Code switching (CS) is a very common phenomenon in written and spoken communication, but is handled poorly by many NLP applications. Looking to the application of building CS corpora, we explore CS language identification for corpus building. We make the task more realistic by scaling it to more languages and considering models with simpler architectures for faster inference. We also reformulate the task as a sentence-level multi-label tagging problem to make it more tractable. Having defined the task, we investigate three reasonable architectures for this task and define metrics which better reflect desired performance. We present empirical evidence that no current approach is adequate, and finally provide recommendations for future work in this area.
Language identification (LID) is a fundamental step in many natural language processing pipelines. However, current LID systems are far from perfect, particularly on lower-resource languages. We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033% across 201 languages, outperforming previous work. We achieve this by training on a curated dataset of monolingual data, which we audit manually to ensure reliability. We make both the model and the dataset available to the research community. Finally, we carry out detailed analysis into our model’s performance, both in comparison to existing open models and by language class.
The University of Edinburgh participated in the WMT22 shared task on code-mixed translation. This consists of two subtasks: i) generating code-mixed Hindi/English (Hinglish) text generation from parallel Hindi and English sentences and ii) machine translation from Hinglish to English. As both subtasks are considered low-resource, we focused our efforts on careful data generation and curation, especially the use of backtranslation from monolingual resources. For subtask 1 we explored the effects of constrained decoding on English and transliterated subwords in order to produce Hinglish. For subtask 2, we investigated different pretraining techniques, namely comparing simple initialisation from existing machine translation models and aligned augmentation. For both subtasks, we found that our baseline systems worked best. Our systems for both subtasks were one of the overall top-performing submissions.
Back translation is one of the most widely used methods for improving the performance of neural machine translation systems. Recent research has sought to enhance the effectiveness of this method by increasing the ‘diversity’ of the generated translations. We argue that the definitions and metrics used to quantify ‘diversity’ in previous work have been insufficient. This work puts forward a more nuanced framework for understanding diversity in training data, splitting it into lexical diversity and syntactic diversity. We present novel metrics for measuring these different aspects of diversity and carry out empirical analysis into the effect of these types of diversity on final neural machine translation model performance for low-resource English↔Turkish and mid-resource English↔Icelandic. Our findings show that generating back translation using nucleus sampling results in higher final model performance, and that this method of generation has high levels of both lexical and syntactic diversity. We also find evidence that lexical diversity is more important than syntactic for back translation performance.
This paper presents the University of Edinburgh’s constrained submissions of English-German and English-Hausa systems to the WMT 2021 shared task on news translation. We build En-De systems in three stages: corpus filtering, back-translation, and fine-tuning. For En-Ha we use an iterative back-translation approach on top of pre-trained En-De models and investigate vocabulary embedding mapping.
Multi-sentence questions (MSQs) are sequences of questions connected by relations which, unlike sequences of standalone questions, need to be answered as a unit. Following Rhetorical Structure Theory (RST), we recognise that different “question discourse relations” between the subparts of MSQs reflect different speaker intents, and consequently elicit different answering strategies. Correctly identifying these relations is therefore a crucial step in automatically answering MSQs. We identify five different types of MSQs in English, and define five novel relations to describe them. We extract over 162,000 MSQs from Stack Exchange to enable future research. Finally, we implement a high-precision baseline classifier based on surface features.