Supplementary Material for
SqueezeBERT

A Overview of GLUE tasks

We evaluated the SqueezeBERT model on the
GLUE benchmark. This benchmark includes 8
text-classification tasks, which include sentiment
analysis, entailment, and grammatical correctness:
MNLI (Williams et al., 2018), QQP (Quora, 2017,
Chen et al., 2018), QNLI, SST-2 (Socher et al.,
2013), CoL A (Warstadt et al., 2019), MRPC (Dolan
and Brockett, 2005), RTE (Bentivogli et al., 2009),
and WNLI (Levesque et al., 2012). The GLUE
benchmark also includes one text-regression task,
STS-B (Cer et al., 2017), which involves scoring
the level of similarity between two sentences.

B Training Hardware

We do all pretraining and finetuning on an §-GPU
server without multi-server distributed training.
Our server has 8 NVIDIA Titan RTX GPUs, an
Intel Xeon Gold 6130 64-core CPU, and 256GB
of RAM. On this 8-GPU server, the SqueezeBERT
model can be reproduced from scratch in approx-
imately 5 days: 4 days for pretraining, and then
under one day for finetuning on all GLUE tasks
with the optimal hyperparameters discovered by
our hyperparameter search (see Section D).

C Training Software

Our PyTorch-based training and inference code
draws heavily on the HuggingFace Transform-
ers (Wolf et al., 2019) and NVIDIA Deep Learning
Examples (NVIDIA, 2020b) repositories. We per-
form pretraining using 8 GPUs with 16-bit floating-
point math, and we use the O2 optimization level in
the NVIDIA Apex mixed-precision training prim-

itives (NVIDIA, 2020a). We perform finetuning
on a single GPU with 32-bit floating-point math,
and we concurrently run multiple finetuning tasks
across the 8-GPU machine.

D Details of hyperparameter search
during finetuning on GLUE tasks
We now present more details on the hyperparameter
search approach that we used for training Squeeze-
BERT with bells and whistles. In Table 4, we
present the space of possible hyperparameters over
which we performed a grid-search. Note that the
time to finetune the model using one set of hyper-
parameters varies significantly depending on the
GLUE task, from 15 minutes for small datasets like
RTE, to 14 hours for MNLI. For smaller datasets
that require less training (e.g. RTE and MRPC), we
use a broader search space and more epochs. And,
for larger datasets (e.g. MNLI and QQP), we use a
more narrow search space with fewer epochs.
Now, in Table 5, we present the best hyperpa-
rameters found in our search. We observe two
interesting phenomena on this table. The first is
regarding the use of distillation. Recall from Sec-
tion 4.2.2 that « is the hyperparameter that sets
the weighting between the teacher logits and the
ground-truth for distillation. When o = 1.0, the
teacher logits are ignored, and thus distillation is
disabled. So, it is interesting to note that on three
of the eight GLUE tasks in Table 5 (MNLI, QNLI,
and CoLA), distillation did not produce superior
results over non-distillation finetuning. The sec-
ond interesting phenomenon in this table is that
maximum accuracy was not necessarily achieved
on final epoch. For example, on QNLI, Squeeze-
BERT converged to its maximum development-set
accuracy after just two epochs.

Table 4: Our hyperparameter search space.

Hyperparameter \ MNLI, QQP, QNLI, STS-2 STS-B, MRPC, RTE CoLA

«@ [0.8,0.9, 1.0] [0.8,0.9, 1.0] [0.8, 0.9, 1.0]
Learning Rate [1e-05, 2e-05, 3e-05, 4e-05] [1e-05, 2¢-05, 3¢-05, 4e-05, 5e-05]  [1e-05, 2¢-05, 3¢-05, 4e-05, 5e-05]
Encoder Dropout | [0.0, 0.1] [0.0, 0.1] [0.0, 0.1]

Final Dropout [0.1,0.2] [0.1,0.2] [0.0, 0.1]

Epochs 5 10 20

Batch Size 16 16 [16, 32, 48]

Table 5: Selected hyperparameters used for training SqueezeBERT with bells-and-whistles.

Hyperparameter | MNLI-m MNLI-mm QQP

o 1.0 1.0 0.8
Learning Rate 3¢-05 3¢-05 4¢-05
Encoder Dropout | 0.0 0.0 0.1
Final Dropout 0.1 0.1 0.1
Epochs 4 4 5
Batch Size 16 16 16

QNLI STS-2 CoLA STS-B MRPC RTE
1.0 0.8 1.0 0.8 0.9 0.8
3e-05 3e-05 le-05 4e-05 3e-05 3e-05
0.0 0.1 0.0 0.1 0.1 0.1
0.1 0.1 0.0 0.1 0.1 0.1
2 5 6 10 9 3

16 16 32 16 16 16




