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Preface

We are delighted to introduce the proceedings of the 11th Conference on Empirical Methods in Natural
Language Proceessing, organized under the auspices of SIGDAT, the ACL Special Interest Group for
linguistic data and corpus-based approaches to NLP.

This was a wonderfully fruitful year for EMNLP; we received 234 submissions, drawn from every area
of language processing. Of these we were able to accept 73 papers (an acceptance rate of 31%), making
for an unusually broad and exciting program. 43 of the papers were presented as talks, and 30 as posters.

The papers were selected by a program committee of 13 area chairs from Asia, Australia, Europe, and
North America, ably assisted by a superb panel of 258 reviewers, also from all over the world. We are
deeply indebted to the area chairs and the reviewers for their tireless and generous work.

Additional thanks to to the Publications Chair, Eric Ringger, who put this volume together, to the Local
Arrangements Chair, James Curran, to the COLING/ACL Organizing Committee, especially Claire
Cardie and Suzanne Stevenson, for constant advice, and to David Yarowsky and Ken Church of SIGDAT
for fielding many questions. Special thanks go to the student volunteers at Stanford (Dan Cer, Pi-Chuan
Chang, Surabhi Gupta, William Morgan, Yun-Hsuan Sung, and Huihsin Tseng).

We wish you all an enjoyable and thought-provoking conference.

Dan Jurafsky and Eric Gaussier
EMNLP Co-Chairs
June 2006
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An important source of ambiguity that must be

Unsupervised Discovery of a Statistical Verb Lexicon

Trond Grenager and Christopher D. Manning
Computer Science Department
Stanford University
Stanford, CA 94305
{grenager, manning®cs.stanford.edu

Abstract

This paper demonstrates how unsupervised tech-
niques can be used to learn models of deep linguis-
tic structure. Determining theemantic rolef a
verb’s dependents is an important step in natural
language understanding. We present a method for
learning models of verb argument patterns directly
from unannotated text. The learned models are sim-
ilar to existing verb lexicons such as VerbNet and
PropBank, but additionally include statistics about
the linkings used by each verb. The method is
based on a structured probabilistic model of the do-
main, and unsupervised learning is performed with
the EM algorithm. The learned models can also
be used discriminatively as semantic role labelers,
and when evaluated relative to the PropBank anno-
tation, the best learned model reduces 28% of the
error between an informed baseline and an oracle
upper bound.

I ntroduction

semantic role of each dependent (Gildea and Juraf-
sky, 2002; Pradhan et al., 2005; Punyakanok et al.,
2005). A drawback of this approach is that even
a relatively large training corpus exhibits consid-
erable sparsity of evidence. The two main hand-
tagged corpora are PropBank (Palmer et al., 2003)
and FrameNet (Baker et al., 1998), the former of
which currently has broader coverage. However,
even PropBank, which is based on the 1M word
WSJ section of the Penn Treebank, is insufficient
in quantity and genre to exhibit many things. A
perfectly common verb likap occurs only twice,
across all morphological forms. The first example
is an adjectival useflapping wing¥, and the sec-
ond is a rare intransitive use with an agent argu-
ment and a pathd{icks flapping over Washington
From this data, one cannot learn the basic alterna-
tion pattern forflap: the bird flapped its wingss.

the wings flapped

resolved by any natural language understanding

system is the mapping between syntactic depen-

dents of a predicate and tlsemantic roles that

they each express. The ambiguity stems from th

We propose to address the challenge of data
sparsity by learning models of verb behavior di-
éectly from raw unannotated text, of which there

fact that each predicate can allow several alternat Plenty. This has the added advantage of be-

mappings, ofinkings? between its semantic roles

ing easily extendible to novel text genres and lan-

and their syntactic realization. For example, thedu2ges, and the possibility of shedding light on
verbincreasecan be used in two ways:

(1) The Fed increased interest rates.
(2) Interest rates increased yesterday.

the question of human language acquisition. The
models learned by our unsupervised approach pro-
vide a new broad-coverage lexical resource which
gives statistics about verb behavior, information

that may prove useful in other language process-

The instances have apparently similar surface syring tasks, such as parsing. Moreover, they may be
tax: they both have a subject and a noun phrasgsed discriminatively to label novel verb instances
directly following the verb. However, while the for semantic role. Thus we evaluate them both in
subject ofincreaseexpresses the agent role in theterms of the verb alternations that they learn and
first, itinstead expresses the patient role in the segheir accuracy as semantic role labelers.

ond. Pairs of linkings such as this allowed by & 1.5 \work bears some similarity to the sub-

single predicate are often calleltathesis alterna- - giania) Jiterature on automatic subcategorization
tions(Levin, 1993). frame acquisition (see, e.g., Manning (1993),
The current state-of-the-art approach to resolvgiscoe and Carroll (1997), and Korhonen

ing this ambiguity is to use discriminative classi- 2002)) However, that research is focused on ac-
fiers, trained on hand-tagged data, to classify thﬁuiring verbs’ syntactic behavior, and we are fo-

cused on the acquisition of verbs’ linking behav-
ior. More relevant is the work of McCarthy and

LAlso calledthematic rolestheta roles or deep cases
2Sometimes callettames

1
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Relation | Description | Sentence: A deeper market plunge today could

subj NP preceding verb give them their first test.
np#n NP in thenth position following verb —
np NP that is not the subject and i verb: gve
not immediately following verb Syntactic | Semantic Head
cln Complement clause Relation Role Word
in thenth position following verb subj ARGO | plunge/NN
cl Complement clause np ARGM | today/NN
not immediately following verb np#1 ARG2 they/PRP
xcHn Complement clause without subject np#2 ARG1 test/NN
in thenth position following verb
xcl Complement clause without subject v = give
not immediately following verb £ ={ARGO — subj, ARG1 — np7£2
acomp# | Adjectival complement ARG2 — np#1}
in the nth position following verb o = [(ARGO, subj), (ARGM,?),
acomp | Adjectival complement (ARG2,np#1), (ARG1, np#2)]
not immediately following verb (91,71, w1) = (subj, ARGO, plunge/NN)
prepz Prepositional modifier (92,72, w2) = (np, ARGO, today /N N)
with prepositionz (g3, s, w3) = (np#1, ARG2,they/PRP)
advmod | Adverbial modifier (94,74, ws) = (np#2, ARG1,test/NN)
advcl Adverbial clause

Figure 1: An example sentence taken from the Penn Treebank
(wsj-2417), the verb instance extracted from it, and the values
of the model variables for this instance. The semantic roles
listed are taken from the PropBank annotation, but are not

Korhonen (1998), which used a statistical modepPbserved in the unsupervised training method.

