End-to-end Speech Translation is hindered by a lack of available data resources. While most of them are based on documents, a sentence-level version is available, which is however single and static, potentially impeding the usefulness of the data. We propose a new data augmentation strategy, SegAugment, to address this issue by generating multiple alternative sentence-level versions of a dataset. Our method utilizes an Audio Segmentation system, which re-segments the speech of each document with different length constraints, after which we obtain the target text via alignment methods. Experiments demonstrate consistent gains across eight language pairs in MuST-C, with an average increase of 2.5 BLEU points, and up to 5 BLEU for low-resource scenarios in mTEDx. Furthermore, when combined with a strong system, SegAugment obtains state-of-the-art results in MuST-C. Finally, we show that the proposed method can also successfully augment sentence-level datasets, and that it enables Speech Translation models to close the gap between the manual and automatic segmentation at inference time.
This paper describes the submission of the UPC Machine Translation group to the IWSLT 2023 Offline Speech Translation task. Our Speech Translation systems utilize foundation models for speech (wav2vec 2.0) and text (mBART50). We incorporate a Siamese pretraining step of the speech and text encoders with CTC and Optimal Transport, to adapt the speech representations to the space of the text model, thus maximizing transfer learning from MT. After this pretraining, we fine-tune our system end-to-end on ST, with Cross Entropy and Knowledge Distillation. Apart from the available ST corpora, we create synthetic data with SegAugment to better adapt our models to the custom segmentations of the IWSLT test sets. Our best single model obtains 31.2 BLEU points on MuST-C tst-COMMON, 29.8 points on IWLST.tst2020 and 33.4 points on the newly released IWSLT.ACLdev2023.
Language Generation Models produce words based on the previous context. Although existing methods offer input attributions as explanations for a model’s prediction, it is still unclear how prior words affect the model’s decision throughout the layers. In this work, we leverage recent advances in explainability of the Transformer and present a procedure to analyze models for language generation. Using contrastive examples, we compare the alignment of our explanations with evidence of the linguistic phenomena, and show that our method consistently aligns better than gradient-based and perturbation-based baselines. Then, we investigate the role of MLPs inside the Transformer and show that they learn features that help the model predict words that are grammatically acceptable. Lastly, we apply our method to Neural Machine Translation models, and demonstrate that they generate human-like source-target alignments for building predictions.
This paper describes the submissions of the UPC Machine Translation group to the IWSLT 2022 Offline Speech Translation and Speech-to-Speech Translation tracks. The offline task involves translating English speech to German, Japanese and Chinese text. Our Speech Translation systems are trained end-to-end and are based on large pretrained speech and text models. We use an efficient fine-tuning technique that trains only specific layers of our system, and explore the use of adapter modules for the non-trainable layers. We further investigate the suitability of different speech encoders (wav2vec 2.0, HuBERT) for our models and the impact of knowledge distillation from the Machine Translation model that we use for the decoder (mBART). For segmenting the IWSLT test sets we fine-tune a pretrained audio segmentation model and achieve improvements of 5 BLEU compared to the given segmentation. Our best single model uses HuBERT and parallel adapters and achieves 29.42 BLEU at English-German MuST-C tst-COMMON and 26.77 at IWSLT 2020 test. By ensembling many models, we further increase translation quality to 30.83 BLEU and 27.78 accordingly. Furthermore, our submission for English-Japanese achieves 15.85 and English-Chinese obtains 25.63 BLEU on the MuST-C tst-COMMON sets. Finally, we extend our system to perform English-German Speech-to-Speech Translation with a pretrained Text-to-Speech model.
This paper describes the submission to the WMT 2021 news translation shared task by the UPC Machine Translation group. The goal of the task is to translate German to French (De-Fr) and French to German (Fr-De). Our submission focuses on fine-tuning a pre-trained model to take advantage of monolingual data. We fine-tune mBART50 using the filtered data, and additionally, we train a Transformer model on the same data from scratch. In the experiments, we show that fine-tuning mBART50 results in 31.69 BLEU for De-Fr and 23.63 BLEU for Fr-De, which increases 2.71 and 1.90 BLEU accordingly, as compared to the model we train from scratch. Our final submission is an ensemble of these two models, further increasing 0.3 BLEU for Fr-De.
This paper describes the submission to the IWSLT 2021 offline speech translation task by the UPC Machine Translation group. The task consists of building a system capable of translating English audio recordings extracted from TED talks into German text. Submitted systems can be either cascade or end-to-end and use a custom or given segmentation. Our submission is an end-to-end speech translation system, which combines pre-trained models (Wav2Vec 2.0 and mBART) with coupling modules between the encoder and decoder, and uses an efficient fine-tuning technique, which trains only 20% of its total parameters. We show that adding an Adapter to the system and pre-training it, can increase the convergence speed and the final result, with which we achieve a BLEU score of 27.3 on the MuST-C test set. Our final model is an ensemble that obtains 28.22 BLEU score on the same set. Our submission also uses a custom segmentation algorithm that employs pre-trained Wav2Vec 2.0 for identifying periods of untranscribable text and can bring improvements of 2.5 to 3 BLEU score on the IWSLT 2019 test set, as compared to the result with the given segmentation.