Yi Tay


2023

pdf
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
Mirac Suzgun | Nathan Scales | Nathanael Schärli | Sebastian Gehrmann | Yi Tay | Hyung Won Chung | Aakanksha Chowdhery | Quoc Le | Ed Chi | Denny Zhou | Jason Wei
Findings of the Association for Computational Linguistics: ACL 2023

BIG-Bench (Srivastava et al., 2022) is a diverse evaluation suite that focuses on tasks believed to be beyond the capabilities of current language models. Language models have already made good progress on this benchmark, with the best model in the BIG-Bench paper outperforming average reported human-rater results on 65% of the BIG-Bench tasks via few-shot prompting. But on what tasks do language models fall short of average human-rater performance, and are those tasks actually unsolvable by current language models? In this work, we focus on a suite of 23 challenging BIG-Bench tasks which we call BIG-Bench Hard (BBH). These are the tasks for which prior language model evaluations did not outperform the average human-rater. We find that applying chain-of-thought (CoT) prompting to BBH tasks enables PaLM to surpass the average human-rater performance on 10 of the 23 tasks, and Codex (code-davinci-002) to surpass the average human-rater performance on 17 of the 23 tasks. Since many tasks in BBH require multi-step reasoning, few-shot prompting without CoT, as done in the BIG-Bench evaluations (Srivastava et al., 2022), substantially underestimates the best performance and capabilities of language models, which is better captured via CoT prompting. As further analysis, we explore the interaction between CoT and model scale on BBH, finding that CoT enables emergent task performance on several BBH tasks with otherwise flat scaling curves.

pdf
Scaling Laws vs Model Architectures: How does Inductive Bias Influence Scaling?
Yi Tay | Mostafa Dehghani | Samira Abnar | Hyung Chung | William Fedus | Jinfeng Rao | Sharan Narang | Vinh Tran | Dani Yogatama | Donald Metzler
Findings of the Association for Computational Linguistics: EMNLP 2023

There have been a lot of interest in the scaling properties of Transformer models. However, not much has been done on the front of investigating the effect of scaling properties of different inductive biases and model architectures. Do model architectures scale differently? If so, how does inductive bias affect scaling behaviour? How does this influence upstream (pretraining) and downstream (transfer)? This paper conducts a systematic study of scaling behaviour of ten diverse model architectures such as Transformers, Switch Transformers, Universal Transformers, Dynamic convolutions, Performers, and recently proposed MLP-Mixers. Via extensive experiments, we show that (1) architecture is an indeed an important consideration when performing scaling and (2) the best performing model can fluctuate at different scales. We believe that the findings outlined in this work has significant implications to how model architectures are currently evaluated in the community.

pdf
Symbol tuning improves in-context learning in language models
Jerry Wei | Le Hou | Andrew Lampinen | Xiangning Chen | Da Huang | Yi Tay | Xinyun Chen | Yifeng Lu | Denny Zhou | Tengyu Ma | Quoc Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., “positive/negative sentiment”) are replaced with arbitrary symbols (e.g., “foo/bar”). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior knowledge.

pdf
Transcending Scaling Laws with 0.1% Extra Compute
Yi Tay | Jason Wei | Hyung Chung | Vinh Tran | David So | Siamak Shakeri | Xavier Garcia | Steven Zheng | Jinfeng Rao | Aakanksha Chowdhery | Denny Zhou | Donald Metzler | Slav Petrov | Neil Houlsby | Quoc Le | Mostafa Dehghani
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scaling language models improves performance but comes with significant computational costs. This paper proposes UL2R, a method that substantially improves existing language models and their scaling curves with a relatively tiny amount of extra compute. The key idea is to continue training a state-of-the-art large language model on a few more steps with UL2’s mixture-of-denoiser objective. We show that, with almost negligible extra computational costs and no new sources of data, we are able to substantially improve the scaling properties of large language models on downstream metrics. In this paper, we continue training a baseline language model, PaLM, with ULR2, introducing a new set of models at 8B, 62B, and 540B scale which we call U-PaLM. Impressively, at 540B scale, we show an approximately 2x computational savings rate where U-PaLM achieves the same performance as the final PaLM 540B model at around half its computational budget (i.e., saving ~4.4 million TPUv4 hours). We further show that this improved scaling curve leads to “emergent abilities” on challenging BIG-Bench tasks—for instance, U-PaLM does much better on some tasks or demonstrates better quality at much smaller scale (62B as opposed to 540B). Overall, we show that U-PaLM outperforms PaLM on many few-shot setups, including reasoning tasks with chain-of-thought (e.g., GSM8K), multilingual tasks (MGSM, TydiQA), MMLU and challenging BIG-Bench tasks.

