useful comments.

References
Oshin Agarwal, Yinfei Yang, Byron C Wallace, and

Ani Nenkova. 2021. Entity-switched datasets: An
approach to auditing the in-domain robustness of
named entity recognition models. arXiv preprint
arXiv:2004.04123.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Nigel Collier and Jin-Dong Kim. 2004. Introduc-
tion to the bio-entity recognition task at JNLPBA.
In Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications (NLPBA/BioNLP), pages 73–78,
Geneva, Switzerland. COLING.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(ARTICLE):2493–2537.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6022–
6034, Online. Association for Computational Lin-
guistics.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy

User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Shrey Desai and Greg Durrett. 2020. Calibra-
tion of pre-trained transformers. arXiv preprint
arXiv:2003.07892.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. arXiv preprint arXiv:2004.06100.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60,
New York City, USA. Association for Computa-
tional Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020a. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In International Conference on Machine
Learning (ICML).

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020b. Xtreme: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alization. arXiv preprint arXiv:2003.11080.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

59

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun
Liang, Fei Wu, and Jiwei Li. 2019. Dice loss
for data-imbalanced nlp tasks. arXiv preprint
arXiv:1911.02855.

Bing Liu and Ian Lane. 2017. Multi-domain adversar-
ial learning for slot filling in spoken language under-
standing. arXiv preprint arXiv:1711.11310.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Farhad Nooralahzadeh, Jan Tore Lønning, and Lilja
Øvrelid. 2019. Reinforcement-based denoising of
distantly supervised ner with partial annotation. In
Proceedings of the 2nd Workshop on Deep Learning
Approaches for Low-Resource NLP (DeepLo 2019),
pages 225–233.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020a. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Tim-
othy Baldwin. 2015. Domain adaption of named en-
tity recognition to support credit risk assessment. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2015, pages 84–90, Par-
ramatta, Australia.

Miranda Stewart et al. 1999. The Spanish language
today. Psychology Press.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Ji-
acheng Liu, and Jiawei Han. 2019. Crossweigh:
Training named entity tagger from imperfect anno-
tations. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5157–5166.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the biocreative v chemical disease re-
lation (cdr) task. In Proceedings of the fifth BioCre-
ative challenge evaluation workshop, volume 14.

60

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

A Appendices

In all experiments we make use of the default
configuration and hyperpameters of Huggingface’s
XLM-R implementation.

A.1 Cross-lingual Results
In this section, we show cross-lingual analysis
on XLM-RBASE, where the result is shown in Ta-
ble 5. For these cross-lingual results, we rely on
the WikiAnn dataset where zero-shot cross-lingual
NER over six distinct languages is conducted: En-
glish (en), Japanese (ja), Russian (ru), Korean (ko),
Spanish (es), and Arabic (ar).

A.2 Cross-domain Results
In this section, we show a few more results on
our cross-domain analysis, which is based on
non-lowercased English datasets: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), and FIN (fin). Table 6
shows the type-aware F1 score of the XLM-RLARGE

and XLM-RBASE models trained on all the datasets.
Furthermore, Table 7 shows additional results for
XLM-RBASE in the type-ignored evaluation.

test
train en ja ru ko es ar
en 82.8 38.6 65.7 50.4 73.8 44.5
ja 53.8 83.9 46.9 60.1 71.3 46.3
ru 51.9 39.9 88.7 51.9 66.8 51.0
ko 54.7 51.6 53.3 87.5 63.3 52.3
es 65.7 44.0 66.5 54.1 90.9 59.4
ar 53.1 49.2 49.4 59.7 73.6 88.9

Table 5: Cross-lingual type-aware F1 score over
WikiAnn dataset with XLM-RBASE.

Cross-domain results with lowercased datasets.
In this section, we show cross-domain results on the
English datasets including lowercased corpora such
as MIT Restaurant (restaurant) and MIT Movie
(movie). Since those datasets are lowercasd, we

uppercase lowercase
Datasets BASE LARGE BASE LARGE
ontonotes 85.8 87.8 81.7 85.6
conll 87.2 90.3 82.8 87.6
wnut 49.6 55.1 43.7 51.3
wiki 79.1 82.7 75.2 80.8
bionlp 72.9 74.1 71.7 74.0
bc5cdr 79.4 85.0 78.0 84.2
fin 72.4 72.4 72.4 73.5
restaurant - - 76.8 80.9
movie - - 67.8 71.8

Table 6: Type-aware F1 score across different test sets
of models trained on all uppercase/lowercase English
datasets with XLM-RBASE or XLM-RLARGE.

converted all datasets into lowercase. Tables 8 and
Table 9 show the type-ignored F1 score across mod-
els trained on different English datasets including
lowercased corpora with XLM-RLARGE and XLM-
RBASE, respectively.

61

train\test ontonotes conll wnut wiki bionlp bc5cdr fin avg
ontonotes 91.8 62.2 51.7 44.7 0.0 0.0 31.8 40.3
conll 60.5 95.7 66.6 60.8 0.0 0.0 33.5 45.3
wnut 41.3 81.3 63.0 56.3 0.0 0.0 20.5 37.5
wiki 30.2 71.8 45.3 92.6 0.0 0.0 11.5 35.9
bionlp 0.0 0.0 0.0 0.0 78.5 0.0 0.0 11.2
bc5cdr 0.0 0.0 0.0 0.0 0.0 87.5 0.0 12.5
fin 49.0 73.5 62.2 60.7 0.0 0.0 82.8 46.9
all 89.7 92.4 55.8 89.3 78.2 80.0 74.8 80.0

Table 7: Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets with XLM-RBASE.
We compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is
shown as all.

train\test ontonotes conll wnut wiki bionlp bc5cdr fin restaurant movie avg
ontonotes 89.3 59.9 50.1 44.7 0.0 0.0 15.1 4.5 88.6 39.1
conll 57.7 94.8 67.0 57.9 0.0 0.0 20.5 23.9 0.0 35.7
wnut 39.8 80.3 61.3 52.3 0.0 0.0 19.5 18.8 0.0 30.2
wiki 28.5 69.7 51.2 92.4 0.0 0.0 12.0 3.0 0.0 28.5
bionlp 0.0 0.0 0.0 0.0 79.0 0.0 0.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.9 0.0 0.0 0.0 9.8
fin 46 72.0 61.5 54.8 0.0 0.0 83.0 24.5 0.0 37.9
restaurant 4.6 21.7 22.9 22.3 0.0 0.0 5.4 83.4 0.0 17.8
movie 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 9.3
all 88.5 92.1 58.0 90.0 79.0 84.6 74.5 85.3 74.1 80.7

Table 8: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-RLARGE. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown
as all.

train\test ontonotes conll wnut wiki bionlp bc5cdr fin restaurant movie avg
ontonotes 88.3 56.7 49.0 41.4 0.0 0.0 11.7 4.2 88.3 37.7
conll 55.1 93.7 60.5 56.8 0.0 0.0 20.4 21.9 0.0 34.3
wnut 38.1 73.0 57.5 49.1 0.0 0.0 21.1 20.4 0.0 28.8
wiki 26.3 66.5 41.4 90.9 0.0 0.0 9.7 7.6 0.0 26.9
bionlp 0.0 0.0 0.0 0.0 78.7 0.0 0.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.0 0.0 0.0 0.0 9.8
fin 41.3 64.4 45.8 57.8 0.0 0.0 81.5 22.0 0.0 34.8
restaurant 8.1 19.1 19.6 19.1 0.0 0.0 13.5 83.6 0.0 18.1
movie 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 9.7
all 86.1 89.5 49.9 86.2 76.9 78.8 75.4 82.4 72.2 77.5

Table 9: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-RBASE. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown
as all.

62

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 63–70
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Forum 4.0: An Open-Source User Comment Analysis Framework

Marlo Haering1 and Jakob Smedegaard Andersen1 and Chris Biemann1

and Wiebke Loosen2 and Benjamin Milde1 and Tim Pietz1 and Christian Stoecker3
and Gregor Wiedemann2 and Olaf Zukunft3 and Walid Maalej1

Universität Hamburg1, Leibniz Institute for Media Research2,
Hamburg University of Applied Sciences3

{haering,andersen,biemann,milde,5pietz,maalej}
@informatik.uni-hamburg.de

{w.loosen,g.wiedemann}@leibniz-hbi.de
{christian.stoecker,olaf.zukunft}@haw-hamburg.de

Abstract

With the increasing number of user comments
in diverse domains, including comments on on-
line journalism and e-commerce websites, the
manual content analysis of these comments be-
comes time-consuming and challenging. How-
ever, research showed that user comments con-
tain useful information for different domain ex-
perts, which is thus worth finding and utiliz-
ing. This paper introduces Forum 4.0, an open-
source framework to semi-automatically ana-
lyze, aggregate, and visualize user comments
based on labels defined by domain experts.
We demonstrate the applicability of Forum 4.0
with comments analytics scenarios within the
domains of online journalism and app stores.
We outline the underlying container architec-
ture, including the web-based user interface,
the machine learning component, and the task
manager for time-consuming tasks. We fi-
nally conduct machine learning experiments
with simulated annotations and different sam-
pling strategies on existing datasets from both
domains to evaluate Forum 4.0’s performance.
Forum 4.0 achieves promising classification re-
sults (ROC-AUC ≥ 0.9 with 100 annotated
samples), utilizing transformer-based embed-
dings with a lightweight logistic regression
model. We explain how Forum 4.0’s archi-
tecture is applicable for millions of user com-
ments in real-time, yet at feasible training and
classification costs.

1 Introduction

Comment sections are omnipresent in today’s on-
line environments, for example, on news websites,
blogs, online shops, or app stores. In these sections,
users submit their feedback and opinion, request
features and information, or report issues and bugs.
Also, in social media such as Twitter or Facebook,
users regularly comment on specific topics, events,
products, or services. In many domains, includ-

ing e-commerce and journalism, users discuss with
each other, read others’ opinions to e.g. assess the
quality of the service or the product (Springer et al.,
2015; Kümpel and Springer, 2016), and provide
feedback to other users and other domain experts
like the journalist (Häring et al., 2018), who wrote
the article or the developer who created the app
(Maalej et al., 2016b).

Even though research has criticized phenom-
ena such as ”dark participation” (Frischlich et al.,
2019), comments can contain constructive infor-
mation for different domain experts in different
fields (Loosen et al., 2018; Maalej et al., 2016a).
For example, in app development, vendors use app
reviews in app stores to collect new feature ideas,
bug reports, or ideas of additional user scenarios
for their app (Stanik et al., 2019). Software vendors
consider the reviews to decide which bug or feature
request to prioritize in the next development cycle
(Martens and Maalej, 2019). In online journalism,
media outlets harness user comments to acquire a
broader perspective on additional arguments, col-
lect resonance about their articles, or identify and
contact experts or persons concerned for follow-up
stories (Loosen et al., 2018). However, the qual-
ity of the comments varies significantly, and their
amount is sometimes overwhelming, which makes
manual monitoring and analysis a real challenge
(Pagano and Maalej, 2013; Park et al., 2016a).

In this work, we propose Forum 4.0, an open-
source user comment analysis framework to semi-
automatically analyze a large number of user com-
ments for domain experts from various domains.
Forum 4.0 leverages a combination of transfer
learning (Howard and Ruder, 2018), human-in-the-
loop (Bailey and Chopra, 2018), and active learning
(Settles, 2012) strategies to automatically analyze
the comments’ content. To enable replication and
further research, we share Forum 4.0’s source code,

63

the scripts, and datasets we used for our research1

and a video, which showcases Forum 4.02.

2 Usage of Forum 4.0

We describe exemplary usage scenarios of Fo-
rum 4.0 for journalists and product managers in
their respective online journalism and app devel-
opment domains and introduce Forum 4.0’s user
interface.

2.1 Online Journalism
The manual effort for comment moderation in on-
line journalism is high (Park et al., 2016b). One
the one hand, media outlets filter hate speech (Gao
and Huang, 2017), as it might negatively affect
their credibility (Naab et al., 2020). On the other
hand, user comments can also be useful for differ-
ent journalistic purposes (Diakopoulos, 2015). For
example, journalists can obtain new perspectives
and opinions on an article, learn from users’ de-
scribed personal experiences, or identify potential
interview partners among the commenting users
(Loosen et al., 2018). Journalists can also aggregate
user comments to identify and visualize their audi-
ence’s opinion on current news topics (Wang et al.,
2013). Users can also point out errors in reporting,
contribute additional or missing sources and infor-
mation, provide new ideas for further news, or even
address the editorial team or authors directly, for
example, by criticizing the article’s quality (Häring
et al., 2018).

Journalists first define a useful user comment
label in Forum 4.0. Examples for such labels
could be: “criticism towards corona measures,” or
“pros/cons regarding a legislative proposal”. Jour-
nalists or forum moderators annotate user com-
ments regarding these labels, gradually increasing
the number of training samples. Forum 4.0 trains a
machine learning model using the annotated com-
ments and classifies all other user comments. The
automatic classification will improve with more an-
notations until it reaches sufficient precision so that
journalists can conduct quantitative and qualitative
analyses with the comments.

2.2 App Development
In app stores, product managers utilize user com-
ments for multiple purposes: users report crashes

1https://forum40.informatik.
uni-hamburg.de/git/

2https://forum40.informatik.
uni-hamburg.de/demo.mp4

and bugs in app reviews with valuable context in-
formation (e.g., device or app version), helping de-
velopers identifying and fixing them (Pagano and
Maalej, 2013). This is particularly helpful to ac-
quire immediate feedback after a new major release
or update (Guzman and Maalej, 2014). Addition-
ally, users suggest desired and useful app feature
ideas (Maalej et al., 2016a). Thereby, the product
managers get an overview of current app issues,
which they can consider for their further develop-
ment. In the field of mobile learning, the product
manager can utilize comments for the automatic
evaluation of education apps (Haering et al., 2021).

Similar to the online journalism domain, the
product manager can use Forum 4.0 to first cre-
ate labels for constructive app reviews. In the app
development domain, useful labels include “prob-
lems since the last app update”, “positive/negative
feedback on a certain app feature”, or “missing
or requested features”. The domain expert further
annotates app reviews, compiling a training set. Fo-
rum 4.0 trains a model and classifies the other app
reviews for the domain expert to analyze.

2.3 User Interface

Figure 1 shows Forum 4.0’s user interface. The do-
main expert can log in to create a new label or anno-
tate user comments. Below the title bar, the expert
can select a data source containing the comments
to analyze. In the figure, we selected comments
from the Austrian newspaper DER STANDARD3,
which contains the comments of the “One Million
Posts Corpus” published by Schabus et al. (2017).
Next to the data source selector, the domain expert
can create a new label or select relevant existing
labels to analyze and annotate the comments.

The pie chart shows the comment distribution
among the document categories (news article or
app categories). The bar chart shows the number of
positive classifications for the selected labels over
time with different granularity options. We train
one classification model for each label and show
the accuracy and the development of the F1-scores
with an increasing number of training samples.

The lower part of the Forum 4.0 interface lists
the actual user comments for exploration and anno-
tation. With a full-text search, the domain expert
can further filter the comment results. The list
contains the comment text, the timestamp, and a
column for each selected label. Each label column

3https://www.derstandard.at/

64

Login

Data source Label selection

Classifier performance

Comment list

Figure 1: Main user interface of Forum 4.0.

has two sub-columns. The first sub-column with
the person symbol shows either existing human an-
notations when logged out or the own annotations
when logged in. A logged-in user can correct the
automatic classification or annotate comments as a
positive or negative sample for the selected labels.
The second sub-column with the robot icon shows
binary labels and confidence scores. The domain
expert has three sorting options for the classifi-
cations: (1) positives first, (2) negatives first, (3)
uncertain first (circle with tick mark). Forum 4.0
supports finding positive samples for rare comment
labels by suggesting semantically similar user com-
ments. Thereby, Forum 4.0 employs the rapid an-
notation approach to quickly retrieve additional
positive samples for a specific comment label.

3 Architecture

We describe Forum 4.0’s container-based architec-
ture and its machine learning pipelines.

3.1 Container-based Architecture
Forum 4.0 is composed of containers, interacting
with each other via a restful API. Figure 2 outlines
a UML deployment diagram.

<<host>>

Docker Host

<<WebServer>>
serving Front-End

(NodeJS)

<<WebServer>>
Back-End

(Flask)

<<WebServer>>
Embedding

(Flask)

<<Reverseproxy>>
(Nginx)

/index.html

/api

/api/embedding

Database
(Postgres)

<<WebBrowser>>
Front-End
(Vue.JS)

EmbeddingIndex

TaskManager

<<WebCrawler>>
Comment Collector

Figure 2: Forum 4.0’s container architecture.

The Comment Collector aggregates user com-
ments from various sources, including media sites,
app stores, and social media. Forum 4.0 currently

65

contains the “One Million Posts Corpus” and im-
ports comments from the Google Play store and the
German news site SPIEGEL Online4.

The client accessing Forum 4.0’s web page re-
quests the Reverse Proxy, which forwards the re-
quests depending on the URL path to the respon-
sible container. The first request loads the single
page application (Flanagan and Like, 2006) from
the Front-End web server, which further communi-
cates via a restful API with the Back-End container.

The containers on the Docker host are only ac-
cessible from the outside through the reverse proxy
for security. The Back-End provides the restful
API. It invokes all machine learning, NLP, and
embedding tasks via a task manager in isolated
processes as they are time-consuming and would
exceed the HTTP request time out. It further cal-
culates the comment embedding index and queries
the database. The Embedding Container calculates
the embeddings for newly imported user comments.
This container can also run on a dedicated host to
calculate the embeddings with GPU support.

After login, the Back-End issues a JSON web
token (Jánoky et al., 2018) for the Front-End. All
sensitive API endpoints of the Back-End are pro-
tected and require a valid JSON web token in the
request’s body. Protected actions include the com-
ment and document import, the creation of new
labels, and posting annotations.

3.2 Machine Learning Pipelines

Two essential parts of the architecture are the
Model Training Pipeline (Figure 3a) and the Com-
ment Import Pipeline (Figure 3b).

The Model Training Pipeline applies supervised
machine learning, and active learning strategies
(Settles, 2012) to improve the comment classifi-
cation continuously. To define a label and train
a model for the automatic classification, the do-
main expert must first log in and create a new label.
Domain experts can select the new label from the
menu and start annotating samples. The domain
expert is the human in the loop (Bailey and Chopra,
2018), who annotates and enlarges the training set
to improve the automatic classification iteratively.

Annotators can sort the user comments accord-
ing to the uncertainty score to keep the annotation
process most rewarding (Andersen et al., 2020). Fo-
rum 4.0 uses the label probability as the uncertainty
value. Uncertain instances are those whose classifi-

4https://spiegel.de/

enough new
samples?

no

yes

create label

select label

login

annotate

train new model

evaluate model

classify comments

(a) The Model Training
Pipeline.

batch finished?

no

yes

import user comment

embed user comment

classify batch with
existing labels

(b) The Comment Import
Pipeline.

Figure 3: Machine Learning Pipelines

cation is the least confident, i.e. P (c|d) ≈ 0.5 for
comment d belonging to class c.

Forum 4.0 provides rapid annotation techniques
to support and accelerate the collection of train-
ing samples. Forum 4.0 lists semantically similar
comments to an existing comment based on the
similarity of the comment embeddings. In case
the annotator found a positive training example,
chances are higher that semantically similar user
comments are also positive user comments, which
the annotator can quickly check.

We can adjust the number of required new train-
ing samples, which trigger the training of a new
model. After each annotation, Forum 4.0 checks
whether enough new training samples are available
to invoke (re-)training of the model. The task man-
ager executes each model training as a dedicated
process, logs its training, and records the evaluation
results. Forum 4.0 evaluates each model using ten-
fold cross-validation (Stone, 1974) to determine
the classification performance. The newly trained
model classifies all other user comments, which are
not part of the training set, and Forum 4.0 persists
its classification scores for that label.

The Data Import Pipeline enables the import and
processing of new user comments. After import-
ing a new user comment batch, the task manager
triggers the embedding process, which calculates
the embeddings for the imported user comments.

66

Forum 4.0 employs transfer learning (Howard and
Ruder, 2018) by using the embeddings of well-
established pre-trained language models, for ex-
ample, BERT embeddings (Devlin et al., 2019),
as machine learning features for the classification
model. Subsequently, all existing models classify
the new user comment batch.

4 Machine Learning Experiments

To preliminary evaluate the applicability of Fo-
rum 4.0 and the performance of its machine learn-
ing models, we conducted experiments with com-
ments from news sites and app stores. For the
online journalism domain, we used the One Mil-
lion Post (OMP) corpus (Schabus et al., 2017). It
consists of∼1M German user comments submitted
to the Austrian newspaper DER STANDARD, partly
annotated by forum moderators. For the app store
domain, we used an existing annotated app review
dataset (ARD) (Stanik et al., 2019).

We used 9,336 annotated German comments
(1,625 positives and 7,711 negatives) regarding
OMP’s “personal story” label. These user com-
ments share the users’ personal stories regarding
the respective topic, including experiences and
anecdotes. We used 6,406 annotated English app re-
views (1,437 positives and 4,969 negatives) regard-
ing the ARD’s “bug report” label. In bug reports,
users describe problems with the app that should
be fixed, such as a crash, an erroneous behavior, or
a performance issue.

We simulated the human annotator, who gradu-
ally annotates a batch of user comments, triggering
a new training and evaluation cycle. We trained
the classifier on the training set and evaluated the
model on the remaining comments. We started our
first training with ten samples and triggered new
training for every ten new annotations.

Forum 4.0 allows random sampling and uncer-
tainty sampling for new annotations, which we
compared in our experiments. With random sam-
pling, we randomly chose and added ten new sam-
ples to our training set. With uncertainty sampling,
we added the user comments for which the classi-
fier’s output is closest to 0.5. We stopped adding
more user comments to the training set as soon as
the balanced accuracy score converged.

We evaluated the classification model on the re-
maining user comments after each training, using
the balanced accuracy, F1-score, and the Receiver
Operating Characteristics (ROC-AUC) metrics.

For the comment embeddings, we used two
different multi-lingual pre-trained language mod-
els to embed the comments: (1) BERT (Devlin
et al., 2019) is based on a transformer architec-
ture, which learns contextual relations between
sub-(word) units in a text. We used an average to-
ken embedding of the four last layers of the BERT
model as the comment embeddings. (2) Sentence-
BERT (S-BERT) (Reimers and Gurevych, 2019)
is based on a modification of the BERT network
and infers semantically meaningful sentence em-
beddings. We used a lightweight logistic regression
model as a classifier due to performance require-
ments for quick updates of machine labels during
human-in-the-loop coding. To assess the feasibility
of our architecture, we further timed the model’s
training and evaluation. To mitigate the noise of
our results, we performed 50 rounds for each ex-
periment. The line plots show the average results
of all rounds and the standard deviation.

5 Experiments Results

Figure 4 shows the balanced accuracy, ROC-AUC,
and F1-scores for all our classification experiments.
Overall, all classification metrics improve with in-
creasing training data. Additionally, the uncertainty
sampling strategy outperforms random sampling,
and the S-BERT embeddings outperform the BERT
embeddings given the same sampling strategy. All
evaluation metrics significantly improve within the
first 100 training samples and converge afterward.

On the OMP dataset, we achieved a balanced ac-
curacy of 0.86 with 100 training samples using un-
certainty sampling and S-BERT embeddings. With
500 training samples, we reached 0.91. Within the
first 100 training samples, S-BERT embeddings
outperformed the BERT embeddings. We achieved
a similar F1-score as Schabus et al. (2017) with
∼50 training samples (0.70) and outperformed their
model using 500 training samples with an F1-score
of 0.82. On the app review dataset, we achieved
a balanced accuracy of 0.92, a ROC-AUC of 0.96,
and an F1-score of 0.85 using 500 training samples.

Figure 5 shows the time measurements for train-
ing the logistic regression model. In all cases, the
training size has a linear increase. Overall, the
training time with the S-BERT embeddings (0.1s
for 500 samples) takes a shorter time than training
with the BERT embeddings (0.4s for 500 samples)
on both datasets. We also measured the classifica-
tion time on the remaining test set, which takes less

67

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0
Ba

la
nc

ed
 A

cc
ur

ac
y

PersonalStories

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

Bug Report

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

RO
C

AU
C

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

F1

model
BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.5

0.6

0.7

0.8

0.9

1.0

F1 model
BERT
SBERT

strategy
rnd
unc

Figure 4: Balanced accuracy (top), ROC-AUC (cen-
ter), and F1-scores (bottom) for all classification exper-
iments on the OMP (left column) and the ARD (right
column).

than ∼3ms on the OMP (∼8,000 test samples) and
the ARD (∼6,000 test samples) dataset.

6 Related Work

Previous work in the app development domain au-
tomatically analyzed comments on apps includ-
ing, app reviews (Guzman and Maalej, 2014; Dhi-
nakaran et al., 2018; Harman et al., 2012) and
tweets (Guzman et al., 2016; Williams and Mah-
moud, 2017), to understand and summarize users’
needs and support development decisions (Stanik
and Maalej, 2019). A typical analysis goal is to
reduce the noisy user feedback and classify the
remaining ones into bug reports, feature requests,
and experience reports (Maalej et al., 2016a).

Similarly, in online journalism, previous work
aimed to reduce noise and hate speech (Gao and
Huang, 2017), identify high-quality contributions
(Park et al., 2016a; Diakopoulos, 2015; Wang and
Diakopoulos, 2021), summarize the audiences’ sen-
timent (Wang et al., 2013), or identify comments,
which address journalistic aspects (Häring et al.,
2018). Park et al. (2018) and Fast et al. (2016)
developed a prototype, which supports the analysis

100 200 300 400 500
#Training Data

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 T
im

e
(s

)

PersonalStories
model

BERT
SBERT

strategy
rnd
unc

100 200 300 400 500
#Training Data

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 T
im

e
(s

)

Bug Report
model

BERT
SBERT

strategy
rnd
unc

Figure 5: Training time of the logistic regression
model.

of documents and comments regarding a custom
concept based on seed terms.

Forum 4.0 builds upon this previous work and
features a domain-independent comment analysis
framework for domain experts. Domain experts can
create or reuse useful labels, annotate user com-
ments regarding these labels, and train machine-
learning models, which automatically classify the
comments for further utilization.

7 Conclusion

We presented Forum 4.0, an open-source frame-
work to semi-automatically analyze user comments
in various domains including, online journalism
and app store. Domain experts can flexibly define
or reuse comment analysis dimensions as classi-
fication labels in our framework. Forum 4.0’s ar-
chitecture leverages state-of-the-art semantic text
embeddings with a lightweight logistic regression
model to address the labeling flexibility and the
scalability requirements for an application to mil-
lions of user comments. Forum 4.0 starts a new
model training after the domain expert annotated
additional comments for the concerned label. Fo-
rum 4.0 evaluates each new model and classifies
the remaining user comments for further analysis.

We achieved promising results with our machine
learning experiments in both domains with differ-
ent semantic embedding and sampling strategies
already after n ≥ 100 annotations with a low train-
ing time (t = 0.1s). Our evaluation suggests that
Forum 4.0 can also be applied at a larger scale with
millions of user comments.

Acknowledgments

This work is partly funded by the Hamburg’s
ahoi.digital program in the Forum 4.0 project.

68

References
Jakob Smedegaard Andersen, Tom Schöner, and Walid

Maalej. 2020. Word-Level Uncertainty Estimation
for Black-Box Text Classifiers using RNNs. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 5541–5546,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Katherine Bailey and Sunny Chopra. 2018. Few-
shot text classification with pre-trained word em-
beddings and a human in the loop. arXiv preprint
arXiv:1804.02063.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, MN, USA. Associ-
ation for Computational Linguistics.

Venkatesh T. Dhinakaran, Raseshwari Pulle, Nirav
Ajmeri, and Pradeep K. Murukannaiah. 2018. App
Review Analysis Via Active Learning: Reducing Su-
pervision Effort without Compromising Classifica-
tion Accuracy. In 2018 IEEE 26th International
Requirements Engineering Conference (RE), pages
170–181, Banff, AB. IEEE.

Nicholas Diakopoulos. 2015. Picking the NYT picks:
Editorial criteria and automation in the curation of
online news comments. #ISOJ, page 147.

Ethan Fast, Binbin Chen, and Michael S. Bernstein.
2016. Empath: Understanding topic signals in large-
scale text. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems,
pages 4647–4657, San Jose, CA, USA. ACM.

David Flanagan and Will Sell Like. 2006. Javascript:
The definitive guide, 5th.

Lena Frischlich, Svenja Boberg, and Thorsten Quandt.
2019. Comment Sections as Targets of Dark Par-
ticipation? Journalists’ Evaluation and Moderation
of Deviant User Comments. Journalism Studies,
20(14):2014–2033.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP
2017, pages 260–266, Varna, Bulgaria. INCOMA
Ltd.

Emitza Guzman, Rana Alkadhi, and Norbert Seyff.
2016. A Needle in a Haystack: What Do Twitter
Users Say about Software? In 2016 IEEE 24th
International Requirements Engineering Conference
(RE), pages 96–105, Beijing, China.

Emitza Guzman and Walid Maalej. 2014. How Do
Users Like This Feature? A Fine Grained Sentiment
Analysis of App Reviews. In 2014 IEEE 22nd Int.
Requirements Engineering Conf. (RE), pages 153–
162, Karlskrona, Sweden.

Marlo Haering, Muneera Bano, Didar Zowghi,
Matthew Kearney, and Walid Maalej. 2021. Au-
tomating the evaluation of education apps with app
store data. IEEE Transactions on Learning Tech-
nologies (TLT), pages 1–12.

Marlo Häring, Wiebke Loosen, and Walid Maalej.
2018. Who is Addressed in This Comment?: Au-
tomatically Classifying Meta-Comments in News
Comments. Proc. ACM Hum.-Comput. Interact.,
2(CSCW):67:1–67:20.

Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012.
App Store Mining and Analysis: MSR for App
Stores. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, MSR
’12, pages 108–111, Piscataway, NJ, USA. IEEE,
IEEE Press.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

László Viktor Jánoky, János Levendovszky, and
Péter Ekler. 2018. An analysis on the revok-
ing mechanisms for JSON Web Tokens. Inter-
national Journal of Distributed Sensor Networks,
14(9):155014771880153.

Anna Sophie Kümpel and Nina Springer. 2016.
Qualität kommentieren. Die Wirkung von
Nutzerkommentaren auf die Wahrnehmung jour-
nalistischer Qualität. Studies in Communication —
Media, 5(3):353–366.

Wiebke Loosen, Marlo Häring, Zijad Kurtanović, Lisa
Merten, Julius Reimer, Lies van Roessel, and Walid
Maalej. 2018. Making sense of user comments:
Identifying journalists’ requirements for a comment
analysis framework. SCM Studies in Communica-
tion and Media, 6(4):333–364.

Walid Maalej, Zijad Kurtanović, Hadeer Nabil, and
Christoph Stanik. 2016a. On the automatic classi-
fication of app reviews. Requirements Engineering,
21(3):311–331.

Walid Maalej, Maleknaz Nayebi, Timo Johann, and
Guenther Ruhe. 2016b. Toward data-driven require-
ments engineering. IEEE Software, 33(1):48–54.

Daniel Martens and Walid Maalej. 2019. Release
early, release often, and watch your users’ emotions:
Lessons from emotional patterns. IEEE Software,
36(5):32–37.

69

Teresa K. Naab, Dominique Heinbach, Marc Ziegele,
and Marie-Theres Grasberger. 2020. Comments
and Credibility: How Critical User Comments De-
crease Perceived News Article Credibility. Journal-
ism Studies, 21(6):783–801.

Dennis Pagano and Walid Maalej. 2013. User feedback
in the appstore: An empirical study. In 2013 21st
IEEE International Requirements Engineering Con-
ference (RE), pages 125–134, Rio de Janeiro, Brasil.

Deokgun Park, Seungyeon Kim, Jurim Lee, Jaegul
Choo, Nicholas Diakopoulos, and Niklas Elmqvist.
2018. ConceptVector: Text visual analytics via in-
teractive lexicon building using word embedding.
IEEE transactions on visualization and computer
graphics, 24(1):361–370.

Deokgun Park, Simranjit Sachar, Nicholas Diakopou-
los, and Niklas Elmqvist. 2016a. Supporting com-
ment moderators in identifying high quality online
news comments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’16, page 1114–1125, New York, NY,
USA. Association for Computing Machinery.

Deokgun Park, Simranjit Sachar, Nicholas Diakopou-
los, and Niklas Elmqvist. 2016b. Supporting com-
ment moderators in identifying high quality online
news comments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Sys-
tems, pages 1114–1125, San Jose, CA, USA. ACM.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Dietmar Schabus, Marcin Skowron, and Martin Trapp.
2017. One million posts: A data set of German on-
line discussions. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 1241–
1244, Miyazaki, Japan. ACM Press.

Burr Settles. 2012. Active Learning. Morgan & Clay-
pool Publishers.

Nina Springer, Ines Engelmann, and Christian Pfaffin-
ger. 2015. User comments: Motives and inhibitors
to write and read. Information, Communication &
Society, 18(7):798–815.

Christoph Stanik, Marlo Haering, and Walid Maalej.
2019. Classifying multilingual user feedback using
traditional machine learning and deep learning. In
IEEE 27th International Requirements Engineering
Conference Workshops, pages 220–226, Jeju Island,
South Korea.

Christoph Stanik and Walid Maalej. 2019. Require-
ments intelligence with OpenReq analytics. In 2019
IEEE 27th International Requirements Engineering
Conference (RE), pages 482–483, Jeju Island, South
Korea.

Mervyn Stone. 1974. Cross-Validatory Choice and As-
sessment of Statistical Predictions. Journal of the
Royal Statistical Society: Series B (Methodological),
36(2):111–133.

Changbo Wang, Zhao Xiao, Yuhua Liu, Yanru Xu,
Aoying Zhou, and Kang Zhang. 2013. SentiView:
Sentiment Analysis and Visualization for Internet
Popular Topics. IEEE Transactions on Human-
Machine Systems, 43(6):620–630.

Yixue Wang and Nicholas Diakopoulos. 2021. The
Role of New York Times Picks in Comment Quality
and Engagement. In Hawaii International Confer-
ence on System Sciences, page to appear, Hawaii.

Grant Williams and Anas Mahmoud. 2017. Mining
Twitter feeds for software user requirements. In
2017 IEEE 25th International Requirements Engi-
neering Conference (RE), pages 1–10, Lisbon, Por-
tugal.

70

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 71–79
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

SLTEV: Comprehensive Evaluation of Spoken Language Translation

Ebrahim Ansari
Charles University MFF ÚFAL

and IASBS

Ondřej Bojar
Charles University

MFF ÚFAL

Barry Haddow
University of Edinburgh

surname@ufal.mff.cuni.cz except bhaddow@ed.ac.uk

Mohammad Mahmoudi
IASBS

Abstract
Automatic evaluation of Machine Translation
(MT) quality has been investigated over sev-
eral decades. Spoken Language Translation
(SLT), especially when simultaneous, needs to
consider additional criteria and does not have
a standard evaluation procedure and a widely
used toolkit. To fill the gap, we introduce
SLTEV, an open-source tool for assessing SLT
in a comprehensive way. SLTEV reports the
quality, latency, and stability of an SLT can-
didate output based on the time-stamped tran-
script and reference translation into a target
language. For quality, we rely on sacreBLEU
which provides MT evaluation measures such
as chrF or BLEU. For latency, we propose two
new scoring techniques. For stability, we ex-
tend the previously defined measures with a
normalized Flicker in our work. We also pro-
pose a new averaging of older measures.

A preliminary version of SLTEV was used in
the IWSLT 2020 SHARED TASK. Moreover,
a growing collection of test datasets directly
accessible by SLTEV are provided for system
evaluation comparable across papers.

1 Introduction

Spoken Language Translation (SLT), i.e. transla-
tion of human speech across languages, is an appli-
cation at least as important as Machine Translation
(MT). Many approaches have been examined so
far, ranging from translation of transcript chunks
(Fügen et al., 2008; Bangalore et al., 2012) to fully
end-to-end, speech-to-speech neural systems, (Jia
et al., 2019). In recent years, simultaneous trans-
lation systems aim at behavior similar to human
interpreters, digesting and producing an infinite se-
quence of words. Some systems (Grissom II et al.,
2014; Gu et al., 2017; Arivazhagan et al., 2019b;
Press and Smith, 2018; Xiong et al., 2019; Ma
et al., 2019; Zheng et al., 2019) do not consider
any revision of their outputs and can be evaluated

in two main criteria: quality and latency, allowing
users to trade a bigger delay (including waiting for
more input text) for a more accurate translation. Si-
multaneous translation systems aimed at automatic
subtitling (Niehues et al., 2016; Müller et al., 2016;
Niehues et al., 2018; Arivazhagan et al., 2019a)
may revise their outputs, demanding a new eval-
uation measure: the stability, i.e. the amount of
revision. Trading these qualities for one another is
again possible: It is obvious that if a system cre-
ates the translations with a longer Delay or revises
them more (higher Flicker), the quality of the fi-
nal translation (i.e., the output text) can be better.
Given the existence of three evaluation criteria and
a multitude of possible definitions for each of them,
the need for some robust and standard metrics to
evaluate SLT is inevitable.

Recently, the MT community tackled a similar
problem (i.e., the inconsistency in the reporting of
BLEU scores) by introducing a tool named sacre-
BLEU (Post, 2018) with a canonical implementa-
tion of the widely user metric. In this work, we
propose SLTEV,1 an open-source tool to calculate
the quality of SLT systems based on three different
criteria: translation quality, latency, and stability,
in a standardized way. Furthermore, we comple-
ment SLTEV with a growing collection of freely-
available test sets for Automatic Speech Recogni-
tion (ASR), MT and SLT for a number of languages,
so that these technologies can be evaluated in com-
parable settings, similarly to what the WMT news
test sets (Barrault et al., 2020) offer in MT.

2 Related Work

SLTEV is designed to be versatile enough to score
automatic SLT as well as transcribed human inter-
pretation. Shimizu et al. (2014) are probably the
first to score human interpretation with automatic

1https://github.com/ELITR/SLTev

71

P 0 50 Good P 60 0 50 Gut
P 0 65 Good mor P 80 0 65 Guten Morgen!
P 0 119 Good morning how P 130 0 119 Guten wie morgen
P 0 195 Good morning. How are you? P 201 0 195 Guten Morgen! Wie geht es dir?
C 0 102 Good morning. C 201 0 102 Guten Morgen!
P 102 218 How are you? I P 220 102 218 Wie geht es dir? Ich
C 102 195 How are you? C 220 102 195 Wie geht es dir?
P 195 239 I am P 245 195 239 Ich bin
...

(a) Time-stamped transcript (b) SLT candidate output

Figure 1: Example of SLTEV file formats. All timestamps in centiseconds.

measures but they segment the output manually and
assess only the quality using BLEU (Papineni et al.,
2002), WER (Matusov et al., 2005), TER (Snover
et al., 2006), and RIBES (Isozaki et al., 2010).

Most SLT evaluations require sentence segmen-
tation of the candidate to match the reference one.
Using mwerSegmenter (Matusov et al., 2005), they
re-segment the candidate automatically, minimiz-
ing WER against the reference. We complement
this approach with time-based segmentation.

Niehues et al. (2016) introduced the retranslation
approach to simultaneous SLT, and define latency
based on the time between a word expected and
actually displayed, considering only the final ver-
sion of the word, not early revisions. They did
not provide any evaluation of stability. However,
in follow-up work (Niehues et al., 2018) they as-
sess the level of SLT stability (i.e., the number of
corrections) by measuring the overlap between con-
secutive updates. As soon as a word is changed, all
the following words are counted as updated, sug-
gesting than any word change forces the user to
reread all the rest.

Gu et al. (2017) consider two versions of de-
lay when assessing their reinforcement learning
based simultaneous SLT model: Average Propor-
tion (of waiting compared to producing words) and
Consecutive Wait (the silence duration so far), and
prescribe a target value for each of them to steer the
learning, also balancing it with quality estimated
by smoothed BLEU (Lin and Och, 2004). Since
their model does not allow corrections, they do not
require a measure of stability.

The delay measures of (Gu et al., 2017) were
criticised by Ma et al. (2019) when they introduced
their wait-k model. They defined a measure Aver-
age Lag (AL), which measures how far, in words,
the translation is behind an ideal wait-k model.
Since wait-k does not allow corrections, they do
not need a stability measure. AL was improved
by Cherry and Foster (2019), with Differentiable
Average Lag (DAL), which not only is differen-

tiable, but fixes some undesirable behaviour of AL
around sentence boundaries. However DAL, like
AL, is defined in terms of word count and on seg-
mented text (although it could be extended to fix
these shortcomings).

Arivazhagan et al. (2019a) extended the retrans-
lation model of Niehues et al. (2016), and so
needed a measure of stability. For evaluation, they
check the output of ASR and the output of the MT
system as recorded over time in their simple log-
ging system. They assess the quality, latency, and
stability (i.e., Flicker). The quality is estimated us-
ing BLEU after mwerSegmenter re-segmentation.
For the assessment of latency (translation lag) and
stability (the number of erased tokens in tempo-
rary translations per final target token, “Normal-
ized Erasure” in the paper), they do not use any
segmentation at all and instead calculate the scores
for ten-minute long audio chunks.

The closest to our work is SIMULEVAL (Ma
et al., 2020), a client-server toolkit measuring the
latency of SLT including any network effects be-
tween the evaluated system (client) and the mock
user (SIMULEVAL server). SIMULEVAL offers a
nice visualization interface but the required client-
server approach may be unsuitable for research
prototypes solving SLT only partially. Most impor-
tantly, updates of output (Flicker) are not supported
and no test set for reproducible scoring is provided.

3 Input Formats

SLTEV can evaluate separate ASR and MT systems
as well as cascaded and end-to-end SLT systems.
We focus on SLT here. Three input files are used
for SLT evaluation: a time-stamped golden tran-
script in the source language (Section 3.1), a refer-
ence translation (or translations in multi-reference
format; Section 3.2) and candidate output (Sec-
tion 3.3) in the target language. The intermediate
ASR output can be provided as the fourth input file
to calculate the accuracy of the ASR system if it
was part of the cascade (Section 3.3).

72

3.1 File Format of Time-Stamped Transcript

Time-stamped transcript files (golden transcript
and ASR output, both in the source language) are
line-oriented text files. The lines contain gradually
growing “partial” (P) segments, until the segment
is “completed” (C);2 see Figure 1 (a). All lines are
equipped with timestamps measured in centisec-
onds from the start of the sound file: the start time
and end time of the given segment.

Partial segments add one or more words at once,
sub-word updates are possible but SLTEV is not
ready for them. We expect that a well-aligned tran-
script file (such as the golden reference) should
have the exact same number of completed (C) seg-
ments as the reference translation file.

3.2 File Format of the Reference Translation

Each line of the reference translation file shows the
translation of the corresponding complete (C) line
in the time-stamped transcript file. The number of
lines in the reference translation thus equals the
number of C lines in the time-stamped transcript.

3.3 File Format of ASR, MT or SLT Output

An ideal SLT system will report all the details as in
Figure 1 (b): partial (P) vs. complete (C) flag, the
display time when the segment was produced and
the start time and end time indicating the time span
supposedly containing the given message. Partial
segments allow the user to provide finer timing
information and to provide revisions of outputs,3

trading lower Delay for higher Flicker.
For the output of ASR, the segment is in the

source language. For the output of MT as the sec-
ond step or the output of end-to-end SLT, the seg-
ment is in the target language but the start and end
timestamps should reflect the span in the original
sound, i.e., when the source was uttered.

Again, “P”artial candidates allow for revising the
output so far, and the “C”omplete candidates are
required. The concatenation of all the (C) segments
corresponds to the whole document but their num-
ber and segmentation may differ from the reference
one. If the ASR, MT or SLT outputs lack some of
the timestamp information, zeros should be used
for format consistency. SLTEV then calculates lim-
ited results based on the provided information.

2We use the term “segment” for generality but typically,
completed segments correspond to sentences. Usually, a sen-
tence ends with a punctuation mark.

3Revisions do not occur in golden transcripts but we want
the same format to suit both golden and candidate outputs.

4 Proposed Metrics

In this section, all evaluation metrics and strate-
gies introduced in our evaluation framework are de-
scribed. Our evaluations are based on three criteria:
latency, stability, and the quality of MT outputs.

4.1 Delay to Assess Latency

In our point of view, latency should reflect the de-
lay with which the recipient receives the message
from the sender. Words are reasonable smallest
units that the message can be broken into but there
is not a 1-to-1 correspondence between source and
target words. Ideally, we would know the align-
ment between the source words and the words in
the candidate translation, and we would have exact
timing information for both.

Defining latency as the sum of how long we
had to wait for a target word given the time of
the corresponding source word4 would render the
values dependent on the language pair in question.
When translating, e.g., from English into German,
all verbs in subordinate clauses would increase the
value of latency because they simply have to appear
at the end of the German clause, so the recipient
receives them much later than their English source
verb was uttered. We thus focus on the extra delay
beyond what the language pair implies.

We propose two approaches to delay calculation.
Both measure the difference between the time that
a target word was displayed and an estimate of
when it should have been displayed but differ in
estimating the expected display time:5 The first
one is proportional while the second one uses au-
tomatic word alignment between the source and
reference translations to account for word order
differences across languages, see Sections 4.2.1
and 4.2.2 below.

Both approaches produce a two-dimensional ma-
trix T (i, j) storing the expected time of the jth
word of the reference sentence i.

4In this calculation, we only include reference words which
also appear in the SLT output, because they are the only ones
that contribute meaningfully to the delay. A reference word
which never appears in the SLT output has an infinite delay,
and a word appearing in the output but not in the reference
is, well, unexpected, so no delay makes sense. We acknowl-
edge that this design decision brings the risk of gaming Delay
by producing words different from the reference; this would
however lead to a clear loss in Quality.

5If the reference translation was also time-stamped at the
word level, this estimate would be easier to make but we do not
assume that. We are however experimenting with reference
interpretation, where a human interpreter produces translation
in time. This exploration is left for future.

73

Given T , our Delay is calculated by summing
differences between the expected word emission
time in T and the reported emission time in the
segments of the SLT candidate output. If the SLT
system predicts the word earlier than its expected
time, its delay is set to zero, not negative.

4.2 Segmentation Strategies

Note that delay calculation operates on the indi-
vidual segments of the transcript. We use two
segmentation strategies to re-segment the candi-
date to match the reference as described below. In
both cases, only completed (C) segments are re-
segmented, but partial (P) segments are used to
estimate timings of individual words.

Time-Based Segmentation: Using the starting
time and ending time of each segment in the ref-
erence transcript, the corresponding words in the
SLT output are selected (i.e., words with their time
between the starting and ending time). To compen-
sate for minor timing errors, we expand this span
by one word in each direction in the SLT output.
All the words from the starting to the ending one
are taken as the candidate segment, see Figure 3.

Word-Based Segmentation: We use the 1-1
correspondence between segments in the golden
source transcript and reference translation. We ap-
ply mwerSegmenter to re-segment candidate trans-
lation (the concatenation of “C” segments) to match
exactly the segmentation of the reference transla-
tion and then work with source–candidate segment
pairs. Again, minor mwerSegmenter errors are com-
pensated by expanding candidate segments by one
word at each end, see Figure 4.

4.2.1 Proportional Delay Calculation
We need to attribute an “expected” time to each
word in the reference and then compare it with the
time the word was displayed in SLT output.

For proportional delay calculation, we first es-
timate the timing of each source word based on
partial (P) segments6 in the golden transcript and
then attribute these times to words in the reference
translation, proportionally along the sequence of
words.7 This is an oversimplification because word
alignment is not monotonic and also because the
reference translation was created in written form
with access to the full source, so even the first word

6Partial segments provide more accurate word-level timing
but we can and do resort to equidistant division of the complete
segment time span if golden transcript lacks partial segments.

7Word lengths could be used as an additional refinement.

of the reference may well be influenced by some
late source words.

Formally, we are populating table T (i, j) with
expected times of jth word in the ith segment of the
reference translation. First we estimate the times
of source words in the ith complete segment of the
golden transcript based on starting and ending time
of the (partial) source segment where the source
word first appeared. For example, when three new
words are added in a partial segment ending at t2
compared to the previous partial segment which
ended at t1, we need to divide the time interval (t1,
t2) among these three words. We estimate that the
first word appeared at t1 + (t2 − t1)/3, the second
one at t1 + 2 ∗ (t2 − t1)/3 and the last one at t2.

This source word timing is transferred to the
target word timing proportionally. With li being
the length in words of source segment i and mi the
corresponding reference length, we denote P =
j ∗ li/mi as a shortcut for the fractional index of
the source word which corresponds to the j word
in the reference segment i. We then define:

T (i, j) = tbP c +
(
(tdP e − tbP c) ∗ (P − bP c)

)

(1)
tx is the expected time of the xth word of the

source sentence i and b·c , d·e round to the nearest
integer.

To see how the proportional delay calculation
works in practice, consider the example in Figure 2.
We first need to estimate the times for each source
word. Since the first source partial segment consists
of 3 words, we estimate the times of “We”,“would”
and “like” by dividing the 760–827 interval into
three equal parts, whereas the other source words
are assigned to the end timestamps of their time in-
tervals, since they appear in individual increments.
The estimated source times are therefore:

We would like to introduce our company
782 805 827 846 919 961 1062

In order to perform the proportional delay cal-
culation, we note that the source-reference length
ratio is 7/6, so that the value P in Equation 1 is
equal to 7j/6 for the jth reference word. Substitut-
ing into Equation 1 gives the following expected
times for the reference words:

Wir würden gern unser Unternehmen vorstellen
786 812 836 895 954 1062

Comparing the expected times with the actual
times in Figure 2b, we can see that the total delay

74

P 760 827 We would like
P 760 847 We would like to
P 760 919 We would like to introduce
P 760 961 We would like to introduce our
C 760 1062 We would like to introduce our company.

(a) Time-stamped golden source transcript

P 800 720 760 Wir
P 870 720 860 Wir möchten
P 910 720 905 Wir möchten vorstellen
C 1200 720 1110 Wir möchten unser Unternehmen vorstellen.

(b) SLT output

Wir würden gern unser Unternehmen vorstellen

(c) Reference

Figure 2: Example for proportional delay calculation.

is given by:

(800−786)+(1200−895)+(1200−954)+0 = 565

In this sum, “würden” and “gern” are not included
at all because they do not appear in the hypothesis.
“unser” and “Unternehmen” both appeared at the
same time 1200 and “vorstellen” has zero delay,
since it arrives at 910, before its expected time.

4.2.2 Delay Calculation using Alignments
The SLT system should not be expected to produce
any word earlier than the reference produced it,
e.g. due to grammatical constraints of the target
language. (If it does, we do not penalize it. Giving
a bonus for such an earlier appearance is yet to be
considered.)

We use the word alignment between source
words (which are time-stamped in the golden tran-
script) and reference words to attribute timing in-
formation to reference words, see “Table T” in the
middle of Figures 3 and 4.

We set the expected time of each reference word
as the maximum of the timestamp of the last source
word aligned to this reference word (the reference
translator “had to wait” for the respective source
piece of information) and the expected time of the
preceding reference word (the translator “had to
postpone” any words he or she already knew until
the missing one became available to respect tar-
get language grammatical order). With this defini-
tion, any SLT system is allowed to “wait” for the
source or “postpone” its output without penaliza-
tion same as the reference translator did. E.g. the
word “vorstellen” (introduce) is expected at 1062
in the proportional delay calculation (upper Tables
T). Based on alignment only, it would be expected
at 919 (struck out in the figures), because that is
the time when the aligned “introduce” appeared
but we max it out to 1062 because the preceding
“Unternehmen” (company) was available only at
1062.

For “unser”, SLTEV selects the expected time
as the maximum between 895 (its expectation time
under proportional delay) and 961 (the time that
its aligned source word “our” appeared) . In other
words, SLTEV gives more time to the SLT system
to display the “unser” because its aligned word is
output a bit later than the proportional expectation
of “unser”. Under the alignment-based delay, we
do not expect that the word will be output earlier
than its alignment indicates.

Technically, we rely on automatic word align-
ments by MGIZA (Gao and Vogel, 2008) which
is a multi-threaded version of GIZA++ (Och and
Ney, 2003), aligning the completed segments of
the golden source transcript and the reference trans-
lation. The effect of alignment errors on the relia-
bility of the evaluation is yet to be explored.

4.2.3 Multi-Reference Delay Calculation
With multiple references, we create a separate table
T for each and calculate the delay of each seg-
ment individually, taking the minimum across all
references. The final delay is the sum of these
minima. We use this strategy for both delay cal-
culation methods and both segmentation strategies
introduced above.

4.3 Flicker to Assess Stability
For systems that revise their outputs, (in)stability
of the output is important because it could distract
the user. Following Niehues et al. (2018), “flicker”
commonly reflects the number of words after the
first difference between two consecutive output up-
dates. We report two variants of Flicker:

Average revision count per segment:
The revision count RC for each completed

(“C”) segment k is calculated as: RCk =∑nk
i=2 (|si−1| − |LCP(si−1, si)|), where si is the

ith partial segment preceding the current complete
segment k and nk is the number of partial segments
between complete segments k− 1 and k. LCP gets
the longest common prefix. If segment k has no

75

Table SLT

b) delay values in alignment-based calculation

Table T

Proportional delay calculation

Alignment-based calculation

-1

Time-based segmentation

Table T

P 760 827 We would like
P 760 846 We would like to
P 760 919 We would like to introduce
P 760 961 We would like to introduce our
C 760 1062 We would like to introduce our company.

Time-Stamped Transcript (English)

SLT Output (German)

Wir würden gern unser Unternehmen vorstellen.

Reference (German)

...

...

we

would

like

to

our

company

Untern-
ehmen

Wir

würden

gern

unser

vorstellen

introduce

Wir würden gern unser Untern-
ehmen vorstellen

786 812 836 895 954 1062

786 812 836 961 1062

Wir würden gern unser Untern-
ehmen vorstellen

14 0 0 305 246 0

sum

565

a) delay values in proportional calculation

Wir würden gern unser Untern-
ehmen vorstellen

14 0 0 239 138 00

sum

391

710 758 860 1032 1110 905 1220

Hej Wir möchten unser Untern-
ehmen vorstellen Also

740 800 870 1200 1200 910 1315

...

estimated time

display time

+1
C 740 680 710 Hej.
P 800 720 760 Wir
P 870 720 860 Wir möchten
P 910 720 905 Wir möchten vorstellen
C 1200 720 1110 Wir möchten unser Unternehmen vorstellen.
P 1315 1190 1220 Also
P 1400 1190 1351 Also müssen wir
...

...

919
1062

Figure 3: Time-based segmentation for proportional (a) and alignment-based (b) delay calculation. Using time-
stamped transcript and reference translation, Table T is pre-computed. Then using timings in SLT output, word-
level timestamps are estimated (“Table SLT”). The a) and b) value of delay is the sum of differences between
expected word times in Table T and display times in Table SLT.

Table SLT

b) delay values in alignment-based calculation

Table T

Proportional delay calculation

Alignment-based calculation

-1 +1

Word-based segmentation
using mwerSegmenter

segmented by mwerSegmenter

Table T

P 760 827 We would like
P 760 846 We would like to
P 760 919 We would like to introduce
P 760 961 We would like to introduce our
C 760 1062 We would like to introduce our company.

Time-Stamped Transcript (English)

SLT Output (German)

C 740 680 710 Hej.
P 800 720 760 Wir
P 870 720 860 Wir möchten
P 910 720 905 Wir möchten vorstellen
C 1200 720 1110 Wir möchten unser Unternehmen vorstellen.
P 1315 1190 1220 Also
P 1400 1190 1351 Also müssen wir

Wir würden gern unser Unternehmen vorstellen.

Reference (German)

...

...

...

...

we

would

like

to

our

company

Untern-
ehmen

Wir

würden

gern

unser

vorstellen

introduce

Wir würden gern unser Untern-
ehmen vorstellen

786 812 836 895 954 1062

786 812 836 961 1062

Wir würden gern unser Untern-
ehmen vorstellen

14 0 0 305 246 0

sum

565

a) delay values in proportional calculation

Wir würden gern unser Untern-
ehmen vorstellen

14 0 0 239 138 00

sum

391

Hej Wir möchten unser Untern-
ehmen vorstellen Also

740 800 870 1200 1200 910 1315 display time

919
1062

Figure 4: Word-based segmentation (mwerSegmenter) for proportional (a) and alignment-based (b) delay calcu-
lation. The main difference from Figure 3 is in finding the span of words that form the candidate segment, i.e.
contribute to “Table SLT”. Table SLT now needs to contain only display time of words.

preceding partial segments, RCk is zero. Aver-
age revision count is calculated as: 1

K

∑K
k=1RCk,

where K is the total number of complete segments.
A disadvantage of this strategy is that if the sys-

tem makes a little change (1-2 chars) at the start of
the sentence, it gets heavily penalised.

Normalized revision count:
Similar to Arivazhagan et al. (2019a), nor-

malized revision is the total revision count
(
∑K

k=1RCk) divided by the output length (sum
of lengths of completed segments).

4.4 sacreBLEU to Assess Quality

Early versions of SLTEV used NLTK (Bird et al.,
2009) implementation of BLEU but it behaved
badly on empty segments and used a less common
tokenization scheme. We fully switched to sacre-

BLEU, calculating three variants of the score: (1)
disregarding segmentation, we concatenate all com-
pleted segments and evaluate them against the con-
catenated reference as if it was a single segment, (2)
force the candidate to reference segmentation us-
ing mwerSegmenter and calculate standard BLEU,
(3) time-span quality. The third option divides the
whole document into chunks of a fixed duration
(e.g. 30 seconds) and treats all words in that span
as a single segment. These single-segment BLEUs
are reported, providing an estimate of translation
quality over time, and also averaged for a summary.

If multiple references are available, we pass
them to sacreBLEU which follows standard multi-
reference BLEU and chrF calculations. In word-
based segmentation, we use the first reference as
the basis for mwerSegmenter re-segmentation.

76

5 A Growing Test Set

To allow for continued and comparable evalua-
tion of SLT by the research community, we cre-
ate and keep extending a publicly available dataset
which contains source audio, time-stamped golden
transcripts and reference translations for different
types of inputs called elitr-testset.8 The
dataset currently focuses on European languages,
as needed by the ELITR project (Bojar et al., 2020,
2021), but it is designed to be easily extensible
in both languages and domains. With the help of
commit IDs, full reproducibility of evaluations is
ensured, even as the dataset will be growing.

In simple words, the elitr-testset is an
assorted collection of documents, with inputs and
expected outputs for ASR, MT and/or SLT systems.
We expect our users to pick a relevant subset of
these documents depending on their application
needs and evaluate on this subset. For compara-
bility, we standardize some of these selections by
introducing the concept of “indices”.

Each index is simply a file list of documents and
it is also versioned in the elitr-testset. For
example, we provide indices of documents which
are good for purposes like: (1) SLT of English into
Czech/German in the auditing domain, (2) English
ASR in the computational linguistics domain, and
(3) Czech/German ASR, regardless of the domain.

Another feature of elitr-testset is a col-
lection of automatic checks that verify formal in-
tegrity of the documents (e.g. character encoding,
line ends, number of lines) before every commit.

All datasets included in elitr-testset are
free for public use but some indices include confi-
dential files.

SLTEV can be used as a stand-alone tool to eval-
uate ASR, MT or SLT using source, candidate and
reference files you provide, or it can be used very
conveniently with elitr-testset. Running
SLTev -g index-name will provide you with
input files that your system should process and a
second run of SLTEV will report your system’s
scores for the given index.

5.1 Practical Check

A preliminary version of SLTEV evaluated the sub-
mitted systems participating in the “Non-Native
Speech Translation” shared task of IWSLT 2020

8https://github.com/ELITR/
elitr-testset/

(Ansari et al., 2020). We ran simplified configura-
tions of SLTEV (i.e., without calculating Delay and
Flicker) for systems that did not provide enough
information in their output.

Five teams from three institutions took part in the
IWSLT 2020 SHARED TASK which was designed
for English-Czech and English-German language
pairs. The main test sets used in the shared task
(and now included in elitr-testset) were:

Antrecorp: 37 files each of which is an up to 90-
second mock business presentation given by high
school students in very noisy conditions. None of
the speakers is a native speaker of English and their
English contains many lexical, grammatical and
pronunciation errors as well as disfluencies due to
the spontaneous nature of the speech.

KhanAcademy: six files each of which is an ed-
ucational video. The speaker is not a native speaker
of English but his accent is generally rather good.

SAO: six files illustrating interpretation needs of
the Supreme Audit Office of the Czech Republic.
The speakers’ nationality affects their accent. The
Dutch file is a recording of a remote conference
call with further distorted sound quality.

6 Conclusion

In this paper, we introduced SLTEV, a framework
for comprehensive and fine-grained evaluation of
the output of simultaneous SLT systems, i.e., sys-
tems for live speech translation, and their compo-
nents (ASR, MT). In contrast to text translation sys-
tems, simultaneous SLT systems cannot be judged
just based on translation quality. For example, if the
system waits for the whole sentence to be analyzed
and processed, the translation quality will likely be
better but the high latency may not be acceptable
to the end user. SLTEV evaluates quality, latency,
and stability (the number of corrections the system
makes). In order to tackle the problem of the out-
put segmentation, we proposed a new time-based
segmentation method, in addition to the classical
re-segmentation strategy of mwerSegmenter.

We complement the release of SLTEV with
elitr-testset, a publicly available dataset of
source speech and reference translations, so that
truly comparable evaluations are available for the
research community. SLTEV directly accesses this
growing collection for easy and comparable scor-
ing of your systems in various domains. We used a
preliminary version of SLTEV to evaluate systems
in one of the IWSLT 2020 shared tasks.

77

Acknowledgments

This work has received funding from the
European Union’s Horizon 2020 Research

and Innovation Programme under Grant Agreement
No 825460 (ELITR) and the grant 19-26934X
(NEUREM3) of the Czech Science Foundation.

The authors are grateful to Rishu Kumar, Do-
minik Macháček, Sangeet Sagar, Matúš Žilinec,
and other members of the ELITR project for their
valuable technical support on SLTEV and their help
in improving it.

References
Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,

Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN. In Proceedings of the 17th In-
ternational Conference on Spoken Language Trans-
lation, pages 1–34, Online. Association for Compu-
tational Linguistics.

Naveen Arivazhagan, Colin Cherry, Te I, Wolfgang
Macherey, Pallavi Baljekar, and George Foster.
2019a. Re-translation strategies for long form, si-
multaneous, spoken language translation.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019b.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Srinivas Bangalore, Vivek Kumar Rangarajan Srid-
har, Prakash Kolan, Ladan Golipour, and Aura
Jimenez. 2012. Real-time incremental speech-to-
speech translation of dialogs. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 437–
445, Montréal, Canada. Association for Computa-
tional Linguistics.

Loı̈c Barrault, Magdalena Biesialska, Ondřej Bojar,
Marta R. Costa-jussà, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (wmt20). In Proceedings of the

Fifth Conference on Machine Translation, pages 1–
55, Online. Association for Computational Linguis-
tics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Ondřej Bojar, Dominik Macháček, Sangeet Sagar,
Otakar Smrž, Jonáš Kratochvı́l, Ebrahim Ansari,
Dario Franceschini, Chiara Canton, Ivan Simonini,
Thai-Son Nguyen, Felix Schneider, Sebastian
Stücker, Alex Waibel, Barry Haddow, Rico Sennrich,
and Philip Williams. 2020. ELITR: European live
translator. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 463–464, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

Ondřej Bojar, Dominik Macháček, Sangeet Sagar,
Otakar Smrž, Jonáš Kratochvı́l, Peter Polák,
Ebrahim Ansari, Mohammad Mahmoudi, Rishu Ku-
mar, Dario Franceschini, Chiara Canton, Ivan Si-
monini, Thai-Son Nguyen, Felix Schneider, Sebas-
tian Stüker, Alex Waibel, Barry Haddow, Rico Sen-
nrich, and Philip Williams. 2021. ELITR Multilin-
gual Live Subtitling: Demo and Strategy. In Pro-
ceedings of the System Demonstrations of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, Kyiv, Ukraine.
Association for Computational Linguistics.

Colin Cherry and George Foster. 2019. Thinking slow
about latency evaluation for simultaneous machine
translation.

Christian Fügen, Alex Waibel, and Muntsin Kolss.
2008. Simultaneous translation of lectures and
speeches. Springer Netherlands, Machine Transla-
tion, MTSN 2008, Springer, Netherland, 21(4).

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. Association for Com-
putational Linguistic, 8(1):49—-57.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until
the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1342–
1352, Doha, Qatar. Association for Computational
Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language

78

pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952, Cambridge, MA. Association
for Computational Linguistics.

Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019. Direct speech-to-speech translation with a
sequence-to-sequence model.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL-04), pages 605–612, Barcelona, Spain.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Associa-
tion for Computational Linguistics.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005. Evaluating machine transla-
tion output with automatic sentence segmentation.
In International Workshop on Spoken Language
Translation, pages 148–154, Pittsburgh, PA, USA.

Markus Müller, Thai Son Nguyen, Jan Niehues, Eunah
Cho, Bastian Krüger, Thanh-Le Ha, Kevin Kilgour,
Matthias Sperber, Mohammed Mediani, Sebastian
Stüker, and Alex Waibel. 2016. Lecture translator
- speech translation framework for simultaneous lec-
ture translation. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 82–86, San Diego, California. Association for
Computational Linguistics.

J. Niehues, T. S. Nguyen, E. Cho, T.-L. Ha, K. Kilgour,
M. Müller, M. Sperber, S. Stüker, and A. Waibel.
2016. Dynamic transcription for low-latency speech
translation. In 17th Annual Conference of the
International Speech Communication Association,
INTERSPEECH 2016; Hyatt Regency San Fran-
ciscoSan Francisco; United States; 8 September
2016 through 16 September 2016, volume 08-12-
September-2016 of Proceedings of the Annual Con-
ference of the International Speech Communication
Association. Ed. : N. Morgan, pages 2513–2517. In-
ternational Speech and Communication Association,
Baixas.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Interspeech
2018, Hyderabad, India.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ofir Press and Noah A. Smith. 2018. You may not need
attention.

Hiroaki Shimizu, Graham Neubig, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2014. Col-
lection of a simultaneous translation corpus for com-
parative analysis. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 670–673, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223–231.

Hao Xiong, Ruiqing Zhang, Chuanqiang Zhang,
Zhongjun Hea, Hua Wu, and Haifeng Wang. 2019.
Dutongchuan: Context-aware translation model for
simultaneous interpreting.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1349–1354,
Hong Kong, China. Association for Computational
Linguistics.

79

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 80–90
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Trankit: A Light-Weight Transformer-based Toolkit for Multilingual
Natural Language Processing

Minh Van Nguyen, Viet Lai, Amir Pouran Ben Veyseh, Thien Huu Nguyen
Department of Computer and Information Science

University of Oregon, Eugene, Oregon, USA
{minhnv,vietl,apouranb,thien}@cs.uoregon.edu

Abstract

We introduce Trankit, a light-weight
Transformer-based Toolkit for multilingual
Natural Language Processing (NLP). It
provides a trainable pipeline for fundamen-
tal NLP tasks over 100 languages, and 90
pretrained pipelines for 56 languages. Built
on a state-of-the-art pretrained language
model, Trankit significantly outperforms
prior multilingual NLP pipelines over sen-
tence segmentation, part-of-speech tagging,
morphological feature tagging, and depen-
dency parsing while maintaining competitive
performance for tokenization, multi-word
token expansion, and lemmatization over 90
Universal Dependencies treebanks. Despite
the use of a large pretrained transformer, our
toolkit is still efficient in memory usage and
speed. This is achieved by our novel plug-
and-play mechanism with Adapters where a
multilingual pretrained transformer is shared
across pipelines for different languages.
Our toolkit along with pretrained models
and code are publicly available at: https:

//github.com/nlp-uoregon/trankit.
A demo website for our toolkit is also available
at: http://nlp.uoregon.edu/trankit.
Finally, we create a demo video for Trankit at:
https://youtu.be/q0KGP3zGjGc.

1 Introduction

Many efforts have been devoted to developing
multilingual NLP systems to overcome language
barriers (Aharoni et al., 2019; Liu et al., 2019a;
Taghizadeh and Faili, 2020; Zhu, 2020; Kanayama
and Iwamoto, 2020; Nguyen and Nguyen, 2021). A
large portion of existing multilingual systems has
focused on downstream NLP tasks that critically
depend on upstream linguistic features, ranging
from basic information such as token and sentence
boundaries for raw text to more sophisticated struc-
tures such as part-of-speech tags, morphological

features, and dependency trees of sentences (called
fundamental NLP tasks). As such, building effec-
tive multilingual systems/pipelines for fundamental
upstream NLP tasks to produce such information
has the potentials to transform multilingual down-
stream systems.

There have been several NLP toolkits that con-
cerns multilingualism for fundamental NLP tasks,
featuring spaCy1, UDify (Kondratyuk and Straka,
2019), Flair (Akbik et al., 2019), CoreNLP (Man-
ning et al., 2014), UDPipe (Straka, 2018), and
Stanza (Qi et al., 2020). However, these toolk-
its have their own limitations. spaCy is designed to
focus on speed, thus it needs to sacrifice the per-
formance. UDify and Flair cannot process raw text
as they depend on external tokenizers. CoreNLP
supports raw text, but it does not offer state-of-
the-art performance. UDPipe and Stanza are the
recent toolkits that leverage word embeddings, i.e.,
word2vec (Mikolov et al., 2013) and fastText (Bo-
janowski et al., 2017), to deliver current state-of-
the-art performance for many languages. However,
Stanza and UDPipe’s pipelines for different lan-
guages are trained separately and do not share any
component, especially the embedding layers that
account for most of the model size. This makes
their memory usage grow aggressively as pipelines
for more languages are simultaneously needed and
loaded into the memory (e.g., for language learn-
ing apps). Most importantly, none of such toolk-
its have explored contextualized embeddings from
pretrained transformer-based language models that
have the potentials to significantly improve the per-
formance of the NLP tasks, as demonstrated in
many prior works (Devlin et al., 2019; Liu et al.,
2019b; Conneau et al., 2020).

In this paper, we introduce Trankit, a multi-
lingual Transformer-based NLP Toolkit that over-

1https://spacy.io/

80

Shared
Multilingual
Pretrained

Transformer

Joint Model for
POS,Morphological Tagging,

and Dependency Parsing

Joint Token and Sentence
Splitter

Multi-word
Token Expander

Lemmatizer

Language=1,L

Hierarchical Native Python Dictionary

Named Entity
Recognizer

Output:

Input: Raw Sentence/Document String

Figure 1: Overall architecture of Trankit. A single multilingual pretrained transformer is shared across three
components (pointed by the red arrows) of the pipeline for different languages.

comes such limitations. Our toolkit can process
raw text for fundamental NLP tasks, supporting 56
languages with 90 pre-trained pipelines on 90 tree-
banks of the Universal Dependency v2.5 (Zeman
et al., 2019). By utilizing the state-of-the-art multi-
lingual pretrained transformer XLM-Roberta (Con-
neau et al., 2020), Trankit advances state-of-the-
art performance for sentence segmentation, part-
of-speech (POS) tagging, morphological feature
tagging, and dependency parsing while achieving
competitive or better performance for tokenization,
multi-word token expansion, and lemmatization
over the 90 treebanks. It also obtains competitive
or better performance for named entity recognition
(NER) on 11 public datasets.

Unlike previous work, our token and sentence
splitter is wordpiece-based instead of character-
based to better exploit contextual information,
which are beneficial in many languages. Consider-
ing the following sentence:

“John Donovan from Argghhh! has put out a ex-
cellent slide show on what was actually found and
fought for in Fallujah.”

As such, Trankit correctly recognizes this as a sin-
gle sentence while character-based sentence split-
ters of Stanza and UDPipe are easily fooled by the
exclamation mark “!”, treating it as two separate
sentences. To our knowledge, this is the first work
to successfully build a wordpiece-based token and
sentence splitter that works well for 56 languages.

Figure 1 presents the overall architecture
of Trankit pipeline that features three novel

transformer-based components for: (i) the joint
token and sentence splitter, (ii) the joint model
for POS tagging, morphological tagging, depen-
dency parsing, and (iii) the named entity recog-
nizer. One potential concern for our use of a large
pretrained transformer model (i.e., XML-Roberta)
in Trankit involves GPU memory where different
transformer-based components in the pipeline for
one or multiple languages must be simultaneously
loaded into the memory to serve multilingual tasks.
This could extensively consume the memory if dif-
ferent versions of the large pre-trained transformer
(finetuned for each component) are employed in
the pipeline. As such, we introduce a novel plug-
and-play mechanism with Adapters to address this
memory issue. Adapters are small networks in-
jected inside all layers of the pretrained transformer
model that have shown their effectiveness as a light-
weight alternative for the traditional finetuning
of pretrained transformers (Houlsby et al., 2019;
Peters et al., 2019; Pfeiffer et al., 2020a,b). In
Trankit, a set of adapters (for transfomer layers)
and task-specific weights (for final predictions) are
created for each transformer-based component for
each language while only one single large mul-
tilingual pretrained transformer is shared across
components and languages. Adapters allow us to
learn language-specific features for tasks. During
training, the shared pretrained transformer is fixed
while only the adapters and task-specific weights
are updated. At inference time, depending on the
language of the input text and the current active

81

component, the corresponding trained adapter and
task-specific weights are activated and plugged into
the pipeline to process the input. This mechanism
not only solves the memory problem but also sub-
stantially reduces the training time.

2 Related Work

There have been works using pre-trained trans-
formers to build models for character-based word
segmentation for Chinese (Yang, 2019; Tian et al.,
2020; Che et al., 2020); POS tagging for Dutch,
English, Chinese, and Vietnamese (de Vries et al.,
2019; Tenney et al., 2019; Tian et al., 2020; Che
et al., 2020; Nguyen and Nguyen, 2020); mor-
phological feature tagging for Estonian and Per-
sian (Kittask et al., 2020; Mohseni and Tebbifakhr,
2019); and dependency parsing for English and
Chinese (Tenney et al., 2019; Che et al., 2020).
However, all of these works are only developed for
some specific language, thus potentially unable to
support and scale to the multilingual setting.

Some works have designed multilingual
transformer-based systems via multilingual train-
ing on the combined data of different languages
(Tsai et al., 2019; Kondratyuk and Straka, 2019;
Üstün et al., 2020). However, multilingual
training is suboptimal (see Section 5). Also, these
systems still rely on external resources to perform
tokenization and sentence segmentation, thus
unable to consume raw text. To our knowedge, this
is the first work to successfully build a multilingual
transformer-based NLP toolkit where different
transformer-based models for many languages can
be simultaneously loaded into GPU memory and
process raw text inputs of different languages.

3 Design and Architecture

Adapters. Adapters play a critical role in making
Trankit memory- and time-efficient for training and
inference. Figure 2 shows the architecture and the
location of an adapter inside a layer of transformer.
We use the adapter architecture proposed by (Pfeif-
fer et al., 2020a,b), which consists of two projection
layers Up and Down (feed-forward networks), and
a residual connection.

ci = AddNorm(ri), hi = Up(ReLU(Down(ci))) + ri (1)

where ri is the input vector from the transformer
layer for the adapter and hi is the output vector
for the transformer layer i. During training, all the
weights of the pretrained transformer (i.e., gray

Add & Norm

Add & Norm

Add & Norm

Adapter

Feed-forward

Multi-Head Attention Add & Norm

FF Up

FF Down

Adapter

Figure 2: Left: location of an adapter (green box) in-
side a layer of the pretrained transformer. Gray boxes
represent the original components of a transformer
layer. Right: the network architecture of an adapter.

boxes) are fixed and only the adapter weights of
two projection layers and the task-specific weights
outside the transformer (for final predictions) are
updated. As demonstrated in Figure 1, Trankit
involves six components described as follows.

Multilingual Encoder with Adapters. This is
our core component that is shared across different
transformer-based components for different lan-
guages of the system. Given an input raw text s,
we first split it into substrings by spaces. After-
ward, Sentence Piece, a multilingual subword tok-
enizer (Kudo and Richardson, 2018; Kudo, 2018),
is used to further split each substring into word-
pieces. By concatenating wordpiece sequences for
substrings, we obtain an overall sequence of word-
pieces w = [w1, w2, . . . , wK] for s. In the next
step, w is fed into the pretrained transformer, which
is already integrated with adapters, to obtain the
wordpiece representations:

xl,m1:K = Transformer(w1:K ; θl,mAD) (2)

Here, θl,mAD represents the adapter weights for lan-
guage l and component m of the system. As such,
we have specific adapters in all transformer layers
for each component m and language l. Note that if
K is larger than the maximum input length of the
pretrained transformer (i.e., 512), we further divide
w into consecutive chunks; each has the length less
than or equal to the maximum length. The pre-
trained transformer is then applied over each chunk
to obtain a representation vector for each wordpiece
in w. Finally, xl,m1:K will be sent to component m to
perform the corresponding task.

Joint Token and Sentence Splitter. Given the
wordpiece representations xl,m1:K for this component,

82

each vector xl,mi for wi ∈ w will be consumed by
a feed-forward network with softmax in the end to
predict if wi is the end of a single-word token, the
end of a multi-word token, or the end of a sentence.
The predictions for all wordpieces in w will then be
aggregated to determine token, multi-word token,
and sentence boundaries for s.

Multi-word Token Expander. This component is
responsible for expanding each detected multi-word
token (MWT) into multiple syntactic words2. We
follow Stanza to deploy a character-based seq2seq
model for this component. This decision is made
based on our observation that the task is done best
at character level, and the character-based model
(with character embeddings) is very small.

Joint Model for POS Tagging, Morphological
Tagging and Dependency Parsing. In Trankit,
given the detected sentences and tokens/words, we
use a single model to jointly perform POS tag-
ging, morphological feature tagging and depen-
dency parsing at sentence level. Joint modeling
mitigates error propagation, saves the memory, and
speedups the system. In particular, given a sen-
tence, the representation for each word is computed
as the average of its wordpieces’ transformer-based
representations in xl,m1:K . Let t1:N = [t1, t2, . . . , tN]
be the representations of the words in the sen-
tence. We compute the following vectors using
feed-forward networks FFN∗:

rupos1:N = FFNupos(t1:N), rxpos1:N = FFNxpos(t1:N)

rufeats1:N = FFNufeats(t1:N), rdep0:N = [xcls; FFNdep(t1:N)]

Vectors for the words in rupos1:N , rxpos1:N , rufeats1:N are
then passed to a softmax layer to make predic-
tions for UPOS, XPOS, and UFeats tags for each
word. For dependency parsing, we use the classi-
fication token <s> to represent the root node, and
apply Deep Biaffine Attention (Dozat and Man-
ning, 2017) and the Chu-Liu/Edmonds algorithm
(Chu, 1965; Edmonds, 1967) to assign a syntac-
tic head and the associated dependency relation to
each word in the sentence.

Lemmatizer. This component receives sentences
and their predicted UPOS tags to produce the
canonical form for each word. We also employ a
character-based seq2seq model for this component
as in Stanza.

2For languages (e.g., English, Chinese) that do not require
MWT expansion, tokens and words are the same concepts.

Named Entity Recognizer. Given a sentence, the
named entity recognizer determines spans of en-
tity names by assigning a BIOES tag to each token
in the sentence. We deploy a standard sequence
labeling architecture using transformer-based rep-
resentations for tokens, involving a feed-forward
network followed by a Conditional Random Field.

4 Usage

Detailed documentation for Trankit can be found
at: https://trankit.readthedocs.io.

Trankit Installation. Trankit is written in
Python and available on PyPI: https://pypi.

org/project/trankit/. Users can install our
toolkit via pip using:

pip install trankit

Initialize a Pipeline. Lines 1-4 in Figure 3 shows
how to initialize a pretrained pipeline for English; it
is instructed to run on GPU and store downloaded
pretrained models to the specified cache directory.
Trankit will not download pretrained models if they
already exist.

Multilingual Usage. Figure 3 shows how to ini-
tialize a multilingual pipeline and process inputs of
different languages in Trankit:

from trankit import Pipeline

initialize a multilingual pipeline
p = Pipeline(lang='english', gpu=True, cache_dir='./cache')
langs = ['arabic', 'chinese', 'dutch']
for lang in langs:

p.add(lang)

tokenize English input
p.set_active('english')
en = p.tokenize('Rich was here before the scheduled time.')

get ner tags for Arabic input
p.set_active('arabic')
ar = p.ner(' .وكان كنعان قبل ذلك رئيس جهاز الامن والاستطلاع للقوات السورية العاملة في لبنان ')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 3: Multilingual pipeline initialization.

Basic Functions. Trankit can process inputs which
are untokenized (raw) or pretokenized strings, at
both sentence and document levels. Figure 4 illus-
trates a simple code to perform all the supported
tasks for an input text. We organize Trankit’s out-
puts into hierarchical native Python dictionaries,
which can be easily inspected by users. Figure 5
demonstrates the outputs of the command line 6 in
Figure 4.

Training your own Pipelines. Trankit also pro-
vides a trainable pipeline for 100 languages via the
class TPipeline. This ability is inherited from

83

Treebank System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS

Overall (90 treebanks)
Trankit 99.23 91.82 99.02 95.65 94.05 93.21 94.27 87.06 83.69
Stanza 99.26 88.58 98.90 94.21 92.50 91.75 94.15 83.06 78.68

Arabic-PADT
Trankit 99.93 96.59 99.22 96.31 94.08 94.28 94.65 88.39 84.68
Stanza 99.98 80.43 97.88 94.89 91.75 91.86 93.27 83.27 79.33
UDPipe 99.98 82.09 94.58 90.36 84.00 84.16 88.46 72.67 68.14

Chinese-GSD
Trankit 97.01 99.7 97.01 94.21 94.02 96.59 97.01 85.19 82.54
Stanza 92.83 98.80 92.83 89.12 88.93 92.11 92.83 72.88 69.82
UDPipe 90.27 99.10 90.27 84.13 84.04 89.05 90.26 61.60 57.81

English-EWT

Trankit 98.48 88.35 98.48 95.95 95.71 96.26 96.84 90.14 87.96
Stanza 99.01 81.13 99.01 95.40 95.12 96.11 97.21 86.22 83.59
UDPipe 98.90 77.40 98.90 93.26 92.75 94.23 95.45 80.22 77.03
spaCy 97.44 63.16 97.44 86.99 91.05 - 87.16 55.38 37.03

French-GSD

Trankit 99.7 96.63 99.66 97.85 - 97.16 97.80 94.00 92.34
Stanza 99.68 94.92 99.48 97.30 - 96.72 97.64 91.38 89.05
UDPipe 99.68 93.59 98.81 95.85 - 95.55 96.61 87.14 84.26
spaCy 99.02 89.73 94.81 89.67 - - 88.55 75.22 66.93

Spanish-Ancora

Trankit 99.94 99.13 99.93 99.02 98.94 98.8 99.17 94.11 92.41
Stanza 99.98 99.07 99.98 98.78 98.67 98.59 99.19 92.21 90.01
UDPipe 99.97 98.32 99.95 98.32 98.13 98.13 98.48 88.22 85.10
spaCy 99.95 97.54 99.43 93.43 - - 80.02 89.35 83.81

Table 1: Systems’ performance on test sets of the Universal Dependencies v2.5 treebanks. Performance for Stanza,
UDPipe, and spaCy is obtained using their public pretrained models. The overall performance for Trankit and
Stanza is computed as the macro-averaged F1 over 90 treebanks. Detailed performance of Trankit for 90 supported
treebanks can be found at our documentation page.

from trankit import Pipeline

p = Pipeline(lang='english', gpu=True, cache_dir='./cache')

doc = '''Hello! This is Trankit.'''
perform all tasks on the input
all = p(doc)

1
2
3
4
5
6
7

Figure 4: A function performing all tasks on the input.

the XLM-Roberta encoder which is pretrained on
those languages. Figure 6 illustrates how to train a
token and sentence splitter with TPipeline.

Demo Website. A demo website for Trankit to
support 90 pretrained pipelines is hosted at: http:
//nlp.uoregon.edu/trankit. Figure 7 shows its
interface.

5 System Evaluation

5.1 Datasets & Hyper-parameters
To achieve a fair comparison, we follow Stanza (Qi
et al., 2020) to train and evaluate all the models
on the same canonical data splits of 90 Universal
Dependencies treebanks v2.5 (UD2.5)3 (Zeman
et al., 2019), and 11 public NER datasets pro-
vided in the following corpora: AQMAR (Mo-
hit et al., 2012), CoNLL02 (Tjong Kim Sang,
2002), CoNLL03 (Tjong Kim Sang and De Meul-

3We skip 10 treebanks whose languages are not supported
by XLM-Roberta.

// Output
{

'text': 'Hello! This is Trankit.', // input string
'sentences': [// list of sentences

{
'id': 1, 'text': 'Hello!', 'dspan': (0, 6), 'tokens': [...]

},
{
'id': 2, // sentence index
'text': 'This is Trankit.', 'dspan': (7, 23), // sentence span
'tokens’: [// list of tokens

{
'id': 1, // token index
'text': 'This', 'upos': 'PRON', 'xpos': 'DT',
'feats': 'Number=Sing|PronType=Dem',
'head': 3, 'deprel': 'nsubj', 'lemma': 'this', 'ner': 'O',
'dspan': (7, 11), // document-level span of the token
'span': (0, 4) // sentence-level span of the token

},
{'id': 2...},
{'id': 3...},
{'id': 4...}

]
}

]
}

Figure 5: Output from Trankit. Some parts are col-
lapsed to improve visualization.

der, 2003), GermEval14 (Benikova et al., 2014),
OntoNotes (Weischedel et al., 2013), and WikiNER
(Nothman et al., 2012). Hyper-parameters for all
models and datasets are selected based on the de-
velopment data in this work.

5.2 Universal Dependencies performance

Table 1 compares the performance of Trankit and
the latest available versions of other popular toolk-
its, including Stanza (v1.1.1) with current state-
of-the-art performance, UDPipe (v1.2), and spaCy
(v2.3) on the UD2.5 test sets. The performance
for all systems is obtained using the official scorer

84

System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS
Trankit (plug-and-play with adapters) 99.05 95.12 98.96 95.43 89.02 92.69 93.46 86.20 82.51
Multilingual 96.69 88.95 96.35 91.19 84.64 88.10 90.02 72.96 68.66
No-adapters 95.06 89.57 94.08 88.79 82.54 83.76 88.33 66.63 63.11

Table 2: Model performance on 9 different treebanks (macro-averaged F1 score over test sets).

from trankit import TPipeline

tp = TPipeline(training_config={
'task': 'tokenize',
'save_dir': './saved_model',
'train_txt_fpath': './train.txt',
'train_conllu_fpath': './train.conllu',
'dev_txt_fpath': './dev.txt',
'dev_conllu_fpath': './dev.conllu'})

trainer.train()

1
2
3
4
5
6
7
8
9
10
11

Figure 6: Training a token and sentence splitter using
the CONLL-U formatted data (Nivre et al., 2020).

of the CoNLL 2018 Shared Task4. On five illus-
trated languages, Trankit achieves competitive per-
formance on tokenization, MWT expansion, and
lemmatization. Importantly, Trankit outperforms
other toolkits over all remaining tasks (e.g., POS
and morphological tagging) in which the improve-
ment boost is substantial and significant for sen-
tence segmentation and dependency parsing. For
example, English enjoys a 7.22% improvement for
sentence segmentation, a 3.92% and 4.37% im-
provement for UAS and LAS in dependency pars-
ing. For Arabic, Trankit has a remarkable improve-
ment of 16.16% for sentence segmentation while
Chinese observes 12.31% and 12.72% improve-
ment of UAS and LAS for dependency parsing.

Over all 90 treebanks, Trankit outperforms the
previous state-of-the-art framework Stanza in most
of the tasks, particularly for sentence segmenta-
tion (+3.24%), POS tagging (+1.44% for UPOS
and +1.55% for XPOS), morphological tagging
(+1.46%), and dependency parsing (+4.0% for
UAS and +5.01% for LAS) while maintaining the
competitive performance on tokenization, multi-
word expansion, and lemmatization.

5.3 NER results

Table 3 compares Trankit with Stanza (v1.1.1),
Flair (v0.7), and spaCy (v2.3) on the test sets of
11 considered NER datasets. Following Stanza, we
report the performance for other toolkits with their
pretrained models on the canonical data splits if
they are available. Otherwise, their best configura-
tions are used to train the models on the same data
splits (inherited from Stanza). Also, for the Dutch

4https://universaldependencies.org/
conll18/evaluation.html

datasets, we retrain the models in Flair as those
models (for Dutch) have been updated in version
v0.7. As can be seen, Trankit obtains competitive
or better performance for most of the languages,
clearly demonstrating the benefit of using the pre-
trained transformer for multilingual NER.

Language Corpus Trankit Stanza Flair spaCy
Arabic AQMAR 74.8 74.3 74.0 -
Chinese OntoNotes 80.0 79.2 - 69.3

Dutch
CoNLL02 91.8 89.2 91.3 73.8
WikiNER 94.8 94.8 94.8 90.9

English
CoNLL03 92.1 92.1 92.7 81.0
OntoNotes 89.6 88.8 89.0 85.4

French WikiNER 92.3 92.9 92.5 88.8

German
CoNLL03 84.6 81.9 82.5 63.9
GermEval14 86.9 85.2 85.4 68.4

Russian WikiNER 92.8 92.9 - -
Spanish CoNLL02 88.9 88.1 87.3 77.5

Table 3: Performance (F1) on NER test sets.

System GPU CPU
UD NER UD NER

Trankit 4.50× 1.36× 19.8× 31.5×
Stanza 3.22× 1.08× 10.3× 17.7×
UDPipe - - 4.30× -
Flair - 1.17× - 51.8×

Table 4: Run time on processing the English EWT tree-
bank and the English Ontonotes NER dataset. Mea-
surements are done on an NVIDIA Titan RTX card.

Model Package Trankit Stanza
Multilingual Transformer 1146.9MB -
Arabic 38.6MB 393.9MB
Chinese 40.6MB 225.2MB
English 47.9MB 383.5MB
French 39.6MB 561.9MB
Spanish 37.3MB 556.1MB
Total size 1350.9MB 2120.6MB

Table 5: Model sizes for five languages.

5.4 Speed and Memory Usage

Table 4 reports the relative processing time for
UD and NER of the toolkits compared to spaCy’s
CPU processing time5. For memory usage com-
parison, we show the model sizes of Trankit and

5spaCy can process 8140 tokens and 5912 tokens per sec-
ond for UD and NER, respectively.

85

Figure 7: Demo website for Trankit.

Stanza for several languages in Table 5. As can be
seen, besides the multilingual transformer, model
packages in Trankit only take dozens of megabytes
while Stanza consumes hundreds of megabytes for
each package. This leads to the Stanza’s usage of
much more memory when the pipelines for these
languages are loaded at the same time. In fact,
Trankit only takes 4.9GB to load all the 90 pre-
trained pipelines for the 56 supported languages.

5.5 Ablation Study
This section compares Trankit with two other pos-
sible strategies to build a multilingual system for
fundamental NLP tasks. In the first strategy (called
“Multilingual”), we train a single pipeline where
all the components in the pipeline are trained with
the combined training data of all the languages.
The second strategy (called “No-adapters”) in-
volves eliminating adapters from XLM-Roberta in
Trankit. As such, in “No-adapters”, pipelines are
still trained separately for each language; the pre-
trained transformer is fixed; and only task-specific
weights (for predictions) in components are up-
dated during training.

For evaluation, we select 9 treebanks for 3 differ-
ent groups, i.e., high-resource, medium-resource,
and low-resource, depending on the sizes of the
treebanks. In particular, the high-resource group
includes Czech, Russian, and Arabic; the medium-
resource group includes French, English, and Chi-
nese; and the low-resource group involves Belaru-

sian, Telugu, and Lithuanian. Table 2 compares the
average performance of Trankit, “Multilingual”,
and “No-adapters”. As can be seen, “Multilingual”
and “No-adapters” are significantly worse than the
proposed adapter-based Trankit. We attribute this
to the fact that multilingual training might suffer
from unbalanced sizes of treebanks, causing high-
resource languages to dominate others and impair-
ing the overall performance. For “No-adapters”,
fixing pretrained transformer might significantly
limit the models’ capacity for multiple tasks and
languages.

6 Conclusion and Future Work

We introduce Trankit, a transformer-based multi-
lingual toolkit that significantly improves the per-
formance for fundamental NLP tasks, including
sentence segmentation, part-of-speech, morpho-
logical tagging, and dependency parsing over 90
Universal Dependencies v2.5 treebanks of 56 dif-
ferent languages. Our toolkit is fast on GPUs and
efficient in memory use, making it usable for gen-
eral users. In the future, we plan to improve our
toolkit by investigating different pretrained trans-
formers such as mBERT and XLM-Robertalarge.
We also plan to provide Named Entity Recognizers
for more languages and add modules to perform
more NLP tasks.

86

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3874–3884, Minneapolis, Minnesota. Association
for Computational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 54–59, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. NoSta-d named entity annotation for Ger-
man: Guidelines and dataset. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), pages 2524–
2531, Reykjavik, Iceland. European Languages Re-
sources Association (ELRA).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Wanxiang Che, Yunlong Feng, Libo Qin, and Ting Liu.
2020. N-ltp: A open-source neural chinese language
technology platform with pretrained models. arXiv
preprint arXiv:2009.11616.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In Proceedings of the International Conference on
Machine Learning.

Hiroshi Kanayama and Ran Iwamoto. 2020. How uni-
versal are Universal Dependencies? exploiting syn-
tax for multilingual clause-level sentiment detection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4063–4073, Mar-
seille, France. European Language Resources Asso-
ciation.

Claudia Kittask, Kirill Milintsevich, and Kairit Sirts.
2020. Evaluating multilingual bert for estonian.
Volume, 328:19–26.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–
75, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2019a.
Neural cross-lingual event detection with minimal
parallel resources. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP), pages 738–748, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual

87

Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Proceedings of the Conference on Neural
Information Processing Systems.

Behrang Mohit, Nathan Schneider, Rishav Bhowmick,
Kemal Oflazer, and Noah A. Smith. 2012. Recall-
oriented learning of named entities in Arabic
Wikipedia. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, pages 162–173, Avi-
gnon, France. Association for Computational Lin-
guistics.

Mahdi Mohseni and Amirhossein Tebbifakhr. 2019.
MorphoBERT: a Persian NER system with BERT
and morphological analysis. In Proceedings of
The First International Workshop on NLP Solutions
for Under Resourced Languages (NSURL 2019) co-
located with ICNLSP 2019 - Short Papers, pages 23–
30, Trento, Italy. Association for Computational Lin-
guistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1037–
1042, Online. Association for Computational Lin-
guistics.

Minh Van Nguyen and Thien Huu Nguyen. 2021. Im-
proving cross-lingual transfer for event argument
extraction with language-universal sentence struc-
tures. In Proceedings of the Sixth Arabic Natural
Language Processing Workshop (WANLP) at EACL
2021.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2012. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligence, 194:151–175.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
warya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
AdapterHub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 46–54, Online. Asso-
ciation for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Lin-
guistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Nasrin Taghizadeh and Heshaam Faili. 2020. Cross-
lingual adaptation using universal dependencies.
arXiv preprint arXiv:2003.10816.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xi-
aojun Quan, Tong Zhang, and Yonggang Wang.
2020. Joint Chinese word segmentation and part-
of-speech tagging via two-way attentions of auto-
analyzed knowledge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8286–8296, Online. Association
for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

88

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3632–
3636, Hong Kong, China. Association for Computa-
tional Linguistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and
Gertjan van Noord. 2020. UDapter: Language adap-
tation for truly Universal Dependency parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2302–2315, Online. Association for Computa-
tional Linguistics.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. Bertje: A dutch bert model.
arXiv preprint arXiv:1912.09582.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0. Lin-
guistic Data Consortium.

Haiqin Yang. 2019. Bert meets chinese word segmen-
tation. arXiv preprint arXiv:1909.09292.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noëmi
Aepli, Željko Agić, Lars Ahrenberg, Gabrielė Alek-
sandravičiūtė, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Miguel Ballesteros, Esha Banerjee, Se-
bastian Bank, Verginica Barbu Mititelu, Victo-
ria Basmov, Colin Batchelor, John Bauer, San-
dra Bellato, Kepa Bengoetxea, Yevgeni Berzak, Ir-
shad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Bi-
agetti, Eckhard Bick, Agnė Bielinskienė, Rogier
Blokland, Victoria Bobicev, Loı̈c Boizou, Emanuel
Borges Völker, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Kristina
Brokaitė, Aljoscha Burchardt, Marie Candito,
Bernard Caron, Gauthier Caron, Tatiana Cavalcanti,
Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano Cec-
chini, Giuseppe G. A. Celano, Slavomír Čéplö,
Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Jayeol Chun, Alessandra T. Cignarella, Sil-
vie Cinková, Aurélie Collomb, Çağrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth David-
son, Marie-Catherine de Marneffe, Valeria de Paiva,
Elvis de Souza, Arantza Diaz de Ilarraza, Carly
Dickerson, Bamba Dione, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Olga Erina, Tomaž Erjavec, Aline
Etienne, Wograine Evelyn, Richárd Farkas, Hec-
tor Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Kazunori Fujita, Katarína Gajdošová, Daniel

Galbraith, Marcos Garcia, Moa Gärdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökırmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
González Saavedra, Bernadeta Griciūtė, Matias Gri-
oni, Normunds Grūzı̄tis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Mika Hämäläinen, Linh Hà Mỹ, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke,
Felix Hennig, Barbora Hladká, Jaroslava Hlaváčová,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, Ọlájídé
Ishola, Tomáš Jelínek, Anders Johannsen, Fredrik
Jørgensen, Markus Juutinen, Hüner Kaşıkara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Ka-
hane, Hiroshi Kanayama, Jenna Kanerva, Boris
Katz, Tolga Kayadelen, Jessica Kenney, Václava
Kettnerová, Jesse Kirchner, Elena Klementieva,
Arne Köhn, Kamil Kopacewicz, Natalia Kotsyba,
Jolanta Kovalevskaitė, Simon Krek, Sookyoung
Kwak, Veronika Laippala, Lorenzo Lambertino, Lu-
cia Lam, Tatiana Lando, Septina Dian Larasati,
Alexei Lavrentiev, John Lee, Phương Lê Hồng,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae
Lim, Maria Liovina, Yuan Li, Nikola Ljubešić, Olga
Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martínez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendonça, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missilä, Cătălin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Tomohiko Morioka, Shinsuke
Mori, Shigeki Moro, Bjartur Mortensen, Bohdan
Moskalevskyi, Kadri Muischnek, Robert Munro,
Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani,
Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko,
Gunta Nešpore-Bērzkalne, Lương Nguyễn Thị,
Huyền Nguyễn Thị Minh, Yoshihiro Nikaido, Vi-
taly Nikolaev, Rattima Nitisaroj, Hanna Nurmi,
Stina Ojala, Atul Kr. Ojha, Adédayọ Olúòkun,
Mai Omura, Petya Osenova, Robert Östling, Lilja
Øvrelid, Niko Partanen, Elena Pascual, Marco
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Łapińska, Siyao Peng,
Cenel-Augusto Perez, Guy Perrier, Daria Petrova,
Slav Petrov, Jason Phelan, Jussi Piitulainen,
Tommi A Pirinen, Emily Pitler, Barbara Plank,
Thierry Poibeau, Larisa Ponomareva, Martin Popel,
Lauma Pretkalniņa, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiórkowski, Tiina Puolakainen,
Sampo Pyysalo, Peng Qi, Andriela Rääbis, Alexan-
dre Rademaker, Loganathan Ramasamy, Taraka
Rama, Carlos Ramisch, Vinit Ravishankar, Livy
Real, Siva Reddy, Georg Rehm, Ivan Riabov,
Michael Rießler, Erika Rimkutė, Larissa Rinaldi,
Laura Rituma, Luisa Rocha, Mykhailo Romanenko,
Rudolf Rosa, Davide Rovati, Valentin Ros, ca, Olga
Rudina, Jack Rueter, Shoval Sadde, Benoı̂t Sagot,

89

Shadi Saleh, Alessio Salomoni, Tanja Samardžić,
Stephanie Samson, Manuela Sanguinetti, Dage
Särg, Baiba Saulı̄te, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko
Shimada, Hiroyuki Shirasu, Muh Shohibussirri,
Dmitry Sichinava, Aline Silveira, Natalia Silveira,
Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadová, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szántó, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeňka
Urešová, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wróblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Xingran Zhu. 2020. Cross-lingual word sense disam-
biguation using mbert embeddings with syntactic
dependencies. arXiv preprint arXiv:2012.05300.

90

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 91–98
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

DEBIE: A Platform for Implicit and Explicit Debiasing
of Word Embedding Spaces

Niklas Friedrich, Anne Lauscher, Simone Paolo Ponzetto and Goran Glavaš
Data and Web Science Group

School of Business Informatics and Mathematics
University of Mannheim

nfriedri@mail.uni-mannheim.de
{anne,simone,goran}@informatik.uni-mannheim.de

Abstract

Recent research efforts in NLP have demon-
strated that distributional word vector spaces
often encode stereotypical human biases, such
as racism and sexism. With word represen-
tations ubiquitously used in NLP models and
pipelines, this raises ethical issues and jeop-
ardizes the fairness of language technologies.
While there exists a large body of work on
bias measures and debiasing methods, to date,
there is no platform that would unify these re-
search efforts and make bias measuring and
debiasing of representation spaces widely ac-
cessible. In this work, we present DEBIE, the
first integrated platform for (1) measuring and
(2) mitigating bias in word embeddings. Given
an (i) embedding space (users can choose be-
tween the predefined spaces or upload their
own) and (ii) a bias specification (users can
choose between existing bias specifications or
create their own), DEBIE can (1) compute sev-
eral measures of implicit and explicit bias and
modify the embedding space by executing two
(mutually composable) debiasing models. DE-
BIE’s functionality can be accessed through
four different interfaces: (a) a web applica-
tion, (b) a desktop application, (c) a REST-ful
API, and (d) as a command-line application.1

DEBIE is available at: debie.informatik.

uni-mannheim.de

1 Introduction

Ethical and fair natural language processing is an
essential precondition for widespread societal adop-
tion of language technologies. In recent years, how-
ever, distributional language representations built
from large corpora have been shown to encode
human-like biases, like racism and sexism (Boluk-
basi et al., 2016; Zhao et al., 2019; Lauscher et al.,

1Videos demonstrating the usage of the DEBIE application
and command-line tool are available at https://tinyurl.
com/y2ymujus

2020a; Nadeem et al., 2020, inter alia). At the
word level, most embedding spaces, across a range
of embedding models and languages (Lauscher and
Glavaš, 2019), encode human biases that can be
exemplified in biased analogies, such as the fa-
mous example of sexism: −−→man − −−−−−−−−→programmer ≈
−−−−→woman − −−−−−−−→homemaker (Bolukbasi et al., 2016).
While this is not surprising, given the distribu-
tional nature of word representation models (Har-
ris, 1954) it is – depending on the sociotechnical
context – an undesired artefact of distributional rep-
resentation learning (Blodgett et al., 2020) which
can, in turn, lead to unfair decisions in downstream
applications. A number of different measures for
quantifying biases in representation spaces have
been proposed in recent years (Caliskan et al., 2017;
Gonen and Goldberg, 2019; Dev and Phillips, 2019;
Garg et al., 2018; Lauscher et al., 2020a) and even
more models for removing or attenuating such bi-
ases have been developed (Zhao et al., 2019; Bordia
and Bowman, 2019; Dinan et al., 2020; Webster
et al., 2020; Qian et al., 2019, inter alia). What is
still missing, however, is the ability to seamlessly
apply different bias measures and debiasing models
on arbitrary embedding spaces and for custom (i.e.,
user-specified) bias specifications.

In this work, we address this gap by introduc-
ing DEBIE, the first integrated platform offering
bias measurement and mitigation for arbitrary static
embedding spaces and bias specifications. The DE-
BIE platform is grounded in the general framework
for implicit and explicit debiasing of word embed-
ding spaces (Lauscher et al., 2020a). Within this
framework, an implicit bias consists of measur-
able discrepancies between two target term sets,
which can, for instance, describe a dominant and
a minoritized social group (D’Ignazio and Klein,
2020). In contrast, an explicit bias is a bias between
such target term sets towards certain attribute terms
groups. Our platform allows for both implicit and

91

explicit bias specifications, incorporating a range
of different measures for quantifying embedding
space bias (Caliskan et al., 2017; Gonen and Gold-
berg, 2019; Dev and Phillips, 2019) and a pair of
mutually composable methods for bias mitigation.
DEBIE’s functionality for measuring and mitigat-
ing biases in distributional word vector spaces is
accessible via four different interfaces: as a web
application, desktop application, via a RESTful ap-
plication programming interface (API), and as a
command-line tool. We believe that DebIE will,
by offering to test arbitrary embedding spaces for
custom user-defined biases, stimulate a wider ex-
ploration of the presence of a broader set of human
biases in distributional representation spaces.

2 Related Work

First, we describe related research on bias evalu-
ation and debiasing and then turn our attention to
existing bias mitigation platforms.

