As Natural Language Processing (NLP) algorithms continually achieve new milestones, out-of-distribution generalization remains a significant challenge. This paper addresses the issue of multi-source adaptation for unfamiliar domains: We leverage labeled data from multiple source domains to generalize to unknown target domains at training. Our innovative framework employs example-based Hypernetwork adaptation: a T5 encoder-decoder initially generates a unique signature from an input example, embedding it within the source domains’ semantic space. This signature is subsequently utilized by a Hypernetwork to generate the task classifier’s weights. In an advanced version, the signature also enriches the input example’s representation. We evaluated our method across two tasks—sentiment classification and natural language inference—in 29 adaptation scenarios, where it outpaced established algorithms. We also compare our finetuned architecture to few-shot GPT-3, demonstrating its effectiveness in essential use cases. To the best of our knowledge, this marks the first application of Hypernetworks to the adaptation for unknown domains.
We study the problem of recognizing visual entities from the textual descriptions of their classes. Specifically, given birds’ images with free-text descriptions of their species, we learn to classify images of previously-unseen species based on specie descriptions. This setup has been studied in the vision community under the name zero-shot learning from text, focusing on learning to transfer knowledge about visual aspects of birds from seen classes to previously-unseen ones. Here, we suggest focusing on the textual description and distilling from the description the most relevant information to effectively match visual features to the parts of the text that discuss them. Specifically, (1) we propose to leverage the similarity between species, reflected in the similarity between text descriptions of the species. (2) we derive visual summaries of the texts, i.e., extractive summaries that focus on the visual features that tend to be reflected in images. We propose a simple attention-based model augmented with the similarity and visual summaries components. Our empirical results consistently and significantly outperform the state-of-the-art on the largest benchmarks for text-based zero-shot learning, illustrating the critical importance of texts for zero-shot image-recognition.
Current multilingual word translation methods are focused on jointly learning mappings from each language to a shared space. The actual translation, however, is still performed as an isolated bilingual task. In this study we propose a multilingual translation procedure that uses all the learned mappings to translate a word from one language to another. For each source word, we first search for the most relevant auxiliary languages. We then use the translations to these languages to form an improved representation of the source word. Finally, this representation is used for the actual translation to the target language. Experiments on a standard multilingual word translation benchmark demonstrate that our model outperforms state of the art results.
In this paper we present a novel approach to simultaneously representing multiple languages in a common space. Procrustes Analysis (PA) is commonly used to find the optimal orthogonal word mapping in the bilingual case. The proposed Multi Pairwise Procrustes Analysis (MPPA) is a natural extension of the PA algorithm to multilingual word mapping. Unlike previous PA extensions that require a k-way dictionary, this approach requires only pairwise bilingual dictionaries that are much easier to construct.