Linli Xu


2024

pdf
Few-shot Temporal Pruning Accelerates Diffusion Models for Text Generation
Bocheng Li | Zhujin Gao | Yongxin Zhu | Kun Yin | Haoyu Cao | Deqiang Jiang | Linli Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Diffusion models have achieved significant success in computer vision and shown immense potential in natural language processing applications, particularly for text generation tasks. However, generating high-quality text using these models often necessitates thousands of iterations, leading to slow sampling rates. Existing acceleration methods either neglect the importance of the distribution of sampling steps, resulting in compromised performance with smaller number of iterations, or require additional training, introducing considerable computational overheads. In this paper, we present Few-shot Temporal Pruning, a novel technique designed to accelerate diffusion models for text generation without supplementary training while effectively leveraging limited data. Employing a Bayesian optimization approach, our method effectively eliminates redundant sampling steps during the sampling process, thereby enhancing the generation speed. A comprehensive evaluation of discrete and continuous diffusion models across various tasks, including machine translation, question generation, and paraphrasing, reveals that our approach achieves competitive performance even with minimal sampling steps after down to less than 1 minute of optimization, yielding a significant acceleration of up to 400x in text generation tasks.

pdf
Empowering Diffusion Models on the Embedding Space for Text Generation
Zhujin Gao | Junliang Guo | Xu Tan | Yongxin Zhu | Fang Zhang | Jiang Bian | Linli Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Diffusion models have achieved state-of-the-art synthesis quality on both visual and audio tasks, and recent works further adapt them to textual data by diffusing on the embedding space. In this paper, we conduct systematic studies of the optimization challenges encountered with both the embedding space and the denoising model, which have not been carefully explored. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the embedding space and unstable training. To alleviate this problem, we propose a new objective called the anchor loss which is more efficient than previous methods. Secondly, we find the noise levels of conventional schedules are insufficient for training a desirable denoising model while introducing varying degrees of degeneration in consequence. To address this challenge, we propose a novel framework called noise rescaling. Based on the above analysis, we propose Difformer, an embedding diffusion model based on Transformer. Experiments on varieties of seminal text generation tasks show the effectiveness of the proposed methods and the superiority of Difformer over previous state-of-the-art embedding diffusion baselines.

2023

pdf
DiffS2UT: A Semantic Preserving Diffusion Model for Textless Direct Speech-to-Speech Translation
Yongxin Zhu | Zhujin Gao | Xinyuan Zhou | Ye Zhongyi | Linli Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While Diffusion Generative Models have achieved great success on image generation tasks, how to efficiently and effectively incorporate them into speech generation especially translation tasks remains a non-trivial problem. Specifically, due to the low information density of speech data, the transformed discrete speech unit sequence is much longer than the corresponding text transcription, posing significant challenges to existing auto-regressive models. Furthermore, it is not optimal to brutally apply discrete diffusion on the speech unit sequence while disregarding the continuous space structure, which will degrade the generation performance significantly. In this paper, we propose a novel diffusion model by applying the diffusion forward process in the continuous speech representation space, while employing the diffusion backward process in the discrete speech unit space. In this way, we preserve the semantic structure of the continuous speech representation space in the diffusion process and integrate the continuous and discrete diffusion models. We conduct extensive experiments on the textless direct speech-to-speech translation task, where the proposed method achieves comparable results to the computationally intensive auto-regressive baselines (500 steps on average) with significantly fewer decoding steps (50 steps).

pdf
Span-level Aspect-based Sentiment Analysis via Table Filling
Mao Zhang | Yongxin Zhu | Zhen Liu | Zhimin Bao | Yunfei Wu | Xing Sun | Linli Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose a novel span-level model for Aspect-Based Sentiment Analysis (ABSA), which aims at identifying the sentiment polarity of the given aspect. In contrast to conventional ABSA models that focus on modeling the word-level dependencies between an aspect and its corresponding opinion expressions, in this paper, we propose Table Filling BERT (TF-BERT), which considers the consistency of multi-word opinion expressions at the span-level. Specially, we learn the span representations with a table filling method, by constructing an upper triangular table for each sentiment polarity, of which the elements represent the sentiment intensity of the specific sentiment polarity for all spans in the sentence. Two methods are then proposed, including table-decoding and table-aggregation, to filter out target spans or aggregate each table for sentiment polarity classification. In addition, we design a sentiment consistency regularizer to guarantee the sentiment consistency of each span for different sentiment polarities. Experimental results on three benchmarks demonstrate the effectiveness of our proposed model.