pdf
CoLT5: Faster Long-Range Transformers with Conditional Computation
Joshua Ainslie | Tao Lei | Michiel de Jong | Santiago Ontanon | Siddhartha Brahma | Yury Zemlyanskiy | David Uthus | Mandy Guo | James Lee-Thorp | Yi Tay | Yun-Hsuan Sung | Sumit Sanghai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many natural language processing tasks benefit from long inputs, but processing long documents with Transformers is expensive – not only due to quadratic attention complexity but also from applying feedforward and projection layers to every token. However, not all tokens are equally important, especially for longer documents. We propose CoLT5, a long-input Transformer model that builds on this intuition by employing conditional computation, devoting more resources to important tokens in both feedforward and attention layers. We show that CoLT5 achieves stronger performance than LongT5 with much faster training and inference, achieving SOTA on the long-input SCROLLS benchmark. Moreover, CoLT5 can effectively and tractably make use of extremely long inputs, showing strong gains up to 64k input length.

pdf
DSI++: Updating Transformer Memory with New Documents
Sanket Vaibhav Mehta | Jai Gupta | Yi Tay | Mostafa Dehghani | Vinh Q. Tran | Jinfeng Rao | Marc Najork | Emma Strubell | Donald Metzler
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Differentiable Search Indices (DSIs) encode a corpus of documents in the parameters of a model and use the same model to map queries directly to relevant document identifiers. Despite the solid performance of DSI models, successfully deploying them in scenarios where document corpora change with time is an open problem. In this work, we introduce DSI++, a continual learning challenge for DSI with the goal of continuously indexing new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviates forgetting, so we explicitly optimize for flatter loss basins and show that the model stably memorizes more documents (+12%). Next, we introduce a parametric memory to generate pseudo-queries for documents and supplement them during incremental indexing to prevent forgetting for the retrieval task. Extensive experiments on a novel continual indexing benchmark based on Natural Questions demonstrate that our proposed solution mitigates the forgetting in DSI++ by a significant margin and improves the average Hits@10 by +21.1% over competitive baselines.

pdf
Inverse Scaling Can Become U-Shaped
Jason Wei | Najoung Kim | Yi Tay | Quoc Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scaling up language models has been empirically shown to improve performance on a wide range of downstream tasks. However, if we were to observe worse performance as a function of scale (inverse scaling) on certain tasks, this would indicate that scaling can also encourage behaviors that are misaligned with human preferences. The Inverse Scaling Prize (McKenzie et al. 2023) identified eleven such inverse scaling tasks, evaluated on models of up to 280B parameters and up to 500 zettaFLOPs of training compute. This paper takes a closer look at these inverse scaling tasks. In this paper, we evaluate models of up to 540B parameters, trained on five times more compute than those evaluated in the Inverse Scaling Prize. With this increased range of model sizes and compute, only four out of the eleven tasks remain inverse scaling. Six tasks exhibit U-shaped scaling, where performance decreases up to a certain size, and then increases again up to the largest model evaluated (the one remaining task displays positive scaling). In addition, 1-shot examples and chain-of-thought can help mitigate undesirable scaling patterns even further. U-shaped scaling suggests that the inverse scaling trend observed in McKenzie et al. (2023) may not continue to hold for larger models, which we attribute to the presence of distractor tasks that only sufficiently large models can avoid.

2022

pdf
Improving Compositional Generalization with Self-Training for Data-to-Text Generation
Sanket Vaibhav Mehta | Jinfeng Rao | Yi Tay | Mihir Kale | Ankur Parikh | Emma Strubell
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data-to-text generation focuses on generating fluent natural language responses from structured meaning representations (MRs). Such representations are compositional and it is costly to collect responses for all possible combinations of atomic meaning schemata, thereby necessitating few-shot generalization to novel MRs. In this work, we systematically study the compositional generalization of the state-of-the-art T5 models in few-shot data-to-text tasks. We show that T5 models fail to generalize to unseen MRs, and we propose a template-based input representation that considerably improves the model’s generalization capability. To further improve the model’s performance, we propose an approach based on self-training using fine-tuned BLEURT for pseudo-response selection. On the commonly-used SGD and Weather benchmarks, the proposed self-training approach improves tree accuracy by 46%+ and reduces the slot error rates by 73%+ over the strong T5 baselines in few-shot settings.

