The rapid development of large pretrained language models has revolutionized not only the field of Natural Language Generation (NLG) but also its evaluation. Inspired by the recent work of BARTScore: a metric leveraging the BART language model to evaluate the quality of generated text from various aspects, we introduce DATScore. DATScore uses data augmentation techniques to improve the evaluation of machine translation. Our main finding is that introducing data augmented translations of the source and reference texts is greatly helpful in evaluating the quality of the generated translation. We also propose two novel score averaging and term weighting strategies to improve the original score computing process of BARTScore. Experimental results on WMT show that DATScore correlates better with human meta-evaluations than the other recent state-of-the-art metrics, especially for low-resource languages. Ablation studies demonstrate the value added by our new scoring strategies. Moreover, we report in our extended experiments the performance of DATScore on 3 NLG tasks other than translation.
Fast and reliable evaluation metrics are key to R&D progress. While traditional natural language generation metrics are fast, they are not very reliable. Conversely, new metrics based on large pretrained language models are much more reliable, but require significant computational resources. In this paper, we propose FrugalScore, an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance. Experiments with BERTScore and MoverScore on summarization and translation show that FrugalScore is on par with the original metrics (and sometimes better), while having several orders of magnitude less parameters and running several times faster. On average over all learned metrics, tasks, and variants, FrugalScore retains 96.8% of the performance, runs 24 times faster, and has 35 times less parameters than the original metrics. We make our trained metrics publicly available, to benefit the entire NLP community and in particular researchers and practitioners with limited resources.
Like most natural language understanding and generation tasks, state-of-the-art models for summarization are transformer-based sequence-to-sequence architectures that are pretrained on large corpora. While most existing models focus on English, Arabic remains understudied. In this paper we propose AraBART, the first Arabic model in which the encoder and the decoder are pretrained end-to-end, based on BART. We show that AraBART achieves the best performance on multiple abstractive summarization datasets, outperforming strong baselines including a pretrained Arabic BERT-based model, multilingual BART, Arabic T5, and a multilingual T5 model. AraBART is publicly available.
The topic of summarization evaluation has recently attracted a surge of attention due to the rapid development of abstractive summarization systems. However, the formulation of the task is rather ambiguous, neither the linguistic nor the natural language processing communities have succeeded in giving a mutually agreed-upon definition. Due to this lack of well-defined formulation, a large number of popular abstractive summarization datasets are constructed in a manner that neither guarantees validity nor meets one of the most essential criteria of summarization: factual consistency. In this paper, we address this issue by combining state-of-the-art factual consistency models to identify the problematic instances present in popular summarization datasets. We release SummFC, a filtered summarization dataset with improved factual consistency, and demonstrate that models trained on this dataset achieve improved performance in nearly all quality aspects. We argue that our dataset should become a valid benchmark for developing and evaluating summarization systems.
Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.
Inductive transfer learning has taken the entire NLP field by storm, with models such as BERT and BART setting new state of the art on countless NLU tasks. However, most of the available models and research have been conducted for English. In this work, we introduce BARThez, the first large-scale pretrained seq2seq model for French. Being based on BART, BARThez is particularly well-suited for generative tasks. We evaluate BARThez on five discriminative tasks from the FLUE benchmark and two generative tasks from a novel summarization dataset, OrangeSum, that we created for this research. We show BARThez to be very competitive with state-of-the-art BERT-based French language models such as CamemBERT and FlauBERT. We also continue the pretraining of a multilingual BART on BARThez’ corpus, and show our resulting model, mBARThez, to significantly boost BARThez’ generative performance.