to identify verb alternations, relying on an existing

taxonomy of possible alternations, as well as Latax. We define a small set sf/ntactic relations
pata (1999), which searched a large corpus to fintisted in Table 1, each of which describes a possi-
evidence of two particular verb alternations. Theredle syntactic relationship between the verb and a
has also been some work on both clustering andependent. Our goal was to choose a set that pro-
supervised classification of verbs based on theivides sufficient syntactic information for the se-
alternation behavior (Stevenson and Merlo, 1999mantic role decision, while remaining accurately
Schulte im Walde, 2000; Merlo and Stevensoncomputable from any reasonable parse tree using
2001). Finally, Swier and Stevenson (2004) persimple deterministic rules. Our set does not in-
form unsupervised semantic role labeling by usingclude the relationslirect objector indirect object
hand-crafted verb lexicons to replace supervisegince this distinction can not be made determin-
semantic role training data. However, we believastically on the basis of syntactic structure alone;
this is the first system to simultaneously discoveiinstead, we opted to number the noun phrag, (
verb roles and verb linking patterns from unsupercomplement clauseck, xcl), and adjectival com-

vised data using a unified probabilistic model. ~ plements gcomp appearing in an unbroken se-
guence directly after the verb, since this is suffi-

2 Learning Setting cient to capture the necessary syntactic informa-

Our goal is to learn a model which relates a verbon- The syntactic rt:latlonr;s used in our experi-
its semantic roles, and their possible syntactic reMenNts aré computed from the typed dependencies

alizations. As is the case with most semantic rold€turned by the Stanford Parser (Klein and Man-

labeling research, we do not attempt to model th&'N9: 2003).
syntax itself, and instead assume the existence of a We also must choose a representation for se-
syntactic parse of the sentence. The parse may lmeantic roles. We allow each verb a small fixed
from a human annotator, where available, or frormumber of roles, in the manner similar to Prop-
an automatic parser. We can easily run our systerBank’'s ARGO ... ARG5. We also designate a
on completely unannotated text by first runningsingle adjunct role which is shared by all verbs,
an automatic tokenizer, part-of-speech tagger, ansimilar to PropBank’sd RG M role. We say “sim-
parser to turn the text into tokenized, tagged senilar” because our system never observes the Prop-
tences with associated parse trees. Bank roles (or any human annotated semantic
In order to keep the model simple, and indepen+oles) and so cannot possibly use the same names.
dent of any particular choice of syntactic represenQur system assigns arbitrary integer names to the
tation, we use an abstract representation of syrroles it discovers, just as clustering systems give

Table 1: The set of syntactic relations we use, where
{1, 2,3} andx is a preposition.



choice of verbgive we next generate a linking
@ ¢, which defines both the set of core semantic
roles to be expressed, as well as the syntactic re-
lations that express them. In our example, we
sample the ditransitive linking = {ARG0 —
subj, ARG1 — np#2, ARG2 — np#1}. Con-
<£> ditioned on this choice of linking, we next gen-
erate arorderedlinking o, giving a final position
in the dependent list for each role and relation in
the linking ¢, while also optionally inserting one
0 or more adjunct roles. In our example, we gener-
ate the vecton = [(ARGO, subj), (ARGM,?),
N (ARG2,np#1), (ARG1,np#2)]. In doing so

/ we've specified positions fad RG0, ARG1, and
ARG?2 and added one adjunct raleRG M in the
second position. Note that the length of the or-

l=j=M dered linkingo is equal to the total number of de-
Figure 2: A graphical representation of the verb linking pendentsi/ of the verb instance. NOW we iterate
model, with example values for each variable. The rectangidhrough each of the dependents< j < M, gen-
iSfarEJIate i_ntgilcating that thi model cohr)tains multiplef COpieSh erating each in turn. For the core arguments, the
of the variables shown within it: in this case, one for eac : ) . . ) _
dependenj. Variables observed during learning are shaded.semantIC rOIeJ_ and syntactic re'a“ol?a a_‘re Com
_ . pletely determined by the ordered linkiag so it
arbitrary names to the clusters they discover.  remains only to sample the syntactic relation for
Given these definitions, we convert our parsegpe adjunct role: here we sampje = np. We
corpora into a simple format: a set wérb in-  finish by sampling the head word of each depen-
stances each of which represents an occurrencgjent, conditioned on the semantic role of that de-

of averb in a sentence. A verb instance consists Qdendent. In this example, we generate the head
the base form (lemma) of the observed verb, angyords w, = plunge/NN, wy = today/NN,

for each dependent of the verb, the dependenty, — they /NN, andwy = test/NN.
syntactic relation and head word (represented as
the base form with part of speech information). An
example Penn Treebank sentence, and the verb i
stances extracted from it, are given in Figure 1.

Before defining the model more formally, we
pause to justify some of the choices made in de-
gl’gning the model. First, we chose to distinguish
between a verb’sore argumentsind itsadjuncts
3 Probabilistic Model While core argumgnts must b(_e_associated with a
semantic role that is verb specific (such as the pa-
Our learning method is based on a structured proktient role ofincrease the ratesin our example),
abilistic model of the domain. A graphical repre- adjuncts are generated by a role that is verb inde-
sentation of the model is shown in Figure 2. Thependent (such as the time of a generic evéadt
model encodes a joint probability distribution overmonthin our example). Linkings include map-
the elements of a single verb instance, includingpings only for the core semantic roles, resulting in
the verb type, the particular linking, and for eacha small, focused set of possible linkings for each
dependent of the verb, its syntactic relation to theverb. A consequence of this choice is that we in-
verb, semantic role, and head word. troduce uncertainty between the choice of linking
We begin by describing the generative processnd its realization in the dependent list, which we
to which our model corresponds, using as our runfepresent with ordered linking variakie*
ning example the instance of the vegive shown We now present the model formally as a fac-
in Figure 1. We begin by generating the verbtored joint probability distribution. We factor the
lemmauv, in this casegive Conditioned on the joint probability distribution into a product of the

%In practice, while our system is not guaranteed to choose
role names that are consistent with PropBank, it often does “*An alternative modeling choice would have been to add a
anyway, which is a consequence of the constrained form oftate variable to each dependent, indicating which of tlesro
the linking model. in the linking have been “used up” by previous dependents.



probabilities of each instance: [ Role ] Linking Operations
ARGO | Add ARGO to subj

N ARG1 | No operation
_ I R A A A Add ARG1 to np#1
P(m—HP(”?g?O’g’r’W) Add ARG1 to cl#1
i=1 Add ARG1 to xcl#l
. Add ARG1 to acomp#1
where we assume there alé instances, and we Add ARG to subj, replacingl RGO

have used the vector notatigrto indicate the vec- | ARG2 | No operation

tor of variablesy; for all values ofj (and similarly ﬁgg iggg :g ﬁ;ﬁx’smﬂn QARG to np#2

for r andw). We then factor the probability of Add ARG2 to np#1, shiftingA RG1 to prepwith
each instance using the independencies shown JrARG3 | No operation

. . Add ARG3to prepz, Vx
Figure 2 as follows: Add ARG3 to chin, 1 < n < 3

ARG4 | No operation

P(v,l,0,g,1,W) = Add ARGA4 to prepz, Vo
Table 2: The set of linking construction operations. To con-
P(v)P(4|v)P(0|?) H P(gjlo)P(rjlo)P(wj|r;) struct a linking, select one operation from each list.

