Mikael Brunila


2023

pdf
Toward a Critical Toponymy Framework for Named Entity Recognition: A Case Study of Airbnb in New York City
Mikael Brunila | Jack LaViolette | Sky CH-Wang | Priyanka Verma | Clara Féré | Grant McKenzie
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Critical toponymy examines the dynamics of power, capital, and resistance through place names and the sites to which they refer. Studies here have traditionally focused on the semantic content of toponyms and the top-down institutional processes that produce them. However, they have generally ignored the ways in which toponyms are used by ordinary people in everyday discourse, as well as the other strategies of geospatial description that accompany and contextualize toponymic reference. Here, we develop computational methods to measure how cultural and economic capital shape the ways in which people refer to places, through a novel annotated dataset of 47,440 New York City Airbnb listings from the 2010s. Building on this dataset, we introduce a new named entity recognition (NER) model able to identify important discourse categories integral to the characterization of place. Our findings point toward new directions for critical toponymy and to a range of previously understudied linguistic signals relevant to research on neighborhood status, housing and tourism markets, and gentrification.

2022

pdf
What company do words keep? Revisiting the distributional semantics of J.R. Firth & Zellig Harris
Mikael Brunila | Jack LaViolette
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The power of word embeddings is attributed to the linguistic theory that similar words will appear in similar contexts. This idea is specifically invoked by noting that “you shall know a word by the company it keeps,” a quote from British linguist J.R. Firth who, along with his American colleague Zellig Harris, is often credited with the invention of “distributional semantics.” While both Firth and Harris are cited in all major NLP textbooks and many foundational papers, the content and differences between their theories is seldom discussed. Engaging in a close reading of their work, we discover two distinct and in many ways divergent theories of meaning. One focuses exclusively on the internal workings of linguistic forms, while the other invites us to consider words in new company—not just with other linguistic elements, but also in a broader cultural and situational context. Contrasting these theories from the perspective of current debates in NLP, we discover in Firth a figure who could guide the field towards a more culturally grounded notion of semantics. We consider how an expanded notion of “context” might be modeled in practice through two different strategies: comparative stratification and syntagmatic extension.

2021

pdf
Bridging the gap between supervised classification and unsupervised topic modelling for social-media assisted crisis management
Mikael Brunila | Rosie Zhao | Andrei Mircea | Sam Lumley | Renee Sieber
Proceedings of the Second Workshop on Domain Adaptation for NLP

Social media such as Twitter provide valuable information to crisis managers and affected people during natural disasters. Machine learning can help structure and extract information from the large volume of messages shared during a crisis; however, the constantly evolving nature of crises makes effective domain adaptation essential. Supervised classification is limited by unchangeable class labels that may not be relevant to new events, and unsupervised topic modelling by insufficient prior knowledge. In this paper, we bridge the gap between the two and show that BERT embeddings finetuned on crisis-related tweet classification can effectively be used to adapt to a new crisis, discovering novel topics while preserving relevant classes from supervised training, and leveraging bidirectional self-attention to extract topic keywords. We create a dataset of tweets from a snowstorm to evaluate our method’s transferability to new crises, and find that it outperforms traditional topic models in both automatic, and human evaluations grounded in the needs of crisis managers. More broadly, our method can be used for textual domain adaptation where the latent classes are unknown but overlap with known classes from other domains.

pdf
WMDecompose: A Framework for Leveraging the Interpretable Properties of Word Mover’s Distance in Sociocultural Analysis
Mikael Brunila | Jack LaViolette
Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Despite the increasing popularity of NLP in the humanities and social sciences, advances in model performance and complexity have been accompanied by concerns about interpretability and explanatory power for sociocultural analysis. One popular model that takes a middle road is Word Mover’s Distance (WMD). Ostensibly adapted for its interpretability, WMD has nonetheless been used and further developed in ways which frequently discard its most interpretable aspect: namely, the word-level distances required for translating a set of words into another set of words. To address this apparent gap, we introduce WMDecompose: a model and Python library that 1) decomposes document-level distances into their constituent word-level distances, and 2) subsequently clusters words to induce thematic elements, such that useful lexical information is retained and summarized for analysis. To illustrate its potential in a social scientific context, we apply it to a longitudinal social media corpus to explore the interrelationship between conspiracy theories and conservative American discourses. Finally, because of the full WMD model’s high time-complexity, we additionally suggest a method of sampling document pairs from large datasets in a reproducible way, with tight bounds that prevent extrapolation of unreliable results due to poor sampling practices.