Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ”reasoners”. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.
Large language models (LLMs) have revolutionized the landscape of Natural Language Processing, but are computationally expensive. To reduce the cost without sacrificing performance, previous studies have explored various approaches to harness the potential of Smaller Language Models (SLMs) as cost-effective alternatives to their larger counterparts. Driven by findings that SLMs and LLMs exhibit complementary strengths in a structured knowledge extraction task, this work presents a novel SLM/LLM routing framework designed to improve computational efficiency and enhance task performance. In dialogue state tracking tasks, the proposed routing framework enhances performance substantially compared to relying solely on LLMs, while reducing the computational costs by over 50%.
This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed ‘AceGPT’, sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.
Despite remarkable advancements in mitigating hallucinations in large language models (LLMs) by retrieval augmentation, it remains challenging to measure the reliability of LLMs using static question-answering (QA) data. Specifically, given the potential of data contamination (e.g., leading to memorization), good static benchmark performance does not ensure that model can reliably use the provided evidence for responding, which is essential to avoid hallucination when the required knowledge is new or private. Inspired by adversarial machine learning, we investigate the feasibility of automatically perturbing existing static one for dynamic evaluation. Specifically, this paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases for evaluating the LLMs’ reliability in using new evidence for answering.We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets on a collection ofLLMs under various prompting settings. Our generated data is human-readable and useful to trigger hallucination in LLM. Accurate models on static data are observed to produce unsupported answers from the perturbed evidence, with pronounced accuracy drops across LLMs including GPT-4. We find that our adversarial examples are transferable across all considered LLMs. The examples generated by a small model can be used to evaluate a much larger model, making our approach cost-effective.
Scientific literature understanding tasks have gained significant attention due to their potential to accelerate scientific discovery. Pre-trained language models (LMs) have shown effectiveness in these tasks, especially when tuned via contrastive learning. However, jointly utilizing pre-training data across multiple heterogeneous tasks (e.g., extreme multi-label paper classification, citation prediction, and literature search) remains largely unexplored. To bridge this gap, we propose a multi-task contrastive learning framework, SciMult, with a focus on facilitating common knowledge sharing across different scientific literature understanding tasks while preventing task-specific skills from interfering with each other. To be specific, we explore two techniques – task-aware specialization and instruction tuning. The former adopts a Mixture-of-Experts Transformer architecture with task-aware sub-layers; the latter prepends task-specific instructions to the input text so as to produce task-aware outputs. Extensive experiments on a comprehensive collection of benchmark datasets verify the effectiveness of our task-aware specialization strategy, where we outperform state-of-the-art scientific pre-trained LMs. Code, datasets, and pre-trained models can be found at https://scimult.github.io/.
In an information-seeking conversation, a user may ask questions that are under-specified or unanswerable. An ideal agent would interact by initiating different response types according to the available knowledge sources. However, most current studies either fail to or artificially incorporate such agent-side initiative. This work presents InSCIt, a dataset for Information-Seeking Conversations with mixed-initiative Interactions. It contains 4.7K user-agent turns from 805 human-human conversations where the agent searches over Wikipedia and either directly answers, asks for clarification, or provides relevant information to address user queries. The data supports two subtasks, evidence passage identification and response generation, as well as a human evaluation protocol to assess model performance. We report results of two systems based on state-of-the-art models of conversational knowledge identification and open-domain question answering. Both systems significantly underperform humans, suggesting ample room for improvement in future studies.1
Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users’ preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor).
The retrieval model is an indispensable component for real-world knowledge-intensive tasks, e.g., open-domain question answering (ODQA). As separate retrieval skills are annotated for different datasets, recent work focuses on customized methods, limiting the model transfer- ability and scalability. In this work, we propose a modular retriever where individual modules correspond to key skills that can be reused across datasets. Our approach supports flexible skill configurations based on the target domain to boost performance. To mitigate task interference, we design a novel modularization parameterization inspired by sparse Transformer. We demonstrate that our model can benefit from self-supervised pretraining on Wikipedia and fine-tuning using multiple ODQA datasets, both in a multi-task fashion. Our approach outperforms recent self-supervised retrievers in zero-shot evaluations and achieves state-of-the-art fine-tuned retrieval performance on NQ, HotpotQA and OTT-QA.
