This study addresses the application of encoder-only Pre-trained Language Models (PLMs) in keyphrase generation (KPG) amidst the broader availability of domain-tailored encoder-only models compared to encoder-decoder models. We investigate three core inquiries: (1) the efficacy of encoder-only PLMs in KPG, (2) optimal architectural decisions for employing encoder-only PLMs in KPG, and (3) a performance comparison between in-domain encoder-only and encoder-decoder PLMs across varied resource settings. Our findings, derived from extensive experimentation in two domains reveal that with encoder-only PLMs, although keyphrase extraction with Conditional Random Fields slightly excels in identifying present keyphrases, the KPG formulation renders a broader spectrum of keyphrase predictions. Additionally, prefix-LM fine-tuning of encoder-only PLMs emerges as a strong and data-efficient strategy for KPG, outperforming general-domain seq2seq PLMs. We also identify a favorable parameter allocation towards model depth rather than width when employing encoder-decoder architectures initialized with encoder-only PLMs. The study sheds light on the potential of utilizing encoder-only PLMs for advancing KPG systems and provides a groundwork for future KPG methods. Our code and pre-trained checkpoints are released at https://github.com/uclanlp/DeepKPG.
Diffusion models are a promising tool for high-quality text generation. However, current models face multiple drawbacks including slow sampling, noise schedule sensitivity, and misalignment between the training and sampling stages. In this paper, we introduce FlowSeq, which bypasses all current drawbacks by leveraging flow matching for conditional text generation. FlowSeq can generate text in a few steps by training with a novel anchor loss, alleviating the need for expensive hyperparameter optimization of the noise schedule prevalent in diffusion models. We extensively evaluate our proposed method and show competitive performance in tasks such as question generation, open-domain dialogue, and paraphrasing tasks.
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions. However, how to select new tasks to improve the performance and generalizability of IT models remains an open question. Training on all existing tasks is impractical due to prohibiting computation requirements, and randomly selecting tasks can lead to suboptimal performance. In this work, we propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks. We represent the informativeness of new tasks with the disagreement of the current model outputs over perturbed prompts. Our experiments on NIV2 and Self-Instruct datasets demonstrate that our method consistently outperforms other baseline strategies for task selection, achieving better out-of-distribution generalization with fewer training tasks. Additionally, we introduce a task map that categorizes and diagnoses tasks based on prompt uncertainty and prediction probability. We discover that training on ambiguous (prompt-uncertain) tasks improves generalization while training on difficult (prompt-certain and low-probability) tasks offers no benefit, underscoring the importance of task selection for instruction tuning.
Empathy plays an important role in the human dialogue. Detecting the empathetic direction expressed by the user is necessary for empathetic dialogue systems because it is highly relevant to understanding the user’s needs. Several studies have shown that empathy intent information improves the ability to response capacity of empathetic dialogue. However, the interaction between empathy detection and empathy intent recognition has not been explored. To this end, we invite 3 experts to manually annotate the healthy empathy detection datasets IEMPATHIZE and TwittEmp with 8 empathy intent labels, and perform joint training for the two tasks. Empirical study has shown that the introduction of empathy intent recognition task can improve the accuracy of empathy detection task, and we analyze possible reasons for this improvement. To make joint training of the two tasks more challenging, we propose a novel framework, Cascaded Label Signal Network, which uses the cascaded interactive attention module and the label signal enhancement module to capture feature exchange information between empathy and empathy intent representations. Experimental results show that our framework outperforms all baselines under both settings on the two datasets.
Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.
Using a shared vocabulary is common practice in Multilingual Neural Machine Translation (MNMT). In addition to its simple design, shared tokens play an important role in positive knowledge transfer, which manifests naturally when the shared tokens refer to similar meanings across languages. However, when words overlap is small, e.g., using different writing systems, transfer is inhibited. In this paper, we propose a re-parameterized method for building embeddings to alleviate this problem. More specifically, we define word-level information transfer pathways via word equivalence classes and rely on graph networks to fuse word embeddings across languages. Our experiments demonstrate the advantages of our approach: 1) the semantics of embeddings are better aligned across languages, 2) our method achieves evident BLEU improvements on high- and low-resource MNMT, and 3) only less than 1.0% additional trainable parameters are required with a limited increase in computational costs, while the inference time is identical to baselines.
