Biqing Qi


2024

pdf
On Large Language Models’ Hallucination with Regard to Known Facts
Che Jiang | Biqing Qi | Xiangyu Hong | Dayuan Fu | Yang Cheng | Fandong Meng | Mo Yu | Bowen Zhou | Jie Zhou
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models are successful in answering factoid questions but are also prone to hallucination.We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics, an area not previously covered in studies on hallucinations.We are able to conduct this analysis via two key ideas.First, we identify the factual questions that query the same triplet knowledge but result in different answers. The difference between the model behaviors on the correct and incorrect outputs hence suggests the patterns when hallucinations happen.Second, to measure the pattern, we utilize mappings from the residual streams to vocabulary space.We reveal the different dynamics of the output token probabilities along the depths of layers between the correct and hallucinated cases. In hallucinated cases, the output token’s information rarely demonstrates abrupt increases and consistent superiority in the later stages of the model.Leveraging the dynamic curve as a feature, we build a classifier capable of accurately detecting hallucinatory predictions with an 88% success rate. Our study shed light on understanding the reasons for LLMs’ hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.

pdf
PaD: Program-aided Distillation Can Teach Small Models Reasoning Better than Chain-of-thought Fine-tuning
Xuekai Zhu | Biqing Qi | Kaiyan Zhang | Xinwei Long | Zhouhan Lin | Bowen Zhou
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

While large language models (LLMs) excel in various natural language processing tasks, their huge size and the inaccessibility of parameters present challenges for practical deployment. Previous studies try to distill task-specific ability from LLMs to smaller models, using data synthesis and chain-of-thought (CoT) fine-tuning. However, synthetic CoT data often contains faulty reasoning, which deteriorates the quality of distillation, especially in reasoning capabilities. In this work, we propose Program-aided Distillation (PaD), which introduces reasoning programs to suppress the errors in distilled data, and thus achieves better distillation quality for reasoning tasks. In PaD, we utilize the reasoning program to substitute the CoT, allowing automated error checking of synthetic data. Further, through error injecting and further training, the small distilling model could iteratively self-refine the reasoning. Moreover, we conduct a step-wise beam search by step-by-step verifying to acquire more exact reasoning chains. We evaluate PaD on arithmetic reasoning, symbolic reasoning, and general ability.Experimental results demonstrate that smaller models using PaD can not only outperform certain LLMs (e.g., LLaMA-1 13B) but also achieve strong improvement over baselines with a significantly smaller scale of parameters and data. The source code is publicly available athttps://github.com/Xuekai-Zhu/pad.

2023

pdf
CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without Full Large Language Model
Kaiyan Zhang | Ning Ding | Biqing Qi | Xuekai Zhu | Xinwei Long | Bowen Zhou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction tuning has recently been recognized as an effective way of aligning Large Language Models (LLMs) to enhance their generalization ability across various tasks. However, when tuning publicly accessible, centralized LLMs with private instruction data, privacy concerns are inevitable. While direct transfer of parameterized modules between models is a plausible approach to address this, its implications and effectiveness need further exploration. This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators. Given the limited understanding of the underlying mechanism of OFT, we perform an empirical analysis on LLMs from the perspectives of representation and functional similarity. Interestingly, our findings reveal a unique modular structure within the layers of LLMs that appears to emerge as the model size expands. Simultaneously, we note subtle but potentially significant changes in representation and intermediate predictions across the layers. Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs. CRaSh significantly boosts performance of OFT with billions of parameters. Furthermore, we investigate the optimal solutions yielded by fine-tuning with and without full model through the lens of loss landscape. Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.