Supplementary Material for: Topic Identification and Discovery on Text
and Speech

Chandler May, Francis Ferraro, Alan McCree, Jonathan Wintrode,
Daniel Garcia-Romero, and Benjamin Van Durme

Human Language Technology Center of Excellence
Johns Hopkins University

cjmay@jhu.edu, ferraro@cs. jhu.edu, alan.mccree@jhu.edu, jcwintr@cs. jhu.edu,
dgromero@jhu.edu, vandurme@cs. jhu.edu

1 Speech Systems

The input data to a topic model is a collection of
documents, each of which is represented as a vec-
tor of word counts. Even in a noisy environment,
relatively little work is required to generate such
count vectors from a raw corpus. On the other
hand, generating count vectors (or soft—count vec-
tors) over content-bearing features from raw audio
data requires considerable effort. In this paper, the
features we use for speech data are triphone state
cluster soft counts. Triphone cluster assignments
are latent variables in an ASR system; however,
we do not count the inferred values of those latent
variables in the original ASR pipeline. Instead, for
the sake of computational efficiency, a deep neural
network (DNN) with a softmax top layer is trained
to predict the triphone state cluster assignments,
and we use aggregate triphone state cluster poste-
riors from this model as soft counts.

We now summarize the essential components of
the ASR pipeline (Jurafsky and Martin, 2009).

The raw digital representation of speech is a se-
quence of samples of an acoustic wave. This se-
quence is commonly chunked into windows (of,
e.g., 10 milliseconds) called frames and higher-
order features are computed within each win-
dow. Commonly-used features are the twelve mel-
frequency cepstral coefficients (MFCC) computed
over the frame, the frame energy, and estimates
of the first- and second-order across-frame deriva-
tives of those thirteen features, for a total of 39
features per frame. These frame-wise feature vec-
tors are used as the observations of states within
phone models, discussed next.

Phonemes, or phones, are small units of sound
generated from human speech. For example, the
spoken word “yell” consists of three phones, [y],
[eh], and [1] (Jurafsky and Martin, 2009). Across
several instances of a word, each phone in that
word may have varying duration. To accommo-

date this phenomenon, a phone can be modeled by
a left-to-right hidden Markov model (HMM) over
states, called subphones, that have self-loops. In
this model, each state (subphone) corresponds to
a fixed-duration frame and emits an acoustic fea-
ture vector under a Gaussian or Gaussian mixture
model (GMM). Because of the self-loops on the
states, a phone in this model can have arbitrarily
long duration, as desired.

The phone model consisting of a single phone
HMM is specified as a context-independent (CI)
phone model, or monophone model. To account
for an articulatory process called coarticulation in
which the acoustic realization of phones are al-
tered by their neighboring phones, one or more
phone HMMs can be concatenated to the left and
right of a monophone HMM, serving as context.
Such context-dependent (CD) phone models often
contain a single context phone on the left and a sin-
gle context phone on the right of the central phone,
and are accordingly called triphone models.

In the traditional ASR setup, after CI phone
models (one model per phone) are learned us-
ing Gaussian observation models for the subphone
states, each phone model is cloned to create one
CD phone model for each possible triphone. The
parameters for these models are then re-estimated
(except the transition matrices are held fixed). In
order to improve ASR performance, it is then de-
sirable to increase the number of components in
the GMM observation models (where the number
of components is initially one). However, learning
the raw triphone model is not feasible due to the
high dimensionality of the parameter space and the
sparsity of the data, so before the number of mix-
ture components is increased, the triphone space is
reduced by clustering.

A popular clustering approach constructs clus-
ters in a manner that permits granular, subphone-
level context dependencies while facilitating infer-
ence on unseen triphones. To fulfill both of these



objectives, a decision tree clustering procedure is
applied to each state in the HMM, partitioning the
set of triphone models for a given central phone
into one or more clusters by clustering the states of
the central phone. That is, for each central phone,
for each state in the structure of the correspond-
ing monophone model, a decision tree is learned to
partition the levels of the state and the observation
model parameter vectors of the levels within each
cluster are tied together. (One level within each
cluster is picked as an exemplar and the parameter
vectors of the other levels in that cluster are tied to
the exemplar’s parameter vector.) Thus future re-
estimation of a state’s observation model parame-
ters for a given triphone may change the parame-
ters in other states in other triphones as well. Such
state tying accommodates subphone-level depen-
dencies while reducing the overall number of pa-
rameters.

For a given central phone and state, initially all
levels are placed in the same cluster. The deci-
sion tree is grown by recursively splitting the set
of levels models into two groups, where the pos-
sible splits are computed from a set of predeter-
mined phonetic questions about the left and right
context phones in the triphone HMM (such as, “is
the left context phone nasal?”), and the question
(split) chosen at a given node in the tree is one
that maximizes the increase in log-likelihood of
the training data while keeping the size of its child
clusters above some lower bound. The splitting
procedure stops when no leaf node can be split
without violating the cluster size lower bound or
when the maximum log-likelihood increase of any
split falls below a pre-specified threshold.