=1 variables, distributed according to a Dirichlet dis-

where we have assumed that there &fedepen-  tribution.’
dents of this instance. The vetbis always ob- o
served in our data, so we don’'t need to define>1 Linking Model
P(v). The probability of generating the linking The most straightforward choice of a distribution
given the verbP(¢|v) is a multinomial over pos- for P(¢|v) would be a multinomial over all pos-
sible linkings® Next, the probability of a partic- sible linkings. There are two problems with this
ular ordering of the linkingP(o|¢) is determined simple implementation, both stemming from the
only by the number of adjunct dependents that aréact that the space of possible linkings is large
added tow. One pays a constant penalty for each(there areD (|G + 1|®I), whereg is the set of syn-
adjunct that is added to the dependent list, but othtactic relations an® is the set of semantic roles).
erwise all orderings of the roles are equally likely. First, most learning algorithms become intractable
Formally, the ordering is distributed according when they are required to represent uncertainty
to the geometric distribution of the difference be-over such a large space. Second, the large space
tween its length and the length 6fwith constant  of linkings yields a large space of possible mod-
parameten.® Next, P(g;|o) andP(r;|0) are com- els, making learning more difficult.
pletely deterministic for core roles: the syntactic Asaconsequence, we have two objectives when
relation and semantic role for positigrare speci- designingP (¢|v): (1) constrain the set of linkings
fied in the ordering. For adjunct roles, we gener- for each verb to a set of tractable size which are
ateg; from a multinomial over syntactic relations. linguistically plausible, and (2) facilitate the con-
Finally, the word given the rol& (w;|r;) is dis-  struction of a structured prior distribution over this
tributed as a multinomial over words. set, which gives higher weight to linkings that are
To allow for labeling elements of verb instancesknown to be more common. Our solution is to
(verb types, syntactic relations, and head words) anodel thederivationof each linking as a sequence
test time that were unobserved in the training setpf construction operationsan idea which is sim-
we must smooth our learned distributions. We usdar in spirit to that used by Eisner (2001). Each
Bayesian smoothing: all of the learned distribu-operation adds a new role to the linking, possibly
tions are multinomials, so we agguedocountsa  replacing or displacing one of the existing roles.
generalization of the well-knowadd-one smooth- The complete list of linking operations is given in
ing technique. Formally, this corresponds to aTable 2. To build a linking we select one opera-
Bayesian model in which the parameters of theséion from each list; the presence of a no-operation
multinomial distributions are themselves randomfor each role means that a linking doesn’t have to
" 5The way in which we estimate this multinomial from include all roles. Note that this linking derivation

data is more complex, and is described in the next section. process is not shown in Figure 2, since it is possi-
SWhile this may seem simplistic, recall that all of theim-

portant ordering information is captured by the syntaaic r "For a more detailed presentation of Bayesian methods,

lations. see Gelman et al. (2003).



ble to compile the resulting distribution over link- our learning problem as
ings into the simpler multinomidb (¢|v).

More formally, we factorP(¢|v) as follows, N ,
wherec is the vector of construction operations " = argmax P(6|D) = argmax | [ P(d';6)
used to build/: 0 0 4

N
= argmaXHP(vi,ﬁ, o', gl rt, w'0)
P(lv) = > P(tc)P(clv) -}
(&
IR Because of the factorization of the joint distri-
= Y [Pl bution, this learning task would be trivial, com-
c i=1 putable in closed form from relative frequency

counts. Unfortunately, in our training set the vari-
Note that in the second step we drop the ternables?, o andr are hidden (not observed), leaving
P(¢|c) since it is always 1 (a sequence of opera-us with a much harder optimization problem:
tions leads deterministically to a linking).

Given this derivation process, it is easy to cre- N -
ated a structured prior: we just plaggeudocounts ¢" = argmax H P(v', g", w'0)
on the operations that are likely priori across b =0
all verbs. We place high pseudocounts on the N Do i
no-operations (which preserve simple intransitive = argrgnaxn Z _P(” 00 gt wh6)
and transitive structure) and low pseudocounts on 1=0 1,00t
all the rest. Note that the use of this structured ]
prior has another desired side effect: it breaks thd Other words, we want model parameters which
symmetry of the role names (because some linkmaximize the expected likelihood of the observed

ings more likely than others) which encourages th&@t@, where the expectation is taken over the

model to adhere to canonical role naming convenllidden variables for each instance. = Although

tions, at least for commonly occurring roles like it is intractable to find exact solutions to opti-
ARGO andARG1 mization problems of this form, the Expectation-
. o _ Maximization (EM) algorithm is a greedy search
The design of the linking model does incorpo- D
rate prior k?]owled e abom?t the structure of Vperbprocedure over the parameter space which is guar-
Iinkin%s and diathgsis alternations anteed to increase the expected likelihood, and

o : Indeeq, thethus find a local maximum of the function.
linking model provides a weak form of Univer- While the M-step is clearly trivial, the E-step

sal Grammar, encoding the kinds of linking pat- _ .. .
g gp at first looks more complex: there are three hid-

terns that are known to occur in human languages . .
. den variables for each instandeg, andr, each of
While not fully developed as a model of cross-

o . ._which can take an exponential number of values.
linguistic verb argument realization, the model is .

. . . Note however, that conditioned on the observed
not very English specific. It provides a not-very-

constrained theory of alternations that captures? et of syntactic relationg, the variables ando

2 . are completely determined by a choice of rates
common cross-linguistic patterns. Finally, though :
) for each dependent. So to represent uncertainty
we do encode knowledge in the form of the model .
) . o over these variables, we need only to represent a
structure and associated prior distributions, notg,. .~ " .
) g distribution over possible role vectors Though
that we do not provide any verb-specific knowl- . : :
R . . in the worst case the set of possible role vectors is
edge,; this is left to the learning algorithm. . .
still exponential, we only need role vectors that are
consistent with both the observed list of syntactic
4 Learning relations and a linking that can be generated by
the construction operations. Empirically the num-
Our goal in learning is to find parameter settings ofber of linkings is small (less than 50) for each of
our model which are likely given the data. Usingthe observed instances in our data sets.
0 to represent the vector of all model parameters, Then for each instance we construct a condi-

if our data were fully observed, we could expresstional probability distribution over this set, which



is computable in terms of the model parameters: | | CoarseRoles | CoreRoles |
Sec. 23 P R |FL|P ]| R FL

ID Only 957 | .802 | .873 | .944 | .843 | .891

P(r7 gl‘a Oy, |/U7 g7 W) 0.8 CL OnIy

M Baseline| .856 | .856 | .856 | .975 | .820 | .886
PTBTr. | .889 | .889 | .889 | .928 | .898 | .911
P(£r[v)P(or|tr) HP(gj‘0r>P(Tj|0r>P(wJ|7”j> 1000 Tr. | .897 | .897 | .897 | .947 | .898 | .920

J=1 ID+CL
Baseline| .819 | .686 | .747 | .920 | .691 | .789
We have denoted & ando, the values of and PTBTr. | .851| .712 | .776 | .876 | .757 | .812
1000 Tr. | .859 | .719 | .783 | .894 | .757 | .820

o that are determined by each choicerof —— = — = =

To make EM work, there are a few additional \—5rr——os7 785863 [ 941|825 879
subtleties. First, because EM is a hill-climbing al- | cL only
gorithm, we must initialize it to a point in parame- E%ﬂﬂe -ggg -ggg -ggg -gig ‘833 '3%
ter space W|th slope (and without symr_netnes). We' 10007r | ‘899 | ‘899 | 899 | ‘956 | 808 | 925
do so by adding a small amount of noise: for each b+cL
dependent of each verb, we add a fractional count E?_ISBG'T'”G -ggg -ggi ;32 -ggé -Sgg -;gg
of 107 to the word distribution of a semantic role | 7409 Tr'r. ‘858 | 709 | 776 | 900 | 741 | 813
selected at random. Second, we must choose when
to stop EM: we run until the relative change in data’able 3: Summary of results on labeling verb instances

S . _4 in PropBank Section 23 and Section 24 for semantic role.

log likelihood is Ies_s than0~". o Learned results are averaged over 5 runs.

