Baoyu Jing
2021
Multiplex Graph Neural Network for Extractive Text Summarization
Baoyu Jing
|
Zeyu You
|
Tao Yang
|
Wei Fan
|
Hanghang Tong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged graph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) within the documents to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity and natural connection relationships), nor model intra-sentential relationships (e.g, semantic similarity and syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate effectiveness of our method.
2019
Show, Describe and Conclude: On Exploiting the Structure Information of Chest X-ray Reports
Baoyu Jing
|
Zeya Wang
|
Eric Xing
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Chest X-Ray (CXR) images are commonly used for clinical screening and diagnosis. Automatically writing reports for these images can considerably lighten the workload of radiologists for summarizing descriptive findings and conclusive impressions. The complex structures between and within sections of the reports pose a great challenge to the automatic report generation. Specifically, the section Impression is a diagnostic summarization over the section Findings; and the appearance of normality dominates each section over that of abnormality. Existing studies rarely explore and consider this fundamental structure information. In this work, we propose a novel framework which exploits the structure information between and within report sections for generating CXR imaging reports. First, we propose a two-stage strategy that explicitly models the relationship between Findings and Impression. Second, we design a novel co-operative multi-agent system that implicitly captures the imbalanced distribution between abnormality and normality. Experiments on two CXR report datasets show that our method achieves state-of-the-art performance in terms of various evaluation metrics. Our results expose that the proposed approach is able to generate high-quality medical reports through integrating the structure information.
2018
On the Automatic Generation of Medical Imaging Reports
Baoyu Jing
|
Pengtao Xie
|
Eric Xing
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Medical imaging is widely used in clinical practice for diagnosis and treatment. Report-writing can be error-prone for unexperienced physicians, and time-consuming and tedious for experienced physicians. To address these issues, we study the automatic generation of medical imaging reports. This task presents several challenges. First, a complete report contains multiple heterogeneous forms of information, including findings and tags. Second, abnormal regions in medical images are difficult to identify. Third, the reports are typically long, containing multiple sentences. To cope with these challenges, we (1) build a multi-task learning framework which jointly performs the prediction of tags and the generation of paragraphs, (2) propose a co-attention mechanism to localize regions containing abnormalities and generate narrations for them, (3) develop a hierarchical LSTM model to generate long paragraphs. We demonstrate the effectiveness of the proposed methods on two publicly available dataset.