pdf
Sharpness-Aware Minimization Improves Language Model Generalization
Dara Bahri | Hossein Mobahi | Yi Tay
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The allure of superhuman-level capabilities has led to considerable interest in language models like GPT-3 and T5, wherein the research has, by and large, revolved around new model architectures, training tasks, and loss objectives, along with substantial engineering efforts to scale up model capacity and dataset size. Comparatively little work has been done to improve the generalization of these models through better optimization. In this work, we show that Sharpness-Aware Minimization (SAM), a recently proposed optimization procedure that encourages convergence to flatter minima, can substantially improve the generalization of language models without much computational overhead. We show that SAM is able to boost performance on SuperGLUE, GLUE, Web Questions, Natural Questions, Trivia QA, and TyDiQA, with particularly large gains when training data for these tasks is limited.

pdf
ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking Inference
Kai Hui | Honglei Zhuang | Tao Chen | Zhen Qin | Jing Lu | Dara Bahri | Ji Ma | Jai Gupta | Cicero Nogueira dos Santos | Yi Tay | Donald Metzler
Findings of the Association for Computational Linguistics: ACL 2022

State-of-the-art neural models typically encode document-query pairs using cross-attention for re-ranking. To this end, models generally utilize an encoder-only (like BERT) paradigm or an encoder-decoder (like T5) approach. These paradigms, however, are not without flaws, i.e., running the model on all query-document pairs at inference-time incurs a significant computational cost. This paper proposes a new training and inference paradigm for re-ranking. We propose to finetune a pretrained encoder-decoder model using in the form of document to query generation. Subsequently, we show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference. This results in significant inference time speedups since the decoder-only architecture only needs to learn to interpret static encoder embeddings during inference. Our experiments show that this new paradigm achieves results that are comparable to the more expensive cross-attention ranking approaches while being up to 6.8X faster. We believe this work paves the way for more efficient neural rankers that leverage large pretrained models.

pdf
Dense Feature Memory Augmented Transformers for COVID-19 Vaccination Search Classification
Jai Gupta | Yi Tay | Chaitanya Kamath | Vinh Tran | Donald Metzler | Shailesh Bavadekar | Mimi Sun | Evgeniy Gabrilovich
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

With the devastating outbreak of COVID-19, vaccines are one of the crucial lines of defense against mass infection in this global pandemic. Given the protection they provide, vaccines are becoming mandatory in certain social and professional settings. This paper presents a classification model for detecting COVID-19 vaccination related search queries, a machine learning model that is used to generate search insights for COVID-19 vaccinations. The proposed method combines and leverages advancements from modern state-of-the-art (SOTA) natural language understanding (NLU) techniques such as pretrained Transformers with traditional dense features. We propose a novel approach of considering dense features as memory tokens that the model can attend to. We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task, improving a strong well-established gradient-boosting baseline by relative +15% improvement in F1 score and +14% in precision.

2021

pdf bib
Knowledge Router: Learning Disentangled Representations for Knowledge Graphs
Shuai Zhang | Xi Rao | Yi Tay | Ce Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The design of expressive representations of entities and relations in a knowledge graph is an important endeavor. While many of the existing approaches have primarily focused on learning from relational patterns and structural information, the intrinsic complexity of KG entities has been more or less overlooked. More concretely, we hypothesize KG entities may be more complex than we think, i.e., an entity may wear many hats and relational triplets may form due to more than a single reason. To this end, this paper proposes to learn disentangled representations of KG entities - a new method that disentangles the inner latent properties of KG entities. Our disentangled process operates at the graph level and a neighborhood mechanism is leveraged to disentangle the hidden properties of each entity. This disentangled representation learning approach is model agnostic and compatible with canonical KG embedding approaches. We conduct extensive experiments on several benchmark datasets, equipping a variety of models (DistMult, SimplE, and QuatE) with our proposed disentangling mechanism. Experimental results demonstrate that our proposed approach substantially improves performance on key metrics.

pdf
Do Transformer Modifications Transfer Across Implementations and Applications?
Sharan Narang | Hyung Won Chung | Yi Tay | Liam Fedus | Thibault Fevry | Michael Matena | Karishma Malkan | Noah Fiedel | Noam Shazeer | Zhenzhong Lan | Yanqi Zhou | Wei Li | Nan Ding | Jake Marcus | Adam Roberts | Colin Raffel
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these modifications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer variants we found beneficial were either developed in the same codebase that we used or are relatively minor changes. We conjecture that performance improvements may strongly depend on implementation details and correspondingly make some recommendations for improving the generality of experimental results.

