Recent progress in large language models (LLMs) has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that “it’s all been solved.” Not surprisingly, this has, in turn, made many NLP researchers – especially those at the beginning of their careers – worry about what NLP research area they should focus on. Has it all been solved, or what remaining questions can we work on regardless of LLMs? To address this question, this paper compiles NLP research directions rich for exploration. We identify fourteen different research areas encompassing 45 research directions that require new research and are not directly solvable by LLMs. While we identify many research areas, many others exist; we do not cover areas currently addressed by LLMs, but where LLMs lag behind in performance or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm.
Large language models (LLMs) have demonstrated substantial commonsense understanding through numerous benchmark evaluations. However, their understanding of cultural commonsense remains largely unexamined. In this paper, we conduct a comprehensive examination of the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks. Using several general and cultural commonsense benchmarks, we find that (1) LLMs have a significant discrepancy in performance when tested on culture-specific commonsense knowledge for different cultures; (2) LLMs’ general commonsense capability is affected by cultural context; and (3) The language used to query the LLMs can impact their performance on cultural-related tasks.Our study points to the inherent bias in the cultural understanding of LLMs and provides insights that can help develop culturally-aware language models.
In this paper, we study the effect of commonsense and domain knowledge while generating responses in counseling conversations using retrieval and generative methods for knowledge integration. We propose a pipeline that collects domain knowledge through web mining, and show that retrieval from both domain-specific and commonsense knowledge bases improves the quality of generated responses. We also present a model that incorporates knowledge generated by COMET using soft positional encoding and masked self-attention. We show that both retrieved and COMET-generated knowledge improve the system’s performance as measured by automatic metrics and also by human evaluation. Lastly, we present a comparative study on the types of knowledge encoded by our system showing that causal and intentional relationships benefit the generation task more than other types of commonsense relations.
This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener’s emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning.
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER – a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://github.com/declare-lab/CIDER.
We introduce a counseling dialogue system that seeks to assist counselors while they are learning and refining their counseling skills. The system generates counselors’reflections – i.e., responses that reflect back on what the client has said given the dialogue history. Our method builds upon the new generative pretrained transformer architecture and enhances it with context augmentation techniques inspired by traditional strategies used during counselor training. Through a set of comparative experiments, we show that the system that incorporates these strategies performs better in the reflection generation task than a system that is just fine-tuned with counseling conversations. To confirm our findings, we present a human evaluation study that shows that our system generates naturally-looking reflections that are also stylistically and grammatically correct.
The ongoing COVID-19 pandemic has raised concerns for many regarding personal and public health implications, financial security and economic stability. Alongside many other unprecedented challenges, there are increasing concerns over social isolation and mental health. We introduce Expressive Interviewing – an interview-style conversational system that draws on ideas from motivational interviewing and expressive writing. Expressive Interviewing seeks to encourage users to express their thoughts and feelings through writing by asking them questions about how COVID-19 has impacted their lives. We present relevant aspects of the system’s design and implementation as well as quantitative and qualitative analyses of user interactions with the system. In addition, we conduct a comparative evaluation with a general purpose dialogue system for mental health that shows our system potential in helping users to cope with COVID-19 issues.