Haolan Zhan


2024

pdf
Let’s Negotiate! A Survey of Negotiation Dialogue Systems
Haolan Zhan | Yufei Wang | Zhuang Li | Tao Feng | Yuncheng Hua | Suraj Sharma | Lizhen Qu | Zhaleh Semnani Azad | Ingrid Zukerman | Reza Haf
Findings of the Association for Computational Linguistics: EACL 2024

Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.

pdf
RENOVI: A Benchmark Towards Remediating Norm Violations in Socio-Cultural Conversations
Haolan Zhan | Zhuang Li | Xiaoxi Kang | Tao Feng | Yuncheng Hua | Lizhen Qu | Yi Ying | Mei Rianto Chandra | Kelly Rosalin | Jureynolds Jureynolds | Suraj Sharma | Shilin Qu | Linhao Luo | Ingrid Zukerman | Lay-Ki Soon | Zhaleh Semnani Azad | Reza Haf
Findings of the Association for Computational Linguistics: NAACL 2024

Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.

2023

pdf
Turning Flowchart into Dialog: Augmenting Flowchart-grounded Troubleshooting Dialogs via Synthetic Data Generation
Haolan Zhan | Sameen Maruf | Lizhen Qu | Yufei Wang | Ingrid Zukerman | Gholamreza Haffari
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association

Flowchart-grounded troubleshooting dialogue (FTD) systems, which follow the instructions of a flowchart to diagnose users’ problems in specific domains (e.g., vehicle, laptop), have been gaining research interest in recent years. However, collecting sufficient dialogues that are naturally grounded on flowcharts is costly, thus FTD systems are impeded by scarce training data. To mitigate the data sparsity issue, we propose a plan-based synthetic data generation (PlanSDG) approach that generates diverse synthetic dialog data at scale by transforming concise flowchart into dialogues. Specifically, its generative model employs a variational-base framework with a hierarchical planning strategy that includes global and local latent planning variables. Experiments on the FloDial dataset show that synthetic dialogue produced by PlanSDG improves the performance of downstream tasks, including flowchart path retrieval and response generation, in particular on the Out-of-Flowchart settings. In addition, further analysis demonstrate the quality of synthetic data generated by PlanSDG in paths that are covered by current sample dialogues and paths that are not covered.

pdf
Overview of the 2023 ALTA Shared Task: Discriminate between Human-Written and Machine-Generated Text
Diego Molla | Haolan Zhan | Xuanli He | Qiongkai Xu
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association

The ALTA shared tasks have been running annually since 2010. In 2023, the purpose of the task is to build automatic detection systems that can discriminate between human-written and synthetic text generated by Large Language Models (LLM). In this paper we present the task, the evaluation criteria, and the results of the systems participating in the shared task.

2021

pdf
Augmenting Knowledge-grounded Conversations with Sequential Knowledge Transition
Haolan Zhan | Hainan Zhang | Hongshen Chen | Zhuoye Ding | Yongjun Bao | Yanyan Lan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Knowledge data are massive and widespread in the real-world, which can serve as good external sources to enrich conversations. However, in knowledge-grounded conversations, current models still lack the fine-grained control over knowledge selection and integration with dialogues, which finally leads to the knowledge-irrelevant response generation problems: 1) knowledge selection merely relies on the dialogue context, ignoring the inherent knowledge transitions along with conversation flows; 2) the models often over-fit during training, resulting with incoherent response by referring to unrelated tokens from specific knowledge content in the testing phase; 3) although response is generated upon the dialogue history and knowledge, the models often tend to overlook the selected knowledge, and hence generates knowledge-irrelevant response. To address these problems, we proposed to explicitly model the knowledge transition in sequential multi-turn conversations by abstracting knowledge into topic tags. Besides, to fully utilizing the selected knowledge in generative process, we propose pre-training a knowledge-aware response generator to pay more attention on the selected knowledge. In particular, a sequential knowledge transition model equipped with a pre-trained knowledge-aware response generator (SKT-KG) formulates the high-level knowledge transition and fully utilizes the limited knowledge data. Experimental results on both structured and unstructured knowledge-grounded dialogue benchmarks indicate that our model achieves better performance over baseline models.

pdf
CoLV: A Collaborative Latent Variable Model for Knowledge-Grounded Dialogue Generation
Haolan Zhan | Lei Shen | Hongshen Chen | Hainan Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge-grounded dialogue generation has achieved promising performance with the engagement of external knowledge sources. Typical approaches towards this task usually perform relatively independent two sub-tasks, i.e., knowledge selection and knowledge-aware response generation. In this paper, in order to improve the diversity of both knowledge selection and knowledge-aware response generation, we propose a collaborative latent variable (CoLV) model to integrate these two aspects simultaneously in separate yet collaborative latent spaces, so as to capture the inherent correlation between knowledge selection and response generation. During generation, our proposed model firstly draws knowledge candidate from the latent space conditioned on the dialogue context, and then samples a response from another collaborative latent space conditioned on both the context and the selected knowledge. Experimental results on two widely-used knowledge-grounded dialogue datasets show that our model outperforms previous methods on both knowledge selection and response generation.

2019

pdf
Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
Lei Shen | Yang Feng | Haolan Zhan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. It’s practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence, and diversity compared to baseline methods.