Bias Measures and Mitigation Methods.
There is an extensive body of research on bias
detection and bias mitigation in natural language
processing. Due to space limitations, here we
only provide a brief overview and refer the
reader to a recent survey of the field for more
information (Blodgett et al., 2020). Bolukbasi et al.
(2016) were the first to show stereotypical bias
to exist in word embedding models and proposed
hard debiasing, the first word embedding bias
mitigation algorithm. Subsequently, Caliskan
et al. (2017) introduced the well-known Word
Embedding Association Test (WEAT), inspired
by the Implicit Association Test (Nosek et al.,
2002), which measures biased associations in
human subjects in terms of response times when
exposed to sets of stimuli. WEAT, in turn, reflects
the strength of associations in terms of semantic
similarity between word vectors. McCurdy and
Serbetci (2017) study gender bias with WEAT
in three other languages (Dutch, German, and
Spanish). Extending upon this, Lauscher and
Glavaš (2019) translated the WEAT tests to 6 more
languages (German, Spanish, Italian, Russian,
Croatian, Turkish), allowing for multilingual and
cross-lingual analysis of biases captured by the
specifications of the original WEAT. They later
extended the set of supported languages with
Arabic (Lauscher et al., 2020b).

Dev and Phillips (2019) proposed a linear pro-
jection model for debiasing along with two bias

evaluation measures: the Embedding Coherence
Test (ECT) and the Embedding Quality Test (EQT)
and propose methods for removing the (explicit)
bias based on computing the direction vector of
the bias. While their method successfully removes
the explicit bias, i.e., bias between sets of target
terms (e.g., male terms like man, father, and boy
vs. female terms like woman, mother, and girl)
with respect to sets of attribute terms (e.g., profes-
sion terms, such as scientist or artist), Gonen and
Goldberg (2019) show that implicit bias between
the sets of target terms remains even after (explicit
debiasing) and that the terms from one target set are
still clearly discernible from the terms of the other
set in the embedding space. Based on this finding,
Lauscher et al. (2020a) systematized the preceding
work and proposed a general framework for bias
measurement and debiasing, encompassing a range
of existing and newly proposed measures and mit-
igation methods, which operate either on explicit
or implicit bias specifications. Their framework
arguably allows for a more holistic assessment of
bias in word vector spaces and ensures interoper-
ability between bias mitigation models and bias
specifications. Our DEBIE platform makes this
holistic framework for measuring and mitigating
biases widely accessible and applicable (1) for arbi-
trary user-defined bias specification to (2) arbitrary
pretrained word embedding spaces.

Bias mitigation platforms. The landscape of the
off-the-shelf solutions for measuring and mitigat-
ing bias for machine learning applications is ex-
tremely scarce. To the best of our knowledge, the
only such tool is AI Fairness 360 (Bellamy et al.,
2018), an extensible open-source toolkit which of-
fers a set of algorithms for detecting and mitigating
unwanted bias in datasets and machine learning
models. It addresses bias by integrating fairness al-
gorithms along the machine learning pipeline, i.e.,
fair pre-processing, fair in-processing, and fair post-
processing. In contrast, DEBIE specifically targets
biases in distributional word vector spaces (as an
ubiquitous component of modern NLP pipelines)
by integrating a series of word embedding bias tests
and mitigation algorithms not covered by more gen-
eral tools like AI Fairness 360.

3 DEBIE: System Description

We first explain the two types of bias specifications
support by DEBIE (implicit and explicit), then pro-
ceed to describe the concrete bias specifications

92

and debiasing algorithms bundles in the system.
Finally, we provide details of DEBIE’s architecture
and interfaces through which the bias measuring
and mitigation functionality can be accessed. All
code is publicly available on GitHub.2

3.1 Implicit and Explicit Bias Specifications

DEBIE supports measuring of implicit or explicit
biases for a given word embedding space and, re-
spectively, implicit or explicit debiasing of the
given space. Both implicit bias specifications BI

and explicit bias specifications BE specify two
sets of target terms, T1 and T2 that capture the
dimension of the bias. For example, if measuring
a gender bias, T1 would contain male terms (e.g.,
man, father) and T2 female terms (e.g., woman,
girl, grandma).3 While an implicit bias specifi-
cation is fully specified with the two target lists,
BI = (T1, T2), an explicit specification addition-
ally requires two sets of attributes A1 and A2,
BE = (T1, T2, A1, A2), capturing the groups of
terms towards which the target groups are expected
to exhibit significantly different level of associa-
tion. For example, for a gender bias, one would
expect male terms to be more strongly associated
with career terms (e.g., A1 could contain terms
like programmer), whereas female terms could be
closer to family-related terms (e.g., A2 could con-
tain terms like homemaker). The input for DEBIE
consists of an embedding space X ∈ Rd and a bias
specification, (implicit or explicit). Explicit debias-
ing methods (i.e., methods that operate on explicit
bias specifications) cannot be executed when the
provided bias specification is implicit (BI).4

3.2 Bias Measures

DEBIE provides three measures that capture ex-
plicit bias (i.e., apply only if an explicit bias speci-
fication is provided), and two tests that measure im-
plicit bias. Because debiasing methods (see §3.3)
make perturbations to the embedding space, we
additionally couple the bias tests with measures of
semantic quality of the distributional space.

2https://github.com/umanlp/
debie-frontend
https://github.com/umanlp/debie-backend

3The bias measures implemented in DEBIE do not require
the terms between the target lists to be paired. Accordingly,
the two lists also do not need to be of the same length.

4Conversely, implicit debiasing methods, i.e., ones that
require only T1 and T2, can be applied if an explicit specifica-
tion is provided. In that case, we simply convert BE to BI by
discarding the provided attribute sets.

Word Embedding Association Test (WEAT).
Given an explicit bias test specification BE =
(T1, T2, A1, A2), WEAT (Caliskan et al., 2017)
computes the effect size quantifying the amount
of bias as follows:

s(T1, T2, A1, A2) =
∑

t1∈T1

s(t1, A1, A2)−
∑

t2∈T2

s(t2, A1, A2),

with associative difference of term t given as:

s(t, A1, A2) =
1

|A1|
∑

a1∈A1

cos(t,a1)− 1

|A2|
∑

a2∈A2

cos(t,a2),

with t as the word embedding of the target term
t and cos as the cosine of the angle between
the two vectors. To estimate the significance of
the effect size, we follow Caliskan et al. (2017)
and compute the non-parametric permutation test
in which the s(T1, T2, A1, A2) is compared to
s(X1, X2, A1, A2), where (X1, X2) denotes a ran-
dom, equally-sized split of terms from T1 ∪ T2.

Embedding Coherence Test (ECT). Given an ex-
plicit bias specification with a single attribute set
BE = (T1, T2, A) with A = A1 ∪ A2, ECT (Dev
and Phillips, 2019) quantifies the presence of the
bias as the (lack of) correlation of the distances
of the mean vectors of the target term sets T1 and
T2 with the attribute terms in A. The lower the
correlation, the higher the bias. To this end, we
compute the mean vectors t1 and t2 as averages
of the vector representations of the terms in T1 and
T2. Next, we compute two vectors containing the
cosine similarities of each of the terms in A with
t1, as well as with t2, respectively. The final score
is Spearman’s rank correlation coefficient of the
obtained vectors of cosine similarity scores.

Bias Analogy Test (BAT). BAT (Lauscher et al.,
2020a) assesses the amount of biased analogies
that can be retrieved from an embedding space
based on the explicit bias specification BE =
(T1, T2, A1, A2). We first create all possible bi-
ased analogies from BE : t1 − t2 ≈ a1 − a2 for
(t1, t2, a1, a2) ∈ T1 × T2 × A1 × A2. Next, from
each of these analogies, two query vectors are com-
puted: q1 = t1 − t2 + a2 and q2 = a1 − t1 + t2
for each 4-tuple (t1, t2, a1, a2). We then rank all
attribute vectors in X according to the Euclidean
distance to the query vector. We report the percent-
age of cases in which: (1) a1 is ranked higher than
a term a′2 ∈ A2 \ {a2} for q1 and (2) a2 is ranked
higher than a term a′1 ∈ A1 \ {a1} for q2.

93

Implicit Bias Tests (IBT). As proposed by Gonen
and Goldberg (2019), the amount of implicit bias
corresponds to the accuracy with which two target
term sets can be separated. We report the score
of two methods: (1) clustering accuracy with K-
Means++ (Arthur and Vassilvitskii, 2007), and (2)
classification accuracy based on Support Vector
Machines with Gaussian kernel. We carry out the
latter via leave-one-out cross-validation (i.e., we
train on all words from both target lists, leaving
one term for prediction).

Semantic Quality Tests (SQ). The debiasing
models (3.3) modify the embedding space. While
they reduce the bias, they may reduce the general
semantic quality of the embedding space, which
could be detrimental for model performance in
downstream applications. This is why we couple
the bias tests with measures of semantic word simi-
larity on two established word-similarity datasets:
SimLex-999 (Hill et al., 2015) or WordSim-353
(Finkelstein et al., 2001). We compute the Spear-
man correlation between the human similarity
scores assigned to word pairs and corresponding
cosines computed from the embedding space.

3.3 Debiasing Methods

DEBIE encompasses implementations of two de-
biasing models from (Lauscher et al., 2020a), for
which an implicit bias specification suffices:5

General Bias Direction Debiasing (GBDD). As
an extension of the linear projection model of Dev
and Phillips (2019), GBDD relies on identifying
the bias direction in the distributional space. Let
(ti1, t

j
2) be word pairs with ti1 ∈ T1, tj2 ∈ T2, re-

spectively. First, we obtain partial bias direction
vectors bij by computing the difference between
the respective vectors for each pair bij = ti1 − tj2.
We then stack all partial direction vector, obtaining
the bias matrix B. The global bias direction vector
b then corresponds to the top singular value of B,
i.e., the first row of matrix V , with UΣV > as the
singular value decomposition of B. We then obtain
the debiased version of the space X as:

GBDD(X) = X− 〈X,b〉b,

with 〈X, b〉 denoting dot products between rows of
X and b. As such, the closer the word embedding
is to the bias direction, the more it gets corrected.

5Note that any explicit bias specification is trivially re-
duced to an implicit one by discarding the attribute term sets.

Bias Alignment Model (BAM). Inspired by previ-
ous work on projection-based cross-lingual word
embedding spaces (Smith et al., 2017; Glavaš et al.,
2019), BAM focuses on implicit debiasing by treat-
ing the target term sets T1, and T2 of an implicit
bias specification BI as “translations” of each other
and learning the linear projection of the embedding
spaces w.r.t. itself (Lauscher et al., 2020a). First,
we build all possible word pairs (ti1, t

j
2), t

i
1 ∈ T1,

tj2 ∈ T2 and stack the respective word vectors of
the left and right pairs to obtain matrices XT1 and
XT2 . We then learn the orthogonal mapping matrix
WX = UV >, with UΣV > as the singular value
decomposition of XT2X

>
T1

. In the last step, the
original space and its “translation” X = XWX

(which is equally biased), are averaged to obtain
the debiased embedding space:

BAM(X) =
1

2
(X +XWX) .

Note that DEBIE can trivially compose the two de-
biasing models – the resulting space after applying
GBDD (BAM) can be the input for BAM (GBDD).

3.4 Integrated Data

DEBIE is designed as a general tool, which allows
user to upload their own embedding spaces and de-
fine their own bias specifications for testing and/or
debiasing. Nonetheless, we include into the plat-
form a set of commonly used bias specifications
and word embedding spaces. Concretely, DEBIE
includes the whole WEAT test collection (Caliskan
et al., 2017), containing the explicit bias specifica-
tions summarized in Table 1. DEBIE also comes
with three word embedding spaces, pretrained with
different models: (1) fastText (Bojanowski et al.,
2017),6 (2) GloVe (Pennington et al., 2014),7 and
(3) CBOW (Mikolov et al., 2013).8 All three spaces
are 300-dimensional and their vocabularies are lim-
ited to 200K most frequent words.

3.5 System Architecture

DEBIE’s architecture, illustrated in Figure 1, ad-
heres to the principles of modern extensible web
application design and consists of four components:
(1) the backend, (2) the frontend, which together

6https://dl.fbaipublicfiles.com/
fasttext/vectors-wiki/wiki.en.vec

7http://nlp.stanford.edu/data/glove.6B.
zip

8https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

94

Test Type Target Set #1 Target Set #2 Attribute Set #1 Attribute Set #2

1 Universal Flowers (e.g., aster, tulip) Insects (e.g., ant, flea) Pleasant (e.g., health, love) Unpleasant (e.g., abuse)
2 Militant Instruments (e.g., cello, guitar) Weapons (e.g., gun, sword) Pleasant Unpleasant
3 Racist Euro-American names (e.g., Adam) Afro-American names (e.g., Jamel) Pleasant (e.g., caress) Unpleasant (e.g., abuse)
4 Racist Euro-American names (e.g., Brad) Afro-American names (e.g., Hakim) Pleasant Unpleasant
5 Racist Euro-American names Afro-American names Pleasant (e.g., joy) Unpleasant (e.g., agony)
6 Gender Male names (e.g., John) Female names (e.g., Lisa) Career (e.g. management) Family (e.g., children)
7 Gender Math (e.g., algebra, geometry) Arts (e.g., poetry, dance) Male (e.g., brother, son) Female (e.g., woman, sister)
8 Gender Science (e.g., experiment) Arts Male Female
9 Disease Physical condition (e.g., virus) Mental condition (e.g., sad) Long-term (e.g., always) Short-term (e.g., occasional)

10 Age Older names (e.g., Gertrude) Younger names (e.g., Michelle) Pleasant Unpleasant

Table 1: WEAT bias test specifications provided by DEBIE.

Figure 1: Software Architecture of the DEBIE platform.

represent the core of the application, (3) the data
layer, and (4) the server layer facing the web.

Backend. DEBIE’s backend consists of two
main modules: (1) the bias evaluation engine,
which computes the bias test scores (see §3.2), and
(2) the debiasing engine, which runs the word em-
bedding debiasing models (see §3.3). The backend
interacts with the data layer for retrieving data (bias
specifications and vectors from embedding spaces)
and its functionality is exposed via a RESTful API,
which offers endpoints for programmatically (i)
uploading and retrieving data as well as for (ii)
running bias evaluation and (iii) debiasing.

There are dedicated controllers and handlers
for each of this primary functionalities: vector re-
trieval, bias evaluation, and debiasing. These are
responsible for computing results and delivering
content to relevant web pages. The second group of
controllers and handlers is responsible for retriev-
ing data out of integrated and external embedding
spaces and for parsing and generating JSON data.
All bias measures and debiasing methods are im-
plemented as separate modules so that the platform
can be extended seamlessly with additional bias

measures and debiasing models. A new bias mea-
sure or a new debiasing model can be integrated by
simply adding the computation scripts (i.e., a func-
tion that implements the functionality) and adapt-
ing the responsible handler. The backend is purely
implemented in Python.

Frontend, Data Layer, and Server Layer. The
frontend is written in HTML and plain JavaScript,
and relies on the Bootstrap library.9 The fetch
functionality is used for sending requests to the
RESTful API of the backend. For the visualization
of embedding spaces (see bottom part of Figure 2),
we rely on the the chart.js library.10

Embedding spaces are stored as two files: (1)
the .vocab file is the serialized dictionary that maps
words to indices of the embedding matrix; (2) the
.vectors file is an embedding matrix (serialized 2D
numpy array) rows of which are the actual word
vectors. At the start of the web applicatiob, all bias
specifications and intergated embedding spaces are
fully loaded into the memory completely.

DEBIE is hosted on a Linux server, running De-

9https://getbootstrap.com/
10https://www.chartjs.org/

95

Figure 2: DEBIE’S web UI.

bian 10 as the operating system. The python WSGI-
server gunicorn is used to serve the RESTful
API. We opt for nginx as the web server for host-
ing the frontend and redirecting the API-requests
to the internal endpoints of the WSGI-server.

3.6 Accessibility: Interfaces
Users can interact with DEBIE through four dif-
ferent interfaces. The simplest way is by using
the provided web interface. For programmatic ac-
cess, we offer the RESTful-API accessible directly
via HTTP requests. As a third option, a desktop
version of the tool is available for download: this
tools runs completely offline and, depending on the
hardware, may perform faster. Finally, we offer a
command-line interface intended for shell usage.

Web User Interface. DEBIE is primarily imag-
ined as a web application with a full extendable
web user interface (see Figure 2). The web-UI en-
ables users to evaluate and debias with predefined
or custom bias specifications. Designed as a one-
page application, the web UI guides the user via
five simple steps through the full process:

Step 1: Selection of the Embedding Space. In the
first step, the user has to select with which embed-
ding space to work. The users can select one of
three integrated embedding spaces (§3.4) uploaded
or their own pretrained vector space.

Step 2: Selection of the Bias Specification. The user
next chooses a bias specification: they can select
one of the integrated WEAT bias specifications or
define a bias specification of their own.

Step 3: Selection and Computation of the Bias
Tests. The user next selects bias measures/scores
(see §3.2) to be applied on the selected embedding
space given the selected bias specification. The
bias (and semantic similarity) scores are displayed
in a table (see the upper part of Figure 2) and can
also be exported as in the JSON format.

Step 4: Selection and Execution of Debiasing Al-
gorithms. The user can next choose to debias the
selected embedding space (Step 1) based on the
selected bias specification (Step 2). To this ef-
fect, the user can choose between GBDD, BAM,
or one of their compositions (GBDD◦BAM or
BAM◦GBDD). The debiased embeddings space
can be downloaded. To visualize the differences
between the original (biased) and debiased embed-
ding space, we visualize the 2D PCA-compressions
of the terms from the bias specification in both
spaces (see bottom part of Figure 2).

Step 5: Computation of Bias Tests on the Debiased
space. Finally, the user can evalute the effects of de-
biasing with the desired set of bias measures. This
is like Step 3, only now we subject to testing the
debiased instead of the original embedding space.

RESTful API. For programmatic access, we of-
fer a RESTful API. The API can deliver vector
representations of words, compute and fetch the
bias evaluation scores, as well as debiased word
embeddings based on a provided bias specifica-
tion. The API endpoints are accessible online.11

API documentation is available in the swagger
format on the DEBIE website.12

Desktop Application. We offer an adapted
offline-version of the web application providing
the same functionality, runnable on Windows OS.
The desktop app has been created with the python
module flaskwebgui, using the source files of

11http://debie.informatik.uni-mannheim.
de:8000/REST/

12http://debie.informatik.uni-mannheim.
de:8000/swagger/

96

the web application. The desktop application is
available both as a windows executable file (.exe)
and as a python script.

Command-line Interface. Finally, we expose
DEBIE’s functionality through a command-line in-
terface, intended for shell (e.g., bash) usage. We
employ the Python framework click to parse the
command line arguments.

4 Ethical Considerations

Given the high sensitivity of the issue of bias in
text representations, we would like the reader to
consider the following three aspects.

(i) Our platform allows for measuring and mit-
igating biases based on bias specifications, which
need to be defined by the user. In actual deploy-
ment scenarios, those specifications need to be
designed with extreme care and the concrete so-
ciotechnical environment in mind. For instance, it
would be wrong to assume that by using one of the
predefined gender bias specifications provided with
this platform, all stereotypical gender associations
will be removed from the representation space. In
contrast, for each individual application scenario,
the user should make sure that the bias specification
matches the bias evaluation and debiasing intent.

(ii) Though the user’s main role is to choose
appropriate bias specifications, we think it is impor-
tant that the user has enough technical proficiency
to understand potential issues of the provided mea-
sures and mitigation methods.

(iii) The gender bias specifications from previous
work provided with this platform only consider bias
between male and female term sets, i.e., they follow
a binary notion of gender. However, it is important
to keep in mind that gender is a spectrum. We fully
acknowledge the importance of the inclusion of
all gender identities, e.g., nonbinary, gender fluid,
polygender, etc., in language technologies.

5 Conclusion

We have presented DEBIE, an integrated platform
for measuring and attenuating implicit and explicit
biases in distributional word vector spaces. Via
four different interfaces, we enable fast and easy
access to a variety of bias measures and debiasing
methods, allowing users to experiment with arbi-
trary embedding spaces and bias specifications. We
hope DEBIE facilitates an exploration of a wider
set of human biases in language representations.

Acknowledgments

Anne Lauscher and Goran Glavaš are supported
by the Eliteprogramm of the Baden-Württemberg
Stiftung (AGREE grant). We would like to thank
the anonymous reviewers for their helpful com-
ments.

References
David Arthur and Sergei Vassilvitskii. 2007. K-

means++: The advantages of careful seeding. In
Proceedings of SODA, pages 1027–1035.

Rachel Bellamy, Kuntal Dey, Michael Hind, Samuel
Hoffman, Stephanie Houde, Kalapriya Kannan,
Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, Seema Nagar, Karthikeyan
Natesan Ramamurthy, John Richards, Diptikalyan
Saha, Prasanna Sattigeri, Moninder Singh, Ramazon
Kush, and Yunfeng Zhang. 2018. Ai fairness 360:
An extensible toolkit for detecting, understanding,
and mitigating unwanted algorithmic bias.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of ”bias” in nlp. In Pro-
ceedings of the 58th Meeting of the Association for
Computational Linguistics, pages 5454–5476, On-
line. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Tolga Bolukbasi, Kai Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? Debiasing word embeddings. pages 4356–
4364.

Shikha Bordia and Samuel Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Student Research Work-
shop, pages 7–15.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora necessarily contain human bi-
ases. Science, 356:183–186.

Sunipa Dev and Jeff Phillips. 2019. Attenuating bias
in word vectors. In Proceedings of Machine Learn-
ing Research, volume 89 of Proceedings of Machine
Learning Research, pages 879–887. PMLR.

Catherine D’Ignazio and Lauren F Klein. 2020. The
power chapter. In Data Feminism. The MIT Press.

97

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-
banek, Douwe Kiela, and Jason Weston. 2020.
Queens are powerful too: Mitigating gender bias in
dialogue generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8173–8188, On-
line. Association for Computational Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):3635–
3644.

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of ACL, pages 710–721.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
Pig: Debiasing Methods Cover up Systematic Gen-
der Biases in Word Embeddings But do not Remove
Them. In Proceedings of NAACL-HLT, pages 609–
614.

Zellig S. Harris. 1954. Distributional structure. Word,
10(23):146–162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Anne Lauscher and Goran Glavaš. 2019. Are We Con-
sistently Biased? Multidimensional Analysis of Bi-
ases in Distributional Word Vectors. pages 85–91.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto,
and Ivan Vulić. 2020a. A general framework for im-
plicit and explicit debiasing of distributional word
vector spaces. In Proceedings of the Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI),
pages 8131–8138.

Anne Lauscher, Rafik Takieddin, Simone Paolo
Ponzetto, and Goran Glavaš. 2020b. AraWEAT:
Multidimensional analysis of biases in Arabic word
embeddings. In Proceedings of the Fifth Arabic
Natural Language Processing Workshop, pages 192–
199, Barcelona, Spain (Online). Association for
Computational Linguistics.

Katherine McCurdy and Oguz Serbetci. 2017. Gram-
matical gender associations outweigh topical gender
bias in crosslinguistic word embeddings. In Pro-
ceedings of WiNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NeurIPS, pages 3111–3119.

Moin Nadeem, Anna Bethke, and Siva Reddy.
2020. Stereoset: Measuring stereotypical bias
in pretrained language models. arXiv preprint
arXiv:2004.09456.

Brian A. Nosek, Anthony G. Greenwald, and
Mahzarin R. Banaji. 2002. Harvesting implicit
group attitudes and beliefs from a demonstration
web site. Group Dynamics, 6:101–115.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543.

Yusu Qian, Urwa Muaz, Ben Zhang, and Jae Won
Hyun. 2019. Reducing gender bias in word-level
language models with a gender-equalizing loss func-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Stu-
dent Research Workshop, pages 223–228.

Samuel L. Smith, David H.P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In Proceedings of ICLR.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beu-
tel, Emily Pitler, Ellie Pavlick, Jilin Chen, and Slav
Petrov. 2020. Measuring and reducing gendered
correlations in pre-trained models. arXiv preprint
arXiv:2010.06032.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender bias in contextualized word embeddings. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 629–634.

98

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 99–105
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

A Dashboard for Mitigating the COVID-19 Misinfodemic

Zhengyuan Zhu1, Kevin Meng2, Josue Caraballo1, Israa Jaradat1,
Xiao Shi1, Zeyu Zhang1, Farahnaz Akrami1, Haojin Liao1, Fatma Arslan1,

Damian Jimenez1, Mohammed Samiul Saeef1, Paras Pathak1, and Chengkai Li1

1The University of Texas at Arlington
2Massachusetts Institute of Technology

Abstract

This paper describes the current milestones
achieved in our ongoing project that aims
to understand the surveillance of, impact
of, and effective interventions against the
COVID-19 misinfodemic on Twitter. Specif-
ically, it introduces a public dashboard
which, in addition to displaying case counts
in an interactive map and a navigational
panel, also provides some unique features
not found in other places. Particularly, the
dashboard uses a curated catalog of COVID-
19 related facts and debunks of misinfor-
mation, and it displays the most prevalent
information from the catalog among Twit-
ter users in user-selected U.S. geographic
regions. The paper explains how to use
BERT-based models to match tweets with
the facts and misinformation and to detect
their stance towards such information. The
paper also discusses the results of prelim-
inary experiments on analyzing the spatio-
temporal spread of misinformation.

1 Introduction

Alongside the COVID-19 pandemic, there is a
raging global misinfodemic (Mian and Khan,
2020; Roozenbeek et al., 2020) just as deadly.
As fear grows, false information related to the
pandemic goes viral on social media and threat-
ens to affect an overwhelmed population. Such
misinformation misleads the public on how the
virus is transmitted, how authorities and people
are responding to the pandemic, as well as its
symptoms, treatments, and so on. This onslaught
exacerbates the vicious impact of the virus, as
the misinformation drowns out credible informa-
tion, interferes with measures to contain the out-
break, depletes resources needed by those at risk,
and overloads the health care system. Although

health misinformation is not new (Oyeyemi et al.,
2014), such a dangerous interplay between a pan-
demic and a misinfodemic is unprecedented. It
calls for studying not only the outbreak but also
its related misinformation; the fight on these two
fronts must go hand-in-hand.

This demo paper describes the current mile-
stones achieved in our ongoing project that aims
to understand the surveillance of, impact of, and
effective interventions against the COVID-19
misinfodemic. 1) For surveillance, we seek to
discover the patterns by which different types of
COVID-19 misinformation spread. 2) To under-
stand the impact of misinformation, we aim to
compare the spreading of the SARS-CoV-2 virus
and misinformation and derive their correlations.
3) To understand what types of interventions are
effective in containing misinformation, we will
contrast the spreading of misinformation before
and after debunking efforts. 4) To understand
whether the outcomes related to 1), 2) and 3) dif-
fer by geographical locations and demographic
groups, we will study the variability of misinfor-
mation and debunking efforts across geographi-
cal and demographic groups.

While we continue to pursue these directions,
we have built an online dashboard at https://
idir.uta.edu/covid-19/ to directly benefit the pub-
lic. A screencast video of the dashboard is at
bit.ly/3c6v5xf. The dashboard provides a map,
a navigation panel, and timeline charts for look-
ing up numbers of cases, deaths, and recoveries,
similar to a number of COVID-19 tracking dash-
boards. 123 However, our dashboard also pro-
vides several features not found in other places.

1https://www.covid19-trials.com/
2https://coronavirus.jhu.edu/map.html
3https://www.cdc.gov/covid-data-tracker/index.html

99

Figure 1: The user interface of the dashboard for mitigating the COVID-19 misinfodemic

1) It displays the most prevalent factual infor-
mation among Twitter users in any user-selected
U.S. geographic region. 2) The “factual infor-
mation” comes from a catalog that we manually
curated. It includes statements from authoritative
organizations, verdicts, debunks, and explana-
tions of (potentially false) factual claims from
fact-checking websites, and FAQs from credible
sources. The catalog’s entries are further orga-
nized into a taxonomy. For simplicity, we refer to
it as the catalog and taxonomy of COVID-19 facts
or just facts in ensuing discussion. 3) The dash-
board displays COVID-19 related tweets from
local authorities of user-selected geographic re-
gions. 4) It embeds a chatbot built specifically for
COVID-19 related questions. 5) It shows case-
statistics from several popular sources which
sometimes differ.

The codebase of the dashboard’s frontend,
backend, and data collection tools are open-
sourced at https://github.com/idirlab/covid19.
All collected data are at https://github.com/
idirlab/covid19data. Particularly, the cata-
log and taxonomy of facts are also available
through a SPARQL endpoint at https://cokn.org/
deliverables/7-covid19-kg/ and the correspond-
ing RDF dataset can be requested there.

What is particularly worth noting about the
underlying implementation of the dashboard is
the adaptation of state-of-the-art textual semantic
similarity and stance detection models. Tweets

are first passed through a claim-matching model,
which selects the tweets that semantically match
the facts in our catalog. Then, the stance detec-
tion model determines whether the tweets agree
with, disagree with, or merely discuss these facts.
This enables us to pinpoint pieces of misinforma-
tion (i.e., tweets that disagree with known facts)
and analyze their spread.

A few studies analyzed and quantified the
spread of COVID-19 misinformation on Twit-
ter (Kouzy et al., 2020; Memon and Carley, 2020;
Al-Rakhami and Al-Amri, 2020) and other social
media platforms (Brennen et al., 2020). However,
these studies conducted mostly manual inspec-
tion of small datasets, while our system automati-
cally sifts through millions of tweets and matches
tweets with our catalog of facts.

2 The Dashboard

Figure 1 shows the dashboard’s user interface,
with its components highlighted.

Geographic region selection panel (Compo-
nent 1). A user can select a specific country, a
U.S. state, or a U.S. county by using this panel
or the interactive map (Component 2). Once a
region is selected, the panel shows the counts
of confirmed cases, deaths and recovered cases
for the region in collapsed or expanded modes.
When a region is expanded by the user, counts
from all available sources are displayed; on the
other hand, if it is collapsed, only counts from

100

the default (which the user can customize) data
source are displayed. These sources do not pro-
vide identical numbers.

Interactive map (Component 2). On each
country and each U.S. state, a red circle is dis-
played, with an area size proportional to its num-
ber of confirmed cases. When a state is selected,
the circle is replaced with its counties’ polygons
in different shades of red, proportional to the
counties’ confirmed cases.

Timeline chart (Component 3). It plots the
counts of the selected region over time and can
be viewed in linear or logarithmic scale.

Panel of facts (Component 4). For the se-
lected region, this panel displays facts from our
catalog, and the distribution of people discussing,
agreeing, or disagreeing with them on Twitter. A
large number of people refuting these facts would
indicate wide spread of misinformation. To avoid
repeating misconceptions, the dashboard displays
facts from authoritative sources only.

Government tweets (Component 5). It dis-
plays COVID-19 related tweets in the past seven
days from officials of the user-selected geo-
graphic region. These tweets are from a curated
list of 3,744 Twitter handles that belong to gov-
ernments, officials, and public health authorities
at U.S. federal and state levels.

Chatbot (Component 6). This component
embeds the Jennifer Chatbot built by the New
Voices project of the National Academies of
Sciences, Engineering and Medicine (Li et al.,
2020), which was built specifically for answer-
ing COVID-19 related questions. As part of the
collaborative team behind this chatbot, we are
expanding it using the aforementioned catalog.

3 The Datasets

The dashboard uses the following three datasets.
1) Counts of confirmed cases, deaths, and re-

coveries. We collected these counts daily from
Johns Hopkins University, 4 the New York Times
(NYT) 5 and the COVID Tracking Project. 6

These sources provide statistics at various ge-
ographic granularities (country, state, county).

2) Tweets. We are using a collection of
approximately 250 million COVID-19 related

4https://github.com/CSSEGISandData/COVID-19
5https://github.com/nytimes/covid-19-data
6https://covidtracking.com/

tweets from January 1st, 2020 to May 16th, 2020,
obtained from (Banda et al., 2020) (version 10.0).
We removed tweets and Twitter handles (and their
tweets) that do not have location information, re-
sulting in 34.6 million remaining tweets. We then
randomly selected 10.4% of each month’s tweets,
leading to 3.6 million remaining tweets. We used
the OpenStreetMap (Quinion et al., 2020) API
to map the locations of Twitter accounts from
user-entered free text to U.S. county names. We
used the ArcGIS API 7 to map the locations of
tweets from longitude/latitude to counties.

3) A catalog and a taxonomy of COVID-19
related facts.

The manually curated catalog currently has
9,512 entries from 21 credible websites, includ-
ing statements from authoritative organizations
(e.g., WHO, CDC), verdicts, debunks, and ex-
planations of factual claims (of which the truth-
fulness varies) from fact-checking websites (e.g.,
the IFCN CoronaVirusFacts Alliance Database, 8

PolitiFact), and FAQs both from credible sources
(e.g., FDA, NYT) and a dataset curated by (Wei
et al., 2020).

We organized the entries in this catalog into
a taxonomy of categories, by integrating and
consolidating the available categories from a
number of source websites, placing entries from
other websites into these categories or creating
new categories, and organizing the categories
into a hierarchical structure based on their in-
clusion relationship. The taxonomy is as fol-
lows, in the format of {level-1 categories [level-
2 categories (level-3 categories)]}: 9

{Animals, Basic Information [Causes, Definition, Dis-

ease Alongside, Recovery, Spreading, Symptoms, Test-

ing], Cases, Contribution, Diplomacy, Economics/Finance

[Crisis, Grants/Stimulus, Tax, Unemployment], Family

Preparation, Funeral, Government Control [Administra-

tion (Lockdown, Reopen, Staff), Law, Medical

Support, Military], Mental Health, Prevention [Actions

to Prevent (Hand Hygiene, Isolation, Masks,

Social Distancing), Medication, Vaccines], Reli-

gion, Schools/Universities, Travel, Treatment [Medication,

Minor Symptom, Severe Symptom], Violence/Crime}.
We also stored the catalog and the taxonomy
7https://developers.arcgis.com/python/guide/

reverse-geocoding/
8https://www.poynter.org/

ifcn-covid-19-misinformation/
9Not every level-1 or level-2 category has subcategories.

101

Figure 2: Matching tweets with facts and stance detection

Tweet Fact Taxonomy
Categories

Similarity Stance

Coronavirus cannot be passed by
dogs or cats but they can test posi-
tive.

There has been no evidence that pets such
as dogs or cats can spread the coronavirus.

Animals,
Spreading

0.817 agree

More people die from the flu in the
U.S. in 1 day than have died of the
Coronavirus across the world ever.

Right now, it appears that COVID-19, the
disease caused by the new coronavirus,
causes more cases of severe disease and
more deaths than the seasonal flu.

Cases 0.816 disagree

Table 1: Example results of matching tweets with facts and stance detection

as an RDF dataset, in which each entry of the cat-
alog is identified by a unique resource identifier
(URI). It is connected to a mediator node that rep-
resents the multiary relation associated with the
entry. For example, Figure 3 shows a question
about COVID-19, its answer and source, and the
lowest-level taxonomy nodes that the entry be-
longs to, all connected to a mediator node. This
RDF dataset, with 12 relations and 78,495 triples,
is published in four popular RDF formats—N-
Triples, Turtle, N3, and RDF/XML. Furthermore,
we have set up a SPARQL query endpoint at
https://cokn.org/deliverables/7-covid19-kg/ us-
ing OpenLink Virtuoso.10

4 Matching Tweets with Facts and
Stance Detection

Given the catalog of COVID-19 related facts F
and the tweets T , we first employ claim-matching
to locate a set of tweets tf ∈ T that discuss each
fact f ∈ F . Next, we apply stance detection
on pairs pf = {(t, f) | t ∈ tf} to determine
whether each t is agreeing with, disagreeing with,
or neutrally discussing f . Finally, aggregate re-
sults are displayed on Component 4 of the dash-
board to summarize the public’s view on each
fact. Figure 2 depicts the overall claim-matching

10https://virtuoso.openlinksw.com/

and stance detection pipeline. For both tasks, we
employed Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019).
Table 1 shows some example results of claim
matching and stance detection.

URI mediator
node

How does COVID-19
spread?

question

answer_detail
Human coronaviruses

typically spread through the
air by coughing and ...

URI

source
Illinois Department of Public

Health

type

Spreading

Figure 3: An entry of the catalog stored in RDF

Claim matching.
We generate sentence embeddings st and sf ,

for t and f respectively, using the mean-tokens
pooling strategy in Sentence-BERT (Reimers and
Gurevych, 2019). The relevance between t and f
is then calculated as:

Rt,f =
st · sf

‖st‖ × ‖sf‖ (1)

Given Rt,f , we model claim-matching as a rank-
ing task on the relevance between facts and
tweets. Thus, the output of this stage is tf =
{t ∈ T |Rt,f ≥ θ} for each fact f ∈ F , where
the threshold θ is 0.8 in our implementation.

102

Stance detection. Given tf , we detect the
stance that each tweet t takes toward fact f .
There could be 3 classes of stance: agree (t sup-
ports f), discuss (t neutrally discusses f), and
disagree (t refutes f). For this task, we obtained
a pre-trained BERTBase model 11 and trained it
on the Fake-News Challenge Stage 1 (FNC-1)
dataset. 12 We denote this model Stance-BERT.

We first pre-process pf to conform with BERT
input conventions by 1) applyingW (·), the Word-
Piece tokenizer (Wu et al., 2016), 2) applying
C(a1, a2, . . . , an), a function that concatenates
arguments in appearance order, and 3) insert-
ing specialized BERT tokens [CLS] and [SEP].
Since BERT has a maximum input length of
M = 512 and some facts can exceed this limit,
we propose a sliding-window approach inspired
by (Devlin et al., 2019) to form input xf :

xf =
{
{C([CLS],W (t), [SEP],W (f)[i∗S,i∗S+L],

[SEP]) | 0 ≤ i <
⌈ |W (f)|

S

⌉
} | (t, f) ∈ pf

}
(2)

where S defines the distance between successive
windows and L = M − (|W (t)| + 3) is the se-
quence length available for each fact. If i∗S+L
is an out-of-bounds index for W (f), the extra
space is padded using null tokens.

Each element w ∈ xf contains a set of win-
dows representing a tweet-fact pair. Each win-
dow wi ∈ w is passed into Stance-BERT, which
returns probability distributions (each containing
3 entries, 1 for each class) ŷf

wi for each window.
Stance aggregation. For each fact f ,

the stance detection results are accumu-
lated to generate scores Sf

C , where C ∈
{agree,discuss, disagree} that denote the per-
centage of tweets that agree, discuss, and dis-
agree with f : 13

Sf
C =

∑
w∈xf

[
argmaxσ({ŷf

wi
| wi ∈ w}) = C

]

|xf | (3)

where σ(·) is a function that averages the model’s
output scores for each class across all windows
of tweet-fact pair. The 3 final stance scores are
passed to the dashboard’s panel of facts (Compo-
nent 4) for display.

11https://github.com/google-research/bert
12http://www.fakenewschallenge.org/
13We use the Iverson bracket: [P] = 1 if P is true, else 0

5 Evaluation and Results

5.1 Performance of Claim Matching

To evaluate the performance of the claim match-
ing component, we first created a Cartesian prod-
uct of the 3.6 million tweets with 500 “facts”
from the catalog (see Section 3 for description
of datasets), followed by randomly selecting 800
tweet-fact pairs from the Cartesian product. To
retain a balanced dataset, 400 pairs were drawn
from those pairs scored over 0.8 by the claim
matching component, and another 400 pairs were
drawn from the rest. To obtain the ground-truth
labels on these 800 pairs, we used three human
annotators. 183 pairs were labeled “matched”
(i.e., the tweet and the fact have matching top-
ics) and 617 pairs “unmatched”. Table 2 shows
the claim matching component’s performance
on these 800 pairs, measured by precision@k
and nDCG@k(normalized Discounted Cumula-
tive Gain at k). Both precision@k and nDCG@k
are metrics of ranking widely used in classifi-
cation problem, the order of top k prediction is
considered in nDCG@k but not in precision@k.

Metric @5 @10 @20 @50 @100

Precision 0.80 0.80 0.70 0.56 0.52
nDCG 0.62 0.72 0.78 0.81 0.83

Table 2: Performance of claim matching on the 800 tweet-
fact pairs

5.2 Performance of Stance-BERT

Model
F1 score

agree discuss disagree macro

Stance-BERTwindow(FNC-1) 0.65 0.45 0.84 0.65
Stance-BERTtrunc(FNC-1) 0.66 0.41 0.82 0.63
(Xu et al., 2018)(FNC-1) 0.55 0.15 0.73 0.48

Stance-BERTwindow(COVID-19) 0.75 0.03 0.58 0.45

Table 3: Performance of Stance-BERT on the FNC-1 test
dataset and 200 matched tweet-fact pairs

Table 3 shows Stance-BERT’s performance on
the FNC-1 competition test dataset and our tweet-
fact pairs, using F1 scores for all 3 classes as
well as macro-F1. On FNC-1, we tested 2 vari-
ations of the same model: Stance-BERTwindow,
which uses the sliding-window approach (Sec-
tion 4), and Stance-BERTtrunc, a model that trun-
cates/discards all inputs after M tokens but is
otherwise identical to Stance-BERTwindow. Both
variants significantly outperformed the method

103

used in (Xu et al., 2018), one of the recent com-
petitive methods on FNC-1.

Note that FNC-1 also includes a fourth “un-
related” class that we discarded, since we al-
ready have a claim-matching component. Be-
cause other recent stance detection methods (Mo-
htarami et al., 2018; Fang et al., 2019) only re-
ported macro-F1 scores calculated using all four
classes including “unrelated”, we cannot report
a direct comparison with their methods. How-
ever, we argue that our macro-F1 of 0.65 remains
highly competitive. The model of (Xu et al.,
2018) achieved a 0.98 F1 score on “unrelated”,
which suggests that “unrelated” (i.e., separating
related and unrelated pairs) is far easier than the
other 3 classes (i.e., discerning between different
classes of related pairs). Given that Stance-BERT
significantly outperformed (Xu et al., 2018) on all
other 3 classes, it is plausible that Stance-BERT
will remain a top performer under all four classes.

To evaluate Stance-BERT’s performance on
our tweet-fact pairs, the three human annotators
produced ground-truth labels on another set of
481 randomly selected tweet-fact pairs. 200 pairs
are labeled as “matched”. These 200 pairs are
further labeled as “agree”/“discuss”/“disagree”,
in a distribution of 110/73/17 tweet-fact pairs.
Ultimately, we discovered that Stance-BERT per-
forms remarkably well on “agree” and “disagree”
classes but falters on “discuss”.

5.3 Misinformation Analysis

1

10

100

1000

10000

01-01-2020 02-01-2020 03-01-2020 04-01-2020 05-01-2020 05-17-2020

Nu
m

be
r

of
 M

isi
nf

or
m

at
io

n
Tw

ee
ts

Monthly Cumulative Misinformation Count

United States United Kingdom India

Canada Australia Philippines

Figure 4: 6 countries with the most misinformation tweets

Figure 4 is the cumulative timeline for the top-
6 countries with the most COVID-19 misinfor-
mation tweets in the dataset. “Misinformation
tweets” refer to tweets that go against known
facts as judged by our stance detection model.

We also conducted a study on the correla-

tion between misinformation tweet counts and
COVID-19 case counts. We looked at the per-
centage of cases relative to a country’s popula-
tion size, and the percentage of misinformation
tweets relative to the total number of tweets from
a country. The Pearson correlation coefficients
between them are in Table 4. We find that the
number of misinformation tweets most positively
correlates with the number of confirmed cases.
In contrast, its correlation with the number of
recovered cases is weaker.

Country Confirm Death Recover

United States 0.763 0.738 0.712
United Kingdom 0.862 0.833 -
India 0.794 0.798 0.755
Canada 0.706 0.667 0.663
Australia 0.954 0.922 0.887
Philippines 0.720 0.696 0.618

Table 4: Correlation between the percentage of con-
firmed/deceased/recovered cases and the percentage of mis-
information tweets. The number of recovered cases in U.K.
after April 13th is missing from the data source.

Finally, we manually categorized the misin-
formation tweets based on the taxonomy (Sec-
tion 3). Table 5 lists the five most frequent cate-
gories of misinformation tweets. These five cat-
egories make up 49.9% of all misinformation
tweets, with the other 50.1% being spread out
over the other 33 categories.

Category Count Percentage

Definition 2503 15.1
Spreading 2118 12.7
Other 1450 8.7
Testing 1301 7.8
Disease Alongside 936 5.6

Total 8308 49.9

Table 5: Most frequent categories of misinformation tweets

6 Conclusion

This paper introduces an information dashboard
constructed in the context of our ongoing project
regarding the COVID-19 misinfodemic. Going
forward, we will focus on developing the dash-
board at scale, including more comprehensive
tweet collection and catalog discovery and collec-
tion. We will also introduce more functions into
the dashboard that are aligned with our project
goal of studying the surveillance of, impact of,
and intervention on COVID-19 misinfodemic.

104

References
Mabrook S Al-Rakhami and Atif M Al-Amri. 2020.

Lies kill, facts save: Detecting covid-19 misin-
formation in twitter. IEEE Access, 8:155961–
155970.

Juan M. Banda, Ramya Tekumalla, Guanyu Wang,
Jingyuan Yu, Tuo Liu, Yuning Ding, Katya Arte-
mova, Elena Tutubalin, and Gerardo Chowell.
2020. A large-scale COVID-19 twitter chatter
dataset for open scientific research - an interna-
tional collaboration.

J Scott Brennen, Felix M Simon, Philip N Howard,
and Rasmus Kleis Nielsen. 2020. Types, sources,
and claims of COVID-19 misinformation. Reuters
Institute.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language un-
derstanding. In NAACL, pages 4171–4186.

Wei Fang, Moin Nadeem, Mitra Mohtarami, and
James Glass. 2019. Neural multi-task learning for
stance prediction. In EMNLP Workshop on Fact
Extraction and Verification, pages 13–19.

Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem,
Molly B El Alam, Basil Karam, Elio Adib, Jabra
Zarka, Cindy Traboulsi, Elie W Akl, and Khalil
Baddour. 2020. Coronavirus goes viral: quanti-
fying the COVID-19 misinformation epidemic on
twitter. Cureus, 12(3).

Yunyao Li, Tyrone Grandison, Patricia Silveyra,
Ali Douraghy, Xinyu Guan, Thomas Kieselbach,
Chengkai Li, and Haiqi Zhang. 2020. Jennifer for
COVID-19: An nlp-powered chatbot built for the
people and by the people to combat misinforma-
tion. In ACL Workshop on Natural Language Pro-
cessing for COVID-19, pages 1–9.

Shahan Ali Memon and Kathleen M Carley. 2020.
Characterizing covid-19 misinformation commu-
nities using a novel twitter dataset. arXiv preprint
arXiv:2008.00791.

Areeb Mian and Shujhat Khan. 2020. Coronavirus:
the spread of misinformation. BMC medicine,
18(1):1–2.

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
Nakov, Lluı́s Màrquez, and Alessandro Moschitti.
2018. Automatic stance detection using end-to-
end memory networks. In NAACL, pages 767–
776.

Sunday Oluwafemi Oyeyemi, Elia Gabarron, and
Rolf Wynn. 2014. Ebola, twitter, and misinforma-
tion: a dangerous combination?. BMJ, 349:g6178.

Brian Quinion, Sarah Hoffmann, and Marc T. Met-
ten. 2020. Nominatim: A search engine for open-
streetmap data.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In EMNLP-IJCNLP, pages 3973–3983.

Jon Roozenbeek, Claudia R Schneider, Sarah Dry-
hurst, John Kerr, Alexandra LJ Freeman, Gabriel
Recchia, Anne Marthe Van Der Bles, and Sander
Van Der Linden. 2020. Susceptibility to misinfor-
mation about covid-19 around the world. Royal
Society open science, 7(10):201199.

Jerry Wei, Chengyu Huang, Soroush Vosoughi, and
Jason Wei. 2020. What are people asking about
covid-19? a question classification dataset. arXiv
preprint arXiv:2005.12522.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Brian Xu, Mitra Mohtarami, and James Glass. 2018.
Adversarial domain adaptation for stance detec-
tion. In NeurIPS.

105

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 106–112
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

EasyTurk: A User-Friendly Interface for High-Quality
Linguistic Annotation with Amazon Mechanical Turk

Lorenzo Bocchi, Valentino Frasnelli
Dept. of Psychology and Cognitive Science

University of Trento
Rovereto (Trento), Italy

[name.surname]@studenti.unitn.it

Alessio Palmero Aprosio
Digital Humanities Unit

Fondazione Bruno Kessler
Trento, Italy

aprosio@fbk.eu

Abstract

Amazon Mechanical Turk (AMT) has re-
cently become one of the most popular crowd-
sourcing platforms, allowing researchers from
all over the world to create linguistic datasets
quickly and at a relatively low cost. Amazon
provides both a web interface and an API for
AMT, but they are not very user-friendly and
miss some features that can be useful for NLP
researchers. In this paper, we present Easy-
Turk, a free tool that improves the potential of
Amazon Mechanical Turk by adding to it some
new features. The tool is free and released un-
der an open source license.

A video showing EasyTurk and its features is
available on YouTube.1

1 Introduction

In the last years, deep learning algorithms have
achieved state-of-the-art results in most NLP tasks
such as textual inference, machine translation, hate
speech detection (Socher et al., 2012). Despite their
accuracy, deep learning algorithms have a major
downside, i.e. they require large amounts of data to
be trained, making the data bottleneck issue even
more problematic than with other machine learn-
ing algorithms like SVM (Gheisari et al., 2017).
The need to leverage large amounts of manually
annotated data has become a major challenge for
the NLP community, since linguistic annotation
performed by domain experts is both expensive
and time-consuming. This explains why crowd-
sourcing platforms, offering access to a large pool
of potential annotators, have been successfully used
for the creation of annotated datasets.

Amazon Mechanical Turk (AMT) is probably
the most widely used platform of this kind, en-
abling the distribution of low-skill but difficult-to-
automate tasks to a network of humans who could

1https://youtu.be/OmKJOrNpGSs

work in parallel, when and where they prefer, for
a certain amount of money. The availability of a
lot of workers at the same time allows researchers
all over the world to annotate large datasets in a
fraction of the time and the money needed doing
it through the recruitment of domain experts. Fur-
thermore, crowd-workers are spread all over the
world, offering the possibility to have annotation
performed in different languages by native speak-
ers. In the last years, AMT turned out to be suc-
cessful in a wide range of NLP annotations, such as
named entities from e-mails (Lawson et al., 2010)
or medical texts (Yetisgen et al., 2010), subjectivity
word sense disambiguation (Akkaya et al., 2010),
image captioning (Rashtchian et al., 2010), and
much more.

Unfortunately, annotations obtained by AMT
workers are often of low quality, since: (i) they are
non-expert and therefore they can make mistakes
in annotations; (ii) some of them are spammers
who try to maximise the earnings by submitting
random answers as quickly as possible. Mitigat-
ing the effect of errors in datasets annotated by
crowd-workers is one of the biggest challenge in
using AMT. One mitigation strategy adopted by re-
searchers is usually to collect multiple annotations
of the same instance, and apply different methods
to deal with this information redundancy. Most of
the times, majority voting seems to be an appro-
priate strategy, i.e. the final label assigned to an
instance is the one provided by the majority of the
workers, even if they are not all in agreement. How-
ever, if spammers always choose the same answer
to finish the task quicker, this strategy would finally
assign a wrong label to the textual instance.

While past works have described how to suc-
cessfully deal with non-expertness (Callison-Burch,
2009; Mohammad and Turney, 2010), it is more
challenging to identify spammers. Some tools
(Hovy et al., 2013) deal with the problem offline,

106

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

when the task is completed, trying to identify spam-
mers using redundant annotations and comparing
the answers given by all crowd-workers. In this
context, spammers are correctly identified, but they
are nevertheless paid because their annotations are
filtered out after the task is closed.

Another idea to find spammers is to use a gold
standard, a set of very easy-to-understand instances,
previously annotated by an expert, that a careful
worker should not miss. In this paradigm, when
a worker gives the wrong answer to a gold ques-
tion, one may infer that the annotator is trying to
cheat and should be blocked. The AMT API pro-
vide a way to do it automatically, but the feature
is not included in the web interface, therefore the
only way to get this result is by writing a program
(in Python, php, or any supported language) that
checks whether the gold instances have been an-
swered correctly or not.

In this paper, we describe EasyTurk, both a web
interface and a powerful API that tackles all these
issues and enhances the experience of using AMT.
The tool can aggregate more than one instance
of a task in a single page shown to the worker,
concealing also gold standard instances. Further-
more, EasyTurk can be configured to take an ac-
tion, e.g. block a worker when he or she misses
too many gold answers, marking the already-given
questions as not reliable. Finally, the software is
open source and its user-friendly interface has been
implemented using most recent guidelines for us-
ability and responsiveness.

2 Amazon Mechanical Turk

Amazon Mechanical Turk2 is an online market-
place for hiring workers and submit to them atomic
tasks that are usually easy for humans but difficult
for machines. The atomic unit of work is called
Human Intelligent Task (HIT).

AMT has two kinds of users: requesters and
workers. The formers create the HITs (using the
API or the web interface) and upload them to the
Amazon servers, along with the fee that will pay for
each of them to be completed. The latters search
the HIT database, choose the preferred tasks and
complete them in exchange for monetary compen-
sation.

Requesters can restrict the range of workers al-
lowed to complete the task, based on demography,
school level, spoken languages, and so on. Some

2http://www.mturk.com/

requirements are free for the requester (for example
the living country of the worker), but normally they
raise the price of the HITs. Requesters can also
assign custom qualifications to workers in order to
filter out them during the submission of the HITs
to the system.

The platform also provides an automatic mecha-
nism that allows multiple unique workers to com-
plete the same HIT. This is useful, for example in
NLP tasks, for which requesters usually need more
than one answer for each HIT, so that the majority
label can be selected, resulting in a higher-quality fi-
nal annotation thanks to the ‘wisdom of the crowd’.
Each annotation instance (a pair worker-HIT) is
called assignment.

Requesters have the option of rejecting the an-
swer of a particular worker, in which case they are
not paid. The above-described custom qualifica-
tions can be used to filter out, for a particular task,
workers who did not reach sufficient accuracy in
previous HITs. In specific cases, for example as a
consequence of particularly sloppy annotations, a
worker can be blocked and is not able to perform
HITs for the requester anymore.

One of the main issues with using AMT is that
some features are available only using the API,
while others can be used only in the web interface.
For example, through the web interface a requester
can upload a TSV file with the data to be annotated,
or select which qualifications the workers should
have to complete the HITs. These two features are
not available in the API, but one can automatise ac-
ceptance/rejection of the worker job only through
it. Given the above constraints, we developed Easy-
Turk so to allow non-skilled users to submit HITs
without using a specific programming language,
such as Python or Java, while using the features
available through APIs.

3 Description of EasyTurk

EasyTurk is composed of three modules: (i) the
web interface; (ii) the API; (iii) the server. Most
of the features included in EasyTurk are accessible
directly from the web interface, but are managed
by the server.

3.1 More annotations in one HIT

The original web interface of AMT has a power-
ful graphical editor for the templates, used by the
requester to display the data they want the worker
to annotate. After creating the template file, one

107

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 1: Selection box for mixing gold and unknown data.

can upload a text document with the data (usually
a CSV or XML file), and then AMT submits the
HITs (one per file record/line) to the workforce.

In NLP, it often happens that a task corresponds
to a binary assignment, meaning that an instance is
labeled with a value in the set true/false. Usually
researchers have a list of instances in one single
file (for example a JSON or CSV file). Submitting
the record one by one, one per HIT, would be more
expensive for the requester and time-consuming
for workers, because they would need to click the
confirm button after each instance annotation and
wait for the new HIT to load, even if it is just a
sentence or a short string.

In EasyTurk the requester can go beyond this
limitation easily, by creating a template with mul-
tiple slots for the data. Then, using a sequential
naming standard (for example, text1, text2,
text3, etc.), the tool will automatically infer the
number of records to fill in the template.

3.2 Upload of a gold standard

In AMT, the requester has two options to check
the annotation accuracy. First, they can perform an
offline check (after the whole task has ended) using
the information obtained by majority voting (Hovy
et al., 2013). As an alternative, AMT provides a
mechanism to check the answer of a HIT against
a gold standard. Depending on the worker answer,
the system can accept or reject the HIT automati-
cally. As outlined in Section 2, this is one of the

features available only in the API, and missing in
the web interface.

In EasyTurk, the requester can optionally add a
document with some additional data containing the
correct annotation. When populating the template,
they can select how many gold instances need to
be added for each HIT (see Figure 1), and decide
- among a set of available options - the behavior
of the system when the worker misses the gold
instance(s).

In order to avoid that a worker is blocked or
restricted for having missed a single answer, the
system can check the accuracy of the workers on a
span of HITs, and then take action after the worker
completed at least that span (see Figure 2).

3.3 Automatic block/restrict the workers

When a worker misses a considerable amount of
gold instances, the requester can decide what will
be the behavior of the tool. Figure 2 shows the
range of possible options. First of all, one has to
decide whether to accept or reject the assignment.
In the second case, the worker can be restricted or
blocked. With restriction, it is intended that this
worker cannot participate any more in the tasks of
the current project, but they are allowed to com-
plete HITs when a new project from the same re-
quester is submitted to AMT. EasyTurk uses AMT
qualifications to this purpose.3 When a worker is

3A qualification is a custom property that a requester can
assign to one or more workers. In EasyTurk, each project is as-

108

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 2: Selection box for managing the behavior of the tool depending on the workers’ answers.

blocked, instead, they will not see any more any
HIT submitted by the requester. Both properties
(restriction and block) are reversible.

To limit spammers (see Section 1), a worker can
be blocked/restricted also when HITs are being sub-
mitted by a worker too fast, showing for example
that the worker is not even reading the instances
before annotation.

3.4 User management

When running EasyTurk, the user is asked to pro-
vide an administration password. With this cre-
dentials, the administrator can create new users,
each of which having its own username and pass-
word. Each user is then linked to its AMT API keys,
allowing a single instance of EasyTurk to serve dif-
ferent users having different AMT accounts. A flag
can be set to switch a user to work on the Sandbox
version of AMT.

sociated with a qualification: when a requester wants to restrict
a worker, the tool assigns the qualification to the worker, and
consequently the task is hidden in the AMT worker console
for them.

3.5 The web interface
The web interface of EasyTurk is written using
VueJS.4 The structure of the website is build with
Tailwind CSS5, the design is inspired by Material
Design.6

Through the interface, requesters can group
HITs into projects, and follow all the steps from the
project definition to the visualisation of the results.

Project definition. The general information about
the project (description, reward, time alotted
for the workers, layout, qualifications needed,
and so on) are given and a project is created.

Data insertion. In this phase, a file with the data
is uploaded to the system (plus an additional
file, if needed, for the gold standard, see Sec-
tion 3.2).

HITs generation. The HITs are generated by
grouping the data (depending on how many
items the requester wants for each HIT) and
optionally mixing it with the gold standard
(Figure 1).

4https://vuejs.org/
5https://tailwindcss.com/
6https://material.io/

109

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Condition management. The requester sets the
tool behaviour in specific cases, for instance
when a worker misses the gold standard (Fig-
ure 2).

HITs submission. The HITs are submitted to
AMT in bunches of predetermined size (set
by the requester).

HITs monitoring. The dot matrix interface gives
an overview on how the task is going (see
Figure 3). In this phase, the requester can
control all the aspects of the annotations: the
approval rate, the speed, the workers, and so
on.

Retrieval of Results. The resulting annotations
(even when the gold is missed or the HIT is
rejected) can be visualised and downloaded in
JSON format.

In developing EasyTurk, we wanted to stress the
importance of having a readable overview of how
the annotation is going, from the HITs submission
to the retrieval of the results. We found the dot ma-
trix chart7 to be an effective solution to achieve this
goal (see Figure 3). Each dot represents a HIT and
is painted with a different color depending on how
many assignments have been rejected or whether
the gold instances have been missed. Different col-
orization strategies have been chosen to highlight
the different status of the HITs: unassigned, pend-
ing, completed. Using this interface, a considerable
presence of red dots may point out that the gold
standard was ambiguous, allowing the requester to
tune it better in the future.

3.6 The API
An API supporting the web interface and written in
php is included in the EasyTurk package. It can be
used also as a standalone program to integrate the
features of the tool into third-part packages. Since
the web interface relies on this API to work prop-
erly, it is mandatory to install it to take advantage
of the web interface.

3.7 The server
The last part of EasyTurk is a server script, written
in php. It performs all the tasks needed to update
the information based on the AMT APIs (for ex-
ample, the status of a HIT or the triggering of the
actions described in Section 3.3).

7https://datascientist.reviews/
dot-matrix-chart/

EasyTurk can also be configured to work with
Amazon Simple Notification Service8 (SNS), so
that most of the information about the HITs can be
updated almost in real time.

4 Release

EasyTurk is completely free, available on GitHub,9

and released as open-source under the Apache 2.0
license.10 The web interface is developed in VueJS
and needs NodeJS11 to be compiled and launched.

Both the API and the server are written in php12

and need a machine with at least version 7 of the in-
terpreter and MySQL server13 installed. The server
can be run as a service and does not need other
particular dependencies to work. The API, instead,
must be configured to work in a web server (such
as Apache14 or Nginx15).

5 Related Work

Since 2005, when AMT was released, an increasing
number of researchers has used this platform for re-
search purposes. In particular, the NLP community
has taken advantage of AMT to bring linguistic
resources to a new scale, also with the support of
Amazon. For example, in 2010 Amazon sponsored
a workshop during the NAACL conference, where
researchers were given 100 dollars of credit on
the platform to run an annotation task and answer
some meta-research questions, such as how non-
expert workers can perform complex annotations,
or how can one ensure high quality annotations
from crowd-sourced contributors.

Some past works have dealt with the above-
mentioned issues related to crowd-worker quality.
In (Hovy et al., 2013), the authors present a soft-
ware that, after a round of annotations using AMT,
tries to understand which workers perform better
and, consequently, which are the best annotations
to consider and which to discard when there is re-
dundancy, in an unsupervised fashion. In (Wais
et al., 2010), the efficiency of AMT is analysed
over 100,000 local business listings for an online
directory. A mechanism for filtering low-quality
workers in order to build a reliable workforce that

8https://aws.amazon.com/it/sns/
9https://github.com/dhfbk/easyturk

10https://www.apache.org/licenses
11https://nodejs.org/it/
12https://www.php.net/
13https://www.mysql.com/
14https://httpd.apache.org/
15https://www.nginx.com/

110

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 3: The dot matrix showing the HITs.

has high accuracy is described, to understand better
the problem of quality control in crowdsourcing
systems.

Some attempts have also been done to improve
the potential of AMT by writing new frameworks
on top of the AMT API. CloudResearch, formerly
TurkPrime, (Litman et al., 2017) was born for this
purpose and at the time of launch was free to use
for researchers. Now it is part of a bigger company
and is not free any more. LingoTurk (Pusse et al.,
2016) is an open-source, freely available crowd-
sourcing client/server system aimed primarily at
psycholinguistic experimentation, where custom
and specialized user interfaces are required but not
supported by popular crowdsourcing task manage-
ment platforms. OpenMTurk (Feeney et al., 2018)
is a free and open-source administration tool for
managing research studies using AMT. TurKit (Lit-
tle et al., 2010) is a toolkit for prototyping and
exploring truly algorithmic human computation,
while maintaining a straightforward imperative pro-
gramming style. Turktools (Erlewine and Kotek,
2016) is a set of free, open-source tools that allow
linguists to post studies online and simplify the
interaction with AMT. TurkGate16 provides better
control and verification of workers’ access to an
external site and allows the grouping of HITs, so
that workers may only access one survey within a
group. AMTI,17 developed at the Allen Institute
for AI, is a command-line interface for AMT that

16https://github.com/gideongoldin/
TurkGate

17https://github.com/allenai/amti

emphasizes the ability to quickly iterate on and run
reproducible crowdsourcing experiments.

Finally, AMT is integrated to add human annota-
tions in more complex tools. Qurk (Marcus et al.,
2011), for example, is a query system for managing
annotation workflows.

6 Conclusion and Future Work

In this paper, we presented EasyTurk, a free pro-
gram that improves the potential of Amazon Me-
chanical Turk by adding some features which are
not present out-of-the-box. In particular, the re-
quester has now the ability to insert multiple in-
stances of the task in a single HIT, and option-
ally mix them with a gold standard, that can be
used to track the accuracy of the workers. Finally,
when some events are triggered (for example a
worker answering too quickly to a HIT or missing
the gold standard), EasyTurk can be programmed
to take an action such as reject the assignment, or
block/restrict the worker.

The tool is free and open source, and can be
downloaded from GitHub and installed locally.

In the future, we are planning to implement new
features. For example, the system can intercept
spammers using also a particular pattern of answers
(for example a set of HIT where the same answer
is always selected). We also would like to include
in EasyTurk a collection of templates for basic
annotations (for example, yes/no, a set of possible
answers, a free text, and so on), so that requesters
do not need any more to create their template on
the AMT website.

111

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References
Cem Akkaya, Alexander Conrad, Janyce Wiebe, and

Rada Mihalcea. 2010. Amazon mechanical turk for
subjectivity word sense disambiguation. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pages 195–203, Los Angeles. Association
for Computational Linguistics.

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using amazon’s me-
chanical turk. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language
Processing: Volume 1 - Volume 1, EMNLP ’09, page
286–295, USA. Association for Computational Lin-
guistics.

Michael Yoshitaka Erlewine and Hadas Kotek. 2016.
A streamlined approach to online linguistic surveys.
Natural Language & Linguistic Theory, 34(2):481–
495.

Justin Feeney, Gordon Pennycook, and Matthew Box-
tel. 2018. OpenMTurk: An Open-Source Admin-
istration Tool for Designing Robust MTurk Studies.
SSRN Electronic Journal.

M. Gheisari, G. Wang, and M. Z. A. Bhuiyan. 2017. A
survey on deep learning in big data. In 2017 IEEE
International Conference on Computational Science
and Engineering (CSE) and IEEE International Con-
ference on Embedded and Ubiquitous Computing
(EUC), volume 2, pages 173–180.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Nolan Lawson, Kevin Eustice, Mike Perkowitz, and
Meliha Yetisgen-Yildiz. 2010. Annotating large
email datasets for named entity recognition with me-
chanical turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 71–
79, Los Angeles. Association for Computational Lin-
guistics.

Leib Litman, Jonathan Robinson, and Tzvi Abberbock.
2017. TurkPrime.com: A versatile crowdsourcing
data acquisition platform for the behavioral sciences.
Behavior Research Methods, 49(2):433–442.

Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2010. Turkit: Human computa-
tion algorithms on mechanical turk. In Proceedings
of the 23nd Annual ACM Symposium on User In-
terface Software and Technology, UIST ’10, page
57–66, New York, NY, USA. Association for Com-
puting Machinery.

Adam Marcus, Eugene Wu, Samuel Madden, and
Robert Miller. 2011. Crowdsourced databases:
Query processing with people. pages 211–214.

Saif Mohammad and Peter Turney. 2010. Emotions
evoked by common words and phrases: Using me-
chanical turk to create an emotion lexicon. In Pro-
ceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Gener-
ation of Emotion in Text, pages 26–34, Los Angeles,
CA. Association for Computational Linguistics.

Florian Pusse, Asad Sayeed, and Vera Demberg. 2016.
LingoTurk: managing crowdsourced tasks for psy-
cholinguistics. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Demonstrations,
pages 57–61, San Diego, California. Association for
Computational Linguistics.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and
Julia Hockenmaier. 2010. Collecting image annota-
tions using Amazon’s mechanical turk. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pages 139–147, Los Angeles. Association
for Computational Linguistics.

Richard Socher, Yoshua Bengio, and Christopher D.
Manning. 2012. Deep learning for nlp (without
magic). In Tutorial Abstracts of ACL 2012, ACL
’12, page 5, USA. Association for Computational
Linguistics.

Paul Wais, Shivaram Lingamneni, Duncan Cook, Ja-
son Fennell, Benjamin Goldenberg, Daniel Lubarov,
David Marin, and Hari Simons. 2010. Towards
building a high-quality workforce with mechanical
turk. In In Proc. NIPS Workshop on Computational
Social Science and the Wisdom of Crowds.

Meliha Yetisgen, Imre Solti, Fei Xia, and Scott Hal-
grim. 2010. Preliminary experience with amazon’s
mechanical turk for annotating medical named enti-
ties.

112

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 113–118
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

ASAD: Arabic Social media Analytics and unDerstanding

Sabit Hassan, Hamdy Mubarak, Ahmed Abdelali, Kareem Darwish
Qatar Computing Research Institute

Hamad bin Khalifa University
Doha, Qatar

{sahassan2,hmubarak,aabdelali,kdarwish}@hbku.edu.qa

Abstract

This system demonstration paper describes the
Arabic Social media Analysis and unDerstand-
ing (ASAD) toolkit, which is a suite of seven
individual modules that allows users to deter-
mine dialects, sentiment, news category, offen-
siveness, hate speech, adult content, and spam
in Arabic tweets1. The suite is made available
through a web API and a web interface where
users can enter text or upload files.

1 Introduction

Since Arabic is spoken across a vast region, the
Arabic Twittersphere presents a valuable scope into
social and linguistic phenomena, such as the mul-
titude of dialects being used across different re-
gions. The Arabic Social Media and unDerstanding
(ASAD) suite 2, which we present herein, offers
valuable tools for exploring such phenomena and
for the automated processing of Arabic social me-
dia texts. Specifically, ASAD offers dialect identifi-
cation, sentiment analysis, news category detection,
offensive language detection, including hate speech
and vulgar language, and spam detection. These
tools are valuable for many downstream NLP ap-
plication. For example, dialect identification can
help improve author profiling and machine trans-
lation (Abdelali et al., 2020). Sentiment analysis
can aid in quantifying public opinions (Abu Farha
and Magdy, 2019). Detecting news categories can
aid in content analysis. Further, offensive language
and spam detection can help identify potentially
malicious content on social media. Although there
has been a growing interest in analyzing Arabic
social media, there is a deficiency in publicly avail-
able tools or such tools are not integrated into one
framework or toolkit. For example, we are not

1We will add more functionalities in the future.
2Demonstration: https://www.youtube.com/

watch?v=Boe_JYWK7cM

aware of any publicly available systems for offen-
sive language, hate speech, adult content, or spam.
Similarly, ADIDA (Obeid et al., 2019) and CAMeL
(Obeid et al., 2020) dialect identification systems
were not trained with Twitter data. Thus, ASAD
fills an important gap in the Arabic social media
analysis space. For ease of use, we make ASAD
available via an i) online interface where users can
enter text or upload files, and ii) web APIs that
accept POST requests, making ASAD accessible
from any programming language.

During the development of ASAD, we weighed
different trade-off between effectiveness and effi-
ciency to achieve competitive results at low compu-
tational costs. Thus, ASAD utilizes Support Vector
Machine (SVM) classification for six out of the
seven modules. As we show later, with the excep-
tion of dialect identification, we achieve results that
are comparable or slightly lower than deep neural
network models (DNN), namely fine-tuned BERT,
while being significantly more efficient with no
need for GPUs. Due to a larger difference in per-
formance, we deploy a fine-tuned BERT model for
dialect identification only. We hope that ASAD will
aid researchers, analysts, and system integrators in
incorporating Arabic social media analytics and
understanding into their models and applications.
We also hope that ASAD will motivate researchers
to build similar suites for other languages.

2 Related Work

Analysis of Arabic social media has gained much
recent interest. Offensive language and hate
speech detection have yielded datasets, shared tasks
(Mubarak et al., 2020b; Zampieri et al., 2020),
and strong systems based on machine learning
and contextual embedding models (Hassan et al.,
2020a,b). Sentiment analysis is a well addressed
problem yielding datasets (Elmadany et al., 2018)

113

and systems based on and deep learning techniques
(Abu Farha and Magdy, 2019) among others. Fine-
tuned BERT models have been used for identifying
categories of news posts on social media (Chowd-
hury et al., 2020). Adult content and spam detec-
tion have been relatively less explored with the
focus mainly on creating resources (Alshehri et al.,
2018; Al Twairesh et al., 2016; Mubarak et al.,
2017, 2021, 2020a). Dialect ID has been the focus
of the MADAR project (Bouamor et al., 2019) and
other works (Abdelali et al., 2020; Abdul-Mageed
et al., 2020; Zaidan and Callison-Burch, 2011).

Despite the abundance of literature in the afore-
mentioned topics, there has been very little effort
toward making tools available for public use. Most
of the tools available in Arabic NLP tasks concen-
trate on NLP tasks such as segmentation, parsing,
lemmatization, and POS tagging (Pasha et al., 2014;
Abdelali et al., 2016; Darwish and Mubarak, 2016;
Darwish et al., 2014). Along with text processing
tools, CAMeL Tools (Obeid et al., 2020) allows
sentiment analysis and dialect ID via a Python pack-
age. ADIDA (Obeid et al., 2019) is a web interface
for dialect ID. The dialect ID systems of CAMeL
Tools and ADIDA are based a parallel corpus of 25
Arabic city dialects in the travel domain.

3 Datasets

Dialect ID: We use the QADI dataset containing
dialectal tweets from 18 countries (Abdelali et al.,
2020). The training set contains 540K tweets auto-
matically tagged for dialect and the test set contains
3.3K manually annotated tweets by native speakers
from the 18 countries.

Sentiment Analysis: We use the ArSAS dataset
(Elmadany et al., 2018) that contains 21K tweets
that are labeled as Positive, Negative, Mixed or
Neutral. We merge the Mixed and Neutral classes
together (resulting in three classes) and split the
data into 80/20 training and test splits.

News Categorization We use an in-house anno-
tated dataset consisting of 30K news items from
Aljazeera channel3. 80% of the data are used for
training and 20% are used for testing. These news
are manually annotated for different categories,
namely: politics, economy, sports, culture-art, etc.

Offensive Language Detection: We use data
of OffensEval 2020 shared task (Zampieri et al.,

3www.aljazeera.net

2020). The data consists of 8K tweets for training
and 2K tweets tweets for testing that were manually
annotated with whether they are offensive or not.

Hate Speech Detection: There are limited pub-
licly available data for Arabic hate speech detection
(Mubarak et al., 2020b). We use a publicly avail-
able dataset4 that consists of tweet IDs annotated
for whether they contain hate speech or not. Ig-
noring tweets that were not available at download
time, we end up with 6.9K tweets.5 We use 80% of
the data for training and 20% for testing.

Adult Content Detection: We use the dataset
presented in Mubarak et al. (2021). The data con-
tains 50K tweets split into 80% for training and
20% for testing. Around 6K tweets (12% of all
tweets) are manually verified to contain adult con-
tent. The rest are random tweets that are assumed
not contain adult material since the percentage of
adult content in tweets is very small.

Spam Detection: We use the dataset presented
in Mubarak et al. (2020a). The dataset contains
9.8K tweets from 80 spam accounts (manually ver-
ified) that post spam tweets, along with 86K ran-
dom tweets for training. The test set contains 2.7K
tweets from 20 spam accounts (manually verified)
that post spam tweets along with 25.6K random
tweets. The assumption is that tweets from spam
accounts are spam and that the vast majority of ran-
dom tweets are not spam, because the percentage
of spam is very small.

4 Classification Models

Some state-of-the-art (SOTA) techniques use com-
plex models, typically DNN models, to achieve the
best results. For ASAD, we want to have models
that are small in size and easy to deploy while pro-
viding good results. To this end, we compare per-
formances of fine-tuned BERT models and SVMs
with character n-gram vectors weighted by term
frequency-inverse document frequency (tf-idf) as
features. As we show, the SVM models we em-
ploy are competitive with SOTA DNN models for
majority of the modules of ASAD. The range of
n-gram can influence the size of models and their
performance. For each component in our suite, we
experimented with different ranges of n-gram and
calculated model size along with respective perfor-
mance. Table 1 illustrates this study for offensive

4https://github.com/raghadsh/Arabic-Hate-speech
5We plan to merge other datasets in future.

114

Classifier Features Size (classifier + vectorizer) Acc% P R F1
SVM W[1-3] 30.7 MB 86.6 78.9 82.6 80.5
SVM C[1-3] 3.9 MB 91.2 88.8 82.4 85.0
SVM C[2-4] 14.5 MB 91.6 89.2 83.4 85.8
SVM C[2-5] 37.5 MB 92.0 89.1 85.1 86.9
SVM C[2-6] 73.4 MB 91.8 87.6 86.4 87.0
SVM C[2-7] 120.5 MB 91.8 86.9 88.1 87.4

Table 1: Comparison of size vs performance on offensiveness detection. Ideal setting is bolded.

Module Classes Classifier Features Acc% P R F1 BERT F1
Dialect ID 18 SVM C[2-4] 54.5 60.9 54.6 54.1 60.6
Sentiment 3 SVM C[1-3] 75.5 74.6 73.2 73.7 75.8
News Category 16 SVM C[2-4] 84.2 57.3 54.1 54.8 55.9
Offensiveness 2 SVM C[1-3] 91.2 88.8 82.4 85.0 86.6
Hate Speech 2 SVM C[2-4] 79.1 74.4 76.2 75.2 75.1
Adult Content 2 SVM C[1-3] 95.4 91.9 85.79 88.5 88.1
Spam 2 SVM C[1-3] 99.4 99.3 97.3 98.3 98.9

Table 2: Performance of different ASAD modules compared to fine-tuned BERT models.

language detection (C and W refer to character
and word, [a-b] denotes n-gram ranging from a
to b. P, R and F1 stand for macro-averaged preci-
sion, recall and F1 respectively). We can see that
going from an n-gram range of C[1-3] to C[2-7] in-
creases model size (classifier + vectorizer) from 3.9
MB to 120.5 MB while improving the F1 score by
2.4. Although C[2-7] is a better system, C[1-3] is
more suitable for deployment due to its small size.
Table 2 lists performance of SVMs version com-
pared to using BERT. When comparing to BERT
models, we fine-tuned AraBERT(Antoun et al.,
2020), a BERT-based model, pre-trained on Arabic
news articles and Arabic Wikipedia. We fine-tune
AraBERT by adding a fully-connected dense layer
followed by a softmax classifier, minimizing the
binary cross-entropy loss function for the training
data. We use the PyTorch6 implementation by Hug-
gingFace7 as it provides pre-trained weights and
vocabulary. Aside from dialect ID, SVM models
either beat BERT models or are within 1-2% away.
We suspect that the SVM models were competitive
because they were trained on Twitter data as op-
posed to BERT, which is trained on more formal
text. For dialect ID, we opt to use the fine-tuned
AraBERT model because it outperforms SVMs by
a larger margin of 6.5%.

6https://pytorch.org/
7https://github.com/huggingface/

transformers

5 Interface

Design The ASAD web interface is available at:
http://asad.qcri.org/

The user can select any of the modules from the
tabs and test the performance on random samples
and classify them to easily understand the different
modules. The user can type a text to be classified.
The classification results appear in a table so that
earlier results can be referred to. We recognize that
users may want to classify many tweets in one go
without having to type them one at a time. To allow
this, the users can upload a text file. Each line is
classified by our system and users can download a
file that contains predicted class and class probabil-
ities. To prevent excessive usage, we limit allowed
files to have at most 100 lines. We also use Google
reCaptcha V28 to prevent bots from abusing our
file upload system. Figure 1 shows the common
layout for all components except for Dialect ID.
For Dialect ID, we use a map to visualize results.
To this end, we provide a heatmap showing the
distribution of probabilities for different dialects.
This allows users to easily determine which part
of the world the input text is likely to come from.
Figure 2 illustrates layout for dialect ID. We also
allow users to send feedback to us. This will help
us improve ASAD in the future.

8https://developers.google.com/
recaptcha/

115

Figure 1: ASAD interface for Offensiveness module (top half) and outputs of other modules (lower half)

Figure 2: ASAD interface for Dialect ID module

Implementation We use Flask9, a lightweight
web application framework for backend develop-
ment. Input from the user is first transformed into
n-gram vectors using tf-idf vectorizer and then
are passed to the classifiers (described in Section
4). The classifiers return predicted labels along-
side probabilities of different classes. The class
probabilities were calculated using Platt calibration
(Platt, 1999). We use scikit-learn10 to train all the

9https://palletsprojects.com/p/flask/
10https://scikit-learn.org/stable/index.

html

SVM classifiers and vectorizers. We use javascript
for functionality at frontend and for communica-
tion between the frontend and the backend. To
display probabilities on a map for the dialect ID
module, we use the heatmap layer plugin11 with
leaflet.js12 and OpenStreetMap13.

11https://www.patrick-wied.at/static/
heatmapjs/plugin-leaflet-layer.html

12https://leafletjs.com/
13https://www.openstreetmap.org/#map=8/

25.322/51.197

116

Module API URL Body of request
Dialect ID https://asad.qcri.org.com/dialect

Sentiment https://asad.qcri.org/sentiment

News Category https://asad.qcri.org/news KEY : text
Offensiveness https://asad.qcri.org/offensive VALUE : arabic text
Hate Speech https://asad.qcri.org/hate_speech

Adult Content https://asad.qcri.org/adult

Spam https://asad.qcri.org/spam

Table 3: API endpoints for ASAD

Figure 3: Example usage of ASAD Dialect ID API

Web API To facilitate using ASAD from differ-
ent programming languages, we provide Web APIs
via POST requests. Table 3 lists available API
routes and Figure 3 illustrates example usage. Re-
sponse from ASAD contains predicted class and
class probabilities.

6 Conclusion

We presented ASAD, a system that can be used
for analysis of tweets in multiple ways. Using one
system, users can detect offensive language, hate
speech, sentiment, news category, adult content,
spam, and also identify dialects. For the ease of
usage, our system can be both accessed via Web
APIs and an online interface. In the future, we plan
to release ASAD through the pip Python packaging
tool.

References

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and
Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 11–16, San Diego, California. Asso-
ciation for Computational Linguistics.

Ahmed Abdelali, Hamdy Mubarak, Younes Samih,
Sabit Hassan, and Kareem Darwish. 2020. Ara-
bic dialect identification in the wild. ArXiv,
abs/2005.06557.

Muhammad Abdul-Mageed, Chiyu Zhang, Houda
Bouamor, and Nizar Habash. 2020. Nadi 2020: The
first nuanced arabic dialect identification shared task.
In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 97–110.

Ibrahim Abu Farha and Walid Magdy. 2019. Mazajak:
An online Arabic sentiment analyser. In Proceed-
ings of the Fourth Arabic Natural Language Process-
ing Workshop, pages 192–198, Florence, Italy. Asso-
ciation for Computational Linguistics.

Nora Al Twairesh, Mawaheb Al Tuwaijri, Afnan
Al Moammar, and Sarah Al Humoud. 2016. Arabic
spam detection in twitter. In The 2nd Workshop on
Arabic Corpora and Processing Tools 2016 Theme:
Social Media, page 38.

Ali Alshehri, El Moatez Billah Nagoudi, Hassan
Alhuzali, and Muhammad Abdul-Mageed. 2018.
Think before your click: Data and models for adult
content in arabic twitter.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In Proceedings of The 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, pages 9–15.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The MADAR shared task on Arabic fine-
grained dialect identification. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop, pages 199–207, Florence, Italy. Association
for Computational Linguistics.

Shammur Absar Chowdhury, Ahmed Abdelali, Ka-
reem Darwish, Jung Soon-Gyo, Joni Salminen, and
Bernard J. Jansen. 2020. Improving Arabic text cate-
gorization using transformer training diversification.

117

In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 226–236, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Kareem Darwish, Ahmed Abdelali, and Hamdy
Mubarak. 2014. Using stem-templates to improve
arabic pos and gender/number tagging. In LREC,
pages 2926–2931. Citeseer.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa:
A new fast and accurate arabic word segmenter. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1070–1074.

AbdelRahim A. Elmadany, Hamdy Mubarak, and
Walid Magdy. 2018. An arabic speech-act and sen-
timent corpus of tweets. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). European
Language Resources Association (ELRA). The 3rd
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, OSACT3 ; Conference date: 08-05-
2018.

Sabit Hassan, Younes Samih, Hamdy Mubarak, and
Ahmed Abdelali. 2020a. ALT at SemEval-2020
task 12: Arabic and English offensive language iden-
tification in social media. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
1891–1897, Barcelona (online). International Com-
mittee for Computational Linguistics.

Sabit Hassan, Younes Samih, Hamdy Mubarak, Ahmed
Abdelali, Ammar Rashed, and Shammur Absar
Chowdhury. 2020b. ALT submission for OSACT
shared task on offensive language detection. In Pro-
ceedings of the 4th Workshop on Open-Source Ara-
bic Corpora and Processing Tools, with a Shared
Task on Offensive Language Detection, pages 61–65,
Marseille, France. European Language Resource As-
sociation.

Hamdy Mubarak, Ahmed Abdelali, Sabit Hassan, and
Kareem Darwish. 2020a. Spam detection on ara-
bic twitter. In Social Informatics, pages 237–251,
Cham. Springer International Publishing.

Hamdy Mubarak, Kareem Darwish, and Walid Magdy.
2017. Abusive language detection on arabic social
media. In Proceedings of the First Workshop on Abu-
sive Language Online, pages 52–56.

Hamdy Mubarak, Kareem Darwish, Walid Magdy,
Tamer Elsayed, and Hend Al-Khalifa. 2020b.
Overview of osact4 arabic offensive language detec-
tion shared task. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection.

Hamdy Mubarak, Sabit Hassan, and Ahmed Abdelali.
2021. Adult content detection on arabic twitter:
Analysis and experiments. In Proceedings of the

Sixth Arabic Natural Language Processing Work-
shop.

Ossama Obeid, Mohammad Salameh, Houda Bouamor,
and Nizar Habash. 2019. ADIDA: Automatic di-
alect identification for Arabic. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 6–11, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash.
2020. CAMeL tools: An open source python toolkit
for Arabic natural language processing. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 7022–7032, Marseille,
France. European Language Resources Association.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool
for morphological analysis and disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 1094–1101, Reykjavik, Ice-
land. European Languages Resources Association
(ELRA).

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In ADVANCES IN LARGE MAR-
GIN CLASSIFIERS, pages 61–74. MIT Press.

Omar F Zaidan and Chris Callison-Burch. 2011. The
Arabic Online Commentary Dataset: an Annotated
Dataset of Informal Arabic With High Dialectal Con-
tent. In Proceedings of the Conference of the Asso-
ciation for Computational Linguistics (ACL), pages
37–41.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin.
2020. SemEval-2020 Task 12: Multilingual Offen-
sive Language Identification in Social Media (Offen-
sEval 2020). In Proceedings of SemEval.

118

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 119–126
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet

Maria Becker, Katharina Korfhage, and Anette Frank
Department of Computational Linguistics, Heidelberg University, Germany
(mbecker, korfhage, frank)@cl.uni-heidelberg.de

Abstract

In this paper we present COCO-EX, a tool
for Extracting Concepts from texts and link-
ing them to the ConceptNet knowledge graph.
COCO-EX extracts meaningful concepts from
natural language texts and maps them to con-
junct concept nodes in ConceptNet, utilizing
the maximum of relational information stored
in the ConceptNet knowledge graph. COCO-
EX takes into account the challenging charac-
teristics of ConceptNet, namely that – unlike
conventional knowledge graphs – nodes are
represented as non-canonicalized, free-form
text. This means that i) concepts are not nor-
malized; ii) they often consist of several differ-
ent, nested phrase types; and iii) many of them
are uninformative, over-specific, or misspelled.
A commonly used shortcut to circumvent these
problems is to apply string matching. We com-
pare COCO-EX to this method and show that
COCO-EX enables the extraction of meaning-
ful, important rather than overspecific or unin-
formative concepts, and allows to assess more
relational information stored in the knowledge
graph. 1

1 Introduction

ConceptNet (Speer et al., 2017) is a semantic net-
work which contains general commonsense facts
about the world, e.g. Birds can fly or Comput-
ers are used for sending e-mails (Liebermann,
2008). It originates from the crowdsourcing project
Open Mind Common Sense (Speer et al., 2008)
that acquired commonsense knowledge from con-
tributions over the web. The current version also
includes expert-created resources such as Word-
Net (Fellbaum, 1998) and JMDict (Breen, 2004),
other crowdsourced resources such as Wiktionary,

1We provide a demo video (https://www.
youtube.com/watch?v=bgqVhE2vR9A&feature=
youtu.be) and the code (https://github.com/
Heidelberg-NLP/CoCo-Ex) for COCO-EX.

knowledge obtained through games with a pur-
pose such as Verbosity, and automatically extracted
knowledge (cf. Speer et al. (2008)). Knowledge
facts in ConceptNet are represented as triples, e.g.
[dog,ISA,domestic animal]. The current version,
ConceptNet 5, comprises 37 relations, such as
USEDFOR, ISA, PARTOF, or LOCATEDAT.

ConceptNet has been proven a useful resource
of background knowledge for various NLP down-
stream tasks, and is thus widely used, e.g., for
reading comprehension (Mihaylov and Frank,
2018), machine comprehension (Wang et al., 2018;
González et al., 2018), dialog modelling (Young
et al., 2018), argument classification (Paul et al.,
2020), textual entailment (Weissenborn et al.,
2018), question answering (Ostermann et al., 2018)
or for explaining sentiment (Paul and Frank, 2019).

As opposed to conventional knowledge bases
such as NELL (Carlson et al., 2010), Freebase
(Bollacker et al., 2008), or YAGO (Nickel et al.,
2012), the nodes in ConceptNet are represented as
non-canonicalized, free-form text. This means that
(I) concept nodes are not normalized: e.g. bake
cake, bake cakes, baking cake, and baking cakes
are represented as distinct nodes; likewise bin bag,
binbag, bin bags, and bin-bag are separate nodes
in ConceptNet. (II) concept nodes often consist of
multi-word expressions, which can be very long
and complex. Often they consist of several nested
phrase types, e.g., buying the ingredients of the
recipe, or a friend was celebrating a birthday. (III)
Since large parts of ConceptNet have been crowd-
sourced, it contains noise (e.g., typos), uninfor-
mative concepts (e.g., there, it’s), or very specific
concepts (e.g., the second concept in the triple:
[compute,HASPROP,more complex than pencil]).

These specific properties lead to a larger amount
of nodes and a substantially sparser graph com-
pared to conventional knowledge bases. This in
turn is challenging for tasks such as knowledge

119

base completion (cf. Li et al. (2016); Saito et al.
(2018); Bosselut et al. (2019); Malaviya et al.
(2020)); the semantic representation of nodes and
edges (Speer and Lowry-Duda, 2017); or the learn-
ing of new relations (dos Santos et al., 2015; Becker
et al., 2019; Trisedya et al., 2019).

Moreover, non-canonicalized nodes become
challenging when merging knowledge bases, as
in Faralli et al. (2020), who introduce a graph
database merging multiple hypernymy graphs ex-
tracted from ConceptNet, DBpedia, WebIsAGraph,
WordNet, and Wikipedia. They find that only 25%
of the edges connect nodes from ConceptNet to
other databases, which can be traced back to the
fact that ConceptNet nodes are non-canonicalized,
as opposed to common knowledge bases.

Finally, free-form concept nodes become prob-
lematic when we aim to project a ConceptNet
subgraph from natural language texts by mapping
phrases from natural language text to nodes in Con-
ceptNet. In recent approaches, simple string match-
ing has been applied to perform such a mapping
(e.g. Lin et al. (2019); Wang et al. (2020)). Given
the non-normalized nature of the concepts in Con-
ceptNet, this can, however, result in an incomplete
and noisy mapping: e.g., if the word “brains” oc-
curs in a text, it can be mapped to the Concept-
Net node brains (which is connected by 131 edges
within ConceptNet), but not to brain (which is con-
nected by 1799 edges). Therefore, a lot of rela-
tional knowledge stored in ConceptNet gets lost
when mapping natural language text to concepts in
ConceptNet via string matching. Moreover, since
ConceptNet contains many nodes that don’t rep-
resent meaningful concepts (e.g. yes, there, it’s,
the), simple string matching can lead to the extrac-
tion of concepts that will most likely be useless for
downstream applications.

Motivated by these observations, we built a Con-
cept Extraction Tool for ConceptNet, CoCo-Ex,
which we present in this paper. COCO-EX is a
tool written in Python 3.6 that selects meaningful
concepts, possibly consisting of multiple tokens
from natural language texts; it maps them to a col-
lection of concept nodes in ConceptNet, utilizing
the maximum of relational information stored in
the knowledge graph. It is thus perfectly suited for
identifying and extracting concepts from natural
language texts and mapping them to ConceptNet,
e.g., to project knowledge subgraphs from texts
(Paul and Frank, 2019), or for detecting and classi-

fying knowledge relations instantiated within texts
(Becker et al., 2019).

We describe our Concept Extraction Tool COCO-
EX in Section 2. In Section 3 we evaluate the bene-
fits of COCO-EX in a practical application scenario,
comparing it to simple string matching, by evalu-
ating the retrieved concepts and their connectivity
both automatically and manually. We conclude
with a summary and results in Section 4.

2 COCO-EX: Extracting Concepts from
Text and Mapping them to ConceptNet

COCO-EX is a pipeline implementation compris-
ing several stages as shown in Figure 1.

In Step 1, we extract candidate phrases from a
given text, which we preprocess in Step 2. In Step
3, we map the preprocessed phrases to ConceptNet
concepts, which we preprocess in the same manner:
We first create a dictionary based on ConceptNet,
where we gather all concepts that are conceptually
related (that is, referring to a similar or the same
entity or event), but represented as distinct nodes.
In this dictionary we then look up the preprocessed
candidate phrases and get all ConceptNet nodes
which contain them. In order to avoid obtaining
conceptually unrelated nodes, in Step 4 we estab-
lish a method that allows us to filter out nodes that
are not similar enough to the candidate phrase using
similarity metrics and vector space representations.

Step 1: Extracting Candidate Phrase Types.
We start by extracting candidate phrases from a
given text using the Stanford Constituency parser
(Mi and Huang, 2015). We extract noun phrases,
verb phrases and adjective phrases.2 We find that
some verb phrases are very long and specific and
therefore unlikely to find exact matches in Concept-
Net (e.g., “be sorted into different wheelie bins”).
Yet, ConceptNet concepts often consist of general
verb-object phrases, such as walk the dog; cook
dinner; bake a cake. To accommodate for this, we
create, for every verbal phrase we extract from the
text, additional versions (i.e., chunks) that exclude
subordinated prepositional phrases and/or noun
phrases (e.g., for “be sorted into different wheelie
bins” we additionally extract “be sorted into” and
“be sorted”). Addressing the fact that nodes in Con-
ceptNet are of different lengths and often consist

2We extract leaves (= tokens) of all subtrees that have
one of the following phrase types or POS-tags: ’NP’, ’VP’,
’ADJP’, ’JJ’, ’JJR’, ’JJS’, ’NN’, ’NNS’, ’NNP’, ’NNPS’,
’VB’, ’VBG’, ’VBD’, ’VBN’, ’VBP’, ’VBZ’.

120

Figure 1: Our pipeline for extracting and mapping phrases from texts to nodes in ConceptNet.

of several nested phrases, we keep all the original
complex verbal phrases; the reduced chunks; and
the split-off nested, subordinated phrases, which
we again split into chunks (here: “different wheelie
bins”, “wheelie bins”, and ”bins”).

Step 2: Preprocessing Candidate Phrase Types
and ConceptNet Nodes. Next, we preprocess
the candidate phrases we extracted from the text
to prepare the mapping in Step 3. We apply spacy
(Honnibal and Montani, 2017) to lemmatize the
candidate phrases extracted from the texts, and re-
move articles, pronouns, adverbs, conjunctions, in-
terjections and punctuation. The very same process
we apply in Step 3 to nodes in ConceptNet, which
are not normalized, in order to build a dictionary
from ConceptNet.

Step 3: Matching Candidate Phrase Types to
a Dictionary Based on ConceptNet. We then
map the preprocessed phrases to the preprocessed
ConceptNet concepts as follows: We create a dic-
tionary based on ConceptNet where we collect all
concepts that are conceptually related – in the sense
that they involve at least one common content word
– but are represented as distinct nodes in Concept-
Net. I.e., we aim to subsume, e.g., dog, dogs, nice
dog, and my neighbour’s dog under one entry in the
dictionary (cf. Figure 2). In our dictionary, keys
are lemmatized words contained in concept node
phrases (e.g. 〈dog〉 for the concept my dog), and
the corresponding value assigned to a key is a list
of all ConcepNet nodes that contain this lemma
(e.g. dog, dogs, my dog, my neigbor’s dog), as de-
termined by the lemmatization of the nodes (see
Step 2 for the applied process). Therefore, in our
dictionary all ConceptNet nodes that contain the
same lemma, the lemma of the key, are clustered
together in one entry. Note that we lemmatize the
ConcepNet nodes only for the purpose of mapping
and clustering, while they remain unchanged (in
their original form and inflection) as values in the

dictionary. I.e., we compare a key (lemma) to the
lemmatized version of the concepts, and include all
nodes, or concept phrases in their original, inflected
form, that contain this lemma.

An example of how we create an entry in the
dictionary is given in Figure 2 and Figure 3: for
the key 〈dog〉, all conceptually related nodes are
retrieved from ConceptNet (Figure 2) by matching
the (lemmatized) key and the lemmatized Concept-
Net concepts (Figure 3, left side). All the retrieved
ConceptNet nodes that contain the key lemma in
their lemmatized form are stored as the key’s values
(middle of Figure 3). In case the lemmatized candi-
date phrase from the text contains further lemmas,
we apply the same procedure for each of these, and
construct additional entries, if they have not yet
been created and stored.

Using this dictionary we are now able to assess
the maximum of relational information stored in the
ConceptNet knowledge graph for a given candidate
phrase from a text, since it allows us to jointly look
up the in- and outgoing edges of all values (nodes)
assigned to the same key, e.g., [dogs,ISA,domestic
animal]; [dog,HASPROPERTY,nice]; ..) (Figure
3, right-hand side). In case a candidate phrase
contains multiple lemmas, we collect the union
of ConceptNet nodes defined for the respective
lemmas (keys) as their values, and apply a filtering
step, which we describe below, to select the concept
nodes that best correspond to the complex phrase.

Specifically, when looking up extracted can-
didate phrases that contain a single lemma (e.g.
〈dog〉), we consider the complete list of nodes
stored in the dictionary for that lemma (key) –
that is, all concepts containing (inflected versions
of) 〈dog〉, including also multiword phrases which
are linked with other keys. When looking up ex-
tracted candidate phrases that contain more than
one lemma (e.g. “walk the dog”), we obtain sets
of ConceptNet nodes (values) that are defined for
each (non-stopword) lemma (key) – here: 〈dog〉

121

Figure 2: Collecting conceptually related nodes in Con-
ceptNet, here: for the phrase ”the dog”.

and 〈walk〉 – and retrieve all ConceptNet nodes
from their respective list of values. From these
sets, instead of building their union, we construct
their intersection, which yields the set of phrases
from all keys’ values that contain the maximum of
lemmas contained in the candidate phrase.

For our example “walk the dog”, we would ob-
tain the two lemmas 〈walk〉 and 〈dog〉, together
with their values:
〈walk〉 → walk, walks, walking, walking home,

walking a dog, long walk, walk the dog, ... ; and
〈dog〉 → dog, dogs, nice dog, my neigbor’s dog,

walking a dog, walk the dog, ...;
and extract walking a dog and walk the dog that

are contained as values in both keys.
During the mapping process that collects values

(ConceptNet concepts) for the lemmatized keys of
candidate phrases, we are also resolving ambigui-
ties. E.g., the forms fly or flies can be either a noun
or a verb. We resolve this ambiguity by comparing
the POS tags obtained during preprocessing the ex-
tracted candidate phrases to the POS tags that are
associated with concepts in ConceptNet.3 Specifi-
cally, we retrieve POS information for the extracted
candidate phrases by applying the POS tagger im-
plemented in spacy (Honnibal and Montani, 2017)
on the sentence level, while for ConceptNet nodes
we assess the POS labels available as metadata. In
case we find several concepts with the same sur-
face form but different POS tags in ConceptNet
(e.g. fly/noun and fly/verb), we use the POS anno-
tations from the extracted candidate phrases and
from ConceptNet tags to restrict the mapping to
matching POS, hence we do not include any con-
cepts with conflicting POS information in the list

3We find POS information for a majority of concepts con-
tained in ConceptNet, as used in specific tuples. In cases where
this information is not given, we do not apply any filtering.

Figure 3: Example of the ConceptNet Dictionary en-
try for 〈dog〉. Left: lemmatized ConceptNet nodes
(grey) that contain 〈dog〉 (underlined); middle: CN dic-
tionary entry (containing the original CN nodes); right:
relational knowledge (in- and outgoing edges for each
value (CN node) assigned to the key) which can be re-
trieved from ConceptNet based on the dictionary entry.

of values for the phrase’s keys.
To summarize, the dictionary we obtain from

Step 3 allows us to look up concepts for any pre-
processed candidate phrases, and obtain from it
all ConceptNet nodes which contain them or in-
flected versions of them. In case of multiple lem-
mas contained in a candidate phrase, we retrieve
all nodes that contain all lemmas included in the
given phrase, by computing an intersection over the
values associated with all keys (lemmas) evoked
by the phrase.4 Since we lemmatize both the Con-
ceptNet nodes and the extracted candidate phrases
as described above, we maximize the number of
matches, and hence, the associated ConceptNet re-
lation tuples, while selecting maximally specific
nodes. At the same time, since we construct chun-
ked phrases from the extracted concepts, we also al-
low for more constrained matches (limited, e.g., to
single lemmata) with equally constrained Concept-
Net concepts, preventing over-specific phrases and
an ensuing loss of recall. Finally, we apply POS fil-
tering, and hence avoid the retrieval of ConceptNet
concepts that do not match the POS category of the
concepts mentioned in the candidate phrase, rely-
ing on the sentential context of the phrase candidate
for disambiguation.

Step 4: Constraining the Mapping to Concept-
Net Concepts. While in Step 3 we constrain the
selected concept nodes by intersection in case the
phrase candidate contains multiple lemmata, we
still obtain many ConceptNet nodes when mapping
short phrases containing a single content word to
ConceptNet, since we retrieve all nodes that in-
clude the lemma of the candidate phrase. In prac-
tice, this yields a huge set of concepts that contain

4This holds as long as the lemmas identified in the textual
phrases can be identified within ConceptNet’s concept nodes.

122

not only this lemma, but many other content words
not present in the candidate phrase – possibly con-
ceptually unrelated nodes that we want to omit. For
example, if the candidate phrase is “dog”, we map
it to the ConceptNet nodes dog and dogs, but also
conceptually not strictly related nodes such as feed-
ing my dogs, dogs are my favourite animals, it’s
raining cats and dogs, etc. We therefore establish a
method that allows us to filter out nodes that are not
similar enough to the candidate phrase, and hence
are assumed to be conceptually unrelated, which
we describe in the following.

We filter the nodes (values) for each lemma (key)
by calculating the similarity between the Concept-
Net concepts and the extracted candidate phrase.
We calculate similarity in terms of length (by token
or char length) and in terms of semantic similarity
(using word embeddings and similarity metrics).
We experimented with different similarity metrics:
we tried Dice Coefficient (Sørensen, 1948), Jac-
card Coefficient (Jaccard, 1902), Minimum Edit
Distance, Word Mover’s Distance (Kusner et al.,
2015), and Cosine Distance, with different similar-
ity thresholds. For the metrics that require word
representations in vector space (Word Mover’s Dis-
tance and and Cosine Distance), we tried differ-
ent embeddings (Numberbatch (Speer et al., 2017),
Word2Vec trained on GoogleNews (Mikolov et al.,
2013), and GloVe (Pennington et al., 2014)), where
we compute representations for multiword terms
by averaging their embeddings. We also consider
differences in phrase lengths: here we compare the
length of the ConceptNet nodes’ concept phrases to
the length of the candidate phrase – by number of
tokens and of characters. E.g. when comparing the
candidate phrase ”my dog” to the nodes (a) dogs
and (b) many dogs, we obtain for (a) a difference
in the number of tokens by 1 and of characters by
1, and for (b) in the number of tokens by 0 and of
characters by 3.

We evaluated the output of several configurations
manually in terms of how well the filtered nodes fit
the extracted candidate phrase, and found the fol-
lowing configurations to yield the highest coverage
and lowest noise: we allow for a maximum token
length difference of 1 and/or a maximum character
difference of 10, and a minimum Dice coefficient
of 0.85. The other configurations are implemented
as well (as command line parameters), so users can
experiment with different settings easily.

Str-Match CoCo-Ex

CommonsenseQA Questions 99,217 88,631
Answers 106,681 116,941

OpenBookQA Questions 38,415 38,485
Answers 53,748 61,313

Table 1: Number of concepts linked to ConceptNet
by simple string matching vs. using COCO-EX. Com-
monsenseQA contains 12,247 questions with 5 answer
choices each, and OpenBookQA provides 6,000 4-way
multiple-choice questions.

3 Applications

Recent approaches that map natural language text
to nodes in ConceptNet apply simple string match-
ing. Wang et al. (2020) for example use Concept-
Net in order to retrieve multi-hop knowledge paths
as background information for improving the task
of question answering. They map concepts that ap-
pear in questions and answers from the two bench-
mark datasets, CommonsenseQA (Talmor et al.,
2019) and OpenBookQA (Mihaylov et al., 2018),
to ConceptNet using plain string matching.

Irrespective of the question answering task, we
want to evaluate the two methods of linking con-
cepts from texts to ConceptNet (plain string match-
ing vs. COCO-EX) by comparing the number of
concepts that could be retrieved from ConceptNet
by both methods, respectively; and by evaluating
the quality of the retrieved concepts, with regard
to their coverage and informativity, as well as the
amount of utilized relational knowledge from the
ConceptNet knowledge graph.

