Renhao Pei


2023

pdf
Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs
Yihong Liu | Haotian Ye | Leonie Weissweiler | Renhao Pei | Hinrich Schuetze
Findings of the Association for Computational Linguistics: EMNLP 2023

In comparative linguistics, colexification refers to the phenomenon of a lexical form conveying two or more distinct meanings. Existing work on colexification patterns relies on annotated word lists, limiting scalability and usefulness in NLP. In contrast, we identify colexification patterns of more than 2,000 concepts across 1,335 languages directly from an unannotated parallel corpus. We then propose simple and effective methods to build multilingual graphs from the colexification patterns: ColexNet and ColexNet+. ColexNet’s nodes are concepts and its edges are colexifications. In ColexNet+, concept nodes are additionally linked through intermediate nodes, each representing an ngram in one of 1,334 languages. We use ColexNet+ to train \overrightarrow{\mbox{ColexNet+}}, high-quality multilingual embeddings that are well-suited for transfer learning. In our experiments, we first show that ColexNet achieves high recall on CLICS, a dataset of crosslingual colexifications. We then evaluate \overrightarrow{\mbox{ColexNet+}} on roundtrip translation, sentence retrieval and sentence classification and show that our embeddings surpass several transfer learning baselines. This demonstrates the benefits of using colexification as a source of information in multilingual NLP.

pdf
A Crosslingual Investigation of Conceptualization in 1335 Languages
Yihong Liu | Haotian Ye | Leonie Weissweiler | Philipp Wicke | Renhao Pei | Robert Zangenfeind | Hinrich Schütze
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Languages differ in how they divide up the world into concepts and words; e.g., in contrast to English, Swahili has a single concept for ‘belly’ and ‘womb’. We investigate these differences in conceptualization across 1,335 languages by aligning concepts in a parallel corpus. To this end, we propose Conceptualizer, a method that creates a bipartite directed alignment graph between source language concepts and sets of target language strings. In a detailed linguistic analysis across all languages for one concept (‘bird’) and an evaluation on gold standard data for 32 Swadesh concepts, we show that Conceptualizer has good alignment accuracy. We demonstrate the potential of research on conceptualization in NLP with two experiments. (1) We define crosslingual stability of a concept as the degree to which it has 1-1 correspondences across languages, and show that concreteness predicts stability. (2) We represent each language by its conceptualization pattern for 83 concepts, and define a similarity measure on these representations. The resulting measure for the conceptual similarity between two languages is complementary to standard genealogical, typological, and surface similarity measures. For four out of six language families, we can assign languages to their correct family based on conceptual similarity with accuracies between 54% and 87%