
A Additional Details On the Surrogates

A.1 Proof of Inequality Eq. 6
In this section, we provide a formal proof of the
Eq. 6. Let (Z, Y ) be an arbitrary pair of RVs with
(Z, Y ) ∼ pZY according to some underlying pdf,
and let q

Ŷ |Z be a conditional variational probabil-
ity distribution on the discrete attributes satisfying
pZY � pZ · qŶ |Z , i.e., absolutely continuous.

I(Z;Y ) ≥ H(Y )− CE(Ŷ |Z). (8)

Proof: We start by the definition of the MI and
use the fact that the maximum entropy distribution
is reached for the uniform law in the case of a
discrete variable (see (Cover and Thomas, 2006)).

I(Z;Y ) = H(Y )−H(Y |Z) (9)

= Const−H(Y |Z). (10)

We then need to find the relationship between
the cross-entropy and the conditional entropy.

KL(pY Z‖qŶ Z)

=EY Z

[
log

pY |Z(Y |Z)
q
Ŷ |Z(Y |Z)

]
=EY Z

[
log pY |Z(Y |Z)

]
−EY Z

[
log q

Ŷ |Z(Y |Z)
]

=−H(Y |Z) + CE(Ŷ |Z).
(11)

We know that KL(pY Z‖qŶ Z) ≥ 0, thus
CE(Ŷ |Z) ≥ H(Y |Z) which gives the result.

The underlying hypothesis made by approximat-
ing the MI with an adversarial loss is that the con-
tribution of gradient from KL(pY Z‖qŶ Z) to the
bound is negligible.

A.2 Proof of Th. 1
Let (Z, Y ) be an arbitrary pair of RVs with
(Z, Y ) ∼ pZY according to some underlying pdf,
and let q

Ŷ |Z be a conditional variational probability
distribution satisfying pZY � pZ · qŶ |Z , i.e., abso-
lutely continuous. To obtain an upper bound on the
MI we need to upper bound the entropy H(Y ) and
to lower bound the conditional entropy H(Y |Z).

Upper bound on H(Y ). Since the KL diver-
gence is non-negative, we have

H(Y ) ≤ EY [− log qY (Y )] (12)

= EY
[
− log

∫
q
Ŷ |Z(Y |z)pZ(z)dz

]
. (13)

Lower bounds on H(Y |Z). We have the fol-
lowing inequalities:

H(Y |Z) = EY Z
[
− log q

Ŷ |Z(Y |Z)
]
−

KL(pY Z‖pZ · qŶ |Z),
(14)

where KL(pY Z‖pZ · qŶ |Z) denotes the KL diver-
gence. Furthermore, for arbitrary values α > 1,

H(Y |Z) ≤EY Z
[
− log q

Ŷ |Z(Y |Z)
]
−

Dα(pY Z‖pZ · qŶ |Z),
(15)

where Dα(pY Z‖pZ · qŶ |Z) =

1

α− 1
logEZY

[
Rα−1(Z, Y )

]
is the Renyi divergence with

R(y, z) =
pY |Z(y|z)
q
Ŷ |Z(y|z)

.

The proof of Eq. 14 is given in Ssec. A.1. In order
to show Eq. 15, we remark that Renyi divergence
is non-decreasing function α 7→ Dα(pZY ‖pZ ·
q
Ŷ |Z) in α ∈ [0,+∞) (the reader is refereed to

(Van Erven and Harremos, 2014) for a detailed
proof). Thus, we have ∀α > 1,

KL(pZY ‖pZ ·qŶ |Z) ≤ Dα(pZY ‖pZ ·qŶ |Z). (16)

Therefore, from expression Eq. 14 we obtain the
desired result.

A.3 Optimization of the Surrogates on MI

In this section, we give details to facilitate the prac-
tical implementation of our methods.

