Junbo Zhao


2023

pdf
Revisiting the Knowledge Injection Frameworks
Peng Fu | Yiming Zhang | Haobo Wang | Weikang Qiu | Junbo Zhao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In recent years, large language models (LLMs), such as GPTs, have attained great impact worldwide. However, how to adapt these LLMs to better suit the vertical domain-specific tasks by utilizing external knowledge remains not completely solved. Indeed, there have emerged a few works on this line where most of them rely on an alignment heuristic that is built to inject the corresponding knowledge tuple into the associated text sample. However, despite the promise, we identify a pivotal problem in this work ubiquitously. Simply put, we find that injecting unaligned (i.e., random) knowledge tuple into the LLMs achieves comparable (and sometimes better) results than the aligned knowledge being injected. We therefore take a thorough investigation of this frustrating finding on a variety of related prior work and further provide a chain of potential interpretations for the phenomenon. Based on all that, we offer a simple remediated technique. Briefly, the core of this technique roots in an ideological emphasis on the pruning and purification of the external knowledge base to be injected into LLMs. At last, we show that by integrating this technique into most (if not all) knowledge injection frameworks and recent LLMs, it manages to overcome the aforementioned sanity problem and further pushes the boundary of the performance of the domain-adaptive LLMs.

pdf
Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in Language Models
Shuai Zhao | Jinming Wen | Anh Luu | Junbo Zhao | Jie Fu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The prompt-based learning paradigm, which bridges the gap between pre-training and fine-tuning, achieves state-of-the-art performance on several NLP tasks, particularly in few-shot settings. Despite being widely applied, prompt-based learning is vulnerable to backdoor attacks. Textual backdoor attacks are designed to introduce targeted vulnerabilities into models by poisoning a subset of training samples through trigger injection and label modification. However, they suffer from flaws such as abnormal natural language expressions resulting from the trigger and incorrect labeling of poisoned samples. In this study, we propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt, which uses the prompt itself as a trigger. Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack. With extensive experiments on rich-resource and few-shot text classification tasks, we empirically validate ProAttack’s competitive performance in textual backdoor attacks. Notably, in the rich-resource setting, ProAttack achieves state-of-the-art attack success rates in the clean-label backdoor attack benchmark without external triggers.

pdf
FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
Ruixuan Xiao | Yiwen Dong | Junbo Zhao | Runze Wu | Minmin Lin | Gang Chen | Haobo Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.

2022

pdf
Towards Unifying the Label Space for Aspect- and Sentence-based Sentiment Analysis
Yiming Zhang | Min Zhang | Sai Wu | Junbo Zhao
Findings of the Association for Computational Linguistics: ACL 2022

The aspect-based sentiment analysis (ABSA) is a fine-grained task that aims to determine the sentiment polarity towards targeted aspect terms occurring in the sentence. The development of the ABSA task is very much hindered by the lack of annotated data. To tackle this, the prior works have studied the possibility of utilizing the sentiment analysis (SA) datasets to assist in training the ABSA model, primarily via pretraining or multi-task learning. In this article, we follow this line, and for the first time, we manage to apply the Pseudo-Label (PL) method to merge the two homogeneous tasks. While it seems straightforward to use generated pseudo labels to handle this case of label granularity unification for two highly related tasks, we identify its major challenge in this paper and propose a novel framework, dubbed as Dual-granularity Pseudo Labeling (DPL). Further, similar to PL, we regard the DPL as a general framework capable of combining other prior methods in the literature. Through extensive experiments, DPL has achieved state-of-the-art performance on standard benchmarks surpassing the prior work significantly.