We reimplement the string matching method and
make it comparable to COCO-EX by retrieving all
noun phrases, verb phrases and adjective phrases
and their nested phrases (as we do for COCO-
EX). Additionally, as in COCO-EX, we filter these
phrases by removing articles, pronouns, adverbs,
conjunctions, interjections and punctuation, and
keep the original phrases and the chunked versions.

The counts of concepts retrieved by simple
string matching vs. using COCO-EX are displayed
in Table 1. We find that for the CommonsenseQA
dataset, more concepts are linked to ConceptNet
from the questions when using string matching,
while with COCO-EX we can link more concepts
from the answers (Table 1). For OpenBookQA, the
number of extracted concepts for the questions are
similar for both methods, while again we can link
more concepts from the answers with COCO-EX.

For evaluating concept quality, we set up a

123

Str-Matching COCO-EX

CommonsenseQA
Coverage (binary) 17 of 25 (68%) 20 of 25 (80%)
Ratio of Informative (Wanted) Concepts (total and %) 152 of 220 (69%) 190 of 192 (99%)
Connecting Edges of Informative Concepts (total/avg-question) 151,526/6,061 185,663/7,427

OpenBookQA
Coverage (binary) 16 of 25 (64%) 14 of 25 (56%)
Ratio of Informative (Wanted) Concepts (total and %) 92 of 148 (62%) 104 of 145 (72%)
Connecting Edges of Informative Concepts (total/avg-question) 91,938/3,678 110,039/4,402

Table 2: Manual evaluation of linked concepts from 25 questions for each dataset. For each question, our annotators
evaluated if all meaningful concepts were extracted (Coverage; in a binary evaluation setup yes/no); and how many
of the extracted concepts are informative (wanted) (Ratio wanted/wanted+unwanted) . For all informative (wanted)
concepts, we then looked up the number of edges connecting these nodes in ConceptNet (in- and outgoing edges).

small annotation experiment where we provided
our annotators with 50 questions randomly sampled
from CommonsenseQA and OpenBookQA. For
each question, our annotators evaluated whether
all meaningful concepts were extracted (coverage,
in a binary setting (yes/no)); and if/how many in-
formative (and thus, wanted) concepts are among
the extracted concepts (which can be interpreted as
reverse precision).5 For each dataset, two annota-
tors with linguistic background performed annota-
tions. We measure annotator agreement in terms
of Cohen’s Kappa and achieve an agreement of
78%. Remaining conflicts were resolved by an ex-
pert annotator (one of the authors). The number
of concepts that could be accessed in ConceptNet
we evaluate automatically, in terms of the number
of in- and outgoing edges connecting the node(s)
which have been annotated as informative (wanted),
identified by simple string matching vs. all nodes
obtained by COCO-EX through keys and values.

The results of our manual evaluation experiment
are displayed in Table 2. We find that the coverage
(if all meaningful concepts were extracted, evalu-
ated in a binary setting: yes/no) is higher for Com-
monsenseQA when using COCO-EX and higher
for OpenBooksQA when applying string matching.

Next, we evaluate the informativeness of the
extracted concepts. We find that the ratio between
informative (wanted) and uninformative concepts
(unwanted) is much better when using COCO-EX

opposed to simple string matching on both datasets
(cf. Table 2). Finally, we also evaluate the amount
of relational information stored in the ConceptNet
knowledge graph which can be retrieved by looking

5Our annotation manual can be found here: https://
github.com/Heidelberg-NLP/CoCo-Ex/blob/
master/CoCo-Ex_Annotation_Manual.pdf

up in- and outgoing nodes from the nodes rated as
informative. Here we find that with COCO-EX,
much more relational information of ConceptNet
can be accessed, indicating again the superiority of
this method compared to simple string matching.

4 Conclusion

In this paper we presented COCO-EX, a tool for
Extracting Concepts from texts and linking them to
the ConceptNet knowledge graph. As opposed to
the common shortcut method of simply matching
strings from texts to ConceptNet nodes, COCO-
EX extracts meaningful concepts from texts and
maps them to collections of concept nodes in Con-
ceptNet, which enables us to assess the maximum
of relational information stored in the ConceptNet
knowledge graph. COCO-EX takes into account
that concepts in ConceptNet are represented as non-
canonicalized, free-form text and are often com-
plex, noisy, uninformative, and/or over-specific.
We evaluated COCO-EX against the method of sim-
ple string matching, which confirmed our hypothe-
ses that (i) COCO-EX improves the precision of
mapping by enabling the extraction of meaningful,
important rather than overspecific or uninformative
concepts, and (ii) allows to utilize the maximum
of relational information stored in the knowledge
graph, a step towards overcoming the well-known
sparsity issue of commonsense knowledge graphs
such as ConceptNet.

Acknowledgements

This work was funded by the DFG within the
project ExpLAIN as part of the Priority Program
RATIO (SPP-1999). We thank our annotators for
their contribution.

124

References
Maria Becker, Michael Staniek, Vivi Nastase, and

Anette Frank. 2019. Assessing the difficulty of clas-
sifying ConceptNet relations in a multi-label classifi-
cation setting. In RELATIONS - Workshop on mean-
ing relations between phrases and sentences, pages
1–15, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A Col-
laboratively Created Graph Database for Structuring
Human Knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, pages 1247–1250,
New York, NY, USA. ACM.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Jim Breen. 2004. JMdict: a Japanese-multilingual dic-
tionary. In Proceedings of the Workshop on Multi-
lingual Linguistic Resources, pages 65–72, Geneva,
Switzerland. COLING.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hr-
uschka Jr., and T.M. Mitchell. 2010. Toward an ar-
chitecture for never-ending language learning. In
Proceedings of the Conference on Artificial Intelli-
gence (AAAI), pages 1306–1313. AAAI Press.

Stefano Faralli, Paola Velardi, and Farid Yusifli. 2020.
Multiple knowledge GraphDB (MKGDB). In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 2325–2331, Marseille,
France. European Language Resources Association.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

José-Ángel González, Lluı́s-F. Hurtado, and Ferran Pla.
2018. ELiRF-UPV at SemEval-2019 task 3: Snap-
shot ensemble of hierarchical convolutional neural
networks for contextual emotion detection. In Pro-
ceedings of the 13th International Workshop on
Semantic Evaluation, pages 195–199, Minneapo-
lis, Minnesota, USA. Association for Computational
Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing.

Paul Jaccard. 1902. Lois de distribution florale dans
la zone alpine, volume 38. Bulletin de la Société
Vaudoise des Sciences Naturelles.

Matt J. Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From Word Embeddings To Doc-
ument Distances. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML),
pages 957–966.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense Knowledge Base Completion.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1445–1455, Berlin, Germany.
Association for Computational Linguistics.

Henry Liebermann. 2008. Usable AI Requires Com-
monsense Knowledge. In Workshop on Usable arti-
ficial intelligence, held in conjunction with the Con-
ference on Human Factors in Computing Systems
(CHI), pages 1–5.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. KagNet: Knowledge-aware graph
networks for commonsense reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2829–2839, Hong
Kong, China. Association for Computational Lin-
guistics.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Choi Yejin. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 2925–2933.

Haitao Mi and Liang Huang. 2015. Shift-reduce con-
stituency parsing with dynamic programming and
POS tag lattice. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1030–1035, Denver, Col-
orado. Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821–832, Melbourne, Australia.
Association for Computational Linguistics.

Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations, pages 1–12.

125

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing yago: Scalable machine
learning for linked data. In Proceedings of the
21st International Conference on World Wide Web,
WWW ’12, page 271–280, New York, NY, USA. As-
sociation for Computing Machinery.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018. SemEval-
2018 task 11: Machine comprehension using com-
monsense knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
pages 747–757, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Debjit Paul and Anette Frank. 2019. Ranking and Se-
lecting Multi-Hop Knowledge Paths to Better Pre-
dict Human Needs. In Proceedings of the Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, volume 1,
pages 3671–3681, Minneapolis, Minnesota, USA.

Debjit Paul, Juri Opitz, Maria Becker, Jonathan Kobbe,
Graeme Hirst, and Anette Frank. 2020. Argu-
mentative Relation Classification with Background
Knowledge. In Proceedings of the 8th International
Conference on Computational Models of Argument
(COMMA 2020), pages 319–330.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Itsumi Saito, Kyosuke Nishida, Hisako Asano, and
Junji Tomita. 2018. Commonsense knowledge base
completion and generation. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, pages 141–150, Brussels, Belgium.
Association for Computational Linguistics.

Cı́cero dos Santos, Bing Xiang, and Bowen Zhou. 2015.
Classifying relations by ranking with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 626–634, Beijing, China. Associa-
tion for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. In Proceedings of 31St AAAI
Conference on Artificial Intelligence, pages 444–
451.

Robyn Speer, Catherine Havasi, and Henry Lieberman.
2008. AnalogySpace: Reducing the Dimensional-
ity of Common Sense Knowledge. In Proceedings
of the 23rd National Conference on Artificial Intelli-
gence - Volume 1, pages 548–553. AAAI Press.

Robyn Speer and Joanna Lowry-Duda. 2017. Concept-
Net at SemEval-2017 Task 2: Extending Word Em-
beddings with Multilingual Relational Knowledge.

In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 85–
89, Vancouver, Canada. Association for Computa-
tional Linguistics.

Thorvald Sørensen. 1948. A method of establishing
groups of equal amplitude in plant sociology based
on similarity of species and its application to anal-
yses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab. 5 (4): 1–34.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural relation extrac-
tion for knowledge base enrichment. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 229–240, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and
Jingming Liu. 2018. Yuanfudao at SemEval-2018
task 11: Three-way attention and relational knowl-
edge for commonsense machine comprehension. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 758–762, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro
Szekely, and Xiang Ren. 2020. Connecting the dots:
A knowledgeable path generator for commonsense
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4129–4140, Online. Association for Computational
Linguistics.

Dirk Weissenborn, Tomas Kocisky, and Chris Dyer.
2018. Dynamic Integration of Background Knowl-
edge in Neural NLU Systems. In International Con-
ference on Learning Representations (ICLR) 2018.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting End-to-End Dialog Systems with Common-
sense Knowledge. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 4970–4977.

126

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 127–134
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Abstract

Several tools and resources have been
developed to deal with Arabic NLP.
However, a homogenous and flexible
Arabic environment that gathers these
components is rarely available. In this
perspective, we introduce SAFAR which is
a monolingual framework developed in
accordance with software engineering
requirements and dedicated to Arabic
language, especially, the modern standard
Arabic and Moroccan dialect. After one
decade of integration and development,
SAFAR possesses today more than 50 tools
and resources that can be exploited either
using its API or using its web interface.

1 Introduction

NLP infrastructures, referred also as NLP
architectures, represent an efficient way for
standardization, optimization of efforts,
collaboration and acceleration of developments in
the field of NLP. For the last decade, the NLP
research community witnessed an extensive
release of these infrastructures. Some become very
famous such as GATE1 or Stanford CoreNLP2 ,
while others existed only for a very short time.
Some are multilingual while others are not, some
are targeting multiple domains while others are
not, etc.
However, it is known that only a few of them are
dedicated to only one language such as AraNLP
(Althobaiti et al. 2014) or "ITU Turkish Natural
Language Processing Pipeline" (G. Eryiğit, 2014).
On another hand, the literature shows that existing
infrastructures are using randomly three different
namings: "toolkit", "platform" and "Framework".
From the Software Engineering (SE) perspective,

1 https://gate.ac.uk
2 https://stanfordnlp.github.io/CoreNLP/

these namings have different meanings. It is then
necessary to first define them before presenting,
categorizing, and benchmarking NLP
infrastructures. Briefly speaking3, a toolkit is a set
of tools within a single box used for a particular
purpose. A platform consists of several
interoperable tools with a homogeneous structure
but without providing any API to extend their
components. A framework is a layered structure
developed to be used as a support and guide to
build NLP programs and tools.
In this work, we focus on the Arabic language
infrastructures. We demonstrate that the "Software
Architecture for ARabic" (SAFAR) framework4 is
one of the most interesting frameworks to consider
when developing any Arabic NLP component.
The rest of this article is as follows. Section 2
presents SAFAR in terms of principles,
architecture and standards. Section 3 describes
SAFAR content. Section 4 is dedicated to SAFAR
use and exploitation. Finally, in the last section, we
conclude the paper.

2 SAFAR framework

2.1 Principles

In most cases, the development of Arabic NLP
applications requires the use of several tools at
once, each dealing with a certain level of language.
Generally, these tools are heterogeneous and raise
many SE problems such as interoperability,
reusability, portability, etc. Moreover, researchers
are usually in need not only of tools but also of
Language Resources (LRs).
To overcome the above-mentioned SE issues and
to suit the needs of the ANLP community in terms
of processing Arabic effectively and providing
reusable LRs, we developed SAFAR as a software

3 https://whatis.techtarget.com/
4 http://arabic.emi.ac.ma/safar

A description and demonstration of SAFAR framework

Karim Bouzoubaa 1, Younes Jaafar 1, Driss Namly 1, Ridouane Tachicart 1,
Rachida Tajmout 1, Hakima Khamar 2, Hamid Jaafar 3, Si Lhoussain Aouragh 4, Abdellah Yousfi 5

1 Mohammadia School of Engineers, Mohammed V University in Rabat, Morocco
2 Faculty of Letters and Human Sciences, Mohammed Vth University, Rabat, Morocco

3 Polidisciplinary faculty of Safi, Caddi Ayyad University, Morocco
4 Faculty of Legal, Economic and Social Sciences - Sale, Mohammed V University in Rabat, Morocco.

5 Faculty of Legal, Economic and Social Sciences - Souissi, Mohammed V University in Rabat, Morocco.
karim.bouzoubaa@emi.ac.ma; jayounes@yahoo.fr; namly_driss@yahoo.fr; tachicart@gmail.com; tajmoutrachida@yahoo.fr;

khamarhaki@gmail.com; jaafarhamid1973@gmail.com; jaafarhamid1973@gmail.com; l.aouragh@um5r.ac.ma;
yousfi240ma@yahoo.fr

127

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

architecture for Arabic with the following
principles:

 Integrate not only tools and programs but
also LRs;

 Structure the architecture to integrate two
types of Arabic, namely MSA, and
dialects;

 Respect the Arabic language features in
the structure of the architecture;

 Develop tools or LRs when available
ones are not satisfactory;

 Provide the architecture to be exploited
not only by computer scientists but also
by linguists;

 Involve in our team computer scientists,
statisticians and linguists.

In general, our philosophy is not to develop
ourselves all the NLP layers and modules, but to
integrate existing ones consistently. Consequently,
our approach consists in providing the
specifications in terms of APIs for each module of
our architecture and also providing (if any)
implementations of these APIs with tools that have
proved to be efficient and published under a free
license such as GNU GPL, Apache or Non-
Commercial Software. Indeed, the main challenge
faced during this integration process is to develop
bridges between different programming languages
for tools and data structures for resources to use
them in a single environment. However, when
modules and LRs are not available, we develop
them from scratch inside SAFAR. It is worth
mentioning that after a certain threshold of
maturity (for instance, it is the case of stemming as
per the third release), it is useless to continue
integrating every new implementation of a given
level, with the flexibility that the framework is
open enough to allow researchers to do it if needed.

2.2 Architecture

SAFAR is a Java-based framework dedicated to
Arabic Natural Language Processing. As shown in
Figure 1, SAFAR has several layers that provide
services directly usable by other layers in
accordance with the relationships modeled with
arrows in the figure.

5 http://www.alecso.org/site/

 Basic: designed to implement tools
dealing with morphology, syntax and
semantics;

 Tools: includes a set of technical services
and pre-processing tools as well as
machine and deep learning utilities;

 Resources: provides services for
maintaining, consulting and managing
Arabic language resources such as
corpora, dictionaries and ontologies;

 Application: contains high-level
applications such as sentiment analysis or
Question/Answering systems;

 Client applications: interacts with all
other layers to serve clients via web
applications, web services, etc.

Figure 1: SAFAR framework general architecture.

2.3 Standards

Concerning the respect of international standards,
and in order to facilitate their use in different
contexts, we adopt the interoperability guides for
all SAFAR components. Indeed, SAFAR tools
input/output and LRs are formatted using the XML
representation standard. In addition to the respect
of representation standard, we use structuring
standards such as Arab League Educational,
Cultural and Scientific Organization (ALECSO)5
recommendations for the design of Arabic
morphological analyzers, Lexical Markup
Framework (ISO 24613:2008) (LMF) for lexicons
and Text Encoding Initiative (Lou Burnard et al.
2008) (TEI) for corpora.

3 SAFAR content

As previously explained, the structure of SAFAR
is split into three main packages: MSA, Dialects
and Machine learning models. Since Dialects are

128

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

3

numerous, we have been interested so far to
integrate only the Moroccan dialect even if the
architecture is flexible enough to embed any other
dialects.

3.1 MSA

This package is the most populated one. Indeed, for
almost two decades the research community spent
all their efforts in developing components (tools
and resources) for this type of Arabic.
Table 1 shows all the integrated tools for MSA6.
These tools have been widely used by the ANLP
community and it will be very advantageous to use
them within a homogenous and flexible
framework. Other tools have been developed from
scratch such as “SAFAR stemmer”, “SAFAR POS
tagger”, etc. Tools starting with “SAFAR” in the

table have been developed from scratch by our
research team for one of the following reasons 1)
available tools return incorrect results, 2) there are
no similar tools within the community, or 3)
existing tools cannot be reused in several technical
environments. In addition, the integration of
multiple implementations for the same layer allows
their benchmarking. Thus, we were able to make a
detailed evaluation and/or comparison of stemmers
(Jaafar and Bouzoubaa, 2016), morphological
analyzers (Jaafar and Bouzoubaa, 2014) and
parsers (Jaafar and Bouzoubaa, 2017).
The column “Per” indicates how many researchers
have been involved in the development/integration
of the corresponding tool. The "Vr" column
indicates SAFAR version from which the tool is
present.

Layer Package Implementation name Reference Per Vr

App

key_words_extractor SAFAR key_words_extractor 3 3
stopwords_analyzer SAFAR stopwords_analyzer 3 3
moajam_moaassir SAFAR moajam_moaassir 2 1
moajam_tafaoli SAFAR moajam_tafaoli 2 1
Light summarization SAFAR light_summarization 2 2
morphosyntactic SAFAR morphosyntactic_processor 2 1
stem_counter SAFAR stem_counter 2 1

Syntax

Farasa parser Zhang et al. 2015 2 2
Stanford parser Green and Manning 2010 2 3
Farasa POS tagger Zhang et al. 2015 2 1
SAFAR POS tagger 3 3

Morphology

Alkhalil analyzer Boudlal, et al. 2010 2 2
Alkhalil 2 analyzer Boudchiche et al. 2017 2 2
BAMA (Aramorph) analyzer Buckwalter 2002 2 1
MADAMIRA analyzer Pasha, et al. 2014 2 1
Farasa lemmatizer Abdelali, et al. 2016 2 3
SAFAR lemmatizer Namly et al. 2020 3 3
ISRI stemmer Algasaier 2005 2 2
Khoja stemmer Khoja 2002 2 1
Light10 stemmer Larkey et al. 2007 2 1
Motaz stemmer Motaz and Ashour 2010 2 2
Tashaphyne stemmer Zerrouki 2012 2 2
SAFAR stemmer Jaafar et al. 2016 2 2

Util

StopWords SAFAR StopWords remover 3 3

Benchmark
SAFAR Analyzers benchmark Jaafar and Bouzoubaa, 2014 2 2
SAFAR Stemmers benchmark Jaafar et al. 2016 2 2
SAFAR Parsers benchmark Jaafar and Bouzoubaa, 2017 2 2

Normalization SAFAR Normalizer 3 1
Splitting SAFARS sentence Splitter 2 1
Tokenization SAFAR Tokenizer 2 1
Pattern detector SAFAR Pattern detector 2 3
Transliteration SAFAR Transliterator 2 1

Table 1: MSA tools implemented in SAFAR

6 Almost all integrated MSA tools have their own license.
Users are invited to be aware of these third party licenses and
respect them.

129

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

4

On another hand, Table 2 shows all integrated
resources for MSA. The LRs building process is
based on the Arabic language structure. The
concatenative inflection denotes that the lemma
concatenates to affixes to produce the stem, which
in turn concatenates to clitics to yield the word.
And according to their features, a lemma is either
a verb, a noun or a particle. From this, we identify
the basic components taking part in the
composition of the Arabic words which are the
lemmas (particle, verb and noun), stems and clitics.
Thus, SAFAR follows the above Arabic language
structure for lexical resources and contains the
three basic alphabets (Loukili and Bouzoubaa
2011, Namly et al. 2016), clitics (Namly et al.
2015) and particles lexicon. We also make use of
existing and known dictionaries (Contemporary
and Interactive). It is worth mentioning that
SAFAR contains currently one of the most
comprehensive lexicons with more than 7 million
stems and corresponding lemmas (Namly et al.
2019).

On another hand, because of the importance of
ontologies in many NLP processes, we enriched
and integrated the existing Arabic WordNet
(Abouenour et al. 2013) (AWN). We note that
enriched AWN is approved as the official version
of the Global WordNet association7.
Finally, we also developed and integrated corpora
used as reference and evaluation corpora. Indeed,
as mentioned above, these corpora as exploited to
benchmark integrated tools at the stemming and
morphological levels.
SAFAR resources are freely available for the
community. They can be downloaded from our
team website8. Indeed, in order to contribute in
their wide dissemination within the community,
we advertise on SAFAR resources in some well-
known catalogs and repositories such as European
Language Resources Association (ELRA) 9 and
Common Language Resources and Technology
Infrastructure (CLARIN)10.
Finally, let us mention that a more detailed survey
and a software engineering comparative study
with similar Arabic frameworks can be found in
(Jaafar and Bouzoubaa, 2018).

Layer Package Processing level Implementation name Size11 Per Vr

Resource

Lexicon

Alphabet SAFAR Alphabet 42 3 1
Clitics SAFAR Clitics 167 3 1
Particles SAFAR Particles 413 5 1
Contemporary Contemporary dictionary 32.300 2 2
Interactive Interactive dictionary 61.101 2 2
CALEM SAFAR Stems Lemmas 7.133.106 3 3
Arabic WordNet SAFAR Arabic WordNet 56.164 3 2

Corpus
NAFIS SAFAR Stemming gold standard 172 4 3
Morpho evaluation morphological analysis evaluation 100 3 2
Stems evaluation Quranic stemming evaluation 1000 3 2

Table 2: MSA resources implemented in SAFAR

3.2 Moroccan Dialect

Besides being interested in processing the
Arabic language, we take into consideration the
informal variety of Moroccan Arabic dialect (MD).
Regarding resources, a Moroccan dialect
electronic Dictionary (Tachicart et al. 2014)
(MDED) has been developed containing almost
12,000 entries with useful annotations. Another
lexicon is the Moroccan reference vocabulary
(Tachicart et al. 2019) (MRV), which compiles
4.5M possible Moroccan words with respect to a
normalization guideline.

7 http://globalwordnet.org/resources/arabic-wordnet/
8 http://arabic.emi.ac.ma/alelm/?q=Resources
9 http://www.elra.info/en/

Also, a corpus for language identification tasks
is available with SAFAR. It is composed of 57k
comments collected from social media and then
manually classified into three categories: MSA,
MD, and code-switched. Besides and based on
neural models, a lexicon of orthographic variants
that covers almost 54% of the MRV has been
generated. It can be useful for several dialectal
NLP tasks such as spelling normalization.
Table 3 shows all integrated resources for the
Moroccan dialect. Concerning tools, a language
identification system (Tachicart et al. 2018) has
been developed and integrated within SAFAR in

10 https://www.clarin.eu
11 Entries for lexicons and words for corpora

130

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

5

order to distinguish between MD and MSA.
Besides, we developed and integrated a spelling
normalization systems that helps to convert a given

Moroccan dialectal word into its standard form
without taking into consideration the word context.

Layer Package Processing level Implementation name Size4 Per Vr

Resources
Lexicon

Mded SAFAR Mded 12.000 2 3
Moroccan_vocabulary SAFAR MRV 4.500.000 2 3
Orthographic_variants SAFAR OV 2.385.000 2 3

Corpus LID SAFAR Lang. Identification 519.000 2 3

Util
LID sys SAFAR Lang. Identification SAFAR Lang._Identification -- 2 3
Spell Spelling_normalization SAFAR SPELL -- 2 4

Table 3: Moroccan dialect resources and tools implemented in SAFAR

3.3 Machine learning models

Our tools have been developed combining both the
rule-based approach, embedded in lexicons and
hardcoded, and the ML approach. Thus, SAFAR
includes a set of popular ML libraries (Table 4)
geared at different purposes, without the need to
perform external tasks. For instance, the SAFAR
POS tool exploited weka to output a Decision tree
model (Tnaji et al., 2020), the SAFAR lemmatizer
exploited HMM (Namly et al., 2020), while the
Spelling normalization for the Moroccan dialect
used fastText (Tachicart and Bouzoubaa, 2019).
Consequently, a researcher making use of SAFAR
has the possibility to code calling all integrated
Arabic NLP tools and resources in addition to
exploiting the integrated ML libraries.

Implementation name Type Per Vr
Hidden markov model Model 3 3
Language model Model 2 3
Levenshtein Model 2 3
Weka Tool 1 3
FastText Tool 1 3

Table 4: Machine learning models and tools in SAFAR

4 SAFAR use and exploitation

As previously mentioned, SAFAR tools and
integrated resources can be exploited either as an
API or from client applications.

4.1 API

 For each level of processing, we standardize all
aspects shared by the same type of tools according
to APIs and models so that they become
homogenous and flexible in their exploitation. This
ensures the standardization inside SAFAR. Users
have several possibilities when calling methods by

12 http://arabic.emi.ac.ma/safar-api/SAFAR_v3.jar
13 https://checkstyle.sourceforge.io/

specifying appropriate parameters according to
their needs.
The execution of a normalizer within SAFAR can
be simple as calling “normalizer.normalize(text)”.
If the normalization should be customized,
overloaded methods can be called. It is worth
mentioning that when developing the SAFAR
API 12 , we fully respect “Checkstyle” 13 and
“FindBugs” 14 which are two development tools
that help adhering to coding standards.
Users could also easily create customizable
pipelines where the output of one component is the
input of another (Jaafar and Bouzoubaa, 2015). All
these aspects of SAFAR help solving SE issues
especially the interoperability, the reuse and the
flexibility of exploitation.

Figure 2: A pipeline using SAFAR API.

As mentioned in Figure 2, at line 3, we specify the
input text. At line 5, we call the

14 http://findbugs.sourceforge.net/

131

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

6

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

0160

0161

0162

0163

0164

0165

0166

0167

0168

0169

0170

0171

0172

0173

0174

0175

0176

0177

0178

0179

0180

0181

0182

0183

0184

0185

0186

0187

0188

0189

0190

0191

0192

0193

0194

0195

0196

0197

0198

0199

“SAFARNormalizer” tool to normalize the text. At
line 7 we call SAFAR “IParticleService” (Namly,
et al. 2015) in order to delete stop words. At line
10, we instantiate the “SAFARTokenizer” tool
which takes a text as input and outputs all tokens
of the text. At line 13, we proceed to stemming
tokens by calling the “IStemmer” service and
specifying the Light10 stemmer in this case. At line
18, we call “ILexiconService” to detect stems
sentiments and then print the sentiments of each
word according to the predefined lexicon.
Executing the whole process with another stemmer
is simply to keep the same code and change only
line 13 such as “.getKhojaImpletation”.

4.2 Web application

For non-developers such as linguists, SAFAR
framework can be executed using an online
application 15 in which all SAFAR levels are
developed as online processing. Accessing the
website allows the user to have access to all tools
and resources mentioned above. Results can be
either printed on the same page or downloaded as
XML files.

Figure 3: Alkhalil morphological analysis within
SAFAR web.

As an example, Figure 3 shows the online
morphological analysis for the word “يأكلان” (they
eat). After selecting the morphological analyzer to
use via the drop-down menu (Alkhalil in this case)
and clicking on the “Analyze & display” button,
the output is displayed in a table format.

15 http://arabic.emi.ac.ma:8080/SW_V3/

Figure 4: Language identification system.

Furthermore, the language identification system
(Tachicart et al. 2018) demonstrated in Figure 4,
aims to distinguish between Moroccan Dialect and
MSA using two different methods. Indeed, the first
is rule-based and relies on stop word frequency,
while the second is statically-based and is based on
an SVM machine learning classifier.

5 Conclusion

SAFAR is a monolingual framework dedicated to
Arabic language. It is considered as a repository
and collaborative work where multiple developers
of Arabic tools and resources can meet and share
their products. It is in its second decade of
existence and integrates more than 50 tools and
resources. The next steps of our journey are to:

 Concentrate on less considered layers such
as semantics and applications;

 Integrate and develop other tools and
resources for dialects and standard Arabic;

 Build bridges with multilingual or other
language frameworks for developers
interested to consider more than one
language in their projects such as machine
translation.

References

Abdelali, A., Darwish, K., Durrani, N., and Mubarak,
H. 2016. Farasa: A fast and furious segmenter for
Arabic. In Proceedings of the 2016 conference of the
North American chapter of the association for
computational linguistics: Demonstrations, pp. 11-
16.

Abouenour, L., Bouzoubaa, K., and Rosso, P. 2013.
On the evaluation and improvement of Arabic
WordNet coverage and usability. Language
Resources and Evaluation, vol. 47, n° 13, pp. 891-
917.

132

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

7

Algasaier, H. The ISRI Arabic Stemmer. 2005.
http://www.nltk.org/_modules/nltk/stem/isri.html
(accessed February 1, 2015).

Althobaiti, M., Kruschwitz, U., and Poesio, M. 2014.
AraNLP: a Java-Based Library for the Processing of
Arabic Text. In Proceedings of the 9th Language
Resources and Evaluation Conference (LREC’14),
Reykjavik, Iceland.

Boudchiche, M., Mazroui, A., Bebah, M. O. A. O.,
Lakhouaja, A., and Boudlal, A. 2017. AlKhalil
Morpho Sys 2: A robust Arabic morphosyntactic
analyzer. Journal of King Saud University-
Computer and Information Sciences 29, no. 2: 141-
146.

Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A.,
Bebah, M. O. A. O., and Shoul, M. 2010. Alkhalil
Morpho Sys1: A Morphosyntactic analysis System
for Arabic texts. Proceedings of the 11th
International Arab Conference on Information
Technology (ACIT’10). Benghazi. 1-6.

Buckwalter, T. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0." Linguistic
Data Consortium.

Green, S., and Manning, C. D. 2010. Better Arabic
parsing: baselines, evaluations, and analysis. The
23rd International Conference on Computational
Linguistics (COLING '10). Beijing: Association for
Computational Linguistics. 394-402.

Jaafar, Y. and Bouzoubaa, K. 2014. Benchmark of
Arabic morphological analyzers: Challenges and
Solutions. 9th International Conference on
Intelligent Systems: Theories and Applications
(SITA'14), Rabat,

Jaafar, Y. and Bouzoubaa, K. 2015. Arabic Natural
Language Processing from Software Engineering to
Complex Pipelines Cicling Cairo, Egypt.

Jaafar, Y., Namly, D., Bouzoubaa, K., Yousfi, A. 2016.
Enhancing Arabic Stemming Process Using
Resources and Benchmarking Tool. King Saud
University - Computer and Information Sciences
(JKSU-CIS).

Jaafar, Y., and Bouzoubaa, K. 2017. A New Tool for
Benchmarking and Assessing Arabic Syntactic
Parsers. 6th International Conference on Arabic
Language Processing CITALA 2017, Fes, Morocco
Fes, Morocco.

Jaafar, Y., Nasri, M., and Bouzoubaa, K. 2018.
Semantic Analysis of Arabic Texts within SAFAR
Framework. In proceedings of the 5th International
IEEE Congress on Information Science and
Technology (CIST'18), Marrakech, Morocco.

Jaafar, Y., and Bouzoubaa, K. (2018). A Survey and
Comparative Study of Arabic NLP Architectures. In:
Shaalan K., Hassanien A., and Tolba F. 2018. (eds)
Intelligent Natural Language Processing: Trends

and Applications. Studies in Computational
Intelligence, volume 740. Springer, Cham.

Khoja, S. Khoja stemmer. 2002.
http://zeus.cs.pacificu.edu/shereen/research.htm#ste
mming (accessed February 1, 2015).

Larkey, L. S., Ballesteros, L., and Connell, M. E. 2007.
Light Stemming for Arabic Information Retrieval. In
Arabic computational morphology: knowledge-
based and empirical methods, 221-243. Springer
Netherlands.

Lou B., and Syd, B. 2008. TEI P5: Guidelines for
electronic text encoding and interchange". TEI
Consortium.

Loukili,T., and Bouzoubaa, K. 2011. Structuration et
Standardisation des ressources linguistiques de
l'Arabe - cas de l'alphabet, préfixes et suffixes,
Journées Doctorales en Technologies de
l'Information et Communication, Tangier, Morocco,
7/ 2011.

Saad, M. K., and Ashour, W. M. 2010. Arabic
morphological tools for text mining. 6th
International Conference on Electrical and
Computer Systems (EECS’10). Lefke, North Cyprus.

Namly, D., Bouzoubaa, K., Tajmout, R., Tahir, Y., and
Khamar, H. 2015. A Complex Arabic stop-words list
design. The Second National Doctoral Symposium
On Arabic Language Engineering (JDILA'2015)
ENSA of Fez USMBA.

Namly, D., Regragui, Y., and Bouzoubaa, K. 2016.
Interoperable Arabic language resources building
and exploitation in SAFAR platform. In Proceeding
of the 13th ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA’16),
Agadir, Morocco.

Namly, D., Bouzoubaa, K., El Jihad, A., and Aouragh,
S. L. (2020). Improving Arabic Lemmatization
Through a Lemmas Database and a Machine-
Learning Technique. In Recent Advances in NLP:
The Case of Arabic Language, pp. 81-100. Springer,
Cham.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A.,
Eskander, R., Habash, N., Pooleery, M., Rambow,
O., and Roth R. M. 2014. MADAMIRA: A Fast,
Comprehensive Tool for Morphological Analysis
and Disambiguation of Arabic. In Proceedings of the
9th Language Resources and Evaluation Conference
(LREC’14), Reykjavik, Iceland.

Gülşen, E. 2014. ITU Turkish NLP Web Service. in
European Chapter of the Association for
Computational Linguistics, Sweden

Tachicart, R., Bouzoubaa, K., and Jaafar, H. 2014.
Building a Moroccan dialect electronic Dictionary
(MDED). In Proceedings of the 5th International
Conference on Arabic Language Processing
(CITALA'14), Oujda, Morocco.

133

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

8

Tachicart, R., and Bouzoubaa, K. 2019. Towards

Automatic Normalization of the Moroccan Dialectal
Arabic User Generated Text. In Arabic Language
Processing: From Theory to Practice, Springer
International Publishing, 2019, pp. 264-275.

Tachicart, R., Bouzoubaa, K., Aouragh, S. L., and
Jaafar, H. 2018. Automatic Identification of
Moroccan Colloquial Arabic. Arabic Language
Processing: From Theory to Practice, Springer
International Publishing, Cham, vol. 782, pp. 201-
214.

Tnaji, K., Bouzoubaa, K., and Aouragh, S.L. 2021, A
light Arabic POS Tagger using a hybrid approach. In
the international conference on digital technologies
and applications, January 29-30, 2021.

Zerrouki, T. Tashaphyne 0.2. 2012.
https://pypi.python.org/pypi/Tashaphyne. Retrieved
April 14, 2016.

Zhang, Y., Li, C., Barzilay, R., and Darwish, K. 2015.
Randomized greedy inference for joint
segmentation, POS tagging and dependency parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pp. 42-52.

134

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 135–142
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

InterpreT: An Interactive Visualization Tool for Interpreting
Transformers

Vasudev Lal1, Arden Ma1, Estelle Aflalo1, Phillip Howard1,
Ana Paula Q Simoes1, Daniel Korat2, Oren Pereg2, Gadi Singer1, Moshe Wasserblat2

1Intel Labs, Cognitive Computing Research, USA
2Intel Labs, Artificial Intelligence Lab, Israel
{firstname.lastname}@intel.com

Abstract

With the increasingly widespread use of
Transformer-based models for NLU/NLP
tasks, there is growing interest in understand-
ing the inner workings of these models, why
they are so effective at a wide range of tasks,
and how they can be further tuned and im-
proved. To contribute towards this goal of en-
hanced explainability and comprehension, we
present InterpreT, an interactive visualization
tool for interpreting Transformer-based mod-
els. In addition to providing various mech-
anisms for investigating general model be-
haviours, novel contributions made in Inter-
preT include the ability to track and visual-
ize token embeddings through each layer of
a Transformer, highlight distances between
certain token embeddings through illustrative
plots, and identify task-related functions of at-
tention heads by using new metrics. Inter-
preT is a task agnostic tool, and its functional-
ities are demonstrated through the analysis of
model behaviours for two disparate tasks: As-
pect Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC).

1 Introduction

In recent years, Transformer-based models
(Vaswani et al., 2017) such as BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019),
XLNET (Yang et al., 2019) and RoBERTa (Liu
et al., 2019) have demonstrated state-of-the-art
performance in many NLP tasks and have become
the gold standard. However, there are many open
questions regarding the behavior of these models.
Phenomena such as why Transformers perform
well on specific examples but not others, as well
as how their internal mechanisms facilitate their
ability to generalize to new tasks and settings
(or lack therof) are not yet fully understood.
Observations and insights which help answer

these questions will be pivotal in driving the
construction of more powerful and robust models.

The pursuit of such answers have spurred the
development of a wide variety of analytical stud-
ies and tools to enable the visualization of infor-
mation encapsulated in Transformer-based mod-
els. Clark et al. (2019), studied the attention mech-
anisms of a pre-trained BERT model to find that
certain heads correspond to specific linguistic pat-
terns. Jawahar et al. (2019) investigated the distri-
bution of phrase-level information throughout the
layers of BERT using t-SNE (van der Maaten and
Hinton, 2008). The visualization tools of Aken
et al. (2020) and Reif et al. (2019) perform a layer-
wise analysis of BERT’s hidden states to under-
stand the internal workings of Transformer-based
models that are fine-tuned for question-answering
tasks. Other tools, such as Vig (2019), focus
on visualizations of the attention matrices of pre-
trained Transformer models. In the work of Ten-
ney et al. (2020), the authors introduce an inter-
active platform for the visualization and interpre-
tation of NLP models. The tool includes, among
other capabilities, attention visualizations, embed-
ding space visualizations, and aggregate analysis.
Other related tools include those by Wallace et al.
(2019) and Hoover et al. (2020). The increasingly
large body of work on the interpretability and eval-
uation of Transformer-based models reveals the
growing need for the development of tools and
systems to aid in the fine-grained analysis and un-
derstanding of these models and their performance
on complex language understanding tasks.

With this goal in mind, we present InterpreT1,
a tool for interpreting Transformers. A key con-
tribution of InterpreT is that it is a single system
that enables users to track hidden representations

1The source code for InterpreT, along with a live demo
and screencast describing its functionality is available at
https://github.com/IntelLabs/nlp-architect/tree/master/solutions/InterpreT

135

of tokens throughout each layer of a Transformer
model, as well as visualize and analyze attention
head behaviors. Similarly to Tenney et al. (2020),
InterpreT enables dynamic point selection, aggre-
gation of attention head statistics, visualization of
attention head matrices, and the ability to compare
models. Novel contributions made in InterpreT
include the ability to track and visualize token
embeddings through each layer of a Transformer
(Section 3.2), highlight distances between certain
token embeddings through illustrative plots (Sec-
tion 3.6), and identify task-related functions of at-
tention heads by using new metrics (Section 3.3).

Section 4 demonstrates how the new features
introduced in InterpreT can be used to obtain
novel insights into the underlying mechanisms
used by Transformers to tackle diverse tasks such
as Aspect-Based Sentiment Analysis (ABSA) and
the Winograd Schema Challenge (WSC). More
generally, these demonstrations illustrate how
such features enable rich, granular analysis of
Transformer models.

2 System Design and Workflow

The system flow consists of two main stages: of-
fline extraction of model specific and task specific
information such as targets, predictions, relevant
hidden states, and attention matrices (henceforth
referred to as “collateral”) and running the appli-
cation itself. During the offline stage, the extracted
hidden states are processed using t-SNE before be-
ing saved to a file. The collateral generated for a
specific model and task is independent of collat-
eral from other models and tasks, which enables
the user to either run the app to examine a sin-
gle model or to compare two different models that
were evaluated on the same task and data. In this
latter case, the collateral files for the two models
are linked at runtime. A detailed specification for
the collateral, along with the source code used to
run InterpreT can be found in our GitHub.

3 Application Features

3.1 Overview

Key features of InterpreT include plots for the vi-
sualization and tracking of t-SNE representations
of hidden states through the layers of a Trans-
former, a plot presenting summary statistics, cus-
tom metrics to quantify attention head behavior,
and attention matrix visualizations. In addition,

InterpreT includes a multi-select feature that en-
ables groups of examples to be selected in the t-
SNE plot and used as input to other plots in the ap-
plication, as well as the flexibility to be used both
for analyzing a single model and for visualizing
the differences in behaviors between two models.
In general, the core functionalities present in In-
terpreT are model and task agnostic, working for
a wide-variety of architectures, sequence lengths,
and tasks.

3.2 t-SNE Embeddings
A central component of InterpreT is the abil-
ity to visualize the contextualized embeddings of
specific tokens throughout the layers of a Trans-
former. Following van Aken et al. (2019) and
Jawahar et al. (2019), we use t-SNE to project
hidden representations of tokens after each Trans-
former layer onto a two-dimensional space, creat-
ing disjoint t-SNE spaces for each layer of each
model. In the resulting t-SNE plot, token embed-
dings can be visualized for a specific model and
layer, and colored using various color schemes
(Figure 1d). An example selected in the t-SNE
plot is tracked and continues to be highlighted in
the new t-SNE space when the model or the layer
is changed.

3.3 Head Summary
InterpreT includes a head summary plot that dis-
plays attention head summary statistics for each
head and layer (Figure 1b). For a given sen-
tence, all attention weights are obtained in a
matrix of size (num layers × num heads ×
sentence length × sentence length) and com-
pute statistics over the final two dimensions, yield-
ing a summary plot of size (num layers ×
num heads). The following statistics are cur-
rently supported:

The Standard Deviation of an attention head is
generated by calculating the standard deviation of
the corresponding attention matrix weights. Intu-
itively, the standard deviation of an attention head
increases as the attention patterns become less uni-
form, allowing a user to easily identify heads that
exhibit interesting behaviors.

The Attention Matrix Correlation is obtained
by computing the correlation between an atten-
tion matrix and an arbitrary, same-size matrix. In
Section 4.1.2, this correlation is computed using a
binary matrix that encodes syntactic dependency
relations, analogous to the parse matrix used in

136

Figure (1) The InterpreT user interface (rearranged for print) for the task of coreference resolution (see Section
4.2). The UI includes a short description of the currently selected models and example at the top, along with the
main features (a-e) described in Section 3.

Pereg et al. (2020). This formulation of a “gram-
mar correlation” metric provides an indicator of
an attention head’s ability to identify syntactic re-
lations in a sentence.

The Task-Specific Attention Intensity option
allows a user to define and display custom met-
rics that highlight specific attention patterns. In
Section 4.2.2, a “coreference intensity” metric is
devised to pinpoint attention heads with an affin-
ity for identifying coreference relationships. For
this metric, each entry in the summary plot repre-
sents the attention weight between the coreferent
spans being evaluated (if the span contains more
than one token, the maximum is taken), for each
head of each layer.

When running InterpreT with two models, the
head summary plot can be used to visualize differ-
ences in the summary statistics between both mod-
els. As mentioned previously, the multi-select fea-
ture can be used with any of the summary statistic
options. When using multi-select, the statistics are
averaged over the selected examples, enabling the

user to analyze general trends in attention behav-
ior.

3.4 Attention Matrix/Map

Similarly to other systems, InterpreT provides the
ability to display the attention patterns and weights
exhibited by specific attention heads, which can be
selected by clicking on a specific head and layer in
the head summary plot. These attention patterns
can be displayed as either a heatmap (“matrix”
view) or a token “map” (“map” view) visualization
used in Clark et al. (2019). There is an option to
switch between the two views in-app (Figure 1c).
These visualizations can become unwieldy when
using large sequence lengths, but this will not af-
fect the functionality of the rest of the system.

3.5 Summary Table

A short summary table is provided, which contains
task-specific information such as predicted token
classifications and the gold (target) labels for the
selected sentence/example (Figure 1a).

137

(a) (b) (c)

Figure (2) Baseline (a) and LIBERT (b,c) final layer t-SNE embeddings of aspect terms colored by domain (a,b)
and aspect extraction sentence level F1 score (c) as seen in InterpreT.

3.6 Average t-SNE Distance Per Layer
To complement t-SNE visualization of the hidden
states, InterpreT also introduces a novel plot show-
ing the average t-SNE space distance between spe-
cific groups of terms across all of the Transform-
ers’ layers (Figure 1e). Section 4.2.1 demonstrates
how information conveyed in this plot contributes
towards novel interpretations of the inner work-
ings of BERT.

4 Use Cases

The examples presented in this section focus on
the analysis of bidirectional encoders using Inter-
preT, however the system can be applied to gener-
ative models or encoder-decoder architectures as
well, so long as the appropriate collateral can be
generated. Further examples of use cases along
with instructions on how to use InterpreT for cus-
tom applications is detailed in our GitHub.

4.1 Cross-Domain Aspect Based Sentiment
Analysis (ABSA)

A fundamental task in fine-grained sentiment anal-
ysis is the extraction of aspect and opinion terms.
For example, in the sentence “The chocolate cake
was incredible”, the aspect term is chocolate cake
and the opinion term is incredible. Supervised
learning approaches have shown promising results
in single-domain setups where the training and the
testing data are from the same domain. However,
these approaches typically do not scale across do-
mains, where only unlabeled data is available for
the target domain. It has been shown that syntax,
which is a basic trait of language and is therefore
domain invariant, can help bridge the gap between
domains (Ding et al., 2017; Wang and Jialin Pan,
2018).

In a recent work (Pereg et al., 2020), externally
generated dependency relations are integrated into
a pre-trained BERT model through the addition

of a 13th attention head which incorporates the
dependency relations into its Syntactically-Aware
Self-Attention Mechanism. This model is referred
to as Linguistically Informed BERT (LIBERT).
InterpreT is used to analyze LIBERT and a Base-
line model that shares the same size and structure
as LIBERT but does not incorporate syntactic in-
formation for the cross-domain ABSA task, where
both models are fine-tuned on laptop reviews and
are evaluated on restaurant reviews (Pontiki et al.,
2014, 2015; Wang et al., 2016). LIBERT and
the Baseline model achieved aspect extraction F1
scores of 0.5143 and 0.4254 respectively on vali-
dation data from the restaurant domain.

4.1.1 Visualizing the Domain Gap

InterpreT is used to visualize how the incorpo-
ration of dependency relations in LIBERT con-
tributes to bridging the gap between domains. Fig-
ure 2 depicts the final layer aspect term t-SNE em-
beddings from the restaurant and laptop domains
produced by LIBERT and Baseline. The plot of
the Baseline embeddings (2a) gives a prototypical
depiction of the “domain gap” challenge present
in cross-domain setups, through the clear separa-
tion of in-domain (blue) and out-of-domain (red)
aspects. Conversely, the plot of LIBERT’s embed-
dings (2b) demonstrates how LIBERT has learned
to push the embeddings of some aspect terms from
the out-of-domain region into the in-domain re-
gion, effectively overcoming the “domain gap”
challenge for these examples. Furthermore, in the
plot colored by the aspect extraction F1 score (2c),
it is seen that LIBERT achieves a high F1 score on
the out-of-domain examples that now overlap with
in-domain examples, highlighting the usefulness
of such visualizations for analyzing model perfor-
mance and extensibility.

138

(a)

(b)

Figure (3) InterpreT’s Head Summary plot displaying aggregated grammar correlation using multi-selection for
LIBERT (a) along with an example of the the attention matrix of selected attention head (head 13 in layer 4) (b).

4.1.2 Grammar Correlation

A key feature of InterpreT is the addition of met-
rics to help identify attention heads which carry
out specific functions. For analyzing LIBERT, the
“grammar correlation” metric described in Sec-
tion 3.3 is used to identify attention heads with an
affinity for detecting syntactic relations. Figure 3a
demonstrates the result of using multi-selection to
compute the average grammar correlation in each
of LIBERT’s attention heads aggregated over mul-
tiple examples.

As expected, the Syntactically-Aware Self At-
tention head (head 13) tends to show much higher
grammar correlation than the regular Self Atten-
tion heads. Utilizing the granularity provided in
the head summary plot, it is observed that LIB-
ERT’s 13th head seems to only express an affinity
for parsing syntactic relations in layers 2,3,4, and
11. This is unexpected behavior, as the syntax in-
formation is relayed identically to the 13th head
across all layers. To investigate further, InterpreT
can be used to display attention matrices from
head 13 in layers that have high grammar corre-
lation. One such attention matrix, for an out-of-
domain example, is displayed in Figure 3b. In this
attention matrix visualization, it can be seen how
LIBERT’s 13th head identifies syntactic relations
such as the adjectival modifier relation between
“staff” and “attentive”, and how this can be use-
ful for the cross-domain ABSA task where “staff”
and “attentive” are aspect and opinion terms (re-
spectively) in an out-of-domain example.

4.2 Coreference Resolution in the Winograd
Schema Challenge (WSC)

In this section, the utility of InterpreT is show-
cased for a markedly different task: coreference
resolution. Coreference resolution is a challeng-
ing NLP task that often requires a nuanced under-
standing of context and sentence semantics. This
task is the basis of the Winograd Schema Chal-
lenge (WSC) from the SuperGLUE benchmark
(Alex Wang, 2020), where the goal is to deter-
mine whether or not a pronoun is the correct ref-
erent of a given noun phrase. In this analysis of
WSC, InterpreT demonstrates how information in
the attention matrices and the hidden states of a
Transformer can be used to understand the implicit
mechanisms contributing to its ability to identify
coreferent terms. BERT-base (uncased) is chosen
for this analysis and is fine-tuned using the WSC
task training set.

Example Coreference Candidates
(Fred, he) (George, he)

“... got back” False True
“... got up” True True

Table (1) Predictions of the fine-tuned BERT model
for the two examples. The values in bold are correct
predictions.

4.2.1 Spatial Convergence of Coreferent
Terms

While analyzing WSC with InterpreT, the sys-
tem’s wide-ranging capabilities gave rise to a
novel observation, wherein it was discovered that a
fine-tuned BERT model pushes closer together the
embeddings of terms it predicts to be coreferent.
Figure 4a displays the average distance per layer

139

(a)

(b)

Figure (4) InterpreT summary plots for WSC. These plots display summary statistics for the average predicted
span token distance per layer (a) and coreference intensity metric (b) for fine-tuned BERT aggregated over the full
dataset.

(a) (b)

(c) (d)

Figure (5) InterpreT plots tracking specific examples in WSC. These plots depict the final layer t-SNE embed-
dings and attention map visualizations of head 10 layer 7 for the following examples: “Fred watched TV while
George went out to buy groceries. After an hour he got back” (a,c), and “Fred watched TV while George went out
to buy groceries. After an hour he got up.” (b,d). In (a) and (b), the yellow stars indicate candidate mention spans,
and “He” and “George” are almost overlapping.

between terms which BERT predicts to be coref-
erent (blue) and terms which BERT predicts to not
be coreferent (red), aggregated over the full WSC
dataset. It is observed that in BERT’s final layers,
the model learns to modify the hidden representa-
tions of terms to increase or decrease the distance
between them based on whether or not it predicts

they are coreferents. This behavior can also be
seen in the green trace, which measures the dif-
ference in the average distance of terms predicted
to be coreferent and those that are not predicted to
be coreferent.

Additionally, Figures 5a and 5b show a specific
example of this phenomenon with the sentences:

140

“Fred watched TV while George went out to buy
groceries. After an hour he got back” (Figure 5a
and Table 1) and “Fred watched TV while George
went out to buy groceries. After an hour he got
up.” (Figure 5b and Table 1). These two exam-
ples show how changing a single token (“back”
became “up”) significantly alters the sentence se-
mantics, as in the first example, “he” refers to
“George”, and in the second example “he” refers
to “Fred”. InterpreT enables us to visualize this
behavior using the t-SNE plots. Figure 5a show
how for the first example, “he” and “George” are
much closer together than “he” and “Fred” are.
Figure 5b shows how in the second example, the
change from “he got back” to “he got up” is re-
flected in BERT’s behavior, where the representa-
tion of “Fred” to be pushed much closer to “he”
than in the first example.

4.2.2 Attention Patterns between Coreferent
Terms

Another feature of InterpreT is the ability to utilize
custom metrics, such as the “coreference inten-
sity” metric described in Section 3.3. Coreference
intensity is visualized using the head summary
plot in Figure 4b. The figure shows that the fine-
tuned model highlights attention heads that seem
to perform well as coreferent predictors. Darker
shades of red correspond to higher attention be-
tween the two coreferents being evaluated. It ap-
pears that the heads which are the most involved
in the coreference resolution task after fine-tuning
are the 7th head of layer 10 and the 3rd head of
layer 11.

This new metric is used to examine the example
previously presented with “Fred”, “George”, and
“he”. Figures 5c and 5d show the attention ma-
trix visualizations for the head selected in Figure
4b (head 7 in layer 10). The token map visualiza-
tion depicts how “he” attends heavily to “George”
in the first example (5c) while attending to both
“Fred” and “George” in the second example (5d).

5 Conclusion and Future Work

InterpreT is a generic system for interpreting
Transformers, as evident through its suite of tools
for understanding general model behaviors and
for enabling granular analysis of attention patterns
and hidden states for individual examples. The
capabilities provided by InterpreT empower users
with new insights into what their models are learn-
ing, as illustrated in the visualization of the mit-

igation of the “domain gap” for ABSA and in
the novel discovery of the spatial convergence of
coreferent terms in WSC. These examples show-
case how the fine-grained analysis enabled by In-
terpreT affords a higher level of insight that is
indispensable for interpreting model behavior for
complex language understanding tasks.

InterpreT is an ongoing development effort. Fu-
ture work will include support for additional use
cases as well as additional analysis and interactiv-
ity features, such as the ability to dynamically add
and modify examples while the app is running.

6 Acknowledgements

We thank the anonymous reviewers for their com-
ments and suggestions.

References
Betty van Aken, Benjamin Winter, Alexander Löser,

and Felix A. Gers. 2019. How does bert answer
questions? Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge
Management.

Betty van Aken, Benjamin Winter, Alexander Löser,
and Felix A. Gers. 2020. Visbert: Hidden-state vi-
sualizations for transformers. In Companion Pro-
ceedings of the Web Conference 2020, WWW ’20,
page 207–211, New York, NY, USA. Association for
Computing Machinery.

Nikita Nangia Amanpreet Singh Julian Michael Felix
Hill Omer Levy Samuel R. Bowman Alex Wang,
Yada Pruksachatkun. 2020. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. In Black-
BoxNLP@ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-
rent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Association
for the Advancement of Artificial Intelligence, pages
3436––3442.

141

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 187–196, On-
line. Association for Computational Linguistics.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3651–3657, Florence, Italy. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Oren Pereg, Daniel Korat, and Moshe Wasserblat.
2020. Syntactically aware cross-domain aspect and
opinion terms extraction. In Proceedings of the 28th
International Conference on Computational Lin-
guistics, pages 1772–1777, Barcelona, Spain (On-
line). International Committee on Computational
Linguistics.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 task 12: Aspect based sentiment
analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 486–495, Denver, Colorado. Association for
Computational Linguistics.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 task 4:
Aspect based sentiment analysis. In Proceedings of
the 8th International Workshop on Semantic Evalua-
tion (SemEval 2014), pages 27–35, Dublin, Ireland.
Association for Computational Linguistics.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
bert. In Advances in Neural Information Process-
ing Systems, volume 32, pages 8594–8603. Curran
Associates, Inc.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for nlp models. In Proceedings of

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Jesse Vig. 2019. Visualizing attention in transformer-
based language representation models.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Wenya Wang and Sinno Jialin Pan. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1—-11.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2016. Recursive neural conditional
random fields for aspect-based sentiment analysis.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
616–626, Austin, Texas. Association for Computa-
tional Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understand-
ing. Cite arxiv:1906.08237Comment: Pre-
trained models and code are available at
https://github.com/zihangdai/xlnet.

142

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 143–148
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Representing ELMo embeddings as two-dimensional text online

Andrey Kutuzov
University of Oslo

andreku@ifi.uio.no

Elizaveta Kuzmenko
University of Trento

lizaku77@gmail.com

Abstract
We describe a new addition to the WebVectors
toolkit which is used to serve word embedding
models over the Web. The new ELMoViz mod-
ule adds support for contextualized embedding
architectures, in particular for ELMo mod-
els. The provided visualizations follow the
metaphor of ‘two-dimensional text’ by show-
ing lexical substitutes: words which are most
semantically similar in context to the words
of the input sentence. The system allows the
user to change the ELMo layers from which
token embeddings are inferred. It also con-
veys corpus information about the query words
and their lexical substitutes (namely their fre-
quency tiers and parts of speech). The mod-
ule is well integrated into the rest of the We-
bVectors toolkit, providing lexical hyperlinks
to word representations in static embedding
models. Two web services have already imple-
mented the new functionality with pre-trained
ELMo models for Russian, Norwegian and En-
glish.

1 Introduction

In this demo paper we describe a new module re-
cently added to the free and open-source WebVec-
tors toolkit (Kutuzov and Kuzmenko, 2017)1. Web-
Vectors allows to easily deploy services to demon-
strate the abilities of static distributional word rep-
resentations (word embeddings) (Bengio et al.,
2003; Mikolov et al., 2013) via web browsers. It
currently powers at least two embedding model
hubs:

• NLPL WebVectors2, featuring models for En-
glish, Norwegian and other languages, trained
within the Nordic Language Processing Labo-
ratory initiative.

1A screencast is available at https://www.youtube.
com/watch?v=dDugoV1r_wk.

2http://vectors.nlpl.eu/explore/
embeddings/

Figure 1: Metaphor of two-dimensional text; borrowed
from (Biemann and Riedl, 2013).

• RusVectōrēs3, featuring models for the Rus-
sian language.

The new module (we name it ELMoViz) adds
the functionality to study, probe and compare re-
cently introduced contextualized embedding (or
‘token-based’) models (Melamud et al., 2016). In
particular, at this point we provide support for the
ELMo architecture (Peters et al., 2018a) based on
deep recurrent neural networks. In the future, we
plan to add support for Transformer-based models
like BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020). ELMo architecture is significantly
less computationally expensive than Transformers,
while being almost on par in terms of performance.
Thus, it yields rich possibilities in the context of
non-commercial web services.

For analyzing ELMo representations of an ar-
bitrary input text, we offer the metaphor of ‘two-
dimensional text’ first proposed in (Biemann and
Riedl, 2013) (see Figure 1). This allows a sort
of ‘visualization’ for contextualized embeddings
through finding words which are most semanti-
cally similar to the input words in their current
contexts. From the linguistic point of view, these
are ‘paradigmatic replacements’ (Saussure, 1916)
– words that can to some extent substitute target
words. The two dimensions here are the syntag-
matic one (horizontal) which describes the linear or-
der of the sentence, and the paradigmatic one (ver-
tical) which describes semantic classes to which

3https://rusvectores.org/

143

the words in the sentence belong to. The generated
substitutes in the vertical axis can also be thought
of as ‘semantic variations’ of the input sentence.

The rest of the paper is organized as follows. In
Section 2 we describe the background for this work,
including the WebVectors framework, and explain
the need to develop additional functionality in order
to handle contextualized embeddings. Section 3
describes in detail this functionality, both from the
point of view of the end user and from the point
of view of deployment logistics. In Section 4, we
conclude and outline future work.

2 Background

Since the widespread adoption of prediction-based
word embeddings (Mikolov et al., 2013) started,
there has always been a need to efficiently serve
and demonstrate these representations over the Web.
Researchers and practitioners need this for quick
experimentation and testing hypotheses by com-
paring different distributional models. Those who
teach natural language processing and computa-
tional linguistics need ways to show the students
how dense distributional representations capture
lexical semantics without installing any software or
downloading any models (often it is desirable that
this is shown for a particular language or domain).

In turn, language teachers value tools to demon-
strate lexical variety and degrees of similarity for
words in a foreign language. To this extent, serving
word embeddings over the Web can help both the
teachers with preparing educational materials and
the students with grasping the concepts in a foreign
language.

The WebVectors framework we presented in (Ku-
tuzov and Kuzmenko, 2017) is aimed at all these
purposes. It allows to quickly deploy a stable and
robust web service featuring operations on vector
semantic models, including querying, visualization
and comparison, all available to users of any com-
puter literacy level. It extended already existing
embedding visualization services like Embedding
Projector4 by providing users with the ability to
find nearest semantic neighbors of query words,
perform vector math operations over embeddings,
etc. Since being first presented in 2016, WebVectors
keeps adding new functionality, and now it offers
filtering nearest associates by part of speech tags or
corpus frequency, and can generate semantic ego
graphs, among other features (see Figure 2).

4https://projector.tensorflow.org/

Figure 2: Screenshot of a WebVectors instance at http:
//vectors.nlpl.eu/explore/embeddings/

Until the introduction of ELMoViz, these fea-
tures were limited to the so-called ‘static word
embeddings’, that is, architectures like word2vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017) or GloVe (Pennington et al., 2014). In these
architectures, after the training is finished, each
word type in the vocabulary is rigidly associated
with a single dense vector. However, in the recent
years NLP saw a surge of pre-trained ‘contextual-
ized’ embedding architectures, like ELMo (Peters
et al., 2018a), BERT (Devlin et al., 2019), GPT-3
(Brown et al., 2020) and many others. One of the
changes these deep learning models brought was
that even at inference time, each word token rep-
resentation (embedding) depends on its immediate
context. This means that ambiguous words will
receive different representations depending on the
sense in which they are used, which opens rich new
possibilities for natural language understanding.

Libraries used in WebVectors to deal with static
word embeddings (Gensim, (Řehůřek and Sojka,
2010)) were not fit to power operations on contex-
tualized models. That is why we decided to imple-
ment an entirely new WebVectors module, which
would take a query phrase as an input, and produce
paradigmatic replacements (lexical substitutions)
for each content word in this phrase, based on a
given pre-trained contextualized ELMo language
model.

One can find a number of existing frameworks
for online experimentation with contextualized
models: among others, we should mention Lan-
guage Interpretability Tool (Tenney et al., 2020),
exBert by (Hoover et al., 2019) and the hosted infer-

144

ence API at the HuggingFace Community Model
Hub (Wolf et al., 2020). However, these projects
are aimed exclusively at the Transformer-based ar-
chitectures. The system we present in this demo
paper, on the other hand, is aimed more towards
RNN-based architectures like ELMo. As it was
shown, for example, in the field of semantic change
detection (Kutuzov and Giulianelli, 2020), ELMo
can often outperform BERT or be on par with it,
while requiring significantly less computational re-
sources. We believe it is especially important for
teaching activities.

Additionally, our system is more lexically ori-
ented and is integrated with the existing WebVectors
functionality, as we will show in the next section.

3 System description

After turning on the contextualized embedding re-
lated functionality in the WebVectors configuration
file,5 the person deploying the service has to pro-
vide three data sources for each ELMo model:

1. a pre-trained ELMo model itself in the stan-
dard format (*.HDF5 file with the weights
and options.json file with the model ar-
chitecture description);

2. a tab-separated frequency dictionary file to use
when determining the frequency tier of word
types (it is recommended to derive it from the
same corpus the ELMo model was trained on,
but technically this is not required);

3. a set of static (type-based) word embeddings
produced by averaging contextualized token
embeddings inferred with the same ELMo
model.

The last item of this list requires some explana-
tion. Our aim is to provide the end user with a set
of lexical substitutes for each word token in con-
text from the input sentence (see Figure 3). With
static embedding architectures, this boils down to
looking up the vector of the target word x and then
finding n other words in the model vocabulary with
the vectors closest to x. However, this is obviously
impossible with contextualized language models:
there are no static vector lookup tables to begin
with. One can easily infer contextualized represen-
tations for each word in the input sentence: but

5In principle, it is also possible to use only ELMoViz,
without other WebVectors modules.

Figure 3: Examples of two-dimensional text inferred
from an ELMo model (n = 5).

what to compare them with in order to illustrate
their meaning?

To cope with this issue, we adopted the approach
described in (Liu et al., 2019). They employed
the so called type-level context averaging in order
to align pre-trained contextualized models cross-
linguistically. In our case, we needed only the
first stage of their workflow. The idea is to obtain
static type-level word representations located in
the same vector space as the contextualized embed-
dings. Given a large enough reference text corpus
and a pre-trained contextualized language model,
one takes the average of all token representations
for each target word occurrence in the corpus. This
averaged type embedding is comparable to contex-
tualized token embeddings routinely produced by
the model.

In practice, we found that one does not even
need to average token embeddings: it is enough
to sum them, and then unit-normalize the resulting
summed vector. As for the list of target words, we
simply use top 10 000 (or any other amount found
suitable) most frequent words from the correspond-
ing ELMo model vocabulary or from a reference
corpus (excluding functional parts of speech and
digits). Low frequent words are usually not needed
in this case anyway, since the quality of their em-
beddings is also lower. We provide a simple script
to extract type embeddings from an ELMo model
and a given corpus in our GitHub repository.6

As a result, when an end user enters an input
phrase or sentence (typically from 5 to 15 words),

6https://github.com/akutuzov/
webvectors/tree/master/elmo/

145

WebVectors produces contextualized token embed-
dings for each token in the query, and finds top n
words in the type embedding model, which are the
closest (by cosine similarity) to each of the token
embeddings. These predictions are lexical substi-
tutes or paradigmatic replacements; they demon-
strate what other words could fill these positions in
the query, depending on the context.

Another option to produce such substitutes
would be to feed the input sentence to the ELMo
model and then for each word token choose the
strongest activations at the final softmax layer of
the language model and map them to words in the
model vocabulary. However, in practice we found
that this approach is slightly slower than the one
described above. Additionally, ELMo models are
often published online without the vocabulary they
were trained on. Since the input layer of ELMo is
purely character-based, it does not hinder inferring
token embeddings, but it effectively blocks using
these weights as language models per se. Our ap-
proach allows one to use any given ELMo model
with any desired corpus to produce a set of refer-
ence type embeddings.

System maintainers can provide several models
for the service to work with, including models for
different languages; one of the models should be
specified in the configuration files as the default
one. When entering the query sentence, users can
choose the model which will process the input.

Apart from choosing between different models,
WebVectors also allows users to choose the exact
ELMo layer from which token representations will
be inferred; it was shown in (Peters et al., 2018b)
that different neural network layers convey infor-
mation related to different linguistic tiers: syntax,
semantics, pragmatics, etc. At this point, one can
choose between the top ELMo layer and the aver-
age of all layers. Note that for all operations with
pre-trained ELMo models we use simple_elmo:
a lightweight TensorFlow-based Python package
also developed by us.7 If need be, simple_elmo
can also be used as a standalone library to handle
ELMo models.

Both the words from the input sentence and the
lexical substitutes are colored according to their
frequency tier in the reference corpus (green for
‘high’, blue for ‘mid’ and red for ‘low’), in accor-
dance with other WebVectors components. Simi-
larly, each word is hyperlinked to its ‘landing page’

7https://pypi.org/project/simple-elmo/

bound to one of the static embedding models served
by a particular WebVectors installation (like the one
in Figure 2), allowing easy and playful exploration
of the semantic space. The font size of the lexical
substitute corresponds to cosine similarity between
the token embedding and the substitute type em-
bedding: thus, users can instantly see what word
tokens the model is unsure about. The service per-
forms fast under-the-hood part-of-speech tagging
of the query,8 so for functional words we always
yield themselves as substitutes (see ‘her’, ‘that’ and
‘can’ in Figure 3). They are also uncolored and not
hyperlinked, so that a user might focus on con-
tent words, while at the same time still having an
impression of ‘full sentence variations’.

The users should be aware that the lexical sub-
stitutes potentially contain all the biases inherited
from the corpus the model was trained on. Thus,
the paradigmatic axis might include slander words
and stereotypes, if they were frequent enough in the
data. We did not address this issue in the present
work, but we advise the users to take this into
account when dealing with any unsupervised lan-
guage models.

Importantly, we keep a short history of substitute
queries, so that it is possible to see at a glance the
changes brought by a different context, a different
word order or a different contextualized model (if
the web service offers several models). Figure 4
shows an example from our Russian live demo at
the RusVectōrēs web service. In the first sentence,
the word закладку ‘zakladku’ is used in the newer
sense of ‘a secret place to store illegal drugs’, while
in the second sentence it is used in the older sense
of ‘the act of founding a building’. The generated
substitutes reflect the differences in word meaning
depending on the context. In the first example the
substitutes include such words as ‘meeting, sale,
operation’, and in the second example the substi-
tutes are ‘opening, building, repair’.

4 Conclusion

The described system for generating two-
dimensional text using pre-trained ELMo models
is now deployed at the two model hubs mentioned
in Section 1. NLPL WebVectors features ELMo
models trained on English Wikipedia and on
Norwegian corpora9, while RusVectōrēs features a

8Using UDPipe (Straka and Straková, 2017).
9http://vectors.nlpl.eu/explore/

embeddings/en/contextual

146

Figure 4: History of lexical substitute queries with a
Russian ELMo model.

model trained on concatenated Russian Wikipedia
and Russian National Corpus.10

The presented component for the WebVectors
framework allows users to explore pre-trained
ELMo models and to visualize contextualized em-
beddings as a two-dimensional text for faster anal-
ysis of early research prototypes. While previously
the framework provided interface only to static
vector semantic models, introducing support for
contextualized architectures allows for more intri-
cate exploration of linguistic phenomena, such as
lexical ambiguity and contextual semantic change.

We hope that the new functionality will provide
language teachers, NLP researchers and practition-
ers with a powerful tool to study word meaning
in context and at the same time keep the audi-
ence up-to-date with recent advances in the field
of distributional semantics and deep learning based
NLP. A separate important contribution is our
simple_elmo library which makes using ELMo
models in Python much easier, especially for re-
searchers with linguistic background.

In the future, we plan to add support for other
contextualized embedding architectures like BERT,
to allow inter-architectural comparisons. Another
interesting room for future work is integrating with
other exploratory services for neural NLP models,
like the ones mentioned in Section 2.

10https://rusvectores.org/en/
contextual/

References
Yoshua Bengio, Rejean Ducharme, and Pascal Vincent.

2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2d! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55–95.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2019. exbert: A visual analysis tool to
explore learned representations in transformers mod-
els. arXiv preprint arXiv:1910.05276.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-
UvA at SemEval-2020 task 1: Contextualised em-
beddings for lexical semantic change detection. In
Proceedings of the Fourteenth Workshop on Seman-
tic Evaluation, pages 126–134, Barcelona (online).
International Committee for Computational Linguis-
tics.

Andrey Kutuzov and Elizaveta Kuzmenko. 2017.
Building web-interfaces for vector semantic models
with the webvectors toolkit. In Proceedings of the
Software Demonstrations of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 99–103.

Qianchu Liu, Diana McCarthy, Ivan Vulić, and Anna
Korhonen. 2019. Investigating cross-lingual align-
ment methods for contextualized embeddings with
token-level evaluation. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 33–43, Hong Kong,
China. Association for Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61, Berlin,
Germany. Association for Computational Linguis-
tics.

147

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499–1509, Brussels, Belgium. Association
for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Ferdinand de Saussure. 1916. Course in general lin-
guistics. Duckworth.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language
interpretability tool: Extensible, interactive visual-
izations and analysis for NLP models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 107–118. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

148

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 149–159
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

LOME: Large Ontology Multilingual Extraction

Patrick Xia1∗, Guanghui Qin1∗, Siddharth Vashishtha2

Yunmo Chen1, Tongfei Chen1, Chandler May1, Craig Harman1

Kyle Rawlins1, Aaron Steven White2, Benjamin Van Durme1

1 Johns Hopkins University, 2 University of Rochester
{paxia,qin,vandurme}@jhu.edu

Abstract

We present LOME, a system for performing
multilingual information extraction. Given a
text document as input, our core system iden-
tifies spans of textual entity and event men-
tions with a FrameNet (Baker et al., 1998)
parser. It subsequently performs coreference
resolution, fine-grained entity typing, and tem-
poral relation prediction between events. By
doing so, the system constructs an event and
entity focused knowledge graph. We can fur-
ther apply third-party modules for other types
of annotation, like relation extraction. Our
(multilingual) first-party modules either out-
perform or are competitive with the (monolin-
gual) state-of-the-art. We achieve this through
the use of multilingual encoders like XLM-R
(Conneau et al., 2020) and leveraging multi-
lingual training data. LOME is available as a
Docker container on Docker Hub. In addition,
a lightweight version of the system is accessi-
ble as a web demo.

1 Introduction

As information extraction capabilities continue to
improve due to advances in modeling, encoders,
and data collection, we can now look (back) to-
ward making richer predictions at the document-
level, with a large ontology, and across multiple
languages. Recently, Li et al. (2020) noted that
despite a growth of open-source NLP software in
general, there is still a lack of available software for
knowledge extraction. We wish to provide a start-
ing point that allows others to build increasingly
comprehensive document-level knowledge graphs
of events and entities from text in many languages.1

Therefore, we demonstrate LOME, a system for
multilingual information extraction with large on-
tologies. Figure 1 shows the high-level pipeline

∗Equal Contribution
1Information on using the Docker container, web demo,

and demo video at https://nlp.jhu.edu/demos.

by following a multilingual input example. A
sentence-level parser identifies both INGESTION

events and their arguments. To connect these events
cross-sententially, the system clusters coreferent
mentions and predicts the temporal relations be-
tween the events. LOME, which supports fine-
grained entity types, additionally labels entities
like the rabbit with LIVING THING/ANIMAL.

Several prior packages have also used advances
in state-of-the-art models to build comprehensive
information extraction systems. Li et al. (2019)
present an event, relation, and entity extraction and
coreference system for three languages: English,
Russian, and Ukrainian. Li et al. (2020, GAIA) ex-
tend that work to support cross-media documents.
However, both of these systems consist of language-
specific models that operate on monolingual docu-
ments after first identifying the language. On the
other hand, work prioritizing coverage across tens
or hundreds of languages is limited in their scope
in extraction (Akbik and Li, 2016; Pan et al., 2017).

Like prior work, LOME is focused on extracting
entities and events from raw text documents. How-
ever, LOME is language-agnostic; all components
prioritize multilinguality. Using XLM-R (Conneau
et al., 2020) as the underlying encoder paves the
way for both training on multilingual data (where
it exists) and inference in many languages.2 Our
pipeline includes a full FrameNet parser for events
and their arguments, neural coreference resolution,
an entity typing model over large ontologies, and
temporal resolution between events.

Our system is designed to be modular: each
component is trained independently and tuned on
task-specific data. To communicate between mod-
ules, we use CONCRETE (Ferraro et al., 2014), a
data schema used in other text processing systems
(Peng et al., 2015). One advantage of using a stan-

2XLM-R itself is trained on CommonCrawl data spanning
one hundred languages.

149

Figure 1: Architecture of LOME. The system processes text documents as input and first uses a FrameNet parser
to detect entities and events. Then, a suite of models enrich the entities and events with additional predictions.
Each individual model can be trained and tuned independently, ensuring modularity of the pipeline. Annotations
between models are transferred using CONCRETE, a data schema for NLP.

dardized data schema is that it enables modular-
ization and extension. Unless there are annotation
dependencies, individual modules can be inserted,
replaced, merged, or bypassed depending on the
application. We discuss two example applications
of our CONCRETE-based modules, one of which
further extracts relations and the other performs
cross-sentence argument linking for events.

2 Tasks

The overarching application of LOME is to ex-
tract an entity- and event-centric knowledge graph
from a textual document. In particular, we are inter-
ested in using these graphs to support a multilingual
schema learning task (KAIROS3) for which data
has been annotated by the LDC (Cieri et al., 2020).
As a result, some parts of LOME are designed for
compatibility with the KAIROS event and entity
ontology. Nonetheless, there is significant overlap
with publicly available datasets, which we describe
for those tasks.

Figure 1 presents the architecture of our pipeline.
Besides the FrameNet parser, which is run first, the
remaining modules can be run in any order, if at all.
In addition, our use of a standardized data schema
for communication allows for the integration of
third-party systems. In this section, we will go into

3This goal is to develop a system that identifies, links, and
temporally sequences complex events. More information at
https://www.darpa.mil/program/knowledge-
directed-artificial-intelligence-
reasoning-over-schemas.

further detail for each task.

2.1 FrameNet Parsing
FrameNet parsing is a semantic role labeling style
task. The goal is to find all the frames and their
roles, as well as the trigger spans associated with
them in a sentence. Frames are concepts, such as
events or entities, in a sentences. Every frame is
associated with some roles, and both of them are
triggered by spans in the sentence.

Unlike most previous work (Yang and Mitchell,
2017; Peng et al., 2018; Swayamdipta et al., 2018),
our system is not conditioned on the trigger spans
or frames. We perform “full parsing” (Das et al.,
2014), where the input is a raw sentence, and the
output is the complete structure predictions.

As the first model in the whole pipeline system,
the trigger spans found by the FrameNet parser will
be used as candidate spans for all other tasks.

2.2 Entity Coreference Resolution
In coreference resolution, the goal is to cluster
spans in the text that refer to the same entity. Neural
models for doing so typically encode the text first
before identifying possible mentions (Lee et al.,
2017; Joshi et al., 2019, 2020). These spans are
scored pairwise to determine whether two spans
refer to each other. These scores then determine
coreference clusters by decoding under a variety of
strategies (Lee et al., 2018; Xu and Choi, 2020).

In this work, we choose a constant-memory vari-
ant of that model which also achieves high per-

150

entity

veh wea

aircraft bomb bullets

bullets

m
olotov

cocktail

am
m
unition

zzz

zzz

zzz

zzz

zzz

other

other

other

other

other

Figure 2: A portion of the AIDA entity type ontology.

formance (Xia et al., 2020). The motivation here
is robustness: we prioritize the ability to soundly
run on all document lengths over slightly better
performing but fragile systems. In addition, be-
cause this coreference resolution model is part of
a broader entity-centric system, the module used
in this system does not perform the mention de-
tection step (which is left to the FrameNet parser).
Instead, both training and inference assumes given
mentions, and the task we are concerned about in
this paper is mention linking.

2.3 Entity Typing

Entity typing assigns a fine-grained semantic la-
bel to a span of text, where the span is a men-
tion of some entity found by the FrameNet parser.
Traditionally, labels include PER, GPE, ORG, etc.,
but recent work in fine-grained entity typing seek
to classify spans into types defined by hierar-
chical type ontologies (e.g. BBN (Weischedel
and Brunstein, 2005), FIGER (Ling and Weld,
2012), UltraFine4 (Choi et al., 2018), COLLIE
(Allen et al., 2020)). Such ontologies refine
coarse types like PER to fine-grained types such
as /person/artist/singer that sits on a
type hierarchy. A portion of the AIDA ontology
(LDC2019E07) is illustrated in Figure 2.

To support fine-grained ontologies, we employ a
recent coarse-to-fine-decoding entity typing model
(Chen et al., 2020a) that is specifically designed
to assign types that are defined by hierarchical on-
tologies. The use of a coarse-to-fine model also
allows users to select between coarse- and fine-
grained types. We swap the underlying encoder
from ELMo (Peters et al., 2018) to XLM-R to be
able to assign types over mentions in different lan-

4UltraFine is slightly different in that the types are buck-
eted into 3 categories of different granularity, but without
explicit subtyping relations.

guages using a single multilingual model, and to
enable transfer between languages.

The base typing model in Chen et al. (2020a)
supports entity typing on entity mentions. We ex-
tend this model to gain the ability to perform entity
typing on entities, i.e. clusters of entity mentions.
Since our decoder is coarse-to-fine and predicts a
type at each level of the type hierarchy, we employ
Borda voting on each level. Specifically, given
a coreference chain comprising mentions m1,··· ,n,
and the score for mention mi being typed as type
t as si,t, we perform Borda counting to select the
most confident type t∗ = argmaxt

∑
i r(i, t) over

all t’s in a specific type level, where r(i, t) =
1/rankt(si,t) is the ranking relevance score used
in Borda counting.

2.4 Temporal Relation Extraction

The task of temporal relation extraction focuses
on finding the chronology of events (e.g., Before,
After, Overlaps) in text. Extracting temporal rela-
tion is useful for various downstream tasks – cu-
rating structured clinical data (Savova et al., 2010;
Soysal et al., 2018), text summarization (Glavaš
and Šnajder, 2014; Kedzie et al., 2015), question-
answering (Llorens et al., 2015; Zhou et al., 2019),
etc. The task is most commonly viewed as a clas-
sification task where given a pair of events and its
textual context, the temporal relation between them
needs to be identified.

The construction of the TimeBank corpus (Puste-
jovsky et al., 2003) largely spurred the research in
temporal relation extraction. It included 14 tem-
poral relation labels. Other corpora (Verhagen
et al., 2007, 2010; Sun et al., 2013; Cassidy et al.,
2014) reduced the number of labels to a smaller
number owing to lower inter-annotator agreements
and sparse annotations. Various types of models
(Chambers et al., 2014; Cheng and Miyao, 2017;
Leeuwenberg and Moens, 2017; Ning et al., 2017;
Vashishtha et al., 2019; Zhou et al., 2021) have
been used in the recent years to extract temporal
relations from text.

In this work, we use Vashishtha et al. (2019)’s
best model and retrain it using XLM-R. We evaluate
their model using the transfer learning approach
described in their work and retrain it on TimeBank-
Dense (TBD) (Cassidy et al., 2014). TBD uses a
reduced set of 5 temporal relation labels – before,
after, includes, is included, and vague.

151

3 System Design

3.1 Modularization

Our system is modularized into separate models
and libraries that communicate with each other
using CONCRETE, a data format for richly anno-
tating natural language documents (Ferraro et al.,
2014). Each component is independent of each
other, which allows for both inserting additional
modules or deleting those provided in the default
pipeline. We choose this loosely-affiliated design
to enable both faster and independent prototyping
of individual components, as well as better com-
partmentalization of our models.

We emphasize that the system is a pipeline:
while individual modules can be further improved,
the system is not designed to be trained end-to-
end and benchmarking the richly-annotated output
depends on the application and priorities. In this
paper, we only benchmark individual components
and describe a couple of applications.

3.2 System Inputs and Outputs

The system can consume, as input, either tokenized
or untokenized text, which is first tokenized ei-
ther by whitespace or with a multilingual tokenizer,
PolyGlot.5 However, this tokenization is not nec-
essarily used by all modules, which may choose to
either operate on the raw text itself or on a Sentence-
Piece (Kudo and Richardson, 2018) retokenization.

The system outputs a CONCRETE communica-
tion file for each input document. This output
file contains annotations including entities, events,
coreference, entity types, and temporal relations.
This schema used is entirely self-contained and the
well-documented library also contains tools for vi-
sualizing and inspecting CONCRETE files.6 For the
web demo, the output is displayed in the browser.

4 Evaluation Benchmarks

4.1 FrameNet Span Finding

The FrameNet parser is comprised of an XLM-R
encoder, a BIO tagger, and a typing module. It en-
codes the input sentences into a list of vectors, used
by both the BIO tagger and the typing module. The
goal of BIO tagger is to find trigger spans, which
are then labeled by the typing module. To parse a
sentence, we run the model to find all frames, and
then find their roles conditioned on the frames.

5https://github.com/aboSamoor/polyglot
6http://hltcoe.github.io/concrete/

We train the FrameNet parser on the FrameNet
v1.7 corpus following Das et al. (2014), with statis-
tics in Table 1. We evaluate the results with exact
matching as our metric,7 and get 56.34 labeled F1
or 66.41 unlabeled F1. Since we are not aware of
previous work on both full parsing and a metric for
its evaluation, we do not have a baseline. However,
we can force the model to perform frame identifica-
tion given the trigger span, like prior work. These
results are shown in Table 2.

Sentences # Frames # Roles

train 3120 18604 32419
dev 311 2209 3853
test 1333 6687 11277

Table 1: Statistics of FrameNet v1.7

Model Accuracy

Yang and Mitchell (2017) 88.2
Hermann et al. (2014) 88.4
Peng et al. (2018) 90.0
This work 91.3

Table 2: Result on frame identification

4.2 Coreference Resolution
We retrain the model by Xia et al. (2020) with XLM-
R (large) as the underlying encoder and with addi-
tional multilingual data. The model is a constant-
memory variant of neural coreference resolution
models. We refer the reader to Xia et al. (2020) for
model and training details.

Unlike that work, we operate under the assump-
tion that we are provided gold spans. This is moti-
vated by the location of coreference in LOME. In
addition, while they use a frozen encoder, we found
that finetuning improves performance.8 Finally, we
train on the full OntoNotes 5.0 (Weischedel et al.,
2013; Pradhan et al., 2013), a subset of SemEval
2010 Task 1 (Recasens et al., 2010), and two ad-
ditional sources of Russian data, RuCor (Toldova
et al., 2014) and AnCor (Budnikov et al., 2019).

We benchmark the performance of our model on
each language. We report the average F1 of MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAFφ4 (Luo, 2005) by language in Table 3.
We can compare the model’s performance to mono-
lingual gold-only baselines, where they exist. For

7A role is considered to be correctly predicted only when
its frame is precisely predicted.

8We use AdamW and a learning rate of 5× 10−6.

152

English, we trained an identical model but instead
use SpanBERT (Joshi et al., 2020), an English-only
encoder finetuned for English OntoNotes corefer-
ence. That model achieves 92.2 average (dev.) F1,
compared to our 92.7. There is also a comparable
system for Russian AnCor from Le et al. (2019),
which achieves 79.9 F1 using the model from Lee
et al. (2018) and RuBERT (Kuratov and Arkhipov,
2019). This shows that our single, multilingual
model, can perform similarly to monolingual mod-
els, with the advantage that our model does not
need to perform language ID. This finding mirrors
prior findings showing multilingual encoders are
strong cross-lingually (Wu and Dredze, 2019).

Language # Training # Eval Docs Avg. F1

ArabicO 359 44 71.3
CatalanS 829 142 58.7

ChineseO 1810 252 90.8
DutchS 145 23 63.5

EnglishO 2802 343 92.7
ItalianS 80 17 47.2

RussianA 573 127 77.3
SpanishS 875 140 63.5

Table 3: Average F1 scores by language with gold
mentions. The superscripts O indicates data from
OntoNotes 5.0 (dev), S indicates data from SemEval
2010 Task 1 (dev), and A is the AnCor data (test).

4.3 Entity Typing

We retrain the coarse-to-fine entity typer by Chen
et al. (2020a) with XLM-R as the underlying en-
coder, and using the AIDA ontology as the type
label inventory. The dataset annotated from AIDA
is relatively small. To make the model more ro-
bust, we pre-train the model using extra training
data from GAIA (Li et al., 2020), where they ob-
tained YAGO fine-grained types (Suchanek et al.,
2008) from the results of Freebase entity linking,
and mapped these types to the AIDA ontology.
After pre-training, we fine-tune the model using
the AIDA M18 and M36 data with 3-fold cross-
validation, where each fold is distinct in the topics
of these documents. The sizes of these datasets are
shown in Table 4.

Our models perform well in these datasets. Us-
ing one third of the AIDA M36 data as dev, our
method obtained 60.1% micro-F1 score;9 with pre-
training using GAIA extra data, we get 76.5%.

Our system can also be extended to support other
9Please refer to Chen et al. (2020a) for the exact definitions

of the evaluation metric.

Data source Language # of entities

AIDA M18 English 4,433
Russian 4,826

LDC2019E07 Ukrainian 4,261

AIDA M36 English 703
Spanish 557

LDC2020E29 Russian 729

GAIA
English 42.8M
Spanish 11.1M
Russian 2.4M

Table 4: Statistics of the datasets used for training our
entity typing model.

commonly used fine-grained entity type ontologies.
We report the results in micro-F1 in Table 5.

Ontology Prior state-of-the-art Ours

BBN 78.1 (Lin and Ji, 2019) 80.5
FIGER 79.8 (Lin and Ji, 2019) 80.8

UltraFine 40.1 (Onoe and Durrett, 2019) 41.5

Table 5: Performance of our hierarchical entity typing
model across several typing ontologies.

4.4 Temporal Relation Extraction

We retrain Vashishtha et al. (2019)’s best fine-
grained temporal relation model on UDS-T
(Vashishtha et al., 2019) using XLM-R (large).
We then use their transfer learning approach and
train an SVM model on event-event relations in
TimeBank-Dense (TBD) to predict categorical tem-
poral relation labels. With this approach, we see a
micro-F1 score of 56 on the test set of TBD.10

For better performance, we train the same model
on additional TempEval3 (TE3) dataset (UzZaman
et al., 2013). Since TE3 and TBD use a different
set of temporal relations, we consider only those
instances that are labeled with 4 temporal relations
from both TE3 and TBD for joint training – be-
fore, after, includes (container), and is included
(contained). We retrain Vashishtha et al. (2019)’s
transfer learning model on the combined TE3 and
TBD dataset considering only these 4 relations and
evaluate on their combined test set.11 Results on
the combined test set are reported in Table 6. We
use this model as the default temporal relation ex-
traction model in LOME.

10The train and dev set of TBD has a total of 4,590 instances
and the test set has 1,405 instances of event-event relations.

11We consider only event-event relations and the combined
dataset has 5,987 (1,249) instances in the train (test) set.

153

We also test our default model on a Chinese tem-
poral relation extraction dataset (Li et al., 2016).12

In the zero-shot setting, we get a micro F1 score
of 52.6 on the provided dataset, as compared to a
majority baseline of 37.5.13 Similar to the default
temporal system in LOME, we use the XLM-R ver-
sion of Vashishtha et al. (2019)’s model obtaining
relation embeddings for the Chinese dataset and
train an SVM model using the transfer learning
approach to get a micro F1 score of 64.4.14

Relation Precision Recall F1

before 68 89 77
after 74 69 71

includes 83 5 10
is included 44 15 22

Table 6: Result on the combined test set of TempEval3
and TimeBank-Dense when trained with just 4 tempo-
ral relation labels

5 Extensions

5.1 Incorporating third-party systems
Besides the core components described above,
we also discuss the viability of including addi-
tional modules that may not fit directly in the
core pipeline but can be included depending on
the downstream application. For example, the sys-
tem described above does not predict any relation
information, which is needed for the motivating
application of downstream schema inference. To
do so, we wrote a CONCRETE and Docker wrapper
around OneIE (Lin et al., 2020) and attached it at
the end of the pipeline. With our CONCRETE based
design, the integration of any third-party module
can be done via implementing the AnnotateCommu-
nicationService service interface, which can ensure
compatibility between LOME and external mod-
ules. The OneIE wrapper is one example of an
external module.

5.2 Mix and Match Modules: SM-KBP
As another example application, we reconfigured
our pipeline for the NIST SM-KBP 2020 Task 1

12We remove the instances with unknown relation from
the dataset and convert the predictions with includes and
is included relations to the overlaps relation to match the
label set of their dataset with our system.

13The authors were able to provide only half of the dataset
with 10,476 event-event pairs, from which we ignore instances
with unknown relation, resulting into 9,362 instances.

14The results are the average of the 5-fold cross validation
splits provided by Li et al. (2016).

evaluation, which aims to produce document-level
knowledge graphs.15 Each given document may be
in English, Russian, or Spanish. On a development
set consisting solely of text-only documents,16 we
started with initial predictions made by GAIA (Li
et al., 2020), for entity clusters, entity types, events
and relations. Our goal was to recluster and relabel
the a dataset for knowledge extraction.

Our pipeline consisted of the multilingual coref-
erence resolution (using the predetermined men-
tion from GAIA) and hierarchical entity typing
models discussed in this paper, followed by a sepa-
rate state-of-the-art argument linking model (Chen
et al., 2020b). We found improved performance17

with entity coreference (from 29.1 F1 to 33.3 F1),
especially in Russian (from 26.2 F1 to 33.3 F1),
likely due to our use of multilingual data and con-
textualized encoders. The improved entity clusters
also led to downstream improvements in entity typ-
ing and argument linking. This example highlights
the ability to pick out subcomponents of LOME
and customize according to the downstream task.

6 Usage

We present two methods to interact with the
pipeline. The first is a Docker container which
contains the libraries, code, and trained models of
our pipeline. This is intended to run on batches of
documents. As a lighter demo of some of the sys-
tem capabilities, we also have a web demo intended
to interactively run on shorter documents.

Docker Our Docker image18 consists of the four
core modules: FrameNet parser, coreference reso-
lution, entity typing, and temporal resolution. Fur-
thermore, there are two options for entity typing:
a fine-grained hierarchical model (with the AIDA
typing ontology) and a coarse-grained model (with
the KAIROS typing ontology). The container and
documentation is available on Docker Hub.

As some modules depend on GPU libraries,
the image also requires NVIDIA-Docker support.
Since there is a high start-up (time) cost for using
Docker and loading models, we recommend using
this container for batch processing of documents.
Further instructions for running can be found on
the LOME Docker Hub page.

15https://tac.nist.gov/2020/KBP/SM-
KBP/index.html

16AIDA M36, LDC2020E29.
17This evaluation metric is specific to the NIST SM-KBP

2020 task. It takes entity types into account.
18https://hub.docker.com/r/hltcoe/lome

154

Web Demo We make a few changes for the web
demo.19 To reduce latency, we preload the models
into memory and we do not write the CONCRETE

communications to disk. At the cost of modular-
ity, this makes the demo lightweight and fast, al-
lowing us to run it on a single 16GB CPU-only
server. To present the predictions, our front-end
uses AllenNLP-demo.20

In addition, the web demo is currently limited
to FrameNet parsing and coreference resolution, as
other models will increase latency and may impede
usability. The web demo is intended to highlight
only some of the system’s capabilities, like its abil-
ity to process multilingual documents.

7 Conclusions

To facilitate increased interest in multilingual
document-level knowledge extraction with large
ontologies, we create and demonstrate LOME, a
system for event and entity knowledge graph cre-
ation. Given input text documents, LOME runs a
full FrameNet parser, coreference resolution, fine-
grained entity typing, and temporal relation predic-
tion. Furthermore, each component uses XLM-R,
allowing our system to support a broader set of lan-
guages than previous systems. The pipeline uses a
standardized data schema, which invites extending
the pipeline with additional modules. By releasing
both a Docker image and presenting a lightweight
web demo, we hope to enable the community to
build on top of LOME for even more comprehen-
sive information extraction.

Acknowledgments

We thank Anton Belyy, Kenton Murray, Manling
Li, Varun Iyer, and Zhuowan Li for helpful discus-
sions and feedback. This work was supported in
part by DARPA AIDA (FA8750-18-2-0015) and
KAIROS (FA8750-19-2-0034). The views and con-
clusions contained in this work are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, or endorsements of DARPA or the U.S.
Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright annota-
tion therein.

19https://nlp.jhu.edu/demos/lome/
20https://github.com/allenai/allennlp-

demo.

References
Alan Akbik and Yunyao Li. 2016. POLYGLOT: Multi-

lingual semantic role labeling with unified labels. In
Proceedings of ACL-2016 System Demonstrations,
pages 1–6, Berlin, Germany. Association for Com-
putational Linguistics.

James Allen, Hannah An, Ritwik Bose, Will de Beau-
mont, and Choh Man Teng. 2020. A broad-coverage
deep semantic lexicon for verbs. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 3243–3251, Marseille, France. Euro-
pean Language Resources Association.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The First Interna-
tional Conference on Language Resources and Eval-
uation Workshop on Linguistics Coreference, pages
563–566.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, Volume 1, pages 86–90,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

A. E. Budnikov, S Yu Toldova, D. S. Zvereva, D. M.
Maximova, and M. I. Ionov. 2019. Ru-eval-2019:
Evaluating anaphora and coreference resolution for
russian. In Computational Linguistics and Intellec-
tual Technologies - Supplementary Volume.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 501–506, Baltimore, Maryland. Association
for Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Tongfei Chen, Yunmo Chen, and Benjamin Van Durme.
2020a. Hierarchical entity typing via multi-level
learning to rank. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8465–8475, Online. Association for
Computational Linguistics.

Yunmo Chen, Tongfei Chen, and Benjamin Van Durme.
2020b. Joint modeling of arguments for event un-
derstanding. In Proceedings of the First Workshop
on Computational Approaches to Discourse, pages
96–101, Online. Association for Computational Lin-
guistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional LSTM over depen-
dency paths. In Proceedings of the 55th Annual

155

Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1–6, Van-
couver, Canada. Association for Computational Lin-
guistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Christopher Cieri, James Fiumara, Stephanie Strassel,
Jonathan Wright, Denise DiPersio, and Mark Liber-
man. 2020. A progress report on activities at the
Linguistic Data Consortium benefitting the LREC
community. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3449–
3456, Marseille, France. European Language Re-
sources Association.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguis-
tics, 40(1):9–56.

Francis Ferraro, Max Thomas, Matthew R. Gormley,
Travis Wolfe, Craig Harman, and Benjamin Van
Durme. 2014. Concretely annotated corpora. In 4th
Workshop on Automated Knowledge Base Construc-
tion (AKBC).

Goran Glavaš and Jan Šnajder. 2014. Event graphs
for information retrieval and multi-document sum-
marization. Expert Systems with Applications,
41(15):6904–6916.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1448–1458, Baltimore, Mary-
land. Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz.
2015. Predicting salient updates for disaster summa-
rization. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1608–1617, Beijing, China. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language. In Computational Linguistics and
Intellectual Technologies, pages 333–339.

T. A. Le, M. A. Petrov, Y. M. Kuratov, and M. S. Burt-
sev. 2019. Sentence level representation and lan-
guage models in the task of coreference resolution
for russian. In Computational Linguistics and Intel-
lectual Technologies, pages 364–373.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 1150–1158, Valencia, Spain. Associa-
tion for Computational Linguistics.

Manling Li, Ying Lin, Joseph Hoover, Spencer White-
head, Clare Voss, Morteza Dehghani, and Heng Ji.
2019. Multilingual entity, relation, event and hu-
man value extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 110–115, Minneapolis, Minnesota.
Association for Computational Linguistics.

156

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 77–86, Online. Association
for Computational Linguistics.

Peifeng Li, Qiaoming Zhu, Guodong Zhou, and
Hongling Wang. 2016. Global inference to Chi-
nese temporal relation extraction. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 1451–1460, Osaka, Japan. The COLING
2016 Organizing Committee.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6197–
6202, Hong Kong, China. Association for Computa-
tional Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada., pages 94–100.

Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. 2015. SemEval-2015 task 5: QA Tem-
pEval - evaluating temporal information understand-
ing with question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 792–800, Denver, Colorado.
Association for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2407–2417, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1492–1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas An-
drews, Jay DeYoung, Max Thomas, Matthew R.
Gormley, Travis Wolfe, Craig Harman, Benjamin
Van Durme, and Mark Dredze. 2015. A concrete
Chinese NLP pipeline. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 86–90, Denver, Colorado. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003. The Timebank corpus. In Corpus
linguistics, volume 2003, page 40. Lancaster, UK.

Marta Recasens, Lluı́s Màrquez, Emili Sapena,
M. Antònia Martı́, Mariona Taulé, Véronique
Hoste, Massimo Poesio, and Yannick Versley. 2010.
SemEval-2010 task 1: Coreference resolution in
multiple languages. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
1–8, Uppsala, Sweden. Association for Computa-
tional Linguistics.

157

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua
Xu. 2018. Clamp–a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331–336.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. YAGO: A large ontology from
wikipedia and wordnet. Journal of Web Semantics,
6(3):203–217.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806–813.

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3772–3782, Brussels, Belgium. Association
for Computational Linguistics.

S Toldova, A. Roytberg, Alina Ladygina, Maria Vasi-
lyeva, Ilya Azerkovich, Matvei Kurzukov, G. Sim,
D.V. Gorshkov, A. Ivanova, Anna Nedoluzhko,
and Y. Grishina. 2014. Ru-eval-2014: Evaluat-
ing anaphora and coreference resolution for rus-
sian. Computational Linguistics and Intellectual
Technologies, pages 681–694.

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. SemEval-2013 task 1: TempEval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 1–
9, Atlanta, Georgia, USA. Association for Computa-
tional Linguistics.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2906–2919, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. SemEval-2007 task 15: TempEval tempo-
ral relation identification. In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 75–80, Prague, Czech

Republic. Association for Computational Linguis-
tics.

Marc Verhagen, Roser Saurı́, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 57–62, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Ralph Weischedel and Ada Brunstein. 2005. BBN pro-
noun coreference and entity type corpus. Philadel-
phia: Linguistic Data Consortium.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release 5.0. Lin-
guistic Data Consortium, Philadelphia, PA.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Patrick Xia, João Sedoc, and Benjamin Van Durme.
2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617–8624, Online. As-
sociation for Computational Linguistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527–8533, Online. Association for Computa-
tional Linguistics.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1247–1256, Copenhagen, Denmark. Association for
Computational Linguistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan
Roth. 2019. “Going on a vacation” takes longer
than “going for a walk”: A study of temporal com-
monsense understanding. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3363–3369, Hong Kong,
China. Association for Computational Linguistics.

158

Yichao Zhou, Yu Yan, Rujun Han, J Harry Caufield,
Kai-Wei Chang, Yizhou Sun, Peipei Ping, and Wei
Wang. 2021. Clinical temporal relation extrac-
tion with probabilistic soft logic regularization and
global inference. In Proceedings of AAAI 2021.

159

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 160–167
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

MadDog:
A Web-based System for Acronym Identification and Disambiguation

Amir Pouran Ben Veyseh1, Franck Dernoncourt2,
Walter Chang2, and Thien Huu Nguyen1

1 Department of Computer and Information Science, University of Oregon,
Eugene, OR 97403, USA

2 Adobe Research, San Jose, CA, USA
{apouranb,thien}@cs.uoregon.edu,

{franck.dernoncourt,wachang}@adobe.com

Abstract

Acronyms and abbreviations are the short-
form of longer phrases and they are ubiqui-
tously employed in various types of writing.
Despite their usefulness to save space in writ-
ing and time in reading, they also provide chal-
lenges for understanding the text especially if
the acronym is not defined in the text or if it
is used far from its definition in long texts. To
alleviate this issue, there are considerable ef-
forts both from the research community and
software developers to build systems for identi-
fying acronyms and finding their correct mean-
ings in the text. However, none of the exist-
ing works provide a unified solution capable of
processing acronyms in various domains and
to be publicly available. Thus, we introduce
MadDog, the first web-based acronym iden-
tification and disambiguation system which
can process acronyms from various domains
including scientific, biomedical, and general
domains. The web-based system is publicly
available at http://iq.cs.uoregon.edu:

5000 and a demo video is available at https:
//youtu.be/IkSh7LqI42M. The system
source code is also available at https://

github.com/amirveyseh/MadDog.

1 Introduction

Textual contents such as books, articles, reports,
and web-blogs in various domains are replete with
phrases that are commonly used by people in that
field. In order to save space in text writing and also
facilitate communication among people who are al-
ready familiar with these phrases, the shorthanded
form of long phrases, known as acronyms and ab-
breviations, are frequently used. However, the use
of acronyms could also introduce challenges to un-
derstand the text, especially for newcomers. More
specifically, two types of challenges might hinder
reading text with acronyms. First, in long docu-
ments, e.g., a book chapter, an acronym might be

defined somewhere in the text and used several
times throughout the document. For someone who
is not familiar with the definition of the acronym
and interested in reading a part of the document, it
might be time-consuming to find the definition of
the acronym in the document. To solve this prob-
lem, an automatic acronym identification tool is re-
quired whose goal is to find all acronyms and their
definitions that are locally provided in the same
document. Second, some of the acronyms might
not be even defined in the document itself. These
acronyms are commonly used by writers in a spe-
cific domain. To find the correct meaning of them,
a reader must look-up the acronym in a dictionary
of acronyms. However, due to the shorter length
of acronyms compared to their long-form, multiple
phrases might be shortened with the same acronym,
thereby, they will be ambiguous. In these cases,
a deep understanding of the domain is required
to recognize the correct meaning of the acronym
among all possible long-forms. To solve this issue,
a system capable of disambiguating an acronym
based on its context is necessary.

Each of the aforementioned problems, i.e.,
acronym identification (AI) and acronym disam-
biguation (AD), has been extensively studied by the
research community or software developers. One
of the methods which are widely used in acronym
identification research is proposed by Schwartz and
Hearst (2002). This is a rule-based model that uti-
lizes character-match between acronym letters and
their context to find the acronym and its long-form
in text. Later, some feature-based models have
been also used for acronym identification (Kuo
et al., 2009; Liu et al., 2017). In addition, some of
the existing software employs regular expressions
for acronym identification in the biomedical do-
main (Gooch, 2011). Acronym disambiguation is
also approached with feature-based models (Wang
et al., 2016) or more advanced deep learning meth-

160

ods (Wu et al., 2015; Ciosici et al., 2019). The ma-
jority of deep models employ word embeddings to
compute the similarity between the candidate long-
form and the acronym context. In addition to the
existing research for AD, there is some web-based
software that employ dictionary look-up to expand
an acronym to its long-form (ABBREX2018). Note
that the methods based on dictionary look-up are
not able to disambiguate the acronym if it has mul-
tiple meanings.

