Multilingual pre-training significantly improves many multilingual NLP tasks, including machine translation. Most existing methods are based on some variants of masked language modeling and text-denoising objectives on monolingual data. Multilingual pre-training on monolingual data ignores the availability of parallel data in many language pairs. Also, some other works integrate the available human-generated parallel translation data in their pre-training. This kind of parallel data is definitely helpful, but it is limited even in high-resource language pairs. This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training. First, a denoising model is pre-trained on monolingual data to reorder, add, remove, and substitute words, enhancing the pre-training documents’ quality. Then, we generate different pseudo-translations for each pre-training document using dictionaries for word-by-word translation and applying the pre-trained denoising model. The resulting pseudo-parallel data is then used to pre-train our multilingual sequence-to-sequence model, PEACH. Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks, including supervised, zero- and few-shot scenarios. Moreover, PEACH’s ability to transfer knowledge between similar languages makes it particularly useful for low-resource languages. Our results demonstrate that with high-quality dictionaries for generating accurate pseudo-parallel, PEACH can be valuable for low-resource languages.
Abstractive text summarization is one of the areas influenced by the emergence of pre-trained language models. Current pre-training works in abstractive summarization give more points to the summaries with more words in common with the main text and pay less attention to the semantic similarity between generated sentences and the original document. We propose ARMAN, a Transformer-based encoder-decoder model pre-trained with three novel objectives to address this issue. In ARMAN, salient sentences from a document are selected according to a modified semantic score to be masked and form a pseudo summary. To summarize more accurately and similar to human writing patterns, we applied modified sentence reordering. We evaluated our proposed models on six downstream Persian summarization tasks. Experimental results show that our proposed model achieves state-of-the-art performance on all six summarization tasks measured by ROUGE and BERTScore. Our models also outperform prior works in textual entailment, question paraphrasing, and multiple choice question answering. Finally, we established a human evaluation and show that using the semantic score significantly improves summarization results.
Detecting which parts of a sentence contribute to that sentence’s toxicity—rather than providing a sentence-level verdict of hatefulness— would increase the interpretability of models and allow human moderators to better understand the outputs of the system. This paper presents our team’s, UTNLP, methodology and results in the SemEval-2021 shared task 5 on toxic spans detection. We test multiple models and contextual embeddings and report the best setting out of all. The experiments start with keyword-based models and are followed by attention-based, named entity- based, transformers-based, and ensemble models. Our best approach, an ensemble model, achieves an F1 of 0.684 in the competition’s evaluation phase.