pdf
Are Pretrained Convolutions Better than Pretrained Transformers?
Yi Tay | Mostafa Dehghani | Jai Prakash Gupta | Vamsi Aribandi | Dara Bahri | Zhen Qin | Donald Metzler
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In the era of pre-trained language models, Transformers are the de facto choice of model architectures. While recent research has shown promise in entirely convolutional, or CNN, architectures, they have not been explored using the pre-train-fine-tune paradigm. In the context of language models, are convolutional models competitive to Transformers when pre-trained? This paper investigates this research question and presents several interesting findings. Across an extensive set of experiments on 8 datasets/tasks, we find that CNN-based pre-trained models are competitive and outperform their Transformer counterpart in certain scenarios, albeit with caveats. Overall, the findings outlined in this paper suggest that conflating pre-training and architectural advances is misguided and that both advances should be considered independently. We believe our research paves the way for a healthy amount of optimism in alternative architectures.

pdf
StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling
Yikang Shen | Yi Tay | Che Zheng | Dara Bahri | Donald Metzler | Aaron Courville
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

There are two major classes of natural language grammars — the dependency grammar that models one-to-one correspondences between words and the constituency grammar that models the assembly of one or several corresponded words. While previous unsupervised parsing methods mostly focus on only inducing one class of grammars, we introduce a novel model, StructFormer, that can induce dependency and constituency structure at the same time. To achieve this, we propose a new parsing framework that can jointly generate a constituency tree and dependency graph. Then we integrate the induced dependency relations into the transformer, in a differentiable manner, through a novel dependency-constrained self-attention mechanism. Experimental results show that our model can achieve strong results on unsupervised constituency parsing, unsupervised dependency parsing, and masked language modeling at the same time.

pdf
On Orthogonality Constraints for Transformers
Aston Zhang | Alvin Chan | Yi Tay | Jie Fu | Shuohang Wang | Shuai Zhang | Huajie Shao | Shuochao Yao | Roy Ka-Wei Lee
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Orthogonality constraints encourage matrices to be orthogonal for numerical stability. These plug-and-play constraints, which can be conveniently incorporated into model training, have been studied for popular architectures in natural language processing, such as convolutional neural networks and recurrent neural networks. However, a dedicated study on such constraints for transformers has been absent. To fill this gap, this paper studies orthogonality constraints for transformers, showing the effectiveness with empirical evidence from ten machine translation tasks and two dialogue generation tasks. For example, on the large-scale WMT’16 En→De benchmark, simply plugging-and-playing orthogonality constraints on the original transformer model (Vaswani et al., 2017) increases the BLEU from 28.4 to 29.6, coming close to the 29.7 BLEU achieved by the very competitive dynamic convolution (Wu et al., 2019).

pdf
How Reliable are Model Diagnostics?
Vamsi Aribandi | Yi Tay | Donald Metzler
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf
Reverse Engineering Configurations of Neural Text Generation Models
Yi Tay | Dara Bahri | Che Zheng | Clifford Brunk | Donald Metzler | Andrew Tomkins
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent advances in neural text generation modeling have resulted in a number of societal concerns related to how such approaches might be used in malicious ways. It is therefore desirable to develop a deeper understanding of the fundamental properties of such models. The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area. To this end, the extent and degree to which these artifacts surface in generated text is still unclear. In the spirit of better understanding generative text models and their artifacts, we propose the new task of distinguishing which of several variants of a given model generated some piece of text. Specifically, we conduct an extensive suite of diagnostic tests to observe whether modeling choices (e.g., sampling methods, top-k probabilities, model architectures, etc.) leave detectable artifacts in the text they generate. Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by looking at generated text alone. This suggests that neural text generators may actually be more sensitive to various modeling choices than previously thought.

pdf
Interactive Machine Comprehension with Information Seeking Agents
Xingdi Yuan | Jie Fu | Marc-Alexandre Côté | Yi Tay | Chris Pal | Adam Trischler
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing machine reading comprehension (MRC) models do not scale effectively to real-world applications like web-level information retrieval and question answering (QA). We argue that this stems from the nature of MRC datasets: most of these are static environments wherein the supporting documents and all necessary information are fully observed. In this paper, we propose a simple method that reframes existing MRC datasets as interactive, partially observable environments. Specifically, we “occlude” the majority of a document’s text and add context-sensitive commands that reveal “glimpses” of the hidden text to a model. We repurpose SQuAD and NewsQA as an initial case study, and then show how the interactive corpora can be used to train a model that seeks relevant information through sequential decision making. We believe that this setting can contribute in scaling models to web-level QA scenarios.