A.3.1 Computing the entropy H(Y )

H(Y ) ≤ EY
[
− log

∫
q
Ŷ |Z(Y |z)pZ(z)dz

]
≈ EY

[
− log

n∑
i=1

q
Ŷ |Z(Y |zi)

]
+ const.

≈ − 1

|Y|

|Y|∑
j=1

log
n∑
i=1

Cθc(zi)yj + const.

(17)
where Cθc(zi)yj is the yj-th component of the nor-
malised output of the classifier Cθc .



A.3.2 Computing the lower bound on
H(Y |Z)

The upper bound helds for α > 1,

H(Y |Z) ≈ CE(Y |Z)− D̂α(pZY ‖pZ · qŶ |Z)

≈ − 1

n

n∑
i=1

log q
Ŷ |Z(yi|zi)−

1

α− 1
log

n∑
i=1

Rα−1(zi, yi).

(18)

Estimating the density-ratio R(z, y) In what
follows we apply the so-called density-ratio trick
to our specific setup. Suppose we have a bal-
anced dataset {(ypi , z

p
i )} ∼ pY Z and {(yqi , z

q
i )} ∼

q
Ŷ |ZpZ with i ∈ [1,K]. The density-ratio trick

consists in training a classifier CθR to distinguish
between theses two distribution. Samples coming
from p are labelled u = 1, samples coming from q
are labelled u = 0. Thus, we can rewrite R(z, y)
as

R(z, y) =
pY |Z(y, z)

q
Ŷ |Z(y, z)

(19)

=
pY Z|U (y, z|u = 0)

pY Z|U (y, z|u = 1)
(20)

=
pU |Y Z(u = 0|y, z)
pU |Y Z(u = 1|y, z)

pU (u = 1)

pU (u = 0)
(21)

=
pU |Y Z(u = 0|y, z)
pU |Y Z(u = 1|y, z) (22)

=
pU |Y Z(u = 0|y, z)

1− pU |Y Z(u = 0|y, z) . (23)

Obviously, the true posterior distribution pU |Y Z is
unknown. However, if CθR is well trained, then
pU |Y Z(u = 0|y, z) ≈ σ(CθR(y, z)), where σ(·)
denotes the sigmoid function. A detailled proce-
dure for training is given in Algorithm 1.

B Additional Details on the Model

B.1 Baseline Schemas
We report in Fig. 7 the schema of the proposed
approach as well as the baselines.

B.2 Architecture Hyerparameters
We use an encoder parameterized by a 2-layer bidi-
rectional GRU (Chung et al., 2014) and a 2-layer
decoder GRU. Both GRU and our word embed-
ding lookup tables, trained from scratch, and have

Algorithm 1 Our method for the fair classification
task
INPUT: training dataset for the encoder Dn =
{(x1, y1, l1), . . . , (xn, yn, ln)}, batch size m,
training dataset for the classifiers and decoder
D′n = {(x′1, y′1, l′1), . . . , (x′n, y′n, l′n)}.

Initialization: parameters (θe, θR, θc, θd) of the
encoder fθe , classifiers CθR , Cθc , fθd

Optimization:
1: while (θe, θR, θc, θd) not converged do
2: for i ∈ [1, Unroll] do . Train Cθc , CθR ,
fθd

3: Sample a batch B′ from D′
4: Update θR based B′ and using Cθc
5: Update θc with B′
6: Update θd with B′
7: end for
8: Sample a batch B from D . Train fθe
9: Update θe with B using Eq. 3 with θd.

10: end while
OUTPUT: fθe , fθd

a dimension of 128 (as already reported by (Gar-
cia et al., 2019), building experiments on higher
dimensions produces marginal improvement). The
style embedding is set to a dimension of 8. The
attribute classifier are MLP and are composed of 3
layer MLP with 128 hidden units and LeakyReLU
(Xu et al., 2015) activations, the dropout (Srivas-
tava et al., 2014) rate is set to 0.1. All models are
optimised with AdamW (Kingma and Ba, 2014;
Loshchilov and Hutter, 2017) with a learning rate
of 10−3 and the norm is clipped to 1.0. Our model’s
hyperparameters have been set by a preliminary
training on each downstream task: a simple classi-
fier for the fair classification and a vanilla seq2seq
(Sutskever et al., 2014; Colombo et al., 2020) for
the conditional generation task. The models re-
quested for the classification task are trained dur-
ing 100k steps while 300k steps are used for the
generation task.