A separate but important question is how well
EM works for finding “good” models in the space We specify a set of target verb types (e.g., the ones
of possible parameter settings. “Good” models ardn the test set), and build a training set by adding a
ones which list linkings for each verb that corre-fixed number of instances of each verb type from
spond to linguists’ judgments about verb linking the PTB, BLLIP, and GW data sets, in that order.
behavior. Recall that EM is guaranteed only to For the semantic role labeling evaluation, we
find a local maximum of the data likelihood func- use our system to label the dependents of unseen
tion. There are two reasons why a particular maxiverb instances for semantic role. We use the sen-
mum might not be a “good” model. First, becausetences in PTB section 23 for testing, and PTB sec-
itis a greedy procedure, EM might get stuck in lo-tion 24 for development. The development set
cal maxima, and be unable to find other points inconsists of 2507 verb instances and 833 different
the space that have much higher data likelihoodverb types, and the test set consists of 4269 verb
We take the traditional approach to this problem,nstances and 1099 different verb types. Free pa-
which is to use random restarts; however empirrameters were tuned on the development set, and
ically there is very little variance over runs. A the test set was only used for final experiments.

deeper problem is that data likelihood may not cor- Because we do not observe the gold standard
respond well to a linguist's assessment of modekemantic roles at training time, we must choose
quality. As evidence that this is not the case, Wean alignment between the guessed labels and the
have observed a strong correlation between datgold labels. We do so optimistically, by choos-
log likelihood and labeling accuracy. ing the gold label for each guessed label which
. maximizes the number of correct guesses. This is
5 Datasetsand Evaluation a well known approach to evaluation in unsuper-
We train our models with verb instances ex-Vised learning: when it is used to compute accu-
tracted from three parsed corpora: (1) the Wallracy, the resulting metric is sometimes caltdais-
Street Journal section of the Penn Treebank (PTBJer purity. While this amounts to “peeking” at the
which was parsed by human annotators (Marcus etnswers before evaluation, the amount of human
al., 1993), (2) the Brown Laboratory for Linguis- knowledge that is given to the system is small: it
tic Information Processing corpus of Wall Streetcorresponds to the effort required to hand assign a
Journal text (BLLIP), which was parsed automat-‘name” to each label that the system proposes.
ically by the Charniak parser (Charniak, 2000), As is customary, we divide the problem into
and (3) the Gigaword corpus of raw newswire texttwo subtasks:identification (ID) and classifica-
(GW), which we parsed ourselves with the Stantion (CL). In the identification task, we identify
ford parser. In all cases, when training a modelthe set of constituents which fill some role for a




0.79 - Verb Learned Linkings
R DY (A F1)
0.78 1 » M give 57 | {0=subj,1=np#2,2=npA1
0.77 1 (+.436) | .24 | {O=subj,1=np#}
0.76 4 .13 | {O=subj,1=np#1,2=tp
— 0 work .45 | {O=sub}
R (+.206) | .09 | {0=subj,2=wit}
0.74 1 .09 | {O=subj,2=fo}
073 | ——Ff .09 | {0=subj,2=o0n
072 = = = -Baseline pay | .47 | {0=subj,I=np#L
e (+.178) | .21 | {0=subj,1=np#1,2=fdr
0.71 ; ; ; J .10 | {O=subj}
0 250 500 750 1000 .07 | {O=subj,1=np#2,2=np#l
Training Examples look 28 | {O=subj
g p (+.170) | .18 | {0=subj,2=a}
Figure 3: Test set F1 as a function of training set size. _ 16 | {O=subj,2=fo}
rise .25 | {O=subj,1=np#1,2=tp
target verb: in our system we use simple rules (+.160) | .17 }O:sugj,lznqp#}
; .14 | {O=subj,2=t
to extract dependents of the target verb and their 12 | {0=subj 1=np#1,2=to,3=frojn

grammatical relations. In the classification task,
the identified constituents are labeled for their seTable 4: Learned linking models for the mostimproved verbs.
mantic role by the learned probabilistic model. We!© cOnserve spacel RG:0 is abbreviated 8, andprepto is

. . ... abbreviated a®.
report results on two variants of the basic classifi-
cation task:coarse rolesin which all of the ad- the test set (or 0.783 on the combined identifica-
junct roles are collapsed to a singleRG M role  tion and classification task), compared with an F1
(Toutanova, 2005), andore roles in which we of 0.856 for the baseline (or 0.747 on the com-
evaluate performance on the core semantic rolekined task), thus reducing 28.5% of the relative
only (thus collapsing theARGM and unlabeled error. Similarly, this system reduces 35% of the
categories). We do not report results on #ie error on the coarse roles task on development set.
rolestask, since our current model does not distin- To get a better sense of what is and is not be-
guish between different types of adjunct roles. Foing learned by the model, we compare the perfor-
each task we report precision, recall, and F1.  mance of individual verbs in both the baseline sys-
tem and our best learned system. For this analysis,
6 Results we have restricted focus to verbs for which there

The semantic role labeling results are summarizedre at least 10 evaluation examples, to yield a re-

in Table 3. Our performance on the identificationliable estimate of performance. Of these, 27 verbs
task is high precision but low recall, as one wouldhave increased F1 measure, 17 are unchanged, and

expect from a rule-based system. The recall er8 verbs have decreased F1. We show learned link-

rors stem from constituents which are consideredngs for the 5 verbs which are most and least im-
to fill roles by PropBank, but which are not identi- proved in Tables 4 and 5.
fied as dependents by the extraction rules (such as The improvement in the verpive comes from
those external to the verb phrase). The precisiothe model's learning the ditransitive alternation.
errors stem from dependents which are found byrhe improvements irwork, pay, andlook stem
the rules, but are not marked by PropBank (suclirom the model’s recognition that the oblique de-
as the expletive “it”). pendents are generated by a core semantic role.
In the classification task, we compare our sys-Unfortunately, in some cases it lumps different
tem to an informed baseline, which is computedroles together, so the gains are not as large as
by labeling each dependent with a role that is a dethey could be. The reason for this conservatism
terministic function of its syntactic relation. The is the relatively high level of smoothing in the
syntactic relationsubjis assumed to bel RG0, word distribution relative to the linking distribu-
and the syntactic relationgp#], cl#1, xcl#1, and tion. These smoothing parameters, set to opti-
acomp#lare mapped to rold RG1, and all other mize performance on the development set, prevent
dependents are mappedAd&G M. errors of spurious role formation on other verbs.
Our best system, trained with 1000 verb in-The improvement in the verlise stems from the
stances per verb type (where available), gets an Fhodel correctly assigning separate roles each for
of 0.897 on the coarse roles classification task othe amount risen, the source, and the destination.



