Multilingual generative models obtain remarkable cross-lingual in-context learning capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages and learn isolated distributions of multilingual sentence representations, which may hinder knowledge transfer across languages. To bridge this gap, we propose a simple yet effective cross-lingual alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns outputs by following cross-lingual instructions in the target language. Experimental results show that even with less than 0.1\textperthousand of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative language models and mitigates the performance gap. Further analyses reveal that it results in a better internal multilingual representation distribution of multilingual models.
Transformer-based models, even though achieving super-human performance on several downstream tasks, are often regarded as a black box and used as a whole. It is still unclear what mechanisms they have learned, especially their core module: multi-head attention. Inspired by functional specialization in the human brain, which helps to efficiently handle multiple tasks, this work attempts to figure out whether the multi-head attention module will evolve similar function separation under multi-tasking training. If it is, can this mechanism further improve the model performance? To investigate these questions, we introduce an interpreting method to quantify the degree of functional specialization in multi-head attention. We further propose a simple multi-task training method to increase functional specialization and mitigate negative information transfer in multi-task learning. Experimental results on seven pre-trained transformer models have demonstrated that multi-head attention does evolve functional specialization phenomenon after multi-task training which is affected by the similarity of tasks. Moreover, the multi-task training strategy based on functional specialization boosts performance in both multi-task learning and transfer learning without adding any parameters.
A sequence-to-sequence learning with neural networks has empirically proven to be an effective framework for Chinese Spelling Correction (CSC), which takes a sentence with some spelling errors as input and outputs the corrected one. However, CSC models may fail to correct spelling errors covered by the confusion sets, and also will encounter unseen ones. We propose a method, which continually identifies the weak spots of a model to generate more valuable training instances, and apply a task-specific pre-training strategy to enhance the model. The generated adversarial examples are gradually added to the training set. Experimental results show that such an adversarial training method combined with the pre-training strategy can improve both the generalization and robustness of multiple CSC models across three different datasets, achieving state-of-the-art performance for CSC task.