Defne Demirtürk


2022

pdf bib
GrammarSHAP: An Efficient Model-Agnostic and Structure-Aware NLP Explainer
Edoardo Mosca | Defne Demirtürk | Luca Mülln | Fabio Raffagnato | Georg Groh
Proceedings of the First Workshop on Learning with Natural Language Supervision

Interpreting NLP models is fundamental for their development as it can shed light on hidden properties and unexpected behaviors. However, while transformer architectures exploit contextual information to enhance their predictive capabilities, most of the available methods to explain such predictions only provide importance scores at the word level. This work addresses the lack of feature attribution approaches that also take into account the sentence structure. We extend the SHAP framework by proposing GrammarSHAP—a model-agnostic explainer leveraging the sentence’s constituency parsing to generate hierarchical importance scores.