Yggl) Learned Linkings fer topeopld, but it is harder to accept that depen-
el 5T [0=sub] 1=o1 Qents occurring in the obliquan are also grouped
(—.039) | .25 | {0=subj,1=xcl#} into the same role (the head words of these should
-16 | {O=subj,1=np#} refer totasksg. It seems plausible that measures to
?1”%"%’6) fé }8;23?'1;2&? combat word sparsity might help to differentiate
make 64 | {0=sub :1:np#} these roles: backing-off to word classes, or even
(=.133) | .23 | {O=subj,1=cl#} just training with much more data. Nevertheless,
'('3_3‘1%8) ig Eg;:ﬂgﬁ,l—np#} semantic role labeling performance improvements
12 | {O=subj,1=cl#} demonstrate that on average the technique is learn-
close | .24 | {O=subj,2=in 3=} ing verb linking models that are correct.
(—.400) | .18 | {0=subj,3=a}
11 | {0=subj,2=i
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Abstract

In this paper we introduce an empirical
approach to the semantic interpretation of
superlative adjectives. We present a cor-
pus annotated for superlatives and pro-
pose an interpretation algorithm that uses
a wide-coverage parser and produces se-
mantic representations. We achieve F-
scores between 0.84 and 0.91 for detecting
attributive superlatives and an accuracy in
the range of 0.69-0.84 for determining the
correct comparison set. As far as we are
aware, this is the first automated approach
to superlatives for open-domain texts and
questions.

1 Introduction

Although superlative noun phrases (the nation’s
largest milk producer, the most complex arms-
control talks ever attempted, etc.) received consid-
erable attention in formal linguistics (Szabolcsi,
1986; Gawron, 1995; Heim, 1999; Farkas and
Kiss, 2000), this interest is not mirrored in com-
putational linguistics and NLP. On the one hand,
this seems remarkable, since superlatives are fairly
frequently found in natural language. On the other
hand, this is probably not that surprising, given
that their semantic complexity requires deep lin-
guistic analysis that most wide-coverage NLP sys-
tems do not provide.

But even if NLP systems incorporated linguistic
insights for the automatic processing of superla-
tives, it might not be of help: the formal semantics
literature on superlatives focuses on linguistically
challenging examples (many of them artificially
constructed) which might however rarely occur in
real data and would therefore have little impact

Malvina Nissim
Laboratory for Applied Ontology
Institute for Cognitive Science and Technology
National Research Council (CNR), Rome

malvina.nissim@loa—-cnr.it

on the performance of NLP systems. Indeed, no
corpus-based studies have been conducted to get a
comprehensive picture of the variety of configura-
tions superlatives exhibit, and their distribution in
real occurring data.

In this paper we describe our work on the anal-
ysis of superlative adjectives, which is empiri-
cally grounded and is implemented into an exist-
ing wide-coverage text understanding system. To
get an overview of the behaviour of superlatives
in text, we annotated newswire data, as well as
queries obtained from search engines logs. On
the basis of this corpus study, we propose, imple-
ment and evaluate a syntactic and semantic analy-
sis for superlatives. To the best of our knowledge,
this is the first automated approach to the interpre-
tation of superlatives for open-domain texts that
is grounded on actual corpus-evidence and thor-
oughly evaluated. Some obvious applications that
would benefit from this work are question answer-
ing, recognition of entailment, and more generally
relation extraction systems.

2 Syntax and Semantics of Superlatives

2.1 Surface Forms

In English, superlative adjectives appear in a large
variety of syntactic and morphological forms.
One-syllable adjectives and some two-syllable ad-
jectives are directly inflected with the suffix “-est”.
Some words of two syllables and all words of three
or more syllables are instead introduced by “most”
(or “least”). Superlatives can be modified by ordi-
nals, cardinals or adverbs, such as intensifiers or
modals, and are normally preceeded by the defi-
nite article or a possessive. The examples below
illustrate the wide variety and uses of superlative
adjectives.
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the tallest woman

AS Roma’s quickest player

the Big Board’s most respected floor traders
France’s third-largest chemical group

the most-recent wave of friendly takeovers
the two largest competitors

the the southern-most tip of England

its lowest possible prices

Superlative adjectives can manifest themselves
in predicative (“Mia is the tallest.”) or attributive
form (“the tallest woman’). Furthermore, there
are superlative adverbs, such as “most recently”,
and idiomatic usages.

2.2 The Comparison Set

It is well known that superlatives can be analysed
in terms of comparative constructions (Szabolcsi,
1986; Alshawi, 1992; Gawron, 1995; Heim, 1999;
Farkas and Kiss, 2000). Accordingly, “the oldest
character” can be interpreted as the character such
that there is no older character, in the given con-
text. Therefore, a correct semantic interpretation
of the superlative depends on the correct charac-
terisation of the comparison set. The comparison
set denotes the set of entities that are compared to
each other with respect to a certain dimension (see
Section 2.3). In “the oldest character in the book™,
the members of the comparison set are characters
in the book, and the dimension of comparison is
age.

The computation of the comparison set is com-
plicated by complex syntactic structure involving
the superlative. The presence of possessives for
example, as in “AS Roma’s quickest player”, ex-
tends the comparison set to players of AS Roma.
Prepositional phrases (PPs), gerunds, and relative
clauses introduce additional complexity. PPs that
are attached to the head noun of the superlative are
part of the comparison set — those that modify
the entire NP are not. Similarly, restrictive rel-
ative clause are included in the comparison set,
non-restrictive aren’t.

We illustrate this complexity in the following
examples, taken from the Wall Street Journal,
where the comparison set is underlined:

The oldest designer got to work on the dash-
board, she recalls. (WSJ02)

A spokesman for Borden Inc., the nation’s
largest milk producer, concedes Goya may be on
to something. (WSJ02)
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Right now, the largest loan the FHA can
insure in high-cost housing markets is $101,250.
(WSJ03)

With newspapers being the largest single
component of solid waste in our landfills
(WSJ02)

questions being raised by what gen-
erally are considered the most complex
arms-control talks ever attempted. (WSJ02)

Besides syntactic ambiguities, the determina-
tion of the comparison set can be further compli-
cated by semantic ambiguities. Some occurrences
of superlatives licence a so-called “comparitive”
reading, as in the following example discussed in
the formal semantics literature (Heim, 1999; Sz-
abolcsi, 1986):

John climbed the highest mountain.

Here, in the standard interpretion, the moun-
tain referred to is the highest available in the con-
text. However, another interpretation might arise
in a situation where several people climbed several
mountains, and John climbed a mountain higher
than anyone else did, but not necessarily the high-
est of all mountains in the context. Our corpus
study reveals that these readings are rare, although
they tend to be more frequent in questions than in
newspaper texts.

2.3 Dimension

Part of the task of semantically interpretating su-
perlative adjectives is the selection of the dimen-
sion on which entities are compared. In “the
highest mountain” we compare mountains with re-
spect to the dimension height, in “the best paper”
we compare papers with respect to the dimension
quality, and so on. A well-known problem is that
some adjectives can be ambiguous or vague in
choosing their dimension. Detecting the appropri-
ate dimension is not covered in this paper, but is
orthogonal to the analysis we provide.

