David Tomas

Also published as: David Tomás


2019

pdf
UA at SemEval-2019 Task 5: Setting A Strong Linear Baseline for Hate Speech Detection
Carlos Perelló | David Tomás | Alberto Garcia-Garcia | Jose Garcia-Rodriguez | Jose Camacho-Collados
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the system developed at the University of Alicante (UA) for the SemEval 2019 Task 5: Shared Task on Multilingual Detection of Hate. The purpose of this work is to build a strong baseline for hate speech detection, using a traditional machine learning approach with standard textual features, which could serve in a near future as a reference to compare with deep learning systems. We participated in both task A (Hate Speech Detection against Immigrants and Women) and task B (Aggressive behavior and Target Classification). Despite its simplicity, our system obtained a remarkable F1-score of 72.5 (sixth highest) and an accuracy of 73.6 (second highest) in Spanish (task A), outperforming more complex neural models from a total of 40 participant systems.

2014

pdf
UMCC_DLSI: A Probabilistic Automata for Aspect Based Sentiment Analysis
Yenier Castañeda | Armando Collazo | Elvis Crego | Jorge L. Garcia | Yoan Gutiérrez | David Tomás | Andrés Montoyo | Rafael Muñoz
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

2008

pdf
The QALL-ME Benchmark: a Multilingual Resource of Annotated Spoken Requests for Question Answering
Elena Cabrio | Milen Kouylekov | Bernardo Magnini | Matteo Negri | Laura Hasler | Constantin Orasan | David Tomás | Jose Luis Vicedo | Guenter Neumann | Corinna Weber
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

This paper presents the QALL-ME benchmark, a multilingual resource of annotated spoken requests in the tourism domain, freely available for research purposes. The languages currently involved in the project are Italian, English, Spanish and German. It introduces a semantic annotation scheme for spoken information access requests, specifically derived from Question Answering (QA) research. In addition to pragmatic and semantic annotations, we propose three QA-based annotation levels: the Expected Answer Type, the Expected Answer Quantifier and the Question Topical Target of a request, to fully capture the content of a request and extract the sought-after information. The QALL-ME benchmark is developed under the EU-FP6 QALL-ME project which aims at the realization of a shared and distributed infrastructure for Question Answering (QA) systems on mobile devices (e.g. mobile phones). Questions are formulated by the users in free natural language input, and the system returns the actual sequence of words which constitutes the answer from a collection of information sources (e.g. documents, databases). Within this framework, the benchmark has the twofold purpose of training machine learning based applications for QA, and testing their actual performance with a rapid turnaround in controlled laboratory setting.