Michael Hutt


2018

pdf
The AFRL-Ohio State WMT18 Multimodal System: Combining Visual with Traditional
Jeremy Gwinnup | Joshua Sandvick | Michael Hutt | Grant Erdmann | John Duselis | James Davis
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

AFRL-Ohio State extends its usage of visual domain-driven machine translation for use as a peer with traditional machine translation systems. As a peer, it is enveloped into a system combination of neural and statistical MT systems to present a composite translation.

2017

pdf
The AFRL-OSU WMT17 Multimodal Translation System: An Image Processing Approach
John Duselis | Michael Hutt | Jeremy Gwinnup | James Davis | Joshua Sandvick
Proceedings of the Second Conference on Machine Translation

2016

pdf
The MITLL-AFRL IWSLT 2016 Systems
Michaeel Kazi | Elizabeth Salesky | Brian Thompson | Jonathan Taylor | Jeremy Gwinnup | Timothy Anderson | Grant Erdmann | Eric Hansen | Brian Ore | Katherine Young | Michael Hutt
Proceedings of the 13th International Conference on Spoken Language Translation

This report summarizes the MITLL-AFRL MT and ASR systems and the experiments run during the 2016 IWSLT evaluation campaign. Building on lessons learned from previous years’ results, we refine our ASR systems and examine the explosion of neural machine translation systems and techniques developed in the past year. We experiment with a variety of phrase-based, hierarchical and neural-network approaches in machine translation and utilize system combination to create a composite system with the best characteristics of all attempted MT approaches.

2015

pdf bib
The MITLL-AFRL IWSLT 2015 MT system
Michaeel Kazi | Brian Thompson | Elizabeth Salesky | Timothy Anderson | Grant Erdmann | Eric Hansen | Brian Ore | Katherine Young | Jeremy Gwinnup | Michael Hutt | Christina May
Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign

2014

pdf
The MITLL-AFRL IWSLT 2014 MT system
Michaeel Kazi | Elizabeth Salesky | Brian Thompson | Jessica Ray | Michael Coury | Tim Anderson | Grant Erdmann | Jeremy Gwinnup | Katherine Young | Brian Ore | Michael Hutt
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

This report summarizes the MITLL-AFRL MT and ASR systems and the experiments run using them during the 2014 IWSLT evaluation campaign. Our MT system is much improved over last year, owing to integration of techniques such as PRO and DREM optimization, factored language models, neural network joint model rescoring, multiple phrase tables, and development set creation. We focused our eforts this year on the tasks of translating from Arabic, Russian, Chinese, and Farsi into English, as well as translating from English to French. ASR performance also improved, partly due to increased eforts with deep neural networks for hybrid and tandem systems. Work focused on both the English and Italian ASR tasks.

2013

pdf
The MIT-LL/AFRL IWSLT-2013 MT system
Michaeel Kazi | Michael Coury | Elizabeth Salesky | Jessica Ray | Wade Shen | Terry Gleason | Tim Anderson | Grant Erdmann | Lane Schwartz | Brian Ore | Raymond Slyh | Jeremy Gwinnup | Katherine Young | Michael Hutt
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2013 evaluation campaign [1]. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English, Chinese to English, Arabic to English, and English to French TED-talk translation task. We also applied our existing ASR system to the TED-talk lecture ASR task. We discuss the architecture of the MIT-LL/AFRL MT system, improvements over our 2012 system, and experiments we ran during the IWSLT-2013 evaluation. Specifically, we focus on 1) cross-entropy filtering of MT training data, and 2) improved optimization techniques, 3) language modeling, and 4) approximation of out-of-vocabulary words.