Patrick CHen


2023

pdf
Fast and Accurate Factual Inconsistency Detection Over Long Documents
Barrett Lattimer | Patrick CHen | Xinyuan Zhang | Yi Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generative AI models exhibit remarkable potential; however, hallucinations across various tasks present a significant challenge, particularly for longer inputs that current approaches struggle to address effectively. We introduce SCALE (Source Chunking Approach for Large-scale inconsistency Evaluation), a task-agnostic model for detecting factual inconsistencies using a novel chunking strategy. Specifically, SCALE is a Natural Language Inference (NLI) based model that uses large text chunks to condition over long texts. This approach achieves state-of-the-art performance in factual inconsistency detection for diverse tasks and long inputs. Additionally, we leverage the chunking mechanism and employ a novel algorithm to explain SCALE’s decisions through relevant source sentence retrieval. Our evaluations reveal that SCALE outperforms existing methods on both standard benchmarks and a new long-form dialogue dataset ScreenEval we constructed. Moreover, SCALE surpasses competitive systems in efficiency and model explanation evaluations. We have released our code and data publicly to GitHub.