Yisi Sang


2024

pdf
More Samples or More Prompts? Exploring Effective Few-Shot In-Context Learning for LLMs with In-Context Sampling
Bingsheng Yao | Guiming Chen | Ruishi Zou | Yuxuan Lu | Jiachen Li | Shao Zhang | Yisi Sang | Sijia Liu | James Hendler | Dakuo Wang
Findings of the Association for Computational Linguistics: NAACL 2024

While most existing works on LLM prompting techniques focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can not we design and leverage multiple prompts together to further improve the LLM’s performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompting technique to produce confident predictions by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with three open-source LLMs (FlanT5-XL, Mistral-7B, and Mixtral-8x7B) on four NLI datasets (e-SNLI, Multi-NLI, ANLI, and Contract-NLI) and one QA dataset (CommonsenseQA) illustrate that ICS can consistently enhance LLMs’ performance. An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM’s performance, which sheds light on a new yet promising future research direction.

2023

pdf
FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge
Farima Fatahi Bayat | Kun Qian | Benjamin Han | Yisi Sang | Anton Belyy | Samira Khorshidi | Fei Wu | Ihab Ilyas | Yunyao Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Detecting factual errors of textual information, whether generated by large language models (LLM) or curated by humans, is crucial for making informed decisions. LLMs’ inability to attribute their claims to external knowledge and their tendency to hallucinate makes it difficult to rely on their responses. Humans, too, are prone to factual errors in their writing. Since manual detection and correction of factual er- rors is labor-intensive, developing an automatic approach can greatly reduce human effort. We present a prototype tool that automatically extracts factual claims from text, gathers evidence from external knowledge sources, evaluates the factuality of each claim, and suggests revisions for identified errors using the collected evidence. Initial empirical evaluation on fact error detection (77-85% F1) shows the potential of our tool.

2022

pdf
Fantastic Questions and Where to Find Them: FairytaleQA – An Authentic Dataset for Narrative Comprehension
Ying Xu | Dakuo Wang | Mo Yu | Daniel Ritchie | Bingsheng Yao | Tongshuang Wu | Zheng Zhang | Toby Li | Nora Bradford | Branda Sun | Tran Hoang | Yisi Sang | Yufang Hou | Xiaojuan Ma | Diyi Yang | Nanyun Peng | Zhou Yu | Mark Warschauer
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models’ fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions.

pdf
MBTI Personality Prediction for Fictional Characters Using Movie Scripts
Yisi Sang | Xiangyang Mou | Mo Yu | Dakuo Wang | Jing Li | Jeffrey Stanton
Findings of the Association for Computational Linguistics: EMNLP 2022

An NLP model that understands stories should be able to understand the characters in them. To support the development of neural models for this purpose, we construct a benchmark, Story2Personality. The task is to predict a movie character’s MBTI or Big 5 personality types based on the narratives of the character. Experiments show that our task is challenging for the existing text classification models, as none is able to largely outperform random guesses. We further proposed a multi-view model for personality prediction using both verbal and non-verbal descriptions, which gives improvement compared to using only verbal descriptions. The uniqueness and challenges in our dataset call for the development of narrative comprehension techniques from the perspective of understanding characters.

pdf
TVShowGuess: Character Comprehension in Stories as Speaker Guessing
Yisi Sang | Xiangyang Mou | Mo Yu | Shunyu Yao | Jing Li | Jeffrey Stanton
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a new task for assessing machines’ skills of understanding fictional characters in narrative stories. The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues. Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters’ personalities, facts and memories of personal experience, which are well aligned with the psychological and literary theories about the theory of mind (ToM) of human beings on understanding fictional characters during reading. We further propose new model architectures to support the contextualized encoding of long scene texts. Experiments show that our proposed approaches significantly outperform baselines, yet still largely lag behind the (nearly perfect) human performance. Our work serves as a first step toward the goal of narrative character comprehension.

pdf
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann | Abhik Bhattacharjee | Abinaya Mahendiran | Alex Wang | Alexandros Papangelis | Aman Madaan | Angelina Mcmillan-major | Anna Shvets | Ashish Upadhyay | Bernd Bohnet | Bingsheng Yao | Bryan Wilie | Chandra Bhagavatula | Chaobin You | Craig Thomson | Cristina Garbacea | Dakuo Wang | Daniel Deutsch | Deyi Xiong | Di Jin | Dimitra Gkatzia | Dragomir Radev | Elizabeth Clark | Esin Durmus | Faisal Ladhak | Filip Ginter | Genta Indra Winata | Hendrik Strobelt | Hiroaki Hayashi | Jekaterina Novikova | Jenna Kanerva | Jenny Chim | Jiawei Zhou | Jordan Clive | Joshua Maynez | João Sedoc | Juraj Juraska | Kaustubh Dhole | Khyathi Raghavi Chandu | Laura Perez Beltrachini | Leonardo F . R. Ribeiro | Lewis Tunstall | Li Zhang | Mahim Pushkarna | Mathias Creutz | Michael White | Mihir Sanjay Kale | Moussa Kamal Eddine | Nico Daheim | Nishant Subramani | Ondrej Dusek | Paul Pu Liang | Pawan Sasanka Ammanamanchi | Qi Zhu | Ratish Puduppully | Reno Kriz | Rifat Shahriyar | Ronald Cardenas | Saad Mahamood | Salomey Osei | Samuel Cahyawijaya | Sanja Štajner | Sebastien Montella | Shailza Jolly | Simon Mille | Tahmid Hasan | Tianhao Shen | Tosin Adewumi | Vikas Raunak | Vipul Raheja | Vitaly Nikolaev | Vivian Tsai | Yacine Jernite | Ying Xu | Yisi Sang | Yixin Liu | Yufang Hou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.
Search
Co-authors