C Additional Details on the experimental
Setup

In this section, we provide additional details on the
metric used for evaluating the different models.
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Figure 4: Numerical experiments on multiclass style transfer using categorical labels. Results include: BLEU
(Fig. 4a)); style transfer accuracy (Fig. 4b); sentence fluency (Fig. 4c).
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Figure 5: Results of cosine similarity on multiclass
style transfer using categorical labels

C.1 Content Preservation: BLEU & Cosine
Similarity

Content preservation is an important aspect of both
conditional sentence generation and style transfer.
We provide here the implementation details regard-
ing the implemented metrics.

BLEU. For computing the BLEU score we
choose to use the corpus level method provided in
python sacrebleu (Post, 2018) library https://
github.com/mjpost/sacrebleu.git. It
produces the official WMT scores while working
with plain text.

Cosine Similarity. For the cosine similarity,
we follow the definition of John et al. (2018)
by taking the cosinus between source and gen-
erated sentence embedding. For computing the
embedding we rely on the bag of word model
and take the mean pooling of word embedding.
We choose to use the pre-trained word vectors
provided in https://fasttext.cc/docs/
en/pretrained-vectors.html. They are
trained on Wikipedia using fastText. These vectors
in dimension 300 were obtained using the skip-
gram model described in Bojanowski et al. (2017);
Joulin et al. (2016b) with default parameters.

C.2 Fluency: Perplexity

To evaluate fluency we rely on the perplexity
(Jalalzai et al., 2020), we use GPT-2 (Radford et al.,
2019) fine-tuned on the training corpus. GPT-2 is
pre-trained on the BookCorpus dataset (Zhu et al.,
2015) (around 800M words). The model has been
taken from the HuggingFace Library (Wolf et al.,
2019). Default hyperparameters have been used for
the finetuning.

C.3 Style Conservation/Transfer

For style conservation (Colombo et al., 2019) (e.g.,
polarity, gender or category) we train a fasttext
(Bojanowski et al., 2017; Joulin et al., 2016a,b)
classifier https://fasttext.cc/docs/
en/supervised-tutorial.html. We use
the validation corpus to select the best model.
Preliminary comparisons with deep classifiers
(based on either convolutionnal layers or recurrent
layers) show that fasttext obtains similar result
while being litter and faster.

C.4 Disentanglement

For disentanglement, we follow common practice
(Lample et al., 2018) and implement a two layers
perceptron (Rosenblatt, 1958). We use LeakyRelu
(Xu et al., 2015) as activation functions and set the
dropout (Srivastava et al., 2014) rate to 0.1.

D Additional Results on Sentiment

D.1 Binary Sentence Generation

D.1.1 Human Evaluation
In Tab. 1, we report the performances of systems
when evaluated by humans on the polarity transfer
task. 100 sentences are generated by each system
and 3 english native speakers are asked to annotate
each sentence along 3 dimensions (i.e fluency, sen-
timent and content preservation). Turkers assign

https://github.com/mjpost/sacrebleu.git
https://github.com/mjpost/sacrebleu.git
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/supervised-tutorial.html
https://fasttext.cc/docs/en/supervised-tutorial.html
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(z, y) ∼ pZY

fθd

x ∼ pX

x̂

z

y ∼ pY s
fθs

e

(b) StyleEmb model from (John et al., 2018) with our MI surrogate

Figure 6: Proposed methods. As described in Th. 1.
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(b) StyleEmb model from (John et al., 2018)