pdf
Would you Rather? A New Benchmark for Learning Machine Alignment with Cultural Values and Social Preferences
Yi Tay | Donovan Ong | Jie Fu | Alvin Chan | Nancy Chen | Anh Tuan Luu | Chris Pal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Understanding human preferences, along with cultural and social nuances, lives at the heart of natural language understanding. Concretely, we present a new task and corpus for learning alignments between machine and human preferences. Our newly introduced problem is concerned with predicting the preferable options from two sentences describing scenarios that may involve social and cultural situations. Our problem is framed as a natural language inference task with crowd-sourced preference votes by human players, obtained from a gamified voting platform. We benchmark several state-of-the-art neural models, along with BERT and friends on this task. Our experimental results show that current state-of-the-art NLP models still leave much room for improvement.

pdf
Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder
Alvin Chan | Yi Tay | Yew-Soon Ong | Aston Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

This paper demonstrates a fatal vulnerability in natural language inference (NLI) and text classification systems. More concretely, we present a ‘backdoor poisoning’ attack on NLP models. Our poisoning attack utilizes conditional adversarially regularized autoencoder (CARA) to generate poisoned training samples by poison injection in latent space. Just by adding 1% poisoned data, our experiments show that a victim BERT finetuned classifier’s predictions can be steered to the poison target class with success rates of >80% when the input hypothesis is injected with the poison signature, demonstrating that NLI and text classification systems face a huge security risk.

2019

pdf
Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks
Yi Tay | Aston Zhang | Anh Tuan Luu | Jinfeng Rao | Shuai Zhang | Shuohang Wang | Jie Fu | Siu Cheung Hui
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.

pdf
Robust Representation Learning of Biomedical Names
Minh C. Phan | Aixin Sun | Yi Tay
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Biomedical concepts are often mentioned in medical documents under different name variations (synonyms). This mismatch between surface forms is problematic, resulting in difficulties pertaining to learning effective representations. Consequently, this has tremendous implications such as rendering downstream applications inefficacious and/or potentially unreliable. This paper proposes a new framework for learning robust representations of biomedical names and terms. The idea behind our approach is to consider and encode contextual meaning, conceptual meaning, and the similarity between synonyms during the representation learning process. Via extensive experiments, we show that our proposed method outperforms other baselines on a battery of retrieval, similarity and relatedness benchmarks. Moreover, our proposed method is also able to compute meaningful representations for unseen names, resulting in high practical utility in real-world applications.

pdf
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
Yi Tay | Shuohang Wang | Anh Tuan Luu | Jie Fu | Minh C. Phan | Xingdi Yuan | Jinfeng Rao | Siu Cheung Hui | Aston Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.

pdf
Confusionset-guided Pointer Networks for Chinese Spelling Check
Dingmin Wang | Yi Tay | Li Zhong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper proposes Confusionset-guided Pointer Networks for Chinese Spell Check (CSC) task. More concretely, our approach utilizes the off-the-shelf confusionset for guiding the character generation. To this end, our novel Seq2Seq model jointly learns to copy a correct character from an input sentence through a pointer network, or generate a character from the confusionset rather than the entire vocabulary. We conduct experiments on three human-annotated datasets, and results demonstrate that our proposed generative model outperforms all competitor models by a large margin of up to 20% F1 score, achieving state-of-the-art performance on three datasets.

pdf
Bridging the Gap between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
Jinfeng Rao | Linqing Liu | Yi Tay | Wei Yang | Peng Shi | Jimmy Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered variants of semantic matching, which is to measure the semantic distance between two pieces of short texts. While at a high level both relevance and semantic matching require modeling textual similarity, many existing techniques for one cannot be easily adapted to the other. To bridge this gap, we propose a novel model, HCAN (Hybrid Co-Attention Network), that comprises (1) a hybrid encoder module that includes ConvNet-based and LSTM-based encoders, (2) a relevance matching module that measures soft term matches with importance weighting at multiple granularities, and (3) a semantic matching module with co-attention mechanisms that capture context-aware semantic relatedness. Evaluations on multiple IR and NLP benchmarks demonstrate state-of-the-art effectiveness compared to approaches that do not exploit pretraining on external data. Extensive ablation studies suggest that relevance and semantic matching signals are complementary across many problem settings, regardless of the choice of underlying encoders.

