Moto Hira


2023

pdf
ESPnet-ST-v2: Multipurpose Spoken Language Translation Toolkit
Brian Yan | Jiatong Shi | Yun Tang | Hirofumi Inaguma | Yifan Peng | Siddharth Dalmia | Peter Polák | Patrick Fernandes | Dan Berrebbi | Tomoki Hayashi | Xiaohui Zhang | Zhaoheng Ni | Moto Hira | Soumi Maiti | Juan Pino | Shinji Watanabe
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

ESPnet-ST-v2 is a revamp of the open-source ESPnet-ST toolkit necessitated by the broadening interests of the spoken language translation community. ESPnet-ST-v2 supports 1) offline speech-to-text translation (ST), 2) simultaneous speech-to-text translation (SST), and 3) offline speech-to-speech translation (S2ST) – each task is supported with a wide variety of approaches, differentiating ESPnet-ST-v2 from other open source spoken language translation toolkits. This toolkit offers state-of-the-art architectures such as transducers, hybrid CTC/attention, multi-decoders with searchable intermediates, time-synchronous blockwise CTC/attention, Translatotron models, and direct discrete unit models. In this paper, we describe the overall design, example models for each task, and performance benchmarking behind ESPnet-ST-v2, which is publicly available at https://github.com/espnet/espnet.