Metaphor is a prominent linguistic device in human language and literature, as they add color, imagery, and emphasis to enhance effective communication. This paper introduces a large-scale high quality annotated Chinese Metaphor Corpus, which comprises around 28K sentences drawn from a diverse range of Chinese literary sources, such as poems, prose, song lyrics, etc. To ensure the accuracy and consistency of our annotations, we introduce a comprehensive set of guidelines. These guidelines address the facets of metaphor annotation, including identifying tenors, vehicles, and grounds to handling the complexities of similes, personifications, juxtapositions, and hyperboles. Breaking tradition, our approach to metaphor generation emphasizes tenors and their distinct features rather than the conventional combination of tenors and vehicles. By integrating “ground” as a CoT (Chain of Thoughts) input, we are able to generate metaphors that resonate more with real-world intuition. We test generative models such as Belle, Baichuan, and Chinese-alpaca-33B using our annotated corpus. These models are able to generate creative and fluent metaphor sentences more frequently induced by selected samples from our dataset, demonstrating the value of our corpus for Chinese metaphor research.
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with small models for relational triple extraction tasks. The framework includes an evaluation model that can extract related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.
Drawing upon the intuition that aligning different modalities to the same semantic embedding space would allow models to understand states and actions more easily, we propose a new perspective to the offline reinforcement learning (RL) challenge. More concretely, we transform it into a supervised learning task by integrating multimodal and pre-trained language models. Our approach incorporates state information derived from images and action-related data obtained from text, thereby bolstering RL training performance and promoting long-term strategic thinking. We emphasize the contextual understanding of language and demonstrate how decision-making in RL can benefit from aligning states’ and actions’ representation with languages’ representation. Our method significantly outperforms current baselines as evidenced by evaluations conducted on Atari and OpenAI Gym environments. This contributes to advancing offline RL performance and efficiency while providing a novel perspective on offline RL.
Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains not well-explored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT (CITATION) with a frozen LLM, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from captions in the MusicCaps datasets, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones.
Information extraction (IE) has been studied extensively. The existing methods always follow a fixed extraction order for complex IE tasks with multiple elements to be extracted in one instance such as event extraction. However, we conduct experiments on several complex IE datasets and observe that different extraction orders can significantly affect the extraction results for a great portion of instances, and the ratio of sentences that are sensitive to extraction orders increases dramatically with the complexity of the IE task. Therefore, this paper proposes a novel adaptive ordered IE paradigm to find the optimal element extraction order for different instances, so as to achieve the best extraction results. We also propose an reinforcement learning (RL) based framework to generate optimal extraction order for each instance dynamically. Additionally, we propose a co-training framework adapted to RL to mitigate the exposure bias during the extractor training phase. Extensive experiments conducted on several public datasets demonstrate that our proposed method can beat previous methods and effectively improve the performance of various IE tasks, especially for complex ones.
Distantly supervision automatically generates plenty of training samples for relation extraction. However, it also incurs two major problems: noisy labels and imbalanced training data. Previous works focus more on reducing wrongly labeled relations (false positives) while few explore the missing relations that are caused by incompleteness of knowledge base (false negatives). Furthermore, the quantity of negative labels overwhelmingly surpasses the positive ones in previous problem formulations. In this paper, we first provide a thorough analysis of the above challenges caused by negative data. Next, we formulate the problem of relation extraction into as a positive unlabeled learning task to alleviate false negative problem. Thirdly, we propose a pipeline approach, dubbed ReRe, that first performs sentence classification with relational labels and then extracts the subjects/objects. Experimental results show that the proposed method consistently outperforms existing approaches and remains excellent performance even learned with a large quantity of false positive samples. Source code is available online at https://github.com/redreamality/RERE-relation-extraction.