2.4 Superlatives and Entailment

Superlatives exhibit a non-trivial semantics. Some
examples of textual entailment make this very ev-
ident. Consider the contrasts in the following en-
tailment tests with indefinite and universally quan-
tified noun phrases:

I bought a blue car = I bought a car
I bought a car = I bought a blue car

I bought every blue car [~ I bought every car
I bought every car |= I bought every blue car



Observe that the directions of entailments are
mirrorred. Now consider a similar test with su-
perlatives, where the entailments fail in both di-
rections:

1 bought the cheapest blue car [~ I bought the cheapest car
I bought the cheapest car [~ I bought the cheapest blue car.

These entailment tests underline the point that
the meaning of superlatives is rather complicated,
and that a shallow semantic representation, say
Ax.[cheapest(x) A car(x)] for “cheapest car”, sim-
ply won’t suffice. A semantic represention captur-
ing the meaning of a superlative requires a more
sophisticated analysis. In particular, it is impor-
tant to explicitly represent the comparison set of
a superlative. In “the cheapest car”, the compar-
ison set is formed by the set of cars, whereas in
“the cheapest blue car”, the comparison set is the
set of blue cars. Semantically, we can represent
“cheapest blue car” as follows, where the compar-
ison set is made explicit in the antecedent of the
conditional:

Ax.[car(x) A blue(x) A

Vy((car(y) A blue(y) A x#y) — cheaper(x,y))]

Paraphrased in English, this stipulates that some
blue car is cheaper than any other blue car. A
meaning representation like this will logically pre-
dict the correct entailment relations for superla-
tives.

3 Annotated Corpus of Superlatives

In order to develop and evaluate our system we
manually annotated a collection of newspaper arti-
cle and questions with occurrences of superlatives.
The design of the corpus and its characteristics are
described in this section.

3.1 Classification and Annotation Scheme

Instances of superlatives are identified in text and
classified into one of four possible classes: at-
tributive, predicative, adverbial, or idiomatic:

its rates will be among the highest (predicative)

the strongest dividend growth (attributive)

free to do the task most quickly (adverbial)

who won the TONY for best featured actor? (idiom)

For all cases, we annotate the span of the su-
perlative adjective in terms of the position of the
tokens in the sentence. For instance, in “its; ratess

wills bey amongs theg highest;”, the superlative
span would be 7-7.
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Additional information is encoded for the at-
tributive case: type of determiner (possessive, def-
inite, bare, demonstrative, quantifier), number (sg,
pl, mass), cardinality (yes, no), modification (ad-
jective, ordinal, intensifier, none). Table 1 shows
some examples from the WSJ with annotation val-
ues.

Not included in this study are adjectives such
as “next”, “past”, “last”, nor the ordinal “first”,
although they somewhat resemble superlatives in
their semantics. Also excluded are adjectives that
lexicalise a superlative meaning but are not su-
perlatives morphologically, like “main”, “princi-
pal”, and the like. For etymological reasons we
however include “foremost” and “uttermost.”

3.2 Data and Annotation

Our corpus consists of a collection of newswire
articles from the Wall Street Journal (Sections 00,
01, 02, 03, 04, 10, and 15) and the Glasgow Her-
ald (GH950110 from the CLEF evaluation forum),
and a large set of questions from the TREC QA
evaluation exercise (years 2002 and 2003) and
natural language queries submitted to the Excite
search engine (Jansen and Spink, 2000). The data
was automatically tokenised, but all typos and
extra-grammaticalities were preserved. The cor-
pus was split into a development set used for tun-
ing the system and a test set for evaluation. The
size of each sub-corpus is shown in Table 2.

Table 2: Size of each data source (in number of

sentences/questions)
’ source ‘ dev ‘ test ‘ total ‘
WSJ 8,058 | 6,468 | 14,526
GH — | 2,553 | 2,553
TREC | 1,025 — | 1,025
Excite — | 67,140 | 67,140
| total | 9,083 | 76,161 | 85,244

The annotation was performed by two trained
linguists. One section of the WSJ was anno-
tated by both annotators independently to calcu-
late inter-annotator agreement. All other docu-
ments were first annotated by one judge and then
checked by the second, in order to ensure max-
imum correctness. All disagreements were dis-
cussed and resolved for the creation of a gold stan-
dard corpus.

Inter-annotator agreement was assessed mainly
using f-score and percentage agreement as well as



Table 1: Annotation examples of superlative adjectives

example sup span | det | num | car | mod | comp set
The third-largest thrift institution in Puerto Rico 2-2 def | sg | no | ord 3-7
also[...]

The Agriculture Department reported that feedlots 9-10 def | pl |yes| no 11-12
in the 13 biggest ranch states held [...]

The failed takeover would have given UAL em- | 17-17 | pos | sg | no | ord 14-18
ployees 75 % voting control of the nation ’s

second-largest airline |[...]

the kappa statistics (K), where applicable (Car-
letta, 1996). In using f-score, we arbitrarily take
one of the annotators’ decisions (A) as gold stan-
dard and compare them with the other annotator’s
decisions (B). Note that here f-score is symmetric,
since precision(A,B) =recall(B,A), and (balanced)
f-score is the harmonic mean of precision and re-
call (Tjong Kim Sang, 2002; Hachey et al., 2005,
see also Section 5).

We evaluated three levels of agreement on a
sample of 1967 sentences (one full WSJ section).
The first level concerns superlative detection: to
what extent different human judges can agree on
what constitutes a superlative. For this task, f-
score was measured at 0.963 with a total of 79 su-
perlative phrases agreed upon.

The second level of agreement is relative to type
identification (attributive, predicative, adverbial,
idiomatic), and is only calculated on the subset
of cases both annotators recognised as superlatives
(79 instances, as mentioned). The overall f-score
for the classification task is 0.974, with 77 cases
where both annotators assigned the same type to
a superlative phrase. We also assessed agreement
for each class, and the attributive type resulted the
most reliable with an f-score of 1 (total agree-
ment on 64 cases), whereas there was some dis-
agreement in classifying predicative and adverbial
cases (0.9 and 0.8 f-score, respectively). Idiomatic
uses where not detected in this portion of the data.
To assess this classification task we also used the
kappa statistics which yielded K¢,=0.922 (fol-
lowing (Eugenio and Glass, 2004) we report K
as K¢,, indicating that we calculate K a la Co-
hen (Cohen, 1960). K¢, over 0.9 is considered to
signal very good agreement (Krippendorff, 1980).

The third and last level of agreement deals with
the span of the comparison set and only concerns
attributive cases (64 out of 79). Percentage agree-
ment was used since this is not a classification task
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and was measured at 95.31%.

The agreement results show that the task ap-
pears quite easy to perform for linguists. Despite
the limited number of instances compared, this has
also emerged from the annotators’ perception of
the difficulty of the task for humans.

