Seungjun Lee


2023

pdf
Improving Formality-Sensitive Machine Translation Using Data-Centric Approaches and Prompt Engineering
Seungjun Lee | Hyeonseok Moon | Chanjun Park | Heuiseok Lim
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

In this paper, we present the KU x Upstage team’s submission for the Special Task on Formality Control on Spoken Language Translation, which involves translating English into four languages with diverse grammatical formality markers. Our methodology comprises two primary components: 1) a language-specific data-driven approach, and 2) the generation of synthetic data through the employment of large-scale language models and empirically-grounded prompt engineering. By adapting methodologies and models to accommodate the unique linguistic properties of each language, we observe a notable enhancement in performance relative to the baseline, substantiating the heightened efficacy of data-driven approaches. Moreover, our devised prompt engineering strategy yields superior synthetic translation instances.

pdf
PEEP-Talk: A Situational Dialogue-based Chatbot for English Education
Seungjun Lee | Yoonna Jang | Chanjun Park | Jungseob Lee | Jaehyung Seo | Hyeonseok Moon | Sugyeong Eo | Seounghoon Lee | Bernardo Yahya | Heuiseok Lim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

English is acknowledged worldwide as a mode of communication. However, due to the absence of realistic practicing scenarios, students learning English as a foreign language (EFL) typically have limited chances to converse and share feedback with others. In this paper, we propose PEEP-Talk, a real-world situational dialogue-based chatbot designed for English education. It also naturally switches to a new topic or situation in response to out-of-topic utterances, which are common among English beginners. Furthermore, PEEP-Talk provides feedback score on conversation and grammar error correction. We performed automatic and user evaluations to validate performance and education efficiency of our system. The results show that PEEP-Talk generates appropriate responses in various real-life situations while providing accurate feedback to learners. Moreover, we demonstrate a positive impact on English-speaking, grammar, and English learning anxiety, implying that PEEP-Talk can lower the barrier to learning natural conversation in effective ways.