Despite the progress made on the AI and AD
task in the last two decades, there are some lim-
itations in the prior works that prevent achieving
a functional system to be used in practice. More
specifically, considering the research on the AD
task, all of the prior works employ a small-size
dataset covering a few hundred to a few thousand
long-forms in a specific domain. Therefore, the
models trained in these works are not capable to
expand all acronyms of a domain or acronyms in
other domains other than the one used in the train-
ing set. Although in the recent work (Wen et al.,
2020), authors proposed a big dataset for acronym
disambiguation in the medical domain with more
than 14 million samples, it is still limited to a spe-
cific domain (i.e., medical domain). Another lim-
itation in prior works is that they do not provide
a unified system capable of performing both tasks
in various domains and to be publicly available.
To our knowledge, the only exiting web-based sys-
tem for AI and AD is proposed by Ciosici and
Assent (2018). For acronym identification, this
system employs the rule-based model introduced
by (Schwartz and Hearst, 2002). To handle corner
cases, they add extra rules in addition to Schwartz’s
rules in their system. Unfortunately, they do not
provide detailed information about these corner
cases and extra rules or any evaluation to assess
the performance of the model. For acronym dis-
ambiguation, they resort to a statistical model in
which a pre-computed vector representation for
each candidate long-form is employed to compute
the similarity between candidate long-form with
the context of the ambiguous acronym represented
using another vector. However, there are two limi-
tations with this approach: first, the pre-computed
long-form vectors are obtained via only Wikipedia,
thus limiting this system to the general domain and
incapable of disambiguating acronyms in other do-
mains such as scientific papers or biomedical texts;
Second, the AD model based on the pre-computed

vectors is a statistical model and is not benefiting
from the advanced deep architectures, thereby it
might have inferior performance compared to a
deep AD model.

To address the shortcomings and limitations of
the prior research works or systems for AI and
AD, in this work, we introduce a web-based sys-
tem for acronym identification and disambigua-
tion that is capable of recognizing and expand-
ing acronyms in multiple domains including gen-
eral (e.g., Wikipedia articles), scientific (e.g., com-
puter science papers), biomedical (e.g., Medline
abstracts), or financial (e.g., financial discussions
in Reddit). Note that the proposed system is capa-
ble to identify acronyms and their long-forms in
all Latin-script languages. More specifically, for
acronym identification, we propose a rule-based
model by extending the set of rules proposed by
(Schwartz and Hearst, 2002). We empirically show
that the proposed model outperforms both the previ-
ous rule-based model and also the existing state-of-
the-art deep learning models for acronym identifica-
tion on the recent benchmark dataset SciAI (Pouran
Ben Veyseh et al., 2020d). Next, we use a large
dataset created from corpora in various domains
for acronym disambiguation to train a deep model
for this task. Specifically, we employ a sequential
deep model to encode the context of the ambigu-
ous acronym and solve the AD task using a feed-
forward multi-class classifier. We also evaluate the
performance of the proposed acronym disambigua-
tion model on the recent benchmark dataset SciAD
(Pouran Ben Veyseh et al., 2020d).

To summarize, our contributions are:

• The first web-based multi-domain acronym
identification and disambiguation system

• Extensive evaluation of the proposed model
on the two benchmark datasets SciAI and
SciAD

2 System Description

The proposed system is a web-based system con-
sisting of two major components: (i) Acronym
Identification which consists of a set of prioritized
rules to recognize the mentions of acronyms and
their long-forms in the text; (ii) Acronym Expan-
sion which involves a dictionary look-up to expand
acronyms with only one possible long-form and
a pre-trained deep learning model to predict the
long-form of an ambiguous acronym using its con-
text. The system takes as input a piece of text

161

and returns the text with highlighted acronyms in
which the user can click on the acronyms and their
long-form will be shown in a pop-up window. The
acronym glossary extracted from the text is also
shown at the end of the text. Note that users can
also enable/disable the acronym expansion compo-
nent. This section studies the details of the afore-
mentioned components.

2.1 Acronym Identification

Acronym Identification aims to find the mentions
of acronyms and their long-forms in text. This is
the first stage in the proposed system to identify
the acronyms and their immediate definitions. Gen-
erally, this task is modeled as a sequence labeling
problem. In our system, we employ a rule-based
model to extract acronyms and their meanings from
a given text. In particular, the proposed AI model
is a collection of rules mainly inspired by the rule
introduced in (Schwartz and Hearst, 2002). More
specifically, the following rules are employed in
the proposed AI model:

• Acronym Detector: This rule identifies all
acronyms in text, regardless of having an im-
mediate definition or not. Specifically, all
words that at least 60% of their characters are
upper-cased letters and the number of their
characters is between 2 and 10 are recognized
as an acronym (i.e., short-form).

• Bounded Schwartz’s: Similar to (Schwartz
and Hearst, 2002), we look for immediate
definitions of detected acronyms if they fol-
low one of the templates long-form (short-
form) or short-form (long-form). In partic-
ular, considering the first template, we take
the min(|A| + 5, 2 ∗ |A|) words, where |A|
is the number of characters in the acronym,
that appear immediately before the parenthe-
ses as the candidate long-form1. Then, a
sub-sequence of the candidate long-form that
some of its characters could form the acronym
is selected as the long-form. However, despite
the original Schwartz’s rule that does not re-
strict the first and last word of the long-form
to be used in the acronym, we enforce this
restriction. This modification could fix erro-
neous long-form detection by Schwartz’s rule.
For instance, in the phrase User-guided Social

1Note that we use the same candidate long-form in other
rules too.

Media Crawling method (USMC), the modi-
fied rule identifies the long-form User-guided
Social Media Crawling, excluding the leading
word method.

• Character Match: While the Bounded
Schwartz’ rule could identify the majority
of the long-forms, it might also introduce
some noisy meanings. For instance, in the
phrase Analyzing Avatar Boundary Matching
(AABM), the Bounded Schwartz’s rule iden-
tifies Avatar Boundary Matching as the long-
form of AABM, missing the starting word An-
alyzing. To solve this issue and increase the
model’s accuracy, we also employ a character
match rule that assesses if the initials of the
words in the candidate long-form could form
the acronym. In the given example, it identi-
fies the full phrase Analyzing Avatar Bound-
ary Matching as the long-form. Since this
rule is more restricted and it has higher preci-
sion than Bounded Schwartz’s rule, in our sys-
tem, it has a higher priority than the Bounded
Schwartz’s rule.

• Initial Capitals: One issue with the proposed
Character Matching rule is that if there is a
word in the long-form that is not used in the
acronym, the rule fails to correctly identify the
long-form. For instance, in the phrase Analy-
sis of Avatar Boundary Matching (AABM) the
Character Matching rule fails due to the exis-
tence of the word of. To mitigate this issue,
we propose another high-precision rule, Ini-
tial Capitals. In this rule, if the concatenation
of the initials of the words of the candidate
long-form which are upper-cased could form
the acronym, the candidate is selected as the
expanded form of the acronym. This rule has
the highest priority in our system.

In addition to the mentioned general rules, we
also add some other rules to handle the special
cases, e.g., acronyms with a hyphen, roman num-
bers, definitions provided in some templates, for
example, CNN stands for convolution neural net-
work.

In the web-based system, the user could enter the
text and the system recognizes both acronyms with-
out any definition in text and also acronyms that
are locally defined with their identified long-forms.
Users could also click on each detected acronym
to see its definition in a pop-up window. Also, a

162

Acronym Long-form Rule
AABM Analyzing Avatar Boundary Matching Character Match
ABBREX Abbreviation Expander Bounded Schwartz’s
AD acronym disambiguation Character Match
AI Acronym identification Character Match
BADREX Biomedical Abbreviations using Bounded Schwartz’s

Dynamic Regular Expressions
BiLSTM Bi - directional Long ShortTerm Memory Bounded Schwartz’s
DOG Diverse acrOnym Glossary Bounded Schwartz’s
MAD Massive Acronym Disambiguation Capital Initials
MF most frequent Character Match
USMC User - guided Social Media Crawling Capital Initials

Table 1: The acronym glossary extracted from the text
of this paper using MadDog.

Figure 1: A screenshot of acronym identification by
MadDog. It identifies all acronyms and their local-long
forms. This interface highlights the detected acronyms
and by clicking on them, a pop-up window shows the
recognized meaning of the acronym.

glossary of detected acronyms and their long-forms
is shown at the bottom of the page. A screenshot
of the output of the system is shown in Figure 1.
Moreover, Table 1 shows the glossary extracted
from the text of this paper using the rule-based
component of the system. In section 3 we com-
pare the performance of the proposed rule-based
model with the existing state-of-the-art models for
AI (Pouran Ben Veyseh et al., 2020d).

2.2 Acronym Expansion

Although the proposed rule-based model is effec-
tive to recognize locally defined acronyms, it might
not be able to expand acronyms that don’t have any
immediate definition in the text itself. To alleviate
this issue and expand acronyms even without local
definition, two resources are required: (i) A dictio-
nary that provides the list of possible expansion for

a given acronym; (ii) A model to exploit the context
of the given acronym and choose the most likely
expansion for a given acronym. For the acronym
dictionary, we employ the glossary obtained by
exploiting our proposed rule-based AI model on
corpora in various domains (i.e., Wikipedia, Arxiv
papers, Reddit submissions, Medline abstracts, and
PMC OA subset). The obtained glossary, named
as Diverse acrOnym Glossary (DOG), contains
426,389 unique acronyms and 3,781,739 unique
long-forms. Note that the previously available web-
based acronym disambiguation system (Ciosici and
Assent, 2018) employed only Wikipedia corpus,
therefore, it covers limited domains and acronyms
compared to our system.

In DOG, the average number of long-forms per
acronym is 6.9 and 81,372 ambiguous acronyms
exist. Due to this ambiguity, a simple dictionary
look-up is not sufficient for acronym expansion in
the web-based system that uses DOG to expand
acronyms with non-local definitions. In order to
tackle this problem, we propose to train a super-
vised model in which the input is the text and the
position of the ambiguous acronym in it and the
model predicts the correct long-form among all
possible candidates. To train this model, we use
an automatically labeled dataset obtained by ex-
tracting samples from large corpora for each long-
form in DOG. This dataset contains 46 million
records and we call it the Massive Acronym Disam-
biguation (MAD) dataset. To split the dataset into
train/dev/test splits, we use 80% of samples of each
long-form for training, 10% for the development
set, and 10% for the test set. It is noteworthy that
to facilitate training, before splitting the dataset
into train/dev/test splits, we first create chunks of
size 100,000 samples in which all samples of an
acronym are assigned to the same chunk. Since
each acronym appears only in one chuck, we train
a separate acronym disambiguation model for each
chunk. During inference, we first identify which
chuck the ambiguous acronym belongs to, then,
we use the corresponding model to predict the ex-
panded form of the acronym.

In this work, we use a deep sequential model
to be trained on the MAD dataset for acronym
disambiguation. More specifically, given the in-
put text T = [w1, w2, . . . , wn] with the ambigu-
ous acronym wa, we first represent each word
using the corresponding GloVe embedding, i.e.,
X = [x1, x2, . . . , xn]. Afterward, the vectors

163

Model Acronym Long Form
P R F1 P R F1 Macro F1

NOA 80.31 18.08 29.51 88.97 14.01 24.20 26.85
ADE 79.28 86.13 82.57 98.36 57.34 72.45 79.37
UAD 86.11 91.48 88.72 96.51 64.38 77.24 84.09

BIOADI 83.11 87.21 85.11 90.43 73.79 77.49 82.35
LNCRF 84.51 90.45 87.37 95.13 69.18 80.10 83.73

LSTM-CRF 88.58 86.93 87.75 85.33 85.38 85.36 86.55
MadDog 89.98 87.56 88.75 96.45 79.53 87.18 88.12

Table 2: Performance of models for acronym identification (AI)

Figure 2: Sorted list of candidate long-forms along
with their scores for the acronym AFD in the sentence
After 1991, the presidential system of government by
Act of Parliament was abolished, and by October 1994,
the AFD was integrated into the Prime Minister’s Of-
fice and concurrently the combined armed forces au-
thority was transferred to this government body.

X are consumed by a Bi-directional Long Short-
Term Memory network (BiLSTM) to encode the
sequential order of the words. Next, we take
the hidden states of the BiLSTM neurons, i.e.,
H = [h1, h2, . . . , hn], and compute the text repre-
sentation by computing the max-pool of the vectors
H , i.e., h̄ = MAX POOL(h1, h2, . . . , hn). Fi-
nally, the concatenation of the text representation,
i.e., h̄, and the acronym representation, i.e., ha,
is fed into a 2-layer feed-forward neural network
whose final layer dimension is equal to the total
number of long-forms in the dataset (i.e., dataset
chunks explained above).

In the proposed system, the long-form of
acronyms predicted by the acronym disambigua-
tion model is presented in the glossary at the end
of the page (See Figure 1). Moreover, by clicking
on the acronym word in text, a pop-up window
shows the model’s prediction and also the sorted
list of other candidate long-forms for the selected
acronym. An example is shown in Figure 2. In the
provided example, the system correctly predicts
Gross Domestic Production as the long-form of the
ambiguous acronym GDP. We name the proposed
acronym identification and disambiguation system

as MadDog.

3 Evaluation

This section provides more insight into the per-
formance of the proposed acronym identification
and disambiguation models. To evaluate the per-
formance of the models in comparison with other
state-of-the-art AI and AD models, we report the
performance of the proposed models on SciAI and
SciAD benchmark datasets (Pouran Ben Veyseh
et al., 2020d). We also compare the performance of
the proposed model with the baselines provided in
the recent work (Pouran Ben Veyseh et al., 2020d).
More specifically, on SciAI, we compare our model
with rule-based models NOA (Charbonnier and
Wartena, 2018), ADE (Li et al., 2018) and UAD
(Ciosici et al., 2019); and also the feature-based
models BIOADI (Kuo et al., 2009) and LNCRF
(Liu et al., 2017); and finally the SOTA deep model
LSTM-CRF (Pouran Ben Veyseh et al., 2020d). For
evaluation metrics, following prior work, we report
precision, recall, and F1 score for the acronym and
long-form prediction and also their macro-averaged
F1 score. The results are shown in Table 2. This
table shows that our model outperforms both rule-
based and more advanced feature-based or deep
learning models. More interestingly, while the pro-
posed model has comparable precision with the
existing rule-based models, it enjoys higher recall.

To assess the performance of the proposed
acronym disambiguation model, we evaluate its per-
formance on the benchmark dataset SciAD (Pouran
Ben Veyseh et al., 2020d) and compare it with the
existing state-of-the-art models. Specifically, we
compare the model with non-deep learning mod-
els including most frequent (MF) meaning (Pouran
Ben Veyseh et al., 2020d), feature-based model
(i.e., ADE (Li et al., 2018)), and deep learning
models including NOA (Charbonnier and Wartena,
2018), UAD (Ciosici et al., 2019), BEM (Blevins

164

Model P R F1
MF 89.03 42.2 57.26

ADE 86.74 43.25 57.72
NOA 78.14 35.06 48.40
UAD 89.01 70.08 78.37
BEM 86.75 35.94 50.82

DECBAE 88.67 74.32 80.86
GAD 89.27 76.66 81.90

MadDog 92.27 85.01 88.49

Table 3: Performance of models for acronym disam-
biguation (AD)

and Zettlemoyer, 2020), DECBAE (Jin et al., 2019)
and GAD (Pouran Ben Veyseh et al., 2020d). The
results are shown in Table 3. This table demon-
strates the effectiveness of the proposed model
compared with the baselines. Our hypothesis for
the higher performance of the proposed model is
the massive number of training examples for all
acronyms which results in low generalization error.

4 Related Work

Acronym identification (AI) and acronym disam-
biguation (AD) are two well-known tasks with
several prior works in the past two decades. For
AI, both rule-based models (Park and Byrd, 2001;
Wren and Garner, 2002; Schwartz and Hearst,
2002; Adar, 2004; Nadeau and Turney, 2005; Ao
and Takagi, 2005; Kirchhoff and Turner, 2016) and
supervised feature-based or deep learning mod-
els (Kuo et al., 2009; Liu et al., 2017; Pouran
Ben Veyseh et al., 2020d, 2021) are utilized. Due
to the higher accuracy of rule-based models, they
are dominantly used in the majority of the related
works, especially to automatically create acronym
dictionary (Ciosici et al., 2019; Li et al., 2018;
Charbonnier and Wartena, 2018). However, the
existing works prepare a small-size dictionary in a
specific domain. In contrast, in this work, we first
improve the existing rules for acronym identifica-
tion, then, we use a diverse acronym glossary in our
system. For acronym disambiguation, prior works
employ either feature-based models (Wang et al.,
2016; Li et al., 2018) or deep learning methods
(Wu et al., 2015; Antunes and Matos, 2017; Char-
bonnier and Wartena, 2018; Ciosici et al., 2019;
Pouran Ben Veyseh et al., 2021). In this work, we
also employ a sequential deep learning model for
AD. However, unlike prior work that proposes an
acronym disambiguation model for a specific do-

main and limited acronyms, our proposed model
covers more acronyms and it is able to expand an
acronym in various domains.

Another common limitation of the existing
research-based models for AI and AD is that
they do not provide any publicly available sys-
tem that could be quickly incorporated into a text-
processing application. Although there is some
software for acronym identification such as expand-
ing Biomedical Abbreviations using Dynamic Reg-
ular Expressions (BADREX) (Gooch, 2011) or Ab-
breviation Expander (ABBREX) (ABBREX2018),
unfortunately, they are incapable of acronym dis-
ambiguation. To our knowledge, the most simi-
lar work to ours is proposed by Ciosici and As-
sent (2018). Specifically, similar to our work, this
web-based system is able to identify and expand
acronym in text. A rule-based model is employed
for AI and this model is also used to create a dic-
tionary of acronyms. For AD, unlike our work
that trains a deep model, they use word embed-
ding similarity to predict the most likely expansion.
However, there are some limitations to this previ-
ous system. Firstly, it is restricted to the general
domain (i.e., Wikipedia) and it covers a limited
number of acronyms. Second, it does not provide
any analysis and evaluations of the performance
of the proposed model. Lastly, it is not publicly
available anymore. The proposed MadDog system
could be useful for many downstream applications
including definition extraction (Pouran Ben Veyseh
et al., 2020a; Spala et al., 2020, 2019), informa-
tion extraction (Pouran Ben Veyseh et al., 2019,
2020b,c) or question answering (Perez et al., 2020)

5 System Deployment

MadDog is purely written in Python 3 and could
be run as a FLASK (Grinberg, 2018) server. For
text toknization, it employs SpaCy 2 (Honnibal
and Montani, 2017). Also, the trained acronym
expansion model requires PyTorch 1.7 and 64 GB
of disk space. Note that all acronyms with their
long-forms are encoded in the trained model so they
can perform both the dictionary look-up operation
and the disambiguation task. Moreover, the trained
models could be loaded both on GPU and CPU.

6 Conclusion

In this work, we propose a new web-based system
for acronym identification and disambiguation. For
AI, we employ a refined set of rules which is shown

165

to be more effective than the previous rule-based
and deep learning models. Moreover, using a mas-
sive acronym disambiguation dataset with more
than 46 million records in various domains, we
train a supervised model for acronym disambigua-
tion. The experiments on the existing benchmark
datasets reveal the efficacy of the proposed AD
model. In future, we aim to prepare the proposed
model to be integrated into an e-reader where the
readers can quickly hover the acronym and find the
correct meaning for that. This system could help
save time for reading technical documents that are
replete with acronyms.

Acknowledgments

This work has been supported by Adobe Research
Gifts and the Army Research Office (ARO) grant
W911NF-17-S-0002. This research is also based
upon work supported by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
IARPA Contract No. 2019-19051600006 under
the Better Extraction from Text Towards Enhanced
Retrieval (BETTER) Program. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or
implied, of ARO, ODNI, IARPA, the Department
of Defense, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein. This doc-
ument does not contain technology or technical
data controlled under either the U.S. International
Traffic in Arms Regulations or the U.S. Export Ad-
ministration Regulations.

References
ABBREX2018. Abbrex. 2018. abbrex - the abbrevia-

tion expander. In BMC bioinformatics.

Eytan Adar. 2004. Sarad: A simple and robust abbrevi-
ation dictionary. In Bioinformatics.

Rui Antunes and Sérgio Matos. 2017. Biomedical
word sense disambiguation with word embeddings.
In International Conference on Practical Applica-
tions of Computational Biology & Bioinformatics.

Hiroko Ao and Toshihisa Takagi. 2005. Alice: an al-
gorithm to extract abbreviations from medline. In
Journal of the American Medical Informatics Asso-
ciation.

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of word sense disambiguation
with gloss informed bi-encoders. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006–1017, On-
line. Association for Computational Linguistics.

Jean Charbonnier and Christian Wartena. 2018. Us-
ing word embeddings for unsupervised acronym dis-
ambiguation. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2610–2619, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Manuel R. Ciosici and Ira Assent. 2018. Abbreviation
expander - a web-based system for easy reading of
technical documents. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics: System Demonstrations, pages 1–4, Santa Fe,
New Mexico. Association for Computational Lin-
guistics.

Manuel R Ciosici, Tobias Sommer, and Ira Assent.
2019. Unsupervised abbreviation disambiguation.
In arXiv preprint arXiv:1904.00929.

Phil Gooch. 2011. Badrex: In situ expansion and coref-
erence of biomedical abbreviations using dynamic
regular expressions.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. ” O’Reilly
Media, Inc.”.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep con-
textualized biomedical abbreviation expansion. In
arXiv preprint arXiv:1906.03360.

Katrin Kirchhoff and Anne M Turner. 2016. Unsuper-
vised resolution of acronyms and abbreviations in
nursing notes using document-level context models.
In Proceedings of the Seventh International Work-
shop on Health Text Mining and Information Anal-
ysis.

Cheng-Ju Kuo, Maurice HT Ling, Kuan-Ting Lin, and
Chun-Nan Hsu. 2009. Bioadi: a machine learning
approach to identifying abbreviations and definitions
in biological literature. In BMC bioinformatics.

Yang Li, Bo Zhao, Ariel Fuxman, and Fangbo Tao.
2018. Guess me if you can: Acronym disambigua-
tion for enterprises. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1308–
1317, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jie Liu, Caihua Liu, and Yalou Huang. 2017. Multi-
granularity sequence labeling model for acronym ex-
pansion identification. In Information Sciences.

166

David Nadeau and Peter D Turney. 2005. A supervised
learning approach to acronym identification. In Con-
ference of the Canadian Society for Computational
Studies of Intelligence.

Youngja Park and Roy J. Byrd. 2001. Hybrid text min-
ing for finding abbreviations and their definitions. In
Proceedings of the 2001 Conference on Empirical
Methods in Natural Language Processing.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised ques-
tion decomposition for question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8864–8880, Online. Association for Computa-
tional Linguistics.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020a. A joint model
for definition extraction with syntactic connection
and semantic consistency. In AAAI.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020b. Exploiting
the syntax-model consistency for neural relation ex-
traction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8021–8032, Online. Association for Computa-
tional Linguistics.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Thien
Huu Nguyen, Walter Chang, and Leo Anthony Celi.
2021. Acronym identification and disambiguation
shared tasks for scientific document understanding.
In Proceedings of the 1st workshop on Scientific
Document Understanding.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
My Thai, Dejing Dou, and Thien Nguyen. 2020c.
Multi-view consistency for relation extraction via
mutual information and structure prediction. In
AAAI.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, and Thien Huu Nguyen. 2020d.
What does this acronym mean? introducing a new
dataset for acronym identification and disambigua-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3285–
3301, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Amir Pouran Ben Veyseh, Thien Nguyen, and Dejing
Dou. 2019. Improving cross-domain performance
for relation extraction via dependency prediction
and information flow control. In IJCAI.

Ariel S Schwartz and Marti A Hearst. 2002. A simple
algorithm for identifying abbreviation definitions in
biomedical text. In Biocomputing 2003.

Sasha Spala, Nicholas Miller, Franck Dernoncourt, and
Carl Dockhorn. 2020. SemEval-2020 task 6: Defini-
tion extraction from free text with the DEFT corpus.
In Proceedings of the Fourteenth Workshop on Se-
mantic Evaluation.

Sasha Spala, Nicholas A. Miller, Yiming Yang, Franck
Dernoncourt, and Carl Dockhorn. 2019. DEFT: A
corpus for definition extraction in free- and semi-
structured text. In Proceedings of the 13th Linguistic
Annotation Workshop.

Yue Wang, Kai Zheng, Hua Xu, and Qiaozhu Mei.
2016. Clinical word sense disambiguation with in-
teractive search and classification. In AMIA Annual
Symposium Proceedings.

Zhi Wen, Xing Han Lu, and Siva Reddy. 2020.
MeDAL: Medical abbreviation disambiguation
dataset for natural language understanding pretrain-
ing. In Proceedings of the 3rd Clinical Natural
Language Processing Workshop, pages 130–135,
Online. Association for Computational Linguistics.

Jonathan D Wren and Harold R Garner. 2002. Heuris-
tics for identification of acronym-definition patterns
within text: towards an automated construction of
comprehensive acronym-definition dictionaries. In
Methods of information in medicine.

Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu.
2015. Clinical abbreviation disambiguation using
neural word embeddings. In Proceedings of BioNLP
15, pages 171–176, Beijing, China. Association for
Computational Linguistics.

167

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 168–175
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Graph Matching and Graph Rewriting:
GREW tools for corpus exploration, maintenance and conversion

Bruno Guillaume
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Bruno.Guillaume@inria.fr

Abstract

This article presents a set of tools built around
the Graph Rewriting computational frame-
work which can be used to compute com-
plex rule-based transformations on linguistic
structures. Application of the graph matching
mechanism for corpus exploration, error min-
ing or quantitative typology are also given.

1 Introduction

The motivation of GREW is to have an effective tool
to design rule-based transformations of linguistic
structures. When designing GREW, our goal was
to be able to manipulate at least syntactic and se-
mantic representations of natural language (one of
the first application of GREW was the modeling
of a syntax-semantics interface). In a naive view,
we can say that syntactic structures are trees and
semantic ones are graphs. Then, if we want to
work with both kinds of structures in a common
framework, we can use the fact that a tree can be
considered as a graph and hence consider that all
structures are graphs.1

Now, if we consider all structures as graphs,
how to describe rule-based transformation on these
structures? In practice, these transformations can
of course be computed with some programs but
when it becomes complex and implies many rules,
it is difficult to maintain and to debug. To deal
with this, we propose to use the graph rewriting
formalism to describe these transformations.

Graph rewriting is a well-defined mathematical
formalism and we know that any computable trans-
formation can be expressed by a graph rewriting
system. In this approach, a global transformation
is decomposed in a successive application of small
and local transformations which are described by

1We may lose information if the order between the child
nodes of a given node (see Section 2).

rules; linguistic transformations can be decom-
posed in a modular way in atomic steps which are
easier to manage.

Several graph rewriting tools already exist but
some specificities of NLP made it useful to build a
system dedicated to this domain. In GREW tools,
a built-in notion of feature structure is available
and rules can be parametrised by lexical informa-
tion. Moreover, transformations on dependency
structures often requires to change head of sub-
structures and a dedicated command ease this kind
of operation (see Section 3.5).

In Section 2, we give a more precise definition
of our graphs and graph rewriting framework and
the next parts present examples about rewriting
(Section 3) and about matching (Section 4).

2 Graphs and graph rewriting

The book (Bonfante et al., 2018) gives a complete
description of the graphs and graph rewriting sys-
tem used in GREW. We give here a short descrip-
tion on the main aspects.

In our framework, a graph is defined by a set
of nodes labelled by non-recursive feature struc-
ture and a set of labelled edges (note that edges
encode relations and hence, we do not consider
multiple edges with the same label on the same
pair of nodes). In addition to the usual graph math-
ematical definition of graphs, we also add a notion
of order on nodes. For each graph, a sub-part of the
nodes are ordered. The subset of ordered nodes can
contains all the nodes (for instance in dependency
structures like in Figure 1); it can be empty (for
instance in semantic graphs like AMR structures
shown in Section 4.2); but we can also have struc-
tures where a strict subpart is ordered, for instance
with phrase structure trees where lexical nodes are
ordered following the tokens order in the input sen-
tence whereas non-lexical nodes are unordered.

168

Global transformations of graphs are decom-
posed in small steps; each step is described as a
rule. A rule encodes a local transformation and is
composed in two parts: the left-hand side which
expresses the conditions for the application of the
rule and the right-hand part which describes the
modifications to be done on the graph.

Formally, the conditions of application are de-
scribed by a pattern which is itself a graph. Graph
matching is used to decide if a pattern can be found
in a graph. The pattern can be refined by a set
of NAP (negative application patterns) which are
used to filter out some occurrences given by the
first pattern. The main pattern is introduced by the
keyword pattern and NAPs are introduced with
the keyword without (see examples in the next
section).

To avoid complex mathematical definitions and
to propose an operational way to modify graph,
GREW describes the modifications of the graph
through a sequence of atomic commands for edge
deletion, edge creation, feature updating. . .

When the number of rules increases, it may be-
come tricky to control the order in which they
should be applied; a dedicated notion of rewrit-
ing strategies was design to let the user control
these applications.

When using rewriting, confluence and termina-
tion are important aspects. These questions are
discussed on examples in the next section.

3 Graph rewriting in practice

The goal of this section is to present through exam-
ples the usage of the rewriting part of GREW. Some
important concepts like confluence and termination
will be also discussed.

3.1 First rules

The conversion between different formats is one
the common usage of GREW. We will use the ex-
ample of the conversion from one dependency an-
notation format (used in the Sequoia project (Can-
dito and Seddah, 2012)) to Universal Dependencies
(UD) (Nivre et al., 2016). The Figure 1 shows the
annotations of a French sentence in both formats.

The whole transformation is decomposed into
small steps which are described by rules. When
GREW is used to rewrite an input graph, a strategy
describes how rules should be applied. In the first
examples below, the strategy consists in just one
rule.

In our conversion example, we need a rule to
change the POS for adjectives: A is used in Sequoia
and ADJ in UD. The GREW rule for this transfor-
mation is:
rule adj {
pattern { N [upos=A] }
commands { N.upos = ADJ }

}

The application of this rule on the input graph
produces, as expected the graph below:

Deux
deux
D

autres
autre
ADJ

photos
photo
N

sont
être
V

montrées
montrer
V

du
de
P+D

doigt
doigt
N

mod aux.pass mod obj.p

det suj

We can then imagine others similar rules for
other POS tags: P is Sequoia becomes ADP in UD,
N is Sequoia becomes NOUN in UD.
rule prep {
pattern { N [upos=P] }
commands { N.upos = ADP }

}
rule noun {
pattern { N [upos=N] }
commands { N.upos = NOUN }

}

But applying the rule prep to the input graph
produces an empty set and the application of noun
the input graph produced two different graphs (one
with photos tagged as NOUN, the other with doigt
tagged as NOUN)!

In fact, the result of the application of a rule on a
graph is a set of graphs, one for each occurence of
the pattern found in the input graph. This set is then
empty if the pattern is not found (like pattern {N

[upos=P]}) or contains two graphs if the pattern
if found twice (like pattern {N [upos=N]}). To
iterate the application of a rule, one has to use more
complex strategies.

The strategy Onf(noun)2 iterates the application
of the strategy noun on the input graph. With the
same input graph (of Figure 1), the application
of GREW with the strategy Onf(noun) produces a
graph where the two nouns have the new tag NOUN.

Note that Onf(...) always outputs exactly one
graph. With the strategy Onf(prep) for instance,
the rewriting process will output one graph, identi-
cal to the input graph, obtained after 0 application
of the prep rule.

In previous examples, we considered rules sep-
arately, but in a global transformation all the pre-
vious rules must be used in the same global trans-
formation. A solution to use several rules in the

2Onf stands for “one normal form”; it will be explained
more in detail later with other strategies.

169

Deux
deux
D

autres
autre
A

photos
photo
N

sont
être
V

montrées
montrer
V

du
de
P+D

doigt
doigt
N

mod aux.pass mod obj.p

det suj

Deux
deux
NUM

autres
autre
ADJ

photos
photo
NOUN

sont
être
AUX

montrées
montrer
VERB

de
de
ADP

le
le
DET

doigt
doigt
NOUN

amod aux:pass det

nummod nsubj:pass case

obl:mod

Figure 1: Annotation of the sentence Deux autres photos sont montrées du doigt [en: Two other photos are pointed
out] in Sequoia (above) and in UD (below)

same rewriting process is to put them in the same
package construction, for instance with the 3 rules
above:
package POS {

rule adj { ... }
rule prep { ... }
rule noun { ... }

}

The package name POS can be used as a strategy
name for rewriting. Applying the package POS cor-
responds to the application of one of the rules of the
package. With our input graph, it produces three
different graphs, obtained either by the application
of the rule adj or by the two possible applications
of the rule noun.

In order to iterate the package, we need the strat-
egy Onf(POS). As before with Onf, exactly one
graph is produced with three successive applica-
tions of the rules:

Deux
deux
D

autres
autre
ADJ

photos
photo
NOUN

sont
être
V

montrées
montrer
V

du
de
P+D

doigt
doigt
NOUN

mod aux.pass mod obj.p

det suj

3.2 Termination

One key problem that may arise when using rewrit-
ing is the non-termination of the process. If we
go on with the previous example about POS and
consider verbs: the same tag V should be converted
to AUX or to VERB. One way to decide that the new
POS must be AUX is the presence of the relation
aux.pass. We can propose the rule:
rule aux_1 {

pattern { M -[aux.pass]-> N }
commands { N.upos = AUX }

}

But the process of rewriting with strategy
Onf(aux_1) is not terminating because nothing pre-
vents the rule to be applied again and again, the
pattern is still present after the application of the

rule. In practice, a bound can be set on the number
of rules applied3 and an error is thrown when this
bound is reached, in order to avoid non-terminating
computation.

A way to solve this problem is to make the pat-
tern stricter. With the rule below and the strategy
Onf(aux_2), the expected output is obtained after
one application of the rule.
rule aux_2 {
pattern { M -[aux.pass]-> N; N[upos=V] }
commands { N.upos = AUX }

}

Of course, in a more general setting, we can
have loops which imply more than one rule and
which are more difficult to manage. Unfortunately,
it is not possible to decide algorithmically if some
rewriting system is terminating or not.

Anyway, in NLP applications like conversions
from format A to format B, it is often easy to en-
sure termination be defining measure which stands
for the fact that we are “closer” to the B format
after each rule application. For instance, in all the
non-looping rules above, if we count the number
of Sequoia POS tag in the graph, it is strictly de-
creasing at each rule application.

3.3 Confluence
Another well-known issue with rewriting is the
problem of confluence. As said earlier, the Sequoia
tag V may be converted to AUX or VERB. A naive
way to encode this in rules is to write the package:
package v_1 {
rule aux {

pattern { N [upos = V] }
commands { N.upos = AUX }

}
rule verb {

pattern { N [upos = V] }
commands { N.upos = VERB }

}
}

310,000 by default

170

The two rules overlap: each time a POS V is
found, both rules can be used and produces a dif-
ferent output! We call this kind of system non-
confluent. Anyway, the strategy Onf(v_1) still pro-
duced exactly one graph by choosing (in a way
which cannot be controlled) one of the possible
ways to rewrite.

What should we do with non-confluent system?
There are two possible situations: (1) The two rules
are correct and there is a real (linguistic) ambiguity
and all solutions must be considered or (2) There
is no ambiguity, the rules must be corrected.

In our example, we are clearly in the second case,
but we consider briefly the other case for the ex-
planation on how to deal with really non-confluent
setting. Let us suppose that we are interested in
all possible solutions. GREW provides a strategy
Iter(v_1) to do this: this strategy applied to the
same input graph produces 4 different graphs with
different combinations of either AUX or VERB for the
two words sont and montrées.

Of course, in our POS tags conversion example,
the correct solution is to design more carefully our
two rules, in order to produce the correct output:

package v_2 {
rule aux {
pattern {N[upos=V]; M -[aux.pass]-> N}
commands { N.upos=AUX } }

rule verb {
pattern { N [upos=V] }
without { M -[aux.pass]-> N }
commands { N.upos=VERB } }

}

Here, the two rules are clearly exclusive: the
same clause M -[aux.pass]-> N is used first in
the pattern part of rule aux and in the without

part of rule verb. With these two new rules, the
system is confluent, and there is only one possible
output. This can be tested with the Iter(v_2) strat-
egy which produces all possible graphs, exactly one
in this case.

Of course, the strategy Onf(v_2) produces the
same output in this setting. When a package p is
confluent, the two strategies Onf(p) and Iter(p)

give the same result. In practice, the strategy
Onf(p) must be preferred because it is much more
efficient to compute.

3.4 More commands

In Figure 1, we can observe that in addition to a dif-
ferent POS tagset, the UD format also uses a differ-
ent tokenisation. The word du of the input sentence
is a token with a POS P+D in Sequoia but this is in

fact an amalgam of two lexical units: a preposition
and a determiner4. In UD, such combined tag are
not allowed and the sentence is annotated with two
tokens de and le for the word du. Hence, we have
to design a rule to make this new tokenisation. The
rule below computes this transformation:
rule amalgam {
pattern {

N [form = "du", upos = "P+D"];
N -[obj.p]-> M }

commands {
add_node D :> N;
N.form = "de"; N.upos = ADP;
D.form = "le"; D.upos = DET;
add_edge M -[det]-> D }

}

This is our first rule with more than one com-
mands. In general, the transformation is described
by a sequence of commands which are applied suc-
cessively to the current graph. The application of
this rule to our input graph builds:

Deux
deux
D

autres
autre
A

photos
photo
N

sont
être
V

montrées
montrer
V

de
de
ADP

le
DET

doigt
doigt
N

mod aux.pass mod det

det suj obj.p

Note that N -[obj.p]-> M is not required to
find a place where the rule must be applied, but
we need it to get access to the node with identifier
M and to define properly the command add_edge.

3.5 Changing head
For transformation between different syntactic an-
notation frameworks, we often have to deal with
the fact that heads of constituents may change. For
instance, with the sentence je vois que tu es malade
[en: I see that you are sick]. The head of the clause
que tu es malade is es in Sequoia and malade in UD.
In practice, we have to realise the transformation
between the two graphs described by Figure 2.

We can use what was presented before to re-
move the edge ats, to add a new edge cop and
to change the POS of es; but we need something
more: moving all other edges incident to the old
head es towards the new head malade. GREW pro-
vides a dedicated command shift to compute this.
In the rule below, the command shift V ==> ATS

means: change all edges starting (resp. ending) on
the node V to make them start (resp. end) on ATS.
rule ats {
pattern {

V[upos=VERB];
e: V -[ats]-> ATS }

4This is exactly what the tag P+D means.

171

je
PRON

vois
VERB

que
SCONJ

tu
PRON

es
VERB

malade
ADJ

nsubj nsubj ats

mark

ccomp

je
PRON

vois
VERB

que
SCONJ

tu
PRON

es
AUX

malade
ADJ

nsubj cop

nsubj

mark

ccomp

Figure 2: Graph transformation for head changes

commands {
del_edge e;
shift V ==> ATS;
add_edge ATS -[cop]-> V;
V.upos = AUX }

}

3.6 More strategies

Above, we have seen how to handle atomic trans-
formations through rules. But, in order to define
a complete transformation system, some larger set
of rules are needed. It is important to be able to
control the order in which subset of rules should
applied. In practice, large transformation system
are divided in several steps and sub-systems are
applied successively. In our example (Sequoia to
UD), the global transformation can be divided into:
1) change POS and tokenisation, 2) change rela-
tion labels, 3) make needed head changes. The
can be expressed in GREW by a strategy Seq(POS,

relations, heads), where POS, relations and
heads correspond to dedicated subset of rules.

4 Application of graph matching

Graph matching is a subpart of the system used to
describe left part of rewriting rules, but it is also
useful alone as a way to make requests on a graph
or a set of graphs. In practice, it can be used for
searching examples of a given construction, for
checking consistencies of annotations or for error
mining. This subpart of GREW is now proposed as
a separate tool, named GREW-MATCH and freely
available as a web service5. This graph matching
system is also available in the ARBORATORGREW

tool (Guibon et al., 2020)6.
A screenshot of the GREW-MATCH interface is

shown in Figure 3. With the top bar and the list

5http://match.grew.fr
6https://arborator.github.io

on the left, the user can chose a corpus (all 183
UD and SUD 2.7 corpora and a few other freely
available corpora can be requested). A Request is
entered and the user can visualise the occurrences
found in the corpora with elements of the pattern
highlighted in the sentence.

4.1 Error mining

It is difficult in general to ensure consistent annota-
tions in large corpora. GREW-MATCH can be used
to detect this kind of inconsistencies by making
linguistic observation on some corpus. The Fig-
ure 3 illustrates the first step of such usage with
the request: find nsubj relations where there is a
Number disagreement (the head and the dependant
of the relation both have a Number feature but with
different values). In version 2.7 of UD_ENGLISH-
GUM, 120 occurrences of the pattern are found,
but there are not all errors, as the example of the
figure shows. We can then refine the request by
adding some negative patterns (with the without

keyword), for instance to exclude occurrences with
a copula linked to the head:

pattern {
M -[nsubj]-> N;
M.Number <> N.Number; }

without { M -[cop]-> C }

The new request returns 25 occurrences which
can be manually inspected: we have found a mix
of annotation errors, irregularities (institution plu-
ral name used as a singular the United Nations
rates. . .) or misspelled sentences. The same ap-
proach can be used for many aspect: searching
for verbs without subjects, for unwanted multiple
relation (more than one obj on the same node).

4.2 data exploration

More generally, GREW-MATCH can be used for
any kind of data exploration. Here, we use the
example of AMR (Banarescu et al., 2013) annota-
tions, this will allow us to show examples where
the graph matching used cannot be reduced as a
tree matching. Two corpora are available from
the AMR website7: the English translation of the
Saint-Exupéry’s novel The Little Prince and some
PubMed articles. With the pattern below, we search
for a node which is the ARG0 argument of two dif-
ferent related concepts.

pattern { P1 -> P2;
P1 -[ARG0]-> N; P2 -[ARG0]-> N; }

7https://amr.isi.edu/

172

Figure 3: GREW-MATCH main interface

211 occurrences of this pattern are found in The
Little Prince. Two of them are showed below, for
the two sentences: “What are you trying to say?”
and “I administer them,” replied the businessman.

[P1]

label = try-01

[P2]

label = say-01

ARG1

[N]

label = you

ARG0

label = amr-unknown

ARG1 ARG0

[P1]

label = reply-01

[P2]

label = administer-01

ARG2

[N]

label = businessman

ARG0

label = they

ARG1 ARG0

4.3 Typology
The pattern matching mechanism is also available
in a count subcommand for GREW. Given a set
of corpora and a set of requests, a table with the
number of occurrences of each pattern on each
corpora is returned. For instance, with the two
patterns below, we can compute the ratio of nsubj
relations which are use with or without a copula
construction.

pattern { M -[nsubj]-> N; M -[cop]-> *}

and
pattern { M -[nsubj]-> N }
without { M -[cop]-> * }

The chart below shows these ratios, sorted by
increasing values on the 141 corpora of UD 2.7
with more than 1000 sentences. Most corpora have
a ratio between 0% and 25% with all value repre-
sented and a few corpora have a significantly higher
proportion. 3 are above 30%: FAROESE-OFT

with 67%, FRENCH-FQB with 43% and PERSIAN-
SERAJI with 34%.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

5 Related works

5.1 Rule-based transformations of linguistic
structures

Many implementations of graph rewriting or graph
transformation exist in other research areas. But the
massive usage of feature structures in linguistic unit
description, the usage of dedicated technical for-
mats like CoNLL-U or the need for specific kinds
of transformations (like the shift operation de-
scribed above) make general graph transformation
system difficult to use in NLP applications. Such
applications would require several encodings of the
data and they will not allow for a straightforward
expression of linguistic transformations. Among
existing rule-based software for transformations of
linguistic structures, we can cite OGRE8(Ribeyre,
2016) and Depedit9.

8https://gitlab.etermind.com/cribeyre/
OGRE

9https://corpling.uis.georgetown.edu/
depedit

173

OGRE uses a notion of rules which is very closed
to the ones used in GREW, but it does not pro-
vide interface with lexicons and there is no notion
of strategies for the description of complex graph
transformations which imply a large number of
rules.

Depedit can be used as a separate tool or as a
Python library. It is specifically designed to manip-
ulate only dependency trees. Contrary to GREW,
it does not proposed a built-in notion of strategies
and does not handle not confluent rewriting pro-
cessing. Moreover, the notion of rules is also more
restricted: there are no NAP and it is not possi-
ble to express additional contraints on morpholog-
ical features like the one we used in Section 4.1:
M.Number <> N.Number.

5.2 Tools for corpora querying
A large number of online query tools are available
online. Some of them have a more restrictive query
language like SETS10 or Kontext11. In these two
tool, there is no notion of NAP and the kind of
contraints that can be expressed is limited.

The PML Tree Query12 and INESS13 offers a
query language with the same expressive power
as the one proposed in GREW. An advantage of
GREW is that it is interfaced in the larger annotation
tool ARBORATORGREW14. With ARBORATOR-
GREW, the user may query on his own treebank
and then have access to a manual editing mode on
the query output or to automatic updating through
GREW rules.

6 Conclusion

GREW was used in many tasks of corpus conver-
sion. It is used for instance for conversion between
UD and SUD (Gerdes et al., 2018, 2019): all UD
corpora are converted into SUD with it. GREW

is implemented in Ocaml and is quite efficient:
for instance the conversion of UD 2.7 (1.48M sen-
tences, 26.5M tokens) into SUD uses 100 rules and
takes 5,500 seconds on a labtop (around 267 graphs
rewritten by second).

GREW is available as a command line program
or through a Python library. Installation proce-

10http://depsearch-depsearch.rahtiapp.
fi/ds_demo

11http://lindat.mff.cuni.cz/services/
kontext

12http://lindat.mff.cuni.cz/services/
pmltq

13http://clarino.uib.no/iness
14https://arborator.github.io

dures and usage documentation are given on the
GREW website: https://grew.fr. A web-based
interface for the usage of the rewriting part of the
software will be provided soon.

In this article, examples are given on dependency
syntax and on semantic representations like AMR.
A more complete set of examples is given in (Bon-
fante et al., 2018). Many other linguistic structures
can be encoded as graphs and we plan to extend
the experiments to other kind of semantic represen-
tations.

Acknowledgments

Thanks to all GREW users for their feedback and
their requests which helps improve the software.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Guillaume Bonfante, Bruno Guillaume, and Guy Per-
rier. 2018. Application of Graph Rewriting to Nat-
ural Language Processing, volume 1 of Logic, Lin-
guistics and Computer Science Set. ISTE Wiley.

Marie Candito and Djamé Seddah. 2012. Le corpus
Sequoia : annotation syntaxique et exploitation pour
l’adaptation d’analyseur par pont lexical. In TALN
2012 - 19e conférence sur le Traitement Automa-
tique des Langues Naturelles, Grenoble, France.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2018. SUD or Surface-Syntactic Uni-
versal Dependencies: An annotation scheme near-
isomorphic to UD. In Universal Dependencies
Workshop 2018, Brussels, Belgium.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2019. Improving Surface-syntactic
Universal Dependencies (SUD): surface-syntactic
relations and deep syntactic features. In TLT 2019
- 18th International Workshop on Treebanks and Lin-
guistic Theories, Paris, France.

Gaël Guibon, Marine Courtin, Kim Gerdes, and Bruno
Guillaume. 2020. When Collaborative Treebank Cu-
ration Meets Graph Grammars. In LREC 2020 -
12th Language Resources and Evaluation Confer-
ence, Marseille, France.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies

174

v1: A multilingual treebank collection. In Proceed-
ings of LREC 2016, pages 1659–1666.

Corentin Ribeyre. 2016. Méthodes d’analyse super-
visée pour l’interface syntaxe-sémantique : De la
réécriture de graphes à l’analyse par transitions.
Ph.D. thesis, Université Paris 7 Diderot & Inria.

175

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 176–197
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Massive Choice, Ample Tasks (MACHAMP):
A Toolkit for Multi-task Learning in NLP

Rob van der Goot Ahmet Üstün Alan Ramponi Ibrahim Sharaf
Barbara Plank

IT University of Copenhagen University of Groningen University of Trento
Fondazione the Microsoft Research - University of Trento COSBI Factmata
robv@itu.dk, a.ustun@rug.nl, alan.ramponi@unitn.it

ibrahim.sharaf@factmata.com, bapl@itu.dk

Abstract

Transfer learning, particularly approaches that
combine multi-task learning with pre-trained
contextualized embeddings and fine-tuning,
have advanced the field of Natural Language
Processing tremendously in recent years. In
this paper we present MACHAMP, a toolkit
for easy fine-tuning of contextualized embed-
dings in multi-task settings. The benefits of
MACHAMP are its flexible configuration op-
tions, and the support of a variety of natural
language processing tasks in a uniform toolkit,
from text classification and sequence labeling
to dependency parsing, masked language mod-
eling, and text generation.1

1 Introduction

Multi-task learning (MTL) (Caruana, 1993, 1997)
has developed into a standard repertoire in natu-
ral language processing (NLP). It enables neural
networks to learn tasks in parallel (Caruana, 1993)
while leveraging the benefits of sharing parameters.
The shift—or “tsunami” (Manning, 2015)—of deep
learning in NLP has facilitated the wide-spread
use of MTL since the seminal work by Collobert
et al. (2011), which has led to a multi-task learning
“wave” (Ruder and Plank, 2018) in NLP. It has since
been applied to a wide range of NLP tasks, devel-
oping into a viable alternative to classical pipeline
approaches. This includes early adoption in Recur-
rent Neural Network models, e.g. (Lazaridou et al.,
2015; Chrupała et al., 2015; Plank et al., 2016;
Søgaard and Goldberg, 2016; Hashimoto et al.,
2017), to the use of large pre-trained language
models with multi-task objectives (Radford et al.,
2019; Devlin et al., 2019). MTL comes in many fla-
vors, based on the type of sharing, the weighting of

1The code is available at: https://github.
com/machamp-nlp/machamp (v0.2), and an instruc-
tional video at https://www.youtube.com/watch?
v=DauTEdMhUDI.

losses, and the design and relations of tasks and lay-
ers. In general though, outperforming single-task
settings remains a challenge (Martı́nez Alonso and
Plank, 2017; Clark et al., 2019). For an overview
of MTL in NLP we refer to Ruder (2017).

As a separate line of research, the idea of lan-
guage model pre-training and contextual embed-
dings (Howard and Ruder, 2018; Peters et al., 2018;
Devlin et al., 2019) is to pre-train rich representa-
tion on large quantities of monolingual or multilin-
gual text data. Taking these representations as a
starting point has led to enormous improvements
across a wide variety of NLP problems. Related to
MTL, recent research effort focuses on fine-tuning
contextualized embeddings on a variety of tasks
with supervised objectives (Kondratyuk and Straka,
2019; Sanh et al., 2019; Hu et al., 2020).

We introduce MACHAMP, a flexible toolkit for
multi-task learning and fine-tuning of NLP prob-
lems. The main advantages of MACHAMP are:

• Ease of configuration, especially for dealing
with multiple datasets and multi-task setups;

• Support of a wide range of NLP tasks, in-
cluding a variety of sequence labeling ap-
proaches, text classification, dependency pars-
ing, masked language modeling, and text gen-
eration (e.g., machine translation);

• Support of the initialization and fine-tuning of
any contextualized embeddings from Hugging
Face (Wolf et al., 2020).

As a result, the flexibility of MACHAMP sup-
ports up-to-date, general-purpose NLP (see Sec-
tion 2.2). The backbone of MACHAMP is Al-
lenNLP (Gardner et al., 2018), a PyTorch-based
(Paszke et al., 2019) Python library containing mod-
ules for a variety of deep learning methods and
NLP tasks. It is designed to be modular, high-

176

<CLS> Smell ya later !

Contextualized Embeddings

negative VERB PRON ADV PUNCT

Sentiment
Decoder

UPOS Decoder

Figure 1: Overview of MACHAMP, when training
jointly for sentiment analysis and POS tagging. A
shared encoding representation and task-specific de-
coders are exploited to accomplish both tasks.

level and flexible. It should be noted that con-
temporary to MACHAMP, jiant (Pruksachatkun
et al., 2020) was developed, and AllenNLP in-
cluded multi-task learning as well since release 2.0.
MACHAMP distinguishes from the other toolkits
by supporting simple configurations, and a variety
of multi-task settings.

2 Model

In this section we will discuss the model, its sup-
ported tasks, and possible configuration settings.

2.1 Model overview

An overview of the model is shown in Figure 1.
MACHAMP takes a pre-trained contextualized
model as initial encoder, and fine-tunes its layers by
applying an inverse square root learning rate decay
with linear warm-up (Howard and Ruder, 2018),
according to a given set of downstream tasks. For
the task-specific predictions, each task has its own
decoder, which is trained for the corresponding
task. The model defaults to the embedding-specific
tokenizer in Hugging Face (Wolf et al., 2020).2

When multiple datasets are used for training,
they are first separately split into batches so that
each batch only contains instances from one dataset.
Batches are then concatenated and shuffled before
training. This means that small datasets will be un-
derrepresented, which can be overcome by smooth-
ing the dataset sampling (Section 3.2.2). During de-

2This includes both the pre-tokenization (in the traditional
sense) and the subword segmentation.

coding, the loss function is only activated for tasks
which are present in the current batch. By default,
all tasks have an equal weight in the loss function.
The loss weight can be tuned (Section 3.2.1).

2.2 Supported task types

We here describe the tasks MACHAMP supports.

SEQ For traditional token-level sequence predic-
tion tasks, like part-of-speech tagging. MACHAMP

uses greedy decoding with a softmax output layer
on the output of the contextual embeddings.

STRING2STRING An extension to SEQ, which
learns a conversion for each input token to its
label. Instead of predicting the labels directly,
the model can now learn to predict the conver-
sion. This strategy is commonly used for lemma-
tization (Chrupała, 2006; Kondratyuk and Straka,
2019), where it greatly reduces the label vocabulary.
We use the transformation algorithm from UDPipe-
Future (Straka, 2018), which was also used by Kon-
dratyuk and Straka (2019).

SEQ BIO A variant of SEQ which exploits con-
ditional random fields (Lafferty et al., 2001) as
decoder, masked to enforce outputs following the
BIO tagging scheme.

MULTISEQ An extension to SEQ which supports
the prediction of multiple labels per token. Specif-
ically, for some sequence labeling tasks it is un-
known beforehand how many labels each token
should get. We compute a probability score for
each label, employing binary cross-entropy as loss,
and outputting all the labels that exceed a certain
threshold. The threshold can be set in the dataset
configuration file.

DEPENDENCY For dependency parsing,
MACHAMP uses the deep biaffine parser (Dozat
and Manning, 2017) as implemented by Al-
lenNLP (Gardner et al., 2018), with the Chu-
Liu/Edmonds algorithm (Chu, 1965; Edmonds,
1967) for decoding the tree.

MLM For masked language modeling, our imple-
mentation follows the original BERT settings (De-
vlin et al., 2019). The chance that a token is masked
is 15%, of which 80% are masked with a [MASK]
token, 10% with a random token, and 10% are left
unchanged. We do not include the next sentence
prediction task following Liu et al. (2019), for sim-
plicity and efficiency. We use a cross entropy loss,

177

smell VERB
ya PRON
later ADV
! PUNCT

(a) Example of a token-level file format (e.g., for POS tagging),
where words are in column word idx=0, and a single layer
of corresponding annotations is in column column idx=1.

smell ya later ! negative

(b) Example of a sentence-level file format (e.g., for sentiment
classification), where only a sentence is required and is defined
in column 0 (i.e., sent idxs=[0]) and a single layer of
annotation is in the second column (column idx=1).

Figure 2: Examples of data file formats.

and the language model heads from the defined
Hugging Face embeddings (Wolf et al., 2020). It
assumes raw text files as input, so no column idx
has to be defined (See Section 3.1).

CLASSIFICATION For text classification, it pre-
dicts a label for every text instance by using the em-
bedding of the first token, which is commonly a spe-
cial token (e.g. [CLS] or <s>). For tasks which
model a relation between multiple sentences (e.g.,
textual entailment), a special token (e.g. [SEP])
is automatically inserted between the sentences to
inform the model about the sentence boundaries.

SEQ2SEQ For text generation, MACHAMP em-
ploys the sequence to sequence (encoder-decoder)
paradigm (Sutskever et al., 2014). We use a re-
current neural network decoder, which suits the
auto-regressive nature of the machine translation
tasks (Cho et al., 2014) and an attention mechanism
to avoid compressing the whole source sentence
into a fixed-length vector (Bahdanau et al., 2015).

3 Usage

To use MACHAMP, one needs a configuration
file, input data and a command to start the training
or prediction. In this section we will describe each
of these requirements.

3.1 Data format
MACHAMP supports two types of data formats for
annotated data,3 which correspond to the level of
annotation (Section 2.2). For token-level tasks, we

3The MLM task does not require annotation, thus a raw
text file can be provided.

will use the term “token-level file format”, whereas
for sentence-level task, we will use “sentence-level
file format”.

The token-level file format is similar to the tab-
separated CoNLL format (Tjong Kim Sang and
De Meulder, 2003). It assumes one token per line
(on a column index word idx), with each annota-
tion layer following each token separated by a tab
character (each on a column index column idx)
(Figure 2a). Token sequences (e.g., sentences) are
delimited by an empty line. Comments are lines
on top of the sequence (which have a different
number of columns with respect to ”token lines”).4

It should be noted that for dependency parsing,
the format assumes the relation label to be on the
column idx and the head index on the following
column. Further, we also support the UD format
by removing multi-word tokens and empty nodes
using the UD-conversion-tools (Agić et al., 2016).

The sentence-level file format (used for text clas-
sification and text generation) is similar (Figure 2b),
and also supports multiple inputs having the same
annotation layers. A list of one or more column
indices can be defined (i.e., sent idxs) to en-
able modeling the relation between any arbitrary
number of sentences.

3.2 Configuration

The model requires two configuration files, one that
specifies the datasets and tasks, and one for the hy-
perparameters. For the hyperparameters, a default
option is provided (configs/params.json,
see Section 4).

3.2.1 Dataset configuration

An example of a dataset configuration file is
shown in Figure 3. On the first level, the dataset
names are specified (i.e., “UD” and “RTE”), which
should be unique identifiers. Each of these
datasets needs at least a train data path,
a validation data path, a word idx or
sent idxs, and a list of tasks (corresponding
to the layers of annotation, see Section 3.1).

For each of the defined tasks, the user is required
to define the task type (Section 2.2), and the
column index from which to read the relevant labels
(i.e., column idx). On top of this template, the
following options can be passed on the task level:

4We do not identify comments based on lines starting with
a ‘#’, because datasets might have tokens that begin with ‘#’.

178

{ "UD": {
"train_data_path": "data/ewt.train",
"validation_data_path": "data/ewt.dev",
"word_idx": 1,
"tasks": {

"lemma": {
"task_type": "string2string",
"column_idx": 2

},
"upos": {
"task_type": "seq",
"column_idx": 3

} } }
"RTE": {

"train_data_path": "data/RTE.train",
"validation_data_path": "data/RTE.dev",
"sent_idxs": [0,1],
"tasks": {

"rte": {
"task_type": "classification",
"column_idx": 2

} } } }

Figure 3: Example dataset configuration file to predict
UPOS, lemmas, and textual entailment simultaneously.

Metric For each task type, a commonly used met-
ric is set as default metric. However, one can over-
ride the default by specifying a different metric at
the task level. Supported metrics are ‘acc’, ‘las’,
‘micro-f1’, ‘macro-f1’, ‘span f1’, ’multi span f1’,
’bleu’ and ’perplexity’.

Loss weight In multi-task settings, not all tasks
might be equally important, or some tasks might
just be harder to learn, and therefore should gain
more weight during training. This can be tuned by
setting the loss weight parameter on the task
level (by default the value is 1.0 for all tasks).

Dataset embedding Ammar et al. (2016) have
shown that embedding which language an instance
belongs to can be beneficial for multilingual mod-
els. Later work (Stymne et al., 2018; Wagner et al.,
2020) has also shown that more fine-grained dis-
tinctions on the dataset level5 can be beneficial
when training on multiple datasets within the same
language (family). In previous work, this embed-
ding is usually concatenated to the word embedding
before the encoding. However, in contextualized
embeddings, the word embeddings themselves are
commonly used as encoder, hence we concatenate
the dataset embeddings in between the encoder and
the decoder. This parameter is set on the dataset

5These are called treebank embeddings in their work.
We will use the more general term “dataset embeddings”,
which would often roughly correspond to languages and/or
domains/genres.

Treebanks0

10000

20000

30000

40000

50000

Si
ze

=0.0
=0.25
=0.5
=0.75
=1.0

Figure 4: Effect of the sampling parameter α on the
training sets of Universal Dependencies 2.6 data.

level with dataset embed idx, which speci-
fies the column to read the dataset ID from. Setting
dataset embed idx to -1 will use the dataset
name as specified in the json file as ID.

Max sentences In order to limit the maximum
number of sentences that are used during training,
max sents is used. This is done before the sam-
pling smoothing (Section 3.2.2), if both are enabled.
It should be noted that the specified number will be
taken from the top of the dataset.

3.2.2 Hyperparameter configuration
Whereas most of the hyperparameters can simply
be changed from the default configuration provided
in configs/params.json, we would like to
highlight two main settings.

Pre-trained embeddings The name/path to pre-
trained Hugging Face embeddings6 can be set in the
configuration file at the transformer model
key; transformer dim might be adapted ac-
cordingly to reflect the embeddings dimension.

Dataset sampling To avoid larger datasets from
overwhelming the model, MACHAMP can re-
sample multiple datasets according to a multino-
mial distribution, similar as used by Conneau and
Lample (2019). MACHAMP performs the sam-
pling on the batch level, and shuffles after each
epoch (so it can see a larger variety of instances for
downsampled datasets). The formula is:

λ =
1

pi
∗ pαi∑

i p
α
i

(1)

where pi is the probability that a random sample is
from dataset i, and α is a hyperparameter that can
be set. Setting α=1.0 means using the default sizes,

6https://huggingface.co/models

179

Parameter Value Range

Optimizer Adam
β1, β2 0.9, 0.99
Dropout 0.2 0.1, 0.2, 0.3
Epochs 20
Batch size 32
Learning rate (LR) 1e-4 1e-3, 1e-4, 1e-5
LR scheduler slanted triangular
Weight decay 0.01
Decay factor 0.38 .35, .38, .5
Cut fraction 0.2 .1, .2, .3

Table 1: Final parameter settings, incl. tested ranges.

and α=0.0 results in one average amount of batches
for each dataset, similar to Sanh et al. (2019). The
effect of different settings of α for the Universal De-
pendencies 2.6 data is shown in Figure 4. Smooth-
ing can be enabled in the hyperparameters configu-
ration file at the sampling smoothing key.

3.3 Training

Given the setup illustrated in the previous sections,
a model can be trained via the following command.
It assumes the configuration (Figure 3) is saved in
configs/upos-lemma-rte.json.

python3 train.py --dataset_config \
configs/upos-lemma-rte.json

By default, the model and the logs will be written
to logs/<JSONNAME>/<DATE>. The name
of the directory can be set manually by providing
--name <NAME>. Further, --device <ID>
can be used to specify which GPU to use, otherwise
the CPU will be used. As a default, train.py
uses configs/params.json for the hyper-
parameters, but this can be overridden by using
--parameters config <CONFIG FILE>.

3.4 Inference

Prediction can be done with:

python3 predict.py \
logs/<NAME>/<DATE>/model.tar.gz \
<INPUT FILE> <OUTPUT FILE>

It requires the path to the best model (serial-
ized during training) stored as model.tar.gz
in the logs directory as specified above. By de-
fault, the data is assumed to be in the same format
as the training data (i.e., with the same number
of column idx columns), but --raw text can
be specified to read a data file containing raw texts
with one sentence per line. For models trained

Task Reference MACHAMP

EWT2.2 Kondratyuk et al. (2019)
UPOS∗ 96.82 97.07
Lemma∗ 97.97 98.14
Feats∗ 97.27 97.41
LAS∗ 89.38 89.80

GLUE Devlin et al. (2019)
CoLA 60.5 53.7
MNLI 86.7 83.9
MNLI-mis 85.9 82.7
MRPC 89.3 87.2
QNLI 92.7 90.8
QQP 72.1 69.1
RTE 70.1 60.0
SST-2 94.9 92.5

WMT14 Liu et al. (2020)
EN-DE 30.1 24.7

IWSLT15 Zaheer et al. (2018)
EN-VI 29.27 24.72

Table 2: Scores of single task models on test data for
three popular datasets and a variety of tasks. ∗one joint
model. For the GLUE data, BERT-large (English) and
tokenized BLEU are used for fair comparison.

on multiple datasets (as “UD” and “RTE” in Fig-
ure 3), --dataset <NAME> can be used to spec-
ify which dataset to use in order to predict all tasks
within that dataset.

4 Hyperparameter Tuning

In this section we describe the procedure how
we determined robust default parameters for
MACHAMP; note that the goal is not to beat the
state-of-the-art, but to reach competitive perfor-
mance for multiple tasks simultaneously.7

For the tuning of hyperparameters, we used the
GLUE classification datasets (Wang et al., 2018;
Warstadt et al., 2019; Socher et al., 2013; Dolan
and Brockett, 2005; Cer et al., 2017; Williams et al.,
2018; Rajpurkar et al., 2018; Bentivogli et al., 2009;
Levesque et al., 2012) and the English Web Tree-
bank (EWT 2.6) (Silveira et al., 2014) with multilin-
gual BERT8 (mBERT) as embeddings.9 For each
of these setups, we averaged the scores over all
datasets/tasks and perform a grid search. The best
hyperparameters across all datasets are reported in
Table 1 and are the defaults values for MACHAMP.

7Compared to MACHAMP v0.1 (van der Goot et al., 2020)
we removed parameters with negligible effects (word dropout,
layer dropout, adaptive softmax, and layer attention).

8https://github.com/google-research/
bert/blob/master/multilingual.md

9We capped the dataset sizes to a maximum of 20,000
sentences for efficiency reasons.

180

Setup UD (LAS) GLUE (Acc)

Single 72.22 82.38
All 72.82 80.96
Smoothed 73.74 81.87
Dataset embed.∗ 72.76 –
Sep. decoder∗ 73.69 –

Table 3: Average results over all development sets.
Dataset embeddings and a separate decoder have not
been tested in GLUE, because each dataset is annotated
for a different task. ∗includes dataset smoothing.

5 Evaluation

5.1 Single task evaluation
As a starting point, we evaluate single task mod-
els to ensure our implementations are competitive
with the state-of-the-art. We report scores on de-
pendency parsing (EWT), the GLUE classifica-
tion tasks, and machine translation (WMT14 DE-
EN (Bojar et al., 2014), IWSLT15 EN-VI (Cettolo
et al., 2014)) using mBERT as our embeddings.10

Table 2 reports our results on the test sets com-
pared to previous work. For all UD tasks, we score
slightly higher, whereas for GLUE tasks we score
consistently lower compared to the references. This
is mostly due to differences in fine-tuning strate-
gies, as implementations themselves are highly sim-
ilar. Scores on the machine translation tasks show
the largest drops, indicating that task-specific fine-
tuning and pre-processing might be necessary.

5.2 Multi-dataset evaluation
We evaluate the effect of a variety of multi-dataset
settings on all GLUE and UD treebanks (v2.7) on
the test splits. It should be noted that the UD tree-
banks all have the same tasks, as opposed to GLUE.
First, we jointly train on all datasets (ALL), then
we attempt to improve performance on smaller sets
by enabling the sampling smoothing (SMOOTHED,
Section 3.2.2, we set α = 0.5). Furthermore, we at-
tempt to improve the performance by informing the
decoder of the dataset through dataset embeddings
(DATASET EMBED., Section 3.2.1) or by giving
each dataset its own decoder (SEP. DECODER). Re-
sults (Table 3) show that multi-task learning is only
beneficial for performance when training on the
same set of tasks (i.e., UD), dataset smoothing is
helpful, dataset embeddings and separate decoders
do not improve upon smoothing on average.

10For the sake of comparison we use BERT-large for GLUE,
and EWT version 2.2.

Model\Size 0 <1k <10k >10k

Single 43.5 15.1 57.9 80.1
All 44.5 37.1 66.4 80.3
Smoothed 44.3 45.4 67.1 80.3
Dataset embed.∗ 43.9 36.5 67.8 81.0
Sep. decoder∗ 45.1 37.7 66.5 80.9

Table 4: Average LAS scores on test splits of UD
treebanks grouped by training size (in number of sen-
tences). ∗includes dataset smoothing.

For analysis purposes, we group the UD tree-
banks based on training size, and also evaluate UD
treebanks which have no training split (zero-shot).
For the zero-shot experiments, we select a proxy
parser based on word overlap of the first 10 sen-
tences of the target test data and the source training
data.11 Results on the UD data (Table 4) show that
multi-task learning is mostly beneficial for medium-
sized datasets (<1k and <10k). For these datasets,
the combination of smoothing and dataset embed-
dings are the most promising settings. Perhaps
surprisingly, the zero-shot datasets (<1k) have a
higher LAS as compared to the small datasets and
using a separate decoder based on the proxy tree-
bank is the best setting; this is mainly because for
many small datasets there is no other in-language
training treebank. For the GLUE tasks (Table 5,
Appendix), multi-task learning is only beneficial
for the RTE data. This is to be expected, as the
tasks are different in this setup, and training data is
generally larger. Dataset smoothing here prevents
the model from dropping too much in performance,
as it outperforms ALL for 7 out of 9 tasks.

6 Conclusion

We introduced MACHAMP, a powerful toolkit for
multi-task learning supporting a wide range of
NLP tasks. We also provide initial experiments
demonstrating the usefulness of some of its op-
tions. We learned that multi-task learning is mostly
beneficial for setups in which multiple datasets
are annotated for the same set of tasks, and that
dataset embeddings can still be useful when em-
ploying contextualized embeddings. However, the
current experiments are just scratching the surface
of MACHAMP’s capabilities, as a wide variety of
tasks and multi-task settings is supported.

11Scores on individual sets and proxy treebanks can be
found in the Appendix.

181

Acknowledgments

We would like to thank Anouck Braggaar, Max
Müller-Eberstein and Kristian Nørgaard Jensen
for testing development versions. Furthermore,
we thank Rik van Noord for his participation in
the video, and providing an early use-case for
MACHAMP (van Noord et al., 2020). This re-
search was supported by an Amazon Research
Award, an STSM in the Multi3Generation COST
action (CA18231), a visit supported by COSBI,
grant 9063-00077B (Danmarks Frie Forsknings-
fond), and Nvidia corporation for sponsoring Titan
GPUs. We thank the NLPL laboratory and the HPC
team at ITU for the computational resources used
in this work.

References
Anne Abeillé, Lionel Clément, and Alexandra Kinyon.

2000. Building a treebank for French. In Pro-
ceedings of the Second International Conference
on Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Noëmi Aepli and Simon Clematide. 2018. Parsing
approaches for Swiss German. In Proceedings of
the 3rd Swiss Text Analytics Conference (SwissText),
Winterthur, Switzerland.

Željko Agić, Anders Johannsen, Barbara Plank, Héctor
Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics, 4:301–
312.

Željko Agić and Nikola Ljubešić. 2015. Universal De-
pendencies for Croatian (that work for Serbian, too).
In The 5th Workshop on Balto-Slavic Natural Lan-
guage Processing, pages 1–8, Hissar, Bulgaria. IN-
COMA Ltd. Shoumen, BULGARIA.

Lars Ahrenberg. 2015. Converting an English-Swedish
parallel treebank to Universal Dependencies. In Pro-
ceedings of the Third International Conference on
Dependency Linguistics (Depling 2015), pages 10–
19, Uppsala, Sweden. Uppsala University, Uppsala,
Sweden.

Linda Alfieri and Fabio Tamburini. 2016. (almost) au-
tomatic conversion of the Venice Italian Treebank
into the merged Italian Dependency Treebank for-
mat. In CLiC-it/EVALITA.

Ika Alfina, Indra Budi, and Heru Suhartanto. 2020.
Tree rotations for dependency trees: Converting the
head-directionality of noun phrases. Journal of
Computer Science, 16(11):1585–1597.

Héctor Martı́nez Alonso and Daniel Zeman. 2016.
Universal Dependencies for the AnCora treebanks.
Procesamiento del Lenguaje Natural, 57:91–98.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Angelina Aquino, Franz de Leon, and Mary Ann
Bacolod. 2020. UD Tagalog-Ugnayan. https:
//github.com/UniversalDependencies/UD_
Tagalog-Ugnayan.

Carolina Coelho Aragon. 2018. Variações estilı́sticas e
sociais no discurso dos falantes akuntsú. Polifonia,
25(38.1):90–103.

Maria Jesus Aranzabe, Aitziber Atutxa, Kepa Ben-
goetxea, Arantza Diaz de Ilarraza, Iakes Goenaga,
Koldo Gojenola, and Larraitz Uria. 2015. Auto-
matic conversion of the Basque dependency tree-
bank to universal dependencies. In Proceedings of
the fourteenth international workshop on treebanks
an linguistic theories (TLT14), pages 233–241.

Masayuki Asahara, Hiroshi Kanayama, Takaaki
Tanaka, Yusuke Miyao, Sumire Uematsu, Shinsuke
Mori, Yuji Matsumoto, Mai Omura, and Yugo Mu-
rawaki. 2018. Universal Dependencies version 2 for
Japanese. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Elena Badmaeva and Francis M. Tyers. 2017. Depen-
dency treebank for Buryat. In Proceedings of the
15th International Workshop on Treebanks and Lin-
guistic Theories (TLT15), pages 1–12.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, Conference Track Proceedings, San
Diego, CA, USA.

David Bamman and Gregory Crane. 2011. The ancient
Greek and Latin dependency treebanks. In Lan-
guage technology for cultural heritage, pages 79–98.
Springer.

Verginica Barbu Mititelu, Radu Ion, Radu Simionescu,
Elena Irimia, and Cenel-Augusto Perez. 2016. The
Romanian treebank annotated according to Univer-
sal Dependencies. In Proceedings of the tenth inter-
national conference on natural language processing
(hrtal2016).

Colin Batchelor. 2019. Universal dependencies for
Scottish Gaelic: syntax. In Proceedings of the
Celtic Language Technology Workshop, pages 7–15,
Dublin, Ireland. European Association for Machine
Translation.

182

Shabnam Behzad and Amir Zeldes. 2020. A cross-
genre ensemble approach to robust Reddit part of
speech tagging. In Proceedings of the 12th Web as
Corpus Workshop, pages 50–56, Marseille, France.
European Language Resources Association.

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlı́na
Jı́nová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiřı́ Mı́rovskỳ, Anna Nedoluzhko,
Jarmila Panevová, et al. 2013. Prague dependency
treebank 3.0.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth PASCAL recognizing textual entailment chal-
lenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA.

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,
Jing Xian Wang, Lucia Lam, Keiko Sophie Mori,
Sebastian Garza, and Boris Katz. 2016. Universal
Dependencies for learner English. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 737–746, Berlin, Germany. Association for
Computational Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987–998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,
Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma, Ash-
wini Vaidya, Sri Ramagurumurthy Vishnu, et al.
2016. The hindi/urdu treebank project. In Hand-
book of Linguistic Annotation. Springer Press.

Agne Bielinskiene, Loic Boizou, and Jolanta Ko-
valevskaite. 2016. Lithuanian dependency treebank.
In Human Language Technologies–The Baltic Per-
spective: Proceedings of the Seventh International
Conference Baltic HLT 2016, volume 289, page 107.
IOS Press.

Su Lin Blodgett, Johnny Wei, and Brendan O’Connor.
2018. Twitter Universal Dependency parsing for
African-American and mainstream American En-
glish. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1415–1425, Melbourne,
Australia. Association for Computational Linguis-
tics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on

statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Guillaume Bonfante, Bruno Guillaume, and Guy Per-
rier. 2018. Application of Graph Rewriting to Natu-
ral Language Processing. Wiley Online Library.

Emanuel Borges Völker, Maximilian Wendt, Felix Hen-
nig, and Arne Köhn. 2019. HDT-UD: A very large
Universal Dependencies treebank for German. In
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019), pages 46–57,
Paris, France. Association for Computational Lin-
guistics.

Cristina Bosco, Felice Dell’Orletta, Simonetta Monte-
magni, Manuela Sanguinetti, and Maria Simi. 2014.
The EVALITA 2014 dependency parsing task. In
EVALITA 2014 Evaluation of NLP and Speech Tools
for Italian, pages 1–8. Pisa University Press.

Gosse Bouma and Gertjan van Noord. 2017. Increas-
ing return on annotation investment: The automatic
construction of a Universal Dependency treebank
for Dutch. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 19–26, Gothenburg, Sweden. Association for
Computational Linguistics.

Anouck Braggaar and Rob van der Goot. 2021. Chal-
lenges in annotating and parsing spoken, code-
switched, Frisian-Dutch data. In Proceedings of the
Second Workshop on Domain Adaptation for Natu-
ral Language Processing.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic interpretation of a ger-
man corpus. Research on language and computa-
tion, 2(4):597–620.

Bernard Caron, Marine Courtin, Kim Gerdes, and Syl-
vain Kahane. 2019. A surface-syntactic UD tree-
bank for Naija. In Proceedings of the 18th Interna-
tional Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2019), pages 13–24, Paris,
France. Association for Computational Linguistics.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In Proceedings of the
Tenth International Conference on Machine Learn-
ing, pages 41–48, Amherst, MA, USA.

Rich Caruana. 1997. Multitask learning. In Learning
to learn, pages 95–133. Springer.

Flavio Massimiliano Cecchini, Marco Passarotti, Paola
Marongiu, and Daniel Zeman. 2018. Challenges in
converting the index Thomisticus treebank into Uni-
versal Dependencies. In Proceedings of the Sec-
ond Workshop on Universal Dependencies (UDW
2018), pages 27–36, Brussels, Belgium. Association
for Computational Linguistics.

183

Slavomı́r Čéplö. 2018. Constituent order in Maltese: A
quantitative analysis.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Özlem Çetinoğlu and Çağrı Çöltekin. 2019. Chal-
lenges of annotating a code-switching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 82–90, Paris, France. Association for
Computational Linguistics.

Mauro Cettolo, Niehues Jan, Stüker Sebastian, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2014. The IWSLT 2014 evaluation campaign. In
International Workshop on Spoken Language Trans-
lation, Lake Tahoe, CA, USA.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Grzegorz Chrupała, Ákos Kádár, and Afra Alishahi.
2015. Learning language through pictures. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 112–
118, Beijing, China. Association for Computational
Linguistics.

Grzegorz Chrupała. 2006. Simple data-driven context-
sensitive lemmatization. SEPLN, 37:121–127.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica, 14:1396–1400.

Jayeol Chun, Na-Rae Han, Jena D. Hwang, and
Jinho D. Choi. 2018. Building Universal Depen-
dency treebanks in Korean. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Alessandra Teresa Cignarella, Cristina Bosco, and
Paolo Rosso. 2019. Presenting TWITTIRÒ-UD:
An Italian Twitter treebank in Universal Dependen-
cies. In Proceedings of the Fifth International Con-
ference on Dependency Linguistics (Depling, Syn-
taxFest 2019), pages 190–197, Paris, France. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931–5937, Florence, Italy.
Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Cagrı Cöltekin. 2015. A grammar-book treebank of
Turkish. In Proceedings of the 14th workshop on
Treebanks and Linguistic Theories (TLT 14), pages
35–49.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069, Vancouver, Canada.

Sam Davidson, Dian Yu, and Zhou Yu. 2019. De-
pendency parsing for spoken dialog systems. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1513–
1519, Hong Kong, China. Association for Computa-
tional Linguistics.

Mehmet Oguz Derin. 2020. UD Old Turkish-
Tonqq. https://github.com/
UniversalDependencies/UD_Old_
Turkish-Tonqq.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Cheikh Bamba Dione. 2019. Developing Universal De-
pendencies for Wolof. In Proceedings of the Third
Workshop on Universal Dependencies (UDW, Syn-
taxFest 2019), pages 12–23, Paris, France. Associ-
ation for Computational Linguistics.

Peter Dirix, Liesbeth Augustinus, Daniel van Niekerk,
and Frank Van Eynde. 2017. Universal Dependen-
cies for Afrikaans. In Proceedings of the NoDaLiDa
2017 Workshop on Universal Dependencies (UDW
2017), pages 38–47, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Kaja Dobrovoljc, Tomaž Erjavec, and Simon Krek.
2017. The Universal Dependencies treebank for
Slovenian. In Proceedings of the 6th Workshop on
Balto-Slavic Natural Language Processing, pages

184

33–38, Valencia, Spain. Association for Computa-
tional Linguistics.

Kaja Dobrovoljc and Joakim Nivre. 2016. The Univer-
sal Dependencies treebank of spoken Slovenian. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1566–1573, Portorož, Slovenia. European
Language Resources Association (ELRA).

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005), pages 9–16, Jeju Is-
land, Korea.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of 5th International Conference
on Learning Representations, ICLR 2017, Confer-
ence Track Proceedings, Toulon, France.

Kira Droganova, Olga Lyashevskaya, and Daniel Ze-
man. 2018. Data conversion and consistency of
monolingual corpora: Russian UD treebanks. In
Proceedings of the 17th international workshop on
treebanks and linguistic theories (tlt 2018), 155,
pages 53–66.

Puneet Dwivedi and Guha Easha. 2017. Universal De-
pendencies for Sanskrit. International Journal of
Advance Research, Ideas and Innovations in Tech-
nology, 3(4).

Hanne Eckhoff, Kristin Bech, Gerlof Bouma, Kris-
tine Eide, Dag Haug, Odd Einar Haugen, and Mar-
ius Jøhndal. 2018. The PROIEL treebank family:
a standard for early attestations of Indo-European
languages. Language Resources and Evaluation,
52(1):29–65.

Hanne Martine Eckhoff and Aleksandrs Berdičevskis.
2015. Linguistics vs. digital editions: The Tromsø
Old Russian and OCS treebank. Scripta & e-Scripta,
14(15):9–25.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Marhaba Eli, Weinila Mushajiang, Tuergen Yibulayin,
Kahaerjiang Abiderexiti, and Yan Liu. 2016. Uni-
versal dependencies for Uyghur. In Proceedings
of the Third International Workshop on World-
wide Language Service Infrastructure and Sec-
ond Workshop on Open Infrastructures and Anal-
ysis Frameworks for Human Language Technolo-
gies (WLSI/OIAF4HLT2016), pages 44–50, Osaka,
Japan. The COLING 2016 Organizing Committee.

Marı́lia Fernanda Pereira de Freitas. 2017. A posse em
apurinã: Descrição de construções atributivas e pred-
icativas em comparação com outras lı́nguas aruák.
Belém: Programa de Pós-Graduação em Letras,
Universidade Federal do Pará (Tese de Doutorado).

Marcos Garcia. 2016. Universal dependencies guide-
lines for the Galician-TreeGal treebank. Technical
report, Technical Report, LyS Group, Universidade
da Coruna.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Fabrı̀cio Ferraz Gerardi. 2020. UD Tupinamba-
TuDeT. https://github.com/
UniversalDependencies/UD_
Tupinamba-TuDeT.

Fabrı̀cio Ferraz Gerardi. 2021. The structure of
Mundurukú.

Memduh Gökırmak and Francis M. Tyers. 2017. A
dependency treebank for Kurmanji Kurdish. In
Proceedings of the Fourth International Conference
on Dependency Linguistics (Depling 2017), pages
64–72, Pisa,Italy. Linköping University Electronic
Press.

Xavier Gómez Guinovart. 2017. Recursos integra-
dos da lingua galega para a investigación lingüı́stica.
Gallaecia. Estudos de lingüı́stica portuguesa e
galega. Santiago de Compostela: Universidade de
Santiago, pages 1037–1048.

Rob van der Goot and Gertjan van Noord. 2018. Mod-
eling input uncertainty in neural network depen-
dency parsing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4984–4991, Brussels, Belgium.
Association for Computational Linguistics.

Rob van der Goot, Ahmet Üstün, Alan Ramponi, and
Barbara Plank. 2020. Massive choice, ample tasks
(MaChAmp): A toolkit for multi-task learning in
NLP. arXiv preprint arXiv:2005.14672v2.

Normunds Gruzitis, Lauma Pretkalnina, Baiba Saulite,
Laura Rituma, Gunta Nespore-Berzkalne, Arturs
Znotins, and Peteris Paikens. 2018. Creation of a
balanced state-of-the-art multilayer corpus for NLU.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Bruno Guillaume, Marie-Catherine de Marneffe, and
Guy Perrier. 2019. Conversion et améliorations
de corpus du Français annotés en Universal De-
pendencies. Traitement Automatique des Langues,
60(2):71–95.

Jan Hajič, Otakar Smrž, Petr Zemánek, Petr Pajas,
Jan Šnaidauf, Emanuel Beška, Jakub Krácmar, and
Kamila Hassanová. 2009. Prague Arabic depen-
dency treebank 1.0.

185

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1923–1933, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Dag TT Haug and Marius Jøhndal. 2008. Creating
a parallel treebank of the old Indo-European Bible
translations. In Proceedings of the second workshop
on language technology for cultural heritage data
(LaTeCH 2008), pages 27–34.

Johannes Heinecke and Francis M. Tyers. 2019. De-
velopment of a Universal Dependencies treebank for
Welsh. In Proceedings of the Celtic Language Tech-
nology Workshop, pages 21–31, Dublin, Ireland. Eu-
ropean Association for Machine Translation.

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann,
and Paul Widmer. 2020. The treebank of Vedic
Sanskrit. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5137–
5146, Marseille, France. European Language Re-
sources Association.

Barbora Hladká, Jan Hajič, Jirka Hana, Jaroslava
Hlaváčová, Jiřı́ Mı́rovskỳ, and Jan Raab. 2008. The
Czech academic corpus 2.0 guide. The Prague Bul-
letin of Mathematical Linguistics, 89(1):41–96.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gen-
eralization. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume
119, pages 4411–4421.

Anton Karl Ingason, Eirı́kur Rögnvaldsson, Einar Freyr
Sigurosson, and Joel C. Wallenberg. 2020. The
Faroese parsed historical corpus. CLARIN-IS, Stof-
nun Árna Magnússonar.

Olájı́dé Ishola and Daniel Zeman. 2020. Yorùbá de-
pendency treebank (YTB). In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 5178–5186, Marseille, France. Euro-
pean Language Resources Association.

Tomás Jelı́nek. 2017. FicTree: A manually annotated
treebank of Czech fiction. In ITAT, pages 181–185.

Anders Johannsen, Héctor Martı́nez Alonso, and Bar-
bara Plank. 2015. Universal dependencies for Dan-
ish. In International Workshop on Treebanks and
Linguistic Theories (TLT14), page 157.

Hildur Jónsdóttir and Anton Karl Ingason. 2020. Cre-
ating a parallel Icelandic dependency treebank from
raw text to Universal Dependencies. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 2924–2931, Marseille, France.
European Language Resources Association.

Jenna Kanerva. 2020. UD Finnish-OOD. https:
//github.com/UniversalDependencies/UD_
Finnish-OOD.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Kamil Kopacewicz. 2018. UD Akkadian-
PISANDUB. https://github.
com/UniversalDependencies/UD_
Akkadian-PISANDUB.

Natalia Kotsyba, Bohdan Moskalevskyi, Mykhailo
Romanenko, Halyna Samoridna, Ivanka Kosovska,
Olha Lytvyn, Oksana Orlenko, Hanna Brovko,
Bohdana Matushko, Natalia Onyshchuk, Valeriia
Pareviazko, Yaroslava Rychyk, Anastasiia Stet-
senko, Snizhana Umanets, and Larysa Masenko.
2018. UD Ukrainian-IU. https://github.com/
UniversalDependencies/UD_Ukrainian-IU.

Vincent Krı́ž, Barbora Hladká, and Zdenka Uresova.
2016. Czech legal text treebank 1.0. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2387–
2392.

Anne Lacheret-Dujour, Sylvain Kahane, and Paola
Pietrandrea. 2019. Rhapsodie: A prosodic and syn-
tactic treebank for spoken French, volume 89. John
Benjamins Publishing Company.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with a
multimodal skip-gram model. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 153–163, Den-
ver, Colorado. Association for Computational Lin-
guistics.

John Lee, Herman Leung, and Keying Li. 2017. To-
wards Universal Dependencies for learner Chinese.
In Proceedings of the NoDaLiDa 2017 Workshop

186

on Universal Dependencies (UDW 2017), pages 67–
71, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The Winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning,
Rome, Italy.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jian-
feng Gao. 2020. Very deep transformers for
neural machine translation. arXiv preprint
arXiv:2008.07772v2.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing tweets
into Universal Dependencies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 965–975, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Mikko Luukko, Aleksi Sahala, Sam Hardwick, and
Krister Lindén. 2020. Akkadian treebank for early
neo-assyrian royal inscriptions. In Proceedings
of the 19th International Workshop on Treebanks
and Linguistic Theories, pages 124–134, Düsseldorf,
Germany. Association for Computational Linguis-
tics.

Olga Lyashevskaya. 2019. A reusable tagset for the
morphologically rich language in change: A case of
Middle Russian. In Proceedings of the International
Conference Dialogue 2019, pages 422–434.

Olga Lyashevskaya, Angelika Peljak-Łapińska, and
Daria Petrova. 2017. UD Belarusian-HSE. https:
//github.com/UniversalDependencies/UD_
Belarusian-HSE.

Olga Lyashevskaya and Dmitry Sichinava.
2017. UD Lithuanian-HSE. https:
//github.com/UniversalDependencies/
UD_Lithuanian-HSE.

Teresa Lynn and Jennifer Foster. 2016. Universal de-
pendencies for irish. In CLTW.

Aibek Makazhanov, Aitolkyn Sultangazina, Olzhas
Makhambetov, and Zhandos Yessenbayev. 2015.
Syntactic annotation of Kazakh: Following the Uni-
versal Dependencies guidelines. a report. In 3rd
International Conference on Turkic Languages Pro-
cessing, (TurkLang 2015), pages 338–350.

Christopher D Manning. 2015. Computational linguis-
tics and deep learning. Computational Linguistics,
41(4):701–707.

Cătălina Mărănduc, Cenel-Augusto Perez, and Radu
Simionescu. 2016. Social media-processing Roma-
nian chat and discourse analysis. Computación y Sis-
temas, 20(3):405–414.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, Valencia, Spain.
Association for Computational Linguistics.

Héctor Martı́nez Alonso, Djamé Seddah, and Benoı̂t
Sagot. 2016. From noisy questions to Minecraft
texts: Annotation challenges in extreme syntax sce-
nario. In Proceedings of the 2nd Workshop on Noisy
User-generated Text (WNUT), pages 13–23, Osaka,
Japan. The COLING 2016 Organizing Committee.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal Dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97, Sofia, Bulgaria.
Association for Computational Linguistics.

Maria Mitrofan, Verginica Barbu Mititelu, and Grigo-
rina Mitrofan. 2019. MoNERo: a biomedical gold
standard corpus for the Romanian language. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 71–79, Florence, Italy. Association for
Computational Linguistics.

Foroushani Mojiri, Hossein Amir, Hamid Aghaei,
and Amir Ahmadi. 2020. UD Soi-AHA. https:
//github.com/UniversalDependencies/UD_
Soi-AHA.

AmirHossein Mojiri Foroushani, Hamid Aghaei, and
Amir Ahmadi. 2020a. UD Khunsari-AHA. https:
//github.com/UniversalDependencies/UD_
Khunsari-AHA.

AmirHossein Mojiri Foroushani, Hamid Aghaei, and
Amir Ahmadi. 2020b. UD Nayini-AHA. https:
//github.com/UniversalDependencies/UD_
Nayini-AHA.

Kadri Muischnek, Kaili Müürisep, Tiina Puolakainen,
Eleri Aedmaa, Riin Kirt, and Dage Särg. 2014. Esto-
nian dependency treebank and its annotation scheme.
In Proceedings of 13th workshop on treebanks and
linguistic theories (TLT13), pages 285–291.

Kadri Muischnek, Kaili Müürisep, and Dage Dage
Särg. 2019. CG roots of UD treebank of Estonian
web language. In Proceedings of the NoDaLiDa
2019 Workshop on Constraint Grammar-Methods,
Tools and Applications, 30 September 2019, Turku,
Finland, 168, pages 23–26. Linköping University
Electronic Press.

187

Robert Munro. 2020. Human-in-the-loop machine
learning. Sl: O’REILLY MEDIA.

Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-
Huyen Nguyen, Van-Hiep Nguyen, and Hong-
Phuong Le. 2009. Building a large syntactically-
annotated corpus of Vietnamese. In Proceedings of
the Third Linguistic Annotation Workshop (LAW III),
pages 182–185, Suntec, Singapore. Association for
Computational Linguistics.

Rik van Noord, Antonio Toral, and Johan Bos. 2020.
Character-level representations improve DRS-based
semantic parsing Even in the age of BERT. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4587–4603, Online. Association for Computa-
tional Linguistics.

Atul Kr. Ojha and Daniel Zeman. 2020. Universal
Dependency treebanks for low-resource Indian lan-
guages: The case of Bhojpuri. In Proceedings of the
WILDRE5– 5th Workshop on Indian Language Data:
Resources and Evaluation, pages 33–38, Marseille,
France. European Language Resources Association
(ELRA).

Mai Omura, Yuta Takahashi, and Masayuki Asahara.
2017. Universal dependency for modern Japanese.
In Proceedings of the 7th Conference of Japanese
Association for Digital Humanities (JADH2017),
pages 34–36.

Robert Östling, Carl Börstell, Moa Gärdenfors, and
Mats Wirén. 2017. Universal Dependencies for
Swedish Sign Language. In Proceedings of the
21st Nordic Conference on Computational Linguis-
tics, pages 303–308, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Lilja Øvrelid and Petter Hohle. 2016. Universal Depen-
dencies for Norwegian. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 1579–1585, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Lilja Øvrelid, Andre Kåsen, Kristin Hagen, Anders
Nøklestad, Per Erik Solberg, and Janne Bondi Jo-
hannessen. 2018. The LIA treebank of spoken Nor-
wegian dialects. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi syntax: Annotating dependency, lex-
ical predicate-argument structure, and phrase struc-
ture. In The 7th International Conference on Natu-
ral Language Processing, pages 14–17.

Niko Partanen, Rogier Blokland, KyungTae Lim,
Thierry Poibeau, and Michael Rießler. 2018. The
first Komi-Zyrian Universal Dependencies tree-
banks. In Proceedings of the Second Workshop on

Universal Dependencies (UDW 2018), pages 126–
132, Brussels, Belgium. Association for Computa-
tional Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8026–8037. Vancouver,
Canada.

Agnieszka Patejuk and Adam Przepiórkowski. 2018.
From Lexical Functional Grammar to Enhanced
Universal Dependencies: Linguistically informed
treebanks of Polish. Institute of Computer Science,
Polish Academy of Sciences, Warsaw.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jussi Piitulainen and Hanna Nurmi. 2017.
UD Finnish-FTB. https://github.com/
UniversalDependencies/UD_Finnish-FTB.

Tommi A Pirinen. 2019. Building minority depen-
dency treebanks, dictionaries and computational
grammars at the same time—an experiment in Kare-
lian treebanking. In Proceedings of the Third Work-
shop on Universal Dependencies (UDW, SyntaxFest
2019), pages 132–136, Paris, France. Association
for Computational Linguistics.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 412–418, Berlin,
Germany. Association for Computational Linguis-
tics.

Prokopis Prokopidis and Haris Papageorgiou. 2017.
Universal Dependencies for Greek. In Proceedings
of the NoDaLiDa 2017 Workshop on Universal De-
pendencies (UDW 2017), pages 102–106, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:

188

System Demonstrations, pages 109–117, Online. As-
sociation for Computational Linguistics.

Sampo Pyysalo, Jenna Kanerva, Anna Missilä,
Veronika Laippala, and Filip Ginter. 2015. Univer-
sal Dependencies for Finnish. In Proceedings of the
20th Nordic Conference of Computational Linguis-
tics (NODALIDA 2015), pages 163–172, Vilnius,
Lithuania. Linköping University Electronic Press,
Sweden.

Peng Qi and Koichi Yasuoka. 2019.
UD Chinese-GSDSimp. https://github.
com/UniversalDependencies/UD_
Chinese-GSDSimp.

Alexandre Rademaker, Fabricio Chalub, Livy Real,
Cláudia Freitas, Eckhard Bick, and Valeria de Paiva.
2017. Universal Dependencies for Portuguese. In
Proceedings of the Fourth International Confer-
ence on Dependency Linguistics (Depling 2017),
pages 197–206, Pisa,Italy. Linköping University
Electronic Press.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taraka Rama and Sowmya Vajjala. 2017. A Telugu
treebank based on a grammar book. In Proceedings
of the 16th International Workshop on Treebanks
and Linguistic Theories, pages 119–128, Prague,
Czech Republic.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2012.
Prague dependency style treebank for Tamil. In
Proceedings of Eighth International Conference on
Language Resources and Evaluation (LREC 2012),
pages 1888–1894, İstanbul, Turkey.

Vinit Ravishankar. 2017. A Universal Dependencies
treebank for Marathi. In Proceedings of the 16th
International Workshop on Treebanks and Linguistic
Theories, pages 190–200, Prague, Czech Republic.

Ines Rehbein, Josef Ruppenhofer, and Bich-Ngoc Do.
2019. tweeDe – a Universal Dependencies treebank
for German tweets. In Proceedings of the 18th Inter-
national Workshop on Treebanks and Linguistic The-
ories (TLT, SyntaxFest 2019), pages 100–108, Paris,
France. Association for Computational Linguistics.

Eirı́kur Rögnvaldsson, Anton Karl Ingason, Einar Freyr
Sigurosson, and Joel Wallenberg. 2012. The Ice-
landic parsed historical corpus (IcePaHC). In Pro-
ceedings of the Eighth International Conference

on Language Resources and Evaluation (LREC’12),
pages 1977–1984, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jack Rueter and Niko Partanen. 2019. Survey of Uralic
Universal Dependencies development. In Workshop
on Universal Dependencies, page 78. The Associa-
tion for Computational Linguistics.

Jack Rueter, Niko Partanen, and Larisa Ponomareva.
2020. On the questions in developing computational
infrastructure for Komi-permyak. In Proceedings of
the Sixth International Workshop on Computational
Linguistics of Uralic Languages, pages 15–25, Wien,
Austria. Association for Computational Linguistics.

Jack Rueter and Francis Tyers. 2018. Towards an open-
source universal-dependency treebank for Erzya. In
Proceedings of the Fourth International Workshop
on Computational Linguistics of Uralic Languages,
pages 106–118.

Jack Michael Rueter. 2018. Mordva. In The Uralic
Languages. Routledge.

Mohammad Sadegh Rasooli, Pegah Safari, Amirsaeid
Moloodi, and Alireza Nourian. 2020. The Per-
sian dependency treebank made universal. arXiv e-
prints, pages arXiv–2009.

Alessio Salomoni. 2019. UD German-LIT. https:
//github.com/UniversalDependencies/UD_
German-LIT.

Tanja Samardžić, Mirjana Starović, Željko Agić, and
Nikola Ljubešić. 2017. Universal Dependencies
for Serbian in comparison with Croatian and other
Slavic languages. In Proceedings of the 6th Work-
shop on Balto-Slavic Natural Language Processing,
pages 39–44, Valencia, Spain. Association for Com-
putational Linguistics.

Stephanie Samson and Cagrı Cöltekin. 2020.
UD Tagalog-TRG. https://github.com/
UniversalDependencies/UD_Tagalog-TRG.

Manuela Sanguinetti and Cristina Bosco. 2014. To-
wards a Universal Stanford Dependencies paral-
lel treebank. In Proceedings of the 13th Work-
shop on Treebanks and Linguistic Theories (TLT-13).
Springer.

189

Manuela Sanguinetti, Cristina Bosco, Alberto Lavelli,
Alessandro Mazzei, Oronzo Antonelli, and Fabio
Tamburini. 2018. PoSTWITA-UD: an Italian Twit-
ter treebank in Universal Dependencies. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6949–6956, Honolulu, Hawaii, USA.

Kengatharaiyer Sarveswaran and Gihan Dias. 2020.
ThamizhiUDp: A dependency parser for Tamil.
arXiv preprint arXiv:2012.13436.

Kevin Scannell. 2020. Universal Dependencies for
Manx Gaelic. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020),
pages 152–157, Barcelona, Spain (Online). Associ-
ation for Computational Linguistics.

Djamé Seddah and Marie Candito. 2016. Hard
time parsing questions: Building a QuestionBank
for French. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2366–2370, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Mojgan Seraji, Filip Ginter, and Joakim Nivre. 2016.
Universal Dependencies for Persian. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
2361–2365, Portorož, Slovenia. European Language
Resources Association (ELRA).

Binyam Ephrem Seyoum, Yusuke Miyao, and Baye Yi-
mam Mekonnen. 2018. Universal Dependencies for
Amharic. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Tatiana Shavrina and Olga Shapovalova. 2017. To
the methodology of corpus construction for ma-
chine learning:“Taiga” syntax tree corpus and parser.
In Proceedings of “CORPORA-2017” International
Conference, pages 78–84.

Mo Shen, Ryan McDonald, Daniel Zeman, and
Peng Qi. 2016. UD Chinese-GSD. https:
//github.com/UniversalDependencies/UD_
Chinese-GSD.

Timothy Shopen. 2018. UD Warlpiri-UFAL. https:
//github.com/UniversalDependencies/UD_
Lithuanian-HSE.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Chris Manning. 2014. A gold stan-
dard dependency corpus for English. In Proceedings

of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2897–
2904, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Kiril Simov, Petya Osenova, Alexander Simov, and
Milen Kouylekov. 2005. Design and implementa-
tion of the Bulgarian HPSG-based treebank. Jour-
nal of Research on Language and Computation. Spe-
cial Issue, pages 495–522.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231–235, Berlin,
Germany. Association for Computational Linguis-
tics.

Achim Stein and Sophie Prévost. 2013. Syntactic anno-
tation of medieval texts. New methods in historical
corpora, 3:275.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with hetero-
geneous treebanks. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 619–
625, Melbourne, Australia. Association for Compu-
tational Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal Dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 3444–3454, Osaka, Japan. The
COLING 2016 Organizing Committee.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 27, pages 3104–3112, Mon-
treal, Canada.

Guillaume Thomas. 2019. Universal Dependencies for
Mbyá Guaranı́. In Proceedings of the Third Work-
shop on Universal Dependencies (UDW, SyntaxFest
2019), pages 70–77, Paris, France. Association for
Computational Linguistics.

190

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Marsida Toska, Joakim Nivre, and Daniel Zeman. 2020.
Universal Dependencies for Albanian. In Proceed-
ings of the Fourth Workshop on Universal Depen-
dencies (UDW 2020), pages 178–188, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Utku Türk, Furkan Atmaca, Şaziye Betül Özateş,
Gözde Berk, Seyyit Talha Bedir, Abdullatif Köksal,
Balkiz Öztürk Başaran, Tunga Güngör, and Arzu-
can Özgür. 2020. Resources for Turkish dependency
parsing: Introducing the BOUN treebank and the
BoAT annotation tool.

Francis Tyers and Karina Mishchenkova. 2020. Depen-
dency annotation of noun incorporation in polysyn-
thetic languages. In Proceedings of the Fourth
Workshop on Universal Dependencies (UDW 2020),
pages 195–204, Barcelona, Spain (Online). Associa-
tion for Computational Linguistics.

Francis Tyers, Mariya Sheyanova, Aleksandra Mar-
tynova, Pavel Stepachev, and Konstantin Vinogorod-
skiy. 2018. Multi-source synthetic treebank creation
for improved cross-lingual dependency parsing. In
Proceedings of the Second Workshop on Universal
Dependencies (UDW 2018), pages 144–150, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Francis M Tyers and Vinit Ravishankar. 2018. A proto-
type dependency treebank for Breton. In Actes de la
Conférence TALN. Volume 1 - Articles longs, articles
courts de TALN, pages 197–204, Rennes, France.
ATALA.

Francis M. Tyers and Mariya Sheyanova. 2017. Anno-
tation schemes in North Sámi dependency parsing.
In Proceedings of the Third Workshop on Computa-
tional Linguistics for Uralic Languages, pages 66–
75, St. Petersburg, Russia. Association for Computa-
tional Linguistics.

Veronika Vincze, Dóra Szauter, Attila Almási, György
Móra, Zoltán Alexin, and János Csirik. 2010.
Hungarian dependency treebank. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Valentin Vydrin. 2013. Bamana Reference Corpus
(BRC). Procedia-Social and Behavioral Sciences,
95:75–80.

Joachim Wagner, James Barry, and Jennifer Foster.
2020. Treebank embedding vectors for out-of-
domain dependency parsing. In Proceedings of the

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8812–8818, Online. As-
sociation for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Hongmin Wang, Jie Yang, and Yue Zhang. 2019. From
genesis to creole language: Transfer learning for
Singlish Universal Dependencies parsing and pos
tagging. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 19(1):1–29.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Tak-sum Wong, Kim Gerdes, Herman Leung, and John
Lee. 2017. Quantitative comparative syntax on
the Cantonese-Mandarin parallel dependency tree-
bank. In Proceedings of the Fourth International
Conference on Dependency Linguistics (Depling
2017), pages 266–275, Pisa,Italy. Linköping Univer-
sity Electronic Press.