2018

pdf
Compare, Compress and Propagate: Enhancing Neural Architectures with Alignment Factorization for Natural Language Inference
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper presents a new deep learning architecture for Natural Language Inference (NLI). Firstly, we introduce a new architecture where alignment pairs are compared, compressed and then propagated to upper layers for enhanced representation learning. Secondly, we adopt factorization layers for efficient and expressive compression of alignment vectors into scalar features, which are then used to augment the base word representations. The design of our approach is aimed to be conceptually simple, compact and yet powerful. We conduct experiments on three popular benchmarks, SNLI, MultiNLI and SciTail, achieving competitive performance on all. A lightweight parameterization of our model also enjoys a 3 times reduction in parameter size compared to the existing state-of-the-art models, e.g., ESIM and DIIN, while maintaining competitive performance. Additionally, visual analysis shows that our propagated features are highly interpretable.

pdf
Multi-Granular Sequence Encoding via Dilated Compositional Units for Reading Comprehension
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Sequence encoders are crucial components in many neural architectures for learning to read and comprehend. This paper presents a new compositional encoder for reading comprehension (RC). Our proposed encoder is not only aimed at being fast but also expressive. Specifically, the key novelty behind our encoder is that it explicitly models across multiple granularities using a new dilated composition mechanism. In our approach, gating functions are learned by modeling relationships and reasoning over multi-granular sequence information, enabling compositional learning that is aware of both long and short term information. We conduct experiments on three RC datasets, showing that our proposed encoder demonstrates very promising results both as a standalone encoder as well as a complementary building block. Empirical results show that simple Bi-Attentive architectures augmented with our proposed encoder not only achieves state-of-the-art / highly competitive results but is also considerably faster than other published works.

pdf
Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sentiment Classification
Yi Tay | Anh Tuan Luu | Siu Cheung Hui | Jian Su
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This paper proposes a new neural architecture that exploits readily available sentiment lexicon resources. The key idea is that that incorporating a word-level prior can aid in the representation learning process, eventually improving model performance. To this end, our model employs two distinctly unique components, i.e., (1) we introduce a lexicon-driven contextual attention mechanism to imbue lexicon words with long-range contextual information and (2), we introduce a contrastive co-attention mechanism that models contrasting polarities between all positive and negative words in a sentence. Via extensive experiments, we show that our approach outperforms many other neural baselines on sentiment classification tasks on multiple benchmark datasets.

pdf
Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for Matching Text Sequences
Yi Tay | Anh Tuan Luu | Siu Cheung Hui
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Learning a matching function between two text sequences is a long standing problem in NLP research. This task enables many potential applications such as question answering and paraphrase identification. This paper proposes Co-Stack Residual Affinity Networks (CSRAN), a new and universal neural architecture for this problem. CSRAN is a deep architecture, involving stacked (multi-layered) recurrent encoders. Stacked/Deep architectures are traditionally difficult to train, due to the inherent weaknesses such as difficulty with feature propagation and vanishing gradients. CSRAN incorporates two novel components to take advantage of the stacked architecture. Firstly, it introduces a new bidirectional alignment mechanism that learns affinity weights by fusing sequence pairs across stacked hierarchies. Secondly, it leverages a multi-level attention refinement component between stacked recurrent layers. The key intuition is that, by leveraging information across all network hierarchies, we can not only improve gradient flow but also improve overall performance. We conduct extensive experiments on six well-studied text sequence matching datasets, achieving state-of-the-art performance on all.

pdf
Reasoning with Sarcasm by Reading In-Between
Yi Tay | Anh Tuan Luu | Siu Cheung Hui | Jian Su
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sarcasm is a sophisticated speech act which commonly manifests on social communities such as Twitter and Reddit. The prevalence of sarcasm on the social web is highly disruptive to opinion mining systems due to not only its tendency of polarity flipping but also usage of figurative language. Sarcasm commonly manifests with a contrastive theme either between positive-negative sentiments or between literal-figurative scenarios. In this paper, we revisit the notion of modeling contrast in order to reason with sarcasm. More specifically, we propose an attention-based neural model that looks in-between instead of across, enabling it to explicitly model contrast and incongruity. We conduct extensive experiments on six benchmark datasets from Twitter, Reddit and the Internet Argument Corpus. Our proposed model not only achieves state-of-the-art performance on all datasets but also enjoys improved interpretability.

2016

pdf
Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural Network
Anh Tuan Luu | Yi Tay | Siu Cheung Hui | See Kiong Ng
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

Search
Co-authors