Higher-order methods for dependency parsing can partially but not fully address the issue that edges in dependency trees should be constructed at the text span/subtree level rather than word level. In this paper, we propose a new method for dependency parsing to address this issue. The proposed method constructs dependency trees by directly modeling span-span (in other words, subtree-subtree) relations. It consists of two modules: the text span proposal module which proposes candidate text spans, each of which represents a subtree in the dependency tree denoted by (root, start, end); and the span linking module, which constructs links between proposed spans. We use the machine reading comprehension (MRC) framework as the backbone to formalize the span linking module, where one span is used as query to extract the text span/subtree it should be linked to. The proposed method has the following merits: (1) it addresses the fundamental problem that edges in a dependency tree should be constructed between subtrees; (2) the MRC framework allows the method to retrieve missing spans in the span proposal stage, which leads to higher recall for eligible spans. Extensive experiments on the PTB, CTB and Universal Dependencies (UD) benchmarks demonstrate the effectiveness of the proposed method. The code is available at https://github.com/ShannonAI/mrc-for-dependency-parsing
Existing methods to measure sentence similarity are faced with two challenges: (1) labeled datasets are usually limited in size, making them insufficient to train supervised neural models; and (2) there is a training-test gap for unsupervised language modeling (LM) based models to compute semantic scores between sentences, since sentence-level semantics are not explicitly modeled at training. This results in inferior performances in this task. In this work, we propose a new framework to address these two issues. The proposed framework is based on the core idea that the meaning of a sentence should be defined by its contexts, and that sentence similarity can be measured by comparing the probabilities of generating two sentences given the same context. The proposed framework is able to generate high-quality, large-scale dataset with semantic similarity scores between two sentences in an unsupervised manner, with which the train-test gap can be largely bridged. Extensive experiments show that the proposed framework achieves significant performance boosts over existing baselines under both the supervised and unsupervised settings across different datasets.
Backdoor attacks pose a new threat to NLP models. A standard strategy to construct poisoned data in backdoor attacks is to insert triggers (e.g., rare words) into selected sentences and alter the original label to a target label. This strategy comes with a severe flaw of being easily detected from both the trigger and the label perspectives: the trigger injected, which is usually a rare word, leads to an abnormal natural language expression, and thus can be easily detected by a defense model; the changed target label leads the example to be mistakenly labeled, and thus can be easily detected by manual inspections. To deal with this issue, in this paper, we propose a new strategy to perform textual backdoor attack which does not require an external trigger and the poisoned samples are correctly labeled. The core idea of the proposed strategy is to construct clean-labeled examples, whose labels are correct but can lead to test label changes when fused with the training set. To generate poisoned clean-labeled examples, we propose a sentence generation model based on the genetic algorithm to cater to the non-differentiable characteristic of text data. Extensive experiments demonstrate that the proposed attacking strategy is not only effective, but more importantly, hard to defend due to its triggerless and clean-labeled nature. Our work marks the first step towards developing triggerless attacking strategies in NLP.
In this paper, we propose a new paradigm for paraphrase generation by treating the task as unsupervised machine translation (UMT) based on the assumption that there must be pairs of sentences expressing the same meaning in a large-scale unlabeled monolingual corpus. The proposed paradigm first splits a large unlabeled corpus into multiple clusters, and trains multiple UMT models using pairs of these clusters. Then based on the paraphrase pairs produced by these UMT models, a unified surrogate model can be trained to serve as the final model to generate paraphrases, which can be directly used for test in the unsupervised setup, or be finetuned on labeled datasets in the supervised setup. The proposed method offers merits over machine-translation-based paraphrase generation methods, as it avoids reliance on bilingual sentence pairs. It also allows human intervene with the model so that more diverse paraphrases can be generated using different filtering criteria. Extensive experiments on existing paraphrase dataset for both the supervised and unsupervised setups demonstrate the effectiveness the proposed paradigm.
The difficulty of generating coherent long texts lies in the fact that existing models overwhelmingly focus on the tasks of local word prediction, and cannot make high level plans on what to generate or capture the high-level discourse dependencies between chunks of texts. Inspired by how humans write, where a list of bullet points or a catalog is first outlined, and then each bullet point is expanded to form the whole article, we propose SOE, a pipelined system that involves of summarizing, outlining and elaborating for long text generation: the model first outlines the summaries for different segments of long texts, and then elaborates on each bullet point to generate the corresponding segment. To avoid the labor-intensive process of summary soliciting, we propose the reconstruction strategy, which extracts segment summaries in an unsupervised manner by selecting its most informative part to reconstruct the segment. The proposed generation system comes with the following merits: (1) the summary provides high-level guidance for text generation and avoids the local minimum of individual word predictions; (2) the high-level discourse dependencies are captured in the conditional dependencies between summaries and are preserved during the summary expansion process and (3) additionally, we are able to consider significantly more contexts by representing contexts as concise summaries. Extensive experiments demonstrate that SOE produces long texts with significantly better quality, along with faster convergence speed.
A long-standing issue with paraphrase generation is the lack of reliable supervision signals. In this paper, we propose a new unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences with the same meaning given the same context should be the same. Inspired by this fundamental idea, we propose a pipelined system which consists of paraphrase candidate generation based on contextual language models, candidate filtering using scoring functions, and paraphrase model training based on the selected candidates. The proposed paradigm offers merits over existing paraphrase generation methods: (1) using the context regularizer on meanings, the model is able to generate massive amounts of high-quality paraphrase pairs; (2) the combination of the huge amount of paraphrase candidates and further diversity-promoting filtering yields paraphrases with more lexical and syntactic diversity; and (3) using human-interpretable scoring functions to select paraphrase pairs from candidates, the proposed framework provides a channel for developers to intervene with the data generation process, leading to a more controllable model. Experimental results across different tasks and datasets demonstrate that the proposed paradigm significantly outperforms existing paraphrase approaches in both supervised and unsupervised setups.
Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to preserved neurons in the upper layer are preserved. Starting from the top softmax layer, layer-wise pruning proceeds in a top-down fashion until reaching the bottom word embedding layer. The proposed pruning strategy offers merits over weight-based pruning techniques: (1) it avoids irregular memory access since representations and matrices can be squeezed into their smaller but dense counterparts, leading to greater speedup; (2) in a manner of top-down pruning, the proposed method operates from a more global perspective based on training signals in the top layer, and prunes each layer by propagating the effect of global signals through layers, leading to better performances at the same sparsity level. Extensive experiments show that at the same sparsity level, the proposed strategy offers both greater speedup and higher performances than weight-based pruning methods (e.g., magnitude pruning, movement pruning).
Out-of-Distribution (OOD) detection is an important problem in natural language processing (NLP). In this work, we propose a simple yet effective framework kFolden, which mimics the behaviors of OOD detection during training without the use of any external data. For a task with k training labels, kFolden induces k sub-models, each of which is trained on a subset with k-1 categories with the left category masked unknown to the sub-model. Exposing an unknown label to the sub-model during training, the model is encouraged to learn to equally attribute the probability to the seen k-1 labels for the unknown label, enabling this framework to simultaneously resolve in- and out-distribution examples in a natural way via OOD simulations. Taking text classification as an archetype, we develop benchmarks for OOD detection using existing text classification datasets. By conducting comprehensive comparisons and analyses on the developed benchmarks, we demonstrate the superiority of kFolden against current methods in terms of improving OOD detection performances while maintaining improved in-domain classification accuracy.