Alina Wróblewska. 2018. Extended and enhanced Pol-
ish dependency bank in Universal Dependencies for-
mat. In Proceedings of the Second Workshop on Uni-
versal Dependencies (UDW 2018), pages 173–182,
Brussels, Belgium. Association for Computational
Linguistics.

Mary Yako. 2019. UD Assyrian-AS. https:
//github.com/UniversalDependencies/UD_
Assyrian-AS.

191

Koichi Yasuoka. 2019. Universal dependencies tree-
bank of the four books in Classical Chinese. In
DADH2019: 10th International Conference of Dig-
ital Archives and Digital Humanities, pages 20–28.
Digital Archives and Digital Humanities.

M Yavrumyan, H Khachatrian, A Danielyan, and
G Arakelyan. 2017. ArmTDP: Eastern Armenian
treebank and dependency parser. In XI Interna-
tional Conference on Armenian Linguistics, Ab-
stracts. Yerevan.

Manzil Zaheer, Sashank Reddi, Devendra Sachan,
Satyen Kale, and Sanjiv Kumar. 2018. Adap-
tive methods for nonconvex optimization. In Ad-
vances in Neural Information Processing Systems,
volume 31, pages 9793–9803, Montreal, Canada.

Shorouq Zahra. 2020. Parsing low-resource Levantine
Arabic: Annotation projection versus small-sized an-
notated data.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Amir Zeldes and Mitchell Abrams. 2018. The Cop-
tic Universal Dependency treebank. In Proceedings
of the Second Workshop on Universal Dependencies
(UDW 2018), pages 192–201, Brussels, Belgium.
Association for Computational Linguistics.

Dan Zeman, Anna Nedoluzhko, and Martin Ma-
jliš. 2017. UD Upper Sorbian-UFAL. https:
//github.com/UniversalDependencies/UD_
Upper_Sorbian-UFAL.

Daniel Zeman. 2017. Slovak dependency treebank
in Universal Dependencies. Journal of Linguis-
tics/Jazykovednỳ casopis, 68(2):385–395.

192

Dataset RTE MRPC CoLa SST-2 QNLI QQP MNLI MNLI-mis SNLI
size 2k 4k 9k 67k 105k 364k 393k 393k 550k

Single 67.1 85.5 74.7 88.4 85.2 90.5 80.2 80.8 88.9
All 69.3 81.6 70.2 88.2 82.3 90.1 79.2 79.7 88.1
Smoothed 72.9 82.8 72.7 87.6 83.1 90.3 78.8 80.1 88.4

Table 5: The scores (accuracy) per dataset on the
GLUE tasks (dev) for a variety of multi-task settings
(ordered by size, indicated in number of sentences in
training data).

Appendix

Multi-dataset evaluation on GLUE tasks Ta-
ble 5 contains the per-dataset scores for the GLUE
tasks for all our tested settings. Only for RTE the
performance increases when using multi-task learn-
ing. Overall, smoothing helps to overcome some
of the performance loss we get when training one
model on all datasets simultaneously.

Multi-dataset evaluation on UD treebanks Ta-
ble 6 (on the next four pages) shows the LAS
scores for each treebank (UD2.7) for all of our
settings. We pre-processed the data with the UD-
conversion tools to remove all language-specific
sub-labels, and the multi-word tokens and empty
nodes. However, we calculate the scores against
the official files for fair comparison.12 We included
as many datasets as we could find. In the top part
of the table, we include all official UD datasets for
which we could get the words (only UD Arabic-
NYUAD and UD Japanese-BCCWJ are missing),
and the last 12 treebanks are taken from other
sources, some have undergone some specific pre-
processing to pass the evaluation script; details
about this process can be found in the repository in
scripts/udExtras.

12This is why the scores for some datasets might seem low
compared to previous work, which did either do tokenization
or did not take it into account during evaluation. In our case
the model is punished for not tokenizing.

193

+smoothing
dataset citation proxy size self conc. conc. sepDec dataEmb

af afribooms (Dirix et al., 2017) — 33,894 86.7 85.9 86.6 87.0 85.9
aii as (Yako, 2019) et ewt 0 9.7 3.5 3.9 5.1 3.4
ajp madar (Zahra, 2020) ar padt 0 31.2 33.8 33.1 33.2 31.2
akk pisandub (Kopacewicz, 2018) et edt 0 3.0 4.3 4.7 3.6 3.3
akk riao (Luukko et al., 2020) et edt 0 4.0 8.2 7.6 7.3 8.1
am att (Seyoum et al., 2018) et ewt 0 1.8 0.8 0.8 0.5 0.8
apu ufpa (Freitas, 2017) fi ftb 0 6.1 13.3 13.1 8.1 13.4
aqz tudet (Aragon, 2018) cs pdt 0 6.7 9.6 9.6 9.2 14.7
ar padt (Hajič et al., 2009) — 191,869 31.5 31.4 31.3 31.4 31.5
ar pud (McDonald et al., 2013) ar padt 0 62.8 64.5 63.9 64.0 64.7
be hse (Lyashevskaya et al., 2017) — 249,897 81.0 83.6 83.1 81.8 83.8
bg btb (Simov et al., 2005) — 124,336 92.5 92.7 92.5 92.7 92.7
bho bhtb (Ojha and Zeman, 2020) hi hdtb 0 37.7 36.1 36.2 36.5 36.3
bm crb (Vydrin, 2013) qhe hiencs 0 8.8 6.5 6.1 6.7 6.3
br keb (Tyers and Ravishankar, 2018) fr gsd 0 54.9 32.0 31.3 33.2 32.4
bxr bdt (Badmaeva and Tyers, 2017) — 153 11.6 23.9 29.0 21.5 24.0
ca ancora (Alonso and Zeman, 2016) — 416,659 92.1 92.2 91.8 91.9 92.2
ckt hse (Tyers and Mishchenkova, 2020) ru syntagrus 0 8.1 15.3 15.3 13.7 14.5
cop scriptorium (Zeldes and Abrams, 2018) — 12,926 0.8 0.8 0.7 0.7 0.9
cs cac (Hladká et al., 2008) — 471,594 91.2 92.2 91.0 90.8 92.0
cs cltt (Krı́ž et al., 2016) — 27,752 83.9 89.6 88.7 87.7 89.6
cs fictree (Jelı́nek, 2017) — 133,137 91.5 93.0 92.3 92.4 93.3
cs pdt (Bejček et al., 2013) — 1,171,190 92.7 92.8 91.2 91.1 92.8
cs pud (McDonald et al., 2013) cs pdt 0 87.7 88.4 88.0 88.1 88.2
cu proiel (Haug and Jøhndal, 2008) — 37,432 65.1 67.1 68.0 67.6 67.3
cy ccg (Heinecke and Tyers, 2019) — 15,706 74.5 73.9 76.2 76.0 73.8
da ddt (Johannsen et al., 2015) — 80,378 86.7 86.1 86.5 86.8 86.0
de gsd (Brants et al., 2004) — 259,194 81.7 79.9 81.5 82.0 80.8
de hdt (Borges Völker et al., 2019) — 2,753,627 96.7 96.6 90.0 94.8 96.6
de lit (Salomoni, 2019) de hdt 0 76.9 78.9 79.8 77.8 78.4
de pud (McDonald et al., 2013) de hdt 0 78.5 81.2 82.3 78.8 80.6
el gdt (Prokopidis and Papageorgiou, 2017) — 41,212 86.9 89.0 88.9 88.8 89.0
en ewt (Silveira et al., 2014) — 202,141 87.6 85.6 85.4 86.7 86.0
en gum (Zeldes, 2017) — 81,861 89.0 87.3 87.3 88.9 88.1
en lines (Ahrenberg, 2015) — 57,372 87.4 86.8 86.9 88.0 87.2
en partut (Sanguinetti and Bosco, 2014) — 43,477 89.7 89.3 89.5 90.7 89.8
en pronouns (Munro, 2020) en ewt 0 81.8 85.5 86.8 84.9 87.2
en pud (McDonald et al., 2013) en ewt 0 89.3 87.8 87.7 89.7 89.1
es ancora (Alonso and Zeman, 2016) — 443,086 90.8 89.0 88.7 90.5 90.4
es gsd (McDonald et al., 2013) — 375,149 85.6 81.7 81.6 85.8 85.0
es pud (McDonald et al., 2013) es gsd 0 79.4 78.6 78.7 79.7 79.5
et edt (Muischnek et al., 2014) — 344,646 86.7 86.7 85.5 85.5 86.8
et ewt (Muischnek et al., 2019) — 34,287 74.6 82.4 81.6 80.9 82.4
eu bdt (Aranzabe et al., 2015) — 72,974 83.3 82.3 82.4 82.4 82.3
fa perdt (Sadegh Rasooli et al., 2020) — 445,587 89.2 88.9 84.2 87.8 89.2
fa seraji (Seraji et al., 2016) — 119,945 87.2 81.8 84.8 86.9 86.4
fi ftb (Piitulainen and Nurmi, 2017) — 127,359 89.1 80.4 80.1 88.6 88.8
fi ood (Kanerva, 2020) fi tdt 0 77.6 69.5 69.1 77.5 78.1
fi pud (McDonald et al., 2013) fi tdt 0 90.4 86.6 86.0 90.5 90.4
fi tdt (Pyysalo et al., 2015) — 162,617 89.1 83.2 82.7 89.5 89.5

194

+smoothing
dataset citation proxy size self conc. conc. sepDec dataEmb

fo farpahc (Ingason et al., 2020) — 23,089 80.9 87.0 86.5 85.4 87.1
fo oft (Tyers et al., 2018) fo farpahc 0 49.8 62.1 62.2 61.6 62.7
fr fqb (Seddah and Candito, 2016) fr gsd 0 84.9 84.6 84.6 85.2 85.2
fr gsd (Guillaume et al., 2019) — 344,975 88.6 86.0 85.3 88.5 88.2
fr partut (Sanguinetti and Bosco, 2014) — 23,322 87.0 81.7 82.7 87.7 82.7
fr pud (McDonald et al., 2013) fr gsd 0 85.3 83.9 84.1 85.4 85.5
fr sequoia (Bonfante et al., 2018) — 49,157 88.4 85.9 87.1 89.6 87.4
fr spoken (Lacheret-Dujour et al., 2019) — 14,921 77.5 81.9 83.1 82.3 81.8
fro srcmf (Stein and Prévost, 2013) — 136,020 88.5 87.6 87.3 87.4 87.6
ga idt (Lynn and Foster, 2016) — 95,860 77.8 78.1 78.1 77.9 78.1
gd arcosg (Batchelor, 2019) — 37,817 72.2 72.8 73.7 73.7 72.8
gl ctg (Gómez Guinovart, 2017) — 71,928 66.3 65.6 65.4 66.0 65.5
gl treegal (Garcia, 2016) — 14,158 65.9 56.7 63.5 68.4 58.5
got proiel (Haug and Jøhndal, 2008) — 35,024 75.4 79.0 79.7 77.8 78.9
grc perseus (Bamman and Crane, 2011) — 159,895 59.6 63.3 62.4 62.2 63.4
grc proiel (Eckhoff et al., 2018) — 187,033 71.7 74.8 74.0 73.3 74.9
gsw uzh (Aepli and Clematide, 2018) de hdt 0 27.8 36.7 37.1 35.1 36.9
gun thomas (Thomas, 2019) it isdt 0 7.7 10.5 11.1 9.2 10.9
gv cadhan (Scannell, 2020) en singpar 0 2.9 12.2 13.4 6.3 12.5
he htb (McDonald et al., 2013) — 98,348 36.3 36.0 35.9 36.1 36.2
hi hdtb (Palmer et al., 2009) — 281,057 92.0 91.8 91.6 91.8 91.9
hi pud (McDonald et al., 2013) hi hdtb 0 59.6 59.8 59.5 59.6 59.7
hr set (Agić and Ljubešić, 2015) — 152,857 89.1 89.5 88.9 89.7 90.0
hsb ufal (Zeman et al., 2017) — 460 10.5 59.8 65.9 60.1 59.8
hu szeged (Vincze et al., 2010) — 20,166 82.6 83.9 85.1 84.8 84.0
hy armtdp (Yavrumyan et al., 2017) — 41,837 75.0 76.8 77.3 76.6 76.2
id csui (Alfina et al., 2020) — 17,904 77.1 74.8 76.9 79.2 75.1
id gsd (McDonald et al., 2013) — 97,531 79.9 79.7 79.3 79.5 79.9
id pud (McDonald et al., 2013) id gsd 0 59.6 63.1 62.9 61.0 63.1
is icepahc (Rögnvaldsson et al., 2012) — 704,716 83.5 83.4 80.3 80.0 83.4
is pud (Jónsdóttir and Ingason, 2020) is icepahc 0 57.9 59.3 59.0 58.7 59.3
it isdt (Bosco et al., 2014) — 257,616 81.1 81.0 80.8 81.0 81.4
it partut (Sanguinetti and Bosco, 2014) — 45,477 79.2 80.0 80.1 80.7 80.3
it postwita (Sanguinetti et al., 2018) — 95,308 74.0 74.9 74.8 74.8 74.7
it pud (McDonald et al., 2013) it isdt 0 80.1 80.3 80.3 80.6 80.6
it twittiro (Cignarella et al., 2019) — 22,656 72.6 77.3 77.1 76.5 76.6
it vit (Alfieri and Tamburini, 2016) — 208,795 78.6 78.0 77.6 78.9 78.8
ja gsd (Asahara et al., 2018) — 167,482 93.1 92.7 92.4 92.4 92.6
ja modern (Omura et al., 2017) ja gsd 0 51.8 52.9 53.8 53.8 52.9
ja pud (McDonald et al., 2013) ja gsd 0 94.3 94.3 94.1 94.2 94.2
kfm aha (Mojiri Foroushani et al., 2020a) fa perdt 0 17.6 16.7 18.5 18.9 22.1
kk ktb (Makazhanov et al., 2015) — 511 21.6 56.7 59.1 53.0 56.5
kmr mg (Gökırmak and Tyers, 2017) — 242 12.0 15.8 36.0 28.4 16.1
ko gsd (Chun et al., 2018) — 56,687 85.6 73.7 77.7 85.0 82.5
ko kaist (Chun et al., 2018) — 296,446 87.6 85.0 80.3 86.2 87.1
ko pud (McDonald et al., 2013) ko kaist 0 47.7 46.1 43.6 48.2 48.9
koi uh (Rueter et al., 2020) ru syntagrus 0 12.2 19.1 19.4 18.0 18.4
kpv ikdp (Partanen et al., 2018) ru syntagrus 0 19.5 22.1 22.2 21.1 21.8
kpv lattice (Partanen et al., 2018) ru syntagrus 0 8.2 11.3 11.7 10.5 11.6
krl kkpp (Pirinen, 2019) fi tdt 0 45.9 42.1 44.9 46.0 46.4

195

+smoothing
dataset citation proxy size self conc. conc. sepDec dataEmb

la ittb (Cecchini et al., 2018) — 390,785 90.5 91.0 89.5 89.8 91.0
la llct (Cecchini et al., 2018) — 194,143 94.6 94.6 94.2 94.5 94.5
la perseus (Bamman and Crane, 2011) — 18,184 63.3 68.4 69.1 69.4 68.3
la proiel (Haug and Jøhndal, 2008) — 172,133 79.9 81.6 80.1 80.1 81.6
lt alksnis (Bielinskiene et al., 2016) — 47,641 78.0 78.1 78.3 78.3 78.2
lt hse (Lyashevskaya and Sichinava, 2017) — 3,210 47.8 63.7 64.2 68.5 64.3
lv lvtb (Gruzitis et al., 2018) — 167,594 86.8 86.6 86.3 86.2 86.8
lzh kyoto (Yasuoka, 2019) — 185,211 79.7 79.8 75.9 75.6 79.7
mdf jr (Rueter, 2018) ru syntagrus 0 16.8 17.7 17.5 18.2 17.8
mr ufal (Ravishankar, 2017) — 2,730 50.3 65.9 67.1 64.6 64.6
mt mudt (Čéplö, 2018) — 22,880 75.5 76.2 78.9 78.1 76.2
myu tudet (Gerardi, 2021) ro nonstandard 0 16.1 15.4 17.4 14.0 14.4
myv jr (Rueter and Tyers, 2018) be hse 0 20.1 18.9 19.1 18.6 18.6
nl alpino (Bouma and van Noord, 2017) — 185,883 90.9 91.4 91.4 91.1 91.5
nl lassysmall (Bouma and van Noord, 2017) — 75,080 89.4 91.0 91.0 90.7 91.2
no bokmaal (Øvrelid and Hohle, 2016) — 243,886 92.2 92.6 92.2 92.3 92.5
no nynorsk (Øvrelid and Hohle, 2016) — 245,330 91.8 92.1 92.0 91.9 92.2
no nynorsklia (Øvrelid et al., 2018) — 35,207 74.1 75.6 76.0 75.4 75.8
nyq aha (Mojiri Foroushani et al., 2020b) fa perdt 0 30.8 29.1 37.2 34.2 38.9
olo kkpp (Pirinen, 2019) — 144 8.4 40.4 44.7 26.3 43.1
orv rnc (Lyashevskaya, 2019) — 10,156 58.3 70.6 71.6 69.6 70.5
orv torot (Eckhoff and Berdičevskis, 2015) — 118,630 63.9 65.1 64.6 64.4 65.4
otk tonqq (Derin, 2020) et ewt 0 7.7 11.8 5.9 11.9 7.1
pcm nsc (Caron et al., 2019) — 111,843 90.0 90.2 89.9 89.5 90.2
pl lfg (Patejuk and Przepiórkowski, 2018) — 104,750 95.7 93.7 93.6 95.7 95.8
pl pdb (Wróblewska, 2018) — 279,596 89.4 88.8 88.2 89.3 89.7
pl pud (Wróblewska, 2018) pl pdb 0 91.2 91.0 90.5 91.0 91.4
pt bosque (Rademaker et al., 2017) — 191,406 78.2 74.1 73.8 78.1 77.1
pt gsd (McDonald et al., 2013) — 238,714 83.0 80.8 80.6 82.7 82.7
pt pud (McDonald et al., 2013) pt gsd 0 68.5 69.6 69.3 68.8 68.8
qtd sagt (Çetinoğlu and Çöltekin, 2019) — 4,761 46.4 58.0 60.9 59.9 57.7
ro nonstandard (Mărănduc et al., 2016) — 532,881 86.8 87.0 86.0 85.7 87.1
ro rrt (Barbu Mititelu et al., 2016) — 185,113 88.3 88.6 88.3 88.2 88.5
ro simonero (Mitrofan et al., 2019) — 116,857 91.3 91.0 91.2 91.0 91.0
ru gsd (McDonald et al., 2013) — 74,906 87.4 88.9 89.2 89.2 89.7
ru pud (McDonald et al., 2013) ru syntagrus 0 86.8 88.5 89.0 86.9 87.4
ru syntagrus (Droganova et al., 2018) — 870,479 93.7 93.0 88.9 92.0 93.5
ru taiga (Shavrina and Shapovalova, 2017) — 43,557 77.9 78.7 79.6 81.0 80.1
sa ufal (Dwivedi and Easha, 2017) hi hdtb 0 14.2 15.5 16.2 14.4 16.5
sa vedic (Hellwig et al., 2020) — 17,445 54.9 57.9 60.0 57.5 57.8
sk snk (Zeman, 2017) — 80,575 92.3 94.3 93.7 93.1 94.2
sl ssj (Dobrovoljc et al., 2017) — 112,530 93.4 93.2 93.1 93.0 93.0
sl sst (Dobrovoljc and Nivre, 2016) — 19,473 69.4 73.6 74.7 73.9 73.5
sme giella (Tyers and Sheyanova, 2017) — 16,835 61.3 65.3 68.5 64.5 65.5
sms giellagas (Rueter and Partanen, 2019) id gsd 0 7.8 14.9 14.6 11.7 14.8
soj aha (Mojiri et al., 2020) fa perdt 0 27.9 37.6 27.3 32.1 39.4
sq tsa (Toska et al., 2020) ga idt 0 52.1 62.8 64.0 51.2 62.6
sr set (Samardžić et al., 2017) — 74,259 91.9 91.4 91.9 92.4 92.5
sv lines (Ahrenberg, 2015) — 55,451 86.5 88.3 88.1 88.2 88.2
sv pud (McDonald et al., 2013) sv lines 0 83.8 86.9 86.9 85.8 86.7

196

+smoothing
dataset citation proxy size self conc. conc. sepDec dataEmb

sv talbanken (McDonald et al., 2013) — 66,645 89.1 89.8 89.7 90.1 89.7
swl sslc (Östling et al., 2017) — 644 26.2 26.1 37.7 29.4 26.8
ta mwtt (Sarveswaran and Dias, 2020) ta ttb 0 65.4 70.0 66.1 67.1 69.9
ta ttb (Ramasamy and Žabokrtský, 2012) — 5,734 40.8 44.7 44.7 44.9 44.3
te mtg (Rama and Vajjala, 2017) — 5,082 82.8 84.2 84.5 85.7 84.7
th pud (McDonald et al., 2013) en ewt 0 28.2 25.7 25.4 22.2 26.2
tl trg (Samson and Cöltekin, 2020) en singpar 0 34.8 32.9 29.9 25.0 32.4
tl ugnayan (Aquino et al., 2020) en singpar 0 28.4 24.9 25.0 19.3 27.4
tpn tudet (Gerardi, 2020) cs pdt 0 9.7 5.1 4.2 6.5 3.2
tr boun (Türk et al., 2020) — 97,257 69.6 68.8 67.1 69.9 70.0
tr gb (Cöltekin, 2015) tr boun 0 66.3 64.8 64.1 66.1 66.6
tr imst (Sulubacak et al., 2016) — 36,822 62.5 59.1 61.2 64.2 63.8
tr pud (McDonald et al., 2013) tr boun 0 61.4 60.7 59.3 61.2 61.6
ug udt (Eli et al., 2016) — 19,262 48.5 50.3 50.1 49.7 50.2
uk iu (Kotsyba et al., 2018) — 92,355 88.0 90.2 89.7 89.6 90.3
ur udtb (Bhat et al., 2016) — 108,690 81.6 82.4 82.3 82.2 82.8
vi vtb (Nguyen et al., 2009) — 20,285 66.1 65.3 65.3 65.7 65.4
wbp ufal (Shopen, 2018) id gsd 0 5.5 6.8 8.7 7.6 8.0
wo wtb (Dione, 2019) — 22,817 67.6 68.5 72.6 71.4 68.4
yo ytb (Ishola and Zeman, 2020) ga idt 0 16.0 17.2 14.4 12.7 18.1
yue hk (Wong et al., 2017) zh gsd 0 31.8 32.4 32.5 31.7 32.7
zh cfl (Lee et al., 2017) zh gsdsimp 0 47.4 48.1 47.6 46.9 47.9
zh gsd (Shen et al., 2016) — 98,616 85.9 84.2 84.4 84.3 84.0
zh gsdsimp (Qi and Yasuoka, 2019) — 98,616 85.8 84.1 84.5 84.3 84.2
zh hk (Wong et al., 2017) zh gsd 0 52.1 53.7 53.5 52.9 53.6
zh pud (McDonald et al., 2013) zh gsd 0 62.1 62.2 62.0 61.7 62.3

de tweede (Rehbein et al., 2019) — 5,752 68.2 76.9 77.6 79.6 77.7
en aae (Blodgett et al., 2018) en ewt 0 51.5 55.1 55.9 56.5 56.1
en convbank (Davidson et al., 2019) — 5,057 69.1 71.4 70.4 71.2 71.9
en esl (Berzak et al., 2016) — 78,541 92.0 91.4 91.3 92.1 91.7
en gumreddit (Behzad and Zeldes, 2020) — 10,831 75.9 84.9 84.8 86.5 85.5
en monoise (van der Goot and van Noord, 2018) en ewt 0 55.6 64.7 64.5 62.4 64.7
en singpar (Wang et al., 2019) — 27,368 80.3 79.0 78.5 82.2 79.4
en tweebank2 (Liu et al., 2018) — 24,753 80.5 81.7 82.4 82.6 81.6
fr extremeugc (Martı́nez Alonso et al., 2016) fr gsd 0 56.2 55.7 56.6 58.0 54.4
fr ftb (Abeillé et al., 2000) — 442,228 83.1 82.2 81.6 82.9 82.8
qfn fame (Braggaar and van der Goot, 2021) nl alpino 0 54.0 43.2 42.6 43.8 43.4
qhe hiencs (Bhat et al., 2018) — 20,203 62.8 62.4 65.5 64.0 62.0

Table 6: LAS scores from official conll2018 script on test splits of all UD datasets we could obtain, averaged over
3 random seeds. Size refers to number of sentences in the training split. Results for single dataset trained models,
and our 4 multi-task strategies. The last 12 rows contain datasets that are either available without words on the
official Universal Dependencies website or are not officialy submitted.

197

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 198–204
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

SCoT: Sense Clustering over Time –
a tool for analysing lexical change

Christian Haase†, Saba Anwar†, Seid Muhie Yimam†, Alexander Friedrich?, Chris Biemann†
† Language Technology group, Universität Hamburg, Germany

? Institute for Philosophy, TU Darmstadt, Germany
{haase,anwar,yimam,biemann}@informatik.uni-hamburg.de

friedrich@phil.tu-darmstadt.de

Abstract

We present Sense Clustering over Time
(SCoT), a novel network-based tool for
analysing lexical change. SCoT represents
the meanings of a word as clusters of similar
words. It visualises their formation, change,
and demise. There are two main approaches
to the exploration of dynamic networks: the
discrete one compares a series of clustered
graphs from separate points in time. The con-
tinuous one analyses the changes of one dy-
namic network over a time-span. SCoT of-
fers a new hybrid solution. First, it aggre-
gates time-stamped documents into intervals
and calculates one sense graph per discrete in-
terval. Then, it merges the static graphs to
a new type of dynamic semantic neighbour-
hood graph over time. The resulting sense clus-
ters offer uniquely detailed insights into lexical
change over continuous intervals with model
transparency and provenance. SCoT has been
successfully used in a European study on the
changing meaning of ‘crisis’.

1 Introduction

Most real-world networks change over time. So do
dynamic networks of word similarities that can be
used to infer the meanings of a word. The noun
‘crisis’, for example, used to be strongly linked
to the religious word ‘doom’ in English-language
books in the early modern period. However, in
the modern age ‘crisis’ has become more closely
associated with terms denoting economic problems
such as ‘unemployment’, ‘depression’ or ‘inflation’
(Biemann et al., 2020).
In the recent decade, the interest in dynamic net-
works has increased. (Rosetti and Cazabet, 2018).
This has also stimulated new graph-based ap-
proaches to analysing vocabulary change (Mitra
et al., 2015; Riedl et al., 2014). Such research
is a key interest of linguists (Tahmasebi et al.,

2018; Nulty, 2017) and scholars in the humanities
(Koselleck, 1989; Mueller and Schmieder, 2016;
Friedrich and Biemann, 2016).
Traditionally, scholars have determined such
changes through close reading. However, the grow-
ing availability of ever larger digital corpora (Gold-
berg and Orwant, 2013) and the increasing speed
of sense changes in social media (Stilo and Ve-
lardi, 2017) have boosted the significance of new
research (Nulty, 2017).
Of particular importance in the research on lexical
change is the unsupervised approach of word sense
induction (WSI). WSI enables the development
of data-driven hypotheses. The approach induces
meaning from the bottom upwards and can be used
with a diachronic angle. Several implementations
for diachronic WSI exist (Tahmasebi et al., 2018).
While many of them represent word meaning by
dense vector embeddings, sparse models with net-
work representations still play an important role.
The use of sparse, human-readable models enables
a better interpretation of meaning hypotheses by
linguists and other researchers.
There are two main approaches to implement di-
achronic network-based WSI. Discrete approaches
compare several networks that relate to discrete
points in time. Continuous approaches analyse
when specific nodes, edges or clusters appear in a
single dynamic network that changes continuously
over time (Rosetti and Cazabet, 2018).
Many applications in the field of diachronic
network-based WSI fall into the discrete category.
Mitra et al. (2015), for example, reduce the num-
ber of measuring points to single intervals, build
one graph per discrete interval, cluster it and track
the resulting sense clusters over intervals. While
this approach is considered as less complex than
the continuous one (Rosetti and Cazabet, 2018),
it brings up complexity problems of its own. The
clustering of graphs can namely lead to different

198

Figure 1: Analysis of the sense shifts of ‘bar/NN’ in Google Books (Goldberg and Orwant, 2013) with SCoT:
the clusters of the neighbourhood graph over time show that the sense “a rigid piece of metal used as a fastening
or obstruction” [top right] loses traction, while the sense ”computer-menu” [bottom left] gains significance. The
coloring is relative to the interval ”1973-1986”. Red indicates the disappearance of a node before 1986. Green
indicates the emergence of a node after 1986.

solutions. Thus, the number of clustering combi-
nations in a time-series of sense graphs can grow
unpredictably. Another issue is the identification
of corresponding clusters across time points.
Continuous representations are more fine-grained,
but can lead to other issues. Since the clustering
in such scenarios is mostly done in an incremental
way, problems of costly reclusterings or very large
clusters can emerge.
The application Sense Clustering over Time (SCoT)
offers a new hybrid approach to network-based
WSI that reduces complexity. SCoT works in two
steps. In a first, ‘discrete’ step, the time-stamped
documents are aggregated into intervals. Static
graphs are built per interval. Then SCoT merges
the static graphs to a new type of dynamic neigh-
bourhood graph over time (NGoT). The encoded
time-based information from the underlying con-
tinuous series of graphs enables a time-coloring of
the sense clusters.
Haase (2020) has shown that there are different
approaches to constructing such semantic NGoTs.
The best known method for creating such a dy-
namic network consists of the merging of a series
of equally-sized graphs from each interval, but it
is also possible to aggregate nodes and links in dif-
ferent ways. These approaches exhibit different
strengths and are explained in more detail below.
Figure 1 shows how such a NGoT looks like. The

graph shows sense clusters for the target word bar.
It shows that words such as “button”, “desktop” and
“icon” became increasingly similar to each other
and to the target bar in the 1990s, thereby forming
the new sense of ‘computer-menu’.
SCoT can be used for various tasks such as linguis-
tic studies of polysemic words or research into the
history of concepts, but also offers a general and
new solution to the analysis of dynamic networks
with the neighbourhood graph over time.

2 System description

The system enables an analysis of the lexical
change of words in an interactive web-interface
based on metrics calculated from large time-sliced
corpora. This requires a division of the system into
a web-front-end and a back-end that accesses the
databases with the similarity scores. In addition,
the system offers the user additional information
on the syntagmatic features that have been used to
calculate the similarity scores.

2.1 Computing distributional thesauri for
time-sliced corpora

The calculation of the similarity scores that inform
the graph is steeped in the de Saussurian notion
of paradigms and syntagmatic contexts as imple-
mented in JoBimText (Biemann and Riedl, 2013).
The nodes represent the paradigms. The more syn-

199

Figure 2: The SCoT-system consists of multiple layers and domain-specific components relating to the similarity
graph (green), the underlying syntagmatic features (yellow) and the corpus (red). The system’s four key processes
are highlighted with numbers: the preprocessing (1-3), the graph-analysis (4-5), the feature-analysis (6-7) and the
querying of example sentences for research (8-9). Arrows indicate the data-flow direction.

tagmatic contexts two paradigms share, the more
similar they are (Miller and Charles, 1991). The
contexts and words are extracted from the sen-
tences of documents.
The raw texts, the syntagmatic features and the net-
work representation of the relations between the
paradigms require very different processing steps.
They are thus handled by different groups of com-
ponents of the SCoT application that constitute so-
called sub-domains. They have been color-coded
in Figure 2.
The current online demonstration version of SCoT
uses three corpora. These include a large dataset of
syntactic n-grams from Google Books (Goldberg
and Orwant, 2013), a corpus of Finnish magazines
and newspaper articles (University of Helsinki,
2017), and a corpus of German newspapers articles
as described by (Biemann et al., 2007; Benikova
et al., 2014). These corpora have been sliced into
7 to 9 time-based intervals which roughly contain
the same amount of data.
The semantic similarity of words can be computed
with different methods. For SCoT, we have opted
for distributional thesauri (DT) due to their flex-
ibility. They can be based upon different types
of context features such as word n-grams, part-of-
speech n-grams and syntactic dependencies. We
have used syntactic dependencies.
We have calculated the DTs with the software Jo-
BimText (Biemann and Riedl, 2013). It uses the

Lexicographer’s Mutual Information (LMI) to rank
words and their context features. We have limited
the computation to the top ranked 1000 features.
We have stored the scores in one SQL-database
per corpus. Each database includes three tables: a
table of intervals, a table of word pairs with their
similarity scores and references to the intervals in
which they occurred, and a table of words and their
features with interval information. In addition, we
have stored example sentences in an ElasticSearch
server. This calculation and storage is highlighted
with the numbers 1, 2 and 3 in Figure 2.

2.2 Creating the neighbourhood-graph over
time

The system offers the user the possibility to select a
target word and to enter parameters for building the
NGoT. This is highlighted as number 4 in Figure 2.
The user can select between three different types
of NGoTs. These have repercussions for the re-
sulting sense clusters (Haase, 2020). We have im-
plemented the interval-, the dynamic and a mixed
global/dynamic approach. The user can fine-tune
them with three parameters: the number of inter-
vals i, the number of nearest neighbour nodes n
and the density d.
The interval-approach creates one static graph with
n words and the density d per interval and then
merges these. This results in a dynamically sized
graph, which is often larger than a static single in-

200

terval graph. This creates a very clear distinction
between clusters and nodes that occur frequently
over time and those that do not. The approach is
optimal for getting an analytical overview of sense-
shifts. We, thus, use it as a starting point for the
analysis.
The dynamic approach fixes the number of unique
words n and the density d of the resulting graph
and expands the underlying data-points of the static
graphs across intervals. This usually only creates
partial graphs per interval. Since the dynamic ap-
proach fixes the number of links and nodes of the
resulting graph it is better suited for comparisons
across different graphs than the interval-approach.
The global approach fixes the number of static sin-
gle word-nodes and edges in total across all inter-
vals based on maximal values. The significance of
the approach lies in the ability to tweak the number
of single edges, which has an effect on the number
of resulting clusters. For ease of use, we have im-
plemented it as a mixed approach: the nodes are
allocated according the dynamic approach. The
edges can be tweaked globally.
The number of the edges in relation to the nodes
is the key to creating a useful graph for clustering
and the analysis of lexical change. In order to en-
hance the dynamic allocation of edges over time,
we have relaxed the condition that each node in
the resulting graph has a fixed limit of connected
edges. This is the standard implementation in many
neighbourhood graphs. In sum, SCoT offers a new
type of neighbourhood graph that is different to
all known implementations of neighbourhood or
so-called ego graphs (Mitra et al., 2015).
The variants are implemented with a similar pat-
tern: each algorithm first searches for the nodes
and then for the edges. Then, the algorithm merges
those nodes and edges that refer to the same words
in different intervals. It encodes the time-based
scores in the nodes and edges.

2.3 Sense clustering

The advantage of NGoTs is that they need to be
clustered only once. For this, we use the Chinese
Whispers algorithm (Biemann, 2006). The key
characteristics of the algorithm are that it is non-
deterministic, has a linear time-complexity and
runs with a fixed number of iterations that result in
a stable partition of the graph. We set the number
of iterations to 15 in order to increase the chances
of the algorithm of reaching a stable plateau. How-

ever, there may be more than one stable solution.
We have thus implemented the possibility to reclus-
ter the graph in order to see whether multiple solu-
tions exist. If one wants to break a tie, it is recom-
mended to slightly reduce the density of the graph
and to cluster again. This should remove less sig-
nificant edges and thus provide a more nuanced
clustering.

2.4 Displaying the sense clusters over time
During the creation process of the NGoT, the inter-
val information is encoded in the nodes and edges.
This information is used for the subsequent color-
ing of the nodes in the time-difference analysis in
the front-end.
The front-end is based on a modern Model-View-
View-Model (MVVM) framework, namely Vue.
In MVVM frameworks, the main view of the
web-page is rendered by several dynamic model-
view components. SCoT has four main compo-
nents. They render the navigation and side-bars,
display the graph, show additional syntagmatic
features and exhibit exemplary sentences. The
graph-component uses the D3.js library to ren-
der the graph. In addition, the front-end includes
a connection-layer that communicates with the
RESTful SCoT API of the back-end.

2.5 Diachronic analysis with time-colouring
Since the sense clusters over time are the most im-
portant feature of SCoT and provide the starting
point for the research, they are displayed by default
when the graph has been created. In the cluster-
view, the clusters are ordered by size.
The tool offers a wide range of advanced functions
to analyse the sense clusters. One can use a hov-
ering function over nodes and links to display the
development of similarity scores over time for each
node and edge. Furthermore, network metrics such
as the betweenness centrality can be used to enlarge
central nodes. Such central nodes play a significant
role as centres of the clusters and bridges between
clusters. Nodes between clusters, which can ex-
hibit ambivalence, can also be highlighted.
Among the advanced functions, the time-difference
mode is particularly noteworthy. The application
offers two functions for the time-diff mode. The
first color-codes the nodes in the sense clusters in
relation to their occurrence to a set interval. Nodes
can disappear before the interval, emerge in the
interval or occur after the interval. They can also
be stable. The second function offers a slider that

201

highlights all nodes that occur per time-interval
(Kempfert et al., 2020).
Furthermore, the front-end offers the opportunity
to change several view-parameters. These include
charge strength, link distance, and the zoom-factor.
It is also possible to drag the graph and individual
nodes, add name labels to the clusters and manually
change cluster assignments.

2.6 Model transparency

A key aim of SCoT is to enable a transparent
interpretation of meaning hypotheses. Therefore,
SCoT offers functions to drill into the syntagmatic
features utilized in the representation of word
meaning here. These are available in a count-based
sparse model in the form of the DTs from
JoBimText (Biemann and Riedl, 2013). This
analysis can be triggered by clicking on a node
or an edge. This has been labelled as step 6 in
Figure 2. It results in the display syntagmatic
contexts per selected word-nodes, including
whole clusters, as ranked by LMI. E.g., for the
‘rod/stick’ sense of ‘bar’ in Google books, the most
salient syntagmatic contexts are “-nn/platinum/NN,

-dep/stumbling/NN, -dep/altar/JJ, -dep/electro/NN,

-nn/vertebral/NN, -in pobj/link/NN, -nn/crank/NN, -

on pobj/leaning/VBG, and conj/key/NN”, whereas the
same query for the ‘menu bar/button’ sense
yields “-nn/dialog/NN, -nn/edit/NNP, nn/publishing/NN,

-nn/options/NNPS, -on pobj/click/NN, -dobj/clicking/VBG,

-on pobj/button/NN, -nn/cardboard/NN, dep/sill/NN”.
The displayed pairs of syntagmatic features and
paradigms can serve as a starting point for further
analyses: one can retrieve example sentences that
include the paradigm and the selected syntagmatic
context. This has been labelled as step 8 and 9 in
Figure 2.

3 Use case: sense shifts of “crisis”

SCoT can be used in various research fields. Con-
ceptual history is of particular relevance. It is used
to produce lexicons of ‘basic concepts’ and thus
encompasses aspects of linguistics and historical
research.
Mueller and Schmieder (2016); Friedrich and Bie-
mann (2016) have shown that the growing research
field is in need of new unsupervised methods in
order to deal with newly available large digital cor-
pora. The research that was established by Kosel-
leck places a particular emphasis on concepts that
have changed in the transition to the modern age

between 1750 and 1850. (Olsen, 2012)
Within this context, the noun ‘crisis’ takes centre-
stage as the contemporaries perceived the transition
into the modern age as a time of different crises.
The analysis of the changing meanings of the noun
is thus an ideal test case for the applicability of the
tool in this interdisciplinary field.

3.1 The ‘economic turn’ and the changing
concept of ‘crisis’

The first step in most text-based research projects is
the choice of the corpus. We have chosen English
Google Books as a suitable corpus.
We start the analysis with a generalized overview
over all eight intervals with the graph-type-mode
‘interval’. We set the parameters n=100 and d=20
and render the graph. This results in a NGoT with
221 nodes. SCoT analyses three sense clusters over
time.
After we have established the overview, we go into
the time-diff mode. From the ongoing research, the
prominent hypothesis about the changing meaning
of ‘crisis’ between 1750 and 1850 has emerged.
We test this hypothesis. We switch to the time-diff
mode and color the nodes in relation to the interval
1908-1953. The resulting graph shows that one
full sense cluster consists only of ‘red’ nodes that
all disappeared in the first interval. We have thus
found a candidate for a first sense shift.
We now follow up the analysis with a more specific
look at the nodes. We find that the pre-modern
sense of religious “doom” and “juncture of time”
was replaced by modern political and economic
senses of crisis centred on terms such as ‘election’,
‘law’ or ‘class’. We then look at individual nodes
to deepen the analysis. Each node in the clusters
provides an important aspect of the development.
The node ‘class’, for example, relates to Marxist
philosophy that viewed the cyclic nature of capi-
talist ‘crises’ as the defining characteristic of the
modern age.
Subsequently, we want to find out which changes
occurred within the modern political and economic
clusters in the subsequent intervals. With the help
of the time-slider-mode and the individual graphs
that are depicted in Figure 2, we can show that that
the sense transformation of the term ‘crisis’ contin-
ued after the breakthrough of the modern age. An
ever growing cluster with economic words can be
observed. Terms, such as ‘depression’, ‘boom’, ‘in-
flation’ and ‘unemployment’ dominate the cluster,

202

Figure 3: Analysis of sense-shifts of crisis/NN: The neighbourhood graph merges graphs from each interval. The
underlying time-series shows that “crisis/NN” developed a modern political and an economic sense with an in-
creasing dominance of economics between 1520 and 2008. Parameters: n=100, d=30, i=1, corpus: Google Books
(English).

increasingly so after the 1950s, and in particular
after the oil crisis in the 1970s.
This tallies with the research on the so-called “eco-
nomic turn” in the 1950s and beyond. The argu-
ment by economic historians such as Nützenadel is
that the cornerstone of the Western postwar-order
was the diffusion of new economic and democratic
thought, centred on the so-called consensus liber-
alism that was seen as the antidote to the ‘crisis’
of the great depression and the following political
chaos. (Haase and Schildt, 2007) SCoT advances
these findings by adding new details to them in a
transparent and scientific manner.
The results of SCoT always need to be contextu-
alised within the limits of the underlying corpus.
Google Books contains primary and secondary ma-
terial and has a strong “thematic” orientation. Since
Google Books contains many books from libraries
that serve universities, we need to test whether the
‘economic turn’ of the term ‘crisis’ has shown up
so dramatically in the data due to the underlying
basis of vast specialist economic literature stored
in university libraries.
In order to check against the possible bias, we use
a second corpus, namely German web-news. We
find in this corpus a similar development and con-
clude that the ‘economic turn’ can be regarded as a
wider phenomenon in Western countries after the
1950s. We have arrived at this analysis by the re-
search steps of generalisation, specialisation and

comparison that are well supported by SCoT.

4 Conclusion and future directions

This article describes SCoT, a new tool for the anal-
ysis of the changes of sense clusters in dynamic
networks. SCoT reduces the complexity of this task
through interval-aggregation and neighbourhood
graphs over time. The dynamic network retains
the time-based information. This enables advanced
analyses that can be well visualised. The usage of
a sparse approach to distributional semantic model-
ing provides model transparency and provenance.
We have demonstrated the applicability of the so-
lution in the domain of lexical and conceptual
change. However, the general nature of the ap-
plication make it transferable to other domains that
use dynamic networks for analysis.
Future directions in the development of SCoT lie
in the further refinement of neighbourhood graphs
over time, the broadening of the usage of SCoT in
various domains, including conceptual change, as
well the research on the wider implications of the
application for diachronic distributional semantics.
ScoT is available open source under the MIT li-
cense1 and as an online demo2. A video demon-
strating many of the functionalities can be found at
https://youtu.be/SbmfA4hKjvg.

1https://github.com/uhh-lt/SCoT
2http://ltdemos.informatik.uni-hamburg.

de/scot/

203

References
Darina Benikova, Uli Fahrer, Alexander Gabriel,

Manuel Kaufmann, Seid Muhie Yimam, Tatiana von
Landesberger, and Chris Biemann. 2014. Network
of the day: Aggregating and visualizing entity net-
works from online sources. In Proceedings of the
12th Conference on Natural Language Processing,
KONVENS, pages 48–52, Hildesheim, Germany.

Chris Biemann. 2006. Chinese whispers - an efficient
graph clustering algorithm and its application to nat-
ural language processing problems. In Proceedings
of TextGraphs: the First Workshop on Graph Based
Methods for Natural Language Processing, pages
73–80, New York City.

Chris Biemann, Christian Haase, Alexander Friedrich,
and Antero Holmila. 2020. Sense induction of cri-
sis/Krise/kriisi in English, German and Finnish text
corpora with the Sense Clustering over Time (SCoT)
tool: Contribution to the workshop ”Crisis - a digi-
tal humanities perspective”, University of Jyväskylä,
Finland.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The Leipzig Corpora Col-
lection: Monolingual corpora of standard size. In
Proceedings of Corpus Linguistics, Birmingham,
UK.

Chris Biemann and Martin Riedl. 2013. Text: Now
in 2D! a framework for lexical expansion with con-
textual similarity. Journal of Language Modelling,
1(1):55–95.

Alexander Friedrich and Chris Biemann. 2016.
Digitale Begriffsgeschichte? Methodologische
Überlegungen und exemplarische Versuche am
Beispiel moderner Netzsemantik“. Forum für
interdisziplinäre Begriffsgeschichte, 5(2):78–96.

Yoav Goldberg and Jon Orwant. 2013. A dataset of
syntactic-ngrams over time from a very large corpus
of English books. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Vol-
ume 1: Proceedings of the Main Conference and
the Shared Task: Semantic Textual Similarity, pages
241–247, Atlanta, Georgia, USA.

Christian Haase. 2020. Semantisches Clustern von
Hashtags in Zeitintervallen. Master-Arbeit, Fach-
bereich Informatik, FernUniversität Hagen.

Christian Haase and Axel Schildt, editors. 2007.
Die Zeit und die Bonner Republik: Eine mei-
nungsbildende Wochenzeitung zwischen Wiederbe-
waffnung und Wiedervereinigung. Wallstein.

Inga Kempfert, Saba Anwar, Alexander Friedrich, and
Chris Biemann. 2020. Digital History of Con-
cepts: Sense Clustering over Time [42. Jahrestagung
der Deutschen Gesellschaft für Sprachwissenschaft
(DGfS), Universität Hamburg, 4.-6. März 2020.].

Reinhart Koselleck. 1989. Linguistic change and the
history of events. The Journal of Modern History,
64:650–666.

George A. Miller and Walter G. Charles. 1991. Con-
textual correlates of semantic similarity. Language
and Cognitive Processes, 6(1):1–28.

Sunny Mitra, Ritwik Mitra, Suman Maity, Martin
Riedl, Chris Biemann, Pawan Goyal, and Animesh
Mukerjee. 2015. An automatic approach to identify
word sense changes in text media across timescales.
Natural Language Engineering, 21(5):773–798.

Ernst Mueller and Falko Schmieder. 2016. Begriffs-
geschichte und historische Semantik. Suhrkamp.

Paul Nulty. 2017. Semantic network analysis of con-
tested political concepts. In International Con-
ference on Computational Semantics (IWCS 2017),
Montpellier, France.

Niklas Olsen. 2012. History in the plural: an introduc-
tion to the work of Reinhart Koselleck. Berghahn.

Martin Riedl, Richard Steuer, and Chris Biemann.
2014. Distributed distributional similarities of
Google Books over the centuries. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 1401–
1405, Reykjavik, Iceland.

Giulio Rosetti and Remy Cazabet. 2018. Community
discovery in dynamic networks: A survey. ACM
Comput. Surv., 51(2):1–37.

Giovanni Stilo and Paola Velardi. 2017. Hashtag Sense
Clustering Based on Temporal Similarity. Computa-
tional Linguistics, 43(1):181–200.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2018.
Survey of computational approaches to lexical se-
mantic change. CoRR abs/1811.06278.

University of Helsinki. 2017. Corpus of Finnish Mag-
azines and Newspapers from the 1990s and 2000s,
Downloadable Version 2, http://urn.fi/urn:nbn:fi:lb-
2017091902.

204

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 205–211
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

GCM: A Toolkit for Generating Synthetic Code-mixed Text

Mohd Sanad Zaki Rizvi Anirudh Srinivasan Tanuja Ganu
Monojit Choudhury Sunayana Sitaram

Microsoft Research India
{v-mori, t-ansrin, tanuja.ganu, monojitc, sunayana.sitaram}@microsoft.com

Abstract

Code-mixing is common in multilingual com-
munities around the world, and processing it
is challenging due to the lack of labeled and
unlabeled data. We describe a tool that can
automatically generate code-mixed data given
parallel data in two languages. We imple-
ment two linguistic theories of code-mixing,
the Equivalence Constraint theory and the Ma-
trix Language theory to generate all possible
code-mixed sentences in the language-pair, fol-
lowed by sampling of the generated data to
generate natural code-mixed sentences. The
toolkit provides three modes: a batch mode, an
interactive library mode and a web-interface
to address the needs of researchers, linguists
and language experts. The toolkit can be used
to generate unlabeled text data for pre-trained
models, as well as visualize linguistic theories
of code-mixing. We plan to release the toolkit
as open source and extend it by adding more
implementations of linguistic theories, visual-
ization techniques and better sampling tech-
niques. We expect that the release of this
toolkit will help facilitate more research in
code-mixing in diverse language pairs. 12

1 Introduction

Code-mixing, which is the alternation between two
or more languages in a single conversation or ut-
terance is prevalent in multilingual communities
all over the world. Processing code-mixed lan-
guage is challenging due to the lack of labeled as
well as unlabeled data available for training NLP
models. Since code-mixing is a spoken language
phenomenon, it is more likely to occur in informal
written text, such as social media and chat data.
Such data may not as easily available as monolin-
gual data for building models, and may also exhibit

1Screencast: https://aka.ms/eacl21gcmdemo
2Code: https://aka.ms/eacl21gcmcode

other issues such as cross-transcription and non-
standard spellings.

To alleviate this problem and train language mod-
els that can use unlabeled data for pre-training, we
see the generation of synthetic code-mixed data as
a promising direction. Various linguistic theories
have been proposed that can determine how lan-
guages are mixed together, and in prior work we
presented the first computational implementation
(Bhat et al., 2016) of the Matrix-language (Myers-
Scotton, 1993) and Equivalence Constraint theories
(Poplack, 1980). We also showed that generating
synthetic data using our computational implemen-
tations improved word embeddings leading to bet-
ter downstream performance on sentiment analysis
and POS tagging (Pratapa et al., 2018b), as well as
RNN language models (Pratapa et al., 2018a). The
multilingual BERT (Devlin et al., 2019) model fine-
tuned with synthetic code-mixed data outperformed
all prior techniques on the GLUECoS benchmark
(Khanuja et al., 2020) for code-switching, which
spans 11 NLP tasks in two language pairs. The
approach of generating synthetic code-mixed data
has gained traction following our work, with other
approaches including using Generative Adversarial
Networks (Chang et al., 2019), an encoder-decoder
framework with transfer learning (Gupta et al.,
2020), using parallel data with a small amount of
real code-mixed data to learn code-mixing patterns
(Winata et al., 2019) and a novel two-level varia-
tional autoencoder approach (Samanta et al., 2019).

In this work, we present a tool GCM that can
automatically generate synthetic code-mixed data
given parallel data or a Machine Translation system
between the languages that are being mixed. Our
tool is intended for use by NLP practitioners who
would like to generate training data to train models
that can handle code-mixing, as well as linguists
and language experts who would like to visualize
how code-mixing occurs between languages given

205

different linguistic theories. The toolkit provides
three modes - a batch mode, that can run the data
generation pipeline on servers, an interactive mode,
that can be used for quick prototyping as well as
a web interface that can be used to visualize code-
mixed sentence generation. The GCM tool will be
released as open source and we plan to improve it
by adding more implementations of linguistic theo-
ries, visualization techniques and better algorithms
for sampling. We expect that the release of this
toolkit will spur research in code-mixing in diverse
language pairs and enable many NLP applications
that would not be possible to build due to the lack
of code-mixed data.

2 Method

In this section we discuss the linguistic theories
that we implement in the tool and the pipeline we
use for generating code-mixed (hereafter referred
to as CM) sentences.

2.1 Linguistic theories

Our tool currently contains implementations of two
two linguistic theories for generating valid CM text:
Equivalence Constraint Theory (Poplack, 1980)
and Matrix Language Theory (Myers-Scotton,
1993).

The Equivalence Constraint Theory states
that intra-sentential code-mixing can only occur
at places where the surface structures of two lan-
guages map onto each other, thereby, implicitly
following the grammatical rules of both the lan-

guages. The Matrix Language Theory deals with
code-mixing by introducing the concept of “Matrix
Language” or the base language into which pockets
of the “Embedded Language” or second language
are introduced in such a way that the former sets
the grammatical structure of the sentence while the
later “switches-in” at grammatically correct points
of the sentence.

Figure 1: (a) Input sentences for Hindi-English (1E,
1H) and Spanish-English (2E, 1S) and (b) GCM output
Code-Mixed sentences for Hindi-English (1CM) and
Spanish-English (2CM).

Figure 1 shows example source sentences in
Hindi, English and Spanish and their CM coun-
terparts generated by the EC theory. Figures 2 and
3 show the parse trees of all the sentences above,
illustrating how the sentences are generated by the
theory.

2.2 Code-mixed (CM) Text Generation
Process

The generation process is a sequential process (Fig-
ure 4), which requires parallel sentences in the two
languages being mixed as input data. Three ma-

Figure 2: Parse-trees of (a) sentences [1E] and (b) [1H], and (c) of [1CM] according to the EC Theory

Figure 3: Parse-trees of (a) sentences [2E] and (b) [1S], and (c) of [2CM] according to the EC Theory

2
206

Figure 4: The CM Generation Process

jor components play a part in the process and the
stages occur in the following order:

The first stage is the “Alignment stage”. In this
stage, the Aligner is used to generate word level
alignments for input pair of sentences. We cur-
rently use “fast align” (Dyer et al., 2013) which
performs well compared to other aligners in terms
of both speed and accuracy.

The second stage is the Pre-GCM stage which
is responsible for pre-processing the input. This
stage combines the aligner outputs along with con-
stituent parse trees generated by the parser and
“Pseudo Fuzzy-match Score” (Pratapa et al., 2018a)
for each sentence pair to make one row of input
data for the GCM stage. The Parser is used to
generate a sentence level constituent parse tree for
one of the source languages. Previously in (Pratapa
et al., 2018a) we used the Stanford Parser (Klein
and Manning, 2003) but we now also provide the
option to use the Berkeley Neural Parser (Kitaev
and Klein, 2018). This stage is also responsible
for creating appropriate batches of data to be con-
sumed by the next stage.

The final GCM stage, processes each batch of
data, applying linguistic theories in order to gener-
ate CM sentences as output.

2.3 Sampling

Figure 5 shows some sentences generated by the
EC theory for a pair of Hindi-English source sen-
tences. Through manual observation and user stud-
ies, we find that the EC theory generates sentences
that may be grammatically correct, but may not
feel natural to bilingual speakers. In prior work we
showed that sampling appropriately from the gener-

Figure 5: Need for Sampling: Not all generated CM
sentences feel natural

ated data is crucial. We experimented with various
sampling techniques and showed that training an
RNN Language Model with sampled synthetic data
reduces the perplexity of the model by an amount
which is equivalent to doubling the amount of real
CM data available (Pratapa et al., 2018a). So, we
add a sampling stage after the generation stage, for
which we propose the following techniques.

• Random: For each parallel pair of input sen-
tences, we arbitrarily pick a fixed number k
of CM sentences from the generated corpus.
The advantage of this method is that we are
not dependent on having real CM data.

• SPF-based: The Switch Point Fraction or
SPF is the number of switch points in a sen-
tence divided by the total number of words in
the sentence (Pratapa et al., 2018a). For each
parallel pair of input sentences, we randomly
pick k CM sentences such that the SPF distri-

3
207

bution of these is as close as possible to that of
the real CM data. The benefit of this method
is that we can generate a synthetic CM corpus
that close to the real data distribution in terms
of amount of switching, but this method im-
poses a requirement of having real CM data
for the given language pair.

• Linguistic Features-based: Words do not
get switched at random, and it would be use-
ful to be able to learn patterns of switching
from real CM data. For example, learning how
nouns and verbs tend to get switched can cre-
ate more realistic data. However, this method
imposes additional requirements - in addition
to real CM data, we also need POS taggers for
CM data, which are not readily available.

Out of the above techniques, Random and SPF-
based sampling are currently implemented in the
system. In the future, we would like to add im-
proved sampling techniques to the tool, since it is
an important step to achieve high quality synthetic
data.

3 System Overview

We provide three modes in the GCM tool: a batch
mode, an interactive library mode and a web-
interface to address the needs of NLP practitioners,
researchers, linguists and language experts:

3.1 Batch Mode
This mode is primarily intended for those who want
to generate CM data on servers given large paral-
lel corpora of monolingual data. It operates via a
configuration file that contains multiple options to
customize CM text generation. We describe some
of the options available in batch mode (Listing 1).
The entire list of options can be found in the code
documentation.

1 [GENERAL]
2 .
3 .
4 # choose which stages of the pipeline

are going to be run; default: pregcm
, gcm

5 stages_to_run =
6 # whether to run the pregcm and gcm

stages parallely; default: 0 ; set
to 1 to run parallely

7 parallel_run =
8

9 [ALIGNER]
10 .
11 .
12

13 [PREGCM]
14 .
15 # cut-off value for PFMS score
16 max_pfms =
17 # select the parser to be used from

available parsers - stanford and
benepar; default: benepar

18 parser =
19

20 [GCM]
21 .
22 # max number of sentences to generate

per sentence; default: 5
23 k =
24

25 [OUTPUT]
26 # language tag at word level in each

output code-mixed sentence
27 lid_ouput =
28 # visualize DFAs that were used to make

generations
29 dfa_output =
30 # sampling technique to use - random or

spf
31 sampling =

Listing 1: Options available in the configuration file in
batch mode

In the [GENERAL] section, the option
stages_to_run lets the user choose specific stages
to be run on the data. When a large scale CM cor-
pus is to be generated, it is useful to run the CM
generator pipeline in parallel mode to speed up the
process. The parallel_run options lets the user
run the Pre-GCM and GCM stages asynchronously
so that instead of waiting for all the data to be pre-
processed, the GCM stage can start working on
batch of data as and when ready.

The max_pfms option in [PREGCM] lets user se-
lect the “Pseudo Fuzzy-match Score” threshold for
the input sentences. In order to prepare consistent
input data, we perform back-translation as one of
the steps. The Pseudo Fuzzy-match Score quan-
tifies the quality of back-translation that directly
impacts the quality of CM data generated, hence
this feature is particularly important.

parser lets you choose between the Stanford
Parser and Berkeley Natural Parser. The Stanford
Parser contains support for parsing Arabic, Chi-
nese, English, French, German and Spanish, while
the Berkeley Natural Parser can parse English, Chi-
nese, Arabic, German, Basque, French, Hebrew,
Hungarian, Korean, Polish, Swedish. While we
rely on one of these supported languages to be one
of the two languages in the parallel corpus from
which the CM text is generated, we generate the
second parse tree using the alignments from the
previous step. So, we can generate CM sentences

4
208

in language pairs where one of the languages is
supported by either of the two parsers.

The k option in [GCM] controls the maximum
number of CM sentences to be generated per
input sentence. Similarly, the lid_output and
dfa_output options in the [OUTPUT] lets the
user extract additional information in the form of
word-level language tags and DFAs for each gener-
ated CM sentence. This can be used for debugging
the CM generation process, since the user can see
the language tags assigned to the generated CM
sentence in case both languages are in the same
script. The sampling option lets the user choose
the kind of sampling technique they want for gener-
ating CM text: currently, the options available are
Random or SPF based, as described earlier.

3.2 Library Mode

The library mode is a light weight interactive inter-
face for a programmer to go back and forth with
the output of various stages to adjust parameters.
This mode was designed to be able to accommo-
date modules that the user may want to add to the
pipeline to increase speed, accuracy and language
coverage. The library is designed to be continu-
ously extensible, for example, to add a new pre-
processing sub-module or a parser in a language
that the available parsers do not support. Below is
an example of using the library mode to experiment
with CM generation by utilizing the outputs of both
the Stanford Parser and the Berkeley Neural Parser
(Listing 2):

1 from gcm.aligners import fast_align
2 from gcm.parsers import benepar,

stparser
3 from gcm.stages import pregcm, gcm
4

5

6 # code to generate alignments using
fast_align

7 # assuming corpus is the variable
storing data

8

9 aligns = fast_align.gen_aligns(corpus)
10

11 # code to use benepar to generate parse
trees from the corpus

12 pt_benepar = benepar.parse(corpus)
13

14 # code to use stanford parser to
generate parse trees from the corpus

15 pt_stanford = stparser.gen_parse(corpus)
16

17 # generating two set of CMs one based on
the stanford parser and the other

on benepar
18 # assuming pfms_scores to have PFS of

the input sentences

19

20 pgcm_benepar = pregcm.process(corpus,
aligns, pt_benepar)

21 pgcm_stanford = pregcm.process(corpus,
aligns, pt_stanford)

22

23 gcm_stanford = gcm.gen(pgcm_stanford)
24 gcm_benepar = gcm.gen(pgcm_benepar)
25

26 # now both the generated CMs can be
trained on downstream language-
modeling tasks to compare their
performance

Listing 2: Using library mode to generate CM text
based on Benepar and Stanford Parser parse trees.

3.3 Web UI

In addition to the batch mode and library modes,
which are targeted at users who want to either cre-
ate large amounts of CM data or are proficient pro-
grammers, we also wanted to create a way for lin-
guists and language experts to be able to visualize
linguistic theories of code-mixing in an intuitive
and easy to use interface. For this, we created a
Web UI mode, which we describe next. The Web
UI mode is meant to generate CM sentences for
one pair of input sentences at a time.

The user can provide either a pair of parallel
sentences, or can use the Translate option to trans-
late a source sentence into another language using
translation APIs. The user can choose the linguistic
theory that they want to use to generate the CM
text as can be seen in Figure 6.

Once the user has selected the options and clicks
on the generate button, we generate the output of
GCM which consists of all the parse trees and the
generated CM sentences. As shown in Figure 7,
we show all possible sentences generated by the
linguistic theory and do not restrict the number
of sentences or sample them. This is to enable
users to see all the sentences that are generated by
the linguistic theory, which can then be restricted
or sampled by using the code in batch or library
mode. We expect that the Web UI will be very
useful as the support for more implementations of
CM theories increases, as well as to visualize CM
between different language pairs.

4 Conclusion and Future Work

Generating synthetic CM data has become a
promising direction in research on code-mixing,
due to the lack of available data and has proved to
be successful in improving various CM NLP tasks.

5
209

Figure 6: Selecting the linguistic theory and giving input sentences to GCM Web UI.

Figure 7: Code-Mixed sentences and the associated parse trees as output.

In this paper, we describe a tool for generating syn-
thetic CM data given parallel data in two languages,
or a translator between two languages. We imple-
ment two theories of code-mixing, the Equivalence
Constraint (EC) theory and the Matrix-Language
(ML) theory to generate CM data, followed by a
sampling stage to sample sentences that are close
to real code-mixing in naturalness. The GCM tool
operates in three modes - a batch mode, which
is meant for large scale generation of data, a li-
brary mode, which is meant to be customizable and
extensible and a Web UI, which is meant as a visu-

alization tool for linguists and language experts.

We plan to release the GCM tool as open source
code and add more implementations of linguistic
theories, generation techniques and sampling tech-
niques. We believe that this tool will help address
some of the problems of data scarcity in CM lan-
guages, as well as help evaluate linguistic theories
for different language pairs and we expect that the
release of this toolkit will spur research in diverse
code-mixed language pairs.

6
210

References
Gayatri Bhat, Monojit Choudhury, and Kalika Bali.

2016. Grammatical constraints on intra-sentential
code-switching: From theories to working models.
arXiv preprint arXiv:1612.04538.

Ching-Ting Chang, Shun-Po Chuang, and Hung-Yi
Lee. 2019. Code-switching sentence generation by
generative adversarial networks and its application
to data augmentation. Proc. Interspeech 2019, pages
554–558.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 2267–2280.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched nlp.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Melbourne, Australia. Association for Com-
putational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Carol Myers-Scotton. 1993. Duelling languages:
Grammatical structure in code-switching. Claren-
don Press, Oxford.

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching 1. Linguistics, 18:581–618.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018a. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553.

Adithya Pratapa, Monojit Choudhury, and Sunayana
Sitaram. 2018b. Word embeddings for code-mixed
language processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3067–3072.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019. A
deep generative model for code-switched text. In
Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 5175–5181.
AAAI Press.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280.

7
211

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 212–220
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

T2NER: Transformers based Transfer Learning Framework for Named
Entity Recognition

Saadullah Amin Günter Neumann

Department of Language Science and Technology, Saarland University, Saarbrücken
Multilinguality and Language Technology Lab, DFKI GmbH, Saarbrücken

{saadullah.amin, guenter.neumann}@dfki.de

Abstract

Recent advances in deep transformer models
have achieved state-of-the-art in several natu-
ral language processing (NLP) tasks, whereas
named entity recognition (NER) has tradition-
ally benefited from long-short term memory
(LSTM) networks. In this work, we present a
Transformers based Transfer Learning frame-
work for Named Entity Recognition (T2NER)
created in PyTorch for the task of NER with
deep transformer models. The framework is
built upon the Transformers library as the core
modeling engine and supports several trans-
fer learning scenarios from sequential transfer
to domain adaptation, multi-task learning, and
semi-supervised learning. It aims to bridge the
gap between the algorithmic advances in these
areas by combining them with the state-of-the-
art in transformer models to provide a unified
platform that is readily extensible and can be
used for both the transfer learning research
in NER, and for real-world applications. The
framework is available at: https://github.
com/suamin/t2ner.

1 Introduction

Named entity recognition (NER) is an impor-
tant task in information extraction, benefiting the
downstream applications such as entity linking
(Cucerzan, 2007), relation extraction (Culotta and
Sorensen, 2004) and question answering (Krishna-
murthy and Mitchell, 2015). NER has been a chal-
lenging task in NLP due to large variations in entity
names and flexibility in how entities are mentioned.
These challenges are further enhanced in cross-
lingual and cross-domain NER settings, where the
added difficulty comes from the difference in text
genre and entity names across languages and do-
mains (Jia et al., 2019).

Furthermore, NER models have shown relatively
high variance even when trained on the same data

(Reimers and Gurevych, 2017). These models gen-
eralize poorly when tested on data from different
domains and languages, and even more so when
they contain unseen entity mentions (Augenstein
et al., 2017; Agarwal et al., 2020; Wang et al.,
2020). These challenges make transfer learning re-
search an important and well studied area in NER.

Recent successes in transfer learning have
mainly come from pre-trained language models
(Devlin et al., 2019; Radford et al., 2019) with con-
textualized word embeddings based on deep trans-
former models (Vaswani et al., 2017). These mod-
els achieve state-of-the-art in several NLP tasks
such as named entity recognition, document classi-
fication, and question answering. Due to their wide
success and the community adoption, successful
frameworks like Transformers have emerged. In
NER, the existing frameworks like NCRF++ (Yang
and Zhang, 2018) lack the core infrastructure to
support such models directly with state-of-the-art
transfer learning algorithms.

In this paper, we present an adaptable and user-
friendly development framework for growing re-
search in transfer learning with deep transformer
models for NER, with underexplored areas such
as semi-supervised learning. This is in contrast to
the standard LSTM based approaches which have
largely and successfully dominated the NER re-
search. Our framework is aimed to bridge several
gaps with core design principles that are discussed
in next section.

2 Design Principles

T2NER is divided into several components as shown
in Figure 1. The core design principle is to seam-
lessly integrate the Transformers (Wolf et al., 2020)
library as the backend for modeling, while extend-
ing it to support different transfer learning scenar-
ios with a range of existing algorithms. Trans-

212

Figure 1: Overview of the T2NER framework.

formers offer optimized implementations of several
deep transformer models, including BERT (Devlin
et al., 2019), GPT (Radford et al., 2019), RoBERTa
(Liu et al., 2019), and XLM (Conneau and Lample,
2019) among others, with multi-GPU, distributed,
and mixed precision training.

The second design principle is inspired by
previous pre-trained models in the computer vi-
sion: Dassl.pytorch (Zhou et al., 2020)1 and
Trans-Learn (Jiang et al., 2020)2 that unify do-
main adaptation, domain generalization, and semi-
supervised learning, thus allowing easy benchmark-
ing, fair comparisons, and reproducibility. T2NER
is the unification of these major algorithmic ap-
proaches to bridge the gap between the algorithms
and advance transfer learning research in NER.

Lastly, the cross-lingual and cross-domain re-
search in NER has itself proposed several advances,
including multi-task and joint learning (Pan et al.,
2017; Peng and Dredze, 2017; Lin et al., 2018; Jia
et al., 2019; Wang et al., 2020), adversarial learn-

1https://github.com/KaiyangZhou/Dassl.
pytorch

2https://github.com/thuml/
Transfer-Learning-Library

ing (Zhou et al., 2019; Keung et al., 2019), feature
transfer (Daumé III, 2007; Kim et al., 2015; Wang
et al., 2018), newer architectures (Lin et al., 2018;
Jia and Zhang, 2020), parameter sharing (Lee et al.,
2018; Yang et al., 2018; Lin and Lu, 2018), parame-
ter generation (Jia et al., 2019), mixture-of-experts
(Chen et al., 2018), and usage of external resources
(Xie et al., 2018; Wang et al., 2019). Therefore,
our final design principle aims to unify these re-
searches and offer a framework to test them with
deep transformer models, wherever such an algo-
rithmic abstraction is possible, while exploring new
paradigms.

3 The T2NER Framework

3.1 Data Sources

The main data source is the NER data, which is
expected to be labeled or unlabeled in the CoNLL
format. We adopt widely used BIO tagging scheme.
In practice, the differences in results which arise
due to different schemes are negligible (Ratinov
and Roth, 2009). A simple preprocessing routine
is provided to standardize the data files, along
with the required metadata, that is used through-

213

Figure 2: Transfer learning scenarios supported in T2NER. The adaptation scenarios apply to the cross-domain,
cross-lingual, or a mix of both. These scenarios can further be complemented with multi-task learning. (a) Single
source supervised or unsupervised domain or language adaptation (b) Multi-source supervised or unsupervised
domain or language adaptation (c) Single source semi-supervised learning with partially labeled data. Further new
directions in NER, such as multi-source adaptation with semi-supervised or few-shot learning of the target, are
possible.

out the framework. In particular, for a given
named collection as domain.datasetname
(possibly split into train, development and test
files), T2NER creates output data files named
as lang.domain.datasetname-split
and lang.domain.datasetname.labels,
where language information is provided by the
user. In case of missing metadata, a place-
holder xxx can be used. For preprocessing,
we tokenize via Transformers and split the
sentences which are longer than the user-defined
maximum length. An example output file could
be en.news.conll-train, referring to the
CoNLL 2003 data set (Tjong Kim Sang and
De Meulder, 2003).

Besides NER data, additional task data can also
be provided, such as that for language modeling,
POS tagging, and alignment resources (e.g. bilin-
gual dictionaries or parallel sentences).

3.2 Data Readers

These are classes that are designed to serve
the data needs of a given transfer learn-
ing scenario in a modular and extensible
way. The framework provides SimpleData,
SimpleAdaptationData, MultiData, and
SemiSupervisedData which are suitable for
single dataset NER, cross- lingual and domain
NER, multi-dataset NER, and single dataset semi-
supervised NER, respectively. Each class is
derived from a base class BaseData and can
be extended for further scenarios. As a con-
crete example, consider a dataset reader class

SimpleAdaptationData in T2NER, which
can provide training data for source and target
language or domain up to a requested number of
copies.

3.3 Models
A model is composed of three main components:
a base encoder from the Transformers (Wolf et al.,
2020), any additional networks (X-nets) on top of
the encoder, and the prediction layer(s).

Encoder is the main model component that
takes as input tokenized text and returns hidden
states such as those from BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). There are
five encoder modes that we support:

• finetune: Fine-tunes the encoder and uses
the last layer hidden states.

• freeze: Freezes the encoder and uses the
last layer hidden states.

• firstn: Freezes only the first n layers of the
encoder and uses the last layer hidden states
(Wu and Dredze, 2019).

• lastn: Freezes the encoder and uses the ag-
gregated hidden states by summing the out-
puts from the last n layers (Wang et al., 2019).

• embedonly: Uses and fine-tunes the embed-
ding layer only of the encoder.

X-nets are additional neural architectures that
can be used on top of the encoder to further func-
tion on the encoder hidden states. T2NER provides

214

Figure 3: Class hierarchies in T2NER for two main class concepts: (Left) Main model architectures in single
and multi-task settings with the adoption of Auto classes concepts from Transformers (Wolf et al., 2020), where
customized functionality or new modeling concepts can easily be added. (Right) Main trainer classes that offer a
particular transfer learning scenario and extend it to a specific transferring algorithm.

multi-layered Transformers and BiLSTM by de-
fault.

Prediction Layers offer the final classification
layer for the sequence labeling. Following Devlin
et al. (2019), the default prediction layer in T2NER

is a linear layer, however support for linear-chain
conditional random field (CRF) is included. In the
multi-task setting, several output layers from dif-
ferent datasets in different domains or languages
might be available with partial or exact entity types
as outputs. To help the transfer across the tasks,
private and shared prediction layers are also sup-
ported (Wang et al., 2020; Lin et al., 2018).

With these underlying components, models are
mainly implemented as single or multi-task archi-
tectures. To support a wide range of encoders in
a unified API, T2NER adopts the Auto classes
design from the Transformers. Figure 3 shows
the class hierarchies, outlining the customized ex-
tensions with further possibilities to extend with
external model implementations.

3.4 Criterions

For a given sequence of length L with tokens
x = [x1, x2, ..., xL], labels y = [y1, y2, ..., yL]
with each yi ∈ ∆C a one-hot entity type vector
with C types, and the linear prediction layer, the
NER loss is defined as:

L(y;x) = −
C∑

i=1

L∑

j=1

yij log p(hj = i|xj)

where p(hj = i|xj) is the probability of token xj
being labeled as entity type i and hj is the model
output. When p is softmax, this becomes cross-
entropy loss. To tackle class-imbalance in real-
world applications, T2NER also offers two-class
sensitive loss functions:

• Focal Loss adds a modulating factor to the
standard softmax which reduces the loss con-
tribution from easy examples and extends the
range in which an example receives low loss
(Lin et al., 2017).

• LDAM Loss is the label-distribution-aware
loss function that encourages the model to
have the optimal trade-off between per-class
margins by promoting the minority classes to
have larger margins (Cao et al., 2019).

3.5 Auxiliary Tasks
Multi-task learning has greatly benefited transfer
learning in NER (Lin et al., 2018; Wang et al.,
2020; Jia et al., 2019; Jia and Zhang, 2020). Several
auxiliary tasks are supported in a multi-task model
by default:

• Language Classification: In the cross-lingual
setting, this task provides an additional clas-
sification signal over the languages (e.g., En-
glish and Spanish) used in the training data
(Keung et al., 2019).

• Domain Classification: In the cross-domain
setting, this task provides an additional clas-

215

sification signal over the domains (e.g., News
and Biomedical) used in the training data
(Wang et al., 2020).

• Adversarial Classification: In the cross- lin-
gual or domain setting, this task provides
an additional adversarial classification signal
over the languages or domains to learn invari-
ant features used in the training data (Keung
et al., 2019; Chen et al., 2018).

• Language Modeling: While pre-trained trans-
former models are already tuned on a specific
corpora, additional causal language modeling
signal is supported during fine-tuning over the
raw texts (Rei, 2017; Jia et al., 2019; Jia and
Zhang, 2020).

• Entity Type Classification: To better extract
entity type knowledge, an additional linear
classifier is added. This performs classifica-
tion over entity types such as [PER, LOC, O,
...] without the segmentation tags such as
B/I/E (Jia and Zhang, 2020).

• Shared Tagging: In NER settings where the
entity types might differ, a shared prediction
layer across all the entity types provides an
additional signal to the base NER tasks.

• All-Outside Classification: This is a binary
classification task which predicts if the sen-
tence has entity types other than the outside
(O) type.

3.6 Optimization Modules
T2NER provides thin wrappers around the optimiz-
ers and learning rate schedulers from the PyTorch
(Paszke et al., 2019) and the Transformers (Wolf
et al., 2020) libraries.

3.7 Trainers
Trainer is the main class concept that glues together
all the components and provides a unified setup
to develop, test, and benchmark the algorithms.
Figure 3 shows the organization of trainer classes.
Each transfer learning scenario inherits from the
BaseTrainer class, where each scenario can
further be extended to create an algorithm-specific
training regime. This allows the researchers to
focus mainly on the algorithms’ logic while the
framework fulfills the requirements of a chosen
transfer scenario. Following (Zhou et al., 2020;
Jiang et al., 2020), a few training algorithms are

implemented by default which we briefly describe.
In the following, a feature extractor is referred to
as the base encoder with any X-nets. An optional
pooling strategy {mean, sum, max, attention,
...} can be applied to aggregate the hidden states.
In what follows, domain and language can be used
interchangeably. For consistency, we use the word
domain.

Gradient Reversal Layer (GRL) adds a do-
main classifier which is trained to discriminate
whether input features come from the source or tar-
get domain, whereas the feature extractor is trained
to deceive the domain classifier to match feature
distributions.

Earth Mover Distance (EMD) adds a critic
that maximizes the difference between unbounded
scores of source and target features. This effec-
tively returns the approximation of Wasserstein
distance between source and target feature distri-
butions (Arjovsky et al., 2017). The overall ob-
jective jointly minimizes NER cross-entropy loss
and Wasserstein distance. Theoretically, GRL is
effectively minimizing Jensen-Shannon (JS) diver-
gence which suffers from discontinuities and thus
provide poor gradients for feature extractor. In con-
trast Wasserstein distance is stable and less prone
to hyperparamter selection (Chen et al., 2018). For
stable training, the gradient penalty is also provided
(Gulrajani et al., 2017).

Keung Adversarial is closely related to GRL
but additionally uses the generator loss such that
the features are difficult for the discriminator to
classify correctly between source and target. The
optimization is carried out in step-wise fashion for
the feature extractor, discriminator, and generator
(Keung et al., 2019).

Maximum Classifier Discrepancy (MCD)
adds a second classifier to measure the discrep-
ancy between the predictions of two classifiers on
target samples. It is noted that the target samples
outside the support of the source can be measured
by two different classifiers. Overall, MCD solves a
minimax problem in which the goal is to find two
classifiers that maximize the discrepancy on the tar-
get sample, and a features generator that minimizes
this discrepancy (Saito et al., 2018).

Minimax Entropy (MME) decreases the en-
tropy on unlabeled target features in adversarial
manner by using GRL to obtain high quality dis-
criminative features (Saito et al., 2019). Besides
unsupervised domain adaptation, the method can

216

Figure 4: An example of the configuration file that al-
lows the user to specify their choices. It shows an in-
stantiation of the multi-task learning scenario.

additionally be used in semi-supervised and few-
shot learning scenarios when some labeled target
samples are available.

Further algorithms, such as classical conditional
entropy minimization (CEM) for semi-supervised
learning (Grandvalet and Bengio, 2004) or re-
cent works based on maximum mean discrepancy
(MMD) for multi-source domain adaptation (Peng
et al., 2019), are provided. In general, extending
T2NER for newer algorithms is simple and flexible.

4 Usage

T2NER offers a single entry point to the framework
which relies on a base JSON configuration file, an
experiment-specific JSON configuration file with
an optional algorithm name to run. An example
experiment-specific configuration file is shown in
Figure 4. The command below shows an example
run:

Like other frameworks, it can be further devel-
oped and used as a standard Python library.

5 Conclusion and Future Work

In this work we presented a transformer based
framework for transfer learning research in named
entity recognition (NER). We laid out the design
principles, detailed out the architecture, and pre-
sented the transfer scenarios and some of the rep-
resentative algorithms. T2NER offers to bridge the
gap between growing research in deep transformer
models, NER transfer learning, and domain adapta-
tion. T2NER has the potential to serve as a unified
benchmark for existing and newer algorithms with
state-of-the-art models.

For future work, we consider the following:

• We would like to create a benchmark data and
perform comparison of the transfer learning al-
gorithms (Ramponi and Plank, 2020; Kashyap
et al., 2020).

• We would like to investigate adding support
for few-shot (Huang et al., 2020), nested (Jue
et al., 2020) and document-level (Schweter
and Akbik, 2020) NER.

• Assess the performance of framework in terms
of speed and efficiency and compare with
other tools3.

• While we focused on the task of NER here, we
would also like to add related tasks such as re-
lation extraction, entity linking, and question
answering.

Acknowledgments

The work was partially funded by the Euro-
pean Union’s Horizon 2020 research and inno-
vation programme under grant agreement No.
777107 through the project Precise4Q and by the
German Federal Ministry of Education and Re-
search (BMBF) through the project CoRA4NLP
(01IW20010).

References

Oshin Agarwal, Yinfei Yang, Byron C Wallace, and
Ani Nenkova. 2020. Interpretability analysis for
named entity recognition to understand system pre-
dictions and how they can improve. arXiv preprint
arXiv:2004.04564.

3https://github.com/JayYip/
bert-multitask-learning

217

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In International Conference on Machine Learning,
pages 214–223.

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language, 44:61–83.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. 2019. Learning imbalanced
datasets with label-distribution-aware margin loss.
In Advances in Neural Information Processing Sys-
tems, pages 1567–1578.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2018. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. Transactions of the Association for Compu-
tational Linguistics, 6:557–570.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of the 2007 joint conference on empirical meth-
ods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL),
pages 708–716.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 423–
429.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256–263.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization. Ad-
vances in neural information processing systems,
17:529–536.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. 2017. Im-
proved training of wasserstein gans. In Advances in
neural information processing systems, pages 5767–
5777.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2020. Few-
shot named entity recognition: A comprehensive
study. arXiv preprint arXiv:2012.14978.

Chen Jia, Xiaobo Liang, and Yue Zhang. 2019. Cross-
domain ner using cross-domain language modeling.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2464–2474.

Chen Jia and Yue Zhang. 2020. Multi-cell composi-
tional lstm for ner domain adaptation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5906–5917.

Junguang Jiang, Bo Fu, and Mingsheng Long. 2020.
Transfer-learning-library. https://github.com/
thuml/Transfer-Learning-Library.

WANG Jue, Lidan Shou, Ke Chen, and Gang Chen.
2020. Pyramid: A layered model for nested named
entity recognition. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5918–5928.

Abhinav Ramesh Kashyap, Devamanyu Hazarika, Min-
Yen Kan, and Roger Zimmermann. 2020. Domain
divergences: a survey and empirical analysis. arXiv
preprint arXiv:2010.12198.

Phillip Keung, Vikas Bhardwaj, et al. 2019. Adver-
sarial learning with contextual embeddings for zero-
resource cross-lingual classification and ner. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1355–1360.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015. New transfer learning tech-
niques for disparate label sets. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 473–482.

Jayant Krishnamurthy and Tom M Mitchell. 2015.
Learning a compositional semantics for freebase
with an open predicate vocabulary. Transactions
of the Association for Computational Linguistics,
3:257–270.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits.
2018. Transfer learning for named-entity recogni-
tion with neural networks. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Bill Yuchen Lin and Wei Lu. 2018. Neural adaptation
layers for cross-domain named entity recognition.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2012–2022.

218

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense ob-
ject detection. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2980–
2988.

Ying Lin, Shengqi Yang, Veselin Stoyanov, and Heng
Ji. 2018. A multi-lingual multi-task architecture
for low-resource sequence labeling. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 799–809.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Nanyun Peng and Mark Dredze. 2017. Multi-task do-
main adaptation for sequence tagging. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP, pages 91–100.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. 2019. Moment match-
ing for multi-source domain adaptation. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 1406–1415.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Alan Ramponi and Barbara Plank. 2020. Neural un-
supervised domain adaptation in nlp—a survey. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 6838–6855.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155.

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2121–2130.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 338–
348.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor
Darrell, and Kate Saenko. 2019. Semi-supervised
domain adaptation via minimax entropy. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 8050–8058.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and
Tatsuya Harada. 2018. Maximum classifier discrep-
ancy for unsupervised domain adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3723–3732.

Stefan Schweter and Alan Akbik. 2020. Flert:
Document-level features for named entity recogni-
tion. arXiv preprint arXiv:2011.06993.

Erik F Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: language-
independent named entity recognition. In Proceed-
ings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 142–
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jing Wang, Mayank Kulkarni, and Daniel Preoţiuc-
Pietro. 2020. Multi-domain named entity recogni-
tion with genre-aware and agnostic inference. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8476–
8488.

Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen,
Weinan Zhang, Shaodian Zhang, Yimei Gao, Gen
Gu, Ken Chen, and Yong Yu. 2018. Label-aware
double transfer learning for cross-specialty medical
named entity recognition. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1–15.

Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang,
Graham Neubig, and Jaime G Carbonell. 2019.
Cross-lingual alignment vs joint training: A compar-
ative study and a simple unified framework. In Inter-
national Conference on Learning Representations.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of

219

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3879–3889.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79.

Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu,
Meng Fang, Rick Siow Mong Goh, and Kenneth
Kwok. 2019. Dual adversarial neural transfer for
low-resource named entity recognition. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3461–3471.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang.
2020. Domain adaptive ensemble learning. arXiv
preprint arXiv:2003.07325.

220

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 221–230
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

European Language Grid:
A Joint Platform for the European Language Technology Community
Georg Rehm1, Stelios Piperidis2, Kalina Bontcheva3, Jan Hajič4, Victoria Arranz5,

Andrejs Vasiļjevs6, Gerhard Backfried7, José Manuel Gómez­Pérez8, Ulrich Germann9,
Rémi Calizzano1, Nils Feldhus1, Stefanie Hegele1, Florian Kintzel1, Katrin Marheinecke1,
Julián Moreno­Schneider1, Dimitrios Galanis2, Penny Labropoulou2, Miltos Deligiannis2,

Katerina Gkirtzou2, Athanasia Kolovou2, Dimitris Gkoumas2, Leon Voukoutis2,
Ian Roberts3, Jana Hamrlová4, Dušan Variš4, Lukáš Kačena4, Khalid Choukri5,

Valérie Mapelli5, Mickaël Rigault5, Jūlija Meļņika6, Miroslav Jánošík7, Katja Prinz7,
Andrés García­Silva8, Cristian Berrío8, Ondrej Klejch9, Steve Renals9

1DFKI GmbH, Berlin, Germany; 2R.C. Athena, ILSP, Greece; 3University of Sheffield, UK;
4Charles University, Czechia; 5ELDA, France; 6Tilde, Latvia; 7HENSOLDT Analytics, Austria;

8Expert System, Spain; 9University of Edinburgh, UK

Corresponding author: georg.rehm@dfki.de

Abstract

Europe is a multilingual society, in which
dozens of languages are spoken. The only op­
tion to enable and to benefit from multilingual­
ism is through Language Technologies (LT),
i. e., Natural Language Processing and Speech
Technologies. We describe the European Lan­
guage Grid (ELG), which is targeted to evolve
into the primary platform and marketplace for
LT in Europe by providing one umbrella plat­
form for the European LT landscape, includ­
ing research and industry, enabling all stake­
holders to upload, share and distribute their ser­
vices, products and resources. At the end of
our EU project, which will establish a legal en­
tity in 2022, the ELG will provide access to ap­
prox. 1300 services for all European languages
as well as thousands of data sets.

1 Introduction

Europe is a multilingual society with 24 EU Mem­
ber State languages and dozens of additional lan­
guages including regional and minority languages
and languages spoken by immigrants, trade part­
ners and tourists. The only option to enable and
to benefit from multilingualism is through Lan­
guage Technologies (LT) including Natural Lan­
guage Processing (NLP) and Speech Technologies
(Rehm, 2017). While the European LT landscape
is world class, it is also massively fragmented
(Vasiljevs et al., 2019; Rehm et al., 2020d).

We describe Release 2 of the European Lan­
guage Grid (ELG) cloud platform.1 This scal­
able system is targeted to evolve into the primary

1https://www.european­language­grid.eu. We provide a
screencast demo video at https://youtu.be/LD6QadkkZiM.

platform for LT in Europe. It will provide one
umbrella platform for all LTs developed by the
European LT landscape, including research and
industry, addressing a gap that has been repeat­
edly raised by the European LT community for
many years (Rehm and Uszkoreit, 2013; Rehm
et al., 2016b; STOA, 2017; Rehm, 2017; Rehm and
Hegele, 2018; European Parliament, 2018). ELG
is meant to be a virtual home and marketplace for
all products, services and organisations active in
the LT space in Europe (Rehm et al., 2020a). The
platform can be used by all stakeholders to show­
case, share and distribute their products, services,
tools and resources. At the end of the EU project
ELG (2019­2022), which will establish a legal en­
tity in early 2022, the platform will provide access
to approx. 1300 commercial and non­commercial
tools and services for all European languages, as
well as thousands of language resources (LRs).
ELG will enable the European LT community to
deposit and upload their technologies and data sets
and to deploy them through the grid. The ELG
is also meant to support digital language equal­
ity in Europe (STOA, 2017; European Parliament,
2018), i. e., to create a situation in which all lan­
guages are supported through technologies equally
well. The current imbalance is characterised by a
stark predominance of LTs for English, while al­
most all other languages are only marginally sup­
ported and, thus, in danger of digital language ex­
tinction (Rehm and Uszkoreit, 2012; Kornai, 2013;
Rehm et al., 2014, 2016a; ELRC, 2019).
Section 2 gives an overview of the ELG plat­

form and related activities. Section 3 touches upon
related work. Section 4 concludes the paper.

221

2 The European Language Grid

The European LT community has been demand­
ing a dedicated LT platform for years. ELG con­
centrates on commercial and non­commercial LTs,
both functional (processing and generation, writ­
ten and spoken language) and non­functional (cor­
pora, data sets etc.). We want to establish the ELG
as the primary market place for the fragmented Eu­
ropean LT landscape (Rehm et al., 2020d) to con­
nect demand and supply. The ELG is based on ro­
bust, scalable and reliable open source technolo­
gies, enabling it to scale with the growing demand
and supply. It contains records of all resources,
service and application types, languages as well
as LT companies, research organisations, projects,
etc. (see Figure 1 and Figure 4 in the appendix).

Figure 1: The ELG platform

2.1 Architectural Overview

ELG is a scalable platform with a web user in­
terface, backend components and REST APIs. It
offers access (search, discovery, etc.) to various
kinds of LT­related resources such as functional
services as well as corpora and data sets and or­
ganisations. An ELG functional service is an LT
tool wrapped with the ELG LT Service API2 and
packaged in a Docker container; both steps have
to be carried out by the LT provider. Then, the LT
service container is integrated into the ELG (Sec­
tion 2.7) so that it can be used through the web
UI or APIs. The architecture consists of three lay­
ers: base infrastructure, platform backend, plat­
form frontend (Figure 2).
The base infrastructure is operated on a Kuber­

netes3 cluster in the data centre of a cloud provider
located in Berlin, Germany, where all platform

2https://gitlab.com/european­language­grid/platform/
3https://kubernetes.io

components and all LT functional services run as
Docker containers. The only components outside
the cluster are the S3 storage, ReadtheDocs (ELG
documentation), and any LT services deployed
through external servers.

Entity

PL
AT

FO
RM

FR

O
N

TE
N

D

CMS UITest/Trial UICatalogue UI Admin UI Provider UI &
Metadata Editor

Non-functional
content

Functional content

GA
TE

W
AY

BA
SE

 IN
FR

A-
ST

RU
CT

U
RE

PL
AT

FO
RM

BA

CK
EN

D

LT Service Execution
Orchestrator

Billing

Monitoring

Analytics

…

Database Elastic Index
LT

SRV 1
LT

SRV 2
LT

SRV n

User Management Catalogue

Metadata Harvesting

Nodes

File & object storage

Non-functional
content

S3 compatible

Docker
Images

Docker repository

REST API

Storage Proxy

Figure 2: Technical architecture

The platform backend consists of (1) the back­
end components of the ELG catalogue, i. e., an
inventory of all metadata records (Section 2.3).
Users can browse and search the catalogue through
queries or by utilising filters (e. g., language, ser­
vice type, domain etc.). Users with the “LT
provider” role can create new entries either by up­
loading XML descriptions or through a graphical
metadata editor. The catalogue backend is im­
plemented using Django, PostgreSQL and Elas­
ticSearch. (2) The LT Service Execution Server
offers a common REST API for executing func­
tional services, also handling failures, time­outs
etc. (3) The user management and authentication
module is based on Keycloak, an identity and ac­
cess management solution. (4) The Storage Proxy
is used for interacting with the S3­compatible stor­
age. (5) All integrated LT services. Additional
components, especially for billing and monitoring
purposes, are currently work in progress.
The platform frontend consists of UIs for the dif­

ferent types of users, e. g., LT providers, potential
buyers and administrators (Section 2.6.2). These
include (1) catalogue UIs (browse, search, view),
provider and metadata editor UIs for uploading
and registering functional and non­functional re­
sources. They are implemented using React and
packaged in the same container. (2) The adminis­
tration pages are implemented using Django. (3)
The test/trial UIs for functional services run in
separate containers. The UIs are powered by the
catalogue REST API, e. g., a resource’s metadata
record is returned as a JSONobject and rendered as
HTML. The frontend also includes a Drupal­based
CMS for additional content (Section 2.6.2).

222

All core components of the ELG platform are
built with robust, scalable, reliable and widely
used technologies, e. g., Django, Angular and Re­
act. For managing LT service containers, ELG
makes use of Knative4, a layer on top of Kuber­
netes that handles auto­scaling.

2.2 Base Infrastructure

The base infrastructure consists of the nodes run­
ning the ELG platform, volume storage, net­
working facilities and S3­compatible object stor­
age. We use managed Kubernetes, i. e., the
maintenance and operation of Kubernetes itself
is taken care of by the provider. The infrastruc­
ture also consists of a large set of Git reposito­
ries and Docker registries, hosted in a common
group on GitLab5 for all ELG source and config­
uration files. Many external registries are used
to pull in third­party components, like database
servers (MariaDB6, PostgreSql7), authentication
and identity management (Keycloak8), monitoring
(Prometheus9), among others. Most LT services
offered by the ELG platform are pulled from the
Docker registries of their respective developers.
ELG uses a GitOps approach to deployment,

with the cluster configuration stored in a dedicated
Git repository as a set of Helm charts10. A con­
tinuous integration pipeline triggers a deployment
with each check­in to this repository.

Eventually hosting more than one thousand LT
services with different hardware needs, we are
unable to keep all of them up concurrently as
this would require hundreds of Gigabyte of RAM.
KNative is used to automatically scale down ser­
vices not currently in use to zero replicas. A ser­
vice is scaled up further if a certain threshold of
requests is exceeded. This setup is suitable for
services with little traffic. For services intended
to power actual applications, however, the time to
spin up a container is likely too long. ELG will,
later on, offer scaling profiles, which will keep a
specific number of replicas online at all times.
Non­functional LT resources uploaded to the

platform are made persistent to an S3 compatible
object storage and can be downloaded from there.

4https://knative.dev
5https://gitlab.com/european­language­grid/
6https://mariadb.org
7https://www.postgresql.org
8https://www.keycloak.org
9https://prometheus.io
10https://helm.sh

2.3 Catalogue
The metadata records stored in the catalogue en­
able access to services and data resources. They
are described using the ELG metadata schema
(Labropoulou et al., 2020) and can be browsed and
explored. The catalogue also includes a registry of
stakeholders who develop LT services or products,
and relevant projects, thus providing an overview
of the whole European LT landscape. The ELG
metadata schema builds upon, consolidates and
updates the META­SHARE schema (Gavrilidou
et al., 2012; Piperidis et al., 2018; Labropoulou
et al., 2018), taking into account ELG’s require­
ments, recent developments in the metadata do­
main (e. g., FAIR11), and the need for creating
a common pool of resources through exchange
mechanisms with collaborating initiatives.
The metadata schema caters for the descrip­

tion of the ELG core entities, i. e., Language
Technologies (tools/services), including functional
services and non­functional ones, and Data Lan­
guage Resources, comprising data sets (corpora),
language descriptions (i. e., models) and lexical/­
conceptual resources (e. g., gazetteers, ontologies,
etc.). It also provides for related entities involved
in the production, namely actors (organizations,
groups and persons), projects, documents, and li­
cences/terms of use. Metadata records are cre­
ated by providers using the online editor (Sec­
tion 2.6.1), or from other sources through harvest­
ing and conversion APIs (Section 2.5), gradually
enriched through (semi­)automatic processes and
curated by persons who rightfully claim them.

2.4 Functional Services
The European LT landscape is broad and varied,
with many providers of different classes of ser­
vices and tools, exposed through different APIs
and data formats. We attempt to bring more or­
der to this varied landscape by identifying classes
of related services, and providing a generic API
for each class. So far, we have identified three
classes. (1) Machine Translation (MT) services
take text in one language and translate it into text
in another language, possibly with additional meta­
data associated with each segment. (2) Informa­
tion Extraction (IE) services take text and anno­
tate it with metadata on specific segments. This
class can cover a wide variety of services from ba­
sic NER through to complex sentiment analysis

11https://www.force11.org/group/fairgroup/fairprinciples

223

and domain­specific tools. (3) Automatic Speech
Recognition (ASR) services take audio as input and
produce text (e. g., a transcription) as output, pos­
sibly with metadata associated with each segment.

A B C D

ASR
Speech Recognition 12 3 9

IE & Text Analysis
Dependency Parsing 24 7 13
Lemmatisation 24 7 13
Morphological analyser 24 7 13
Part of Speech tagging 24 7 13
Tokenization 24 7 13
Language identification 22 6 14 13
Named Entity Recognition 16 5 11
Keyword extraction 9 3 9
Sentiment Analysis 8 4
Key phrase Extraction 7 5
Polarity detection 7 4
Summarization 7 5
Other services (not shown here) 30

MT (Source ↓ / Target→)
A 30 2 1
C 1

Other
Text to Speech 7 1 1 2

Table 1: Language coverage per category of the ser­
vices to integrate in ELG

Other clusters are emerging as we are preparing
more services for integration, e. g., text­to­speech
and text classification. Our goal is to provide ser­
vices of all classes for all official EU languages and
for other EU and non­EU languages that are of so­
cial or strategic interest in the EU. Table 1 shows
the overall language coverage of each category of
services across all consortium partners; languages
have been divided into four groups: (A) EU offi­
cial languages; (B) other EU languages without of­
ficial status, plus languages from candidate coun­
tries and free trade partners; (C) languages spoken
by immigrants or important trade and political part­
ners; (D) languages that do not fit (A), (B), (C).
Release 1 of the platform (April 2020) targeted

the languages spoken in the countries of the ELG
consortium, with 141 IE and text analysis services,
24 MT, nine ASR, four TTS and two text categori­
sation services. Further services are being added
on a regular basis with 200+ additional IE and text
analysis services, 21 MT, eight ASR and nine TTS
scheduled to be included by the time of ELG Re­
lease 2 in February 2021.
We aim to make it as simple as possible for

LT providers to integrate their services, but in a

way that avoids the proliferation of incompatible
APIs for the same task, allowing users to access
the widest range of services without being locked
in to a single vendor. Our generic APIs use HTTP
as the transport protocol and specific schemas of
JSON­based messages as the payload. Providers
who want to integrate their services into the ELG
need to provide a Docker image that presents an
HTTP endpoint that can receive requests and re­
turn responses in the specified format (user authen­
tication, authorisation, etc. are handled by the plat­
form). Once a service is integrated, it can be used
via the public APIs and UIs (Section 2.6).

2.5 Data Sets and Language Resources
Already now ELG provides access to more than
2700 language resources. We ingested substan­
tial resources from existing repositories, especially
ELDA/ELRA, ELRC­SHARE (Lösch et al., 2018;
Piperidis et al., 2018; Smal et al., 2020) andMETA­
SHARE (Piperidis, 2012; Piperidis et al., 2014).
We have also been working on ‘external’ reposito­
ries, about 220 of which have been identified so
far. Some (e. g., Zenodo, Quantum Stat) are al­
ready being ingested together with two reposito­
ries related to ELG, LINDAT/CLARIAH­CZ and
ELRA­SHARE­LRs (LRs published at LREC).

2.6 Access Methods and User Interfaces
Our main groups of users are: (1) LT/LR providers
– companies or research organisations with tools,
services or data that can be provided through the
ELG; (2) Developers and integrators – companies
and research institutions interested in using LT; (3)
General LT information seekers; (4) Stakeholders
who wish to provide information about events etc.;
(5) Casual visitors. We provide three ways of ac­
cess: REST APIs, web UIs, Python package.

2.6.1 REST APIs
The ELG exposes several REST APIs, which are
used by all clients. They are exposed for (1) brows­
ing and searching the catalogue, (2) creating, up­
dating and retrieving metadata records, (3) execut­
ing services, (4) downloading resources. Authen­
tication is performed through OAuth2 (OpenID­
Connect) using JSON Web Tokens.
The catalogue API is based on a JSON serialisa­

tion of the metadata schema. The entry point is the
search operation, which supports free text search
as well as faceted browsing. The metadata record
creation, update and retrieval API is controlled by

224

the catalogue module and associates each record
with a creator and curator. The curator can edit
and update the record until it is published.
The functional service API (internal LT API)

provides a way of executing any functional service
deployed in the ELG. All functional services of a
given class (MT, ASR, etc.) are presented under
a common API for that class, allowing the user
to choose the best service for their requirements
without being locked in to a single vendor.12 The
public­facing LT service API mirrors the internal
LT service provider API (see above), being based
around the same JSON message formats, but also
offers simplified options. It is possible to HTTP
POST plain text to an MT service, or binary audio
to an ASR service, without having to wrap it in the
full JSON envelope or multi­part MIME structure
used by the internal API. Since the public and inter­
nal APIs are conceptually distinct, we can add and
offer public APIs that use other technologies (e. g.,
gRPC). The LT Service Execution Server compo­
nent translates requests between the public and in­
ternal APIs. An asynchronous interaction style is
offered for services that require a longer run time
to process a request, this works by returning an im­
mediate response that directs the caller to another
URL, which it can then poll to request the result.

2.6.2 Web Interface (GUI)
Angular 9.0 and Typescript were adopted for de­
veloping the Drupal CMS front­end which is used
for presenting content such as news or conferences.
For the catalogue UI we use React. Currently, both
web applications (CMS and catalogue frontend)
use client­side­rendering, i. e., they deliver a sin­
gle HTML file, the rest of the application comes
as Javascript files. User authorisation is ensured
by adding a JSON Web Token (JWT) to data re­
quests, where the user identity data is encoded and
sent as an encrypted JSON object.
For LT services the catalogue record detail page

includes a trial GUI, allowing users to experiment
with the service in the browser. Generic trial UIs
have been developed for the principal service types
(ASR, MT, TTS, text annotation and classification
services) but LT service providers can also supply
their own GUI if the standard ones are not suitable.
An example is the family of UDPipe dependency

12While workflows that consist of multiple services are cur­
rently not addressed by ELG, we do experiment with work­
flow composition and platform interoperability (Rehm et al.,
2020b,c; Moreno­Schneider et al., 2020a,b).

1 from elg import Catalog , Service
2 # Search for cz/en MT services
3 catalog = Catalog()
4 results = catalog.search(
5 function='Machine Translation',
6 languages=['en', 'cz'])
7 print(results)
8 # Create Service object from first result
9 service = Service.from_entity(results[0])
10 # Translate plain text input from English to Czech
11 translated = service(
12 "Did Nikola Tesla live in Berlin?")
13 print(translated)

Figure 3: Python Client Package – code example

parser services, where the provider has created a
custom UI to visualise dependency graphs.13
The web GUI also includes a metadata editor

that supports different entities (LTs, organisations,
etc.). It provides validation rules, lookup mech­
anisms that use values from previously filled­in
metadata elements and an online help.

2.6.3 Python Client Package
The Python Client Package, available through the
Python package manager pip14, comprises a com­
mand line interface and utility scripts for query­
ing the ELG catalogue and executing ELG­hosted
services via REST API calls. For features that
require authentication, e. g., calling services, the
client prompts the user to enter a token which is re­
ceived after successful authentication in a browser
window (Figure 3). This simplifies the integration
of ELG­hosted services into Python projects.

2.7 Contribution of Services and Resources
We want to enable commercial and non­
commercial providers to adapt their LT services
so that they can be integrated into the ELG
and also to make this ingestion as simple as
possible. Currently, the process consists of six
steps: (1) adapt the service to fit the ELG API;
(2) create a Docker image; (3) push the image
into a Docker registry; (4) deploy the service
by creating a Kubernetes configuration file; (5)
create an ELG provider account; (6) register the
service by creating a metadata record. For some
of the ELG services, the integration took a few
days, for others only a few hours. This effort
was recently brought further down by adding
Docker templates for the most common cases and
introducing the metadata editor. Two alternative

13Trial UIs can include third­party code. They are sand­
boxed using an iframe and configured via JavaScript message
passing.

