In computational linguistics, the common practice is to “clean” disfluent content from spontaneous speech. However, we hypothesize that these disfluencies might serve as more than mere noise, potentially acting as informative cues. We use a range of pre-trained models for a reading comprehension task involving disfluent queries, specifically featuring different types of speech repairs. The findings indicate that certain disfluencies can indeed improve model performance, particularly those stemming from context-based adjustments. However, large-scale language models struggle to handle repairs involving decision-making or the correction of lexical or syntactic errors, suggesting a crucial area for potential improvement. This paper thus highlights the importance of a nuanced approach to disfluencies, advocating for their potential utility in enhancing model performance rather than their removal.
Recent transformer-based models have made significant strides in generating radiology reports from chest X-ray images. However, a prominent challenge remains; these models often lack prior knowledge, resulting in the generation of synthetic reports that mistakenly reference non-existent prior exams. This discrepancy can be attributed to a knowledge gap between radiologists and the generation models. While radiologists possess patient-specific prior information, the models solely receive X-ray images at a specific time point. To tackle this issue, we propose a novel approach that leverages a rule-based labeler to extract comparison prior information from radiology reports. This extracted comparison prior is then seamlessly integrated into state-of-the-art transformer-based models, enabling them to produce more realistic and comprehensive reports. Our method is evaluated on English report datasets, such as IU X-ray and MIMIC-CXR. The results demonstrate that our approach surpasses baseline models in terms of natural language generation metrics. Notably, our model generates reports that are free from false references to non-existent prior exams, setting it apart from previous models. By addressing this limitation, our approach represents a significant step towards bridging the gap between radiologists and generation models in the domain of medical report generation.
While Transformer-based text classifiers pre-trained on large volumes of text have yielded significant improvements on a wide range of computational linguistics tasks, their implementations have been unsuitable for live incremental processing thus far, operating only on the level of complete sentence inputs. We address the challenge of introducing methods for word-by-word left-to-right incremental processing to Transformers such as BERT, models without an intrinsic sense of linear order. We modify the training method and live decoding of non-incremental models to detect speech disfluencies with minimum latency and without pre-segmentation of dialogue acts. We experiment with several decoding methods to predict the rightward context of the word currently being processed using a GPT-2 language model and apply a BERT-based disfluency detector to sequences, including predicted words. We show our method of incrementalising Transformers maintains most of their high non-incremental performance while operating strictly incrementally. We also evaluate our models’ incremental performance to establish the trade-off between incremental performance and final performance, using different prediction strategies. We apply our system to incremental speech recognition results as they arrive into a live system and achieve state-of-the-art results in this setting.
We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment.
A multi-document summarizer finds the key topics from multiple textual sources and organizes information around them. In this paper we propose a summarization method for Persian text using paragraph vectors that can represent textual units of arbitrary lengths. We use these vectors to calculate the semantic relatedness between documents, cluster them to a number of predetermined groups, weight them based on their distance to the centroids and the intra-cluster homogeneity and take out the key paragraphs. We compare the final summaries with the gold-standard summaries of 21 digital topics using the ROUGE evaluation metric. Experimental results show the advantages of using paragraph vectors over earlier attempts at developing similar methods for a low resource language like Persian.