Overall, ASR training proceeds by learning
CI models using Gaussian observations, cloning
those CI models to initialize a set of CD mod-
els, re-estimating parameters of the CD models,
clustering the CD models, and iteratively increas-
ing the expressibility of the observations by grow-
ing the number of GMM components and re-
estimating parameters until some stopping crite-
rion is met. Aligned training data is expensive to
obtain and often noisy, so this training procedure
is performed in an EM framework that also esti-
mates word segmentations and phone alignments
(mappings from time intervals in the acoustic data
to words and phones within those words, respec-
tively). This approach is called embedded train-
ing, as each word HMM is embedded in a whole-

sentence HMM to estimate soft word segmenta-
tions. Embedded training is computationally in-
tensive; after it is complete, to facilitate inference
on held-out data, a DNN with a softmax top layer
is trained to predict the triphone state cluster of
a frame given the acoustic feature vectors of that
frame and its context. Commonly, the input to the
DNN is a “supervector” consisting of the concate-
nated acoustic feature vectors for a central frame,
four left context frames, and four right context
frames (nine frames in total).

2 ASR Training

The ASR system in this study is trained on Parts
1 and 2 of the Fisher English corpus, which
comprise 11,699 telephone conversations span-
ning 1200 hours of audio (Cieri et al., 2004a; Cieri
et al., 2005). The acoustic features are MFCC
under three transformations: linear discriminant
analysis, a maximum likelihood linear transform
(MLLT), and continuous (feature-space) maxi-
mum likelihood linear regression (CMLLR). The
latter transform is used for speaker adaptation.
The ASR system is implemented in the KALDI
speech recognition toolkit (Povey et al., 2011).
The triphone state cluster DNN is also imple-
mented in KALDI. Its input is a “supervector” of
nine frames of acoustic features (a central frame
with four left context frames and four right context
frames). The acoustic features are MFCC trans-
formed by linear discriminant analysis and MLLT.
The DNN comprises five layers with /s-norm non-
linearities and 10:1 input-to-output ratios (Zhang
et al., 2014). It is learned via mini-batch natural
gradient descent, using mini-batches of size 512
and a “replicate-train-merge” to parallelize across
four instances of the DNN (Povey et al., 2015).

3 Input Representations

We follow Hazen et al. (2007)’s efforts in topic ID
on Fisher (Cieri et al., 2004c; Cieri et al., 2004b).
We use a copy of Hazen’s dataset containing 2060
labeled conversations, of which 1374 are used for
training and 686 are reserved for held-out evalua-
tion. However, this copy has two idiosyncrasies.
First, our training set is smaller than the original
by one conversation (Hazen et al., 2007). Second,
we have three conversations in both training and
test. We obtained this inexact copy of the data by
personal correspondence with the creator, and we



were unable to obtain the exact instance or repli-
cate it.

The data and labels each have their own biases.
While the topic occurrences are unbalanced, rang-
ing between 6 and 87 conversations per topic (as
explained in the main paper), there is also an is-
sue of conversation drift. Conversation drift oc-
curs when a conversation starts off very relevant to
a provided prompt or topic, but quickly diverges—
or drifts—to topics unrelated to the prompt (in this
case, the gold document label). Wintrode (2013)
examined conversation drift in Fisher, finding a
tremendous amount of classification signal in the
first 25% percent of each conversation, and rapidly
diminishing returns as more and more of the con-
versation is considered.

4 Representation Learner
Implementation

We learn the mi-vector model by alternating max-
imum a posteriori inference of the mi-vectors 69
and maximum likelihood inference of the sub-
space basis H, renormalizing H each time, as
in McCree and Garcia-Romero (2015). The back-
ground vector m is augmented with a small back-
off to the uniform distribution.

We use our own C++ implementation of mean-
field variational inference for SAGE. We initially
used Eisenstein et al. (2011)’s publicly released
code! but found it too inefficient for our experi-
ments. Our implementation, available online,? is
orders of magnitude faster and more memory effi-
cient. We use L-BFGS for MAP topic estimation
and Newton-Raphson hyperparameter optimiza-
tion. For models up-to size K = 100 (which we
found to be the feasible upper-limit), we verified,
both intrinsically and in our downstream classifi-
cation task, that our implementation and the pub-
licly available code were mutually competitive.

LDA is learned via Gibbs sampling, in which
hyperparameters are optimized every 25 iterations,
after a 200-iteration burn-in.

5 LSA Variations

For brevity and visual clarity, in the main pa-
per we only report one variation of LSA on
each dataset. Specifically, we weight the word
counts by tf-idf, mean-center that data matrix,

"https://github.com/jacobeisenstein/
SAGE

https://github.com/fmof/sagepp
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Figure 1: Topic ID error (%) on the test set
for variations of LSA at dimensions K €
{10, 50, 100, 200, 300, 600}.

and compute the lower-dimensional representa-
tion by SVD. Similarly, we normalize the triphone
state cluster soft counts using the /o norm, mean-
center that data matrix, and compute the lower-
dimensional representation by SVD. These imple-
mentations were chosen by lowest overall cross-
validation—estimated topic ID error and test-set V-
measure. In this section of the supplement we
report performance of other implementations we
tried. We name these implementations according
to their preprocessing recipes, so (for example) in
ctr-12-SVD we mean-center the data matrix, lo-
normalize the centered matrix, and compute the
lower-dimensional representation via SVD.

Topic ID error computed on the test set is plot-
ted with respect to representation dimension K in
Figure 1. This is the full-supervision setting.

We report cross-validation estimates of the topic
ID error (over the training set) for the full-
supervision and limited-supervision settings in
Figure 2 for K = 10, Figure 3 for K = 100, and
Figure 4 for K = 600.

Finally, we report V-measure with respect to
representation dimension in Figure 5.
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LSA of size K = 10.
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Figure 3: CV topic ID error (%) for variations of
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Figure 4: CV topic ID error (%) for variations of
LSA of size K = 600.
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Figure 5: V-measure on the Fisher English text and
speech data, respectively, for variations of LSA at
selected dimensions.
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