Anurag Nigam


2020

pdf
Varying Vector Representations and Integrating Meaning Shifts into a PageRank Model for Automatic Term Extraction
Anurag Nigam | Anna Hätty | Sabine Schulte im Walde
Proceedings of the Twelfth Language Resources and Evaluation Conference

We perform a comparative study for automatic term extraction from domain-specific language using a PageRank model with different edge-weighting methods. We vary vector space representations within the PageRank graph algorithm, and we go beyond standard co-occurrence and investigate the influence of measures of association strength and first- vs. second-order co-occurrence. In addition, we incorporate meaning shifts from general to domain-specific language as personalized vectors, in order to distinguish between termhood strengths of ambiguous words across word senses. Our study is performed for two domain-specific English corpora: ACL and do-it-yourself (DIY); and a domain-specific German corpus: cooking. The models are assessed by applying average precision and the roc score as evaluation metrices.