Figure 7: Baselines methods, theses models use an adversarial loss for disentanglement. fθe represents the input
sentence encoder; fsθe denotes the style encoder (only used for sentence generation tasks); Cθc represents the
adversarial classifier; fθd represents the decoder that can be either a classifier (Fig. 7a or a sequence decoder
(Fig. 7b). Schemes of our proposed models are given in ??

binary labels to fluency and sentiment (following
the protocol introduced in Jalalzai et al. (2020))
while content is evaluated on a likert scale from
1-5. For content preservation, both the input sen-
tence and the generated sentence are provided to
the turker. The annotator agreement is measure by
the Krippendorff Alpha2 (Krippendorff, 2018). The
Krippendorff Alpha is: α = 0.54 on the sentiment
classification, α = 0.20 for fluency and α = 0.18
for content preservation.

D.2 Content preservation using Cosine
Similarity

Fig. 8 measures the content preservation measured
using cosine similarity for the sentence generation
task using sentiment labels. As with the BLEU
score, we observe that as the learnt representation
becomes more entangled (λ increases) less content
is preserved. Similarly to BLEU the model using
the KL bound conserves outperforms other models
in terms of content preservation for λ > 5.

D.3 Example of generated sentences

Tab. 2 gathers some sentences generated by the
different sentences for different values of λ.

2Krippendorff Alpha measures of inter-rater reliability in
[0, 1]: 0 is perfect disagreement and 1 is perfect agreement.
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Figure 8: Content preservation measured by the cosine
similarity.

Style transfert. From Tab. 2, we can observe
that the impact of disentanglement on a qualitative
point of view. For small values of λ the models
struggle to do the style transfer (see example 2 for
instance). As λ increases disentanglement becomes
easier, however, the content becomes more generic
which is a known problem (see (Li et al., 2015) for
instance).

Example of “degeneracy" for large values of
λ. For sentences generated with the baseline model
a repetition phenomenon appears for greater values
of λ. For certain sentences, models ignore the style



Model Fluency Content Sentiment
Human 0.80 3.4 0.78
Adv 0.60 2.4 0.63

vCLUB − S 0.62 2.6 0.65
KL 0.68 2.6 0.63

Dα=1.3 0.70 2.4 0.65
Dα=1.5 0.68 2.9 0.70
Dα=1.8 0.76 3.0 0.58

Table 1: Human annotation of generated samples. For
this comparison we rely on the sentences provided
in https://github.com/rpryzant/delete_
retrieve_generate. Human annotations are also
provided by Li et al. (2018). We have reprocessed the
provided sentence using a tokenizer based on Sentence-
Piece (Kudo, 2018; Sennrich et al., 2016). Since there
is a trade-off between automatic evaluation metrics (i.e
BLEU, Perplexity and Accuracy of Style Transfer), we
set minimum thresholds on BLEU and on style trans-
fert accuracy. The best model that met the threshold on
validation is selected. We will release–along with our
code–new generated sentences for comparison.

token (i.e., the sentence generated with a positive
sentiment is the same as the one generated with
the negative sentiment). We attribute this degener-
acy to the fact that the model is only trained with
(xi, yi) sharing the same sentiment which appears
to be an intrinsic limitation of the model introduced
by (John et al., 2018).

Analysis of performances of vCLUB-S Sim-
ilarly to what can be observed with automatic
evaluation Tab. 2 shows that the system based on
vCLUB-S has only two regimes: “light” disentan-
glement and strong disentanglement. With light
disentanglement the decoder fail at transferring the
polarity and for strong disentanglement few con-
tent features remain and the system tends to output
generic sentences.

E Additional Results on Multi class
Sentence Generation

Results on the multi-class style transfer and on are
reported in Fig. 4b Similarly than in the binary case
there exists a trade-off between content preserva-
tion and style transfer accuracy. We observe that
the BLEU score in this task is in a similar range
than the one in the gender task, which is expected
because data come from the same dataset where
only the labels changed.

