Salah Zaiem


2024

pdf
TARIC-SLU: A Tunisian Benchmark Dataset for Spoken Language Understanding
Salima Mdhaffar | Fethi Bougares | Renato de Mori | Salah Zaiem | Mirco Ravanelli | Yannick Estève
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In recent years, there has been a significant increase in interest in developing Spoken Language Understanding (SLU) systems. SLU involves extracting a list of semantic information from the speech signal. A major issue for SLU systems is the lack of sufficient amount of bi-modal (audio and textual semantic annotation) training data. Existing SLU resources are mainly available in high-resource languages such as English, Mandarin and French. However, one of the current challenges concerning low-resourced languages is data collection and annotation. In this work, we present a new freely available corpus, named TARIC-SLU, composed of railway transport conversations in Tunisian dialect that is continuously annotated in dialogue acts and slots. We describe the semantic model of the dataset, the data and experiments conducted to build ASR-based and SLU-based baseline models. To facilitate its use, a complete recipe, including data preparation, training and evaluation scripts, has been built and will be integrated to SpeechBrain, a popular open-source conversational AI toolkit based on PyTorch.

2022

pdf
DP-Parse: Finding Word Boundaries from Raw Speech with an Instance Lexicon
Robin Algayres | Tristan Ricoul | Julien Karadayi | Hugo Laurençon | Salah Zaiem | Abdelrahman Mohamed | Benoît Sagot | Emmanuel Dupoux
Transactions of the Association for Computational Linguistics, Volume 10

Finding word boundaries in continuous speech is challenging as there is little or no equivalent of a ‘space’ delimiter between words. Popular Bayesian non-parametric models for text segmentation (Goldwater et al., 2006, 2009) use a Dirichlet process to jointly segment sentences and build a lexicon of word types. We introduce DP-Parse, which uses similar principles but only relies on an instance lexicon of word tokens, avoiding the clustering errors that arise with a lexicon of word types. On the Zero Resource Speech Benchmark 2017, our model sets a new speech segmentation state-of-the-art in 5 languages. The algorithm monotonically improves with better input representations, achieving yet higher scores when fed with weakly supervised inputs. Despite lacking a type lexicon, DP-Parse can be pipelined to a language model and learn semantic and syntactic representations as assessed by a new spoken word embedding benchmark. 1