3.3 Distribution

The gold standard corpus comprises a total of
3,045 superlatives, which roughly amounts to one
superlative in every 25 sentences/questions. The
overwhelming majority of superlatives are attribu-
tive (89.1%), and only a few are used in a pred-
icative way (6.9%), adverbially (3.0%), or in id-
iomatic expressions (0.9%).! Table 3 shows the
detailed distribution according to data source and
experimental sets. Although the corpus also in-
cludes annotation about determination, modifica-
tion, grammatical number, and cardinality of at-
tributive superlatives (see Section 3.1), this infor-
mation is not used by the system described in this

paper.

Table 3: Distribution of superlative types in the
development and evaluation sets.

dev test
type [ WSJ | TREC | WSJ | GH | Excite | total
att 240 43 | 218 | 68 | 2,145 | 2,714
pre 40 3 26 | 17 125 | 211
adv 17 2 22 9 41 91
idi 6 5 1 2 15 29
total | 303 53 | 267 | 96 | 2,326 | 3,045

4 Automatic Analysis of Superlatives

The system that we use to analyse superlatives is
based on two linguistic formalisms: Combinatory
Categorial Grammar (CCG), for a theory of syn-
tax; and Discourse Representation Theory (DRT)

"Percentages are rounded to the first decimal and do not
necessarily sum up to 100%.



for a theory of semantics. In this section we will il-
lustrate how we extend these theories to deal with
superlatives and how we implemented this into a
working system.

4.1 Combinatory Categorial Grammar
(CCG)

CCG is a lexicalised theory of grammar (Steed-
man, 2001). We used Clark & Curran’s wide-
coverage statistical parser (Clark and Curran,
2004) trained on CCG-bank, which in turn is de-
rived from the Penn-Treebank (Hockenmaier and
Steedman, 2002). In CCG-bank, the majority of
superlative adjective of cases are analysed as fol-
lows:

the tallest woman
NP/N N/N N
N
NP
most devastating droughts

(N/N)/(N/N) N/N N

N/N

N
third largest bank
N/N (N/N)\(N/N) N
N/N
N

Clark & Curran’s parser outputs besides a CCG
derivation of the input sentence also a part-of-
speech (POS) tag and a lemmatised form for each
input token. To recognise attributive superla-
tives in the output of the parser, we look both
at the POS tag and the CCG-category assigned
to a word. Words with POS-tag JJS and CCG-
category N/N, (N/N)/(N/N), or (N/N)\(N/N) are
considered attributive superlatives adjectives, and
so are the words “most” and “least” with CCG cat-
egory (N/N)/(N/N).

However, most hyphenated superlatives are not
recognised by the parser as JJ instead of JJS, and
are corrected in a post-processing step.> Examples
that fall in this category are “most-recent wave”
and “third-highest”.

4.2 Discourse Representation Theory (DRT)

The output of the parser, a CCG derivation of the
input sentence, is used to construct a Discourse
Representation Structure (DRS, the semantic rep-
resentation proposed by DRT (Kamp and Reyle,

“This is due to the fact that the Penn-Treebank annotation

guidelines prescribe that all hyphenated adjectives ought to
be tagged as JJ.
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1993)). We follow (Bos et al., 2004; Bos, 2005) in
automatically building semantic representation on
the basis of CCG derivations in a compositional
fashion. We briefly summarise the approach here.

The semantic representation for a word is deter-
mined by its CCG category, POS-tag, and lemma.
Consider the following lexical entries:

the: )\p.)\q.( p(X);q(x))

tallest: Ap.Ax.(

;p(x))

( p(y)=
y#X Py

taller(x,y)

man: Ax.

man(x)

These lexical entries are combined in a compo-
sitional fashion following the CCG derivation, us-
ing the A-calculus as a glue language:

man(x)
y

y#X
man(y)

tallest man: Ax.

taller(x,y)

X

man(Xx)
y
y#X

man(y)

the tallest man: \q.( ;9(x))

taller(x,y)

In this way DRSs can be produced in a robust
way, achieving high-coverage. An example output
representation of the complete system is shown in
Figure 1.

As is often the case, the output of the parser is
not always what one needs to construct a meaning-
ful semantic representation. There are two cases
where we alter the CCG derivation output by the
parser in order to improve the resulting DRSs. The
first case concerns modifiers following a superla-
tive construction, that are attached to the NP node
rather than N. A case in point is

the largest toxicology lab in New
England ...

where the PP in New England has the CCG cate-
gory NP\NP rather than N\N. This would result
in a comparison set containing of toxicology labs,
rather than a set toxicology labs in New England.

The second case are possessive NPs preceding
a superlative construction. An example here is

... Jaguar’s largest shareholder ...



| x0 x1 x2 x3 x4 x5 x6 |

acquisition (x1)
nn (x0,x1)

named (x0, georgia-pacific, nam)
named (x2, nekoosa, loc)
of (x1,x2)

company (x5)

nn (x3,x5)
forest-product (x3)

nn (x4, x5)

named (x4, us, loc)

| x7 x8 x9 | | I
|=mmmm I |
company (x9)

nn (x7,x9)
forest-product (x7)
nn (x8,x9)

|
|
|
|
| named (x8,us, loc)
|
|
I
|
|

|
create (x6)
agent (x6,x1)
patient (x6,x5)
event (x6)

Figure 1: Example DRS output

where a correct interpretation of the superlative
requires a comparison set of shareholders from
Jaguar, rather than just any shareholder. However,
the parser outputs a derivation where “largest” is
combined with “shareholder”, and then with the
possessive construction, yielding the wrong se-
mantic interpretation. To deal with this, we anal-
yse possessives that interact with the superlative as
follows:

church
N

oldest
N/N

Rome s
NP ((NP/N)/(N/N)\NP

(NP/N)/(N/N)

NP/N
NP

This analysis yields the correct comparison set for
superlative that follow a possessive noun phrase,
given the following lexical semantics for the geni-

tive:
]
For both cases, we apply some simple post-
processing rules to the output of the parser to ob-
tain the required derivations. The effect of these
rules is reported in the next section, where we as-
sess the accuracy of the semantic representations
produced for superlatives by comparing the auto-
matic analysis with the gold standard.

AnAS.Ap.AG.( ;SOX.(p(x);n(Ay. YW:q(w))))

of(y,x)

5 [Evaluation

The automatic analysis of superlatives we present
in the following experiments consists of two se-

14

quential tasks: superlative detection, and compar-
ison set determination.

The first task is concerned with finding a su-
perlative in text and its exact span (“largest”,
“most beautiful”, “10 biggest”). For a found string
to to be judged as correct, its whole span must cor-
respond to the gold standard. The task is evaluated
using precision (P), recall (R), and f-score (F), cal-
culated as follows:

pP=

R = correct assignments of ¢
total corpus instances of ¢

_ 2P.R.
F=73iR

The second task is conditional on the first: once
a superlative is found, its comparison set must
also be identified (“rarest flower in New Zealand”,
“New York’s tallest building”, see Section 2.2). A
selected comparison set is evaluated as correct if
it corresponds exactly to the gold standard anno-
tation: partial matches are counted as wrong. As-
signments are evaluated using accuracy (number
of correct decisions made) only on the subset of
previously correctly identified superlatives.

