Joseph Worsham


2018

pdf
Genre Identification and the Compositional Effect of Genre in Literature
Joseph Worsham | Jugal Kalita
Proceedings of the 27th International Conference on Computational Linguistics

Recent advances in Natural Language Processing are finding ways to place an emphasis on the hierarchical nature of text instead of representing language as a flat sequence or unordered collection of words or letters. A human reader must capture multiple levels of abstraction and meaning in order to formulate an understanding of a document. In this paper, we address the problem of developing approaches which are capable of working with extremely large and complex literary documents to perform Genre Identification. The task is to assign the literary classification to a full-length book belonging to a corpus of literature, where the works on average are well over 200,000 words long and genre is an abstract thematic concept. We introduce the Gutenberg Dataset for Genre Identification. Additionally, we present a study on how current deep learning models compare to traditional methods for this task. The results are presented as a baseline along with findings on how using an ensemble of chapters can significantly improve results in deep learning methods. The motivation behind the ensemble of chapters method is discussed as the compositionality of subtexts which make up a larger work and contribute to the overall genre.
Search
Co-authors
Venues