This paper describes the UvA-MT’s submission to the WMT 2023 shared task on general machine translation. We participate in the constrained track in two directions: English ↔ Hebrew. In this competition, we show that by using one model to handle bidirectional tasks, as a minimal setting of Multilingual Machine Translation (MMT), it is possible to achieve comparable results with that of traditional bilingual translation for both directions. By including effective strategies, like back-translation, re-parameterized embedding table, and task-oriented fine-tuning, we obtained competitive final results in the automatic evaluation for both English → Hebrew and Hebrew → English directions.
Neural constituency parsers have reached practical performance on news-domain benchmarks. However, their generalization ability to other domains remains weak. Existing findings on cross-domain constituency parsing are only made on a limited number of domains. Tracking this, we manually annotate a high-quality constituency treebank containing five domains. We analyze challenges to open-domain constituency parsing using a set of linguistic features on various strong constituency parsers. Primarily, we find that 1) BERT significantly increases parsers’ cross-domain performance by reducing their sensitivity on the domain-variant features.2) Compared with single metrics such as unigram distribution and OOV rate, challenges to open-domain constituency parsing arise from complex features, including cross-domain lexical and constituent structure variations.
State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using retrieval-based corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model using large-scale unlabeled documents. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource keyphrase generation and zero-shot domain adaptation. Our method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.
Word alignment is essential for the downstream cross-lingual language understanding and generation tasks. Recently, the performance of the neural word alignment models has exceeded that of statistical models. However, they heavily rely on sophisticated translation models. In this study, we propose a super lightweight unsupervised word alignment model named MirrorAlign, in which bidirectional symmetric attention trained with a contrastive learning objective is introduced, and an agreement loss is employed to bind the attention maps, such that the alignments follow mirror-like symmetry hypothesis. Experimental results on several public benchmarks demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in word alignment while significantly reducing the training and decoding time on average. Further ablation analysis and case studies show the superiority of our proposed MirrorAlign. Notably, we recognize our model as a pioneer attempt to unify bilingual word embedding and word alignments. Encouragingly, our approach achieves 16.4X speedup against GIZA++, and 50X parameter compression compared with the Transformer-based alignment methods. We release our code to facilitate the community: https://github.com/moore3930/MirrorAlign.
We present a simple and effective pretraining strategy – bidirectional training (BiT) for neural machine translation. Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally. To achieve bidirectional updating, we simply reconstruct the training samples from “src→tgt” to “src+tgt→tgt+src” without any complicated model modifications. Notably, our approach does not increase any parameters or training steps, requiring the parallel data merely. Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs (data sizes range from 160K to 38M) significantly higher. Encouragingly, our proposed model can complement existing data manipulation strategies, i.e. back translation, data distillation, and data diversification. Extensive analyses show that our approach functions as a novel bilingual code-switcher, obtaining better bilingual alignment.
Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a localness perception problem in NAT cross-attention, for which it is difficult to adequately capture source context. To alleviate this problem, we propose to enhance signals of neighbour source tokens into conventional cross-attention. Experimental results on several representative datasets show that our approach can consistently improve translation quality over strong NAT baselines. Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of source contexts by leveraging both local and global information.
Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to x10.77). In-depth analysis show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.
Homographic puns have a long history in human writing, widely used in written and spoken literature, which usually occur in a certain syntactic or stylistic structure. How to recognize homographic puns is an important research. However, homographic pun recognition does not solve very well in existing work. In this work, we first use WordNet to understand and expand word embedding for settling the polysemy of homographic puns, and then propose a WordNet-Encoded Collocation-Attention network model (WECA) which combined with the context weights for recognizing the puns. Our experiments on the SemEval2017 Task7 and Pun of the Day demonstrate that the proposed model is able to distinguish between homographic pun and non-homographic pun texts. We show the effectiveness of the model to present the capability of choosing qualitatively informative words. The results show that our model achieves the state-of-the-art performance on homographic puns recognition.