14https://pypi.org/project/elg/

225

ways of integrating a service exist. It is possible
to package the LT tool in a container that does
not implement the ELG LT service API. In this
case, a second container is required as an adapter,
which implements the ELG LT service API and
communicates with the LT tool container. It is
also possible to run an LT service outside the
cluster: here, a proxy container that implements
the ELG LT service API is required and deployed
in the cluster for accessing the external service.
Libraries are available that produce skeleton code.

2.8 Key Stakeholders
The ELG is meant to be a joint umbrella platform
for the whole European LT landscape including in­
dustry and research. ELG caters for commercial
LT providerswho want to showcase their products,
services and their organisation. We want to pro­
vide the marketplace for European LT, which re­
quires coverage of, ideally, all European provider
companies. In December 2020 we populated the
ELG catalogue with a list of 900 LT companies.
Representatives of these organisations can claim
(or delete) their record and take over maintenance
of their ELG page, including upload of services
or data sets. Research centres and universities
are also LT providers but their interest is research­
driven, providing data sets and experimental soft­
ware. LT users are, e. g., organisations whowant to
make use of LT. They interact with the ELG in the
role of a consumer or potential customer. ELG also
collaborates with a number of EU­funded projects
and initiatives (Rehm et al., 2020c,d) and set up
a network of 32 National Competence Centres
(NCCs), which function as bridges between the na­
tional and regional communities and the ELG.

2.9 Open Calls: Pilot Projects
ELG provides approx. 30% of its project budget
to a number of pilot projects. The pilots either
broaden ELG’s portfolio (by developing services
or resources), or demonstrate the ELG’s useful­
ness. Financial support is awarded following an
open, transparent and expert­driven evaluation pro­
cess. The first call was published in March 2020,
the second one in October 2020. The first set of
projects started in July 2020, the second set starts
in February 2021 with a duration of 9­12 months.
In the first call, 110 proposals were accepted for
evaluation with applicants from 29 countries. We
received more proposals from SMEs (62) than re­
search organisations (48). While 79 proposals fo­

cused on contributing services or resources, 31 pro­
posals concentrated on developing applications us­
ing the ELG. We selected ten projects for fund­
ing, amounting to a sum of 1,363,915€ in total.15
We received a total of 106 proposals to the second
call with applicants from 28 countries. Again, we
had more proposals from SMEs (61) than from re­
search organisations (45). In February 2021, five
projects were selected for funding.

2.10 Legal Entity

We will establish a not­for­profit legal entity in
early 2022, which will take over operation of the
ELG platform after the end of the current EU
project (June 2022). The long­term operational
model is currently under development.

3 Related Work

ELG builds upon previous work of the ELG con­
sortium and the wider European LT community, es­
pecially META­NET/META and ELRC.
In addition, we have collected more than 30 plat­

forms, projects or initiatives that can be considered
relevant for ELG including, among others, UIMA
(Ferrucci and Lally, 2003), CLARIN (Hinrichs and
Krauwer, 2014), DKPro (Gurevych et al., 2007);
Rehm et al. (2020a) provide an exhaustive com­
parison. They share at least one of the following
goals with ELG, i. e., they provide: 1) a collec­
tion of LT/NLP tools or data sets; 2) a platform,
which harvests metadata records from distributed
sources, 3) a platform for the sharing of tools or
data sets. While related projects do exist, the ap­
proach of ELG is unique. The platform that most
closely resembles ELG is the National Platform for
LT, operated by the Ministry of Electronics and In­
formation Technology in India.16

Several global technology enterprises offer LT
services. Among these are Amazon Compre­
hend17 and Microsoft Azure Cognitive Services
(Del Sole, 2018). Furthermore, Google recently
(Sept. 2018) released a search platform for data
sets.18 Intento19 offers commercial LT services
from different providers for selected tasks.

15https://www.european­language­grid.eu/open­calls/
16https://nplt.in
17https://aws.amazon.com/en/comprehend/
18https://toolbox.google.com/datasetsearch
19https://inten.to

226

4 Conclusions and Future Work

It has been argued that Europe should not out­
source its multilingual communication and lan­
guage infrastructure to other continents since the
European demands are unique and complex (Rehm
and Uszkoreit, 2013; Rehm, 2017; Rehm et al.,
2020d). Instead, Europe should make use of and
support its own LT community. One of the obsta­
cles to overcome is the creation of a joint technol­
ogy platform. The ELG will foster LTs for Europe
built in Europe. In its first two years, the ELG
project has seen the demo of the MVP in October
2019, Release 1 in early 2020 and two successfully
completed open calls for pilot projects. We have
been improving and extending the platform and
continuously added services and data sets. While
Release 2 of the platform will follow in March
2021, Release 3 is foreseen for early 2022.

Acknowledgments

The work presented in this paper has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement no. 825627 (European Language Grid)
and from the German Federal Ministry of Edu­
cation and Research (BMBF) through the project
QURATOR (Wachstumskern no. 03WKDA1A).
The inclusion of LINDAT/CLARIAH­CZ re­
sources and tools has been in part funded by the
Ministry of Education, Youth and Sports of the
Czech Republic, project no. LM2018101.

References
Alessandro Del Sole. 2018. IntroducingMicrosoft Cog­

nitive Services. In Microsoft Computer Vision APIs
Distilled, pages 1–4. Springer.

ELRC. 2019. ELRC White Paper: Sustain­
able Language Data Sharing to Support
Language Equality in Multilingual Europe.
https://lr­coordination.eu/sites/default/files/
Documents/ELRCWhitePaper.pdf. European
Language Resource Coordination (ELRC), Second
online edition.

European Parliament. 2018. Report on language equal­
ity in the digital age. http://www.europarl.europa.
eu/doceo/document/A­8­2018­0228_EN.html.
(2018/2028(INI)). Committee on Culture and Edu­
cation (CULT), Committee on Industry, Research
and Energy (ITRE); Rapporteur: Jill Evans.

David Ferrucci and Adam Lally. 2003. Accelerating
Corporate Research in the Development, Applica­

tion, andDeployment of HumanLanguage Technolo­
gies. In Proceedings of the HLT­NAACL 2003 Work­
shop on Software Engineering and Architecture of
Language Technology Systems (SEALTS), pages 67–
74. ACL.

Maria Gavrilidou, Penny Labropoulou, Elina De­
sipri, Stelios Piperidis, Haris Papageorgiou, Mon­
ica Monachini, Francesca Frontini, Thierry De­
clerck, Gil Francopoulo, Victoria Arranz, and Va­
lerie Mapelli. 2012. The META­SHARE Metadata
Schema for the Description of Language Resources.
In Proceedings of the Eighth International Confer­
ence on Language Resources and Evaluation (LREC
2012). European Language Resources Association
(ELRA).

Iryna Gurevych, MaxMühlhäuser, Christof Müller, Jür­
gen Steimle, Markus Weimer, and Torsten Zesch.
2007. Darmstadt Knowledge Processing Repository
based on UIMA. In Proceedings of the First Work­
shop on Unstructured Information Management Ar­
chitecture at Biannual Conference of the Society for
Computational Linguistics and Language Technol­
ogy, Tübingen, Germany, page 89.

Erhard Hinrichs and Steven Krauwer. 2014. The
CLARIN Research Infrastructure: Resources and
Tools for eHumanities Scholars. In Proceedings of
the Ninth International Conference on Language Re­
sources and Evaluation (LREC­2014), pages 1525–
1531.

Andras Kornai. 2013. Digital Language Death. PLoS
ONE, 8(10). https://doi.org/10.1371/journal.pone.
0077056.

Penny Labropoulou, Dimitris Galanis, Antonis Lempe­
sis, Mark Greenwood, Petr Knoth, Richard Eckart de
Castilho, Stavros Sachtouris, Byron Georgantopou­
los, Stefania Martziou, Lucas Anastasiou, Kate­
rina Gkirtzou, Natalia Manola, and Stelios Piperidis.
2018. OpenMinTeD: A Platform Facilitating Text
Mining of Scholarly Content. In WOSP 2018 Work­
shop Proceedings, Eleventh International Confer­
ence on Language Resources and Evaluation (LREC
2018), pages 7–12, Miyazaki, Japan. European Lan­
guage Resources Association (ELRA).

Penny Labropoulou, Katerina Gkirtzou, Maria Gavri­
ilidou, Miltos Deligiannis, Dimitris Galanis, Ste­
lios Piperidis, Georg Rehm, Maria Berger, Valérie
Mapelli, Michael Rigault, Victoria Arranz, Khalid
Choukri, Gerhard Backfried, José Manuel Gómez
Pérez, and Andres Garcia­Silva. 2020. Making
Metadata Fit for Next Generation Language Tech­
nology Platforms: The Metadata Schema of the
European Language Grid. In Proceedings of the
12th Language Resources and Evaluation Confer­
ence (LREC 2020), pages 3421–3430, Marseille,
France. European Language Resources Association
(ELRA).

Andrea Lösch, Valérie Mapelli, Stelios Piperidis, An­
drejs Vasiļjevs, Lilli Smal, Thierry Declerck, Eileen

227

Schnur, Khalid Choukri, and Josef Van Genabith.
2018. European Language Resource Coordination:
Collecting Language Resources for Public Sector
Multilingual Information Management. In Proceed­
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As­
sociation (ELRA).

Julián Moreno­Schneider, Peter Bourgonje, Florian
Kintzel, and Georg Rehm. 2020a. A Workflow
Manager for Complex NLP and Content Curation
Workflows . In 1st International Workshop on Lan­
guage Technology Platforms (IWLTP 2020), Mar­
seille. Submitted to IWLTP 2020.

Julián Moreno­Schneider, Georg Rehm, Elena Montiel­
Ponsoda, Víctor Rodriguez­Doncel, ArtemRevenko,
Sotirios Karampatakis, Maria Khvalchik, Christian
Sageder, Jorge Gracia, and Filippo Maganza. 2020b.
Orchestrating NLP Services for the Legal Domain.
In Proceedings of the 12th Language Resources
and Evaluation Conference (LREC 2020), Marseille,
France. European Language Resources Association
(ELRA). Accepted for publication.

Stelios Piperidis. 2012. The META­SHARE Language
Resources Sharing Infrastructure: Principles, Chal­
lenges, Solutions. In Proceedings of the Eight In­
ternational Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Stelios Piperidis, Penny Labropoulou, Miltos Deligian­
nis, and Maria Giagkou. 2018. Managing Public
Sector Data for Multilingual Applications Develop­
ment. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Stelios Piperidis, Harris Papageorgiou, Christian Spurk,
Georg Rehm, Khalid Choukri, Olivier Hamon,
Nicoletta Calzolari, Riccardo Del Gratta, Bernardo
Magnini, and Christian Girardi. 2014. META­
SHARE: One Year After. In Proceedings of the
Ninth International Conference on Language Re­
sources and Evaluation (LREC’14), Reykjavik, Ice­
land. European Language Resources Association
(ELRA).

Georg Rehm, editor. 2017. Language Technologies for
Multilingual Europe: Towards a Human Language
Project. Strategic Research and Innovation Agenda.
CRACKER and Cracking the Language Barrier fed­
eration. Version 1.0. Unveiled at META­FORUM
2017 in Brussels, Belgium, on November 13/14,
2017. Prepared by the Cracking the Language Bar­
rier federation, supported by the EU­funded project
CRACKER.

Georg Rehm, Maria Berger, Ela Elsholz, Stefanie
Hegele, Florian Kintzel, Katrin Marheinecke, Ste­
lios Piperidis, Miltos Deligiannis, Dimitris Gala­
nis, Katerina Gkirtzou, Penny Labropoulou, Kalina

Bontcheva, David Jones, Ian Roberts, Jan Hajic,
Jana Hamrlová, Lukáš Kačena, Khalid Choukri, Vic­
toria Arranz, Andrejs Vasiļjevs, Orians Anvari, An­
dis Lagzdiņš, Jūlija Meļņika, Gerhard Backfried, Er­
inç Dikici, Miroslav Janosik, Katja Prinz, Christoph
Prinz, Severin Stampler, Dorothea Thomas­Aniola,
José Manuel Gómez Pérez, Andres Garcia Silva,
Christian Berrío, Ulrich Germann, Steve Renals, and
Ondrej Klejch. 2020a. European LanguageGrid: An
Overview. In Proceedings of the 12th Language Re­
sources and Evaluation Conference (LREC 2020),
pages 3359–3373, Marseille, France. European Lan­
guage Resources Association (ELRA).

Georg Rehm, Kalina Bontcheva, Khalid Choukri, Jan
Hajic, Stelios Piperidis, and Andrejs Vasiljevs, ed­
itors. 2020b. Proceedings of the 1st Interna­
tional Workshop on Language Technology Platforms.
Marseille, France. 16 May 2020, https://www.
european­language­grid.eu/iwltp­2020/.

Georg Rehm, Dimitrios Galanis, Penny Labropoulou,
Stelios Piperidis, Martin Welß, Ricardo Usbeck,
Joachim Köhler, Miltos Deligiannis, Katerina Gkirt­
zou, Johannes Fischer, Christian Chiarcos, Nils
Feldhus, Julián Moreno­Schneider, Florian Kintzel,
Elena Montiel, Víctor Rodríguez Doncel, John P.
McCrae, David Laqua, Irina Patricia Theile, Chris­
tian Dittmar, Kalina Bontcheva, Ian Roberts, An­
drejs Vasiljevs, and Andis Lagzdiņš. 2020c. To­
wards an Interoperable Ecosystem of AI and LT Plat­
forms: A Roadmap for the Implementation of Differ­
ent Levels of Interoperability. In Proceedings of the
1st International Workshop on Language Technol­
ogy Platforms (IWLTP 2020, co­located with LREC
2020), pages 96–107, Marseille, France. 16 May
2020.

Georg Rehm, Jan Hajic, Josef van Genabith, and An­
drejs Vasiļjevs. 2016a. Fostering the Next Genera­
tion of European Language Technology: Recent De­
velopments – Emerging Initiatives – Challenges and
Opportunities. In Proceedings of the 10th Language
Resources and Evaluation Conference (LREC 2016),
pages 1586–1592, Portorož, Slovenia. European
Language Resources Association (ELRA).

Georg Rehm and Stefanie Hegele. 2018. Language
Technology for Multilingual Europe: An Analysis
of a Large­Scale Survey regarding Challenges, De­
mands, Gaps and Needs. In Proceedings of the
11th Language Resources and Evaluation Confer­
ence (LREC 2018), pages 3282–3289, Miyazaki,
Japan. European Language Resources Association
(ELRA).

Georg Rehm, Katrin Marheinecke, Stefanie Hegele,
Stelios Piperidis, Kalina Bontcheva, Jan Hajic,
Khalid Choukri, Andrejs Vasiļjevs, Gerhard Back­
fried, Christoph Prinz, José Manuel Gómez Pérez,
Luc Meertens, Paul Lukowicz, Josef van Genabith,
Andrea Lösch, Philipp Slusallek, Morten Irgens,
Patrick Gatellier, Joachim Köhler, Laure Le Bars,
Dimitra Anastasiou, Albina Auksoriūtė, Núria Bel,
António Branco, Gerhard Budin, Walter Daelemans,

228

KoenraadDe Smedt, RadovanGarabík, Maria Gavri­
ilidou, Dagmar Gromann, Svetla Koeva, Simon
Krek, Cvetana Krstev, Krister Lindén, Bernardo
Magnini, Jan Odijk, Maciej Ogrodniczuk, Eiríkur
Rögnvaldsson, Mike Rosner, Bolette Pedersen, In­
guna Skadina, Marko Tadić, Dan Tufiş, Tamás
Váradi, Kadri Vider, Andy Way, and François
Yvon. 2020d. The European Language Technology
Landscape in 2020: Language­Centric and Human­
Centric AI for Cross­Cultural Communication in
Multilingual Europe. In Proceedings of the 12th
Language Resources and Evaluation Conference
(LREC 2020), pages 3315–3325, Marseille, France.
European Language Resources Association (ELRA).

Georg Rehm and Hans Uszkoreit, editors. 2012. META­
NETWhite Paper Series “Europe’s Languages in the
Digital Age”. Springer, Heidelberg, New York, Dor­
drecht, London. 31 volumes on 30 European lan­
guages. http://www.meta­net.eu/whitepapers.

Georg Rehm and Hans Uszkoreit, editors. 2013. The
META­NET Strategic Research Agenda for Multilin­
gual Europe 2020. Springer, Heidelberg, New York,
Dordrecht, London.

Georg Rehm, Hans Uszkoreit, Sophia Ananiadou,
Núria Bel, Audronė Bielevičienė, Lars Borin, An­
tónio Branco, Gerhard Budin, Nicoletta Calzolari,
Walter Daelemans, Radovan Garabík, Marko Gro­
belnik, Carmen García­Mateo, Josef van Genabith,
Jan Hajič, Inma Hernáez, John Judge, Svetla Ko­
eva, Simon Krek, Cvetana Krstev, Krister Lin­
dén, Bernardo Magnini, Joseph Mariani, John Mc­
Naught, Maite Melero, Monica Monachini, Asun­
ción Moreno, Jan Odjik, Maciej Ogrodniczuk, Pi­
otr Pęzik, Stelios Piperidis, Adam Przepiórkowski,
Eiríkur Rögnvaldsson, Mike Rosner, Bolette Sand­
ford Pedersen, Inguna Skadiņa, Koenraad De Smedt,
Marko Tadić, Paul Thompson, Dan Tufis, Tamás
Váradi, Andrejs Vasiļjevs, Kadri Vider, and Jolanta
Zabarskaite. 2016b. The Strategic Impact of
META­NET on the Regional, National and Interna­
tional Level. Language Resources and Evaluation,
50(2):351–374. 10.1007/s10579­015­9333­4.

Georg Rehm, Hans Uszkoreit, Ido Dagan, Vartkes
Goetcherian, Mehmet Ugur Dogan, Coskun Mer­
mer, Tamás Váradi, Sabine Kirchmeier­Andersen,
Gerhard Stickel, Meirion Prys Jones, Stefan Oeter,
and Sigve Gramstad. 2014. An Update and Exten­
sion of the META­NET Study “Europe’s Languages
in the Digital Age”. In Proceedings of the Work­
shop on Collaboration and Computing for Under­
Resourced Languages in the Linked Open Data Era
(CCURL 2014), pages 30–37, Reykjavik, Iceland.

Lilli Smal, Andrea Lösch, Josef van Genabith, Maria
Giagkou, Thierry Declerck, and Stephan Busemann.
2020. Language Data Sharing in European Public
Services – Overcoming Obstacles and Creating Sus­
tainable Data Sharing Infrastructures. In Proceed­
ings of the 12th Language Resources and Evaluation

Conference (LREC 2020), page 3443–3448, Mar­
seille, France. European Language Resources Asso­
ciation (ELRA).

STOA. 2017. Language equality in the digital age –
Towards a Human Language Project. STOA study
(PE 598.621), IP/G/STOA/FWC/2013­001/Lot4/C2,
March 2017. Carried out by Iclaves SL (Spain) at
the request of the Science and Technology Options
Assessment (STOA) Panel, managed by the Scien­
tific Foresight Unit (STOA), within the Directorate­
General for Parliamentary Research Services (DG
EPRS) of the European Parliament. http://www.
europarl.europa.eu/stoa/.

Andrejs Vasiljevs, Khalid Choukri, Luc Meertens, and
Stefania Aguzzi. 2019. Final study report on CEF
Automated Translation value proposition in the con­
text of the European LT market/ecosystem. DOI
10.2759/142151. A study prepared for the European
Commission, DG Communications Networks, Con­
tent & Technology by Crosslang, Tilde, ELDA, IDC.

A Selected Screenshots

229

Figure 4: Selected screenshots of the European Language Grid (ELG)

230

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 231–237
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

A New Surprise Measure for Extracting Interesting Relationships between
Persons

Hidetaka Kamigaito1, Jingun Kwon1, Young-In Song2 and Manabu Okumura1

1Tokyo Institute of Technology
2Naver Corporation

kwon.j.ad@m.titech.ac.jp
{kamigaito,oku}@lr.pi.titech.ac.jp

song.youngin@navercorp.com

Abstract

One way to enhance user engagement in
search engines is to suggest interesting facts to
the user. Although relationships between per-
sons are important as a target for text mining,
there are few effective approaches for extract-
ing the interesting relationships between per-
sons. We therefore propose a method for ex-
tracting interesting relationships between per-
sons from natural language texts by focus-
ing on their surprisingness. Our method first
extracts all personal relationships from de-
pendency trees for the texts and then calcu-
lates surprise scores for distributed represen-
tations of the extracted relationships in an un-
supervised manner. The unique point of our
method is that it does not require any labeled
dataset with annotation for the surprising per-
sonal relationships. The results of the hu-
man evaluation show that the proposed method
could extract more interesting relationships be-
tween persons from Japanese Wikipedia arti-
cles than a popularity-based baseline method.
We demonstrate our proposed method as a
chrome plugin on google search.

1 Introduction

Interesting facts are useful information for a variety
of important tasks. For example, in data mining,
the interesting facts can enhance user engagement
in search engines (Fatma et al., 2017). In natural
language processing, the interesting facts can im-
prove user experience with automatic conversation
systems (Niina and Shimada, 2018). However, if
we rely on experts to gather the interesting facts,
the cost becomes quite high.

As a solution, several approaches have been de-
veloped to extract interesting facts automatically.
Lin and Chalupsky (2003) proposed a set of unsu-
pervised link discovery methods that can compute
interestingness on graph data represented as a set
of entities connected by a set of binary relations.

Ex.1: Tim Burton and Johnny Depp
When Tim Burton met Johnny Depp for the first time, he had
the impression that Johnny Depp was a hopelessly poor actor.

Ex.2: Chien-Ming Wang and Suzuki Ichiro
Chien-Ming Wang, a major-leaguer from Taiwan, asked
Suzuki Ichiro three autographs before the start of the game.

Ex.3: Ringo Starr and Beatles’ members
In the film Yellow Submarine, after hearing about the crisis
in Pepper Land, Ringo Starr, along with Beatles companions
John Lennon, George Harrison, and Paul McCartney, went to
the bottom of the sea in a Yellow Submarine to save Pepper
Land.

Figure 1: Example sentences that contain interesting
relationships between persons.

Prakash et al. (2015) extracted interesting sentences
about movie entities from Wikipedia articles and
ordered them based on their interestingness by uti-
lizing Rank-SVM, trained in a supervised manner.
Tsurel et al. (2017) proposed an algorithm that au-
tomatically mines trivia facts from Wikipedia by
utilizing its category structure. Their approach can
rank categories for an entity based on their trivia
quality induced from the categories. Fatma et al.
(2017) proposed a method for automatically min-
ing trivia facts for an entity of a given domain in
knowledge graphs by utilizing deep convolutional
neural networks, trained in a supervised manner.
Korn et al. (2019) mined trivia facts from superla-
tive tables in Wikipedia articles. Kwon et al. (2020)
proposed a method to obtain sentences including
trivia facts with utilizing paragraph structures in
Wikipedia articles.

However, some of these approaches work only
on structured datasets such as knowledge graphs
or Wikipedia categories. In addition, while super-
vised approaches can work on unstructured natural
language texts, the applicable domain is restricted
due to the lack of annotated datasets. Hence, the
current approaches for extracting interesting facts

231

Figure 2: A screenshot of our chrome plugin. For
the Japanese search query Hayao Miyazaki, top five in-
teresting relationships are presented at the top of the
search results. The red texts are translations of them.

are considered limited. In particular, although rela-
tionships between persons are important as a target
for text mining, there are few effective approaches
for extracting interesting relationships between per-
sons.

Figure 1 shows examples of interesting relation-
ships between persons.1 The first example is a
famous film director who initially had a fairly low
regard for an actor who is now extremely famous
and successful. The second example is about a fa-
mous baseball player who asked another famous
baseball player for an autograph. The third example
relates to famous musicians engaged in something
completely unrelated to music. These examples
illustrate that surprisingness is an important factor
in interesting personal relationships.

In this paper, to extract such interesting relation-
ships, we focus on surprising relationships between
persons. We propose a method that extracts rela-
tionships between persons from natural language
texts and then scores their surprise scores based on
the Mahalanobis distance (De Maesschalck et al.,
2000), which has been used in the outlier detection
task. Our proposed method first extracts all per-
sonal relationships from dependency trees for each
sentence and then calculates the surprise scores of
the extracted relationships on a continuous vector
space in an unsupervised manner. As such, our
method does not require any labeled dataset for
extracting the surprising personal relationships.

The results of our human evaluation show that
the proposed method could extract more interest-
ing relationships between persons from Japanese
Wikipedia articles than a popularity-based baseline
method. Furthermore, as shown in Figure 2, we
incorporated our method into a google chrome plu-

1These examples were extracted from Japanese Wikipedia
articles and then were translated into English.

gin. You can watch our demo video for this plugin
at a shared directory in our google drive.

2 Extracting Interesting Relationships
between Persons

Figure 3 provides an overview of the entire process
of extracting sentences that may include interesting
personal relationships about a target person from
given documents. The extraction procedure is as
follows:

1. Construct dependency trees from sentences
in the target documents through an automatic
dependency parser.

2. Extract personal relationships that are repre-
sented as tuples of persons and their relation-
ships from the obtained dependency trees.

3. Calculate scores for whether the extracted per-
sonal relationships are interesting or not.

4. Select top-k personal relationships and sen-
tences that include the target person based on
the calculated scores.

The details of each step are described in the follow-
ing subsections.

2.1 Extracting Personal Relationships
We use a dependency parser for extracting personal
relationships from sentences. First, we parse given
sentences with the parser and obtain their depen-
dency trees. Next, if a sentence includes more than
one person name, we extract pairs of two names
ei and ej . We also extract a set pk that includes
words {w1, · · · , wn} in the shortest path between
ei and ej on the dependency tree. These elements
are represented as a tuple rl as follows:

rl = (ei, ej , pk). (1)

Because rl is a tuple, it satisfies rl,0 = ei, rl,1 = ej ,
and rl,2 = pk.

2.2 Representation of Personal Relationships
For calculating a score of interestingness for rl, we
encode ei, ej , and pk into fixed-dimensional con-
tinuous vectors by utilizing the skip-gram model
(Mikolov et al., 2013). When training the model,
we treat a person name as a single word. Hereafter,
we represent the vector of a word wi as Ewi . Thus,
the person names ei and ej are represented as Eei

and Eej , respectively.

232

Documents Ranks (Target: Ringo Starr)Scores

Chien-Ming Wang asked Suzuki
Ichiro for three autographs.

Chien-Ming Wang

asked

Suzuki Ichiro

for three autographs

.

ROOT

Parse

Dependency
Tree

Extract shortest path

Extracted personal relationships

(Tim Burton, Johnny Depp, had the impression was) 0.2

(Tim Burton, Ed Wood, know) 0.3

(Tim Burton, Ed Wood, met) 0.1

(Ringo Starr, Paul McCartney, joins) 0.4

(Ringo Starr, John Lennon, went) 0.5

(Chien-Ming Wang, Suzuki Ichiro, met) 0.3

(Chien-Ming Wang, Suzuki Ichiro, play) 0.5

(Ringo Starr, Paul McCartney, met) 0.2

(Ringo Starr, John Lennon, sing) 0.3

(Ringo Starr, George Harrison, play) 0.1

(Chien-Ming Wang, Suzuki Ichiro, asked) 0.4

1 (Ringo Starr, John Lennon, went)

2 (Ringo Starr, Paul McCartney, joins)

3 (Ringo Starr, John Lennon, sing)

4 (Ringo Starr, Paul McCartney, met)

5 (Ringo Starr, George Harrison, play)

Sentence

1. In the film Yellow Submarine, after
hearing the crisis of Pepper Land, Ringo
Starr, along with the Beatles' companions
John Lennon …

2. Former Beatles members, except Paul
McCartney…

Output: Top-k relationships
with their sentences

Figure 3: Overview of our proposed method for extracting interesting relationships between persons from given
documents.

To cope with person names ei with few occur-
rences, that might cause the sparseness problem,
we map person names ei to clusters, whose number
is smaller than the number of person names. We
represent a cluster that ei is assigned to as Cei . We
use k-means as a clustering method to ensure that
these clusters are based on the cosine similarity
between the vectors.

Unlike the person names, the relationship be-
tween two persons, pk, is represented as a set of
words. For encoding the set of words representing
the relationship into the continuous vector space,
we use smooth inverse frequency (SIF) (Arora et al.,
2017),2 which can encode a sequence of words into
a continuous vector by utilizing the frequencies of
the words for calculating the weighted sum of the
word vectors. Algorithm 1 describes the details of
the procedure for obtaining the vector representa-
tion of each personal relationship. Through this
procedure, we can get Vpk , which is the vector rep-
resentation of pk in rl included in Rel, where Rel
is a set of all personal relationships in the corpus.

2.3 Scoring Personal Relationships

In this section, we describe our scoring method
for extracting interesting relationships between per-
sons. Our method tries to take into account the
following three aspects of the interestingness: Pop-
ularity, Surprisingness, and Commonness. The
scoring method is based on our assumption that
an unusual relationship in a commonly observed
pair of two famous persons increases the interest-
ingness, and thus, such a relationship is interesting.
The popularity calculates the fame of the persons,
the surprisingness calculates the rareness of the
relationship, and the commonness calculates how

2https://github.com/PrincetonML/SIF

Algorithm 1 Vector representation for each rela-
tionship.

Input: All personal relationships Rel.
Output: Vectors for each personal relationship
{Vpk |pk = rl,0, rl,0 ∈ Rel}.
Calculate a weighted sum of the word vectors
for each rl based on a word frequency f(wm′)
of a word wm′ and hyper-parameter a.

1: for all relation pk in Rel do
2: Vpk ← 1

|pk′ |
∑

wm′∈pk′
a

a+f(wm′)Ewm′

3: end for
Form a matrix A whose columns are
{Vpk |pk = rl,0, rl,0 ∈ Rel} and then obtain
left singular vector u through singular value
decomposition (SVD).

4: u← SV D(A)
Transform the original vectors Vpk with the
obtained u.

5: for all relation pk in Rel do
6: Vpk ← uu>Vpk
7: end for

often the pair of the persons commonly appears.
The next subsections explain the scores for each
aspect in detail.

2.3.1 Popularity
To judge whether the relationships between persons
are interesting or not, the reader must know them
in advance. From this viewpoint, we consider that
the popularity of each person is an important factor
in judging whether the relationship between the
persons is interesting. Taking this assumption into
account, we define Sppl(ej), the popularity for ej ,
as follows:

Sppl(ej) = log(1 + freq(ej)), (2)

233

where freq(·) is a function that returns the fre-
quency of the input element. Sppl(ei) can be simi-
larly defined. Note that we use Wikipedia articles
for counting the frequency of entities.

2.3.2 Surprisingness
We assume that a surprising personal relationship
is a kind of outlier in a set of personal relationships.
We use the Mahalanobis distance (De Maesschalck
et al., 2000) in the outlier detection task for defining
the surprisingness of a personal relationship. Since
both the persons and their relationships are repre-
sented as continuous vectors, we use a multivariate
normal distribution to handle them. If the dimen-
sions of continuous vectors are independent with
each other, the variance-covariance matrix of the
multivariate normal distribution becomes a diago-
nal matrix. Under this condition, the Mahalanobis
distance is defined as follows:

Outlier(xi;X) =

√√√√
D∑

j=1

(xi,j − µ̂j)2
σ̂2j

, (3)

where D is a dimension size of x. As explained
later, while we consider vector representations of
entities as elements of X for the commonness, we
consider vector representations of relationships be-
tween persons as elements of X for the surprising-
ness. Both the elements are based on co-occurrence
of persons. Thus, these may encounter the sparse-
ness problem.

To deal with the sparseness problem of the ele-
ments in X , we use a maximum a posterior prob-
ability (MAP) estimation to calculate the mean µ̂
and variance σ̂. Assuming that each dimension
of the continuous vectors obey a normal distribu-
tion whose prior distribution of the mean is also
a normal distribution N(α, β2) with mean α and
variance β2, the mean µ̂ and the standard deviation
σ̂ is estimated as follows:

µ̂ =
α� σ � σ + β � β �∑|X|i=1 xi

|X|β � β + σ � σ , (4)

σ̂ =

√√√√ 1

|X|

|X|∑

i=1

(µ̂− xi)� (µ̂− xi), (5)

where |X| is the number of elements in X , and
� is an element-wise product. To use Eq. (3)
for calculating surprisingness for a given personal
relationship, we need to consider a set Setei,ej ,∗
whose elements are relationships between persons

ei and ej . However, considering a pair of entities
may cause the sparseness problem. To avoid the
problem, we use clusters again (as explained in
Section 2.2) for representing ei and ej to define
Setei,ej ,∗ as follows:

Setei,ej ,∗ ={pk = rn,2|Crn,0 = Cei

∧ Crn,1 = Cej ∧ rn ∈ Rel}. (6)

By using Setei,ej ,∗, the surprisingness of a relation-
ship pk between ei and ej , Ssup, is calculated as
follows:

Ssup(ei, ej , pk)

=Outlier(Vpk ; {Vpk′ |pk′ ∈ Setei,ej ,∗}). (7)

When calculating the outlier scores in Eq. (7), we
estimate the prior mean α and prior variance β2

through a maximum likelihood estimation, based
on the whole vector representation of personal rela-
tionships in the corpus.

2.3.3 Commonness
To determine whether relationships between per-
sons are surprising or not, people must know the
ordinary relationships between them in advance.

For example, in Ex.3 of Figure 1, to be surprised
by this sentence, the readers must know the com-
mon relationships between Ringo Starr and the
other members of The Beatles. Since they know
that singing, playing a music, etc. are the common
relationship among the members of The Beatles,
they can be surprised by the phrase “went to the bot-
tom of the sea” in the sentence. Thus, considering
how often a pair of persons have a relationship can
support our surprisingness. Based on the assump-
tion, our commonness measures how common a
pair of two persons.

Since counting the co-occurrence between two
persons may cause the sparseness problem, we
use continuous vectors for calculating this score.
Specifically, we use the minus valued score of
Eq.(3), based on the assumption that a pair of two
persons is the common pair if it is not an outlier. To
use Eq.(3) for calculating commonness, we need
to use a set Setei,∗ whose elements are a person
who has a relationship with a person ei. To avoid
the sparseness problem, we represent ei as a clus-
ter again (as explained in Section 2.2) and define
Setei,∗ as follows:

Setei,∗ = {ej = rn,1|Crn,0 = Cei ∧ rn ∈ Rel},
(8)

234

where Rel is a set that includes all relationships
between persons in the corpus. By using Setei,∗,
commonness Scom from ej to ei is calculated as
follows:

Scom(ei|ej) (9)

=−Outlier(Eei ; {Eei′ |ei′ ∈ Setej ,∗}). (10)

Scom(ej |ei) is defined similarly. Because
Scom(ei|ej) and Scom(ej |ei) do not return the
same score, we simply use their average for our
final score. When calculating the outlier scores in
Eq.(10) , we estimate the prior mean α and prior
variance β2 through a maximum likelihood estima-
tion based on the whole word vectors.

2.4 Selecting Top-k Personal Relationships

For ranking personal relationships, we combine all
the above three scores. Because these scores have
different ranges with each other, we scale them
with z-score normalization (Kreyszig, 1979). Let
the mean of Sppl, Scom, and Ssup on all relation-
ships be respectively µppl, µcom, and µsup, and let
the variance of Sppl, Scom, and Ssup on all rela-
tionships be respectively σppl, σcom, and σsup. The
final score of the interestingness for the target entity
ei is defined as follows:

Sint(ei, ej , pk) (11)

=λppl ·
Sppl(ej)− µppl

σppl
(12)

+λcom ·
1

2
·
(
Scom(ei|ej)− µcom

σcom

+ fracScom(ej |ei)− µcomσcom
)

(13)

+λsup ·
Ssup(ei, ej , pk)− µsup

σsup
, (14)

where λppl, λcom and λsup are weights for adjust-
ing the importance of each score. We tune these
weights by using our validation dataset (explained
in the next section). Based on Sint(ei, ej , pk), we
extract top-k relationships that include the target
person ei.

3 Experiments

We conducted human evaluation to determine how
well our proposed method can extract interesting re-
lationships between persons. The next subsections
describe the details of our experimental settings
and the evaluation results.

3.1 Experimental Settings

3.1.1 Dataset
We used sentences in Japanese Wikipedia as our
evaluation dataset. We listed articles whose cate-
gory includes the word “person” as person names
and then selected the persons who have more
than five relationships from various domains (e.g.,
anime, manga, novel, actor, music, movie, sports,
comedy, and talent) based on their frequencies in
Japanese Wikipedia. To remove historical persons,
we selected only those who are categorized as “liv-
ing persons”. Finally, we obtained a total of 50
persons for the test dataset and 12 persons for the
validation dataset through this process. We next
extracted sentences that include personal relation-
ships for the selected persons by using each of the
compared methods, that we will describe in the next
subsection. We put the top five sentences ranked by
each method that include personal relationships for
each selected person in the test dataset. If the same
sentence was already included in the dataset, we
skip it. After this procedure, for each of the com-
pared methods, 250 sentences were included in the
test dataset. To provide contextual information, we
added the title of the article where the sentences
were found to the sentences in the test dataset. The
validation dataset was constructed in the same way
for the 12 persons.

All personal relationships were extracted with
CaboCha,3 a chunk-based Japanese dependency
parser, with the NEologd dictionary (Sato et al.,
2017).4 To filter the personal relationships in com-
pound sentences, we ignored any personal relation-
ships that include multiple predicates. When a sen-
tence lacks its subject, we complement it with the
title of the article that contains the sentence. Fur-
thermore, we filtered any sentences starting with a
pronoun or conjugation because such sentences are
not understandable without the surrounding sen-
tences.

3.1.2 Compared Methods
We evaluated the performance of the proposed
methods and several baselines on our test dataset.
The following methods were used as the baselines:

• Rand: This method randomly selects five per-
sonal relationships for each person.

3https://github.com/taku910/cabocha
4https://github.com/neologd/

mecab-ipadic-neologd

235

• Pop: This method selects five personal rela-
tionships on the basis of only the popularity
score (Eq.(2)).

We used the following as our proposed methods:

• Pop+Com: This method selects five personal
relationships on the basis of the combined
score of the popularity (Eq.(12)) and the com-
monness (Eq.(13)). Similar to Eq.(11), we
tuned the weight parameters λppl and λcom on
the validation dataset.

• Pop+Sup: This method selects five personal
relationships on the basis of the combined
score of the popularity (Eq.(12)) and the sur-
prisingness (Eq.(14)). Similar to Eq.(11), we
tuned the weight parameters λppl and λsup on
the validation dataset.

• Pop+Com+Sup: This method selects five per-
sonal relationships on the basis of a combina-
tion of the popularity, the commonness, and
the surprisingness (Eq.(11)).

Prior to running these baselines and proposed
methods, we obtained word vectors from Japanese
Wikipedia articles by utilizing word2vec.5 In this
step, all sentences were tokenized using MeCab6

with the NEologd dictionary. We further tuned the
word vectors by utilizing a retrofitting approach
(Faruqui et al., 2015)7 with Wikipedia’s category
information to consider similarities between per-
sons. The retrofitting approach can refine word
vectors using graph information by making word
vectors close to each other when they have a link
in the graph. To construct a graph for personal
similarities, we linked two words if a Wikipedia
category includes the words. Because some person
names have several articles due to their ambigu-
ity, we skipped such words in this step.8 In the
end, we reran the retrofitting with the default hyper-
parameters. Then, we mapped the obtained word
vectors of person names to 300 clusters estimated
by k-means. When calculating the vectors for each
personal relationship, we set a in SIF to 1.0.

5https://code.google.com/archive/p/
word2vec/

6http://taku910.github.io/mecab/
7https://github.com/mfaruqui/

retrofitting
8Note that in Wikipedia, to disambiguate such words,

brackets in article titles indicate their ambiguity. Thus, we can
skip ambiguous titles based on the brackets.

k = 1 k = 2 k = 3 k = 4 k = 5

Rand 49.3 51.4 51.3 51.5 51.1
Pop 51.2 52.5 52.9 52.5 52.0

Pop+Com 52.1 52.8 53.3 52.1 51.8
Pop+Sup 54.7† 52.7 53.2 52.6 52.0

Pop+Com+Sup 54.9† 52.8 53.8 52.0 51.6

Table 1: Evaluation results of rescaled 5-scale scores
(%). The bold values indicate the best scores. † in-
dicates that the difference of the score from the best
baseline is statistically significant.10

We tuned weight parameters in our methods on
our validation dataset, which were created for 12
person names in Japanese Wikipedia, and which are
not overlapped with the test dataset. We gathered
123 relationships related to the selected persons.
Because ranking the degree of interestingness for
the gathered relationships would be very costly, we
simply attached a label of whether it is interest-
ing or not to them. After that, we estimated the
weight parameters by utilizing logistic regression.
In Pop+Com, estimated λpop and λcom were re-
spectively 0.79 and 0.21; in Pop+Sup, estimated
λpop and λsup were respectively 0.80 and 0.20; and
in Pop+Com+Sup, estimated λpop, λcom, and λsup
were respectively 0.67, 0.17, and 0.16.

3.1.3 Evaluation Metrics
The extracted top five sentences for each method
were evaluated in terms of interestingness by six
human raters, who rated them on a five-point Lik-
ert scale ranging from one to five (Larger is bet-
ter.). For this rating, we used Lancers,9 a Japanese
cloud sourcing service. We showed personal re-
lationships and their sentences to the raters. For
interpretability, we rescaled the rating in the range
from 0.0 to 1.0 (Preston and Colman, 2000). In
this rescaling, the five scales, 1, 2, 3, 4, and 5, are
respectively mapped to 0.0, 0.25, 0.5, 0.75, and
1.0. We averaged the scores of all k-best results for
each method.

3.2 Results

Table 1 shows the results of the five-scale scores.
Pop+Sup achieved statistically significant improve-
ment over the baselines when k = 1. This re-
sult can support our expectation that the surpris-
ingness has a strong correlation to the interesting-

9https://www.lancers.jp/
10We used paired-bootstrap-resampling (Koehn, 2004) with

10,000 random samples (p < 0.05).

236

ness of relationships between persons. In addi-
tion, Pop+Com+Sup achieved statistically signifi-
cant improvement over the baselines when k = 1,
and outperformed the scores of Pop+Sup when
k = 1, 2, 3. These results indicate that the com-
monness can also support the interestingness, es-
pecially for a small number of k. When k is larger
than 2, all scores are close compared with the
scores at k = 1. This tendency may suggest that
the number of interesting personal relationships is
limited for each person.

4 Demonstration System

As shown in Figure 2, our demonstration system
presents the top five interesting relationships be-
tween persons at the top of the search results based
on the current search query. This demonstration
system consists of server and client sides. The
working process of the system follows the order:

1. In the client side, our google chrome plugin
makes a query based on the name of the per-
son input in the google search form.

2. The server-side distributes personal relation-
ships of the person included in the given
query to the client-side by loading from the
pre-computed personal relationships and their
scores.

3. After receiving the result, the client-side
shows the result below the search form. If
the server does not return any personal rela-
tionship, the plugin does not have any action
for the search result.

The client-side was implemented on jQuery li-
braries, and the server-side was implemented on
python 3.0 with utilizing http.server module. We
chose Pop+Com+Sup as our demonstration system
because this model achieved the best result in the
human evaluation in the cases of k = 1, 2, and 3.

5 Related Work

There have been several approaches for extracting
interesting facts. We can divide them into super-
vised and unsupervised approaches.

The unsupervised approaches have been com-
monly used for this type of extraction. Merzbacher
(2002) proposed a method that mines good trivia
questions from a relational database based on pre-
defined rules. Lin and Chalupsky (2003) proposed
a set of unsupervised link discovery methods that

can compute interestingness on graph data that is
represented as a set of entities connected by a set of
binary relations. Tsurel et al. (2017) proposed an
algorithm that automatically mines trivia facts from
Wikipedia by utilizing its category structure. Their
approach can rank the entity’s categories by their
trivia quality, which is induced by the category.
Korn et al. (2019) mined trivia facts from superla-
tive tables in Wikipedia articles. They utilized a
template-based approach for semi-automatically
generating natural language statements as fun facts.
Their work had actually been incorporated into the
search engine by Google. Kwon et al. (2020) pro-
posed a method to obtain sentences including trivia
facts by focusing on a tendency of the Wikipedia
article structure that a paragraph containing trivial
facts is not similar to other paragraphs in a article.

The supervised approaches have also been used
for extracting interesting facts. Gamon et al. (2014)
proposed models that predict the level of interest a
user gives to various text spans in a document by
observing the user’s browsing behavior via clicks
from one page to another. Prakash et al. (2015)
constructed a labeled dataset for movie entities and
proposed a method for extracting interesting sen-
tences from Wikipedia articles and ordering them
based on interestingness by utilizing Rank-SVM
trained with the constructed dataset. Fatma et al.
(2017) proposed a method for automatically min-
ing trivia facts for an entity of a given domain in
knowledge graphs by utilizing deep convolutional
neural networks trained in a supervised manner.

6 Conclusion

In this paper, we proposed a method for extract-
ing interesting relationships between persons from
natural language texts in an unsupervised manner.

Human evaluation of the personal relationships
extracted from Japanese Wikipedia articles showed
that the proposed method improved the interest-
ingness compared to a popularity-based baseline.
Through the result, we can conclude that consid-
ering the surprisingness of relationships between
persons is effective in improving the interesting-
ness of the extracted results.

Furthermore, to demonstrate our proposed
method, we incorporated the method into a google
chrome plugin, which can work on google search.

As future work, we will investigate ways to ex-
tract personal relationships based on more detailed
information about a dependency tree.

237

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 238–243
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Paladin: an annotation tool based on active and proactive learning

Minh-Quoc Nghiem1,2, Paul Baylis2, Sophia Ananiadou1

1 National Centre for Text Mining
School of Computer Science, The University of Manchester, United Kingdom

2 Bott and Co Solicitors
{minh-quoc.nghiem, sophia.ananiadou}@manchester.ac.uk

p.baylis@bottonline.co.uk

Abstract

In this paper, we present Paladin, an open-
source web-based annotation tool for creat-
ing high-quality multi-label document-level
datasets. By integrating active learning and
proactive learning to the annotation task, Pal-
adin makes the task less time-consuming and
requiring less human effort. Although Paladin
is designed for multi-label settings, the system
is flexible and can be adapted to other tasks in
single-label settings.

1 Introduction

Labelled data is essential in many NLP tasks based
on Machine Learning. Manually annotating such
data is time-consuming, and require a lot of human
effort. Active learning has been used to ease this
process by choosing the data points for annotation
instead of annotating all instances of the unlabeled
data (Settles, 2009). Some recent research has also
utilized proactive learning, in which the system is
allowed to assign specific unlabeled instances to
specific annotators (Li et al., 2019). The annotators,
in these scenarios, only have to annotate a small
set of representative and informative data which
they can provide reliable labels. It helps reduce the
labelling effort and at the same time makes the best
use of available annotators.

To date, there are many tools available for ac-
tive learning, such as the TexNLP (Baldridge and
Palmer, 2009), the Active-Learning-Scala (Santos
and Carvalho, 2014), the JCLAL (Reyes et al.,
2016), the LibAct (Yang et al., 2017) libraries, the
Vowpal Wabbit1. These tools, however, focus only
on the active learning algorithms and provide no
user interface thus making it difficult to use for
the end-users. On the other hand, several tools
have been made with user-friendly interface such

1http://hunch.net/˜vw/

as BRAT (Stenetorp et al., 2012), WebAnno (Yi-
mam et al., 2013), PubAnnotation (Kim and Wang,
2012), doccano2. Some of the tools offer ac-
tive/proactive learning such as APLenty (Nghiem
and Ananiadou, 2018), DUALIST (Settles and Zhu,
2012), AlpacaTag (Lin et al., 2019), Discrete Ac-
tive Learning Coref (Li et al., 2020a). Currently,
these tools support sequence labelling/coreference
resolution tasks but not document classification
tasks. To the best of our knowledge, there is no
such tool for document classification which sup-
ports active/proactive learning. Prodigy3 supports
active learning for both sequence labelling and doc-
ument classification tasks but it is a commercial
product.

To compensate for the lack of available
document-level annotation tool, we develop Pal-
adin (Proactive learning annotator for document
instances), an open-source web-based system for
creating labelled data using active/proactive learn-
ing4. The main innovation of Paladin is the com-
bination of a user-friendly annotation tool with ac-
tive/proactive learning. Specifically:

1. Active/proactive learning integration: Paladin
makes annotation easy, time-efficient, and re-
quire less human effort by offering active and
proactive learning.

2. An easy-to-use interface for annotators: Pal-
adin adapts the interface of doccano, making
annotation intuitive and easy to use.

3. Suitable for multi-label document annotation
tasks: Paladin is best used for multi-label doc-
ument annotation tasks, although it can be
used for other single-label classification prob-
lems.

2https://github.com/doccano
3https://prodi.gy/
4The source code is publicly available at https://

github.com/bluenqm/Paladin

238

The remainder of this paper is organized as fol-
lows. Section 2 presents details of Paladin. Sec-
tion 3 describes a case study of using Paladin for
a multi-label document annotation task. Section
4 concludes the paper and points to avenues for
future work.

2 System Descriptions

Paladin is a web-based tool implemented in Python
using Django web framework and Vue.js. The main
user interface consists of a project management
page and an annotation page. Below, this section
describes Paladin in detail.

2.1 Project management

In Paladin, there are two main types of user role:
the project manager role and the annotator role. A
project manager can create/customise annotation
projects and add annotators to the projects. The
annotators can annotate text assigned to them. The
interface allows the project manager to: 1. create
a project 2. define the tagset 3. upload the seeding
and unlabelled data to the webserver 4. assign an-
notators to a project 5. choose the active/proactive
learning strategy. The project manager can addi-
tionally set how the batch is allocated, the sam-
pling and proficiency thresholds, the steps before
retraining and samples per session as illustrated in
Figure 1.

Figure 1: Project Settings

When creating a new annotation project, the
project manager needs to upload two datasets (in
Tab Separated Values format) to the server. The
first dataset is the seeding dataset, which will be

used by the system to train the classifier and es-
timate the annotators’ proficiency. The second
dataset is the unlabelled dataset, on which the sys-
tem chooses the text to assign to the annotators. If
there is no seeding data, the system will select ran-
dom text from the unlabelled dataset for annotation
in the first batch. Figure 2 shows the text when
successfully uploaded to the system.

Figure 2: Dataset/Seed Dataset

2.2 Annotation interface

For annotation and visualization of annotated doc-
uments, we adapted the doccano annotation inter-
face. The annotation interface displays a set of
documents that are assigned to the annotator, one
at a time as illustrated in Figure 3. The annotator
can navigate to next or previous documents dur-
ing annotation using the “Prev” or “Next” buttons.
When working on Paladin, the annotator uses the
mouse or keyboard shortcut to select label(s) for
the current document. When finishing the assigned
documents, the annotator can click on “Finish An-
notation”. The system will validate the annotated
documents, retrain the classifier, and assign new
documents to the annotator. Each annotator can
only see the documents assigned to him/her in the
current batch.

2.3 Active learning

Depending on the project manager’s settings, the
system chooses different document instances to
send to the annotators. The project manager can
choose to prioritise the most informative instances
for the classifier or to maintain the balance be-
tween the number of instances in each class. With
the first option, the system prioritises the most

239

Figure 3: Annotation interface. The displayed sentence
was taken from the Sentiment140 dataset. All labels are
shown in the blue rectangle box with the shortcut keys
next to them. Annotated labels are shown above the
sentence.

informative documents, regardless of the class.
Paladin currently employs the least confidence
uncertainty-based strategy (Culotta and McCallum,
2005) based on the classification outputs from a
Transformer model (Devlin et al., 2019). A lin-
ear model is added to the embedding output to
predict the score for the labels. Previous research
has established that active learning can increase
the performance of Transformer-based text classi-
fiers (Grießhaber et al., 2020). With the second op-
tion, the system uses the same classification outputs
but unlabelled instances are taken from each class
in equal amounts. The default option in Paladin is
the second one. This setting aims to minimise the
unbalanced data problems where we have unequal
instances for different classes.

Paladin uses pool-based sampling scenario,
where the data samples are chosen for labeling
from the unlabeled dataset. The project manager,
however, can upload additional unlabeled data to
an existing annotation project at anytime.

2.4 Proactive learning

In many annotation tasks, we assume that the anno-
tators are experts who always provide correct an-
notations. But in reality, different annotators have
different levels of expertise in different domains.
It has been demonstrated that proactive learning is
helpful for task allocation in crowdsourcing setting
where the level of expertise varies from annota-
tor to annotator (Donmez and Carbonell, 2010; Li
et al., 2017, 2019, 2020b). Proactive learning is

useful in modelling the annotator reliability which
can be used to assign the unlabelled instances to
the best possible annotators.

Before any annotation, Paladin estimates the pro-
ficiency of the annotators for each class by assign-
ing the documents in the seed dataset to all anno-
tators. When the annotators finish labelling these
seed documents, the system calculates the likeli-
hood that a particular annotator provides a correct
label for a particular label. Then, when assigning
new documents to the annotators, Paladin will as-
sign the documents to the best possible annotators
by combining the predicted label(s) and the like-
lihood that the annotator provides a correct label
for a particular label. The system will update the
estimation after every annotation batch.

3 Use cases

The typical use cases of Paladin are as following:

1. A user wishes to add more data to an existing
dataset to improve model performance: the
user can use the existing labelled dataset as the
seed to train the initial model, the labels will
be automatically extracted from the labelled
dataset. The model will select instances from
the unlabelled dataset and then distribute them
to the annotators for annotation.

2. A user wishes to create a labelled dataset from
scratch: the user needs to provide the tag set
and the unlabelled data. The first iteration
will select unlabelled instances for annotation
randomly. After the first iteration, the process
is the same as the previous use case.

3. A user wishes to add more data to an exist-
ing unbalanced dataset: the user can choose
“maintain class balance” option in Settings.
With this option, the model will try to select
more data from the potential minority classes
for annotation.

4 Experiments and Results

4.1 Simulated Annotators
We used the Toxic Comment Classification Chal-
lenge dataset5 for this experiment. The dataset
contains Wikipedia comments which have been
manually labelled for toxic behaviour. There are

5https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/
data

240

six classes: toxic, severe toxic, obscene, threat, in-
sult, and identity hate. In the experiment, we used
60 comments as the initial training data (seed), 600
comments as test data, and 18,000 for unlabelled
data. The instances forming the seed and test data
are randomly taken from the original data but we
make sure that each class has at least 10 instances
and 100 instances in the seed and test data respec-
tively.

We compare three settings in this case study.
The first one is Random Sampling: the system ran-
domly chooses the next documents for annotation.
The second one is Active Learning: the system uses
the output of the trained model to assign new docu-
ments to an expert (annotator who always provide
correct labels). The third one is Proactive Learn-
ing: same as Active Learning, but we have two
annotators, one expert, and one fallible annotator
(annotator who makes mistakes with a probability
of 0.1). Figure 4 shows the F1 scores on the test
set. In all cases, active/proactive learning setting
outperformed Random Sampling setting.

0 0.5 1 1.5

·104

65

70

75

80

85

Training instances

F1
sc

or
e

on
te

st
da

ta

Random Sampling
Active Learning
Proactive Learning

Figure 4: Learning curve

4.2 Real-World Annotators
For this experiment, we worked with a consumer
law firm analysing 6,880 emails. Each email can
have one or more labels from a predefined list
which consist of 15 labels. Some examples are
“update query”, “payment query”, and “fee query”.
Given an email, the annotator had to annotate all
labels that are applicable to that email. There are a
total of 2,000 emails which were already annotated.

This dataset is an unbalanced dataset where
nearly two-thirds of the emails belong to the 5
most common labels while less than 7 percent of

the emails come from the 5 least common labels.
In the experiment, we used 1,000 emails as the ini-
tial training data, 1,000 emails as test data, and the
rest (4,880) as unlabelled data. The purpose of the
experiment was to investigate the performance of
Paladin with an unbalanced seed dataset.

Using Paladin, we created an annotation project
with four annotators and in each annotation ses-
sion, an annotator must annotate 20 emails. All
annotators are members of the law firm with legal
background. We used “maintain class balance” and
“best annotators first” for active learning strategy
and proactive learning strategy respectively. We
stopped when a total of 1,000 emails were anno-
tated. Figure 5 shows the F1 scores and the stack-
ing percentages of label instance count. The results
showed that the F1 score and percentage of mi-
nority classes were gradually increased after each
annotation batch.

1.0 1.2 1.4 1.6 1.8 2.0
Training instances (1000)

5 most common labels
others

5 least common labels
40

45

50

55

60

65

F1
sc

or
e

on
te

st
da

ta

F1 score

Figure 5: F1 scores and percentages of label instance
count. We grouped 5 labels together for readability.

We used an Intel Core i9 9820X Linux server
with 64GB RAM and a Titan RTX GPU. When
allocating a new annotation batch (retraining the
model, predicting the unlabelled instances, select-
ing new instances for annotation), Paladin runs con-
sistently at the rate of around 0.01 to 0.02 seconds
per document and it takes less than two minutes to
get results. The average level of satisfaction (with
ratings from 1 to 5 of three aspects: responsiveness,
easy to annotate, easy to navigate) of the annotators
with the annotation tool is 4.5/5.

241

5 Conclusion

We introduced Paladin, a web-based open environ-
ment for constructing multi-label document-level
datasets using active and proactive learning. Pal-
adin can support the quick development of high-
quality labelled data needed to train and evaluate
NLP tools for different applications.

Considerably more work will need to be done
to further enhance Paladin to work with other ac-
tive/proactive learning algorithms. Besides that,
a natural progression of this work is to evaluate
Paladin in a large scale annotation project.

Acknowledgments

This research has been carried out with funding
from KTP11612. We would like to thank the anony-
mous reviewers for their helpful comments.

References
Jason Baldridge and Alexis Palmer. 2009. How well

does active learning actually work?: Time-based
evaluation of cost-reduction strategies for language
documentation. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 296–305. As-
sociation for Computational Linguistics.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI, volume 5, pages 746–751.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Pinar Donmez and Jaime G Carbonell. 2010. From ac-
tive to proactive learning methods. In Advances in
Machine Learning I, pages 97–120. Springer.

Daniel Grießhaber, Johannes Maucher, and
Ngoc Thang Vu. 2020. Fine-tuning BERT for
low-resource natural language understanding via
active learning. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1158–1171, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Jin-Dong Kim and Yue Wang. 2012. Pubannota-
tion: a persistent and sharable corpus and annota-
tion repository. In Proceedings of the 2012 Work-
shop on Biomedical Natural Language Processing,
pages 202–205. Association for Computational Lin-
guistics.

Belinda Z. Li, Gabriel Stanovsky, and Luke Zettle-
moyer. 2020a. Active learning for coreference res-
olution using discrete annotation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8320–8331, On-
line. Association for Computational Linguistics.

Maolin Li, Arvid Fahlström Myrman, Tingting Mu,
and Sophia Ananiadou. 2019. Modelling instance-
level annotator reliability for natural language la-
belling tasks. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2873–2883, Minneapolis, Minnesota.
Association for Computational Linguistics.

Maolin Li, Nhung Nguyen, and Sophia Ananiadou.
2017. Proactive learning for named entity recogni-
tion. In BioNLP 2017, pages 117–125, Vancouver,
Canada,. Association for Computational Linguistics.

Maolin Li, Hiroya Takamura, and Sophia Ananiadou.
2020b. A neural model for aggregating corefer-
ence annotation in crowdsourcing. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 5760–5773, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Minh-Quoc Nghiem and Sophia Ananiadou. 2018.
APLenty: annotation tool for creating high-quality
datasets using active and proactive learning. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 108–113, Brussels, Belgium.
Association for Computational Linguistics.

Oscar Reyes, Eduardo Pérez, Marı́a Del Carmen
Rodrı́guez-Hernández, Habib M Fardoun, and Se-
bastián Ventura. 2016. JCLAL: a Java framework
for active learning. The Journal of Machine Learn-
ing Research, 17(1):3271–3275.

Davi P Santos and André CPLF Carvalho. 2014. Com-
parison of active learning strategies and proposal of
a multiclass hypothesis space search. In Hybrid Arti-
ficial Intelligence Systems, pages 618–629. Springer.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Burr Settles and Xiaojin Zhu. 2012. Behavioral fac-
tors in interactive training of text classifiers. In
Proceedings of the 2012 Conference of the North

242

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 563–567. Association for Computational Lin-
guistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung,
Tung-En Wu, Si-An Chen, and Hsuan-Tien Lin.
2017. libact: Pool-based active learning in Python.
Technical report, National Taiwan University. Avail-
able as arXiv preprint https://arxiv.org/abs/
1710.00379.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. WebAnno:
A flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

243

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 244–256
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Story Centaur: Large Language Model Few Shot Learning as a Creative
Writing Tool

Ben Swanson, Kory W. Mathewson2, Ben Pietrzak,
Sherol Chen, Monica Dinalescu

Google, 2DeepMind
pwnr, korymath, bpietrzak, sherol, noms@google.com

Abstract

Few shot learning with large language models
has the potential to give individuals without
formal machine learning training the access to
a wide range of text to text models. We con-
sider how this applies to creative writers and
present STORY CENTAUR, a user interface for
prototyping few shot models and a set of re-
combinable web components that deploy them.
STORY CENTAUR’s goal is to expose creative
writers to few shot learning with a simple but
powerful interface that lets them compose their
own co-creation tools that further their own
unique artistic directions. We build out sev-
eral examples of such tools, and in the process
probe the boundaries and issues surrounding
generation with large language models.

1 Introduction

One of the most promising possibilities for large
language models (LLMs) is few-shot learning
(Brown et al., 2020) in which it is possible to create
text to text models with little or no training data.
Few shot learning with LLMs relies on the ease at
which the desired Input/Output (I/O) behavior can
be effectively translated into the text continuation
problem at which these models excel. In recent
years, LLMs have progressed to the level where
this translation requires only familiarity with the
natural (e.g. English) language on which the model
was trained.

We present STORY CENTAUR, a Human-
Computer Interface that closes the gap between
non-technical users and the power and possibilities
of few shot learning, with the intended audience
of writers of creative text. It is our intention that
by giving writers a tool for building generative
text models unique to their process and vision that
these artists will experience genuine feelings of
co-creation.

STORY CENTAUR consists of a prototyping UI
as well as a set of Angular web components that in-
teract via a central pub-sub synchronization mecha-
nism1. Due to the non-trivial monetary cost of infer-
ence and the requirement of specialized hardware,
the LLM that underlies our tool is not included
in this release; instead we dependency inject the
LLM with a simple (string) → string interface to
be provided by an arbitrary service.

As the ethical implications of LLMs (Bender
et al., 2021) are an important and unsolved problem
in NLP, we highlight this design choice to decou-
ple the LLM itself from STORY CENTAUR, a web
based user interface that prepares the LLM’s inputs
and processes its outputs. To put it another way,
the text generated is no more or less biased than the
LLM and user themselves, as STORY CENTAUR’s
purpose is not to enhance or change the abilities
of a LLM, but instead to democratize its use to
non-technical users.

2 Related Work

The observation that simple “fill-in-the-blank” neu-
ral network models trained on large quantities of
text can be used for problems beyond their pri-
mary learning objective dates back to word2vec
(Mikolov et al., 2013) in which word embeddings
were able to perform some SAT style analogies.
While this ability captured many researchers’ fas-
cination, these models’ dual function as a repre-
sentation learner from which other models could
be initialized and/or fine-tuned took center stage in
the following years.

Representation learning techniques made steady
advances, expanding to sentence level contextu-
ally sensitive word embedding with ELMo (Peters
et al., 2018), the introduction of Transformers and
MLM objectives with BERT (Devlin et al., 2018),

1source code: https://chonger.github.io/centaur/

244

Figure 1: A Few Shot Formula in action. The Data and Serialization are used to create the Prompt, which along
with the serialized inference time Input becomes the Preamble. The LM generates a continuation, from which the
Serialization extracts the output. The Sentinels used (with newlines omitted) are “I saw a”, “! It goes ”, and “.
–NEXT–”.

and the menagerie of similar systems that followed.
While most work concerned itself primarily with
topping each other’s GLUE and SUPERGLUE
scores (Wang et al., 2019), work from OpenAI kept
the torch lit for investigating the emergent abilities
of representation learning (Radford et al., 2017,
2018, 2019; Brown et al., 2020). Their most recent
work undeniably shows that sufficiently large LMs
enable few shot models that approach and some-
times surpass state of the art performance on a wide
range of NLP tasks.

Human + AI co-creation has existed in both prac-
tice and theory for several years. To highlight some
examples in practice that relate to creative writing,
as opposed to music or visual art of which there are
many, we refer the reader to browse the Electronic
Literature Collection2 a longstanding community
of artist-technologists who have blazed this trail
since the days of hypertext. A number of publica-
tions of AI co-creation exist as well on a diverse
range of artistic applications (Martin et al., 2016;
Mathewson and Mirowski, 2017; Oh et al., 2018;
Mirowski and Mathewson, 2019; Kreminski et al.,
2019; Sloan, 2019; Tsioustas et al., 2020).

For a lighter introduction, Case (2018) gives
some examples of AI + Human collaborations, or
Centaurs3, but primarily presents the argument that
the HCI that connects the Human and Computer
is of paramount importance, a sentiment that is in
line with our own work. We also resonate with the
opinion of Llano et al. (2020), which argues for
explainability as a catalyst for fruitful co-creation,

2https://collection.eliterature.org/
3Case (2018) also explains this term’s etymology

as it is central to our design that the artist be given
the tools to create and iterate on NLP models.

3 Few Shot Formulas

The core contribution of this work is a UI for the
creation of few shot text generation models (Figure
2). We first define terms for the components of
LM based few shot modeling as it is decomposed
in our system: The few shot learning system as
a whole is represented as a Formula which when
used with a large LM provides arbitrary text to text
I/O behavior.

We note that while generally LMs refer to any
probability distribution over a sequence of tokens,
in this work we use the term to refer to the subset
model class that factorizes the joint probability into
conditional P (wt|w1...t−1) terms. Put simply, we
are referring to the “predict the next word given all
words so far” variety of LM, which includes all of
the GPT models.

A Formula is composed of Data and Serializa-
tion. Each item in the Data consists of lists of
string inputs and outputs that exemplify the desired
I/O. The Serialization defines a reversible transfor-
mation between the Data and the raw text handled
by the LM.

STORY CENTAUR uses a Serialization template
of fixed text Sentinels that interleave the inputs
and outputs; a Sentinel is defined to precede each
input and output, as well as one that separates in-
puts and outputs and one that comes after the final
output (See Figure 2 for an example). Carefully
chosen sentinels are powerful tools for nudging
the language model in desired directions (see the

245

Figure 2: STORY CENTAUR’s Formula Development User Interface.

Appendices for examples), but must also be de-
signed so as not to be confused with model input
or outputs.

A Formula is used by first invoking the Serial-
ization on the Data, creating the Preamble. Then,
the new inputs are converted using the Serializa-
tion and concatenated to the Preamble, creating
the Prompt. The LM is asked to continue the text
in the Prompt, and the Serialization is used to ex-
tract the output(s) from the result. The LM cannot
explicitly enforce the Serialization format and as
such will often produce non-conformant results,
in which case it must be rejected. In practice, if
the LM is sufficiently capable and the task well
suited then a simple rejection sampler suffices to
produce several acceptable options, as decoding is
parallelizable.

3.1 Formula Development

STORY CENTAUR’s user interface for Formula
design is shown in Figure 2, with supplemental
screenshots in the appendices. While there is no
fixed workflow, we have found the following pro-
cess to be effective. We assume only that the user
is proficient in English and has a strong concept of
their desired I/O.

First, the user must enter at least two examples
of I/O pairs into the Data panel and take a pass at
defining a Serialization, relying on the live updated
Preamble panel to preview their progress. With a
few examples in place, the Auto-Generate button
can then be used to suggest new candidate IO pairs
by passing the Preamble to the LM and allowing
the user to prune these suggestions. This process
can be repeated, quickly converging to several (10

or more) solid examples and clear evidence that
the Serialization is being captured by the LM. As a
final evaluation technique, we provide a Test mode
that takes inference inputs and applies the current
Formula, also reporting the rate at which the LM
output respects the Serialization.

4 Writing Tool Experiments

We showcase the potential of Formulas that one
might create using STORY CENTAUR in several
Experiments. These experiments all rely on one
or more Formulas that were built using the devel-
opment tool and workflow described above, and
are each motivated by a different artistic scenario.
When possible, we present the I/O specifications
for each Experiment and invite the reader to view
full Experiment screenshots as well as the underly-
ing Formulas’ Data and Serialization in the Appen-
dices.

4.1 Magic Word

Figure 3: Formula I/O for Magic Word.

Perhaps the most obvious application of generative
language models to creative writing is overcoming
writer’s block. Specifically, we consider the sce-
nario in which the writer has some existing seed

246

text and wants to be presented with possible con-
tinuations.

Generative LMs are ripe for this task as they can
reliably continue short text; for the definition of
LM used in this work (see Section 3) this is indeed
exactly the task they were trained on. In this pure
use of the LM the author is only able to provide
the seed text, and so in this experiment we use a
few shot Formula to provide an additional input of
a word or phrase that is required to appear in the
generated text.

The Magic Word formula takes two inputs: the
seed text that must be continued by the model and
the “Magic Word” that must be used in the contin-
uation. In this Experiment, the generated outputs
are not only discarded if they do not conform to the
Serialization but also if the Magic Word does not
appear as a substring. The UI allows editing of both
the magic word and seed text, and on generation
the user is given a maximum of three sentences that
they can click to append to the editable main text
box.

From an academic perspective, it is worth noting
that this I/O paradigm has been explored in several
examples of previous work, often with the same
motivation as a writer’s aid (Ippolito et al., 2019).

4.2 Say It Again

Figure 4: Formula I/O for Say It Again’s CUSTOM
Formula.

Many literary characters have their own peculiar
way of speaking; Yoda, Tolkein’s dwarves, Trea-
sure Island’s Pirates. In this Experiment we address
the scenario where a writer has a clear idea of what
they want the character to say and want suggestions
as to how their character might actually say it.

We phrase this problem as a Formula with one
input and one output in which the input is in neu-
tral style and the output is a paraphrase with the
desired style applied. This works nicely with few
shot learning, as it is relatively easy to invent (or
generate) a simple unstyled statement and then to
imagine how a character might say it. We show-
case several such Formulas in this experiment, se-

lectable in a menu. For unstyled source text, there
are three editable areas for text to rephrase that can
be restyled individually or all at once.

We provide one additional Formula that might
be considered zero shot style transfer, although it is
still performed using a few shot Formula. When the
style “CUSTOM” is selected, an input box appears
where the user can enter any raw text they wish.
This text is then used in a Formula with two inputs,
the text to be restyled and the name or description
of the character whose style to use. The surprising
result is that this is often possible with no examples
of the requested style itself, only the proper Seri-
alization and a few example of the full I/O shown
in Figure 4 with other custom characters. As this
information most likely comes from patterns and
associations encoded into the LMs parameters dur-
ing training, this method works best with fictional
characters from major movies or celebrities.

We encourage the further examination of large
LMs for style transfer, as we were anecdotally im-
pressed with the output of this experiment in par-
ticular. As some recently successful work in style
transfer (Riley et al., 2020) already follows a la-
bel free approach that might itself be considered
few shot in nature, interesting experimental com-
parisons are likely possible.

4.3 Story Spine

Figure 5: Story Spine’s two formulas for spine contin-
uation (top) and spine colorizing (bottom).

Modern LMs excel at producing text that is co-
herent, grammatical, and at times interesting, and
frequently amusing. However, cracks begin to
show in coherence as generations grow longer (Cho
et al., 2018). A common mitigating technique has
been to construct hierarchical generation systems
in which a high level representation that is focused
on common sense story structure which is then

247

transformed into narrative text (Fan et al., 2018;
Ammanabrolu et al.). This trend inspires this ex-
periment, whose goal is the co-creation of a short
story that is both coherent and detailed.

One ubiquitous quality of such hierarchical sys-
tems is that the high level representation is a struc-
tural and/or semantic abstraction chosen to be
amenable to plot coherence modeling. This ex-
periment poses the question: what if the high level
representation was itself natural language? To ex-
plain our setup we make the distinction between
simple text and colorful text, where the former is
a grammatically bare bones statement of fact and
the latter is more linguistically interesting, as a
sentence might actually appear.

We use two Formulas to accomplish this goal,
shown in Figure 5. The first takes a simple short
plot point sentence as input and returns a plausible
following simple plot point as output; this is used
in a loop to generate the spine. The second is a
context conditional paraphrasing formula with two
inputs; the first is a simple plot point and the second
is the “story so far” which is written in colorful text.
The Formula’s output is a paraphrase of the simple
plot point, colorized to both respect the factual
information of the plot point and the context of the
story so far.

The user is presented with an interface that lets
them write and edit custom spine plot points as well
as use the first Formula to generate up to five can-
didates for plot points to continue the story. Each
spine plot point is connected to its colorized para-
phrase, which appear as a whole on the right side.
In order to maintain a model of the mapping be-
tween the spine and colorized text, the colorized
text is not editable.

4.4 Character Maker

Figure 6: The eight character creation points used in
Character Maker, with examples.

Interesting characters are at the heart of much cre-
ative writing, and various template filling exercises
exist to create them. Often this comes down to
filling out a template containing fields that flesh
out the character, as shown in Figure 6. In this
experiment, the user is presented with an editable
template containing each of these fields, with the
option to edit or clear any of the fields’ values.
Once a value has been cleared, it can be filled in
by the LM conditioned on all current non-empty
fields.

We take this experiment in a direction that goes
beyond our own Formula development tools to de-
fine a flexible Few Shot model for data completion.
Our generalized problem statement is as follows:
given a set of fields of which an arbitrary subset are
blank, for one such blank field generate a plausible
value conditioned on the non-blank fields. We build
a dynamic Formula creation system that fulfills this
generalized contract, and apply it to the filling of
character creation exercise forms.

Our few shot solution naturally relies on a small
number of fully filled out and plausibly consistent
fields (e.g. complete character descriptions). At
inference time, we extract the subset of non-blank
fields in the inference item from each of these few
shot examples and stitch together a Formula on
the spot with precisely these inputs and the single
output of the desired inference output field. This
dynamic creation of Formulas requires a flexible
Serialization that can accommodate any field name
and value in any order, which for this experiment
we simple simply use “name : value”.

4.5 Improv Prompts

In improvisational acting (improv) one of the pri-
mary pleasures is to see actors bring a set of con-
straints provided by the audience to life in a coher-
ent story. We see the potential for the sometimes
wildly creative suggestions of large language mod-
els to supply these constraints, either as a tool for
practitioners to hone their craft or as a way to spice
up (or speed up) a live performance itself.

Improv constraints must be both open ended and
subject to specific categories; for example the pop-
ular “Party Quirks” game requires a personal quirk
for each actor attending a dinner party. We build
Formulas and UIs for several improv games, and
note their distinction from the other Formulas in
this work in that they require no user input at all.

In constructing such zero input few shot learning

248

models it became apparent that beyond controlling
the grammatical form and semantic intent of the
outputs we could also control their tone, as it would
mimic the tone of the Formula’s Data. Crucially,
this allows easy adaptation of these tools to differ-
ent audiences (children versus adults, for example)
and an implicit nudge towards whimsical outputs.

5 Discussion

While the experiments presented above demon-
strate how few shot learning can be used to cre-
ate interesting tools for writers, the real power of
STORY CENTAUR is its unlocking of rapid exper-
imentation. Not only were we able to probe the
boundary of what “works” efficiently, but also to
engage individuals regardless of formal machine
learning training to help us to do so. Needless to
say, in the course of this work many attempted
Formulas did not produce compelling results.

Perhaps our most interesting failure was to build
a Formula that would produce the second half of
a rhyming couplet given the first half, a task that
would require understanding of both phonetics and
meter as well as linguistic coherence. This was
disappointing given the compelling examples of
GPT-3 poetry available online4. One possible ex-
planation is that while general poetry and specifi-
cally rhyming couplets are in our minds connected
closely with a subset relationship rooted in human
culture, the hard constraint of rhyme and meter in
fact divides them into very different problems for
an LM. It is certainly the case that recent success-
ful work in rhyming metered poetry generation has
needed to resort to fixed rhyme words and syllable
counting(Ghazvininejad et al., 2017).

In terms of larger themes, we found that con-
structing Formulas in which any of the inputs or
outputs were much longer than a few sentences
were hard to construct. We speculate that it is
more difficult for the models to latch on to the
Serialization in this case, as the observed symp-
tom was often that no generated text passed the
de-serialization filter. On the positive side we ob-
served that few shot tasks that rely on paraphrasing
(such as those used Say It Again) were surprisingly
easy to construct successfully.

It is a common and intuitively plausible observa-
tion that the design of the Serialization is crucial
to the performance of few shot learning with large
LMs. Our Formulas can only be evaluated quali-

4https://www.gwern.net/GPT-3#transformer-poetry

tatively and so we leave to future work the human
studies that would be necessary to investigate this
hypothesis. Our Magic Word experiment does offer
the promise of a good test bed for Serialization de-
sign; even after considerable iteration we found the
rate at which outputs pass both the de-Serialization
filter to be surprisingly low given the relative sim-
plicity of the task and the model’s innate ability to
generate coherent text continuation.

Finally we note that our true goal is to empower
artists with no technical training to imagine a For-
mula, construct it in our development mode, and
then produce experiments as we have. In our cur-
rent process, such an artist could indeed construct
their Formula, but would at some point require a
programmer to build it into an experiment, requir-
ing e.g. a WYSIWG editor. While this was beyond
the scope of our work, we did construct our sys-
tem using Angular, a modern web development
framework whose core premise is modularity, de-
pendency injection, and reuse of components. Not
only do our experiments make use of a small set
of these reusable components for functionality like
editable text fields and clickable suggestion lists,
but also all text and Formulas are synchronized by
a global pub-sub service with simple string keys.

6 Conclusion

We present STORY CENTAUR, a tool for the cre-
ation and tuning of text based few shot learning
Formulas powered by large language models and
several experiments using Formulas built with our
tool that are focused around the topic of creative
writing.

The emergence of large language models has
shaped the course of NLP research in the late
2010’s but the question remains as to what, if any,
is a viable use case for these models in their raw,
un-finetuned, form. Additionally, while some claim
that scaling these models is a viable path to Artifi-
cial General Intelligence, others disagree (Bender
and Koller, 2020), and learning what is easy, hard,
and impossible for them is crucial this debate. The
answers to these questions will undoubtedly reveal
themselves in the coming years and we are partic-
ularly excited to see their impact on the fine arts.
In particular, we see great potential in tools built
with this technology when there is a human, in this
case an artist, in the loop to complement the natural
deficiencies of a simple but powerful text generator
that lacks editorial control and responsibility.

249

References
Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung,

Zhaochen Luo, William Ma, Lara J Martin, and
Mark O Riedl. Story realization: Expanding plot
events into sentences.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency; As-
sociation for Computing Machinery: New York, NY,
USA.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5185–5198, Online. As-
sociation for Computational Linguistics.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nicky Case. 2018. How to become a centaur. Journal
of Design and Science.

Woon Sang Cho, Pengchuan Zhang, Yizhe Zhang, Xi-
ujun Li, Michel Galley, Chris Brockett, Mengdi
Wang, and Jianfeng Gao. 2018. Towards coher-
ent and cohesive long-form text generation. arXiv
preprint arXiv:1811.00511.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48.

Daphne Ippolito, David Grangier, Chris Callison-
Burch, and Douglas Eck. 2019. Unsupervised hier-
archical story infilling. In Proceedings of the First
Workshop on Narrative Understanding, pages 37–
43.

Max Kreminski, Devi Acharya, Nick Junius, Elisabeth
Oliver, Kate Compton, Melanie Dickinson, Cyril
Focht, Stacey Mason, Stella Mazeika, and Noah
Wardrip-Fruin. 2019. Cozy mystery construction kit:
Prototyping toward an ai-assisted collaborative sto-
rytelling mystery game. In Proceedings of the 14th
International Conference on the Foundations of Dig-
ital Games, pages 1–9.

Maria Teresa Llano, Mark d’Inverno, Matthew Yee-
King, Jon McCormack, Alon Ilsar, Alison Pease,
and Simon Colton. 2020. Explainable computa-
tional creativity. In Proc. ICCC.

Lara J Martin, Brent Harrison, and Mark O Riedl. 2016.
Improvisational computational storytelling in open
worlds. In International Conference on Interactive
Digital Storytelling, pages 73–84. Springer.

Kory Mathewson and Piotr Mirowski. 2017. Impro-
vised theatre alongside artificial intelligences. In
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
volume 13.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. Advances in neural information processing sys-
tems, 26:3111–3119.

Piotr Mirowski and Kory Wallace Mathewson. 2019.
Human improvised theatre augmented with artificial
intelligence. In Proceedings of the 2019 on Creativ-
ity and Cognition, pages 527–530.

Changhoon Oh, Jungwoo Song, Jinhan Choi,
Seonghyeon Kim, Sungwoo Lee, and Bongwon Suh.
2018. I lead, you help but only with enough details:
Understanding user experience of co-creation with
artificial intelligence. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1–13.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Parker Riley, Noah Constant, Mandy Guo, Girish
Kumar, David Uthus, and Zarana Parekh. 2020.
Textsettr: Label-free text style extraction and
tunable targeted restyling. arXiv preprint
arXiv:2010.03802.

Robin Sloan. 2019. Writing with the machine: Gpt-2
and text generation. In Roguelike Celebration.

Charalampos Tsioustas, Daphne Petratou, Maximos
Kaliakatsos-Papakostas, Vassilis Katsouros, Apos-
tolos Kastritsis, Konstantinos Christantonis, Kon-
stantinos Diamantaras, and Michael Loupis. 2020.

250

Innovative applications of natural language process-
ing and digital media in theatre and performing arts.
In Proceedings of the ENTRENOVA-ENTerprise RE-
search InNOVAtion Conference, volume 6, pages
84–96.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. CoRR, abs/1905.00537.

A Appendices

251

Figure 7: A Screenshot of the Magic Word Formula and Experiment.

252

Figure 8: Say It Again in the style of a Shakespearean character using 5 Few Shot Examples.

253

Figure 9: Say It Again in the style of Bill and Ted using 5 Few Shot Examples.

254

Figure 10: Say It Again in the style of Data from Star Trek using 5 Few Shot Examples of style transfer, but no
examples of Data’s actual style.

255

Figure 11: Story Spine screenshots. In the top screenshot, a five segment spine has been constructed, but only two
spine segments have been colorized. The bottom image shows the result of colorizing the final three segments.

Figure 12: Character Maker, before and after generation of the Tactics field. In this case, generation was per-
formed by constructing a few shot Formula dynamically with Super-Objective, Sub-Objective, Scene Objective,
and Backstory as input, and Tactics as output, using 4 examples of full templates to create the Data.

256

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 257–262
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

FrameForm: An Open-source Annotation Interface for FrameNet

Büşra Marşan
Starlang Yazılım Danışmanlık

busra@starlangyazilim.com

Olcay Taner Yıldız
Özyeğin University

olcay.yildiz@ozyegin.edu.tr

Abstract

In this paper, we introduce FrameForm1, an
open-source annotation tool designed to ac-
commodate predicate annotations based on
Frame Semantics (Fillmore et al., 1976).
FrameForm is a user-friendly tool for creating,
annotating and maintaining computational lex-
icography projects like FrameNet and has been
used while building the Turkish FrameNet
(Marşan et al., 2021). Responsive and open-
source, FrameForm can be easily modified to
answer the annotation needs of a wide range of
different languages.

1 Introduction

FrameNet (Lowe, 1997; Baker et al., 1998; Fill-
more and Atkins, 1998; Johnson et al., 2001) is
a growing NLP resource developed by the Inter-
national Computer Science Institute in Berkeley,
California. Having its theoretical background in
Fillmore’s Frame Semantics notion (Fillmore et al.,
1976), FrameNet is a coherent and exhaustive com-
putational lexicography that provides in-depth se-
mantic information regarding the argument struc-
ture and thematic relations of a predicate.

In FrameNet, predicates are annotated into their
respective frames. A frame refers to a schematic
representation that brings lemmas together based
on their semantic properties and syntactic features
(for a more detailed definition and discussion of
the frame notion, see (Fillmore et al., 1976)). For
instance, Motion frame brings frames that denote a
motion between two points or on a path, and it has
the following definition2:

Some entity (Theme) starts out in one
place (Source) and ends up in some
other place (Goal), having covered some

1https://github.com/StarlangSoftware/SemanticRoleLabeling
2https://framenet.icsi.berkeley.edu/fndrupal/frameIndex

space between the two (Path). Alterna-
tively, the Area or Direction in which
the Theme moves or the Distance of the
movement may be mentioned.

Predicates (Lexical Units or LUs, as called in
FrameNet) that fit the definition above are anno-
tated to this frame. Here we must point out that
each sense of a Lexical Unit pertains to a differ-
ent frame. For instance, “blow” (as an intransitive
verb) has several meanings3:

1. to move or be carried by or as if by wind

2. erupt, explode

3. to send forth a current of air or other gas

With its first meaning, “blow” is annotated to Move
frame.

Following the framework put forward by English
FrameNet team, many other researchers re-created
this resource in different languages. In order to ease
building process and streamline the maintenance of
FrameNet resources, we developed an open-source
annotation interface called FrameForm4.

We will discuss the creation process of Frame-
Form in Section 2 and introduce its features in
Section 3. Finally, we will offer a brief discussion
regarding the future work in Section 4.

2 Developing the FrameForm

Development process of FrameForm is closely
tied to the creation process of Turkish FrameNet
(Marşan et al., 2021): While gathering data for
Turkish FrameNet, our team needed an easy-to-use
tool that allowed frame annotation, semantic an-
notation and morphologic analysis. First we did a
thorough research to see what software and tools

3https://www.merriam-webster.com/dictionary/blow
4https://github.com/StarlangSoftware/SemanticRoleLabeling

257

Figure 1: Morphologic analysis interface of FrameForm

were used for building other FrameNets. In their
articles covering the process of building and/or ex-
panding their FrameNets, many teams don’t men-
tion the tools or interface they use, that is why we
were able to find only few resources regarding the
annotation of FrameNets in various languages:

• FrameNet Brasil team uses a web-based anno-
tation tool called FrameNet Brasil WebTool
(Matos and Torrent, 2016). The same tool is
also used for Global FrameNet annotations.
It allows the users to create language specific
tags to accommodate typological features of
different languages but it does not allow an
in-depth morphological analysis. That is why
our team was unable to use FrameNet Brasil
WebTool.

• The team behind German FrameNet SALSA
uses two main tools for annotation: SALTO
(Burchardt et al., 2006) and FrameNet Trans-
former (Ruppenhofer et al., 2010). Although
very practical, these tools fell short of satisfy-
ing our needs regarding morphological analy-
sis and semantic annotation.

• Swedish FrameNet team uses Karp, “the
open lexical infrastructure of Sprakbanken
(the Swedish Language Bank)” (Borin et al.,
2013), which cannot be used for annotating
other languages.

• Spanish FrameNet team uses the same anno-
tation software as Berkeley team (Fillmore
et al., 2002), which, again, does not allow us
to do a semantic annotation and morphologi-
cal analysis as detailed as we desire.

After our thorough research, we found ourselves
in a position where we had to develop our own
annotation interface. Thus, we created FrameForm.
It is written in Java and can be found on GitHub.
Since it is an open-source program, it is possible to
change or further develop FrameForm freely. That
is why we believe that it can be easily integrated
into many other FrameNet projects in different lan-
guages.

Thus far, mostly Indo-European languages fol-
lowed suit with the English FrameNet. These lan-
guages are relatively poorer in morphology com-
pared to agglutinative languages like Turkish. That

258

Figure 2: Semantic annotation interface of FrameForm

is why the annotation tools we discussed above do
not offer a morphologic analyser component which
is essential for morphologically richer languages.
Our annotation tool, FrameForm allows adding a
new morphological analyser and introducing a new
dictionary and/or WordNet. That is why different
languages can utilise FrameForm for their anno-
tation processes simply by making some minor
adjustments in the back-end.

3 Features

FrameForm saves every annotation pertaining to a
Lexical Unit in a single file: Morphologic analysis,
predicate analysis (shows which word or group of
words is the predicate), semantic analysis (maps the
related meaning to the word), frame information
and frame elements. This way, one can find all
the necessary information regarding a Lexical unit
with one click.

The annotation process starts with the morpho-
logic analysis of the sample sentence (see Figure
1). For this analysis, we incorporated our own mor-
phological analysis library for Turkish, which can

be accessed freely on GitHub 5. Using this library,
FrameForm offers an automatic morphologic anal-
ysis to speed up the process. The annotator can
change auto-generated annotation if it is not cor-
rect.

Using the Starlang Turkish Morphological Anal-
ysis library, FrameForm processes roots and suf-
fixes separately. It chooses the longest possible
root (including derivational suffixes but excluding
inflectional suffixes). If the longest possible root
yields a plausible analysis, the algorithm goes with
that. Otherwise, it refers to a set of predetermined
set of rules (see (Yıldız et al., 2019) for a detailed
discussion). In order to use the morphological anal-
ysis feature of FrameForm in a different language,
Starlang’s Turkish Morphological Analysis library
can be replaced with a different library pertaining
to the target language.

Next step involves the semantic annotation. In
this step, the annotator should select the correct
meaning of the Lexical Unit in regard to the frame,
and appropriate meanings of the other elements in
the sample sentence as well (see Figure 2). Au-

5https://github.com/StarlangSoftware/TurkishMorphologicalAnalysis

259

Figure 3: Predicate annotation interface of FrameForm

tomatic semantic annotation is possible in order
to make annotation process more seamless but the
annotator can always change or manually select the
meanings. For the certain multi-word expressions
(such as phrasal verbs, idioms, etc.) or the words
that have only one meaning, the annotation is done
automatically. The rest of the words are annotated
by human annotators.

For the semantic annotation step, FrameForm
refers to a dictionary or WordNet. For the purposes
of Turkish FrameNet, we used Turkish WordNet
KeNet (Bakay et al., 2021) in order to make Turk-
ish FrameNet compatible with other resources in
Turkish (such as Turkish PropBank (Kara et al.,
2020)) yet it is possible to introduce different dic-
tionaries or WordNets in order to use FrameForm
in different languages.

After the semantic annotation, the annotator
should move on to predicate selection screen where
they need to mark the predicate/Lexical Unit in the
sample sentence (see Figure 3).

Final step is annotating the Frame Elements
where the annotator can see all the FEs within that
frame and match them with related sentence ele-

ments (see Figure 4).

One of the most important features of the Frame-
Form is the fact that it significantly facilitates to
ensure inter-annotator agreement and coherency.
FrameForm allows all annotators to see each oth-
ers’ annotations, that is why the annotators can
discuss specific cases or annotations and notify
one another regarding potential agreement issues.
In addition, FrameForm groups together the Lex-
ical Units and Frame Elements of a single Frame.
This way, the annotators can only see and select
the Frame Elements pertaining to the Frame they
are annotating. Thus, the annotators cannot use or
mark down Frame Elements of other frames.

3.1 Interfaces

FrameForm has 4 different screens for the each step
of the annotation process: Morphologic analysis
screen (see Figure 1), semantic annotation screen
(see Figure 2), predicate marking screen (see Figure
3) and frame element annotation screen (see Figure
4).

260

Figure 4: Frame element annotation interface of FrameForm

3.2 What can be annotated with
FrameForm?

FrameForm is a very potent tool for annotation. It
allows the user to:

• Create new frames,

• Transfer data between the frames,

• Manually edit or change sample sentences,

• Delete Lexical Units,

• Do morphologic analysis, semantic annota-
tion, predicate marking and frame element
annotation.

4 Conclusion and Future Studies

With FrameForm, we aimed to create a potent, flex-
ible, easy-to-use annotation tool. In order to ensure
that FrameForm alone is enough for every step
of the FrameNet annotation and maintenance pro-
cesses, we equipped our tool with a wide range of
features including semantic annotation and Frame
Element annotation. Thus it is possible to create

a FrameNet from scratch, grow it and maintain it
using only FrameForm.

FrameForm can be downloaded freely on
GitHub. Being easy to access and distribute,
a crowded team of annotators can use Frame-
Form for their annotation needs. Since annotators
can see progress made by other members of the
team, FrameForm makes it easier to ensure inter-
annotator agreement.

One of our main goals was to make FrameForm
capable of answering the needs of other FrameNet
teams. That is why it is an open-source tool that
can be modified or advanced in accordance with
the unique needs and typologies of other languages.
Further studies can focus on the compatibility of
FrameForm with other languages and what should
be improved.

References

Özge Bakay, Özlem Ergelen, Elif Sarmış, Selin
Yıldırım, Bilge Nas Arıcan, Atilla Kocabalcıoğlu,
Merve Özçelik, Ezgi Sanıyar, Oğuzhan Kuyrukçu,
Begüm Avar, and Olcay Taner Yıldız. 2021. Turk-
ish WordNet KeNet. In Proceedings of the 11th

261

Global Wordnet Conference, pages 166–174, Univer-
sity of South Africa (UNISA). Global Wordnet As-
sociation.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, Volume 1, pages 86–90,
Montreal, Quebec, Canada. Association for Compu-
tational Linguistics.

Lars Borin, Markus Forsberg, Leif-Jöran Olsson, Olof
Olsson, and Jonatan Uppström. 2013. The lexical
editing system of karp. In Proceedings of the eLex
2013 conference, pages 503–516.

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea
Kowalski, and Sebastian Pado. 2006. SALTO - a
versatile multi-level annotation tool. In Proceed-
ings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC’06), Genoa,
Italy. European Language Resources Association
(ELRA).

Charles J Fillmore and Beryl TS Atkins. 1998.
Framenet and lexicographic reference. In First Inter-
national Conference on language resources & evalu-
ation: Granada, Spain, 28-30 May 1998, pages 417–
426. European Language Resources Association.

Charles J. Fillmore, Collin F. Baker, and Hiroaki
Sato. 2002. The FrameNet database and software
tools. In Proceedings of the Third International
Conference on Language Resources and Evaluation
(LREC’02), Las Palmas, Canary Islands - Spain. Eu-
ropean Language Resources Association (ELRA).

Charles J Fillmore et al. 1976. Frame semantics and
the nature of language. In Annals of the New York
Academy of Sciences: Conference on the origin and
development of language and speech, volume 280,
pages 20–32. New York.

Christopher Johnson, Charles J Fillmore, E Wood,
Josef Ruppenhofer, Margaret Urban, MIRIAM
Petruck, and COLLIN Baker. 2001. The framenet
project: Tools for lexicon building. Manuscript.
Berkeley, CA, International Computer Science Insti-
tute.

Neslihan Kara, Deniz Baran Aslan, Büşra Marşan,
Özge Bakay, Koray Ak, and Olcay Taner Yıldız.
2020. TRopBank: Turkish PropBank v2.0. In Pro-
ceedings of the 12th Language Resources and Eval-
uation Conference, pages 2763–2772, Marseille,
France. European Language Resources Association.

John B Lowe. 1997. A frame-semantic approach to
semantic annotation. In Tagging Text with Lexical
Semantics: Why, What, and How?

Büşra Marşan, Neslihan Kara, Merve Özçelik,
Bilge Nas Arıcan, Neslihan Cesur, Aslı Kuzgun,
Ezgi Sanıyar, Oğuzhan Kuyrukçu, and Olcay Taner
Yildiz. 2021. Building the Turkish FrameNet. In

Proceedings of the 11th Global Wordnet Confer-
ence, pages 118–125, University of South Africa
(UNISA). Global Wordnet Association.

Ely Matos and Tiago Torrent. 2016. A flexible tool
for an enriched framenet. In Proceedings of the 9th
International Conference on Construction Grammar
(ICCG9), Juiz de Fora, Brazil, october. Federal Uni-
versity of Juiz de Fora (UFJF).

Josef Ruppenhofer, Jonas Sunde, and Manfred Pinkal.
2010. Generating FrameNets of various granulari-
ties: The FrameNet transformer. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Olcay Taner Yıldız, Begüm Avar, and Gökhan Ercan.
2019. An open, extendible, and fast Turkish mor-
phological analyzer. In Proceedings of the Interna-
tional Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 1364–
1372, Varna, Bulgaria. INCOMA Ltd.

262

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 263–270
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

OCTIS: Comparing and Optimizing Topic Models is Simple!

Silvia Terragni
University of Milano-Bicocca

Viale Sarca 336, 20126
Milan, Italy

s.terragni4@campus.unimib.it

Elisabetta Fersini∗
University of Milano-Bicocca

Viale Sarca 336, 20126
Milan, Italy

elisabetta.fersini@unimib.it

Bruno Galuzzi
University of Milano-Bicocca

Viale Sarca 336, 20126
Milan, Italy

bruno.galuzzi@unimib.it

Pietro Tropeano
University of Milano-Bicocca

Viale Sarca 336, 20126
Milan, Italy

p.tropeano1@campus.unimib.it

Antonio Candelieri
University of Milano-Bicocca

Viale Sarca 336, 20126
Milan, Italy

antonio.candelieri@unimib.it

Abstract

In this paper, we present OCTIS, a framework
for training, analyzing, and comparing Topic
Models, whose optimal hyper-parameters are
estimated using a Bayesian Optimization ap-
proach. The proposed solution integrates sev-
eral state-of-the-art topic models and evalua-
tion metrics. These metrics can be targeted as
objective by the underlying optimization pro-
cedure to determine the best hyper-parameter
configuration. OCTIS allows researchers and
practitioners to have a fair comparison be-
tween topic models of interest, using several
benchmark datasets and well-known evalua-
tion metrics, to integrate novel algorithms,
and to have an interactive visualization of
the results for understanding the behavior
of each model. The code is available at
the following link: https://github.com/

MIND-Lab/OCTIS.

1 Introduction

Topic models are promising statistical methods that
aim to extract the hidden topics underlying a collec-
tion of documents. Although researchers have pro-
posed several models across the years (Blei, 2012;
Vayansky and Kumar, 2020), their evaluation and
comparison is still a hard task. The evaluation of
a topic model usually involves different datasets
(with non-standard pre-processing) (Schofield and
Mimno, 2016; Schofield et al., 2017) and several
evaluation metrics (Lau et al., 2014; Wallach et al.,
2009; Terragni et al., 2020a). Furthermore, topic
models are usually compared by fixing their hyper-
parameters. However, choosing the optimal hyper-
parameter configuration for a given dataset and a
given evaluation metric is fundamental to induce

∗Corresponding author.

each model at the best of its capabilities, and there-
fore to guarantee a fair comparison with other mod-
els.

Current topic modeling frameworks (McCallum
et al., 2005; Qiang et al., 2018; Lisena et al., 2020)
typically focus on the release of topic modeling
algorithms while ignoring one or more critical as-
pects of the topic modeling pipeline, such as pre-
processing, evaluation, comparison of the models,
and visualization. Most importantly, they disregard
the hyper-parameter selection.

In this paper, we present OCTIS (Optimizing and
Comparing Topic models Is Simple)1, a unified
and open-source evaluation framework for train-
ing, analyzing, and comparing Topic Models, over
several datasets and evaluation metrics. Their opti-
mal hyper-parameter configuration is determined
according to a Bayesian Optimization (BO) strat-
egy (Archetti and Candelieri, 2019; Snoek et al.,
2012; Galuzzi et al., 2020).

In the following, we summarize the main contri-
butions of the proposed framework:

• several open-source topic models have been
integrated into a unified framework, providing
a common interface that allows the users to
easily experiment with topic models;

• a single-objective BO approach has been
integrated to determine the optimal hyper-
parameter values of each model, for a given
dataset and a specific evaluation metric of in-
terest;

• an interactive visualization of the results for
inspecting the details of the models, providing

1The video demonstration is available at https://
youtu.be/nPmiWBFFJ8E.

263

insights about the optimization strategy, word
and topic distributions, and robustness of the
estimated configuration;

• a python library for advanced exploitation
of the framework for integrating novel algo-
rithms, with their training and inference algo-
rithms.

2 System design and architecture

OCTIS is an open-source evaluation framework
for the comparison of a set of state-of-the-art topic
models, that allows the user to optimize the models’
hyper-parameters for a fair experimental compar-
ison. The proposed framework follows an object-
oriented paradigm, providing all the tools for run-
ning a topic modeling pipeline.

The main functionalities of the proposed OC-
TIS are related to dataset pre-processing, training
topic models, estimating evaluation metrics, hyper-
parameter optimization, and interactive web dash-
board visualization. Figure 1 summarizes the work-
flow involving the first four modules (the dashboard
interacts with all of them).

Figure 1: Workflow of the OCTIS framework

The framework can be used both as a python li-
brary and as a dashboard. The python library offers
more advanced functionalities than the ones avail-
able in the dashboard. The modules that comprise
the OCTIS framework are detailed in the following
sections.

2.1 Datasets and Pre-processing

The first step of the topic modeling pipeline is
the pre-processing of the input dataset. OCTIS
includes the following pre-processing utilities:

• reducing the text to lowercase;

• punctuation removal;

• lemmatization;

• stop-words removal;

• removal of unfrequent and most frequent
words (according to a specified frequency
threshold);

• removal of documents with few words (ac-
cording to a specified frequency threshold).

These utilities include the most common techniques
for pre-processing text for topic modeling. How-
ever, some of these features may not be appropriate
for specific domains and languages, e.g. requiring
language-specific or domain-specific stop-words.

OCTIS currently provides 4 pre-processed
datasets, i.e. 20 NewsGroups 2, M10 (Lim and
Buntine, 2014), DBLP 3 and BBC News (Greene
and Cunningham, 2006), different in nature and
length.

The datasets already available in OCTIS, and ac-
cessible through the web dashboard, have been pre-
processed according to the length of the documents.
In particular, we removed the punctuation, we lem-
matized the text, filtered out the stop-words (using
the English stop-words list provided by MALLET),
and removed the words that have a word frequency
less than 0.5% for 20 Newsgroups and BBC News
and less than 0.05% for DBLP and M10. Subse-
quently, we removed the documents with less than
5 words for 20 Newsgroups and BBC News and
less than 3 words for the other datasets.

Table 1 reports some statistics about the cur-
rently available pre-processed.

Dataset Domain # Docs
Avg #
words
in docs

Unique
words

20 News-
groups

Forum
posts

16309 48 1612

BBC
News

News 2225 150 3106

M10
Scientific
papers

8355 6 1696

DBLP
Scientific
papers

54595 5 1513

Table 1: Statistics of the pre-processed datasets.

2http://people.csail.mit.edu/jrennie/
20Newsgroups/

3https://github.com/shiruipan/TriDNR/
tree/master/data

264

Although OCTIS already provides some
datasets, a user can upload and pre-process any
dataset (using the python library) according to its
needs.

2.2 Topic Modeling

OCTIS integrates both classical topic models and
neural topic models. In particular, the following
traditional and neural approaches are available to
be trained, optimized, analyzed, and compared (the
models that are available in the web dashboard are
marked with ?):

• Latent Dirichlet Allocation? (Blei et al., 2003,
LDA);4

• Non-negative Matrix Factorization? (Lee and
Seung, 2000, NMF);4

• Latent Semantic Analysis? (Hofmann, 1999,
LSI);4

• Hierarchical Dirichlet Process (Teh et al.,
2004, HDP);4

• Neural LDA? (Srivastava and Sutton, 2017);5

• Product-of-Experts LDA? (Srivastava and Sut-
ton, 2017, ProdLDA);5

• Embedded Topic Models? (Dieng et al., 2019,
ETM);6

• Contextualized Topic Models (Bianchi et al.,
2021, CTM).7

Moreover, we defined a standard interface for al-
lowing a user to integrate their topic model’s im-
plementation. A topic model is indeed a black-box,
a system solely viewed in terms of its inputs and
outputs and whose internal workings are invisible.
This black-box topic model takes as input a dataset
and a set of hyperparameters values and returns
the top-t topic words, the document-topic distribu-
tions, and the topic-word distribution in a specified
format.

4https://radimrehurek.com/gensim/
5https://github.com/estebandito22/

PyTorchAVITM
6https://github.com/adjidieng/ETM
7https://github.com/MilaNLProc/

contextualized-topic-models

2.3 Evaluation Metrics

The proposed framework provides several evalua-
tion metrics. A metric can be used as the objective
targeted by a Bayesian Optimization strategy, or
to monitor the behavior of a topic model while the
model is optimized on a different objective. The
performance of a topic model can be evaluated by
investigating different aspects, according to the fol-
lowing evaluation metrics:

• Topic coherence metrics (Lau et al., 2014;
Röder et al., 2015) that compute how the top-k
words of a topic are related to each other;

• Topic significance metrics (AlSumait et al.,
2009; Terragni et al., 2020b) that focus on the
document-topic and topic-word distributions
to discover high-quality and junk topics;

• Diversity metrics (Dieng et al., 2019; Bianchi
et al., 2020) that measure how diverse the top-
k words of a topic are to each other;

• Classification metrics (Phan et al., 2008; Ter-
ragni et al., 2020a) where the document-topic
distribution of each document is used as the
K-dimensional representation to train a clas-
sifier that predicts the document’s class.

OCTIS provides 10 evaluation metrics directly
available in the web dashboard, and 13 accessible
through the python library.

2.4 Hyper-parameter Optimization

The proposed framework uses Bayesian Optimiza-
tion (Snoek et al., 2012; Shahriari et al., 2015) to
tune the hyper-parameters of the topic models. If
any of the available hyper-parameters is selected
to be optimized for a given evaluation metric, BO
explores the search space to determine the optimal
settings. Since the performance estimated by the
evaluation metrics can be affected by noise, the
objective function is computed as the median of
a given number of model runs (i.e., topic models
run with the same hyperparameter configuration)
computed for the selected evaluation metric.

BO is a sequential model-based optimization
strategy for expensive and noisy black-box func-
tions (e.g. topic models). The basic idea consists
of using all the model’s configurations evaluated
so far to approximate the value of the performance
metric and then selects a new promising configura-
tion to evaluate.

265

Features OCTIS Gensim STTM PyCARET MALLET TOMODAPI

Pre-processing tools
√ √ √ √ √

Pre-processed datasets
√ √ √ √ √

Classical topic models
√ √ √ √ √ √

Neural topic models
√ √

Coherence metrics
√ √ √ √ √

Diversity metrics
√

Significance metrics
√

Classification metrics
√ √ √ √ √

Hyper-parameters tuning BO MLE grid-search MLE

Usage
import in script,
web dashboard

import in script command line import in script command line
import in script,

API
Programming Language Python Python Java Python Java Python

Table 2: Comparison between OCTIS and the most well-known topic modeling libraries.

The approximation is provided by a probabilistic
surrogate model, which describes the prior belief
over the objective function using the observed con-
figurations. The next configuration to evaluate is
selected through the optimization of an acquisition
function, which leverages the uncertainty in the
posterior to guide the exploration.

We integrated into OCTIS most of the BO algo-
rithms of the Scikit-Optimize library (Head et al.,
2018) to provide a robust and efficient BO imple-
mentation. We integrated Gaussian Process and
Random Forest as surrogate models, while we in-
cluded Probability of Improvement, Expected Im-
provement, and Upper Confidence Bound as acqui-
sition functions. See (Snoek et al., 2012; Candelieri
and Archetti, 2019) for more details about the use
of BO for hyper-parameter optimization.

Instead of performing BO, a user can also use
a random search technique to find the best hyper-
parameter configuration. Since the Bayesian Op-
timization requires some initial configurations to
fit the surrogate model, the user can provide the
initial configurations, according to their domain
knowledge. Alternatively, a user can perform a
pure exploration of the search space using a ran-
dom sampling strategy. Different algorithms are
available (e.g. Uniform Random Sampling or Latin
Hypercube sequence) for sampling the initial con-
figurations.

3 Existing frameworks

The existing topic modeling frameworks usually
provide topic modeling algorithms, while disregard-
ing other essential aspects of the whole topic mod-
eling pipeline: pre-processing, evaluation, compar-
ison, and visualization of the results and, most im-
portantly, the hyper-parameter selection. In the fol-

lowing, we outline the existing frameworks, high-
lighting their advantages and limitations.

MALLET(McCallum, 2002) and gensim4 are
the most known topic modeling libraries and in-
clude several classical topic models. They provide
pre-processing methods and the estimation of the
hyper-parameters using maximum likelihood esti-
mation (MLE) techniques. These libraries do not
include the recently proposed neural topic models,
and they just provide topic coherence metrics.

STTM (Qiang et al., 2018) is a java library that
provides a set of topic models that are specifically
designed for short texts, providing several evalua-
tion metrics.

ToModAPI (Lisena et al., 2020) is a python API
that allows for training, inference, and evaluat-
ing different topic models, also including some
of the most recent. However, it does not provide a
method for finding the best hyper-parameter config-
uration of topic models. Instead, a tool that allows
for optimizing the hyper-parameter of a machine
learning model is PyCARET (Ali, 2020). How-
ever, it employs a grid-search technique to tune
the hyper-parameters. This approach can be very
time-consuming if the number of hyperparameters
is high and the search space is huge (Bergstra and
Bengio, 2012).

OCTIS stands at the union of the features of
the existing frameworks: we integrated both classi-
cal and recent neural topic models, providing pre-
processing methods, evaluation metrics, and the
possibility of optimizing the hyper-parameters. Fi-
nally, a user-friendly graphical interface to launch
one or more hyper-parameter optimization exper-
iments on a given topic model and on a specific
dataset has been provided.

Table 2 summarizes the main features of the

266

existing topic modeling frameworks and compares
them with OCTIS.

4 System usage

OCTIS has been designed to be used as a python
library by advanced users, as well as a simple web
dashboard by anyone.

4.1 Example of use case for the python
library

loading of a pre-processed dataset
dataset = Dataset()
dataset.load("path/to/dataset")

#model instantiation
lda = LDA(num_topics=25)

#definition of the metric
td = TopicDiversity()

#definition of the search space
search_space = {

"eta": Real(low=0.01, high=5.0),
"alpha": Real(low=0.01, high=5.0)

}

#define and launch optimization
optimizer=Optimizer()
opt_result = optimizer.optimize(model,

dataset, td, search_space)

The above lines of code will execute an optimiza-
tion experiment that will provide an optimal con-
figuration of the hyperparameters α and β for LDA
with 25 topics by maximizing the diversity of the
topics.

4.2 Web-based dashboard

The dashboard includes a set of simple but useful
operations to conduct an experimental campaign
on different topic models. Here we briefly explain
the four main functionalities of the dashboard.

Experiment creation. First, a user can de-
fine an optimization experiment by selecting the
dataset, the topic model, the corresponding hyper-
parameter to optimize, the evaluation metric to be
considered by the BO (possibly other extra metrics
to evaluate), and the settings of the optimization
process.

Management of the experiments’ queue. The
user can monitor the queue of the experiments and
see the corresponding progress. The user can also
pause, restart, or delete an experiment that has been
launched before. Additionally, the user can easily
change the order of the queue of the experiments,

by allowing a given run to be executed before oth-
ers.

Figure 2: Example of the best-seen evolution for an
optimization experiment.

Figure 3: Example of box plot of an optimization ex-
periment.

Comparison of the Topic Models. The user can
select the models to be analyzed and compared. At
the first stage, one can observe the progress of the
BO iterations, observing a plot that contains at each
iteration the best-seen evaluation, i.e. the median at
each iteration of the metric that has been optimized
(see Figure 2). Alternatively, a user can visualize a

267

box plot at each iteration (see Figure 3) to under-
stand if a given hyper-parameter configuration is
noisy (high variance) or not.

Analysis of a single experiment. A user can fur-
ther inspect the results of a specific topic model
on a given dataset with respect to the considered
metrics, by analyzing a single experiment.

Here, a user can visualize all the information
and statistics related to the experiment, including
the best hyper-parameter configuration and the best
value of the optimized metric. They can also have
an outline of the statistics of the other extra metrics
that they had chosen to evaluate.

Figure 4: Example of word cloud of a topic.

We provide three different plots for inspecting
the output of a single run of a topic model. Fig-
ure 4 shows the word cloud obtained from the most
relevant words of a given topic, scaled by their
probability. Focusing on the distributions inferred
by a topic model, Figure 5 shows the topic distri-
bution of a document, and Figure 6 represents an
example of the weight of a selected word of the
vocabulary for each topic.

Figure 5: Example of distribution of the topics in a se-
lected document.

Figure 6: Example of the weight of the word “network”
for each document.

5 Conclusions

In this paper, we presented the framework OCTIS
for training, analyzing, and comparing Topic Mod-
els. The proposed framework is composed of a
python library and a web dashboard and integrates
several state-of-the-art topic models (both tradi-
tional and neural). These models can be trained by
searching for their optimal hyperparameter config-
uration, for a given metric and dataset, exploiting a
BO strategy. OCTIS allows researchers to train ex-
isting models, integrate new training and inference
algorithms, and fairly compare the topic models of
interest. On the other hand, practitioners could use
OCTIS to boost the performance of Topic Models
for their preferred downstream task or a wide range
of practical applications, such as data exploratory
analysis (Boyd-Graber et al., 2017).

Regarding future work, OCTIS could integrate a
multi-objective optimization strategy to optimize
multiple metrics in the same BO procedure (Paria
et al., 2020). For example, this could allow a user to
find an optimal hyper-parameter configuration for
both topic coherence and document classification.

References
Moez Ali. 2020. PyCaret: An open source, low-code

machine learning library in Python. PyCaret ver-
sion 2.3.

Loulwah AlSumait, Daniel Barbará, James Gentle, and
Carlotta Domeniconi. 2009. Topic significance rank-
ing of LDA generative models. In Machine Learn-
ing and Knowledge Discovery in Databases, Euro-
pean Conference, ECML PKDD 2009, volume 5781
of Lecture Notes in Computer Science, pages 67–82.
Springer.

268

Francesco Archetti and Antonio Candelieri. 2019.
Bayesian Optimization and Data Science. Springer
International Publishing.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305.

Federico Bianchi, Silvia Terragni, and Dirk Hovy.
2020. Pre-training is a hot topic: Contextual-
ized document embeddings improve topic coher-
ence. arXiv preprint arXiv:2004.03974.

Federico Bianchi, Silvia Terragni, Dirk Hovy, Debora
Nozza, and Elisabetta Fersini. 2021. Cross-lingual
Contextualized Topic Models with Zero-shot Learn-
ing. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

David M. Blei. 2012. Probabilistic topic models. Com-
mun. ACM, 55(4):77–84.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Jordan L. Boyd-Graber, Yuening Hu, and David M.
Mimno. 2017. Applications of topic models. Found.
Trends Inf. Retr., 11(2-3):143–296.

Antonio Candelieri and Francesco Archetti. 2019.
Global optimization in machine learning: the design
of a predictive analytics application. Soft Comput.,
23(9):2969–2977.

Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei.
2019. Topic modeling in embedding spaces. CoRR,
abs/1907.04907.

BG Galuzzi, I Giordani, A Candelieri, R Perego, and
F Archetti. 2020. Hyperparameter optimization for
recommender systems through bayesian optimiza-
tion. Computational Management Science, pages 1–
21.

Derek Greene and Pádraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Proceedings of the
23rd International Conference on Machine learning
(ICML’06), pages 377–384. ACM Press.

Tim Head, Gilles Louppe MechCoder, Iaroslav
Shcherbatyi, et al. 2018. scikit-optimize/scikit-
optimize: v0. 5.2.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In SIGIR ’99: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 50–57. ACM.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2014, pages 530–539.

Daniel D. Lee and H. Sebastian Seung. 2000. Algo-
rithms for non-negative matrix factorization. In Ad-
vances in Neural Information Processing Systems
13, Papers from Neural Information Processing Sys-
tems (NIPS) 2000, pages 556–562. MIT Press.

Kar Wai Lim and Wray L. Buntine. 2014. Bibli-
ographic analysis with the citation network topic
model. In Proceedings of the Sixth Asian Confer-
ence on Machine Learning, ACML 2014.

Pasquale Lisena, Ismail Harrando, Oussama Kandakji,
and Raphael Troncy. 2020. ToModAPI: A Topic
Modeling API to Train, Use and Compare Topic
Models. In 2nd International Workshop for Natural
Language Processing Open Source Software (NLP-
OSS).

Andrew McCallum, Andrés Corrada-Emmanuel, and
Xuerui Wang. 2005. Topic and role discovery in
social networks. In IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artifi-
cial Intelligence, pages 786–791.

Andrew Kachites McCallum. 2002. Mallet: A ma-
chine learning for language toolkit. http://mallet. cs.
umass. edu.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás
Póczos. 2020. A flexible framework for multi-
objective bayesian optimization using random
scalarizations. In Uncertainty in Artificial Intelli-
gence, pages 766–776. PMLR.

Xuan Hieu Phan, Minh Le Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In Proceedings of the 17th
International Conference on World Wide Web, WWW
2008, pages 91–100. ACM.

Jipeng Qiang, Yun Li, Yunhao Yuan, Wei Liu, and Xin-
dong Wu. 2018. Sttm: A tool for short text topic
modeling. arXiv preprint arXiv:1808.02215.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Min-
ing, WSDM 2015, Shanghai, China, February 2-6,
2015, pages 399–408. ACM.

Alexandra Schofield, Måns Magnusson, and David
Mimno. 2017. Pulling out the stops: Rethinking
stopword removal for topic models. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 432–436.

Alexandra Schofield and David Mimno. 2016. Com-
paring apples to apple: The effects of stemmers on
topic models. Transactions of the Association for
Computational Linguistics, 4:287–300.

269

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. 2015. Taking the hu-
man out of the loop: A review of bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148–175.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Infor-
mation Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems
2012, pages 2960–2968.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. In
5th International Conference on Learning Represen-
tations, ICLR 2017.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal,
and David M. Blei. 2004. Sharing clusters among
related groups: Hierarchical dirichlet processes. In
Advances in Neural Information Processing Systems,
17, pages 1385–1392.

Silvia Terragni, Elisabetta Fersini, and Enza Messina.
2020a. Constrained relational topic models. Infor-
mation Sciences, 512:581 – 594.

Silvia Terragni, Debora Nozza, Elisabetta Fersini, and
Messina Enza. 2020b. Which matters most? com-
paring the impact of concept and document relation-
ships in topic models. In Proceedings of the First
Workshop on Insights from Negative Results in NLP,
pages 32–40.

Ike Vayansky and Sathish A. P. Kumar. 2020. A re-
view of topic modeling methods. Information Sys-
tems, 94:101582.

Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov,
and David Mimno. 2009. Evaluation methods for
topic models. In Proceedings of the 26th annual in-
ternational conference on machine learning, pages
1105–1112.

270

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 271–277
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

ELITR Multilingual Live Subtitling: Demo and Strategy

Ondřej Bojar and Dominik Macháček and Sangeet Sagar and Otakar Smrž and
Jonáš Kratochvı́l and Peter Polák and Ebrahim Ansari and Mohammad Mahmoudi and Rishu Kumar

Charles University; <surname>@ufal.mff.cuni.cz except jkratochvil@ufal.mff.cuni.cz

Dario Franceschini and Chiara Canton and Ivan Simonini
PerVoice

Thai-Son Nguyen and Felix Schneider and Sebastian Stüker and Alex Waibel
Karlsruhe Institute of Technology; <firstname>.<lastname>@kit.edu

Barry Haddow and Rico Sennrich and Philip Williams
University of Edinburgh

Abstract

This paper presents an automatic speech trans-
lation system aimed at live subtitling of con-
ference presentations. We describe the over-
all architecture and key processing compo-
nents. More importantly, we explain our strat-
egy for building a complex system for end-
users from numerous individual components,
each of which has been tested only in labora-
tory conditions.

The system is a working prototype that is rou-
tinely tested in recognizing English, Czech,
and German speech and presenting it trans-
lated simultaneously into 42 target languages.

1 Introduction

With the tremendous gains observed recently in
automatic speech recognition (ASR) and machine
translation (MT) quality, including methods of
joint learning of both of the tasks, the goal of a
practically usable simultaneous spoken language
translation (SLT1) system is getting closer.

In this paper, we introduce the SLT system de-
veloped in the EU project ELITR (European Live
Translator2) (Bojar et al., 2020) which aims at a
distinct setting: real-time speech translation into
many target languages.

2 Motivation

In the current globalized world, meetings with par-
ticipants from a very wide spectrum of nations are

1We use the term SLT to refer primarily to simultaneous
systems, although off-line spoken language systems can also
fall under the same acronym.

2http://elitr.eu/

common. Many multinational organizations, pub-
lic or private, regularly run congresses and confer-
ences where attendees do not have any language in
common. Interpretation is a must at such meetings
and the cost of interpretation services consumes a
considerable portion of the budget. The number of
provided languages is then kept as low as possible,
even in cases when some of the attendees are not
sufficiently fluent in any of them.

We primarily focus on the setting of such multi-
national congresses where one source speech
needs to be translated into many target languages.
While we are aware of the quality limitations of
speech recognition and machine translation, we
strongly believe that the technology has reached
the level where it is becoming practically usable
and related systems confirm that belief, see Sec-
tion 3 below.

Even if the automatic translation of recognized
speech is not perfect, it can serve as a valuable sup-
portive material. For instance, a Czech attendee
may have a fair knowledge of English and French,
but may easily get lost due to pronunciation dif-
ficulties to follow, gaps in his or her grammar
knowledge, general vocabulary or specific termi-
nology. Following live subtitles in mother tongue
while listening to the foreign language could be of
great help. Some level of errors in the subtitles is
acceptable if the subtitles are sufficiently simulta-
neous. Our main goal is thus gist interpretation,
i.e. live supportive translation of speech into text.

Within the ELITR project, we focus on ASR
for English, Czech, German, French, Spanish and
later Russian and Italian, and targetting the set of
43 languages spoken in member countries of EU-
ROSAI, the association of supreme audit institu-

271

tions of the EU and nearby countries. Experimen-
tally, we include also other languages based on
available systems among the research partners in
our project, e.g. Hindi.

The scientific motivation for our efforts is to
find an approach that allows to assemble labora-
tory system components to a practically usable
product and to document the problems on this
journey.

3 Related Systems

Live spoken language translation has been contin-
uously studied for decades, see e.g. Osterholtz
et al. (1992); Fügen et al. (2008); Bangalore et al.
(2012). Recent systems differ in whether they
provide revisions to their previous output (Müller
et al., 2016; Niehues et al., 2016; Dessloch et al.,
2018; Niehues et al., 2018; Arivazhagan et al.,
2020), or whether they only append output tokens
(Grissom II et al., 2014; Gu et al., 2017; Arivazha-
gan et al., 2019; Press and Smith, 2018; Xiong
et al., 2019; Ma et al., 2019; Zheng et al., 2019).

Müller et al. (2016) were probably the first to al-
low output revision when they find a better transla-
tion. Zenkel et al. (2018) released a simpler setup
as an open-source toolkit consisting of a neural
speech recognition system, a sentence segmen-
tation system, and an attention-based translation
system providing also some pre-trained models for
their tasks. (Zenkel et al., 2018) evaluated only the
quality of the output translations using BLEU and
WER metrics.

Zheng et al. (2019) proposed a new approach
with a delay-based heuristic. The model decides to
read more input (or wait for it) or write the trans-
lation to the output. Ma et al. (2019) introduced a
simple wait-k heuristic: output is emitted after k
words of input. Both works are limited to simulta-
neous translation, i.e. they start from text and only
simulate the speech-like input by processing input
word by word.

Arivazhagan et al. (2020) combine industry-
grade ASR and MT and allow output revisions
by re-translating the source from scratch as it
grows to decrease the latency, providing accept-
able translation quality at the price of a higher
number of text revisions.

4 ELITR Flexible Architecture

We always strive for the best performance for each
considered language pair. With the perpetual com-

petition in ASR and MT research, it is not surpris-
ing that there is no universally best solution. The
interplay of available data, underlying method, the
actual implementation as well as its adaptability
to the domain of interest requires different choices
for different languages.

Furthermore, the top-performing components
are often available only at universities or research
labs, as more or less stable research prototypes.
Releasing any such system, let alone their combi-
nation so that they could be easily deployed by lay
users is surely possible, but it would require con-
siderable additional implementation resources.

The ELITR architecture (Franceschini et al.,
2020) tackles this integration problem by means
of a distributed connection-based client-server ap-
plication. Research labs provide their components
by connecting to a central point (the “mediator”)
which in turn uses these “workers” to satisfy users’
stream processing requests. A technical benefit is
that worker connection is issued from the secured
networks of the labs so it usually does not run into
firewall issues.

5 System Components

All our workers, except recent online sequence-
to-sequence ASRs, have been described in our
IWSLT 2020 shared task submission (Macháček
et al., 2020). We briefly summarize them in fol-
lowing sections.

5.1 ASR Systems in ELITR

All our ASR systems provide online processing
with low latency and hypotheses updates, as in
KIT Lecture Translator (Müller et al., 2016). We
use the hybrid ASR models based on Janus from
KIT Lecture Translator, for German and English,
as well as recent neural sequence-to-sequence
ASR models trained on the same data (Nguyen
et al., 2020). For Czech ASR, we use a Kaldi hy-
brid model trained on a Corpus of Czech Parlia-
ment Plenary Hearings (Kratochvı́l et al., 2019).
Czech sequence-to-sequence ASR is a work in
progress.

5.2 MT Systems in ELITR

We use bilingual NMT models for some high re-
source and well-studied language pairs e.g. for
English-Czech (Popel et al., 2019; Wetesko et al.,
2019). For other targets, we use multi-target mod-
els, e.g. an English-centric universal model for

272

Index Name Worker Source Lang Target Lang sacreBLEU WER Words Lines
auto-iwslt2020-antrecorp(ASR) en-EU-lecture KIT-s2s EN – – 0.46 6634 571
auto-iwslt2020-antrecorp(MT) rb-EU fromEN-en to 41 all EN CS 13.66 – 5345 571
auto-iwslt2020-antrecorp(MT) rb-EU fromEN-en to 41 all EN DE 17.95 – 6119 571
auto-asr-english-auditing(ASR) en-EU-lecture KIT-s2s EN – – 0.37 24530 2220
auto-asr-english-auditing(MT) rb-EU fromEN-en to 41 all EN CS 16.45 – 43146 2170
auto-asr-english-auditing(MT) rb-EU fromEN-en to 41 all EN DE 19.60 – 18616 2220
auto-iwslt2020-khanacademy(ASR) en-EU-lecture KIT-s2s EN – – 0.55 4470 538

Table 1: An overview of WER, sacreBLEU scores on the ELITR test set domain and the size of gold transcript for
reference.

42 languages (Johnson et al., 2017). The models
are mostly Transformers (Vaswani et al., 2017) but
we improve their performance in massively multi-
lingual setting by extra depth (Zhang et al., 2020).

5.3 Interplay of ASR and MT

Connecting ASR and MT systems is not straight-
forward because MT systems assume input in the
form of complete sentences. We follow the strat-
egy of Niehues et al. (2016), first inserting punctu-
ation into the stream of tokens coming from ASR
(Tilk and Alumäe, 2016), breaking it up at full
stops and sending individual sentences to MT, ei-
ther as unfinished sentence prefixes, or complete
sentences. We are using re-translation, as ASR or
punctuation updates are received.

Currently, the main problem is that punctuation
prediction does not have access to the sound any
more, so intonation cannot be considered. Another
problem is the information structure of translated
sentences, where MT systems tend to “normalize”
word order. The loss of topicalization reduces un-
derstandability of the stream of uttered sentences.

For the future, we consider three approaches:
(1) training MT on sentence chunks, (2) includ-
ing sound input in punctuation prediction, or (3)
end-to-end neural SLT.

6 Evaluation

We evaluate our systems in multiple ways:
• The individual components are evaluated in iso-

lation during deployment, and on a compara-
ble test set. compared with baseline by the MT
quality.
• English to Czech and German simultaneous

translation of non-native speech was evaluated
on a shared task at IWSLT 2020 (Ansari et al.,
2020). We validated our candidate systems,
and submitted the best one as Macháček et al.
(2020). The results showed that the speech
recognition of the non-native speech in the test

set was problematic, and resulted to inadequate
translations. However, the systems were not
yet adapted to non-natives or for the domain.
It is a challenge for future work. It can be
achieved by speaker adaptation of the ASR from
a small sample of the speaker, by multi-lingual
ASR, and by collecting non-native speech train-
ing data, as AMI corpus.
• We regurarly test our system end-to-end on lin-

guistic seminars in Czech or English. The par-
ticipants are Czech or English speakers and do
not need any assistance with the language, so
we can not receive relevant feedback about ad-
equacy and fluency. However, we test our sys-
tem in end-to-end fashion and face engineering
problems and technical issues on all layers from
sound acquisition through network connections,
worker configuration to subtitle presentation.
• We are currently running a user study with non-

German speakers watching German videos with
our online subtitles, see Section 7.1. We aim
to measure the comprehension loss caused by
different subtitling options, latency or flicker.

For comparability across our project partners
but also across external research labs, we pub-
licly released a tool for evaluation, SLTev3 (Ansari
et al., 2021) and a test set.4 The results of our cur-
rently best candidates on the testset are in Table 1.

It is important to realize that the evaluation for
quality, latency and stability on a speech-to-text
test set in lab conditions is necessary, but not suf-
ficient for assessing the practical usability of the
system. Practical usability has to include the pre-
sentation layer (Section 7) and tests in live ses-
sions or rigorously controlled conditions.

3https://github.com/ELITR/SLTev
4https://github.com/ELITR/

elitr-testset

273

Figure 1: A screenshot of subtitle view from a presentation given in Czech (last row), automatically transcribed
and translated to English (first row) and then from English into several other languages. The various processing
and network delays lead to slightly different timing of each of the languages.

7 Presentation Techniques

The last step in an SLT system is the delivery of
the translated content to the user. Our goal stops
at the textual representation, i.e. we do not include
speech synthesis and delivery of the sound, which
would bring yet another set of design decisions
and open problems, see e.g. Zheng et al. (2020).

We experiment with two different views for our
text output, both implemented as web applica-
tions. The “subtitle view” is optimized toward
minimal use of screen space. Only two lines of
text are available which leaves room either for e.g.
a streamed video of the session or the slides, or for
many languages displayed at once, if the screen is
intended for a multi-lingual audience. The “para-
graph view” provides more textual context to the
user.

7.1 Subtitle View
The subtitle view offers a simple interface with a
HLS stream of the video or slides and one or more
subtitles streams.

Section 7.1 presents one screenshot of this view,
selected from a screencast. Instead of presenting
the video, we use the screen space to show seven
target languages, in addition to the live transcript
of the source Czech.

We are probably the first to combine re-
translation strategy with the presentation in such
limited space. To limit text flicker as re-
translations are arriving, we had to introduce a
critical component after the MT output called Sub-

titler (Macháček and Bojar, 2020). The subtitler
allows us to choose the level of updates, trading si-
multaneity for stability. A user study on the impact
of this choice on comprehensibility is currently
running. We believe that the ideal choice will de-
pend also on the users’ knowledge of the source
and target languages and their reading speed.

Even if the flicker is avoided, there remains the
main drawback of the subtitle view, the limited
context. Both ASR and MT suffer from natu-
ral errors. Following the output of ASR (subti-
tles of the speakers’ language) is easier, the erro-
neous hypotheses still somehow resemble the orig-
inal sound, so the user can recover from recogni-
tion errors.

The output of MT causes a substantially big-
ger challenge for the user because the sentences
are mostly rendered as fully fluent but containing
unexpected words or information structure. With
only two lines of text available, the user does not
see sufficient number of words to let the brain
“make up” or reconstruct the original meaning
from pieces. The short-term memory of recently
processed text does not seem to be sufficient for
this type recovery, while seeing the words in larger
context gives the user a better chance.

7.2 Paragraph View

We created the paragraph view primarily to im-
prove the chances of recovery from translation er-
rors. The added benefit is a clearer indication of
which sentences are finished and which may still

274

Figure 2: Sample screenshot from the paragraph view of simultaneous translation output on a live discussion of
THEaiTRE project. The talk was given in Czech, interpreted into English by a human interpreter, automatically
recognized (the leftmost EN column) and translated into 41 languages. Sentence indices correspond to each other
across languages in all columns. Sentences in black are “stable”, no update will arrive. Sentences in dark gray and
with yellow index number are tentative, the segmentation (and thus translation) still may change. The last sentence
(light gray) is still being uttered and is thus highly unstable.

change. Without any settings, users can simply de-
cide if they want to read the less stable gray output,
or rather wait for the stable segments.

The view is illustrated in Figure 2, with Czech
as source and two more languages shown. More
than three languages can be presented as well but
they generally do not fit. The scrolling of the lan-
guages is not fully parallel by our design deci-
sion to prefer contiguous columns within each lan-
guage over tabular synchronous presentation. One
important aspect is however synchronized, and
that is the stable “level” for finalized sentences:
the completed text (shown in black) is aligned at
the bottom across languages while the unstable hy-
potheses flicker below the level, varying in their
length as needed.

A drawback of this interface is that all errors
such as laughable or obscene words in MT output
remain on screen for a long time, needlessly dis-
tracting the user.

8 Conclusion
We presented a complex system for live subtitling
of conference speech into many target languages,
composed of research prototype components but
still serving in close-to-production setting. New
and updated models and other components can be
easily plugged in and tested in practice.

As of now, we are at a good starting point for
gradual model improvement and field tests. One of

them is very likely to be the META-FORUM 2021
but we are also searching for suitable events with
more than one official communication language.

Demonstration videos from past sessions can
be found in the blogposts at https://elitr.eu/
blog/.

Acknowledgments

This work has received funding from
the European Union’s Horizon 2020 Re-

search and Innovation Programme under Grant
Agreement No 825460 (ELITR). The Charles
University team is grateful to Karel Veselý for his
great help with the Czech Kaldi model.

References
Ebrahim Ansari, Amittai Axelroad, Nguyen Bach, On-

drej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, and Changhan Wang. 2020. Findings of the
IWSLT 2020 Evaluation Campaign. In Proceedings
of the 17th International Conference on Spoken Lan-
guage Translation (IWSLT 2020), Seattle, USA.

Ebrahim Ansari, Ondřej Bojar, Barry Haddow, and
Mohammad Mahmoudi. 2021. SLTev: Compre-
hensive evaluation of spoken language translation.
In Proceedings of the System Demonstrations of

275

the 16th Conference of the European Chapter of
the Association for Computational Linguistics, Kyiv,
Ukraine. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, and George Foster. 2020. Re-translation
versus streaming for simultaneous translation. In
Proceedings of the 17th International Conference
on Spoken Language Translation, pages 220–227,
Online. Association for Computational Linguistics.

Srinivas Bangalore, Vivek Kumar Rangarajan Srid-
har, Prakash Kolan, Ladan Golipour, and Aura
Jimenez. 2012. Real-time incremental speech-to-
speech translation of dialogs. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 437–
445, Montréal, Canada. Association for Computa-
tional Linguistics.

Ondřej Bojar, Dominik Macháček, Sangeet Sagar,
Otakar Smrž, Jonáš Kratochvı́l, Ebrahim Ansari,
Dario Franceschini, Chiara Canton, Ivan Simonini,
Thai-Son Nguyen, Felix Schneider, Sebastian
Stücker, Alex Waibel, Barry Haddow, Rico Sen-
nrich, and Philip Williams. 2020. ELITR: European
live translator. In Proceedings of the 22nd Annual
Conference of the European Association for Ma-
chine Translation, pages 463–464, Lisboa, Portugal.
European Association for Machine Translation.

Florian Dessloch, Thanh-Le Ha, Markus Müller, Jan
Niehues, Thai-Son Nguyen, Ngoc-Quan Pham, Eliz-
abeth Salesky, Matthias Sperber, Sebastian Stüker,
Thomas Zenkel, and Alexander Waibel. 2018. KIT
lecture translator: Multilingual speech translation
with one-shot learning. In Proceedings of the
27th International Conference on Computational
Linguistics: System Demonstrations, pages 89–93,
Santa Fe, New Mexico. Association for Computa-
tional Linguistics.

Dario Franceschini, Chiara Canton, Ivan Simonini,
Armin Schweinfurth, Adelheid Glott, Sebastian
Stüker, Thai-Son Nguyen, Felix Schneider, Thanh-
Le Ha, Alex Waibel, Barry Haddow, Philip
Williams, Rico Sennrich, Ondřej Bojar, Sangeet
Sagar, Dominik Macháček, and Otakar Smrž. 2020.
Removing European language barriers with innova-
tive machine translation technology. In Proceed-
ings of the 1st International Workshop on Lan-
guage Technology Platforms, pages 44–49, Mar-
seille, France. European Language Resources Asso-
ciation.

Christian Fügen, Alex Waibel, and Muntsin Kolss.
2008. Simultaneous translation of lectures and
speeches. Springer Netherlands, Machine Transla-
tion, MTSN 2008, Springer, Netherland, 21(4).

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until
the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1342–
1352, Doha, Qatar. Association for Computational
Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Jonáš Kratochvı́l, Peter Polák, and Ondřej Bojar. 2019.
Large corpus of czech parliament plenary hearings.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Dominik Macháček and Onřej Bojar. 2020. Presenting
simultaenous translation in limited space. In Pro-
ceedings of the 20th Conference ITAT 2020: Work-
shop on Automata, Formal and Natural Languages
(WAFNL 2020). To be published.

Dominik Macháček, Jonáš Kratochvı́l, Sangeet Sagar,
Matúš Žilinec, Ondřej Bojar, Thai-Son Nguyen, Fe-
lix Schneider, Philip Williams, and Yuekun Yao.
2020. ELITR non-native speech translation at
IWSLT 2020. In Proceedings of the 17th Interna-
tional Conference on Spoken Language Translation,
pages 200–208, Online. Association for Computa-
tional Linguistics.

Markus Müller, Thai Son Nguyen, Jan Niehues, Eunah
Cho, Bastian Krüger, Thanh-Le Ha, Kevin Kilgour,
Matthias Sperber, Mohammed Mediani, Sebastian

276

Stüker, and Alex Waibel. 2016. Lecture translator -
speech translation framework for simultaneous lec-
ture translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Demonstra-
tions, pages 82–86, San Diego, California. Associa-
tion for Computational Linguistics.

Thai-Son Nguyen, Ngoc-Quan Pham, Sebastian
Stueker, and Alex Waibel. 2020. High performance
sequence-to-sequence model for streaming speech
recognition. arXiv preprint arXiv:2003.10022.

Jan Niehues, Thai Son Nguyen, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, Markus Müller, Matthias Sper-
ber, Sebastian Stüker, and Alex Waibel. 2016. Dy-
namic transcription for low-latency speech transla-
tion. In 17th Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH 2016, volume 08-12-September-2016 of
Proceedings of the Annual Conference of the Inter-
national Speech Communication Association. Ed. :
N. Morgan, pages 2513–2517. International Speech
and Communication Association, Baixas.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Interspeech
2018, Hyderabad, India.

L. Osterholtz, C. Augustine, A. McNair, I. Rogina,
H. Saito, T. Sloboda, J. Tebelskis, and A. Waibel.
1992. Testing generality in janus: a multi-
lingual speech translation system. In [Proceedings]
ICASSP-92: 1992 IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol-
ume 1, pages 209–212 vol.1.

Martin Popel, Dominik Macháček, Michal
Auersperger, Ondřej Bojar, and Pavel Pecina.
2019. English-czech systems in wmt19: Document-
level transformer. In Proceedings of the Fourth
Conference on Machine Translation (Volume 2:
Shared Task Papers, Day 1), pages 342–348,
Florence, Italy. Association for Computational
Linguistics.

Ofir Press and Noah A. Smith. 2018. You may not need
attention.

Ottokar Tilk and Tanel Alumäe. 2016. Bidirectional
recurrent neural network with attention mechanism
for punctuation restoration. In Interspeech 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010. Curran As-
sociates, Inc.

Joanna Wetesko, Marcin Chochowski, Pawel Przy-
bysz, Philip Williams, Roman Grundkiewicz, Rico

Sennrich, Barry Haddow, Antonio Valerio Miceli
Barone, and Alexandra Birch. 2019. Samsung and
University of Edinburgh’s System for the IWSLT
2019. In IWSLT.

Hao Xiong, Ruiqing Zhang, Chuanqiang Zhang,
Zhongjun Hea, Hua Wu, and Haifeng Wang. 2019.
Dutongchuan: Context-aware translation model for
simultaneous interpreting.

Thomas Zenkel, Matthias Sperber, Jan Niehues,
Markus Müller, Ngoc-Quan Pham, Sebastian Stüker,
and Alex Waibel. 2018. Open source toolkit for
speech to text translation. The Prague Bulletin of
Mathematical Linguistics, NUMBER 11, p. 125-135.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1628–
1639, Online. Association for Computational Lin-
guistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1349–1354,
Hong Kong, China. Association for Computational
Linguistics.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu,
Jiahong Yuan, Kenneth Church, and Liang Huang.
2020. Fluent and low-latency simultaneous speech-
to-speech translation with self-adaptive training. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3928–3937, Online.
Association for Computational Linguistics.

277

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 278–287
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Breaking Writer’s Block:
Low-cost Fine-tuning of Natural Language Generation Models

Alexandre Duval
CentraleSupelec

Thomas Lamson
CentraleSupelec

{alexandre.duval, thomas.lamson, gael.de-leseleuc}@student-cs.fr

Gaël de Léséleuc de Kérouara
CentraleSupelec

Matthias Gallé
Naver Labs Europe

matthias.galle@naverlabs.com

Abstract

It is standard procedure these days to solve In-
formation Extraction task by fine-tuning large
pre-trained language models. This is not the
case for generation task, which relies on a vari-
ety of techniques for controlled language gen-
eration.

In this paper, we describe a system that fine-
tunes a natural language generation model for
the problem of solving Writer’s Block. The
fine-tuning changes the conditioning to also in-
clude the right context in addition to the left
context, as well as an optional list of entities,
the size, the genre and a summary of the para-
graph that the human author wishes to gener-
ate.

Our proposed fine-tuning obtains excellent re-
sults, even with a small number of epochs and
a total cost of USD 150. The system can be
accessed as a web-service,1 and all the code
is released.2 A video showcasing the interface
and the model is also available.3

1 Introduction

Thanks to the powerful capacity of large neural net-
works based on the attention mechanism (Vaswani
et al., 2017), the current practice in NLP is to start
from pre-trained models, which were trained to
predict words in context (Devlin et al., 2018; Dai
et al., 2019) or to perform various other tasks (Raf-
fel et al., 2019). These pre-trained models are then
fine-tuned to solve the task at hand: all top entries
of the SuperGLUE benchmark4 for instance follow
this trend.

1http://textgen.thomas-lamson.com/
2https://github.com/ThomasLamsonFr/

AITextGenerator
3https://www.youtube.com/watch?v=

zwezKGrahK0
4https://super.gluebenchmark.com/

leaderboard

Concerning generation however, the standard
methods are very different. Approaches to
controlled generation are mostly focused on
nudging the model to generate text about a certain
topic (Keskar et al., 2019; Dathathri et al., 2019),
or on using distributional models (Khalifa et al.,
2021). Fine-tuning is often dismissed as too
expensive as it would require to modify the
ensemble of the number of parameters, often
measured in the billions. This is considered
impractical, because either too slow, expensive or
ecologically not responsible (Strubell et al., 2019).
Brown et al. (2020) state clearly that “GPT-3 could
also in principle be evaluated in the traditional
fine-tuning setting, but we leave this to future
work.”

In this paper, we show that it is possible to fine-
tune a language model not only to generate text
of a certain type, but also to condition it easily
on more than a one-sided context. In particular,
we propose to fine-tune GPT-2 to generate para-
graphs based on surrounding (previous and next)
sections, a summary of the target content, the en-
tities that should appear, the genre and the desired
length. The resulting model is then used for a web-
based system demonstration5 that allows authors
to break Writer’s Block, meaning the “the condi-
tion of being unable to create a piece of written
work”.6 Our experiments show that it is possible to
obtain excellent results (as measured by a variety
of metrics benchmarking the control capacity) with
a very limited budget. The complete training cost
of our model, performed on a commercial cloud
provider, is around USD 150. Our demo introduces
the following contribution:

5http://textgen.thomas-lamson.com/
6https://dictionary.cambridge.org/

dictionary/english/writer-s-block

278

Figure 1: Data Preprocessing Pipeline, shows the extracted meta-data that can be used to control the generated text

• An open-source writing tool that can help cre-
ative authors break Writer’s Block, by propos-
ing novel paragraphs.

• A fine-tuned GPT-2 model that respects the
context of surrounding paragraphs and allows
to control entities, desired output length, the
genre as well as the content summary.

• Experiments showing that even with a reduced
budget, the fine-tuned model diverges from
the starting model while generating coherent
text.

2 Related Work

Recent progress in transfer-learning has shown that
large pre-trained models are powerful enough to
be quickly fine-tuned to solve natural language
understanding tasks.

Diverging from this, current approaches to adapt
generation models are generally based on picking
carefully the prompt on which the text is to be gen-
erated. This was popularized by Brown et al. (2020)
and has since then seen steady growth by different
proposals aiming to find good prompts (Schick and
Schütze, 2020a,b; Gao et al., 2020; Li and Liang,
2021).

A related approach is to adapt the model so that
it presents desired biases. This can be done by train-
ing with control tokens (Arivazhagan et al., 2019;
Keskar et al., 2019) or by adapting an existing
model with additional layers (Wang et al., 2020) or
sampling techniques (Dathathri et al., 2019; Khal-
ifa et al., 2021). Those methods allow generating
style variations of the same form. However, they
are less well suited to changes in the conditioned
text, such as providing not only a prefix but also
a continuation of the text to be generated. We are

particularly interested in conditioning on categor-
ical variables, like GROVER (Zellers et al., 2019),
but without retraining. Our experiments show that
fine-tuning is surprisingly effective for this.

Several research directions have explored the use
of languages models for creative writing and inter-
active story-telling (Peng et al., 2018; Luo et al.,
2019). This also includes online tools such as plot
generator7 or talk to transformers,8 where the con-
trol that can be exerted over the text remains quite
rudimentary. Of special inspiration for this work
was AI Dungeon.9

3 Method

In our approach, the model will be trained to re-
generate each book’s paragraph (called P2) using
the previous and following paragraphs (P1 and P3)
as well as information concerning P2: its size, the
genre of the book it belongs to, the entities it should
include and a summary of its content. Instead of
training a model from scratch, we leverage a pre-
trained GPT-2 117M model and fine-tune it on 313
pre-processed novels. We teach it to predict the
next word using the above contextual information
as well as already generated words.

Our approach is separated into three main steps:
(i) data preparation (ii) transformation of the data
and (iii) fine-tuning:

3.1 Data
We emphasise key aspects of the data genera-
tion phase, an often overlooked aspect in research
projects that however proved essential in our demo.

Novels data Our paper focuses on text genera-
tion for novels and thus requires adequate data. We

7https://www.plot-generator.org.uk/story/
8https://talktotransformer.com/
9https://aidungeon.io/

279

select books from the Gutenberg Project,10 which
we clean and filter based on the associated meta-
data. Only English books corresponding to nov-
els are kept, and the genre (used for fine-tuning
later) is defined using a manual mapping from the
fine-grained tags provided by Gutenberg. Due to
limited computational resources, we only consider
500 books and ultimately retain 313 after filter-
ing. We then split the text of each book into para-
graphs of different lengths, with a minimum and
maximum bound, being careful not to cut a sen-
tence in the middle, nor to separate core parts like
chapters or even to split big paragraphs into un-
even pieces. This step is essential for the later
reconstruction within our training phase. The size
of each paragraph is used to categorise them into
Small (400-800 characters), Medium (800-1400) or
Large (1400-1700).

Entity extraction Once each book is pre-
processed, we detect entities for each paragraph
using a pre-trained BERT NER Large model.11 En-
tities are classified into four categories: persons,
locations, organisations and miscellaneous. This
allows for authors later to control the generation by
specifying the entities they wish to incorporate.

Summary Similarly, in order for authors to be
able to guide the generation by giving information
on the desired content, we use different summariza-
tion models taken from distinct families. This tends
to make our model more robust to the possible ways
authors could provide this type of information. In
this sense, we use four different models, covering:

• One extractive model (in case authors provide
key sentences): BertSum (Liu, 2019).

• Two abstractive models (to allow rich re-
phrases): BART (Lewis et al., 2019) and
T5 (Raffel et al., 2019).

• One graph-based non-neural model that ex-
tracts keyword phrases: TextRank (Mihalcea
and Tarau, 2004, Kw)

The full data processing pipeline is shown in Fig. 1.

3.2 Preparation step
The resulting documents are split into paragraphs
enriched with the related metadata (author, title,
language, genre, theme) as well as the four

10https://www.gutenberg.org/
11https://github.com/kamalkraj/BERT-NER

summaries (Bart, T5, BertSum, Kw) and a list
of the entities appearing in the text. All entities
and one summary chosen at random are fed to the
GPT-2 model, alongside metadata information
(size and genre) and pure text (P1, P2, P3) to help
it control and contextualise the generation.

The training corpus therefore consists of pairs
(x, y) (predict y from prefix x), where y is the
middle paragraph P2 and x is

[P3] P3 [Sum] Sum [T] Theme
[Ent] Entities [Size]
[P1] P1 [P2]

where [P1], [P2], [P3], [Sum], [T] and [Ent]
indicate the type of input received by the model
(special tokens). [Size] is either [S], [M] or [L]
and gives information about the paragraph’s length.
Note that the order of the input is not essential. We
only put P1 at the end so that GPT-2 can continue
from there, as it has been trained to do so.

The pre-trained model (small GPT-2) has a maxi-
mum window size of 1024 tokens. If x exceeds that
length we truncate P1 on the left and P3 on the
right. As a heuristic we allocate 2/3 of the remain-
ing space12 to P1 and 1/3 to P3, as we consider
P1 to be more important than P3.

All the text is segmented using the correspond-
ing pre-trained BPE tokenizer. Special tokens are
created for the separators ([P1], [P2], etc.) and a
segment embedding is added on top of the token
and position embeddings. It has the same dimen-
sion and serves to distinguish the segment each
token corresponds to (P1, P2, P3, theme, size, sum-
mary and entities).

3.3 Fine-tuning

We fine-tuned the pre-trained GPT2LMHeadModel
(small) from HuggingFace (Wolf et al., 2020), us-
ing a customised version of the given training
script.13 x is provided as prefix, and only the cross-
entropy error over y (and P2) is back-propagated
to fine-tune the weights. The training procedure is
shown in Fig. 2. One of the goals of this demo is
to show that this type of fine-tuning can be done
with limited resources: here we used an AWS’s
p3.2xlarge instance (using one Nvidia Tesla V100
GPU). In total, the model received 134k samples

12once everything except P1 and P3 has been fed as input
13https://huggingface.co/transformers/

model_doc/GPT-2.html

280

Figure 2: Training framework. The loss over the prefix is masked out, and only the cross-entropy loss over P2 is
used for fine-tuning.

for each epoch, and was trained for 10 epochs.
However, we believe that fewer epochs might be
enough to reach good performances although the
loss did not converge (Fig. 3).

Figure 3: Loss function during training (smoothed).

4 Web Service Architecture

The model was enriched with a user interface, and
opened to a small targeted public (online commu-
nity of authors), to gather relevant feedback on
both model generation and user-friendliness of the
interface.

To gain in flexibility in the choice of instances,
to perform the heavy computations and to allow
load balancing on several instances, we uncoupled
the master instance – serving the JavaScript front-
end and general data – from the computational
instances, performing NER and text generation on
demand. It is also possible for the client to run the
servers locally to avoid delays and server overloads.
Fig. 4 shows the general architecture of our service.

The interface allows users to write some text in

Figure 4: Webservice architecture

a simple editor. Named entities of the four types
(characters, locations, organisations and others) are
detected on the fly by the NER backend and dis-
played on the left panel. They can be manually
edited.

Users have the possibility to select several op-
tions: length of the desired paragraph, genre of
their work and list of entities they want to see ap-
pear in the generation. They can also highlight a
small part of the text that will act as a summary (or
a list of keywords). A snapshot of the interface is
shown in Fig. 5.

5 Generation and Evaluation

At inference time we provide the prefix x and gen-
erate until reaching the end-of-sentence symbol,
using Nucleus Sampling (Holtzman et al., 2019)
with p = 0.9.

281

Figure 5: Interface of the text editor, highlightening the generated text in green.

5.1 Evaluation

The final model was evaluated after ten epochs of
training, on some unseen novels. We focused the
evaluation on the degree of control and contextu-
alization, as well as the impact of different types
of summaries. Due to space constraints, we report
the results obtained when providing 10 keywords
as summaries (extracted with TextRank), but the
trend for other summarization techniques is similar.
For the evaluation we focus on

• Divergence of the original model, as mea-
sured through perplexity of the original GPT-2.
(Fig. 6).

• Similarity to the true P2, measured through
(i) the similarity of the [CLS] tokens of
a pre-trained BERT model (Devlin et al.,
2018) (Fig. 6) and (ii) BLEU14 and ROUGE15

(Fig. 7).

• Control capabilities, by measuring the number
of entities and keywords given as prefix that
occur in the resulting text. (Fig. 8)

To evaluate the model, we focus on the distri-
bution of the above metrics across all paragraphs
and compare our trained model with a raw GPT-2
model.

Our experiments show that even with the reduced
amount of fine-tuning the model deviates strongly
from the base one and is able to learn to produce
middle paragraphs.

Fig 6 shows that our approach leads to a decrease
in perplexity (less fluent generation). Nevertheless,
this is compensated (of course, those values are

14we used nltk’s version: https://www.nltk.org/
_modules/nltk/translate/bleu_score.html

15https://pypi.org/project/rouge/

Figure 6: BertSimilarity (left) and Perplexity (right) of
the base (not fine-tuned) GPT-2 model and our fine-
tuned one. Fluency decreases slightly, but the gener-
ated text is more similar to the gold middle paragraph.

Figure 7: ROUGE (left) and BLEU (right) scores: a
small but consistent increase of both metrics.

Figure 8: EntitiesCount (left) and KwCount (right).
There is a significantly higher proportion of specified
entities and keywords appearing in the generated text.

not directly comparable) by a better reconstruction

282

Figure 9: Evaluation metrics on vanilla GPT-2, when providing as prefix only P1 – train-raw – and the full context
(all of x) – train-raw-context.

of the middle paragraph P2, as shown by the his-
tograms of BERT similarity as well as precision
and recall of n-gram overlap Fig. 7–all significantly
shifted to the right. Finally, the model clearly learns
to control the generated output (Fig. 8) with the de-
sired entities occurring most often in the generated
text (the shift is weaker with keywords).

As baseline, we also experimented with provid-
ing x to the vanilla GPT-2 model. This allows
measuring the added benefit of training with re-
spect to prompting. The resulting histograms are
shown in Fig. 9, they reveal that GPT-2 cannot con-
trol and contextualise the generation (when taking
x as input) if not fine-tuned.

6 Conclusion

In this paper, we present an end-to-end pipeline
allowing authors to break Writer’s Block. The ob-
jective is to allow users – at any point during the
creative writing process – to generate new para-
graphs that are consistent with the rest of the writ-
ing, especially previous and following paragraphs.
The presented tool gives the possibility to select
entities (characters, locations, etc.) that have been
previously introduced in the novel and that should
appear in the target paragraph. Similarly, the author
can specify the size of the desired text, its content

via a small summary or keywords and even the
genre of the book. In the end, the tool proposes
several suggestions that users can choose from and
edit. The aim is to produce creative outputs that
give new ideas to the writers.

The underlying model is obtained by fine-tuning
a GPT-2 model on a carefully designed dataset, ob-
tained through a selection and cleaning of books
from the Project Gutenberg library. Our experi-
ments show that the generated text is significantly
more similar to the gold paragraphs on a variety of
metrics and is able to successfully take into consid-
eration the context specified by the user.

Fine-tuning is often discarded for natural lan-
guage generation in favour of other cheaper meth-
ods, such as prompt engineering or adapter layers.
This work shows a use-case where a pre-trained
neural language generation model can be fine-tuned
with a reduced economic and ecological cost: the
complete training (including preliminary experi-
ments as well as the final mode) was done with a
budget of USD 150.

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin

283

Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: a simple approach to controlled text generation.
arXiv preprint arXiv:1912.02164.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Muhammad Khalifa, Hady Elsahar, and Marc Dymet-
man. 2021. A distributional approach to controlled
text generation. In ICLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

Yang Liu. 2019. Fine-tune bert for extractive summa-
rization. arXiv preprint arXiv:1903.10318.

Fuli Luo, Damai Dai, Pengcheng Yang, Tianyu Liu,
Baobao Chang, Zhifang Sui, and Xu Sun. 2019.
Learning to control the fine-grained sentiment for
story ending generation. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 6020–6026, Florence, Italy.
Association for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49, New Orleans, Louisiana.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Timo Schick and Hinrich Schütze. 2020a. Few-
shot text generation with pattern-exploiting training.
arXiv preprint arXiv:2012.11926.

Timo Schick and Hinrich Schütze. 2020b. It’s
not just size that matters: Small language mod-
els are also few-shot learners. arXiv preprint
arXiv:2009.07118.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones,
AN Gomez, L Kaiser, and I Polosukhin. 2017. At-
tention is all you need. arxiv 2017. arXiv preprint
arXiv:1706.03762.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Process-
ing Systems, pages 9051–9062.

284

A Appendix

A.1 Interface
Fig. 10 shows the landing page of the online demo.

A.2 Samples of Generated Text
We show here some samples generated with the
demo:

Sample 1

Keywords: face - glenure - murder
Genre: biography, history
Size: M
Persons: Glenure, Appin, God, Catriona
Organisations: Appin
Locations: Scotland, Appin, Dean

P1: ”What is this you say?” she asked. ”What
are you talking of?” ”It is my testimony which may
save an innocent life,” said I, ”and they will not
suffer me to bear it. What would you do yourself?
You know what this is, whose father lies in danger.
Would you desert the poor soul? They have tried
all ways with me. They have sought to bribe me;
they offered me hills and valleys.

Generated P2: But they have not been in the
least afraid of me, although they have known me as
the murderer.” ”There is something I would have
left to have,” she said; ”if they had taken me from
their hands. You shall die.” ”O my soul!” she cried.
”What am I to die at that?” Her father, who had
a mother’s love, would have killed a slave in the
bush; and that was the case. ”If you see me here,
you’ll know the difference between us.” He had
gone, at least, and she would have heard from him
again. There was something he had not understood.
”Well,” he said, ”if that is, then I shall die; if it
were not for my sake, I should have been a free
man. And if I had done it, I would have died from
my father’s grave, and taken my money from the
country.” I had no more idea of his feelings than he
had of their manners. On the night appointed, we
started for Scotland. The men left us a good cabin,
and entered, to their great delight.

Original P2: And to-day that sleuth-hound told
me how I stood, and to what a length he would go
to butcher and disgrace me. I am to be brought in a
party to the murder; I am to have held Glenure in
talk for money and old clothes; I am to be killed
and shamed. If this is the way I am to fall, and me

scarce a man - if this is the story to be told of me
in all Scotland - if you are to believe it too, and my
name is to be nothing but a by-word - Catriona,
how can I go through with it? The thing’s not
possible; it’s more than a man has in his heart.”
I poured my words out in a whirl, one upon the
other; and when I stopped I found her gazing on
me with a startled face. ”Glenure! It is the Appin
murder,” she said softly, but with a very deep
surprise. I had turned back to bear her company,
and we were now come near the head of the brae
above Dean village. At this word I stepped in front
of her like one suddenly distracted. ”For God’s
sake!” I cried, ”for God’s sake, what is this that I
have done?” and carried my fists to my temples.

P3: ”What made me do it? Sure, I am bewitched
to say these things!” ”In the name of heaven, what
ails you now!” she cried. ”I gave my honour,” I
groaned, ”I gave my honour and now I have broke
it. O, Catriona!” ”I am asking you what it is,” she
said; ”was it these things you should not have
spoken? And do you think I have no honour, then?
or that I am one that would betray a friend?”

285

Sample 2

Genre: Science-Fiction
Size: L
Organisations: Council
Locations: Council House

P1: Along this a disorderly swarm of people
marched shouting. They were singing snatches
of the song of the revolt, most of them out of
tune. Here and there torches flared creating brief
hysterical shadows. He asked his way and was
twice puzzled by that same thick dialect. His
third attempt won an answer he could understand.
He was two miles from the wind-vane offices
in Westminster, but the way was easy to follow.
When at last he did approach the district of the
wind-vane offices it seemed to him, from the
cheering processions that came marching along
the Ways, from the tumult of rejoicing, and finally
from the restoration of the lighting of the city,
that the overthrow of the Council must already be
accomplished. And still no news of his absence
came to his ears. The re-illumination of the city
came with startling abruptness. Suddenly he stood
blinking, all about him men halted dazzled, and
the world was incandescent. The light found him
already upon the outskirts of the excited crowds
that choked the Ways near the wind-vane offices,
and the sense of visibility and exposure that came
with it turned his colourless intention of joining
Ostrog to a keen anxiety.

Generated P2: He could not conceive how he
was to get within the unbroken facade of this place
till he reached the street by a great open space
of marble pavement to take hold of an afternoon
train. For a moment he could not see the crowding.
Then another group was seen, then another. He
made his way slowly into the crowding in the
central path. This way he was most eager to know.
He had no desire to enter the city in order to get
hold of some one else, to whom he could apply as
little as possible to information; and so he went
at once on the long platform, hoping to reach the
Council House before he was in time to receive any
information that he had received from his brother
or his wife. After waiting several minutes for that,
the expressman, who had been most unwilling
to return to the city, said that he would join the
Council on the way to meet the new manager, and

was even more delighted to have taken possession
of his money than he had been when he went to
see the London cable office and asked about the
interview he had held during the afternoon. The
cable service had been decided after he had left it.

Original P2: For a time he was jostled,
obstructed, and endangered by men hoarse and
weary with cheering his name, some of them
bandaged and bloody in his cause. The frontage
of the wind-vane offices was illuminated by some
moving picture, but what it was he could not see,
because in spite of his strenuous attempts the
density of the crowd prevented his approaching
it. From the fragments of speech he caught, he
judged it conveyed news of the fighting about
the Council House. Ignorance and indecision
made him slow and ineffective in his movements.
For a time he could not conceive how he was to
get within the unbroken facade of this place. He
made his way slowly into the midst of this mass
of people, until he realised that the descending
staircase of the central Way led to the interior
of the buildings. This gave him a goal, but the
crowding in the central path was so dense that it
was long before he could reach it. And even then
he encountered intricate obstruction, and had an
hour of vivid argument first in this guard room and
then in that before he could get a note taken to the
one man of all men who was most eager to see him.

P3: His story was laughed to scorn at one place,
and wiser for that, when at last he reached a second
stairway he professed simply to have news of
extraordinary importance for Ostrog. What it was
he would not say. They sent his note reluctantly.
For a long time he waited in a little room at the foot
of the lift shaft, and thither at last came Lincoln,
eager, apologetic, astonished. He stopped in the
doorway scrutinising Graham, then rushed forward
effusively. ”Yes,” he cried. ”It is you. And you
are not dead!” Graham made a brief explanation.
”My brother is waiting,” explained Lincoln. ”He
is alone in the wind-vane offices. We feared you
had been killed in the theatre. He doubted - and
things are very urgent still in spite of what we
are telling them there - or he would have come to
you.” They ascended a lift, passed along a narrow
passage, crossed a great hall, empty save for two
hurrying messengers, and entered a comparatively
little room, whose only furniture was a long settee

286

Figure 10: Menu interface

and a large oval disc of cloudy, shifting grey, hung
by cables from the wall.

BART: He could not conceive how he was to get
within the unbroken facade of this place. He made
his way slowly into The crowding in a central path
prevented him from reaching it until after an hour’s
argument with one man who had been most eager
for information about what happened at Council
House, and then another

287

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 288–294
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning

Tommi Nieminen
University of Helsinki, Yliopistonkatu 3, 00014 University of Helsinki, Finland

tommi.nieminen@helsinki.fi

Abstract

OPUS-CAT is a collection of software which
enables translators to use neural machine trans-
lation in computer-assisted translation tools
without exposing themselves to security and
confidentiality risks inherent in online ma-
chine translation. OPUS-CAT uses the public
OPUS-MT machine translation models, which
are available for over a thousand language
pairs. The generic OPUS-MT models can be
fine-tuned with OPUS-CAT on the desktop us-
ing data for a specific client or domain.

1 Introduction

Neural machine translation (NMT) has brought
about a dramatic increase in the quality of ma-
chine translation in the past five years. The re-
sults of the latest European Language Industry Sur-
vey (FIT Europe et al., 2020) confirm that NMT is
now routinely used in professional translation work.
NMT systems used in translation work are devel-
oped by specialized machine translation vendors,
translation agencies, and organizations that have
their own translation departments. Translators use
NMT either at the request of a client, in which case
the client provides the NMT, or independently, in
which case they usually rely on web-based services
offered by large tech companies (such as Google or
Microsoft) or specialized machine translation ven-
dors. These web-based services are mainly used
through machine translation plugins or integrations
that are available for all major computer-assisted
translation (CAT) tools, such as SDL Trados and
memoQ.

Even though MT has been extensively used in
the translation industry for over a decade (Doherty
et al., 2013), there is still considerable scope for
growth: according to FIT Europe et al. (2020),
78 percent of language service companies plan to
increase or start MT use, and most independent

translation professionals use MT only occasionally.
One of the factors slowing down the adoption of
MT are risks related to confidentiality and security.
There are well-known risks involved with using
web services, which also concern the web-based
NMT services available to translators and organi-
zations: data sent to the service may be intercepted
en route, or it may be misused or handled care-
lessly by the service provider. These security and
confidentiality risks (even if they are unlikely to ac-
tualize) hinder MT use by independent translation
professionals, since their clients often specifically
forbid or restrict the use of web-based MT (Euro-
pean Commission, 2019). Even if using web-based
MT is not expressly forbidden, translators may con-
sider it unethical or they may fear it might expose
them to unexpected legal liabilities (Kamocki et al.,
2016).

Producing MT directly on the translator’s com-
puter without any communication with external
services eliminates the confidentiality and security
risks associated with web-based MT. This requires
an optimized NMT framework which is capable of
running on Windows computers (as most CAT tools
are only available for Windows), and pre-trained
NMT models for all required language pairs. The
Marian NMT framework (Junczys-Dowmunt et al.,
2018) fulfills the first requirement, as it is highly op-
timized and supports Windows builds. Pre-trained
NMT models are available from the OPUS-MT
project (Tiedemann and Thottingal, 2020), which
trains and publishes Marian-compatible NMT mod-
els with the data collected in the OPUS corpus
(Tiedemann, 2012). OPUS-CAT is a software col-
lection which contains a local MT engine for Win-
dows computers built around the Marian frame-
work and OPUS-MT models, and a selection of
plugins for CAT tools. OPUS-CAT is aimed at pro-
fessional translators, which is why it also supports
the fine-tuning of the base OPUS-MT models with

288

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

OPUS
corpora

OPUS-MT
model

repository

OPUS-CAT
MT Engine

TMX file or
parallel text files

Locally installed
Marian NMT

CAT tool
integration

memoQ
plugin

Trados
plugin

OmegaT
plugin

Wordfast (as
custom MT)

train models
install
models
locally

translate
with
models

finetune
models

API

extract fine-tuning
material

Figure 1: Diagram of the software and models used in OPUS-CAT.

project-specific data.

2 OPUS-CAT MT Engine

The main component of OPUS-CAT is the OPUS-
CAT MT Engine, a locally installed Windows appli-
cation with a graphical user interface. OPUS-CAT
MT Engine can be used to download NMT mod-
els from the OPUS-MT model repository, which
contains models for over a thousand language pairs.

Figure 2: Install OPUS-MT models locally (1,000+ lan-
guage pairs available)

Once a model has been downloaded, OPUS-CAT
MT Engine can use it to generate translations by
invoking a Marian executable included in the in-
stallation. Before the text is sent to the Marian
executable, OPUS-CAT MT Engine automatically
pre-processes the text using the same method that
was originally used for pre-processing the train-
ing corpus of the model. Pre-processing is model-
specific, as the older OPUS-MT models use Sub-
word NMT (Sennrich et al., 2016) for segment-

ing the text while newer models use SentencePiece
(Kudo and Richardson, 2018). Both Subword NMT
and SentencePiece are coded in Python, but they
are distributed as standalone Windows executables
with OPUS-CAT MT Engine, as requiring the users
to install Python in Windows would complicate the
setup process.

OPUS-CAT MT Engine user interface provides
a simple functionality for translating text, but the
translations are mainly intended to be generated via
an API that the OPUS-CAT MT Engine exposes.
This API can be used via two protocols: net.tcp
and HTTP. net.tcp is used with plugins for the SDL
Trados and memoQ CAT tools, while HTTP is used
for other plugins and integration. The motivation
for using net.tcp is that exposing a net.tcp service
on the local Windows computer does not require
administrator privileges, which makes setting up
the OPUS-CAT MT Engine much easier for non-
technical users. However, Trados and memoQ are
the only CAT tools with sufficiently sophisticated
plugin development kits to allow for net.scp con-
nections, so the API can also be used via HTTP
with some extra configuration steps, so that it can
be used from other tools. The API has three main
functionalities:

• Translate: Generates a translation for a
source sentence (or retrieves it from a cache)
and returns it as a reply to the request.

• PreorderBatch: Adds a batch of source sen-
tences to the translation queue and immedi-
ately returns a confirmation without waiting
for the translations to be generated.

289

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

• Customize: Initiates model customization us-
ing the fine-tuning material included in the
request.

The OPUS-CAT MT Engine stores the local
NMT models in the user’s application data folder
in order to avoid file permission issues. Local ap-
plication data folder is used, as saving the models
in the roaming application data folder could lead
to unwanted copying of the models, if same user
profile is used on multiple computers. The user
interface of the OPUS-CAT MT Engine contains
functionalities for managing models installed on
the computer, such as deletion of models, packag-
ing of models for migration to other systems, and
tagging the models with descriptive tags. The tags
can be used to select specific models in CAT tool
plugins, e.g. a model fine-tuned for a specific cus-
tomer can be tagged with the name of the customer.

3 CAT tool plugins and integration

OPUS-CAT contains plugins for three CAT tools:
SDL Trados, memoQ and OmegaT. OPUS-CAT
can also be used with the Wordfast CAT tool, which
supports fetching translations from services via
APIs. As SDL Trados is the established market
leader among CAT tools, and it has the most exten-
sive plugin development support, the OPUS-CAT
plugin for SDL Trados is more feature-rich than
the other plugins. The other plugins simply sup-
port fetching translations through the Translate API
method. SDL Trados plugin also contains an option
to initiate the fine-tuning of a model based on the
bilingual material included in a translation project.

One difficult aspect of integrating MT services
with CAT tools is latency. Delays in presenting
the translation to the user affect the user experi-
ence adversely and may even lower productivity
significantly. For most MT services the delay is
due to web latency, but for OPUS-CAT the gen-
eration of translations itself may be so slow that
it causes a visible delay, since OPUS-CAT uses a
CPU for translation instead of a much faster GPU.
In any CAT tool, this delay can be eliminated by
pre-translating the translation project with the MT
service prior to starting the translation.

In the OPUS-CAT plugin for SDL Trados there
is also a feature which can be used to initiate the
translation of segments ahead of time. Whenever
the translator moves to a new segment, the plugin
will send the segments following the selected seg-
ment (the number of segments can be configured

Figure 3: Trados plugin settings. Note the preordering
function and model tag.

in the plugin settings) to the OPUS-CAT for trans-
lation. This means that when the translator moves
to the next segment, it has already been translated
and can simply be retrieved from the OPUS-CAT
translation cache.

4 Local fine-tuning of models

OPUS-CAT is intended for professional transla-
tors, and the utility of generic NMT models in pro-
fessional translation is uncertain (Sánchez-Gijón
et al., 2019), while performance improvements re-
sulting from the use domain-adapted NMT models
have been observed multiple times (Läubli et al.,
2019; Macken et al., 2020). Because of this, OPUS-
CAT MT Engine includes a functionality for fine-
tuning models with small amounts of bilingual data.
The method of fine-tuning is simple: the generic
OPUS-MT model for a language pair is duplicated,
and Marian training of the model is resumed with
the model using the domain-specific data as the
training set. This particular method of fine-tuning
was first described in Luong and Manning (2015),
but adaptation of statistical and neural MT models
with domain-specific data has been common for
over a decade (Koehn and Schroeder, 2007). The
fine-tuning is performed using the same Marian
executable included with OPUS-CAT MT Engine
installation, which is also used for generating trans-
lations.

OPUS-CAT MT Engine is a Windows program
intended to run on mid-tier desktop and laptop com-
puters that translators commonly use, so the fine-
tuning process cannot be computationally intensive.
The fine-tuning must rely on CPUs, since GPUs
suitable for neural network training are not avail-
able on the translators’ computers. This places
severe restrictions on the size of the fine-tuning set

290

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

and the duration of the training. Furthermore, the
fine-tuning functionality is intended to be used by
translators without specialist knowledge about ma-
chine translation, so the users cannot be expected
to be able to adjust the fine-tuning settings. That is
why the fine-tuning functionality has to have a con-
servative set of default settings that work in almost
all environments and circumstances.

In a typical translation job, deadlines usually
allow for considerably more time for delivery of the
translation than the actual translation work requires.
This is due to the fact that translators normally
have multiple jobs underway or lined up at any
given time, and extended deadlines are required
so that translators can organize and prioritize their
work. This means that there is generally at least
a couple of hours of time available for running
the fine-tuning process before the actual translation
work has to begin. On the basis of this estimate, the
fine-tuning process should generally take at most
two hours.

Another consideration in fine-tuning is that the
process takes place on a computer that may be used
for other tasks during the fine-tuning. This means
that the fine-tuning process cannot take advantage
of all the resources available on the computer, as do-
ing so would cause performance issues for the user.
In order to keep the fine-tuning as non-intrusive
as possible, OPUS-CAT MT Engine uses only a
single thread and a workspace of 2048 MB for
fine-tuning.

Because of the limited amount of processing
power available and the target duration of at most
two hours, the fine-tuning is stopped after a single
epoch by default. The actual duration will vary
according to the sentence count and the sentence
length distribution of the fine-tuning set. The dura-
tion will be approximately two hours when the fine-
tuning set contains the default maximum amount
of sentences, which is 10,000.

It would be possible to allow the fine-tuning to
last for multiple epochs and to adjust the amount
of epochs based on the sentence count, but infor-
mal testing during development indicated that a
single epoch of fine-tuning tends to have a notice-
able effect on the MT output even with small fine-
tuning sets. Also, some output corruption indicat-
ing over-fitting was detected when fine-tuning was
continued over many epochs. Because of these in-
dications of over-fitting, the learning rate was also
lowered to 0.00002 from the default 0.0001. Ad-

vanced users can change these default settings in
the settings tab of the OPUS-CAT MT Engine.

Figure 4: Initiating fine-tuning from OPUS-CAT MT
Engine.

Currently fine-tuning can be initiated directly
from the OPUS-CAT MT Engine or from the SDL
Trados plugin. When initiated from the OPUS-
CAT MT Engine, a .tmx file or a pair of source
and target files can be used as fine-tuning mate-
rial. Fine-tuning from the SDL Trados plugin
allows for much more sophisticated selection of
fine-tuning material. The fine-tuning functional-
ity in the SDL Trados plugin is implemented as a
batch task, which is performed for a given transla-
tion project. Translation projects usually contain
segments which have already been translated (full
matches). By default, the fine-tuning task extracts
these segments as fine-tuning material. These are
assumed to be the most relevant material, since
they pertain directly to the translation project.

Figure 5: Initiating fine-tuning from OPUS-CAT plu-
gin for SDL Trados.)

If the translation project does not contain enough
full matches, it is possible to extract translation

291

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

units from the translation memories attached to
the translation project. The fine-tuning task uses
the fuzzy matching functionality of SDL Trados
to extract partially matching translation units ac-
cording to the specified minimum fuzzy percentage.
The task can also extract fine-tuning material by
performing a concordance search for words or se-
quences of words in the source segment. Finally,
if the other methods have not managed to extract a
sufficient amount of fine-tuning material, the task
can simply bulk up the fine-tuning set by extracting
segments from the translation memories, starting
with the newest (assumed to be the most relevant).

Figure 6: Monitoring fine-tuning progress.)

Progress of the fine-tuning can be monitored in
the OPUS-CAT MT Engine. When a fine-tuning
job is initiated, part of the fine-tuning set is sepa-
rated for use as an in-domain validation set. For
most language pairs, OPUS-CAT MT Engine also
contains out-of-domain validation sets, which have
been extracted from the Tatoeba corpus (Tiede-
mann, 2020). The in-domain and out-of-domain
validation sets are combined and evaluated period-
ically during fine-tuning with SacreBLEU (Post,
2018), which is also included in OPUS-CAT as a
standalone Windows executable. The evaluation
results for each set are plotted as a graph in the
OPUS-CAT MT Engine. OPUS-CAT MT Engine
also displays an estimate of the remaining dura-
tion of the fine-tuning. These visual indications
of progress are important, as the users of the fine-
tuning functionality are translators without special-
ist technical skills.

The fine-tuning functionality also has an op-
tion to include tags found in the fine-tuning set
as generic tag markers. The fine-tuned model will
then learn to generate tag markers in the transla-
tions, and these can be used to transfer tags from
source to target in CAT tools (currently only the

SDL Trados plugin supports tag conversion). Place-
holder tags and tag pairs are converted separately.
This approach to tag handling is similar to the one
found in (Hanneman and Dinu, 2020), but simpler.
The main difference is that the same textual tag
marker is used for every tag, so the tag handling as-
sumes that the tag order is identical in both source
and target.

5 Related work

Desktop MT systems have been available at least
since the 1990s (Richards, 1994), when desktop
computers became powerful enough to run rule-
based MT systems. In the SMT era, the higher
computational requirements made desktop MT dif-
ficult, but there were still some examples of desktop
SMT, such as (Slate Rocks!, 2021). Unlike OPUS-
CAT, these earlier desktop MT programs were com-
mercial products. As for NMT, the currently active
Bergamot project (Bergamot, 2021) aims to make
client-side MT available in web browsers, and also
uses Marian as its NMT framework. However,
Bergamot is aimed at the common public, while
OPUS-CAT is intended for professional translators.
To our knowledge, there is no other software that is
free to use and offers a local NMT fine-tuning func-
tionality (commercial MT providers do provide
local MT engine installations, which may support
local fine-tuning).

6 Current status and future work

OPUS-CAT is based on software developed orig-
inally for the Fiskmö project (Tiedemann et al.,
2020), and it is currently being developed as part
of the European Language Grid programme. The
previous version of the software has been used by
several organizations in Finland for professional
translation. Based on the feedback from users, the
most important features that translators would like
to see are real-time adaptation of NMT models
with new translations, and the enforcement of cor-
rect terminology and document-level consistency.
These will be the main priorities in the develop-
ment of OPUS-CAT. We will also be collecting
user experiences on the local fine-tuning capability,
and will develop the feature and its documentation
according to that feedback.

7 Conclusion

OPUS-CAT is collection of software that makes it
possible to use NMT locally on desktop computers

292

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

without risks posed by web-based services. It uses
models from the OPUS-MT project, which offers
NMT models for over a thousand language pairs.
OPUS-CAT is based on the efficient and optimized
Marian NMT framework, which is fast enough to
work usefully even with mid-tier computers. The
local fine-tuning functionality makes it possible to
adapt models to specific domains and clients, which
is vital when using MT for professional translation.
OPUS-CAT also contains plugins for several major
CAT tools, and exposes an API which can be used
in integrations with other tools. The OPUS-CAT
plugin SDL Trados is especially well suited for
integration into translation workflows due to its
sophisticated fine-tuning functionality, which is
implemented as a workflow task. OPUS-CAT is
licensed under the MIT License, and the source
code and software releases are available at https:
//github.com/Helsinki-NLP/OPUS-CAT.

References
Bergamot. 2021. Bergamot.

Stephen Doherty, Federico Gaspari, Declan Groves,
Josef Genabith, Lucia Specia, Arle Lommel,
Aljoscha Burchardt, and Hans Uszkoreit. 2013.
Mapping the industry i: Findings on translation tech-
nologies and quality assessment. Globalization and
Localization Association.

European Commission. 2019. Tender specifications:
Translation of european union documents.

FIT Europe, EUATC, ELIA, GALA, and LINDWeb.
2020. European language industry survey 2020.

Greg Hanneman and Georgiana Dinu. 2020. How
should markup tags be translated? In Proceedings of
the Fifth Conference on Machine Translation, pages
1160–1173, Online. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Mar-
tins, and Alexandra Birch. 2018. Marian: Fast neu-
ral machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, Melbourne, Aus-
tralia.

Pawel Kamocki, Jim O’Regan, and Marc Stauch. 2016.
All Your Data Are Belong to us . European Perspec-
tives on Privacy Issues in ‘Free’ Online Machine
Translation Services.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine trans-
lation. In Proceedings of the Second Workshop

on Statistical Machine Translation, pages 224–227,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
pages 66–71.

Samuel Läubli, Chantal Amrhein, Patrick Düggelin,
Beatriz Gonzalez, Alena Zwahlen, and M. Volk.
2019. Post-editing productivity with neural machine
translation: An empirical assessment of speed and
quality in the banking and finance domain. In MT-
Summit.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains.

Lieve Macken, Daniel Prou, and Arda Tezcan. 2020.
Quantifying the effect of machine translation in a
high-quality human translation production process.
Informatics, 7.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

John Richards. 1994. LogoVista E to J. In Proceedings
of the First Conference of the Association for Ma-
chine Translation in the Americas, Columbia, Mary-
land, USA.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Slate Rocks! 2021. Slate desktop.

Pilar Sánchez-Gijón, Joss Moorkens, and Andy Way.
2019. Post-editing neural machine translation ver-
sus translation memory segments. Machine Transla-
tion, 33:1–29.

Jörg Tiedemann. 2020. The Tatoeba Translation Chal-
lenge – Realistic data sets for low resource and mul-
tilingual MT. In Proceedings of the Fifth Confer-
ence on Machine Translation (Volume 1: Research
Papers). Association for Computational Linguistics.

Jörg Tiedemann, Tommi Nieminen, Mikko Aulamo,
Jenna Kanerva, Akseli Leino, Filip Ginter, and Niko
Papula. 2020. The FISKMÖ project: Resources
and tools for Finnish-Swedish machine translation
and cross-linguistic research. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 3808–3815, Marseille, France. Euro-
pean Language Resources Association.

293

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

EACL 2021 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

294

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 295–301
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Domain Expert Platform for Goal-Oriented Dialogue Collection

Didzis Gosko Arturs Znotins Inguna Skadina
Normunds Gruzitis Gunta Nespore-Berzkalne

Institute of Mathematics and Computer Science,
University of Latvia

Raina bulv. 29, Riga, Latvia
firstname.lastname@lumii.lv

Abstract

Today, most dialogue systems are fully or
partly built using neural network architectures.
A crucial prerequisite for the creation of a goal-
oriented neural network dialogue system is a
dataset that represents typical dialogue scenar-
ios and includes various semantic annotations,
e.g. intents, slots and dialogue actions, that are
necessary for training a particular neural net-
work architecture. In this demonstration paper,
we present an easy to use interface and its back-
end which is oriented to domain experts for
the collection of goal-oriented dialogue sam-
ples. The platform not only allows to collect
or write sample dialogues in a structured way,
but also provides a means for simple annota-
tion and interpretation of the dialogues. The
platform itself is language-independent; it de-
pends only on the availability of particular lan-
guage processing components for a specific
language. It is currently being used to collect
dialogue samples in Latvian (a highly inflected
language) which represent typical communica-
tion between students and the student service.

1 Introduction

Modeling of human-computer interaction through
dialogue systems and chatbots has raised a great in-
terest among researchers and industry already since
the time when the first chatbot Eliza (Weizenbaum,
1966) was created. This interest has become viral
after the successful introduction of Siri (Bellegarda,
2013). Today, virtual assistants, virtual agents and
chatbots are present everywhere: on mobile de-
vices, on different social networking platforms, on
many websites and through smart home devices
and robots.

The virtual conversational agents are usually im-
plemented as end-to-end neural network models, or
their components are implemented through neural
network architectures (Louvan and Magnini, 2020).
Such architectures require creation of datasets that

represent various dialogue scenarios, as well as
knowledge of the specific domain. This informa-
tion has to be provided in specific data formats
that in many cases are too complicated for domain
experts. Moreover, the required training datasets
usually include various annotation layers, such as
named entities, dialogue acts, intents, etc. The
creation of such datasets is a complex task, and
the datasets are not completely isolated and ab-
stracted from the particular dialogue system. Thus,
domain experts that are involved in the creation
of the datasets must have a high-level understand-
ing of the overall structure of the dialogue system
and its components, and how it is reflected in the
annotated dialogue samples.

This demonstration paper address this issue by
presenting a web-based platform for the creation
and maintenance of dialogue datasets 1. The inter-
face of the platform is very simple and high-level:
it allows a domain expert without detailed technical
knowledge of the underlying dialogue system to
create and update a representative training dataset,
as well as to maintain the underlying database of
domain- and organisation-specific information that
will be used for question answering. The platform
provides tools for the creation of goal-oriented dia-
logue systems, in particular:

• creation of datasets for dialogue systems that
provide (or generate) responses depending on
user input, intents and on the previous actions
of the dialogue system;

• creation of datasets for dialogue systems that
cover one or several topics;

• slot filling, including slot filler (e.g. named
entity) normalization and annotation;

• creation and maintenance of slot filler aliases;
1http://bots.ailab.lv/

295

• creation and maintenance of knowledge base
and interactive response selection;

• response generation, including the generation
of inflectional forms for syntactic agreement.

Our platform not only supports collection of di-
alogue scenarios, but also simulates prototypical
interaction between human and computer. The tool
has been successfully used for the creation of a
dialogue dataset for the virtual assistant that sup-
ports the work of the student service in relation to
three frequently asked topics: working hours and
contacts of the personnel and structural units (e.g.
libraries), issues regarding academic leave, as well
as enrollment requirements and documents to be
submitted (Skadina and Gosko, 2020).

In the next chapters of this paper, we describe
our motivation to develop the platform, its overall
architecture and main components, and the domain
expert interface and its main components.

2 Background and Motivation

For English and several other widely used lan-
guages, many publicly available dialogue datasets
have been created and are reused for different re-
search and development needs (e.g., Budzianowski
et al. (2018), Zeng et al. (2020)). However, in
the case of less-resourced languages, only few or
no training datasets are available (Serban et al.,
2018). To our knowledge, there is no publicly
available dataset for Latvian, that could be used for
goal-oriented dialogue system modelling. To over-
come this obstacle, some research groups machine-
translate existing English datasets into the low-
resourced languages, while others try to build train-
ing datasets from scratch. When possible, crowd-
sourcing, including gamification (Ogawa et al.,
2020), is used as well. However, there in no best
recipe for obtaining or collecting dialogue sam-
ples for a specific NLP task (in our case, dialogue
modeling) for a less-resourced language with a rel-
atively small number of speakers.

The motivation of our work is the necessity to
build virtual assistants in less-resourced settings.
The practical use case to test the platform has been
the everyday communication between students and
the student service of the University of Latvia.
Since this communication has never been inten-
tionally recorded, we started with the analysis of
data retrieved from an online student forum to iden-
tify the most common topics, question and answer

templates, and the typical dialogue scenarios. For
the demonstration purposes, we have chosen three
common topics: working hours, academic leave,
and enrollment requirements. Elaborated and an-
notated sample dialogues constituting the training
dataset have been specified by a domain expert us-
ing the dialogue management platform presented
in this paper.

Since we focus on goal-oriented virtul assistants,
the Hybrid Code Networks (HCN) architecture has
been selected for the implementation (Williams
et al., 2017) allowing us to combine recursive
neural networks (RNN) with the domain-specific
knowledge and action templates of the dialogue sys-
tem. The concrete dialogue system is implemented
within the DeepPavlov framework2.

3 Overall Architecture and Components

The platform presented in this paper is designed to
support three use cases:

1. To create and gradually improve a collection
of dialogue samples necessary for developing
and testing a goal-oriented dialogue system.

2. To support (re-)training of a goal-oriented di-
alogue system.

3. To support dialogue testing in the inference
mode. Training and running a dialogue system
in the inference mode is performed through
the DeepPavlov framework by passing the
goal-oriented bot model configuration along
with relations to other objects that are specific
to the platform.

Figure 1 illustrates the architecture of the plat-
form. Apart from the domain expert user interface
described in detail in Section 4, key components
of the platform are four databases for storing the
dialogue scenarios, the relevant entities and their
aliases for slot filling, the required external knowl-
edge for question answering, and reusable tem-
plates for response generation.

3.1 Dialogue Database

Dialogues created by the users of the platform (i.e.,
by domain experts not end-users) are stored in the
SQLite database Dialogues to support concurrent
modification. The dialogue database stores poten-
tial end-user utterances together with the respective

2https://deeppavlov.ai/

296

User Interface
Backend Server

Knowledge base
SQLite

Entities
SQLite

Slot Filling Response
GenerationGoal-Oriented Bot

User Interface
Web Browser

Dialogues
SQLite

Named Entity
Recognition

Templates
SQLite

Intent
Identification

Figure 1: Architecture of the platform. The selected (grey) part of the diagram is language-specific and can be
replaced or removed entirely.

intents, slot values and the corresponding bot ac-
tions.

Intents for the particular dialogue dataset are de-
fined in a separate view of the platform’s interface.
The predefined intents are linked to utterances dur-
ing the dialogue writing process (for details, see
Section 4) and later used for training. In our demon-
stration dialogue system, we use a Keras classifica-
tion model with Latvian fastText word embeddings
for intent detection.

The configurator of the platform uses a custom
data reader that reads training data from a custom-
schema SQLite database. The reason why SQLite
is used is the high modification rate produced by
the platforms’s user interface for dialogue editing.

3.2 Knowledge Base

The database Knowledge base stores the external
knowledge that is necessary for the dialogue sys-
tem to provide the answers to the end-users. Such
knowledge is usually dynamic and can change
while the dialogue system is deployed (e.g. work-
ing hours of the university personnel in our demon-
stration case).

3.3 Entity Database

For our use case, the named entity recognition
(NER) model combines a neural network model
and a rule-based model.

The neural network model is based on Latvian
BERT word embeddings (Znotins and Barzdins,

2020). To support entity classes of a particular do-
main, the NER model is trained on a larger general-
domain dataset (Gruzitis et al., 2018; Paikens et al.,
2020) and a smaller domain-specific dataset. The
combined model allows to recognize not only com-
monly used entity classes like persons, locations
and organizations, but also domain specific entities
like job positions and working hours.

The rule-based NER is based on the Aho-
Corasick algorithm (Aho and Corasick, 1975) with
additional regular expression rules to ensure entity
detection in various inflectional forms, as well as
detection of very specific domain entities like room
names and specific job positions that would not be
recognised otherwise due to the limited amount of
training data.

In our demonstration dialogue system, a custom
slot filler is implemented, which relies on normal-
ized entities returned by the NER module to be
directly filled in the respective slots.

The normalization is done in two steps. First,
after the recognition of named entities (NE), an
external NE normalization service is called, which
provides base forms for both single-word entities
and multi-word entities. Second, the database En-
tities is consulted to align the recognised and nor-
malised entities (entered by the end-user) with the
corresponding entities in the database. This also
includes resolving NE aliases (for more details see
Subsection 4.5).

297

3.4 Template Database
Responses to the end-user are generated using a
template-based approach which depends on the
recognised intent and slots. The response templates
support additional markup for slot filler inflection
that are replaced with the correctly inflected word
forms during the response generation step. In our
demonstration system, word forms are inflected
using a Latvian morphological analyser (Paikens
et al., 2013) as an external service. All template
data are stored in and reused from the database
Templates.

4 User Interface

In this section we present overall interface and con-
stituents (sub-windows) of our dialogue data prepa-
ration platform: the window for dialogue collec-
tion, the action template editing window, the knowl-
edge base preparation and management window,
the window for intent definition and the window
for creation and maintenance of slot filler aliases
(see Figure 2)3.

The user interface for data editing is powered by
Python HTTP backend that serves static files and
API calls. The backend modifies all four databases
directly and uses slotfiller to retrieve slots from
user interface. Frontend is written in Javascript and
VueJS, and is running inside a web browser.

4.1 Dialogue Collection Window
The central part of the dialogue collection platform
is the dialog collection window. The dialogue col-
lection window contains all dialogues submitted by
the user. The dialogues could be changed any time:

• by adding or deleting one or several utter-
ances,

• changing text of the utterance and correspond-
ing slot and intent values,

• changing corresponding dialogue act.

To enter a new dialogue user have to push ”Add
dialogue” button and write an utterance (Figure
3). By pushing button ”Extract”, entities (slots)
in user’s utterance are automatically identified by
the named entity recognizer, they are extracted
and grammatically normalised (see Subsection 3.3),

3Although the platform is currently being used to collect
dialogue samples in Latvian, in this paper we followed recom-
mendations from reviewers and included prototypical English
dialogue samples.

and, if necessary, semantically normalised (for de-
tails, see Subsection 4.5). Then user can specify
an intent and select an action that needs to be per-
formed by the dialogue system. When the action
of the dialogue system is selected, the expected
response from the bot is displayed to the user, al-
lowing to check the possible answer and change
it, in case a mistake has been identified (for details
see Subsection 4.2). The utterance entering pro-
cess continues until dialogue writing is completed.
After pushing ”Done” button the dialogue is being
add to the Dialogues SQLite database.

4.2 Action Definition and Editing

The action template window is used to define the ac-
tion performed by the dialogue system. For our pur-
poses we have introduced two types of actions: (1)
templates of bot answers for particular action and
(2) information retrieval request from the knowl-
edge base depending on identified slot values.

In the simplest case system’s action is a fixed ut-
terance, specified in action template window. How-
ever, in most cases dialogue action and answer
depends on previous actions and information gath-
ered from the user. Therefore we introduced mecha-
nisms allowing to generate context dependent gram-
matically correct slot values identified during the
dialogue. The slot values used for answer gener-
ation could be from the last utterance or previous
ones, as well as from bot’s previous answers.

For example, the template for action
’info working hours’, contains utterance template
’Working hours for #position of the #ORG
#PERSON: #time’, where ’#position’, ’#ORG’,
’#PERSON’ and ’#time’ represent slot values (en-
tities), identified during the dialogue or retrieved
from the knowledge base.

Action templates can also include form gen-
eration instructions which are very important
for fluent output generation in case of inflected
languages. For example, in the Latvian tem-
plate ’Kuras fakultātes position@g darbalaiku Jūs
vēlētos noskaidrot?’ (Which faculty #position@g
working hours you would like to know?) item #po-
sition represents slot (entity), identified during the
dialogue (e.g., dekāns (dean)), while ’@g’ requests
generation of the genitive form of this entity (e.g.,
dekāna instead of lemma dekāns).

When action requires information retrieval from
the database (template api call), the previously ex-
tracted information from user’s input (slots) is used

298

Figure 2: Overview of interface

to form request to the database (see Subsection 4.3).
For example, if answer to the previous question is

”Faculty of Computing”, then query to database will
ask for working hours of the dean of the Faculty of
Computing.

Similarly to dialogue utterances, actions and
their templates could be easily modified during
the dialogue writing process, new actions could be
added and unnecessary actions removed.

4.3 Knowledge Base Preparation

Goal-oriented dialogue systems often include
means for knowledge retrieval from database or
any other type of knowledge base. In some cases
database already exist, while often creation of
knowledge base is part of the dialog system build-
ing process. To ensure consistency between dia-
logues and information in database, the database
could be created, filled and modified during dia-
logue collection process.

The Knowledge base preparation and mainte-
nance window has very simple interface allowing
user to enter new entries, change the existing ones
or even modify database structure. To ensure con-
sistency between different information pieces of
the dialogue system, names of columns in database
needs to correspond to the entity types of the dia-
logue system.

4.4 Intents

For intent management, small and simple window
is created, allowing to add, modify and delete in-
tents. Intents defined in this window, are used dur-
ing dialogue writing process: they can be assigned
to each user’s utterance (for details see Subsection
4.1).

4.5 Creation and Maintenance of Slot Filler
Aliases

The common problem in dialogue systems that in-
clude knowledge retrieval, is incoherence between
entity in utterance submitted by user and correct
and normalised entity fixed in database. For in-
stance, when dialogue system asks to specify name
of particular organization, user can enter its abbre-
viation (e.g., ”DF” or ”FC” instead of Faculty of
Computing), commonly used shortened form, use
jargon or make spelling errors (e.g., errors in capi-
talization - faculty of computing instead of Faculty
of Computing). To overcome this bottleneck we
introduce entity alias management window, where
user can specify official (normalised) form of the
entity which has been stored in knowledge base
and its typical aliases (see Figure 4).

Similarly to other windows of this platform, the
entity editing window allows to add, edit and delete
entities and their aliases. Each ”official” entity
could have several aliases (synonyms). We also

299

Figure 3: Demonstration of dialogue preparation - ut-
terance writing, slot filling, intent identification and re-
trieval from the database

keep entity type, in case the same string belongs to
several types.

5 Conclusion

In this paper, we have presented a configurable
platform for dialogue collection that supports syn-
chronization of information necessary for building
a goal-oriented dialogue system, besides specifica-
tion of dialogue scripts.

The presented platform is publicly available4.
It has been used for creation of Latvian-specific
dataset of dialogues between students and a stu-
dent service. Following recommendations from
reviewers the platform is currently demonstrated
on prototypical English dialogue samples, demon-

4http://bots.ailab.lv/

Figure 4: Window for creation and maintenance of slot
filler aliases

strating its scalability to other languages. We will
add a short walkthrough video demonstrating the
main features of the platform.

The next development tasks include simple ex-
port of dialogue data in commonly used formats to
facilitate experiments with various neural dialogue
system architectures, and support for a one-click
re-training process which currently is implemented
as separate background process.

Acknowledgments

This research is funded by the Latvian Council of
Science project “Latvian Language Understanding
and Generation in Human-Computer Interaction”,
project No. lzp2018/2-0216.

References
AV Aho and MJ Corasick. 1975. Fast pattern matching:

an aid to bibliographic search. Communications of
ACM, 18(6):333–340.

Jerome R. Bellegarda. 2013. Large-Scale Personal As-
sistant Technology Deployment: The Siri Experi-
ence. In INTERSPEECH 2013, 14th Annual Confer-
ence of the International Speech Communication As-
sociation, Lyon, France, August 25-29, 2013, pages
2029–2033. ISCA.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
man, and Milica Gašić. 2018. MultiWOZ - A Large-
Scale Multi-Domain Wizard-of-Oz Dataset for Task-
Oriented Dialogue Modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Normunds Gruzitis, Lauma Pretkalnina, Baiba Saulite,
Laura Rituma, Gunta Nespore-Berzkalne, Arturs
Znotins, and Peteris Paikens. 2018. Creation of

300

a Balanced State-of-the-Art Multilayer Corpus for
NLU. In Proceedings of the 11th International
Conference on Language Resources and Evaluation
(LREC), pages 4506–4513.

Samuel Louvan and Bernardo Magnini. 2020. Recent
Neural Methods on Slot Filling and Intent Classifi-
cation for Task-Oriented Dialogue Systems: A Sur-
vey. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 480–
496, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Haruna Ogawa, Hitoshi Nishikawa, Takenobu Toku-
naga, and Hikaru Yokono. 2020. Gamification
platform for collecting task-oriented dialogue data.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 7084–7093, Mar-
seille, France. European Language Resources Asso-
ciation.

Peteris Paikens, Laura Rituma, and Lauma Pretkalnina.
2013. Morphological analysis with limited re-
sources: Latvian example. In Proceedings of the
19th Nordic Conference of Computational Linguis-
tics (NODALIDA).

Peteris Paikens, Arturs Znotins, and Guntis Barzdins.
2020. Human-in-the-Loop Conversation Agent for
Customer Service. In Natural Language Processing
and Information Systems, volume 12089, pages 277–
284. Springer.

Iulian Serban, Ryan Lowe, Peter Henderson, Laurent
Charlin, and Joelle Pineau. 2018. A Survey of Avail-
able Corpora for Building Data-Driven Dialogue
Systems. ArXiv, abs/1512.05742.

Inguna Skadina and Didzis Gosko. 2020. Towards
Hybrid Model for Human-Computer Interaction in
Latvian. In Human Language Technologies - The
Baltic Perspective, volume 328, pages 103 – 110.
IOS Press.

Joseph Weizenbaum. 1966. ELIZA—a Computer Pro-
gram for the Study of Natural Language Communi-
cation between Man and Machine. Commun. ACM,
9(1):36–45.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Guangtao Zeng, Wenmian Yang, Zeqian Ju, Yue Yang,
Sicheng Wang, Ruisi Zhang, Meng Zhou, Jiaqi
Zeng, Xiangyu Dong, Ruoyu Zhang, Hongchao
Fang, Penghui Zhu, Shu Chen, and Pengtao Xie.
2020. MedDialog: Large-scale medical dialogue
datasets. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 9241–9250, Online. Associa-
tion for Computational Linguistics.

Arturs Znotins and Guntis Barzdins. 2020. LVBERT:
Transformer-Based Model for Latvian Language Un-
derstanding. In Human Language Technologies -
The Baltic Perspective, volume 328, pages 111–115.
IOS Press.

301

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 302–311
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Which is Better for Deep Learning: Python or MATLAB?
Answering Comparative Questions in Natural Language

Viktoriia Chekalina1,2, Alexander Bondarenko3, Chris Biemann4, Meriem Beloucif4,
Varvara Logacheva2, and Alexander Panchenko2

1Philips Research Russia
2Skolkovo Institute of Science and Technology, Russia
3Martin-Luther-Universität Halle-Wittenberg, Germany

4Universität Hamburg, Germany
{viktoriia.chekalina, v.logacheva, a.panchenko}@skoltech.ru

alexander.bondarenko@informatik.uni-halle.de
{biemann, beloucif}@informatik.uni-hamburg.de

Abstract

We present a system for answering compara-
tive questions (Is X better than Y with respect
to Z?) in natural language. Answering such
questions is important for assisting humans in
making informed decisions. The key compo-
nent of our system is a natural language inter-
face for comparative QA that can be used in
personal assistants, chatbots, and similar NLP
devices. Comparative QA is a challenging
NLP task, since it requires collecting support
evidence from many different sources, and di-
rect comparisons of rare objects may be not
available even on the entire Web. We take the
first step towards a solution for such a task of-
fering a testbed for comparative QA in natu-
ral language by probing several methods, mak-
ing the three best ones available as an online
demo.

1 Introduction

Comparison of objects of a particular class (e.g.,
holiday destinations, mobile phones, programming
languages) is an essential daily task that many in-
dividuals require every day. According to Bon-
darenko et al. (2020a), comparative questions con-
stitute around 3% of queries submitted to major
search engines—a non-negligible amount. Answer-
ing a comparative question (What is better, X or Y?)
requires collecting and combining facts and opin-
ions about compared objects from various sources.
This challenges general-purpose question answer-
ing (QA) systems that rely on finding a direct an-
swer in some existing datasets or extracting from
web documents.

Nowadays, many websites (e.g. Diffen, Wolphra-
mAlpha, or Versus) provide users with a compari-
son functionality. Furthermore, the task of answer-
ing comparative questions has recently attracted the

attention of the research community (Kessler and
Kuhn, 2014; Arora et al., 2017; Yang et al., 2018).
Most of the current research suggests that an an-
swer to a comparative question not only should in-
dicate the “winner” of comparison but also provide
arguments in favor of this decision and arguments
that support the alternative choice.

Therefore, we argue that a comparative QA sys-
tem should be a combination of an argument min-
ing engine and a dialogue system that mimics a
human expert in the field. In this work, we make
the first step towards the development of such
technology. Namely, we develop a Comparative
Question Answering System (CoQAS), an appli-
cation that consists of a Natural Language Under-
standing (NLU) module that identifies compara-
tive structures (objects, aspects, predicates) in free
input questions and a Natural Language Genera-
tion (NLG) module that constructs an answer. We
tested various options for both NLU and NLG parts
ranging from a simple template-based generation
to Transformers-based language models.

The main contributions of our work are three-
fold: (i) we design an evaluation framework for
comparative QA, featuring a dataset based on Ya-
hoo! Answers; (ii) we test several strategies for
identification of comparative structures and for an-
swer generation; (iii) we develop an online demo
using three answer generation approaches. A demo
of the system is available online.1 Besides, we
release our code and data.

2 Related Work

Text Generation Most of the current text natu-
ral language generation tasks (Dušek and Jurčı́ček,
2016; Freitag and Roy, 2018) are based on se-

1https://skoltech-nlp.github.io/coqas

302

quence to sequence model architecture (Sutskever
et al., 2014). The existing generation methods
are developed by employing attention mechanism
(Bahdanau et al., 2015) and pointer-generator net-
work (See et al., 2017). More recent work on text
generation focus on generating natural language
using multitask learning from multi-document or
multi-passage sources (Hsu et al., 2018; Nishida
et al., 2019). However, in our generation task, we
have a list of arguments used to build the final an-
swer. This makes our task similar to unsupervised
summarization. There exist several approaches for
tackling the latter task, e.g. graph-based (Litvak
and Last, 2008) and neural models (Isonuma et al.,
2019; Coavoux et al., 2019). A common approach
to summarization is based on the TextRank graph
algorithm (Mihalcea, 2004; Fan and Fang, 2017).

Comparative QA According to Li and Roth
(2006), questions can be divided into 6 coarse and
50 fine-grained categories, such as factoid ques-
tions, list questions, or definition questions: we
focus on comparative questions. Sun et al. (2006)
proposed one of the first works on automatic com-
parative web search, where each object was sub-
mitted as a separate query, then obtained results
were compared. Opinion mining of comparative
sentences is discussed by Ganapathibhotla and Liu
(2008) and Jindal and Liu (2006), yet with no con-
nection to argumentation mining. Instead, compara-
tive information needs are partially satisfied by sev-
eral kinds of industrial systems mentioned above.
Schildwächter et al. (2019) proposed Comparative
Argumentative Machine (CAM)2, which a compar-
ison system based on extracting and ranking argu-
ments from the web. The authors have conducted a
user study on 34 comparison topics, showing that
the system is faster and more confident at finding
arguments when answering comparative questions
in contrast to a keyword-based search. Wachsmuth
et al. (2017) presented args.me, a search engine for
retrieving pro and con arguments given for a given
controversial topic. The input to this system is not
structured but rather a query in a free textual form.
The Touché shared task on argument retrieval at
CLEF (Bondarenko et al., 2020b, 2021) featured
a related track. The task was to retrieve from a
large web corpus documents answering compara-
tive question queries like “What IDE is better for
Java: NetBeans or Eclipse?”.

2https://ltdemos.informatik.
uni-hamburg.de/cam

Python or MATLAB for
Deep Learning?

Objects:
 - Python
 - MATLAB

Aspects:
- Deep Learning

Sequence tagging:
CRF / LSTM / BERT

...

Natural Language
Understanding

CAM / args.me /
Touché ...

Python
Pros:
- ...
- ...
Cons:
- ...

MATLAB
Pros:
- ...
- ...
Cons:
- ...

We chose
Python because
it was easy to
learn and fun to
work with. It has
a large
community of ...

Comparative Argument Retrieval

Templates / CTRL /
Snippets / ...

Natural Language
Generation

Comparative Question Answering (this work)

Figure 1: The comparative QA workflow. A user sub-
mits a comparative question, the NLU module identi-
fies compared objects and aspects and transfers them
to CAM to retrieves comparative arguments. Then, the
NLG module represents the arguments in textual form.

3 System Design

Our system is designed to help the user make a
proper choice by fully and reasonably describing
the possible advantages and disadvantages of each
of the matching options. For this purpose, we have
defined structures that contain significant informa-
tion about the desired comparison: compared ob-
jects, comparison aspects, and predicates.

In the example “Which is better for Deep Learn-
ing: Python or MATLAB?”, the objects are entities
that the user wants to compare (Python, MATLAB).
The predicate is the entity that frames the compar-
ison (better); it introduces a comparison relation
between the objects and is often represented by a
comparative adjective or adverb. Finally, the com-
parison aspects are shared properties along which
the two objects are compared, e.g., Deep Learning.

Our comparative question answering system is
based on CAM (Schildwächter et al., 2019), which
retrieves pro/con arguments for a pair of compared
objects. We extend CAM by enabling it to process
natural language questions and generate coherent
human-like answers as depicted in Figure 1.

Comparative Argument Mining CAM mines
sentences in favor or against two compared objects

303

Enter a comparative question

Which is better for Deep Learning: Python or MATLAB? Model to generate with

CTRL

Answer

Which is better PRED for Deep ASP Learning: Python OBJ or MATLAB OBJ ?

We chose Python OBJ because it was easy PRED to learn ASP and fun to work with. It has a large community of developers who are

always willing to help each other out. In addition, the standard library makes developing applications with Python OBJ very easy.The downside

is, that you have to be careful when using it. If you’re not careful, you’ll end up writing code which will crash your computer if something goes
wrong. You also need to know how to use libraries like numpy in order to get good results.

Comparative Question Answering System Github

Figure 2: The interface of the Comparative Question Answering System (CoQAS).

with respect to an aspect specified by the user. First,
using the Elasticsearch BM25, CAM retrieves sen-
tences containing the two compared objects and the
comparison aspect from the Common Crawl-based
corpus featuring 14.3 billion sentences (Panchenko
et al., 2018). Then, CAM classifies the sentences
as comparative or not and identifies the “winner” of
the two compared objects in the sentence context.
Besides, it extracts aspects and predicates from the
retrieved comparative sentences (Panchenko et al.,
2019). Finally, CAM outputs a list of argumenta-
tive pro/con sentences and shows the “winner” of
the comparison along with the comparison aspects.

Comparative Question Answering We extend
CAM with natural language question understand-
ing (described in Section 4) and natural language
answer generation (described in Section 5) mod-
ules. The first module is developed to automatically
identify the compared objects and the comparison
aspect in a user-provided natural-language compar-
ative question. This information is passed to CAM,
which queries DepCC for comparative sentences.
The NLG module receives the output of CAM and
transforms the retrieved argumentative sentences
into a short text, the generated answer. The struc-
ture of our modular system is presented in Figure 1.

The user interface (Figure 2) contains an input
form for submitting a comparative question and
an output box for a generated answer. To improve
the readability of the answer and help find the ar-
guments in it, NLU module also labels the output
with identified objects, aspects, and predicates. In
Figure 2, we present an example of the system’s

web interface in action.
In the NLG module, we use several approaches

to response generation: an information retrieval-
based approach and an approach built upon pre-
trained language models. These techniques pro-
vide different answers: the first is more structured,
and the second one is based on experience and
opinions. Therefore, we allow a user to choose
a generation model from different types: CAM,
CTRL, and Snippets (cf. Figure 2).