Given its effectiveness on knowledge-intensive natural language processing tasks, dense retrieval models have become increasingly popular. Specifically, the de-facto architecture for open-domain question answering uses two isomorphic encoders that are initialized from the same pretrained model but separately parameterized for questions and passages. This biencoder architecture is parameter-inefficient in that there is no parameter sharing between encoders. Further, recent studies show that such dense retrievers underperform BM25 in various settings. We thus propose a new architecture, Task-Aware Specialization for dEnse Retrieval (TASER), which enables parameter sharing by interleaving shared and specialized blocks in a single encoder. Our experiments on five question answering datasets show that TASER can achieve superior accuracy, surpassing BM25, while using about 60% of the parameters as bi-encoder dense retrievers. In out-of-domain evaluations, TASER is also empirically more robust than bi-encoder dense retrievers. Our code is available at https://github.com/microsoft/taser.
The retriever-reader framework is popular for open-domain question answering (ODQA) due to its ability to use explicit knowledge. Although prior work has sought to increase the knowledge coverage by incorporating structured knowledge beyond text, accessing heterogeneous knowledge sources through a unified interface remains an open question. While data-to-text generation has the potential to serve as a universal interface for data and text, its feasibility for downstream tasks remains largely unknown. In this work, we bridge this gap and use the data-to-text method as a means for encoding structured knowledge for open-domain question answering. Specifically, we propose a verbalizer-retriever-reader framework for ODQA over data and text where verbalized tables from Wikipedia and graphs from Wikidata are used as augmented knowledge sources. We show that our Unified Data and Text QA, UDT-QA, can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines. Notably, our approach sets the single-model state-of-the-art on Natural Questions. Furthermore, our analyses indicate that verbalized knowledge is preferred for answer reasoning for both adapted and hot-swap settings.
Non-autoregressive translation (NAT) predicts all the target tokens in parallel and significantly speeds up the inference process. The Conditional Masked Language Model (CMLM) is a strong baseline of NAT. It decodes with the Mask-Predict algorithm which iteratively refines the output. Most works about CMLM focus on the model structure and the training objective. However, the decoding algorithm is equally important. We propose a simple, effective, and easy-to-implement decoding algorithm that we call MaskRepeat-Predict (MR-P). The MR-P algorithm gives higher priority to consecutive repeated tokens when selecting tokens to mask for the next iteration and stops the iteration after target tokens converge. We conduct extensive experiments on six translation directions with varying data sizes. The results show that MR-P significantly improves the performance with the same model parameters. Specifically, we achieve a BLEU increase of 1.39 points in the WMT’14 En-De translation task.
Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy. We released KRISSBERT at https://aka.ms/krissbert.
We propose a novel open-domain question answering (ODQA) framework for answering single/multi-hop questions across heterogeneous knowledge sources.The key novelty of our method is the introduction of the intermediary modules into the current retriever-reader pipeline.Unlike previous methods that solely rely on the retriever for gathering all evidence in isolation,our intermediary performs a chain of reasoning over the retrieved set.Specifically, our method links the retrieved evidence with its related global context into graphs and organizes them into a candidate list of evidence chains.Built upon pretrained language models, our system achieves competitive performance on two ODQA datasets, OTT-QA and NQ, against tables and passages from Wikipedia.In particular, our model substantially outperforms the previous state-of-the-art on OTT-QA with an exact match score of 47.3 (45% relative gain).
Human conversations can evolve in many different ways, creating challenges for automatic understanding and summarization. Goal-oriented conversations often have meaningful sub-dialogue structure, but it can be highly domain-dependent. This work introduces an unsupervised approach to learning hierarchical conversation structure, including turn and sub-dialogue segment labels, corresponding roughly to dialogue acts and sub-tasks, respectively. The decoded structure is shown to be useful in enhancing neural models of language for three conversation-level understanding tasks. Further, the learned finite-state sub-dialogue network is made interpretable through automatic summarization.
Inspired by the success of contrastive learning in natural language processing, we incorporate contrastive learning into the conditional masked language model which is extensively used in non-autoregressive neural machine translation (NAT). Accordingly, we propose a Contrastive Non-autoregressive Neural Machine Translation (Con-NAT) model. Con-NAT optimizes the similarity of several different representations of the same token in the same sentence. We propose two methods to obtain various representations: Contrastive Common Mask and Contrastive Dropout. Positive pairs are various different representations of the same token, while negative pairs are representations of different tokens. In the feature space, the model with contrastive loss pulls positive pairs together and pushes negative pairs away. We conduct extensive experiments on six translation directions with different data sizes. The results demonstrate that Con-NAT showed a consistent and significant improvement in fully and iterative NAT. Con-NAT is state-of-the-art on WMT’16 Ro-En (34.18 BLEU).
We address the problem of enhancing model robustness through regularization. Specifically, we focus on methods that regularize the model posterior difference between clean and noisy inputs. Theoretically, we provide a connection of two recent methods, Jacobian Regularization and Virtual Adversarial Training, under this framework. Additionally, we generalize the posterior differential regularization to the family of f-divergences and characterize the overall framework in terms of the Jacobian matrix. Empirically, we compare those regularizations and standard BERT training on a diverse set of tasks to provide a comprehensive profile of their effect on model generalization. For both fully supervised and semi-supervised settings, we show that regularizing the posterior difference with f-divergence can result in well-improved model robustness. In particular, with a proper f-divergence, a BERT-base model can achieve comparable generalization as its BERT-large counterpart for in-domain, adversarial and domain shift scenarios, indicating the great potential of the proposed framework for enhancing NLP model robustness.
We present a simple yet effective Targeted Adversarial Training (TAT) algorithm to improve adversarial training for natural language understanding. The key idea is to introspect current mistakes and prioritize adversarial training steps to where the model errs the most. Experiments show that TAT can significantly improve accuracy over standard adversarial training on GLUE and attain new state-of-the-art zero-shot results on XNLI. Our code will be released upon acceptance of the paper.
Task-oriented conversational systems often use dialogue state tracking to represent the user’s intentions, which involves filling in values of pre-defined slots. Many approaches have been proposed, often using task-specific architectures with special-purpose classifiers. Recently, good results have been obtained using more general architectures based on pretrained language models. Here, we introduce a new variation of the language modeling approach that uses schema-driven prompting to provide task-aware history encoding that is used for both categorical and non-categorical slots. We further improve performance by augmenting the prompting with schema descriptions, a naturally occurring source of in-domain knowledge. Our purely generative system achieves state-of-the-art performance on MultiWOZ 2.2 and achieves competitive performance on two other benchmarks: MultiWOZ 2.1 and M2M. The data and code will be available at https://github.com/chiahsuan156/DST-as-Prompting.
To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel techniques to enhance both extractive and generative readers built upon recent pretrained neural language models, and find that proper training methods can provide large improvement over previous state-of-the-art models. We demonstrate that a simple hybrid approach by combining answers from both readers can efficiently take advantages of extractive and generative answer inference strategies and outperforms single models as well as homogeneous ensembles. Our approach outperforms previous state-of-the-art models by 3.3 and 2.7 points in exact match on NaturalQuestions and TriviaQA respectively.
We address the problem of extractive question answering using document-level distant super-vision, pairing questions and relevant documents with answer strings. We compare previously used probability space and distant supervision assumptions (assumptions on the correspondence between the weak answer string labels and possible answer mention spans). We show that these assumptions interact, and that different configurations provide complementary benefits. We demonstrate that a multi-objective model can efficiently combine the advantages of multiple assumptions and outperform the best individual formulation. Our approach outperforms previous state-of-the-art models by 4.3 points in F1 on TriviaQA-Wiki and 1.7 points in Rouge-L on NarrativeQA summaries.
We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models. Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks, using a variety of objectives (classification, regression, structured prediction) and text encoders (e.g., RNNs, BERT, RoBERTa, UniLM). A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm. To enable efficient production deployment, MT-DNN supports multi-task knowledge distillation, which can substantially compress a deep neural model without significant performance drop. We demonstrate the effectiveness of MT-DNN on a wide range of NLU applications across general and biomedical domains. The software and pre-trained models will be publicly available at https://github.com/namisan/mt-dnn.
In this paper we propose a unified approach for supporting different generation manners of machine translation, including autoregressive, semi-autoregressive, and refinement-based non-autoregressive models. Our approach works by repeatedly selecting positions and generating tokens at these selected positions. After being trained once, our approach achieves better or competitive translation performance compared with some strong task-specific baseline models in all the settings. This generalization ability benefits mainly from the new training objective that we propose. We validate our approach on the WMT’14 English-German and IWSLT’14 German-English translation tasks. The experimental results are encouraging.
Individual differences in speakers are reflected in their language use as well as in their interests and opinions. Characterizing these differences can be useful in human-computer interaction, as well as analysis of human-human conversations. In this work, we introduce a neural model for learning a dynamically updated speaker embedding in a conversational context. Initial model training is unsupervised, using context-sensitive language generation as an objective, with the context being the conversation history. Further fine-tuning can leverage task-dependent supervised training. The learned neural representation of speakers is shown to be useful for content ranking in a socialbot and dialog act prediction in human-human conversations.
We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.
We develop a novel factored neural model that learns comment embeddings in an unsupervised way leveraging the structure of distributional context in online discussion forums. The model links different context with related language factors in the embedding space, providing a way to interpret the factored embeddings. Evaluated on a community endorsement prediction task using a large collection of topic-varying Reddit discussions, the factored embeddings consistently achieve improvement over other text representations. Qualitative analysis shows that the model captures community style and topic, as well as response trigger patterns.