λ Model Sentence

0.1

Input It’s freshly made, very soft and flavorful.
Adv it’s crispy and too nice and very flavor.
vCLUB-S It’s freshly made, and great.
KL it’s a huge, crispy and flavorful.
Dα=1.3 it’s hard, and the flavor was flavorless.
Dα=1.5 it’s very dry and not very flavorful either.
Dα=1.8 it’s a good place for lunch or dinner.

1

Input it’s freshly made, very soft and flavorful.
Adv it’s not crispy and not very flavorful flavor.
vCLUB-S It’s bad.
KL it’s very fresh, and very flavorful and flavor.
Dα=1.3 it’s not good, but the prices are good.
Dα=1.5 it’s not very good, and the service was terrible.
Dα=1.8 it was a very disappointing experience and the food was awful.

5

Input it’s freshly made, very soft and flavorful.
Adv i hate this place.
vCLUB-S i hate it.
KL it’s very fresh, flavorful and flavorful.
Dα=1.3 it’s not worth the money, but it was wrong.
Dα=1.5 it’s not worth the price, but not worth it.
Dα=1.8 it’s hard to find, and this place is horrible.

10

Input it’s freshly made, very soft and flavorful.
Adv i hate this place.
vCLUB-S i hate it.
KL it’s a little warm and very flavorful flavor.
Dα=1.3 it was a little overpriced and not very good.
Dα=1.5 it’s a shame, and the service is horrible.
Dα=1.8 it’s not worth the $ NUM.

Table 2: Sequences generated by the different models
on the binary sentiment transfer task.

https://github.com/rpryzant/delete_retrieve_generate
https://github.com/rpryzant/delete_retrieve_generate
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Figure 9: Disentanglement of the learnt embedding
when training an off-line adversarial classifier for the
sentence generation with gender data.

F Binary Sentence Generation:
Application to Gender Data

F.1 Quality of the Disentanglement
In Fig. 9, we report the adversary accuracy of the
different methods for the values of λ. It is worth
noting that gender labels are noisier than sentiment
labels (Lample et al., 2018). We observe that the
adversarial loss saturates at 55% where a model
trained on MI bounds can achieve a better disentan-
glement. Additionally, the models trained with MI
bounds allow better control of the desired degree
of disentanglement.

F.2 Quality of Generated Sentences
Results on the sentence generation tasks are re-
ported in Fig. 10 and in Fig. 11. We observe that
for λ > 1 the adversarial loss degenerates as ob-
serve in the sentiment experiments.Compared to
sentiment score we observe a lower score of BLEU
which can be explained by the length of the review
in the FYelp dataset. On the other hand, we observe
a similar trade-off between style transfer accuracy
and content preservation in the non degenerated
case: as style transfer accuracy increases, content
preservation decreases. Overall, we remark a be-
haviour similar to the one we observe in sentiment
experiments.

G Additional Results on Multi class
Sentence Generation

Results on the multi-class style transfer and on con-
ditional sentence generation are reported in Fig. 4b
and ??. Similarly than in the binary case there ex-
ists a trade-off between content preservation and

style transfer accuracy. We observe that the BLEU
score in this task is in a similar range than the one
in the gender task, which is expected because data
come from the same dataset where only the labels
changed.
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Figure 10: Numerical experiments on binary style transfer using gender labels. Results include: BLEU (Fig. 10a);
cosine similarity (Fig. 10d); style transfer accuracy (Fig. 10b); sentence fluency (Fig. 10c).
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Figure 11: Numerical experiments on conditional sentence generation using gender labels. Results includes:
BLEU (Fig. 11a); cosine similarity (Fig. 11d); style transfer accuracy (Fig. 11b); sentence fluency (Fig. 11c).
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Figure 12: Numerical experiments on the multi-class conditionnal sentence generation. Results include: BLEU
(Fig. 12a); cosine similarity (Fig. 12d); style transfer accuracy (Fig. 12b); sentence fluency (Fig. 12c).


