The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the structural knowledge in the local neighborhood of entities, disregarding semantic knowledge in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel Semantic and Structure-aware KG Entity Typing (SSET) framework, which is composed of three modules. First, the Semantic Knowledge Encoding module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the Structural Knowledge Aggregation module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the Unsupervised Type Re-ranking module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.
Making moral judgments is an essential step toward developing ethical AI systems. Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality. These approaches have been criticized for potentially overgeneralizing a limited group of annotators’ moral stances and lacking explainability. This work proposes a flexible top-down framework to steer (Large) Language Models to perform moral reasoning with well-established moral theories from interdisciplinary research. The theory-guided top-down framework can incorporate various moral theories. Our experiments demonstrate the effectiveness of the proposed framework on datasets derived from moral theories. Furthermore, we show the alignment between different moral theories and existing morality datasets. Our analysis exhibits the potential and flaws in existing resources (models and datasets) in developing explainable moral judgment-making systems.
Open-domain dialogue system usually requires different sources of knowledge to generate more informative and evidential responses. However, existing knowledge-grounded dialogue systems either focus on a single knowledge source or overlook the dependency between multiple sources of knowledge, which may result in generating inconsistent or even paradoxical responses. To incorporate multiple knowledge sources and dependencies between them, we propose SAFARI, a novel framework that leverages the exceptional capabilities of large language models (LLMs) in planning, understanding, and incorporating under both supervised and unsupervised settings. Specifically, SAFARI decouples the knowledge grounding into multiple sources and response generation, which allows easy extension to various knowledge sources including the possibility of not using any sources. To study the problem, we construct a personalized knowledge-grounded dialogue dataset Knowledge Behind Persona (KBP), which is the first to consider the dependency between persona and implicit knowledge. Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.
Existing pre-training methods for extractive Question Answering (QA) generate cloze-like queries different from natural questions in syntax structure, which could overfit pre-trained models to simple keyword matching. In order to address this problem, we propose a novel Momentum Contrastive pRe-training fOr queStion anSwering (MCROSS) method for extractive QA. Specifically, MCROSS introduces a momentum contrastive learning framework to align the answer probability between cloze-like and natural query-passage sample pairs. Hence, the pre-trained models can better transfer the knowledge learned in cloze-like samples to answering natural questions. Experimental results on three benchmarking QA datasets show that our method achieves noticeable improvement compared with all baselines in both supervised and zero-shot scenarios.