Rian Touchent
2024
CamemBERT-bio: Leveraging Continual Pre-training for Cost-Effective Models on French Biomedical Data
Rian Touchent
|
Éric de la Clergerie
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Clinical data in hospitals are increasingly accessible for research through clinical data warehouses. However these documents are unstructured and it is therefore necessary to extract information from medical reports to conduct clinical studies. Transfer learning with BERT-like models such as CamemBERT has allowed major advances for French, especially for named entity recognition. However, these models are trained for plain language and are less efficient on biomedical data. Addressing this gap, we introduce CamemBERT-bio, a dedicated French biomedical model derived from a new public French biomedical dataset. Through continual pre-training of the original CamemBERT, CamemBERT-bio achieves an improvement of 2.54 points of F1-score on average across various biomedical named entity recognition tasks, reinforcing the potential of continual pre-training as an equally proficient yet less computationally intensive alternative to training from scratch. Additionally, we highlight the importance of using a standard evaluation protocol that provides a clear view of the current state-of-the-art for French biomedical models.
2023
CamemBERT-bio : Un modèle de langue français savoureux et meilleur pour la santé
Rian Touchent
|
Laurent Romary
|
Eric De La Clergerie
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs
Les données cliniques dans les hôpitaux sont de plus en plus accessibles pour la recherche à travers les entrepôts de données de santé, cependant ces documents sont non-structurés. Il est donc nécessaire d’extraire les informations des comptes-rendus médicaux. L’utilisation du transfert d’apprentissage grâce à des modèles de type BERT comme CamemBERT ont permis des avancées majeures, notamment pour la reconnaissance d’entités nommées. Cependant, ces modèles sont entraînés pour le langage courant et sont moins performants sur des données biomédicales. C’est pourquoi nous proposons un nouveau jeu de données biomédical public français sur lequel nous avons poursuivi le pré-entraînement de CamemBERT. Ainsi, nous présentons une première version de CamemBERT-bio, un modèle public spécialisé pour le domaine biomédical français qui montre un gain de 2,54 points de F-mesure en moyenne sur différents jeux d’évaluations de reconnaissance d’entités nommées biomédicales.
Passe ta pharma d’abord !
Simon Meoni
|
Rian Touchent
|
Eric De La Clergerie
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023
Nous présentons les 3 expériences menées par l’équipe ALMAnaCH - Arkhn et leurs résultats pour le DÉfi Fouille de Textes (DEFT) 2023. Les scores sont encourageants mais suggèrent surtout de nouveaux éléments à prendre en compte pour réussir ce défi. Nous avons exploré différentes approches avec des modèles de tailles variables et modélisé la tâche de différentes manières (classification multi-labels, implication textuelle, séquence à séquence). Nous n’avons pas observé des gains de performance significatifs. Nos expériences semblent montrer la nécessité de l’utilisation de bases de connaissances externes pour obtenir de bons résultats sur ce type de tâche.
Search