2024
pdf
abs
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
Jooyoung Lee
|
Fan Yang
|
Thanh Tran
|
Qian Hu
|
Emre Barut
|
Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.
pdf
bib
abs
Towards Multi-Modal Co-Reference Resolution in Conversational Shopping Agents
Samuel Osebe
|
Prashan Wanigasekara
|
Thomas Gueudre
|
Thanh Tran
|
Rahul Sharma
|
Fan Yang
|
Qian Hu
|
Weitong Ruan
|
Emre Barut
|
Chengwei Su
Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024
The context of modern smart voice assistants is often multi-modal, where images, audio and video content are consumed by users simultaneously. In such a setup, co-reference resolution is especially challenging, and runs across modalities and dialogue turns. We explore the problem of multi-modal co-reference resolution in multi-turn dialogues and quantify the performance of multi-modal LLMs on a specially curated dataset of long, image-interleaved conversations between a voice assistant and human in a shopping use case. We propose a custom architecture for multi-modal embedding alignment using a novel parameter augmentation technique. Our proposed Parameter Augmented LLM approach shows a 4.9% absolute F1 improvement above a cross-attention baseline while reducing the number of parameters being trained by 4x.
pdf
abs
Prompting Vision-Language Models For Aspect-Controlled Generation of Referring Expressions
Danfeng Guo
|
Sanchit Agarwal
|
Arpit Gupta
|
Jiun-Yu Kao
|
Emre Barut
|
Tagyoung Chung
|
Jing Huang
|
Mohit Bansal
Findings of the Association for Computational Linguistics: NAACL 2024
Referring Expression Generation (REG) is the task of generating a description that unambiguously identifies a given target in the scene. Different from Image Captioning (IC), REG requires learning fine-grained characteristics of not only the scene objects but also their surrounding context. Referring expressions are usually not singular; an object can often be uniquely referenced in numerous ways, for instance, by color, by location, or by relationship with other objects. Most prior works, however, have not explored this ‘aspect-based multiplicity’ of referring expressions. Hence, in this work, we focus on the Aspect-Controlled REG task, which requires generating a referring expression conditioned on the input aspect(s), where an aspect captures a style of reference. By changing the input aspect such as color, location, action etc., one can generate multiple distinct expressions per target region. To solve this new task, we first modify BLIP for aligning image-regions and text-expressions. We achieve this through a novel approach for feeding the input by drawing a bounding box around the target image-region and prompting the model to generate the referring expression. Our base REG model already beats all prior works in CIDEr score. To tackle Aspect-Controlled REG, we append ‘aspect tokens’ to the prompt and show that distinct expressions can be generated by just changing the prompt. Finally, to prove the high-quality and diversity of the data generated by our proposed aspect-controlled REG model, we also perform data-augmentation-based evaluation on the downstream Referring Expression Comprehension (REC) task. With just half of the real data augmented with the generated synthetic data, we achieve performance comparable to training with 100% of real data, using a SOTA REC model.
2022
pdf
abs
Multimodal Context Carryover
Prashan Wanigasekara
|
Nalin Gupta
|
Fan Yang
|
Emre Barut
|
Zeynab Raeesy
|
Kechen Qin
|
Stephen Rawls
|
Xinyue Liu
|
Chengwei Su
|
Spurthi Sandiri
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
Multi-modality support has become an integral part of creating a seamless user experience with modern voice assistants with smart displays. Users refer to images, video thumbnails, or the accompanying text descriptions on the screen through voice communication with AI powered devices. This raises the need to either augment existing commercial voice only dialogue systems with state-of-the-art multimodal components, or to introduce entirely new architectures; where the latter can lead to costly system revamps. To support the emerging visual navigation and visual product selection use cases, we propose to augment commercially deployed voice-only dialogue systems with additional multi-modal components. In this work, we present a novel yet pragmatic approach to expand an existing dialogue-based context carryover system (Chen et al., 2019a) in a voice assistant with state-of-the-art multimodal components to facilitate quick delivery of visual modality support with minimum changes. We demonstrate a 35% accuracy improvement over the existing system on an in-house multi-modal visual navigation data set.
2021
pdf
abs
Contextual Domain Classification with Temporal Representations
Tzu-Hsiang Lin
|
Yipeng Shi
|
Chentao Ye
|
Yang Fan
|
Weitong Ruan
|
Emre Barut
|
Wael Hamza
|
Chengwei Su
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers
In commercial dialogue systems, the Spoken Language Understanding (SLU) component tends to have numerous domains thus context is needed to help resolve ambiguities. Previous works that incorporate context for SLU have mostly focused on domains where context is limited to a few minutes. However, there are domains that have related context that could span up to hours and days. In this paper, we propose temporal representations that combine wall-clock second difference and turn order offset information to utilize both recent and distant context in a novel large-scale setup. Experiments on the Contextual Domain Classification (CDC) task with various encoder architectures show that temporal representations combining both information outperforms only one of the two. We further demonstrate that our contextual Transformer is able to reduce 13.04% of classification errors compared to a non-contextual baseline. We also conduct empirical analyses to study recent versus distant context and opportunities to lower deployment costs.