Learning effective language representations from crowdsourced labels is crucial for many real-world machine learning tasks. A challenging aspect of this problem is that the quality of crowdsourced labels suffer high intra- and inter-observer variability. Since the high-capacity deep neural networks can easily memorize all disagreements among crowdsourced labels, directly applying existing supervised language representation learning algorithms may yield suboptimal solutions. In this paper, we propose TACMA, a temporal-aware language representation learning heuristic for crowdsourced labels with multiple annotators. The proposed approach (1) explicitly models the intra-observer variability with attention mechanism; (2) computes and aggregates per-sample confidence scores from multiple workers to address the inter-observer disagreements. The proposed heuristic is extremely easy to implement in around 5 lines of code. The proposed heuristic is evaluated on four synthetic and four real-world data sets. The results show that our approach outperforms a wide range of state-of-the-art baselines in terms of prediction accuracy and AUC. To encourage the reproducible results, we make our code publicly available at https://github.com/CrowdsourcingMining/TACMA.
Existing audio-language task-specific predictive approaches focus on building complicated late-fusion mechanisms. However, these models are facing challenges of overfitting with limited labels and low model generalization abilities. In this paper, we present a Cross-modal Transformer for Audio-and-Language, i.e., CTAL, which aims to learn the intra-modality and inter-modality connections between audio and language through two proxy tasks on a large amount of audio-and-language pairs: masked language modeling and masked cross-modal acoustic modeling. After fine-tuning our pre-trained model on multiple downstream audio-and-language tasks, we observe significant improvements across various tasks, such as, emotion classification, sentiment analysis, and speaker verification. On this basis, we further propose a specially-designed fusion mechanism that can be used in fine-tuning phase, which allows our pre-trained model to achieve better performance. Lastly, we demonstrate detailed ablation studies to prove that both our novel cross-modality fusion component and audio-language pre-training methods significantly contribute to the promising results. The code and pre-trained models are available at https://github.com/tal-ai/CTAL_EMNLP2021.
There is an increasing interest in the use of mathematical word problem (MWP) generation in educational assessment. Different from standard natural question generation, MWP generation needs to maintain the underlying mathematical operations between quantities and variables, while at the same time ensuring the relevance between the output and the given topic. To address above problem, we develop an end-to-end neural model to generate diverse MWPs in real-world scenarios from commonsense knowledge graph and equations. The proposed model (1) learns both representations from edge-enhanced Levi graphs of symbolic equations and commonsense knowledge; (2) automatically fuses equation and commonsense knowledge information via a self-planning module when generating the MWPs. Experiments on an educational gold-standard set and a large-scale generated MWP set show that our approach is superior on the MWP generation task, and it outperforms the SOTA models in terms of both automatic evaluation metrics, i.e., BLEU-4, ROUGE-L, Self-BLEU, and human evaluation metrics, i.e., equation relevance, topic relevance, and language coherence. To encourage reproducible results, we make our code and MWP dataset public available at https://github.com/tal-ai/MaKE_EMNLP2021.
Generating long and coherent text is an important but challenging task, particularly for open-ended language generation tasks such as story generation. Despite the success in modeling intra-sentence coherence, existing generation models (e.g., BART) still struggle to maintain a coherent event sequence throughout the generated text. We conjecture that this is because of the difficulty for the decoder to capture the high-level semantics and discourse structures in the context beyond token-level co-occurrence. In this paper, we propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process. To this end, we propose two pretraining objectives to learn the representations by predicting inter-sentence semantic similarity and distinguishing between normal and shuffled sentence orders. Extensive experiments show that our model can generate more coherent texts than state-of-the-art baselines.
Automatic metrics are essential for developing natural language generation (NLG) models, particularly for open-ended language generation tasks such as story generation. However, existing automatic metrics are observed to correlate poorly with human evaluation. The lack of standardized benchmark datasets makes it difficult to fully evaluate the capabilities of a metric and fairly compare different metrics. Therefore, we propose OpenMEVA, a benchmark for evaluating open-ended story generation metrics. OpenMEVA provides a comprehensive test suite to assess the capabilities of metrics, including (a) the correlation with human judgments, (b) the generalization to different model outputs and datasets, (c) the ability to judge story coherence, and (d) the robustness to perturbations. To this end, OpenMEVA includes both manually annotated stories and auto-constructed test examples. We evaluate existing metrics on OpenMEVA and observe that they have poor correlation with human judgments, fail to recognize discourse-level incoherence, and lack inferential knowledge (e.g., causal order between events), the generalization ability and robustness. Our study presents insights for developing NLG models and metrics in further research.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treats the opposite agent policy as part of the environment. While in real-world scenarios, the behavior of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agent’s policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
The automatic feedback of school assignments is an important application of AI in education. In this work, we focus on the task of personalized multimodal feedback generation, which aims to generate personalized feedback for teachers to evaluate students’ assignments involving multimodal inputs such as images, audios, and texts. This task involves the representation and fusion of multimodal information and natural language generation, which presents the challenges from three aspects: (1) how to encode and integrate multimodal inputs; (2) how to generate feedback specific to each modality; and (3) how to fulfill personalized feedback generation. In this paper, we propose a novel Personalized Multimodal Feedback Generation Network (PMFGN) armed with a modality gate mechanism and a personalized bias mechanism to address these challenges. Extensive experiments on real-world K-12 education data show that our model significantly outperforms baselines by generating more accurate and diverse feedback. In addition, detailed ablation experiments are conducted to deepen our understanding of the proposed framework.
Recently there are increasing concerns about the fairness of Artificial Intelligence (AI) in real-world applications such as computer vision and recommendations. For example, recognition algorithms in computer vision are unfair to black people such as poorly detecting their faces and inappropriately identifying them as “gorillas”. As one crucial application of AI, dialogue systems have been extensively applied in our society. They are usually built with real human conversational data; thus they could inherit some fairness issues which are held in the real world. However, the fairness of dialogue systems has not been well investigated. In this paper, we perform a pioneering study about the fairness issues in dialogue systems. In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models. Our studies demonstrate that popular dialogue models show significant prejudice towards different genders and races. Besides, to mitigate the bias in dialogue systems, we propose two simple but effective debiasing methods. Experiments show that our methods can reduce the bias in dialogue systems significantly. The dataset and the implementation are released to foster fairness research in dialogue systems.
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect people’s gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality.