Large language models (LLMs) tend to inadequately integrate input context during text generation, relying excessively on encoded prior knowledge in model parameters, potentially resulting in generated text with factual inconsistencies or contextually unfaithful content. LLMs utilize two primary knowledge sources: 1) prior (parametric) knowledge from pretraining, and 2) contextual (non-parametric) knowledge from input prompts. The study addresses the open question of how LLMs effectively balance these knowledge sources during the generation process, specifically in the context of open-domain question answering. To address this issue, we introduce a novel approach integrating contrastive decoding with adversarial irrelevant passages as negative samples to enhance robust context grounding during generation. Notably, our method operates at inference time without requiring further training. We conduct comprehensive experiments to demonstrate its applicability and effectiveness, providing empirical evidence showcasing its superiority over existing methodologies.
In this paper, we are interested in developing semantic parsers which understand natural language questions embedded in a conversation with a user and ground them to formal queries over definitions in a general purpose knowledge graph (KG) with very large vocabularies (covering thousands of concept names and relations, and millions of entities). To this end, we develop a dataset where user questions are annotated with Sparql parses and system answers correspond to execution results thereof. We present two different semantic parsing approaches and highlight the challenges of the task: dealing with large vocabularies, modelling conversation context, predicting queries with multiple entities, and generalising to new questions at test time. We hope our dataset will serve as useful testbed for the development of conversational semantic parsers. Our dataset and models are released at https://github.com/EdinburghNLP/SPICE.
Semantic parsers map natural language utterances to meaning representations. The lack of a single standard for meaning representations led to the creation of a plethora of semantic parsing datasets. To unify different datasets and train a single model for them, we investigate the use of Multi-Task Learning (MTL) architectures. We experiment with five datasets (Geoquery, NLMaps, TOP, Overnight, AMR). We find that an MTL architecture that shares the entire network across datasets yields competitive or better parsing accuracies than the single-task baselines, while reducing the total number of parameters by 68%. We further provide evidence that MTL has also better compositional generalization than single-task models. We also present a comparison of task sampling methods and propose a competitive alternative to widespread proportional sampling strategies.
Multilingual semantic parsing is a cost-effective method that allows a single model to understand different languages. However, researchers face a great imbalance of availability of training data, with English being resource rich, and other languages having much less data. To tackle the data limitation problem, we propose using machine translation to bootstrap multilingual training data from the more abundant English data. To compensate for the data quality of machine translated training data, we utilize transfer learning from pretrained multilingual encoders to further improve the model. To evaluate our multilingual models on human-written sentences as opposed to machine translated ones, we introduce a new multilingual semantic parsing dataset in English, Italian and Japanese based on the Facebook Task Oriented Parsing (TOP) dataset. We show that joint multilingual training with pretrained encoders substantially outperforms our baselines on the TOP dataset and outperforms the state-of-the-art model on the public NLMaps dataset. We also establish a new baseline for zero-shot learning on the TOP dataset. We find that a semantic parser trained only on English data achieves a zero-shot performance of 44.9% exact-match accuracy on Italian sentences.
Visual Question Answering (VQA) methods aim at leveraging visual input to answer questions that may require complex reasoning over entities. Current models are trained on labelled data that may be insufficient to learn complex knowledge representations. In this paper, we propose a new method to enhance the reasoning capabilities of a multi-modal pretrained model (Vision+Language BERT) by integrating facts extracted from an external knowledge base. Evaluation on the KVQA dataset benchmark demonstrates that our method outperforms competitive baselines by 19%, achieving new state-of-the-art results. We also perform an extensive analysis highlighting the limitations of our best performing model through an ablation study.
The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence model and compare their performance with the independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to the target task with smaller labeled data. We see an absolute accuracy gain ranging from 1.0% to 4.4% in in our in-house data set and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks.