Yifan Liu


2023

pdf
Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent Induction
Caiyuan Chu | Ya Li | Yifan Liu | Jia-Chen Gu | Quan Liu | Yongxin Ge | Guoping Hu
Proceedings of The Eleventh Dialog System Technology Challenge

Intent recognition is critical for task-oriented dialogue systems. However, for emerging domains and new services, it is difficult to accurately identify the key intent of a conversation due to time-consuming data annotation and comparatively poor model transferability. Therefore, the automatic induction of dialogue intention is very important for intelligent dialogue systems. This paper presents our solution to Track 2 of Intent Induction from Conversations for Task-Oriented Dialogue at the Eleventh Dialogue System Technology Challenge (DSTC11). The essence of intention clustering lies in distinguishing the representation of different dialogue utterances. The key to automatic intention induction is that, for any given set of new data, the sentence representation obtained by the model can be well distinguished from different labels. Therefore, we propose a multi-stage coarse-to-fine contrastive learning model training scheme including unsupervised contrastive learning pre-training, supervised contrastive learning pre-training, and fine-tuning with joint contrastive learning and clustering to obtain a better dialogue utterance representation model for the clustering task. In the released DSTC11 Track 2 evaluation results, our proposed system ranked first on both of the two subtasks of this Track.

2019

pdf
AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated System for SAT Math Question Answering
Yifan Liu | Keyu Ding | Yi Zhou
Proceedings of the 13th International Workshop on Semantic Evaluation

AiFu has won the first place in the SemEval-2019 Task 10 - ”Math Question Answering”competition. This paper is to describe how it works technically and to report and analyze some essential experimental results