Finally, for integration into NLP applications,
e.g., personal assistants and chatbots, we also pro-
vide a RESTful API for our comparative QA.

4 Natural Language Understanding

The goal of the NLU module is to identify the ob-
jects to compare and comparison structure aspects
and predicates if they were specified. We cast this
as a sequence labeling task.

Training Dataset To train the NLU, we created
Comparely, a dataset with comparative sentences
manually labeled with objects, aspects, and pred-
icates. First, we extracted comparative sentences
for 270 object pairs from the dataset of (not) com-
parative sentences by Panchenko et al. (2019). We
extracted them from DepCC corpus (Panchenko
et al., 2018) using CAM. We then performed man-
ual labeling (two annotators) using WebAnno (Yi-
mam et al., 2013). Some of the extracted sentences
were not comparative, so the annotators were in-
structed to discard them. The majority of sentences
were labeled once, but we also labeled 200 of them
multiple times to compute the inter-annotator agree-

304

Table 1: Statistics of the NLU dataset.

Object Aspect Predicate

occurrences 7,555 2,593 3,990
per sentence 2.51 1.35 1.34
Avg. # words 1.04 1.37 1.16

ment. The Cohen’s κ for the aspect labeling is 0.71
(substantial agreement). For predicates and objects,
the values are 0.90 and 0.93, respectively—perfect
agreement. The dataset consists of 3,004 sentences,
each of them has a comparison of two or more dis-
tinct objects and at least one aspect or predicate.
The average length of sentence is 26.7 words (Ta-
ble 1). The majority of sentences compare more
than one pair of objects across multiple parameters
(i.e., sentences often contain more than one aspect
or predicate). As the NLU processed not state-
ments but questions, for the further improvement
of the dataset, we could use comparative questions
from (Bondarenko et al., 2020a).

This dataset is essentially similar to the ones
by (Arora et al., 2017; Kessler and Kuhn, 2014).
They also contain comparative statements labeled
with objects, aspects, and predicates. The primary
difference of our dataset is domain diversity. The
mentioned datasets are drawn from a single do-
main, namely, camera reviews. The information
contained in such sentences is difficult to gener-
alize. Thus, they demonstrate a proof of concept
rather than a resource that can be used for real-
world tasks. On the other hand, Comparely fea-
tures objects of different domains. It was created
based on real-world objects that are frequently com-
pared. It contains data from three domains: brands,
generic objects, and computer science. The two
former domains are more numerous: 41% and 46%
sentences deal with objects of brands and generic
domains, respectively. The remaining 13% are de-
voted to objects of the computer science domain.

Method Identification of comparative question
components (objects, aspects, predicates, or none)
is a sequence-labeling task, where the classifier
should tag respective tokens in an input question.
We test several common baselines starting with
simple one-layer bidirectional LSTM described
by (Arora et al., 2017) where the input is encoded
with GloVe (Pennington et al., 2014) embeddings.
For some further improvements, we add Condi-
tional Random Field (Sutton and McCallum, 2012)

Table 2: Evaluation in terms of F1 of the NLU tagger.

Model Objects Aspects Predicates

RoBERTa 0.925 0.685 0.894
BERT 0.829 0.563 0.869
ELMO 0.654 0.487 0.825
BiLSTM-CRF 0.631 0.475 0.766
BiLSTM 0.582 0.328 0.730

to LSTM and use context-based ELMO (Peters
et al., 2018) embeddings for token representations.
We also experiment with Transformers (Vaswani
et al., 2017) using a pre-trained BERT model (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
which is its modification yielding better perfor-
mance. For every classifier, during training, we
tune hyperparameters by varying a batch size (from
16 to 100) and a learning rate (from 10−6 to 10−2).
To find a proper converge of the training process,
we apply two types of learning rate schedulers: Lin-
ear With Warmup and Slanted Triangular.

For the model with the highest achieved F1
(RoBERTa), we employ stochastic weight ensem-
bling (Goodfellow et al., 2015; Garipov et al.,
2018), i.e., we interpolate between the weights
obtained by training a certain model with differ-
ent random seeds. All models were trained on the
Comparely dataset and tested on its manually re-
labeled subset of 400 sentences. The overview of
the classifiers’ effectiveness is shown in Table 2.

Results and Discussion The evaluation shows
that comparison aspect classification is the hardest
task: the baseline one-layer BiLSTM achieves an
F1 of 0.33, and the most effective RoBERTa-based
classifier achieves an F1 of 0.69. The most reli-
able classification was achieved for predicting the
compared objects with an F1 of 0.58 for the base-
line and an F1 of 0.93 for RoBERTa. An addition
of a CRF layer and the use of pre-trained ELMo
embeddings to the BiLSTM classifier slightly im-
proved the results. Transformers demonstrated sig-
nificant improvement in classification effectiveness
over the baseline. Finally, we choose to deploy a
RoBERTa-based classifier in the NLU module of
our system.

5 Comparative Answer Generation

Based on comparative sentences retrieved by CAM,
we develop several generation approaches to con-
struct a human-like concise answer: (1) genera-

305

Figure 3: Dependence of ROUGE metrics on the maximum length of the generated sequence (CTRL model).

tion with pre-trained Transformers-based language
models, (2) retrieval of argumentative sentences
ranked by CAM or TextRank, (3) extracting con-
text of sentence retrieved by CAM as support for
the “winning” object, and (4) entering extracted
comparative structures in templates.

5.1 Generation Methods

Pre-trained Language Models Pre-trained lan-
guage models have been shown to contain common-
sense knowledge, so they can be successfully used
for question answering (Andrews and Witteveen,
2019) and for generating sensible and coherent con-
tinuation of text. Therefore, we use Transformers-
based CTRL (Keskar et al., 2019) models for an-
swering comparative questions.

CTRL allows explicit control codes to vary the
domain and the content of the text. We use the
Links control code, which forces the model to pro-
duce text similar to online news and reports. We
feed into CTRL phrase “Links Which is better in
respect to the aspect: object1 or object2?” and a
row question from the input.

We also vary the maximum number of tokens
generated by CTRL. We experiment with differ-
ent length set, including: 20, 50, 100, 150, and
200 and generate answers to questions from the
Yahoo! Answers dataset (cf. Section 5.2). For the
evaluation part, we calculate ROUGE-1, ROUGE-
2, ROUGE-3 scores between generated texts and
corresponding Yahoo!’s “best answers”. Accord-
ing to the results (cf. Figure 3), a model with a
maximum length of 100 tokens gives the highest
ROUGE-3 score (we select this length parameter
for our further experiments).

Sentence-Retrieval-Based Methods The CAM
output contains a list of the argumentative sen-
tences ranked by the BM25 inverted index-based
score. Every sentence is a supportive argument for
the superiority of the respective compared object.
Sentence-retrieval-based methods try to extract the

most representative sentences and display it in the
proper form. To create an answer, CAM: Bullet
points mentions a “winner” defined by CAM with
respect to aspects if they exist. It also takes the
top-3 sentences supporting each of the objects and
produces a list for highlighting the advantages and
disadvantages of each object in comparison.

An alternative way of retrieving the most rel-
evant sentences is clustering. This approach is
used in TextRank: Bullet points. TextRank is a
graph-based summarization algorithm. We use the
version proposed by Mallick et al. (2019). We
represent sentences with hidden states of a LSTM
network pre-trained on Wikipedia. TextRank iter-
atively updates the weights of edges and sets the
node weights to be proportional to the importance
of adjacent edges. To make the graph sparse, we
remove the edges with a score below average.

We create separate graphs for sentences support-
ing each of the objects. We apply TextRank to each
of them and then cluster them. Clustering divides
the nodes in graphs by semantic similarity and thus
allows identifying groups of sentences supporting
a particular idea. Then, we apply TextRank again
to each of the clusters separately and select the
three most characteristic sentences from each clus-
ter as produced by Chinese Whispers (Biemann,
2006), an iterative clustering algorithm, which as-
signs vertices to the most common class among
their neighbors. Argumentative sentences selected
in this way are displayed as a bullet-list after declar-
ing the “winner” object of comparison.

Document-Retrieval-Based Method To com-
pose an answer, CAM: First snippets takes the first
sentence related to the “winner” object in CAM
output. Then it finds a document corresponding to
this sentence and extracts the surrounding context.
The obtained context consists of 3 sentences and is
considered to be a system answer.

306

Table 3: Evaluation of generation methods on the Yahoo! Answers. The best models of each type are highlighted.

Method Type ROUGE-1 ROUGE-2 ROUGE-3

CTRL: Question, len≤100 Language Model 0.2423 0.0226 0.0023
CTRL: Which-better-x-y-for-z, len≤100 Language Model 0.2454 0.0200 0.0021

CAM: First snippets Doc.Retrieval 0.2162 0.0167 0.0017

CAM: Bullet points Sent.Retrieval + Slots 0.2298 0.0328 0.0040
TextRank: Bullet points Sent.Retrieval + Slots 0.2203 0.0238 0.0036

Templates Object/Aspect Slots 0.1969 0.0195 0.0016

Template-Based Answer Besides the argumen-
tative sentences, CAM extracts aspects and pred-
icates from them. The predicates are adjectives
or adverbs, which allows using templates of the
following form: “I would prefer to use Object1
because it is Predicate1 and Predicate2. In addi-
tion, it is Predicate3, ..., and Predicatei. However,
you should also take into account that Object2 is
Predicatei+1, ..., and Predicatek”. Here Object1 is
the winner of comparison.

5.2 Experiments

Evaluation Dataset To evaluate the answer gen-
eration module of our system, we use information
extracted from Yahoo! Answers. Namely, we get
a subset of L6–Yahoo! Answers Comprehensive
Questions and Answers version 1.0 (multi-part)
retrieved from Yahoo! Webscope. We take pairs
of objects that we used for generating Compar-
ely and extract a subset of questions from the Ya-
hoo! Answers dataset which contains these objects,
yielding 1,200 questions.

Additionally, we extract the answers to these
questions, which are labeled by users as “best an-
swer”, and use them to evaluate our NLG methods.

Evaluation Metric Generated and reference
texts are usually compared by a number of matched
N-grams: BLUE (precision), ROUGE (recall), ME-
TEOR (F-score). For the all-round representation
of the similarity of the text, we select F1 score
from ROUGE-N outputs as an evaluation met-
ric. We evaluate our generation models on the
Yahoo! Answers dataset using the “best answer”
(defined by users) as the reference.

Discussion of Results Evaluation results are pro-
vided in Table 3. CTRL models receive the highest
ROUGE-1 scores that describe overlapping of sin-
gle words, and CTRL’s high performance relative
to it can be explained by the fact that the pre-trained

language model stores information about a vast
dictionary and, with some probability, yields the
words that are placed in the standard answer. While
the language-model-based system may yield gram-
matically correct answers, they may not necessarily
satisfy the information need of the user. For exam-
ple, the CTRL answers the question “What should
I eat an orange or an apple?” with “It is simple: eat
what you like and don’t worry about it.”

Despite having low ROUGE-1, sentence
retrieval-based approaches (Text Rank: Bullet
points, CAM: Bullet points) have consistently
higher ROUGE-2 and ROUGE-3. The generated
answers are more structured and built on sentences
marked by the system as comparative. They often
contain typical 2-gram and 3-gram sequences as
found in explanations. Answers from CAM: First
snippets, consisting of a single comparative sen-
tences only, perform worse on all metrics. Interest-
ingly, CAM: Bullet points has better performance
than TextRank: Bullet points. It could indicate that
modeling relevance by a standard index provides
more accurate results than clustering. Meanwhile,
template-based generation performs poorly. This
indicates that the grammatical structure is essential
for the answer generation task.

We choose 50 random sentences from the Ya-
hoo! Answers dataset as described in Section 6 and
calculate ROUGE-N scores for every generation
method and Yahoo!’s “best answers”. For each
group of methods, we select one providing the best
result—CTRL: Question 100, CAM: First snippets,
and CAM: Bullet points—and add them to the sys-
tem demonstration engine.

6 User Study

To additionally evaluate the proposed answer gener-
ation methods, we also collect human assessments
in a small user study for the three models with
the highest ROUGE scores (CTRL: Question 100,

307

Table 4: User study results for answer completeness and fluency (30 questions, 3-point Likert scales).

Answers a question (%) Answer fluency (%)

Method Complete Partial Does not Complete Partial Not fluent

Yahoo! Best Answer 62 28 10 86 6 8
CTRL: Question 100 30 37 33 80 12 8
CAM: Bullet points 28 58 14 22 48 30
CAM: First snippets 23 49 28 27 38 35

CAM: Bullet points, and CAM: First snippets).

Experimental Setup For our study, we ran-
domly sampled 30 comparative questions from
the Yahoo! Answers dataset and generated an-
swers using three methods: CTRL: Question 100,
CAM: Bullet points, and CAM: First snippets. Ad-
ditionally, since we used Yahoo!’s “best answers”
as ground truth for automatic evaluation, we asked
our participants to also assess the quality of the
human “best answers”. For the user study, we in-
ternally recruited five (under-)graduate students.
We focused on the two answer evaluation criteria:
(1) Whether an answer is complete (“Does it an-
swer the question?”) and (2) how fluently it is writ-
ten. The 120 question–answer pairs (3 generated
answers and Yahoo!’s “best answer” for 30 ques-
tions) were randomly ordered, and the participants
had to rate the answer completeness and fluency on
a three-point Likert scale (3: fully answers/fluent,
2: partially answers/fluent, and 1: does not an-
swer/not fluent at all).

Results and Discussion The inter-annotator
agreement shows a slight overall agreement be-
tween the five annotators (Fleiss’ κ = 0.20 for an-
swer completeness and κ = 0.13 for fluency) such
that we decided to increase the reliability by calcu-
lating the κ-scores for all combinations of three or
four annotators. We then decided to include only
the three participants with the highest agreement
(κ = 0.32 for answer completeness and 0.30 for
fluency; both fair agreement) and to remove the
two “outlier” participants from the study.

Table 4 summarizes the study results as the ra-
tio of votes collected from the three annotators
(we cannot use majority voting since about 60%
of the question-answer pairs do not have a ma-
jority vote). Not surprisingly, the human-written
answers are perceived as the most complete and flu-
ent. The participants were almost equally satisfied
with the answers generated by CTRL: Question 100

and CAM: Bullet points. However, they assessed
the CTRL answers as much more fluent. Inter-
estingly, the relatively low inter-annotator agree-
ment might indicate that humans have different
perceptions of answer completeness and fluency
(even some “best answers” were rated as incom-
plete and not fluent). For completeness, we calcu-
lated the statistical significance of the user study
results using Bonferroni corrected p-values. For the
pair CTRL: Question 100 (our best NLG model)
and the Yahoo! Best Answer: p � 0.05 for the
answer completeness and p � 0.05 for the an-
swer fluency. For the CTRL model, Pearson’s
r = 0.121 between the answer completeness and
fluency (small correlation), and for the “best an-
swers”, r = 0.407 (medium correlation). The re-
sults show that our proposed system is almost as
fluent as the human-written answers but still needs
some improvement in terms of adequacy.

7 Conclusion

We present a comparative question answering sys-
tem targeted at answering comparative questions,
such as “Is X better than Y with respect to Z?”.
Our system is based on the Comparative Argument
Mining (CAM) system—a tool that retrieves from
a large corpus textual comparative arguments for
two to-be-compared objects. We extend CAM with
an NLU module that identifies objects and aspects
in a user textual query and highlights them in the
answer, and a generation module that gives a con-
cise and coherent answer based on the retrieved
information. Evaluation of generation methods
showed that a CTRL-based answer generation has
a better performance with respect to ROUGE-1,
and Sentence Retrieval Methods provide superior
ROUGE-2 and ROUGE-3 scores. We hope that
the presented testbed for comparative QA and the
set of baseline approaches will pave the way for
further research.

308

Acknowledgments

This work was partially supported by the DFG
through the project “ACQuA: Answering Compara-
tive Questions with Arguments” (grants BI 1544/7-
1 and HA 5851/2-1) as part of the priority program
“RATIO: Robust Argumentation Machines” (SPP
1999). The demo is hosted using the Zhores su-
percomputer infrastructure (Zacharov et al., 2019).
We thank the following Skoltech students who con-
ducted several preliminary experiments related to
this work as a part of their research assignments:
Anna Shalova, Nikita Borovkov, Filipp Furaev,
and Anton Razzhigaev. Finally, we thank Artem
Shelmanov for providing a training script for the
RoBERTa-based sequence tagger.

References
Martin Andrews and Sam Witteveen. 2019. Unsuper-

vised natural question answering with a small model.
In Proceedings of the Second Workshop on Fact Ex-
traction and VERification (FEVER), pages 34–38,
Hong Kong, China.

Jatin Arora, Sumit Agrawal, Pawan Goyal, and Sayan
Pathak. 2017. Extracting entities of interest from
comparative product reviews. In Proceedings of
the 2017 ACM on Conference on Information and
Knowledge Management, CIKM ’17, pages 1975–
1978, New York, NY, USA. Association for Com-
puting Machinery.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Chris Biemann. 2006. Chinese whispers - an efficient
graph clustering algorithm and its application to nat-
ural language processing problems. In Proceedings
of TextGraphs: the First Workshop on Graph Based
Methods for Natural Language Processing, pages
73–80, New York City. Association for Computa-
tional Linguistics.

Alexander Bondarenko, Pavel Braslavski, Michael
Völske, Rami Aly, Maik Fröbe, Alexander
Panchenko, Chris Biemann, Benno Stein, and
Matthias Hagen. 2020a. Comparative web search
questions. In Proceedings of the 13th ACM In-
ternational Conference on Web Search and Data
Mining (WSDM 2020), pages 52–60, Houston, USA.
Association for Computing Machinery.

Alexander Bondarenko, Maik Fröbe, Meriem Be-
loucif, Lukas Gienapp, Yamen Ajjour, Alexander
Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, and Matthias Hagen.

2020b. Overview of Touché 2020: Argument re-
trieval. In Working Notes Papers of the CLEF 2020
Evaluation Labs, volume 2696 of CEUR Workshop
Proceedings.

Alexander Bondarenko, Lukas Gienapp, Maik Fröbe,
Meriem Beloucif, Yamen Ajjour, Alexander
Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, and Matthias Hagen.
2021. Overview of Touché 2021: Argument
retrieval. In Proceedings of the 43rd European
Conference on IR Research (ECIR 2021), volume
12036 of Lecture Notes in Computer Science, Berlin
Heidelberg New York. Springer.

Maximin Coavoux, Hady Elsahar, and Matthias Gallé.
2019. Unsupervised aspect-based multi-document
abstractive summarization. In Proceedings of the
2nd Workshop on New Frontiers in Summarization,
pages 42–47, Hong Kong, China. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, pages 4171–4186. As-
sociation for Computational Linguistics.

Ondřej Dušek and Filip Jurčı́ček. 2016. A context-
aware natural language generator for dialogue sys-
tems. In Proceedings of the 17th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 185–190, Los Angeles, CA, USA. As-
sociation for Computational Linguistics.

Qiaoqing Fan and Yu Fang. 2017. An answer summa-
rization method based on keyword extraction. In
BIO Web of Conferences, volume 8, pages 30–37.
EDP Sciences.

Markus Freitag and Scott Roy. 2018. Unsupervised
natural language generation with denoising autoen-
coders. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3922–3929, Brussels, Belgium. Association
for Computational Linguistics.

Murthy Ganapathibhotla and Bing Liu. 2008. Mining
opinions in comparative sentences. In Proceedings
of the 22nd International Conference on Compu-
tational Linguistics (Coling 2008), pages 241–248,
Manchester, UK. Coling 2008 Organizing Commit-
tee.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. 2018. Loss
surfaces, mode connectivity, and fast ensembling of
dnns. In Advances in Neural Information Process-
ing Systems, volume 31, Montreal, Quebec, Canada.
Curran Associates, Inc.

309

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe.
2015. Qualitatively characterizing neural network
optimization problems.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, volume 1, pages 132–141, Mel-
bourne, Australia. Association for Computational
Linguistics.

Masaru Isonuma, Junichiro Mori, and Ichiro Sakata.
2019. Unsupervised Neural Single-Document Sum-
marization of Reviews via Learning Latent Dis-
course Structure and its Ranking. In Proceedings
of the 57th Conference of the Association for Com-
putational Linguistics, ACL 2019, pages 2142–2152,
Florence, Italy. Association for Computational Lin-
guistics.

Nitin Jindal and Bing Liu. 2006. Mining compara-
tive sentences and relations. In Proceedings, The
Twenty-First National Conference on Artificial Intel-
ligence and the Eighteenth Innovative Applications
of Artificial Intelligence Conference, pages 1331–
1336, Boston, Massachusetts. Innovative Applica-
tions of Artificial Intelligence (AAAI) Press.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL: A conditional transformer language model
for controllable generation. CoRR, abs/1909.05858.

Wiltrud Kessler and Jonas Kuhn. 2014. A corpus of
comparisons in product reviews. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2242–
2248, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering, 12(3):229–249.

Marina Litvak and Mark Last. 2008. Graph-based
keyword extraction for single-document summariza-
tion. In Coling 2008: Proceedings of the work-
shop Multi-source Multilingual Information Extrac-
tion and Summarization, pages 17–24, Manchester,
UK. Coling 2008 Organizing Committee.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Chirantana Mallick, Ajit Kumar Das, Madhurima
Dutta, Asit Kumar Das, and Apurba Sarkar. 2019.
Graph-based text summarization using modified tex-
trank. In Soft Computing in Data Analytics, pages
137–146. Springer.

Rada Mihalcea. 2004. Graph-based ranking algo-
rithms for sentence extraction, applied to text sum-
marization. In Proceedings of the ACL Interactive
Poster and Demonstration Sessions, pages 170–173,
Barcelona, Spain. Association for Computational
Linguistics.

Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazu-
toshi Shinoda, Atsushi Otsuka, Hisako Asano, and
Junji Tomita. 2019. Multi-style generative reading
comprehension. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2273–2284, Florence, Italy. Associa-
tion for Computational Linguistics.

Alexander Panchenko, Alexander Bondarenko, Mirco
Franzek, Matthias Hagen, and Chris Biemann. 2019.
Categorizing comparative sentences. In Proceed-
ings of the 6th Workshop on Argument Mining, pages
136–145, Florence, Italy. Association for Computa-
tional Linguistics.

Alexander Panchenko, Eugen Ruppert, Stefano Far-
alli, Simone P. Ponzetto, and Chris Biemann.
2018. Building a web-scale dependency-parsed cor-
pus from CommonCrawl. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), pages 1816–
1823, Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, pages 2227–2237.
Association for Computational Linguistics.

Matthias Schildwächter, Alexander Bondarenko, Ju-
lian Zenker, Matthias Hagen, Chris Biemann, and
Alexander Panchenko. 2019. Answering compara-
tive questions: Better than ten-blue-links? In Pro-
ceedings of the 2019 Conference on Human Informa-
tion Interaction and Retrieval (CHIIR 2019), pages
361–365. Association for Computing Machinery.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, volume 1, pages 1073–1083, Vancouver,
Canada. Association for Computational Linguistics.

Jian-Tao Sun, Xuanhui Wang, Dou Shen, Hua-Jun
Zeng, and Zheng Chen. 2006. CWS: A compara-
tive web search system. In Proceedings of the 15th

310

international conference on World Wide Web, WWW
2006, Edinburgh, Scotland, UK, May 23-26, 2006,
pages 467–476. Association for Computing Machin-
ery.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems, pages 3104–3112, Mon-
treal, Quebec, Canada.

Charles Sutton and Andrew McCallum. 2012. An intro-
duction to conditional random fields. Found. Trends
Mach. Learn., 4(4):267–373.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, volume 30, pages 5998–6008,
Long Beach, CA, USA. Curran Associates, Inc.

Henning Wachsmuth, Martin Potthast, Khalid Al-
Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu,
Jonas Dorsch, Viorel Morari, Janek Bevendorff, and
Benno Stein. 2017. Building an argument search
engine for the web. In 4th Workshop on Argument
Mining (ArgMining 2017) at EMNLP, pages 49–59,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association
for Computational Linguistics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

Igor Zacharov, Rinat Arslanov, Maksim Gunin, Daniil
Stefonishin, Andrey Bykov, Sergey Pavlov, Oleg
Panarin, Anton Maliutin, Sergey Rykovanov, and
Maxim Fedorov. 2019. “Zhores”—Petaflops super-
computer for data-driven modeling, machine learn-
ing and artificial intelligence installed in Skolkovo
Institute of Science and Technology. Open Engi-
neering, 9(1):512–520.

311

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 312–320
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

1

PunKtuator: A Multilingual Punctuation Restoration System for Spoken
and Written Text

Varnith Chordia
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA - 94034
vchordia@parc.com

Abstract

Text transcripts without punctuation or sen-
tence boundaries are hard to comprehend for
both humans and machines. Punctuation
marks play a vital role by providing meaning
to the sentence and incorrect use or placement
of punctuation marks can often alter it. This
can impact downstream tasks such as language
translation and understanding, pronoun resolu-
tion, text summarization, etc. for humans and
machines. An automated punctuation restora-
tion (APR) system with minimal human in-
tervention can improve comprehension of text
and help users write better. In this paper we de-
scribe a multitask modeling approach as a sys-
tem to restore punctuation in multiple high re-
source – Germanic (English and German), Ro-
manic (French)– and low resource languages
– Indo-Aryan (Hindi) Dravidian (Tamil) – that
does not require extensive knowledge of gram-
mar or syntax of a given language for both spo-
ken and written form of text. For German lan-
guage and the given Indic based languages this
is the first towards restoring punctuation and
can serve as a baseline for future work.

1 Introduction

Automatic speech recognition (ASR) has become
ubiquitous these days and has wide applications in
business and personal life. One of the drawbacks
of ASR is it produces an unpunctuated stream of
text. Restoring punctuation manually is a time-
consuming task. Apart from spoken text a large
amount of written text online - blogs, articles, so-
cial media,etc. - sometimes lack the appropriate
punctuation marks due to human inconsistencies,
which can alter the meaning of text. An APR sys-
tem designed with an understanding of ASR and
written forms of text can help resolve these issues.
Transcriptions passed to an APR system, can im-
prove the following machine learning tasks such

as machine translation, conversational agents, co-
reference resolution, etc. Further it can be used as
an unsupervised auxiliary or pretext task, for train-
ing large scale transformer language models, as it
would require understanding about global structure
of the text.
Prior punctuation restoration methods have mostly
been solved using lexical features, prosodic fea-
tures or combination of both. Due to large avail-
ability of text data, majority of the methods have
focused on using lexical features. Early methods
(Christensen et al., 2001) used Hidden Markov
Models (HMM) to model punctuation using acous-
tic features such as pause duration, pitch and in-
tensity. Though the acoustic based models per-
form well on ASR system, they can perform bet-
ter when combined with textual data. Liu et al.
(2006); Batista et al. (2007); Kolář and Lamel
(2012) proposed various methods that combined
lexical features along with prosodic information
thereby improving APR tasks. Tilk and Alumäe
(2015, 2016) proposed unidirectional and bidirec-
tional Long Short Term Memory (Bi-LSTM) based
punctuation prediction model which did not require
extensive feature engineering. Though the above
method considered the long distant token dependen-
cies, it ignored label dependencies. To address la-
bel dependencies (Klejch et al., 2017) made use of
recurrent neural networks for sequence to sequence
mapping using an encoder-decoder architecture.
Recently the use of transformer based approaches
combination of speech and pre-trained word em-
beddings have achieved state of art performance
on IWSLT datasets (spoken transcripts from TED
talks for ASR tasks, but often used as benchmark
for comparison of punctuation restoration models).
Yi et al. (2020) used pretrained BERT (Devlin et al.,
2018) that is used to perform adversarial multi-task
learning to restore punctuation. Alam et al. (2020)
explored various transformer model architectures

312

2

Language Total Other (O) Period Comma Question
English 48,334,765 43,855,115

(90.7%)
1,914,198
(3.96%)

2,492,124
(5.15%)

55,123
(0.11%)

French 22,315,779 20,223,881
(90.6%)

1,232,798
(5.5%)

815,123
(3.6%)

30,379
(0.11%)

German 41,269,527 36,438,630
(88.2%)

1,875,766
(4.54%)

2,816,425
(6.82%)

60216
(0.14%)

Hindi 3,388,500 3,135,290
(92.5%)

127,101
(3.75%)

100,710
(2.97%)

1246
(0.03%)

Tamil 906,271 791,6320
(87.8%)

58,963
(6.50%)

53,198
(5.86%)

1,496
(0.09%)

Table 1: Distribution of the High resource and long resource language datasets. The top-3 languages in the table
are considered high Resource,while the bottom 2 are low resource languages

and used an augmentation strategy to make models
more robust to ASR errors.

Though most approaches have shown consid-
erable improvement in overcoming some of the
challenges faced in terms of modeling and achiev-
ing the state of performance in spoken language
transcripts in English, there are the following limi-
tations:

• Restoring punctuation varies in spoken and
written text due to differences in rules of writ-
ing and speaking. The frequent use of per-
sonal pronouns, colloquial words and usage
of direct speech often results in more varied
use of punctuation in spoken text as compared
to written text. This often affects readability
for humans and machines.

• Though there has been some research (Tilk
and Alumäe, 2016; Kolář and Lamel, 2012;
Alam et al., 2020) that has focused on de-
veloping non-english APR system, extensive
research and baseline results have not been
studied for other languages.

To overcome some of the challenges, we make
the following contributions:

• We implemented a multi-task multilingual
punctuation restoration model. Our technique
implements punctuation restoration task as se-
quence labeling task, which is jointly trained
with language classifiers and text mode classi-
fication (’Spoken’ and ’Written’). We use the
proposed technique to build two multilingual
models for high resource and low resource
languages, thereby reducing the dependency
of multiple monolingual language models.

• We developed a web browser extension that
can help multilingual spoken and written users
to punctuate transcripts as a post-processing
step. We have made a demo of the web exten-
sion available online. 1

• We prepared training and test datasets and
evaluated the performance of our proposed
model. Further to evaluate the generalization
of the model we evaluated across the bench-
mark IWSLT reference dataset. The code and
models have been made publicly available.2

2 Punctuation restoration system

2.1 Data Gathering

Due to varying set of language data, we segregated
the data sources according to the languages, which
we gathered for spoken and written text. For Writ-
ten text we considered data from news web sources.

2.1.1 High Resource Languages
For high resource European languages, we consid-
ered a parallel sentence corpus known as the ‘EU-
ROPARL’ corpus (Vanmassenhove and Hardmeier,
2018) for spoken text. This corpus is a collection
of speeches made in the proceedings of European
parliament from 1996 to 2012, transcribed as text.
To gather written text we used news articles from
Alexa’s top-25 ranked news sources. These were
publicly available3 for every language.

1https://youtu.be/9FdkuENPhuY
2https://github.com/VarnithChordia/

Multlingual_Punctuation_restoration
3https://webhose.io/

313

3

(a) Unpunctuated text transcripts within the editor window

(b) Select the text to be punctuated and right click to punctuate

(c) Output punctuated text

Figure 1: Example of punctuation via web extension.
Source: www.github.com

2.1.2 Low Resource Languages

Due to lack of language resources available for in-
dic languages for APR, we gather publicly released
datasets. For Spoken text we used the Indian Prime
Minister’s address to the nation. These corpora
manually translated into several Indian languages.
Written text was obtained from Siripragada et al.
(2020) who crawled articles articles released from
the Press Information Bureau (PIB), an Indian gov-
ernment agency that provides information to news
media.

2.2 Annotation

Due to lack of readily available annotated datasets
and large size corpora, we used an automated ap-
proach to label the data. We analyzed languages
and selected the three most common punctuation –
‘PERIOD’, ‘COMMA’ and ‘QUESTION MARK’
– that occurred across the languages for training
our model. This was done to improve the read-
ability of text so that could be easily understood
by users, one of the goals of the system. Since
we treat our task as a sequence labeling task, we
annotated every word in the sequence according
to the punctuation following it. We achieved this
by tokenizing the input text into a stream of word
tokens and punctuation tokens. We converted this
into a set of pairs of (token, punctuation) where
punctuation is the null punctuation (‘O’), if there
was no punctuation mark following in the text. To
make our data set more diverse and training more

robust, we ended sentences (10%) a few tokens be-
fore the ‘PERIOD’ tag and labeled the final token
as ‘EOS’ (end of sentence). Further we converted
all our text to lowercase to remove any signal while
training the language model. The distribution of
the labels can be seen in table 1.

Figure 2: Joint Punctuation model on indic languages
for spoken and written text.
Looks better when Zoomed.

2.3 Joint Multilingual Model-Architecture
The model consists of four main sub-parts as ob-
served in Figure 2 – (i) Transformer Language
Model (ii) BILSTM (iii) Neural Conditional Ran-
dom Field (NCRF++) and (iv) Language and Text
Mode classifiers. We use a pretrained transformer
language model to generate word/sub-word em-
beddings, but do not fine tune this model to our
specific task. A BILSTM on top of the transformer

314

4

Model Language TextMode Period Comma Question Overall

Joint - BILSTM NCRF + FastText

English
Spoken 92.3 66.7 65.2 74.8
Written 83.3 57.6 32.5 57.7

French
Spoken 88.9 64.2 30.8 61.3
Written 77.0 56.7 33.9 55.9

German
Spoken 93.2 88.6 48.0 76.6
Written 77.3 71.0 31.0 64.1

Joint - XLMRoberta NCRF

English
Spoken 92.8 79.9 86.7 86.5
Written 90.4 75.9 80.7 82.3

French
Spoken 92.8 80.9 82.7 85.5
Written 83.8 66.2 75.1 66.2

German
Spoken 95.8 93.8 85.7 91.8
Written 91.8 88.8 69.7 83.4

Joint - Multilingual-BERT NCRF

English
Spoken 95.8 80.6 92.8 90.1
Written 96.0 82.7 79.7 86.4

French
Spoken 94.8 80.8 88.1 89.2
Written 93.5 78.5 73.0 81.7

German
Spoken 97.0 95.0 90.7 94.2
Written 96.0 74.3 90.0 86.8

Punctuation Restoration
(Alam et al., 2020)

English Spoken 80.8 75.0 78.7 78.1

Table 2: Results on High resource languages. The values in bold indicate the best perfoming model.

model is used to model token dependencies bet-
ter, from forward and backward directions. NCRF
(Yang and Zhang, 2018) relies on learning the high
level features from the deep neural network and
passes this information to a linear CRF layer for
inference, which helps manage label dependencies.
This architecture sequential in nature, is trained
for APR task. The output sequence representation
from the BILSTM is passed through a max pooling
layer, the result of which passed through linear feed
forward layer for language and text mode classifi-
cation. We jointly trained our sequential language
model, along with the classifiers.

2.4 Web Extension

We created a web extension that can be used to
punctuate text within the text editors on web pages.
It lets users to select text which could range from a
few words to large paragraphs to entire documents
to punctuate. The text does not have to be non
punctuated as the system removes punctuation as a
preprocessing step and punctuates again.The steps
to punctuate are shown in Fig 1.

3 Experiments

3.1 Experimental setup

We used the pretrained transformer model and spe-
cific tokenizers available on HuggingFace4. The
model architecture consists of the 12 hidden layer
encoder, which is used to produce the embeddings.
We used an optimized weighting technique (Peters
et al., 2018) to sum all the hidden layers rather than
use a common practice of using one single layer
to generate embeddings. This showed an improve-
ment in performance as seen under ablation studies
in table 5. The weighting method is as defined:

Oi = γ
L−1∑

j=0

SjHj (1)

where

• Hj is a trainable task weight for the jth layer.
γ is another task trainable task parameter that
aids the optimization process

• Sj is the normalized embedding output from
the jth hidden layer of the transformer.

• Oj is the output vector.

4https://huggingface.co/

315

5

• L is the number of hidden layers.

To train the proposed model, we used a max-
imum sequence length of 505. We use a sub-
word tokenization technique - sentence piece model
(Kudo and Richardson, 2018) - which might result
in token length exceeding the maximum sequence
length, in such cases we exclude the tokens and
start a new paragraph. For sequences less than
the specified max sequence length, we pad the se-
quences to the maximum sequence length and mask
the padded sequence to avoid performing attention
on it. We used a batch size of 32, grouping similar
sequence length prior to padding that enhances the
speed while training the model. We do not fine tune
the transformer model, but use it to embed the input
text. A BILSTM stacked on top of the transformer
model, is set to a dimension of 512, the layers are
initialized with a uniform distribution in the range
of (-.003, .003). A Neural CRF layer is trained
with a maximum log-likelihood loss. Viterbi al-
gorithm is used to search for the label sequence
with the highest probability during decoding. The
entire model was trained with an Adam optimiza-
tion algorithm with a learning rate close to 1e-4
over 10 epochs. The proposed multitask network
was trained via a dynamically weighted averaging
(DWA) technique to balance each task. Thereby
not allowing one task to dominate over the other
or negatively impact the performance of the other.
This approach was proposed and utilized for train-
ing a multi-task computer vision network (Liu et al.,
2019), we followed a similar approach and imple-
mented this on language processing task to show
overall improvement in performance. Similar to
Gradnorm (Chen et al., 2018) which learns to aver-
age tasks over time, the DWA method does not use
the gradients of network rather uses numeric task
loss. The weighting λj for task j is defined as:

λj =
K exp(wj(n− 1)/T)∑

i exp(wi(n− 1)/T)
(2)

where

wj(n− 1) =
Lj(n− 1)

Lj(n− 2)
(3)

Lj is the loss function of each task j, so wj is the
ratio of loss function over the last two epochs. T
represents the temperature, which is used to repre-
sent the softness of task weighting. A higher value
of T represents a more even distribution between
the tasks, when T is high enough, the value of λj

equals 1. K is the total number of the tasks that we
are training for. The overall loss is the sum of the
individual task loss averaged over each iteration.

Lovrl =
λ1Lpr + λ2Llc + λ3Ltm

batchsize
(4)

where Lpr - Maximum Likelihood loss for Punc-
tuation restoration, Llc - Cross Entorpy loss for
Language Classification and Ltm - Cross entropy
loss for text mode classification.

3.2 Results
To evaluate the performance of our joint model, we
built different multilingual neural models. We split
our dataset into two parts — train set (80%),valida-
tion set (10%) and test set (10%). The performance
for every model was evaluated on test set, after
being trained on the train set. We chose F1-score
to evaluate the performance of our model. We es-
tablished a baseline using BILSTM-CRF and pre-
trained FastText word embeddings (Bojanowski
et al., 2017) as features and trained jointly on lan-
guage and text mode classification tasks. The Fast-
Text word embeddings used as features for train-
ing are monolingual. To train multilingual mod-
els, we developed cross lingual embeddings by
aligning monolingual embeddings of different lan-
guages along a single dimension using unsuper-
vised techniques (Chen and Cardie, 2018). The
parameters and training setup of the baseline was
similar to the proposed model, except we used
FastText based word embeddings as input features.
Further we make comparisons using MBERT and
XLM-Roberta as pretrained models. Table 2 shows
the performance of the various models on high
resource European languages along with their F1
scores. To ensure a fairer comparison, we imple-
mented the trained model by Alam et al. (2020)
that achieved state of art performance on IWSLT
datasets to evaluate on our test set. The Joint-
Multilingual BERT NCRF as proposed in section
2.3 outperforms the other models across spoken
and written text for all punctuations. We observe
German language performs the best across spoken
and written text. The performance of the German
language can be attributed to a couple of reasons.
In German multiple words can be condensed into
a single word. This reduces ambiguity and thus
there are fewer decision points for the machine to
provide inference on. German is an inflected lan-
guage i.e the word order changes according to the
function in the sentence. Most word orders are

316

6

Model Language TextMode Period Comma Question Overall

Joint - BILSTM NCRF + FastText
Hindi

Spoken 84.8 47.0 47.6 59.6
Written 89.2 34.7 55.2 59.7

Tamil
Spoken 59.8 40.3 19.4 39.8
Written 47.2 24.9 14.9 29.0

Joint - XLMRoberta NCRF
Hindi

Spoken 88.7 67.3 41.1 65.6
Written 92.3 70.8 43.4 68.5

Tamil
Spoken 75.9 58.7 20.3 56.6
Written 70.5 43.6 20.3 44.8

Joint - Multilingual BERT NCRF
Hindi

Spoken 90.6 66.6 68.8 75.3
Written 93.7 74.9 59.6 76.1

Tamil
Spoken 85.3 71.8 66.6 74.6
Written 74.8 50.1 43.1 56.0

Table 3: Results on low resource languages

defined in terms of finite verb (V), in combination
with Subject (S), and object (O). In German, this
can vary according to independent or dependent
clauses. In cases of independent clauses, the main
verb must be the second element in the sentence
(SVO) and the past participle the final element.
Under dependent clauses, the object must be the
second element in the sentence (SOV). This may
provide an additional signal to model and that can
impact its performance.

Models F1-Score
DRNN-LWMA-pre (Kim, 2019) 68.6
Self-Attention (Yi and Tao,
2019)

72.9

BERT-Adversarial (Yi et al.,
2020)

77.8

Joint M-BERT (Our Model) 80.3
XLM-R Augmented (Alam et al.,
2020)

82.9

Table 4: Performance of the Joint Model on the IWSLT
Ref dataset in comparison with other models. The table
indicates the average F1 Scores.

To asses the ability of our model to generalize,
we evaluated our best performing model on the
reference transcripts of the IWSLT dataset. Even
though our model was not trained specifically using
these datasets, but was able to outperform on some
of the prior state of art models as shown in Table
4. The metrics shown refer to the average F1-score.
The performance of our proposed models was car-
ried out on the low resource languages for spoken
and written transcripts, which can be observed in

Table 3 . We obtained the best result using the
Joint-Multilingual BERT NCRF model. For low
resource languages the performance of Question
is lower than the Comma and Period, due to lower
number of questions in true label set.

3.3 Ablation Studies

Models HRL LRL
BILSTM-NCRF 66.3 32.3
M-BERT-NCRF 73.5 41.6
M-BERT-BILSTM 78.3 52.4
M-BERT-BILSTM NCRF W/O
Weighting Layers

82.6 63.1

M-BERT-BILSTM NCRF W/O
Classification layers

84.8 65.2

Our Model 88.0 70.5

Table 5: Ablation Study on our dataset. HRL - High
Resource Languages, LRL - Low resource languages

We experimented with different ablations of the
best performing model, as seen in table 5 .

• BILSTM-NCRF - We do not consider any
embeddings and train a simple BILSTM-
NCRF model.

• MBERT-NCRF - We removed the BILSTM
layer and use only NCRF layer on top of trans-
formers.

• MBERT-BILSTM - We remove the NCRF
layer and model only the token dependencies.

• Without weighted layers - We removed the
trainable weighing parameters and considered

317

7

only the top layer of the transformer as input
to the BILSTM.

• Without classification layers - We removed
the classification layers and trained the model
without any auxillary information.

4 Conclusion

In this paper we described and implemented a joint
modeling approach for restoring punctuation for
High and low resource languages across spoken
and written text. Joint language model trained
with auxiliary language and text mode classifica-
tion improved the performance of the APR task.
We achieved reasonable performance on the bench-
mark IWSLT datasets without being trained on it.
We also presented a web extension that can help
multilingual users improve overall readability and
coherence of text. Further we present baseline re-
sults on indic languages that can be used for future
work. We have shown examples of punctuated text
that was output from our system in the Appendix
section.

5 Acknowledgement

We would like to thank Palo Alto Research Center
for providing compute resources and Sebastian Sa-
fari for providing valuable help in developing the
web extension.

References
Tanvirul Alam, Akib Khan, and Firoj Alam. 2020.

Punctuation restoration using transformer models
for high-and low-resource languages. In Proceed-
ings of the Sixth Workshop on Noisy User-generated
Text (W-NUT 2020), pages 132–142, Online. Associ-
ation for Computational Linguistics.

Fernando Batista, Diamantino Caseiro, Nuno Mamede,
and Isabel Trancoso. 2007. Recovering punctuation
marks for automatic speech recognition. In Eighth
Annual Conference of the International Speech Com-
munication Association.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Xilun Chen and Claire Cardie. 2018. Unsupervised
multilingual word embeddings. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 261–270, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International Conference on
Machine Learning, pages 794–803. PMLR.

Heidi Christensen, Yoshihiko Gotoh, and Steve Re-
nals. 2001. Punctuation annotation using statistical
prosody models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Seokhwan Kim. 2019. Deep recurrent neural networks
with layer-wise multi-head attentions for punctua-
tion restoration. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7280–7284. IEEE.

Ondřej Klejch, Peter Bell, and Steve Renals. 2017.
Sequence-to-sequence models for punctuated tran-
scription combining lexical and acoustic features.
In 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5700–5704. IEEE.

Jáchym Kolář and Lori Lamel. 2012. Development and
evaluation of automatic punctuation for french and
english speech-to-text. In Thirteenth Annual Con-
ference of the International Speech Communication
Association.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Shikun Liu, Edward Johns, and Andrew J Davison.
2019. End-to-end multi-task learning with attention.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1871–
1880.

Yang Liu, Nitesh V Chawla, Mary P Harper, Elizabeth
Shriberg, and Andreas Stolcke. 2006. A study in
machine learning from imbalanced data for sentence
boundary detection in speech. Computer Speech &
Language, 20(4):468–494.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Shashank Siripragada, Jerin Philip, Vinay P Nambood-
iri, and CV Jawahar. 2020. A multilingual parallel
corpora collection effort for indian languages. arXiv
preprint arXiv:2007.07691.

Ottokar Tilk and Tanel Alumäe. 2015. Lstm for punctu-
ation restoration in speech transcripts. In Sixteenth
annual conference of the international speech com-
munication association.

318

8

Ottokar Tilk and Tanel Alumäe. 2016. Bidirectional
recurrent neural network with attention mechanism
for punctuation restoration. In Interspeech, pages
3047–3051.

Eva Vanmassenhove and Christian Hardmeier. 2018.
Europarl datasets with demographic speaker infor-
mation.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. arXiv
preprint arXiv:1806.05626.

Jiangyan Yi and J. Tao. 2019. Self-attention based
model for punctuation prediction using word and
speech embeddings. ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7270–7274.

Jiangyan Yi, Jianhua Tao, Ye Bai, Zhengkun Tian,
and Cunhang Fan. 2020. Adversarial transfer learn-
ing for punctuation restoration. arXiv preprint
arXiv:2004.00248.

A Example Appendix

We present a few examples of text passed to our
system in Table 6 and Figure 3 as seen in the next
page. It contains two columns - ‘Input Text’ &
‘Output Text’. The ‘Input Text’ columns consists of
unpunctuated examples that was passed to our sys-
tem, while the ‘Output Text’ column is the punctu-
ated text that was returned. The highlighted colors
of punctuation marks indicate whether the punctua-
tion was replaced correctly or not. Green indicates
the correct punctuation restored, red indicates the
incorrect punctuation mark and yellow indicates
the missed punctuation mark.

319

9

Input Text Output Text
japan then laid siege to the syrian penalty area for
most of the game but rarely breached the syrian de-
fence oleg shatskiku made sure of the win in injury
time hitting an unstoppable left foot shot from just
outside the area

Japan then laid siege to the syrian penalty area for
most of the game ,but rarely breached the syrian de-
fence .Oleg shatskiku made sure of the win in injury
time ,hitting an unstoppable left foot shot from just
outside the area .

russia’s refusal to support emergency supply cuts
would effectively and fatally undermine OPEC+’s
ability to play the role of oil price stabilizing swing
producer says Rapidan Energy’s Bob McNally

Russia’s refusal to support emergency supply cuts
would effectively and fatally undermine OPEC +’s
ability to play the role of oil price stabilizing . Swing
producer , says Rapidan Energy’s Bob McNally .

Romeo Romeo wherefore art thou Romeo Romeo , Romeo , wherefore art thou Romeo ?
sans préjuger de l’efficacité de ce couvre-feu avancé
ces données ne sont toutefois pas si facilement lisi-
bles selon les experts suivant l’épidémie de Covid-19
Tout d’abord on manque encore de recul

Sans préjuger de l’efficacité de ce couvre-feu avancé,
ces données ne sont toutefois pas si facilement lisi-
bles , selon les experts , suivant l’épidémie de Covid-
19 . Tout d’abord , on manque encore de recul .

Table 6: Examples of automatic punctuation restoration of text in our system for European languages.

Figure 3: Indic language example

320

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 321–328
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

Conversational Agent for Daily Living Assessment Coaching Demo

Aditya Gaydhani∗
Dept. of Computer Science

and Engineering
University of Minnesota
gaydh001@umn.edu

Raymond Finzel∗
Dept. of Pharmaceutical Care

& Health Systems
University of Minnesota
finze006@umn.edu

Sheena Dufresne
Dept. of Experimental

and Clinical Pharmacology
University of Minnesota
gahmx008@umn.edu

Maria Gini
Dept. of Computer Science

and Engineering
University of Minnesota

gini@umn.edu

Serguei VS Pakhomov
Dept. of Pharmaceutical Care

& Health Systems
University of Minnesota
pakh0002@umn.edu

Abstract

Conversational Agent for Daily Living Assess-
ment Coaching (CADLAC) is a multi-modal
conversational agent system designed to im-
personate “individuals” with various levels of
ability in activities of daily living (ADLs: e.g.,
dressing, bathing, mobility, etc.) for use in
training professional assessors how to conduct
interviews to determine one’s level of function-
ing. The system is implemented on the Mind-
Meld platform for conversational AI and fea-
tures a Bidirectional Long Short-Term Mem-
ory topic tracker that allows the agent to navi-
gate conversations spanning 18 different ADL
domains, a dialogue manager that interfaces
with a database of over 10,000 historical ADL
assessments, a rule-based Natural Language
Generation (NLG) module, and a pre-trained
open-domain conversational sub-agent (based
on GPT-2) for handling conversation turns out-
side of the 18 ADL domains. CADLAC is de-
livered via state-of-the-art web frameworks to
handle multiple conversations and users simul-
taneously and is enabled with voice interface.
The paper includes a description of the sys-
tem design and evaluation of individual com-
ponents followed by a brief discussion of cur-
rent limitations and next steps.

1 Introduction

A person’s ability to function independently in ev-
eryday life depends on multiple factors including,
but not limited to, intact physical and mental ca-
pacity. In the United States, significant public re-
sources are dedicated to providing assistance to
those in need. A key aspect of assistance programs
is to provide ongoing assessment of individuals

*Equal contribution.

to determine their level of functioning (e.g. inde-
pendent, needs supervision, needs physical assis-
tance, or dependent) and their specific needs in
order to provide assistance appropriately. These
assessments are conducted by certified assessors
specifically trained for this purpose. A challenge
in the assessment process is to ensure consistency
across large numbers of assessors with various de-
grees of experience and interview skills and to pre-
pare novice assessors for the variety of interactions
they will experience in the field. The Conversa-
tional Agent for Daily Living Assessment Coach-
ing (CADLAC) is designed to coach certified as-
sessors to conduct their assessment interviews in a
natural conversational style that simulates real in-
teractions. Previously, dialogue systems similar to
CADLAC have been developed (Campillos Llanos
et al., 2015; Nirenburg et al., 2008; Jaffe et al.,
2015; Laleye et al., 2020). These systems simu-
late “Virtual Patients”, which are used in healthcare
education. CADLAC is tailored to support novel
application domains of function and disability. An
example of the interaction with the conversational
agent is shown in Figure 1. The interface and a
video highlighting the system can be found here
1 2.

2 Data

We used two sources of data in order to inform
CADLAC system design, train machine learning
models, and to develop a database to support rule-
based approaches used by the system. One source
of data consisted of a survey that was adminis-
tered to certified assessors, and the other consisted

1Demo: https://rxinformatics.net/cadlac
2Video: https://vimeo.com/500734362

321

Figure 1: Example of interaction with the conversa-
tional agent.

of anonymized historical assessment data shared
by the Minnesota Department of Human Services
(DHS).

2.1 Survey Data

We designed a survey to collect sample dialogues
from certified assessors. This survey was adminis-
tered to approximately 1,700 assessors statewide.
The assessors were asked to recall some of their
past assessments and provide examples of inter-
actions that they had with people during the as-
sessment interviews. Specifically, each example
consists of up to 3 dialogue turns between the as-
sessor and the person being interviewed, the gen-
der and age category of the person, domain of the
conversation, and the person’s ability level within
the domain. The data consists of assessments of
activities of daily living (ADLs - e.g., walking)
and instrumental activities of daily living (iADLS
- e.g., paying bills) in 18 functional domains re-
lated to personal cares, movement, household man-
agement, and eating/meal preparation. We also
manually annotated the assessor questions for 6
intents: challenges, preferences, equipment, helper,
generic, and frequency. We were able to collect
a total of 2,885 dialogues through the survey. A
sample record from the resulting dataset, including
the annotations for intents, is shown in Table 1.

2.2 Synthetic Profiles

CADLAC relies on a database of over 10,000 his-
torical assessments, conducted by experienced cer-
tified assessors and managed by Minnesota DHS.
Each historical assessment contains fields that indi-
cate the person’s ability to function in ADLs and

Domain: Grooming
Ability: Physical Assistance

Assessor-1: “Can you tell me about how
you take care of your groom-
ing needs?” intent - generic

Participant-1: “I have a hard time.”
Assessor-2: “Can you brush your hair?” in-

tent - challenges
Participant-2: “No, I can’t reach my hair to

get it brushed in the back.”
Assessor-3: “Who helps you to brush your

hair?” intent - helper
Participant-3: “My daughter helps me to

brush my hair.”
Age: 65-84

Gender: Female

Table 1: Example dialogue from the survey.

iADLs in addition to basic demographic informa-
tion such as age range and sex of the person being
assessed. It also contains certified assessors’ notes
taken during the assessments. These notes repre-
sent very brief descriptions of the assessed person’s
challenges, preferences, and equipment they use to
help them, among other information organized by
the ADL and iADL domain.

Historical data was anonymized by DHS staff
for inclusion in CADLAC by removing any indi-
vidually identifiable information including individ-
uals’ names and exact age information that was
converted to age ranges. Furthermore, sensitive
personal information such as phone number, email,
location, etc. was excluded from the historical data,
keeping the privacy of the individuals protected.

These anonymized historical assessments are
used to generate synthetic profiles of “individu-
als” that specify varying levels of independence
in everyday functioning and specific needs. These
profiles are created by mapping the categorical at-
tributes related to the independence levels in the
historical assessment to those levels specified for
the conversational agent (CA). Additionally, asses-
sor notes about challenges, preferences, and equip-
ment from the historical data were populated in the
synthetic profiles.

The profiles are used to customize the CA and
generate natural language responses that are tai-
lored to the question asked by the assessor and are
as consistent as possible with all of the informa-
tion in the profile. For example, if the synthetic

322

profile states that the individual being assessed is
completely dependent on external assistance in the
mobility domain, the responses generated by CAD-
LAC to a question about the ability to perform
heavy housekeeping should not indicate any de-
gree of independence in this domain either. The
profiles include a numeric representation of the in-
dependence level of the “person” represented by
the profile. These numeric representations are used
to compare assessments produced by novice asses-
sors using CADLAC for training to those produced
by experienced assessors, and to provide summary
feedback about the assessment.

Despite the fact that these profiles are based on
data from real individuals assessed in the state of
Minnesota, the profiles may potentially convey bi-
ases present in the underlying data. In order to
minimize potential systematic bias, the historical
data used to construct the profiles were randomly
sampled from a diverse population of assessed indi-
viduals with equal proportions by sex and with the
following race distribution: 17.1% African Amer-
ican; 2.4% American Indian; Asian or Pacific Is-
lander 7.7%; Hispanic 2.6%; White 64.4%; Two
or more races 1.1%; and Unknown race 4.6%. The
current prototype of CADLAC does not use race
information; however, this information is available
in the underlying data and can be used to adjust
the composition of the synthetic profile database as
needed for assessor training purposes.

3 System Design

CADLAC is implemented on the MindMeld plat-
form for conversational AI applications (Raghu-
vanshi et al., 2018) that relies on a commonly used
modular dialogue system design consisting broadly
of natural language understanding (NLU), natural
language generation (NLG) and a dialogue state
tracker/manager (DM) components. These compo-
nents of CADLAC prototype have been developed
using a hybrid machine learning and rule-based
approaches. The prototype is currently deployed
via a web service written in Python with the mod-
ern asynchronous web Responder framework. This
web service is responsible for accepting requests
from a user-facing web client, managing user ses-
sions, and passing conversation objects into the
Dialogue Parser. The web-based client supports
text-only, voice-only or hybrid modalities. This
demonstration will focus on showing the natural di-
alogue between human users and CADLAC aimed

Figure 2: CADLAC system architecture.

at assessing the level of functioning of the “individ-
ual” impersonated by CADLAC and the feedback
provided to the users regarding their assessments.
The system architecture is shown in Figure 2.

4 Natural Language Understanding

4.1 Domain Classifier

The domain classifier (a.k.a. topic tracker) catego-
rizes the input query into one of 18 domains related
to ADLs and iADLs, as well as two additional
domains: “generic follow-up question” and “un-
supported”. CADLAC’s domain recognizer com-
prises a BiLSTM neural network (Hochreiter and
Schmidhuber, 1997) that we trained on available
survey data using GloVe embeddings (Pennington
et al., 2014) to represent the semantics of input to-
kens. We evaluated this model using 10-fold cross-
validation resulting in a mean f-score of 0.801 and
an accuracy of 0.830 across all domains.

4.2 Intent Classifier

Next, the NLU module recognizes the intent of
the user query. In our case, each domain has the
following intents that reflect the nature of the ques-

323

tions asked by assessors: challenges, preferences,
generic, equipment, unsupported, helper, and fre-
quency. These intents specify the type of infor-
mation that the assessor wants to elicit. We used
the survey data to train an intent classifier for each
domain using the same BiLSTM architecture that
we used for the domain recognizer. The results of
10-fold cross-validation for this component consist
of a range of f-scores from 0.704 to 0.927 that vary
by domain.

4.3 Named Entity Recognizer

We also trained a Named Entity Recognizer to iden-
tify the words or phrases, referred to as “entities”,
present in the input query (e.g., shirt, shoes, pants
are entities in the dressing domain). These entities
are then used to fill the empty slots in the natural
language response or select an appropriate response
from the knowledge base. We also use a rule-based
language parser within MindMeld to model the
dependencies between the recognized entities.

4.4 Dialogue Manager

The dialogue manager consists of the dialogue state
tracker, which maps the input query to appropriate
dialogue states. Each dialogue state is responsible
for handling a particular type of query. We use a
rule-based and pattern matching procedure, which
depends on the domain and the intent of the input
query, to define the dialogue states. One of the
important functionalities of the CA is to handle
follow-up questions as illustrated in Figure 3. For
this purpose, we use the domain of the previous
turn and make a transition to the dialogue state
specified by the intent of the current turn. If the
intent of the question is unsupported, then we use
the intent of the previous turn and the domain of
the current turn, and make a transition to the corre-
sponding dialogue state. The unsupported queries
are handled by the neural model based on GPT-2
(Zhang et al., 2020) as illustrated in Figure 4.

5 Natural Language Generation

We use a rule-based approach in which we first
look up a field in the knowledge-base of histori-
cal assessments that corresponds to the identified
topic and intent for a specific synthetic profile (e.g.,
challenges[intent] with dressing[domain]). Infor-
mation contained in historical assessments is under-
specified and is not usable as a natural language
response. For example, it may contain a note “Be-

Figure 3: Response to a follow-up question. The sec-
ond question of the conversation refers to the previous
domain of dressing.

Figure 4: Response to off-topic questions.

havioral issues” for challenges with dressing. We
manually annotated a subset of over 100 assess-
ments, where the annotators were instructed to be-
come familiar with the person’s level of function-
ing in various domains and use that knowledge to
convert the historical notes to a format that would
sound more natural yet still consistent with the syn-
thetic profile (e.g., “Behavioral issues” note for a
5 year old child’s assessment would be converted
to “He can’t dress by himself because he throws a
tantrum each time he has to change clothes.”) The
current prototype of CADLAC’s dialogue manager
queries the knowledge base for these manually con-
verted responses and returns a response that most
closely matches the named entities mentioned in
the user’s question. If no natural language response
is found, CADLAC generates a generic response
randomly chosen from a set of responses consis-
tent with the synthetic profile (e.g., for a profile of
a person who requires intermittent physical assis-
tance with dressing, the response may be “I need
someone to help me with this”). We are currently
experimenting with transformer neural models used
in machine translation in order to determine if they
can “learn” the mapping between the original his-
torical assessment notes and the natural language
responses; however, the current demo does not in-
clude these models yet.

324

Figure 5: Assessment feedback. Top row shows val-
ues in the profile only for those domains assessed up to
a checkpoint. Bottom row shows user-selected assess-
ments.

6 Feedback

The feedback to users being trained to perform
assessments is provided via a visual interface de-
signed to compare users’ assessments to those
stored in synthetic profiles as illustrated in Fig-
ure 5.

7 Voice Services

In order to enable voice input-output capabilities
in CADLAC we implemented a Automatic Speech
Recognition (ASR) and a Text-to-Speech (TTS)
web services. Both services are implemented using
PyTorch.

Voice activity is streamed from the web client to
the web server in real time using an implementa-
tion of WebRTC peer connections. The WebRTC
protocols are available in most modern browsers,
and include hooks to access media devices, stan-
dards for establishing peer connections, and asyn-
chronous data channels. The implementation of
WebRTC that was used for the python web server
was AIORTC.

After voice data arrive at the server they are
passed to the ASR service, which transcribes En-
glish words from the speech utterance. These
words take the place of the text from the chat inter-
face for the rest of the conversational turn.

7.1 ASR Service
We trained an ASR system based on Baidu’s Deep
Speech 2 architecture (Amodei et al., 2016) imple-
mented in PyTorch 3 consisting of 3 convolutional
neural network (CNN) layers, followed by 5 bidi-
rectional recurrent neural network (RNN) layers
with gated recurrent units (GRU), a single lookea-
head convolution layer followed by a fully con-
nected layer and a single softmax layer. The system
was trained using the Connectionist Temporal Clas-
sification (CTC) loss function (Graves et al., 2006).

3https://github.com/SeanNaren/
deepspeech.pytorch

In addition to the default greedy search decoding
over the hypotheses produced by the softmax layer,
the system’s implementation also can use a beam
search decoder with a standard n-gram language
model. We used default hyperparameters: size of
the RNN layers was set to 800 GRU units; starting
learning rate was set to 0.0003 with the annealing
parameter set to 1.1 and momentum of 0.9. Au-
dio signal processing consisted of transforming the
audio from the time to the frequency domain via
Short-time Fourier transform as implemented by
the Python librosa library. The signal was sampled
in frames of 20 milliseconds overlapping by 10 mil-
liseconds. The resulting input vectors to the first
CNN layer of the Deep Speech 2 network consisted
of 160 values representing the power spectrum of
each frame.

A collection of speech corpora available from the
Linguistic Data Consortium was used as training
data. These corpora include the Wall Street Journal
(WSJ: LDC93S6A, LDC94S13B), Resource Man-
agement (RM - LDC93S3A), TIMIT (LDC93S1),
FFMTIMIT (LDC96S32), DCIEM/HCRC
(LDC96S38), USC-SFI MALACH corpus
(LDC2019S11), Switchboard-1 (LDC97S62),
and Fisher (LDC2004S13, LDC2005S13). In
addition to these corpora, we used the following
publicly available data: TalkBank (CMU, ISL,
SBCSAE collections) (MacWhinney and Wagner,
2010), Common Voice (CV: Version 1.0)) corpus 4,
Voxforge corpus 5, TED-LIUM corpus (Release 2)
(Rousseau et al., 2014), LibriSpeech(Panayotov
et al., 2015), Flicker8K(Hodosh et al., 2013),
CSTR VCTK corpus (Veaux et al., 2017), and the
Spoken Wikipedia Corpus (SWC-English(Köhn
et al., 2016)). Audio samples from all of these
these data sources were split into pieces shorter
than 25 seconds in duration. The total size of the
resulting corpus was approximately 4,991 hours
of audio (2,000 hours contributed by the Fisher
corpus alone). Finally, we also used audio data
from various prior studies that were conducted at
the University of Minnesota consisting of story
recall, verbal fluency, and spontaneous narrative
tasks. With the exception of the Fisher and
Switchboard corpora, all other data were recorded
at a minimum of 16 kHz sampling frequency.
The Fisher and Switchboard corpora contain
narrow-band telephone conversations sampled

4http://voice.mozilla.org
5http://www.voxforge.org/

325

at 8 KHz. All data were either downsampled or
upsampled and converted using the SoX toolkit6

to a single channel 16 bit 16 kHz PCM WAVE
format.

The performance of the ASR service was evalu-
ated off-line using the heldout portion of the TED-
LIUM corpus. Without using a language model for
rescoring the output of the neural model (greedy
decoding), the word error rate (WER) and char-
acter error rate (CER) of our ASR system were
18.84 and 5.24, which are comparable to those pre-
viously reported for the same dataset also using
a Deep Speech 2 system (WER: 28.1, CER: 9.2)
(Hernandez et al., 2018). Using a 4-gram language
model constructed with the SRILM Toolkit (Stol-
cke, 2002) from the English language portion of the
1 Billion words text corpus7 model with Kneser-
Ney smoothing (Ney et al., 1994) resulted in im-
proving ASR accuracy to WER: 15.73 and CER:
4.57.

7.2 TTS Service

We used a pre-trained model based on
Tacotron2 (Shen et al., 2017) and WaveG-
low (Prenger et al., 2018) for the text-to-speech
service. This model was implemented in PyTorch
and is based on the NVIDIA’s GitHub repositories
for Tacotron2 8 and WaveGlow 9. The Tacotron2
model converts the input text to mel spectrograms
and then the WaveGlow model uses the mel
spectrograms to generate speech. The Tacotron2
implementation used here slightly differs from the
one described in by Shen et al. (2017): it uses
Dropout (Srivastava et al., 2014) regularization
instead of Zoneout (Krueger et al., 2016) for the
LSTM layers, and replaces the WaveNet model
with the WaveGlow model. The models are trained
on the LJ Speech (Ito and Johnson, 2017) dataset
using mixed precision training (Micikevicius et al.,
2017).

The above model generates speech in female
voice since it is trained on the LJ Speech dataset,
which has voice samples from a single female
speaker. However, our system has synthetic pro-
files for both males and females. In order to gen-
erate speech for a male profile, the current im-
plementation relies on pitch manipulation tech-

6http://sox.sourceforge.net
7https://github.com/ciprian-chelba/

1-billion-word-language-modeling-benchmark
8https://github.com/NVIDIA/tacotron2
9https://github.com/NVIDIA/waveglow

niques. Specifically, we use the phonetics software
Praat (Boersma and Weenink, 2018) through the
library Parselmouth (Jadoul et al., 2018), which ex-
poses the functionality and algorithms of Praat in
Python. To change the female voice to a male voice,
we set the parameter formant shift ratio to 0.85 and
new pitch median to 100 Hz. The formant shift
ratio determines the frequencies of the formants
and the new pitch median determines the median
pitch of the male voice. Using these specific values
of the parameters gives us the best results. How-
ever, we are currently exploring ways to retrain the
Tacotron2 and WaveGlow model on a male voice
dataset to generate better quality outputs.

8 Limitations and Future Steps

One of the limitations of the current implementa-
tion of CADLAC is that it does not currently learn
from user input. One of the next key steps in further
development of this system is to implement active
learning components for domain and intent classi-
fication, ASR, and other supervised components
of the system. We are also currently developing
a formal evaluation of the usability of this system
with human end-users. Specifically, we plan to
use metrics of sensibility and specificity for each
system response as proposed by Adiwardana et al.
(2020) in addition to overall subjective measures of
dialogue success, conversation naturalness, and in-
telligibility of responses. We also plan to evaluate
the system for any potential bias in responses gener-
ated by the system and develop ways of un-biasing
the system via hybrid rule-based and data-driven
approaches (Liu et al., 2020).

9 Acknowledgements

The work on this project was supported by funding
from the Minnesota Department of Human Ser-
vices. We would like to thank the people at DSD
and MNIT for help with project specifications, gath-
ering of historical data, and expert guidance on
domain-specific aspects of the project. We would
also like to thank Pamela Miller, Sidney Kiltie, and
Elise Moore for help with transforming certified
assessor notes to natural language format and Ju-
lia Garbuz for helping to develop and conduct the
surveys of DHS assessors.

326

References
Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot.

Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-
liang Chen, Jie Chen, Jingdong Chen, Zhijie Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos,
Ke Ding, Niandong Du, Erich Elsen, Jesse En-
gel, Weiwei Fang, Linxi Fan, Christopher Fougner,
Liang Gao, Caixia Gong, Awni Hannun, Tony
Han, Lappi Vaino Johannes, Bing Jiang, Cai Ju,
Billy Jun, Patrick LeGresley, Libby Lin, Junjie
Liu, Yang Liu, Weigao Li, Xiangang Li, Dong-
peng Ma, Sharan Narang, Andrew Ng, Sherjil
Ozair, Yiping Peng, Ryan Prenger, Sheng Qian,
Zongfeng Quan, Jonathan Raiman, Vinay Rao, San-
jeev Satheesh, David Seetapun, Shubho Sengupta,
Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Lil-
iang Tang, Chong Wang, Jidong Wang, Kaifu Wang,
Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu,
Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yo-
gatama, Bin Yuan, Jun Zhan, and Zhenyao Zhu.
2016. Deep speech 2: End-to-end speech recogni-
tion in english and mandarin. In Proceedings of the
33rd International Conference on International Con-
ference on Machine Learning - Volume 48, ICML’16,
page 173–182. JMLR.org.

Paul Boersma and David Weenink. 2018. Praat: doing
phonetics by computer [Computer program]. Ver-
sion 6.0.37, retrieved 3 February 2018 http://www.
praat.org/.

Leonardo Campillos Llanos, Dhouha Bouamor, Éric
Bilinski, Anne-Laure Ligozat, Pierre Zweigenbaum,
and Sophie Rosset. 2015. Description of the Patient-
Genesys dialogue system. In Proceedings of the
16th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 438–440, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd International Conference on
Machine Learning, ICML ’06, pages 369–376, New
York, NY, USA. ACM.

François Hernandez, Vincent Nguyen, Sahar Ghan-
nay, Natalia Tomashenko, and Yannick Estève.
2018. Ted-lium 3: Twice as much data and corpus
repartition for experiments on speaker adaptation.
In Speech and Computer, pages 198–208, Cham.
Springer International Publishing.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

M. Hodosh, P. Young, and J. Hockenmaier. 2013.
Framing Image Description as a Ranking Task: Data,
Models and Evaluation Metrics. Journal of Artificial
Intelligence Research, 47:853–899.

Keith Ito and Linda Johnson. 2017. The lj
speech dataset. https://keithito.com/
LJ-Speech-Dataset/.

Yannick Jadoul, Bill Thompson, and Bart de Boer.
2018. Introducing Parselmouth: A Python interface
to Praat. Journal of Phonetics, 71:1–15.

Evan Jaffe, Michael White, William Schuler, Eric
Fosler-Lussier, Alex Rosenfeld, and Douglas Dan-
forth. 2015. Interpreting questions with a log-linear
ranking model in a virtual patient dialogue system.
In Proceedings of the Tenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 86–96, Denver, Colorado. Association
for Computational Linguistics.

Arne Köhn, Florian Stegen, and Timo Baumann. 2016.
Mining the spoken wikipedia for speech data and
beyond. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), Paris, France. European Language Re-
sources Association (ELRA).

David Krueger, Tegan Maharaj, János Kramár, Moham-
mad Pezeshki, Nicolas Ballas, Nan Rosemary Ke,
Anirudh Goyal, Yoshua Bengio, Aaron Courville,
and Chris Pal. 2016. Zoneout: Regularizing rnns
by randomly preserving hidden activations.

Fréjus A. A. Laleye, Gaël de Chalendar, Antonia
Blanié, Antoine Brouquet, and Dan Behnamou.
2020. A French medical conversations corpus an-
notated for a virtual patient dialogue system. In Pro-
ceedings of the 12th Language Resources and Evalu-
ation Conference, pages 574–580, Marseille, France.
European Language Resources Association.

Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao
Liu, and Jiliang Tang. 2020. Does gender matter?
towards fairness in dialogue systems.

Brian MacWhinney and Johannes Wagner. 2010.
Transcribing, searching and data sharing: The
CLAN software and the TalkBank data repository.
Gesprachsforschung: Online-Zeitschrift Zur Ver-
balen Interaktion, 11:154–173.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed pre-
cision training.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependencies in stochas-
tic language modelling. Computer Speech and Lan-
guage, 8:1–38.

327

Sergei Nirenburg, Stephen Beale, Marjorie McShane,
Bruce Jarrell, and George Fantry. 2008. Language
understanding in Maryland virtual patient. In Col-
ing 2008: Proceedings of the workshop on Speech
Processing for Safety Critical Translation and Per-
vasive Applications, pages 36–39, Manchester, UK.
Coling 2008 Organizing Committee.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
2015. Librispeech: An asr corpus based on public
domain audio books. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5206–5210.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro.
2018. Waveglow: A flow-based generative network
for speech synthesis.

Arushi Raghuvanshi, Lucien Carroll, and Karthik
Raghunathan. 2018. Developing production-level
conversational interfaces with shallow semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 157–162.

Anthony Rousseau, Paul Deléglise, and Yannick
Estève. 2014. Enhancing the ted-lium corpus with
selected data for language modeling and more ted
talks. In LREC.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan,
Rif A. Saurous, Yannis Agiomyrgiannakis, and
Yonghui Wu. 2017. Natural tts synthesis by condi-
tioning wavenet on mel spectrogram predictions.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural net-
works from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In INTERSPEECH.

Christophe Veaux, Junichi Yamagishi, and Kirsten
Macdonald. 2017. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. Dialogpt: Large-scale
generative pre-training for conversational response
generation. In ACL, system demonstration.

328

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 329–336
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

HULK: An Energy Efficiency Benchmark Platform for
Responsible Natural Language Processing

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, William Yang Wang
Department of Computer Science, University of California Santa Barbara
{xiyou, zhiyuchen, x jin, william}@cs.ucsb.edu

Abstract

Computation-intensive pretrained models have
been taking the lead of many natural language
processing benchmarks such as GLUE (Wang
et al., 2018). However, energy efficiency in
the process of model training and inference
becomes a critical bottleneck. We introduce
HULK, a multi-task energy efficiency bench-
marking platform for responsible natural lan-
guage processing. With HULK, we compare
pretrained models’ energy efficiency from the
perspectives of time and cost. Baseline bench-
marking results are provided for further anal-
ysis. The fine-tuning efficiency of differ-
ent pretrained models can differ significantly
among different tasks, and fewer parameter
number does not necessarily imply better ef-
ficiency. We analyzed such a phenomenon
and demonstrated the method for comparing
the multi-task efficiency of pretrained mod-
els. Our platform is available at https://
hulkbenchmark.github.io/.

1 Introduction

Environmental concerns of machine learning re-
search have been rising as the carbon emission
of specific tasks like neural architecture search
reached an exceptional “ocean boiling” level
(Strubell et al., 2019). Increased carbon emission
has been one of the key factors to aggravate global
warming 1. Research and development processes
like parameter search further increase the environ-
mental impact. When using cloud-based machines,
the environmental impact is strongly correlated
with the financial cost.

The recent emergence of leaderboards such as
SQuAD (Rajpurkar et al., 2016), GLUE (Wang
et al., 2018), and SuperGLUE (Wang et al., 2019)
has greatly boosted the development of advanced

1Source: https://climate.nasa.gov/causes/

models in the NLP community. Pretrained models
have proven to be the key ingredient for achieving
state-of-the-art in conventional metrics. However,
such models can be costly to train. For example,
XLNet-Large (Yang et al., 2019) was trained on
512 TPU v3 chips for 500K steps, which costs
around 61,440 dollars2, let alone staggeringly large
carbon emission.

Moreover, despite impressive performance gain,
the fine-tuning and inference efficiency of NLP
models remain under-explored. As recently men-
tioned in a tweet3, the popular AI text adventure
game AI Dungeon has reached 100 million infer-
ences. The energy efficiency of inference cost
could be critical to both business planning and en-
vironmental impact.

Previous work (Schwartz et al., 2019; Dodge
et al., 2019) on this topic proposed new metrics
like FPO (floating-point operations) and other prac-
tices to report experimental results based on com-
puting budget. Other benchmarks like (Coleman
et al., 2017) and (Mattson et al., 2019) compare the
efficiency of models on the classic reading com-
prehension task SQuAD and machine translation
tasks. However, there has not been any concrete or
practical reference for accurate estimation on NLP
model pretraining, fine-tunning, and inference con-
sidering multi-task energy efficiency.

Energy efficiency can be reflected in many met-
rics, including carbon emission, electricity usage,
time consumption, number of parameters, and FPO,
as shown in (Schwartz et al., 2019). Carbon emis-
sion and electricity are intuitive measures yet either
hard to track or hardware-dependent. The num-
ber of model parameters does not reflect the ac-
tual cost for model training and inference. FPO

2Source: The Staggering Cost of Training SOTA AI Mod-
els by Synced Global

3Source: Nick Walton’s Tweet on Passing 100 Million
Inferences on AI Dungeon.

329

Model Hardware Time Cost Params

BERTBASE (Devlin et al., 2018) 4 TPU v2 Pods 4 days $1,728 108M
BERTLARGE (Devlin et al., 2018) 16 TPU v2 Pods 4 days $6,912 334M
XLNetBASE (Yang et al., 2019) – – – 117M
XLNetLARGE (Yang et al., 2019) 512 TPU v3 2.5 days $61,440 361M
RoBERTaBASE (Liu et al., 2019) 1024 V100 GPUs 1 day $75,203 125M
RoBERTaLARGE (Liu et al., 2019) 1024 V100 GPUs 1 day $75,203 356M
ALBERTBASE (Lan et al., 2019) 64 TPU v3 – – 12M
ALBERTXXLARGE (Lan et al., 2019) 1024 TPU v3 32 hours $65,536 223M
DistilBERT* (Sanh et al., 2019) 8×16G V100 GPU 90 hours $2,203 66M
ELECTRASMALL (Clark et al., 2020) 1 V100 GPU 96 hours $294 14M
ELECTRABASE (Clark et al., 2020) 16 TPU v3 96 hours $3,072 110M

Table 1: Pretraining costs of baseline models. Hardware and pretraining time were collected from original papers,
with which costs were estimated with the current TPU price at $8 per hour with 4 core TPU v3 chips and V100
GPU at $3.06 per hour. DistilBERT model was trained upon a pretrained BERT model. Parameter numbers are
estimated using the pretrained models implemented in the Transformers (https://github.com/huggingface/
transformers) library (Wolf et al., 2019), shown in millions. The RoBERTa model was trained for 100K steps.

is steady for models but cannot be directly used
for cost estimation. Here, to provide a practical
reference for model selection on real applications,
especially model development outside academia,
we keep track of the time consumption and actual
financial cost for comparison. Cloud-based ma-
chines are employed for budget estimation as they
are easily accessible and consistent in hardware
configuration, price, and performance. In the fol-
lowing sections, we would use “time” and “cost”
to denote the time elapsed and the actual budget in
model pretraining, training, and inference.

In most NLP pretrained model settings, there are
three phases: pretraining, fine-tuning, and infer-
ence. If a model is trained from scratch, we con-
sider such a model has no pretraining phase but is
fine-tuned from scratch. Typically pretraining takes
several days and hundreds of dollars, according to
Table 1. Fine-tuning takes a few minutes to hours,
costing much less than the pretraining phase. In-
ference takes several milliseconds to seconds, simi-
larly costing much less than the fine-tuning phase.
Meanwhile, pretraining is done before fine-tuning
once for all, while fine-tuning could be performed
multiple times as training data updates. Inference
is expected to be called numerous times for down-
stream applications. Such characteristics make it a
natural choice to separate different phases during
benchmarking.

Our HULK benchmark, as shown in Figure 1, uti-
lizes several classic datasets that have been widely
adopted in the community as benchmarking tasks

to benchmark energy efficiency. The benchmark
compares pretrained models in a multi-task fash-
ion. The tasks include natural language inference
task MNLI (Williams et al., 2017), sentiment anal-
ysis task SST-2 (Socher et al., 2013) and Named
Entity Recognition Task CoNLL-2003 (Sang and
De Meulder, 2003). Such tasks are selected to pro-
vide a thorough comparison of end-to-end energy
efficiency in pretraining, fine-tuning, and inference.

With the HULK benchmark, we quantify the en-
ergy efficiency of model pretraining, fine-tuning,
and inference phase by comparing the time and cost
they require to reach a certain overall task-specific
performance level on selected datasets. The design
principle and benchmarking process are detailed
in section 2. We also explore the relation between
model parameters and fine-tuning efficiency and
demonstrate energy efficiency consistency between
different pretrained models’ tasks.

2 Benchmark Overview

For the pretraining phase, the benchmark is de-
signed to favor energy-efficient models in terms
of time and cost that each model takes to reach
specific multi-task performance pretrained from
scratch. For example, we keep track of the time
and cost of a BERT model in the following way:
After every thousand pretraining steps, we clone
the model for fine-tuning and see if the final per-
formance can reach our cut-off performance on
different tasks. When the level is reached, time and
cost for pretraining are used for comparison. Mod-

330

CoNLL 2003 MNLI SST-2

Train Size 14,041 392,702 67,349
Dev Size 3,250 19,647 872

Cut-off 91 85 90
Metric F1 Acc Acc
SOTA 93.5 91.85 97.4

Table 2: Dataset Information

els faster or cheaper to pretrain are recommended.
We consider the time and cost each model takes

to reach specific multi-task performance fine-tuned
from given pretrained models for the fine-tuning
phase. For each task with different difficulty and
instance numbers, the fine-tuning characteristics
may differ a lot. When pretrained models are used
to deal with a non-standard downstream task, es-
pecially ad hoc application in industry, the task’s
fine-tuning time and cost cannot be estimated di-
rectly from any other standard task. Therefore, it is
essential to compare the multi-task efficiency for
model choice.

For the inference phase, each model’s time and
cost for making inference on a single instance
on multiple tasks are compared similarly to the
fine-tuning phase. Specially, we estimate the time
elapsed for each inference by averaging thousands
of inference samples.

2.1 Dataset Overview
The datasets we used are widely adopted in the
NLP community. Quantitative details of datasets
can be found in Table 2. The selected tasks are
shown below:

CoNLL 2003 The Conference on Com-
putational Natural Language Learning
(CoNLL-2003) shared task concerns language-
independent named entity recognition (Sang
and De Meulder, 2003). The task concentrates
on four types of named entities: persons, loca-
tions, organizations, and other miscellaneous
entities. Here we only use the English dataset.
The English data is a collection of news wire
articles from the Reuters Corpus. The result
is reflected as F1 score considering the label
accuracy and recall on the dev set.

MNLI The Multi-Genre Natural Language
Inference Corpus (Williams et al., 2017) is a
crowdsourced collection of sentence pairs with

textual entailment annotations. Given a premise
sentence and a hypothesis sentence, the task
is to predict whether the premise entails the
hypothesis (entailment), contradicts the hypoth-
esis (contradiction), or neither (neutral). The
premise sentences are gathered from ten differ-
ent sources, including transcribed speech, fic-
tion, and government reports. The accuracy
score is reported as the average of performance
on matched and mismatched dev sets.

SST-2 The Stanford Sentiment Treebank
(Socher et al., 2013) consists of sentences from
movie reviews and human annotations of their
sentiment. The task is to predict the senti-
ment of a given sentence. Following the set-
ting of GLUE, we also use the two-way (posi-
tive/negative) class split and use only sentence-
level labels.

The tasks are selected based on how representa-
tive the dataset is. CoNLL 2003 has been a widely
used dataset for named entity recognition and re-
quires the output of token-level labeling. NER is a
core NLP task, and CoNLL 2003 has been a classic
dataset in this area. SST-2 and MNLI are part of
the GLUE benchmark, representing sentence-level
labeling tasks. SST-2 has been frequently used in
sentiment analysis across different generations of
models. MNLI is a newly introduced large dataset
for natural language inference. The training time
for MNLI is relatively long, and the task requires
a lot more training instances. We select the three
tasks for a diverse yet practical benchmark for pre-
trained models without constraining the models on
sentence-level classification tasks. Besides, their
efficiency differs significantly in the fine-tuning
and inference phase. Such a difference can still be
reflected in the final score after normalization, as
shown in Table 3. Provided with more computing
resources, we can bring in more datasets for even
more thorough benchmarking in the future. We
illustrate the evaluation criteria in the following
subsection.

2.2 Evaluation Criteria
In machine learning model training and inference,
slight parameter change can subtly impact the final
result. To make a practical reference for pretrained
model selection, we compare models’ end-to-end
performance concerning the pretraining time and
cost, fine-tuning time and cost, inference time and
cost following the setting of (Coleman et al., 2017).

331

Figure 1: Screenshot of the leaderboard of website.

Datasets CoNLL 2003 SST-2 MNLI

Model Time Score Time Score Time Score Overall Score

BERTBASE 43.43 2.08 207.15 0.45 N/A 0.00 2.53
BERTLARGE 90.26 1.00 92.45 1.00 9,106.72 1.00 3.00
XLNetBASE 67.14 1.34 102.45 0.90 7,704.71 1.18 3.42
XLNetLARGE 243.00 0.37 367.11 0.25 939.62 9.69 10.31
RoBERTaBASE 70.57 1.28 38.45 2.40 274.87 7.14 10.82
RoBERTaLARGE 155.43 0.58 57.65 1.60 397.12 22.93 25.11
ALBERTBASE 340.64 0.26 2,767.90 0.03 N/A 0.00 0.29
ALBERTLARGE 844.85 0.11 3,708.49 0.02 N/A 0.00 0.13

Table 3: Multi-task Baseline Fine-tuning Costs. Time is given in seconds and score is computed by the division of
TimeBERTLARGE /Timemodel.The experiments are conducted on a single RTX 2080 Ti GPU following the evaluation
criterion. The overall score is computed by summing up the scores of each task. We also use the cost to compute a
new score for each task for cost-based leaderboards and summarize similarly. “N/A” means fail to reach the given
performance after five epochs.

For the pretraining phase, we design the proto-
col to explore how much computing resource is
required to reach specific final multi-task perfor-
mance via fine-tuning after the pretraining. There-
fore, during model pretraining, after every thou-
sand pretraining steps, we use the current pre-
trained model for fine-tuning and see if the fine-
tuned model can reach our cut-off performance.
When it does, we count the time and cost in the
pretraining process for benchmarking and analysis.

For the fine-tuning phase, we want to compare
the general efficiency of the pretrained model reach-
ing cut-off performance on the selected dataset.

During fine-tuning, we evaluate the current fine-
tuned model on the development set after a certain
small number of fine-tuning steps. When the perfor-
mance reaches our cut-off performance, we count
the time and cost in this fine-tuning process for
benchmarking and analysis. To be specific, for a

single pretrained model, the efficiency score on
different tasks is defined as the sum of normalized
time and cost. Here we normalize the time and
cost because they vary dramatically between tasks.
To simplify the process, we compute the ratio of
BERTLARGE’s time and cost to that of each model
as the normalized measure, as shown in Table 3
and Table 4.

We follow the fine-tuning principles for the in-
ference phase, and we use the time and cost of
inference for benchmarking. The models we used
for inference experiments are fine-tuned in the last
part. Each of the benchmarking results was calcu-
lated using the average of time and cost over one
thousand samples.

2.3 Performance Cut-off Selection

The selection of performance cut-off could be crit-
ical because we consider certain models to be

332

Datasets CoNLL 2003 SST-2 MNLI

Model Time Score Time Score Time Score Overall Score

BERTBASE 2.68 3.18 2.70 3.13 2.67 3.19 9.5
BERTLARGE 8.51 1.00 8.46 1.00 8.53 1.00 3.00
XLNetBASE 5.16 1.65 5.01 1.69 5.10 1.67 5.01
XLNetLARGE 14.84 0.57 14.69 0.58 15.27 0.56 1.71
RoBERTaBASE 2.65 3.21 2.68 3.16 2.70 3.16 9.53
RoBERTaLARGE 8.35 1.02 8.36 1.01 8.70 0.98 3.01
ALBERTBASE 2.65 3.21 2.68 3.16 2.72 3.14 9.51
ALBERTLARGE 8.49 1.00 8.44 1.00 8.78 0.97 2.97

Table 4: Multi-task Baseline Inference Costs. Time is given in milliseconds and score is computed by the division
of TimeBERTLARGE /Timemodel.The experiments are conducted on a single RTX 2080 Ti GPU following the evaluation
criterion similar to the fine-tuning part. The inference time between tasks is more consistent compared to the
fine-tuning phase.

“qualified” after reaching specific performance on
the development set. Meanwhile, particular tasks
can reach a “sweet point” where after a relatively
smaller amount of training time, the model reaches
performance close to the final converged perfor-
mance with a negligible difference. The cut-off
must be high enough to make sure any model that
surpasses the threshold can be competent for the
task. On the other hand, if the cut-off is too high,
we will not have enough data points to evaluate the
model’s multi-task performance.

Here, our cut-offs were selected by observing
the recent state-of-the-art model’s performance on
the selected dataset for the task4. A wise choice
would be choosing the performance of some classic
methods like LSTM-CRF or Bi-LSTM models as
the cut-off. In this way, we can easily compare the
efficiency of most models with a solid performance
bar.

2.4 Submission to Benchmark
Submissions can be made to our benchmark
through sending code and result to our HULK

benchmark CodaLab competition5 following the
guidelines in both our FAQ part of website and
competition introduction. We require the submis-
sions to include detailed end-to-end model train-
ing information, including model run time, cost
(cloud-based machine only), parameter number,
and part of the development set output for result
validation. A training / fine-tuning log, includ-
ing time consumption and dev set performance af-

4For example, we referred to the performance data points
on Papers With Code for candidates.

5The CodaLab competition is available on the website.

ter certain steps, is also required. For inference,
development set output, time consumption, and
hardware/software details should be provided. For
model reproducibility, source code is also required.

3 Baseline Settings and Analysis

We adopt the reported resource requirements in the
original papers as the pretraining phase baselines
for computation-intensive tasks.

For fine-tuning and inference phase, we conduct
extensive experiments on given hardware (RTX
2080Ti GPU) with different model settings as
shown in Table 3 and Table 4. We also collect
the development set performance with time in fine-
tuning to investigate how the model is fine-tuned
for different tasks.

In our fine-tuning setting, we are given a specific
hardware and software configuration. We adjust
the hyper-parameter using grid search to minimize
the time fine-tuning towards cut-off performance.
For example, we choose the proper batch size and
learning rate for BERTBASE to make sure the model
converges and can reach expected performance as
soon as possible with parameter searching.

As shown in Figure 2, the fine-tuning perfor-
mance curve differs a lot among pretrained models.
The x-axis denoting time consumed is shown in
log-scale for a better comparison of different mod-
els. None of the models take the lead in all tasks.
However, if two pretrained models are in the same
family, such as BERTBASE and BERTLARGE, the
model with a smaller number of parameters tend to
converge a bit faster than the other in the NER and
SST-2 task. In the MNLI task, such a trend does

333

101 102 103

Time-sec

0.2

0.4

0.6

0.8

F1
(D

ev
)

BERT-BASE
BERT-LARGE
RoBERTa-BASE

RoBERTa-LARGE
XLNet-BASE
XLNet-LARGE

ALBERT-BASE
ALBERT-LARGE

101 102 103

Time-sec

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(D
ev

)

BERT-BASE
BERT-LARGE
RoBERTa-BASE

RoBERTa-LARGE
XLNet-BASE
XLNet-LARGE

ALBERT-BASE
ALBERT-LARGE

102 103 104

Time-sec

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(D
ev

)

BERT-BASE
BERT-LARGE
RoBERTa-BASE

RoBERTa-LARGE
XLNet-LARGE
XLNet-BASE

ALBERT-BASE
ALBERT-LARGE

Figure 2: The comparison between different pretrained
models for CoNLL 2003, SST-2, and MNLI datasets
trained on a single RTX 2080Ti GPU. The curves are
smoothed by computing the average with two adjacent
data points. The experiments are conducted by select-
ing hyper-parameters to minimize the time consump-
tion, yet making sure the model can converge after a
certain amount of time. Results are demonstrated using
performance on the development set after being fine-
tuned for specific steps on the training dataset.

not apply because of the increased difficulty level
and the number of training instances, which favors
a larger model capacity.

Even though ALBERT model has a lot fewer
parameters than BERT, according to Table 1, the
ALBERT model’s fine-tuning time is significantly
more than BERT models because ALBERT uses
large hidden size and more expensive matrix com-
putation. The parameter sharing technique makes
it harder to fine-tune the model. RoBERTaLARGE
model is relatively stable in all tasks.

4 Related Work

GLUE benchmark (Wang et al., 2018) is a popular
multi-task benchmarking and diagnosis platform
providing score evaluating multi-task NLP models
considering multiple single-task performances. Su-
perGLUE (Wang et al., 2019) further develops the
task and enriches the evaluation dataset, making
tasks more challenging. These multi-task bench-
marks do not consider computation efficiency but
innovates the development of pretrained models.

MLPerf (Mattson et al., 2019) compares training
and inference efficiency from a hardware perspec-
tive, providing helpful resources on hardware selec-
tion and model training. The benchmark focused
on several typical applications, including image
classification and machine translation. However,
it does not separate different training phases, thus
making it hard to find the reference for fine-tuning
only applications.

Previous work (Schwartz et al., 2019; Dodge
et al., 2019) on related topic working towards
“Green AI” proposes new metrics like FPO and
new principle in efficiency evaluation. We further
make more detailed and practical contributions to
model energy efficiency benchmarking.

Other work like DAWNBenchmark (Coleman
et al., 2017) looks into the area of end-to-end model
efficiency comparison for both computer vision and
NLP task SQuAD. The benchmark is very detailed
and intuitive. However, it does not compare multi-
task efficiency performance and covered only one
NLP task. Similar to MLPerf, it does not separate
fine-tuning efficiency from training efficiency.

The Efficient NMT shared task of The 2nd Work-
shop on Neural Machine Translation and Genera-
tion proposed an efficiency track to compare the
inference time of neural machine translation mod-
els. Our platform covers more phases and supports
multi-task comparison.

334

5 Conclusion

We developed the HULK platform focusing on the
energy efficiency benchmarking of NLP models
based on their end-to-end performance on selected
NLP tasks. The HULK platform compares models
in the pretraining, fine-tuning, and inference phase,
making it clear to follow and propose more training-
efficient and inference-efficient models. We have
compared the fine-tuning efficiency of given mod-
els during baseline testing and demonstrated more
parameters lead to slower fine-tuning when using
the same model design but do not hold when the
model architecture changes.We expect more sub-
missions in the future to flourish and enrich our
benchmark.

Acknowledgments

This work is supported by the Institute of Energy
Efficiency (IEE) at UCSB’s seed grant in Summer
2019 to improve AI and machine learning’s energy
efficiency.6.

6https://iee.ucsb.edu/news/making-ai-more-energy-
efficient

References
Kevin Clark, Minh-Thang Luong, Quoc V Le, and

Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Cody Coleman, Deepak Narayanan, Daniel Kang,
Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis,
Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017.
Dawnbench: An end-to-end deep learning bench-
mark and competition. Training, 100(101):102.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A Smith. 2019. Show your
work: Improved reporting of experimental results.
arXiv preprint arXiv:1909.03004.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Peter Mattson, Christine Cheng, Cody Coleman, Greg
Diamos, Paulius Micikevicius, David Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bit-
torf, et al. 2019. Mlperf training benchmark. arXiv
preprint arXiv:1910.01500.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green ai. arXiv preprint
arXiv:1907.10597.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

335

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

336

Author Index

Abdelali, Ahmed, 113
Aflalo, Estelle, 135
Akrami, Farahnaz, 99
Amin, Saadullah, 212
Ananiadou, Sophia, 238
Andersen, Jakob Smedegaard, 63
Ansari, Ebrahim, 71, 271
Anwar, Saba, 198
aouragh, Lhoussain, 127
Arranz, Victoria, 221
Arslan, Fatma, 99

Backfried, Gerhard, 221
Baylis, Paul, 238
Becker, Maria, 119
Beloucif, Meriem, 302
Berrio, Cristian, 221
Biemann, Chris, 63, 198, 302
Bocchi, Lorenzo, 106
Bojar, Ondřej, 71, 271
Bondarenko, Alexander, 302
Bontcheva, Kalina, 221
Bouzoubaa, Karim, 127

Calizzano, Rémi, 221
Camacho-Collados, Jose, 53
CANDELIERI, ANTONIO, 263
Canton, Chiara, 271
Caraballo, Josue, 99
Chang, Walter, 160
Chekalina, Viktoriia, 302
Chen, Sherol, 244
Chen, Tongfei, 149
Chen, Yunmo, 149
Chen, Zhiyu, 329
Chordia, Varnith, 312
Choudhury, Monojit, 205
Choukri, Khalid, 221
Ciuffoletti, Augusto, 32
Cucurnia, Davide, 32

Darwish, Kareem, 113
de Léséleuc de Kérouara, Gaël, 278
Deligiannis, Miltos, 221
DeNeefe, Steve, 40

Dernoncourt, Franck, 160
Dinalescu, Monica, 244
Dufresne, Sheena, 321
Duval, Alexandre, 278

Feldhus, Nils, 221
Fersini, Elisabetta, 263
Finzel, Raymond, 321
Franceschini, Dario, 271
Frank, Anette, 119
Frasnelli, Valentino, 106
Friedrich, Alexander, 198
Friedrich, Niklas, 91

Galanis, Dimitris, 221
Gallé, Matthias, 278
Galuzzi, Bruno Giovanni, 263
Ganu, Tanuja, 205
Garcia-Silva, Andres, 221
Gaydhani, Aditya, 321
Germann, Ulrich, 221
Gini, Maria, 321
Gkirtzou, Katerina, 221
Gkoumas, Dimitris, 221
Glavaš, Goran, 91
Gomez-Perez, Jose Manuel, 221
Goško, Didzis, 295
Gruzitis, Normunds, 295
Guillaume, Bruno, 168
Gutkin, Alexander, 14

Haase, Christian, 198
Haddow, Barry, 71, 271
Haering, Marlo, 63
Hajic, Jan, 221
Hamrlova, Jana, 221
Harman, Craig, 149
Hassan, Sabit, 113
Hegele, Stefanie, 221
Howard, Phillip, 135

jaafar, hamid, 127
Jaafar, Younes, 127
Janosik, Miro, 221
Jaradat, Israa, 99

337

Jimenez, Damian, 99
Jin, Xiaoyong, 329
Johny, Cibu, 14

Kacena, Lukas, 221
Kamigaito, Hidetaka, 231
khamar, hakima, 127
Kintzel, Florian, 221
Klejch, Ondrej, 221
Kolovou, Athanasia, 221
Korat, Daniel, 135
Korfhage, Katharina, 119
Kratochvíl, Jonáš, 271
Kumar, Rishu, 271
Kutuzov, Andrey, 143
Kuzmenko, Elizaveta, 143
Kwon, Jingun, 231

Labropoulou, Penny, 221
Lai, Viet Dac, 80
Lal, Vasudev, 135
Lamson, Thomas, 278
Lauscher, Anne, 91
Lee, Kyusong, 7
Li, Chengkai, 99
Liao, Haojin, 99
Logacheva, Varvara, 302
Loosen, Wiebke, 63
Lu, Xiaopeng, 7

Ma, Arden, 135
Maalej, Walid, 63
Macháček, Dominik, 271
Mahmoudi, Mohammad, 71, 271
Mapelli, Valérie, 221
Marheinecke, Katrin, 221
Marşan, Büşra, 257
Mathewson, Kory, 244
Matsumoto, Yuji, 24
May, Chandler, 149
Melnika, Julija, 221
Meng, Kevin, 99
Milde, Benjamin, 63
Moreno-Schneider, Julian, 221
Mubarak, Hamdy, 113

Namly, Driss, 127
Nešpore-Bērzkalne, Gunta, 295
Neumann, Arne, 1
Neumann, Guenter, 212
Nghiem, Minh-Quoc, 238
Nguyen, Chau, 24
Nguyen, Minh, 24

Nguyen, Minh Van, 80
Nguyen, Phuong, 24
Nguyen, Thai-Son, 271
Nguyen, Thien Huu, 80, 160
Nieminen, Tommi, 288

Okumura, Manabu, 231

Pakhomov, Serguei, 321
Palmero Aprosio, Alessio, 106
Panchenko, Alexander, 302
Pathak, Paras, 99
Pereg, Oren, 135
Pietrzak, Ben, 244
Pietz, Tim, 63
Piperidis, Stelios, 221
Plank, Barbara, 176
Polák, Peter, 271
Ponzetto, Simone Paolo, 91
Pouran Ben Veyseh, Amir, 80, 160
Prinz, Katja, 221

Qin, Guanghui, 149

Ramponi, Alan, 176
Rawlins, Kyle, 149
Rehm, Georg, 221
Renals, Steve, 221
Rigault, Mickaël, 221
Rizvi, Mohd Sanad Zaki, 205
Roark, Brian, 14
Roberts, Ian, 221
Roemmele, Melissa, 40
Rozanov, Nikolai, 32

Saeef, Mohanmmed Samiul, 99
Sagar, Sangeet, 271
Satoh, Ken, 24
Schneider, Felix, 271
Sennrich, Rico, 271
Sharaf, Ibrahim, 176
Shi, Xiao, 99
Sidhpura, Deep, 40
Simi, Maria, 32
Simoes, Ana, 135
Simonini, Ivan, 271
Singer, Gadi, 135
Sitaram, Sunayana, 205
Skadina, Inguna, 295
Smrž, Otakar, 271
Song, Young-In, 231
Srinivasan, Anirudh, 205
Stöcker, Christian, 63

Stüker, Sebastian, 271
Sucameli, Irene, 32
Swanson, Ben, 244

Tachicart, Ridouane, 127
Tajmout, Rachida, 127
Terragni, Silvia, 263
Tran, Van-Hien, 24
Tran, Vu, 24
Tropeano, Pietro, 263
Tsou, Ling, 40

Ushio, Asahi, 53
Üstün, Ahmet, 176

van der Goot, Rob, 176
Van Durme, Benjamin, 149
Varis, Dusan, 221
Vashishtha, Siddharth, 149
Vasil,jevs, Andrejs, 221
Voukoutis, Leon, 221

Waibel, Alex, 271
Wang, William Yang, 329
Wasserblat, Moshe, 135
White, Aaron Steven, 149
Wiedemann, Gregor, 63
Williams, Philip, 271
Wolf-Sonkin, Lawrence, 14

Xia, Patrick, 149

Yıldız, Olcay Taner, 257
Yimam, Seid Muhie, 198
Yousfi, Abdellah, 127

Zhang, Zeyu, 99
Zhao, Tiancheng, 7
Zhou, Xiyou, 329
Zhu, Zhengyuan, 99
Znotins, Arturs, 295
Zukunft, Olaf, 63

	Program
	Using and comparing Rhetorical Structure Theory parsers with rst-workbench
	SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
	Finite-state script normalization and processing utilities: The Nisaba Brahmic library
	CovRelex: A COVID-19 Retrieval System with Relation Extraction
	MATILDA - Multi-AnnoTator multi-language InteractiveLight-weight Dialogue Annotator
	AnswerQuest: A System for Generating Question-Answer Items from Multi-Paragraph Documents
	T-NER: An All-Round Python Library for Transformer-based Named Entity Recognition
	Forum 4.0: An Open-Source User Comment Analysis Framework
	SLTEV: Comprehensive Evaluation of Spoken Language Translation
	Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing
	DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces
	A Dashboard for Mitigating the COVID-19 Misinfodemic
	EasyTurk: A User-Friendly Interface for High-Quality Linguistic Annotation with Amazon Mechanical Turk
	ASAD: Arabic Social media Analytics and unDerstanding
	COCO-EX: A Tool for Linking Concepts from Texts to ConceptNet
	A description and demonstration of SAFAR framework
	InterpreT: An Interactive Visualization Tool for Interpreting Transformers
	Representing ELMo embeddings as two-dimensional text online
	LOME: Large Ontology Multilingual Extraction
	MadDog: A Web-based System for Acronym Identification and Disambiguation
	Graph Matching and Graph Rewriting: GREW tools for corpus exploration, maintenance and conversion
	Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP
	SCoT: Sense Clustering over Time: a tool for the analysis of lexical change
	GCM: A Toolkit for Generating Synthetic Code-mixed Text
	T2NER: Transformers based Transfer Learning Framework for Named Entity Recognition
	European Language Grid: A Joint Platform for the European Language Technology Community
	A New Surprise Measure for Extracting Interesting Relationships between Persons
	Paladin: an annotation tool based on active and proactive learning
	Story Centaur: Large Language Model Few Shot Learning as a Creative Writing Tool
	FrameForm: An Open-source Annotation Interface for FrameNet
	OCTIS: Comparing and Optimizing Topic models is Simple!
	ELITR Multilingual Live Subtitling: Demo and Strategy
	Breaking Writer's Block: Low-cost Fine-tuning of Natural Language Generation Models
	OPUS-CAT: Desktop NMT with CAT integration and local fine-tuning
	Domain Expert Platform for Goal-Oriented Dialog Collection
	Which is Better for Deep Learning: Python or MATLAB? Answering Comparative Questions in Natural Language
	PunKtuator: A Multilingual Punctuation Restoration System for Spoken and Written Text
	Conversational Agent for Daily Living Assessment Coaching Demo
	HULK: An Energy Efficiency Benchmark Platform for Responsible Natural Language Processing

