Iván Castro
2017
UCSC-NLP at SemEval-2017 Task 4: Sense n-grams for Sentiment Analysis in Twitter
José Abreu
|
Iván Castro
|
Claudia Martínez
|
Sebastián Oliva
|
Yoan Gutiérrez
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
This paper describes the system submitted to SemEval-2017 Task 4-A Sentiment Analysis in Twitter developed by the UCSC-NLP team. We studied how relationships between sense n-grams and sentiment polarities can contribute to this task, i.e. co-occurrences of WordNet senses in the tweet, and the polarity. Furthermore, we evaluated the effect of discarding a large set of features based on char-grams reported in preceding works. Based on these elements, we developed a SVM system, which exploring SentiWordNet as a polarity lexicon. It achieves an F1=0.624of average. Among 39 submissions to this task, we ranked 10th.
Search