2024
pdf
abs
RecMind: Large Language Model Powered Agent For Recommendation
Yancheng Wang
|
Ziyan Jiang
|
Zheng Chen
|
Fan Yang
|
Yingxue Zhou
|
Eunah Cho
|
Xing Fan
|
Yanbin Lu
|
Xiaojiang Huang
|
Yingzhen Yang
Findings of the Association for Computational Linguistics: NAACL 2024
While the recommendation system (RS) has advanced significantly through deep learning, current RS approaches usually train and fine-tune models on task-specific datasets, limiting their generalizability to new recommendation tasks and their ability to leverage external knowledge due to model scale and data size constraints. Thus, we designed an LLM-powered autonomous recommender agent, RecMind, which is capable of leveraging external knowledge, utilizing tools with careful planning to provide zero-shot personalized recommendations. We propose a Self-Inspiring algorithm to improve the planning ability. At each intermediate step, the LLM “self-inspires” to consider all previously explored states to plan for the next step. This mechanism greatly improves the model’s ability to comprehend and utilize historical information in planning for recommendation. We evaluate RecMind’s performance in various recommendation scenarios. Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation baseline methods in various tasks and achieves comparable performance to a fully trained recommendation model P5.
2023
pdf
abs
Improving Contextual Query Rewrite for Conversational AI Agents through User-preference Feedback Learning
Zhongkai Sun
|
Yingxue Zhou
|
Jie Hao
|
Xing Fan
|
Yanbin Lu
|
Chengyuan Ma
|
Wei Shen
|
Chenlei Guo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Contextual query rewriting (CQR) is a crucial component in Conversational AI agents, leveraging the contextual information from previous user-agent conversations to improve the comprehension of current user intent. However, traditional CQR methods often concentrate on supervised fine-tuning only, neglecting the opportunities to learn from user feedback to align with user preferences. Inspired by recent advances in learning from human feedback (LHF), this paper proposes a novel Preference Aligned Contextual Query Rewriting (PA-CQR) framework to enhance the CQR model’s capability in generating user preference-aligned rewrites. This paper also investigates the efficacy of various state-of-the-art feedback learning algorithms on the CQR task, and proposes a novel Dynamic Direct Preference Optimization (Dynamic DPO) algorithm to better adapt the DPO algorithm to large-scale CQR training. Experiments on large-scale real-world CQR data set demonstrate the superiority of the proposed PA-CQR framework and the Dynamic DPO.
pdf
abs
Unified Contextual Query Rewriting
Yingxue Zhou
|
Jie Hao
|
Mukund Rungta
|
Yang Liu
|
Eunah Cho
|
Xing Fan
|
Yanbin Lu
|
Vishal Vasudevan
|
Kellen Gillespie
|
Zeynab Raeesy
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Query rewriting (QR) is an important technique for user friction (i.e. recovering ASR error or system error) reduction and contextual carryover (i.e. ellipsis and co-reference) in conversational AI systems. Recently, generation-based QR models have achieved promising results on these two tasks separately. Although these two tasks have many similarities such as they both use the previous dialogue along with the current request as model input, there is no unified model to solve them jointly. To this end, we propose a unified contextual query rewriting model that unifies QR for both reducing friction and contextual carryover purpose. Moreover, we involve multiple auxiliary tasks such as trigger prediction and NLU interpretation tasks to boost the performance of the rewrite. We leverage the text-to-text unified framework which uses independent tasks with weighted loss to account for task importance. Then we propose new unified multitask learning strategies including a sequential model which outputs one sentence for multi-tasks, and a hybrid model where some tasks are independent and some tasks are sequentially generated. Our experimental results demonstrate the effectiveness of the proposed unified learning methods.