2022

pdf
Semantic-Preserving Abstractive Text Summarization with Siamese Generative Adversarial Net
Xin Sheng | Linli Xu | Yinlong Xu | Deqiang Jiang | Bo Ren
Findings of the Association for Computational Linguistics: NAACL 2022

We propose a novel siamese generative adversarial net for abstractive text summarization (SSPGAN), which can preserve the main semantics of the source text. Different from previous generative adversarial net based methods, SSPGAN is equipped with a siamese semantic-preserving discriminator, which can not only be trained to discriminate the machine-generated summaries from the human-summarized ones, but also ensure the semantic consistency between the source text and target summary. As a consequence of the min-max game between the generator and the siamese semantic-preserving discriminator, the generator can generate a summary that conveys the key content of the source text more accurately. Extensive experiments on several text summarization benchmarks in different languages demonstrate that the proposed model can achieve significant improvements over the state-of-the-art methods.

pdf
CoCGAN: Contrastive Learning for Adversarial Category Text Generation
Xin Sheng | Linli Xu | Yinlong Xu | Changcun Bao | Huang Chen | Bo Ren
Proceedings of the 29th International Conference on Computational Linguistics

The task of generating texts of different categories has attracted more and more attention in the area of natural language generation recently. Meanwhile, generative adversarial net (GAN) has demonstrated its effectiveness on text generation, and is further applied to category text generation in later works. Different from existing methods, which mainly consider the pairwise relations between the text embedding and the corresponding fixed one-hot class label (data-to-class relations), this paper proposes a novel Contrastive Category Generative Adversarial Net (CoCGAN) to incorporate contrastive learning into adversarial category text generation, considering more flexible data-to-class relations as well as relations between the multiple text embeddings in the same batch (data-to-data relations). The discriminator of CoCGAN discriminates the authenticity of given samples and optimizes a contrastive learning objective to capture both more flexible data-to-class relations and data-to-data relations among training samples. Accordingly, the generator tries to produce more realistic samples which can confuse the discriminator. Experimental results on both synthetic and real category text generation datasets demonstrate that CoCGAN can achieve significant improvements over the baseline category text generation models.

2021

pdf
Hierarchical Multi-label Text Classification with Horizontal and Vertical Category Correlations
Linli Xu | Sijie Teng | Ruoyu Zhao | Junliang Guo | Chi Xiao | Deqiang Jiang | Bo Ren
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Hierarchical multi-label text classification (HMTC) deals with the challenging task where an instance can be assigned to multiple hierarchically structured categories at the same time. The majority of prior studies either focus on reducing the HMTC task into a flat multi-label problem ignoring the vertical category correlations or exploiting the dependencies across different hierarchical levels without considering the horizontal correlations among categories at the same level, which inevitably leads to fundamental information loss. In this paper, we propose a novel HMTC framework that considers both vertical and horizontal category correlations. Specifically, we first design a loosely coupled graph convolutional neural network as the representation extractor to obtain representations for words, documents, and, more importantly, level-wise representations for categories, which are not considered in previous works. Then, the learned category representations are adopted to capture the vertical dependencies among levels of category hierarchy and model the horizontal correlations. Finally, based on the document embeddings and category embeddings, we design a hybrid algorithm to predict the categories of the entire hierarchical structure. Extensive experiments conducted on real-world HMTC datasets validate the effectiveness of the proposed framework with significant improvements over the baselines.

2020

pdf
Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation
Junliang Guo | Linli Xu | Enhong Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The masked language model has received remarkable attention due to its effectiveness on various natural language processing tasks. However, few works have adopted this technique in the sequence-to-sequence models. In this work, we introduce a jointly masked sequence-to-sequence model and explore its application on non-autoregressive neural machine translation~(NAT). Specifically, we first empirically study the functionalities of the encoder and the decoder in NAT models, and find that the encoder takes a more important role than the decoder regarding the translation quality. Therefore, we propose to train the encoder more rigorously by masking the encoder input while training. As for the decoder, we propose to train it based on the consecutive masking of the decoder input with an n-gram loss function to alleviate the problem of translating duplicate words. The two types of masks are applied to the model jointly at the training stage. We conduct experiments on five benchmark machine translation tasks, and our model can achieve 27.69/32.24 BLEU scores on WMT14 English-German/German-English tasks with 5+ times speed up compared with an autoregressive model.