For both tasks we developed simple baseline
systems based on part-of-speech tags, and a more
sophisticated linguistic analysis based on CCG
and DRT (i.e. the system described in Section 4).
In the remainder of the paper we refer to the latter
system as DLA (Deep Linguistic Analysis).

correct assignments of ¢
total assignments of ¢

5.1 Superlative Detection

Baseline system For superlative detection we
generated a baseline that solely relies on part-of-
speech information. The data was tagged using
TnT (Brants, 2000), using a model trained on the
Wall Street Journal. In the WSJ tagset, superla-
tives can be marked in two different ways, depend-
ing on whether the adjective is inflected or modi-
fied by most/least. So, “largest”, for instance, is
tagged as JJS, whereas “most beautiful” is a se-
quence of RBS (most) and JJ (beautiful). We also
checked that they are followed by a common or
proper noun (NN.*), allowing one word to oc-
cur in between. To cover more complex cases,
we also considered pre-modification by adjectives
(1)), and cardinals (CD). In summary, we matched
on sequences found by the following pattern:

[(CD [ JJ)* (JIs ||

(RBS JJ)) * NN.=x*]

This rather simple baseline is capable of de-
tecting superlatives such as “100 biggest banks”,
“fourth largest investors”, and “most important



element”, but will fail on expressions such as
“fastest growing segments” or “Scotland ’s lowest
permitted 1995-96 increase”.

DLA system For evaluation, we extrapolated
superlatives from the DRSs output by the system.
Each superlative introduces an implicational DRS
condition, but not all implicational DRS condi-
tions are introduced by superlatives. Hence, for
the purposes of this experiment superlative DRS
conditions were assigned a special mark. While
traversing the DRS, we use this mark to retrieve
superlative instances. In order to retrieve the orig-
inal string that gave rise to the superlative interpre-
tation, we exploit the meta information encoded in
each DRS about the relation between input tokens
and semantic information. The obtained string po-
sition can in turn be evaluated against the gold
standard.

Table 4 lists the results achieved by the base-
line system and the DLA system on the detection
task. The DLA system outperforms the baseline
system on precision in all sub-corpora. However,
the baseline achieves a higher recall on the Excite
queries. This is not entirely surprising given that
the coverage of the parser is between 90-95% on
unseen data. Moreover, Excite queries are often
ungrammatical, thus further affecting the perfor-
mance of parsing.

Table 4: Detection of Attributive Superlatives, re-
porting P (precision), R (Recall) and F-score, for
WSJ sections, extracts of the Glasgow Herald,
TREC questions, and Excite queries. D indicates
development data, T test data.

Baseline DLA
Corpus P R F ) R F
WSJ (D) 093 0.86 089 | 096 090 0.93
WSIJ (T) 091 0.83 087|095 0.87 0091
GH (T) 0.80 076 0.78 | 0.87 0.81 0.84
TREC (D) | 0.76 091 0.83 | 0.85 091 0.88
Excite (T) | 092 092 092 | 097 0.84 0.90

5.2 Comparison Set Determination

Baseline For comparison set determination we
developed two baseline systems. Both use the
same match on sequences of part-of-speech tags
described above. For Baseline 1, the beginning
of the comparison set is the first word following
the superlative. The end of the comparison set is
the first word tagged as NN.* in that sequence (the

same word could be the beginning and end of the
comparison set, as it often happens).

The second baseline takes the first word after
the superlative as the beginning of the comparison
set, and the end of the sentence (or question) as the
end (excluding the final punctuation mark). We
expect this strategy to perform well on questions,
as the following examples show.

Where is the oldest synagogue in the United States?
What was the largest crowd to ever come see Michael Jordan?

This approach is obviously likely to generate com-
parison sets much wider than required.

More complex examples that neither baseline
can tackle involve possessives, since on the sur-
face the comparison set lies at both ends of the
superlative adjective:

The nation’s largest pension fund
the world’s most corrupt organizations

DLA1 Wefirst extrapolate superlatives from the
DRS output by the system (see procedure above).
Then, we exploit the semantic representation to se-
lect the comparison set: it is determined by the in-
formation encoded in the antecedent of the DRS-
conditional introduced by the superlative. Again,
we exploit meta information to reconstruct the
original span, and we match it against the gold
standard for evaluation.

DLA2 DLA 2 builds on DLA 1, to which it adds
post-processing rules to the CCG derivation, i.e.
before the DRSs are constructed. This set of rules
deal with NP post-modification of the superlative
(see Section 4).

DLA 3 In this version we include a set of post-
processing rules that apply to the CCG derivation
to deal with possessives preceding the superlative
(see Section 4).

DLA 4 This is a combination of DLA 2 and
DLA 3. This system is clearly expected to per-
form best.

Results for both baseline systems and all versions
of DLA are shown in Table 5

On text documents, DLA 2/3/4 outperform the
baseline systems. DLA 4 achieves the best per-
formance, with an accuracy of 69-83%. On ques-
tions, however, DLA 4 competes with the base-
line: whereas it is better on TREC questions, it
performs worse on Excite questions. One of the
obvious reasons for this is that the parser’s model
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Table 5: Determination of Comparison Set of
Attributive Superlatives (Accuracy) for WSJ sec-
tions, extracts of the Glasgow Herald, TREC and
Excite questions. D indicates development data, T
test data.

[Corpus [[Base 1[Base 2[DLA 1[DLA 2[DLA3[DLA 4]
WSJ (D) 0.29 | 0.17 | 0.29 0.52 | 0.53 | 0.78
WSIJ (T) 0.31 0.22 0.32 0.59 | 0.53 0.83
GH (T) 023 | 0.31 0.22 0.51 | 0.38 | 0.69
TREC (D) || 0.10 | 0.69 0.13 0.69 | 0.23 0.82
Excite (T) || 0.23 | 0.90 | 0.32 0.82 | 0.33 | 0.84

for questions was trained on TREC data. Addi-
tionally, as noted earlier, Excite questions are of-
ten ungrammatical and make parsing less likely to
succeed. However, the baseline system, by defini-
tion, does not output semantic representations, so
that its outcome is of little use for further reason-
ing, as required by question answering or general
information extraction systems.

6 Conclusions

We have presented the first empirically grounded
study of superlatives, and shown the feasibility of
their semantic interpretation in an automatic fash-
ion. Using Combinatory Categorial Grammar and
Discourse Representation Theory we have imple-
mented a system that is able to recognise a superla-
tive expression and its comparison set with high
accuracy.

For developing and testing our system, we have
created a collection of over 3,000 instances of su-
perlatives, both in newswire text and in natural
language questions. This very first corpus of su-
perlatives allows us to get a comprehensive picture
of the behaviour and distribution of superlatives in
real occurring data. Thanks to such broad view
of the phenomenon, we were able discover issues
previously unnoted in the formal semantics liter-
ature, such as the interaction of prenominal pos-
sessives and superlatives, which cause problems
at the syntax-semantics interface in the determina-
tion of the comparison set. Similarly problematic
are hyphenated superlatives, which are tagged as
normal adjectives in the Penn Treebank.

Moreover, this work provides a concrete way
of evaluating the output of a stochastic wide-
coverage parser trained on the CCGBank (Hock-
enmaier and Steedman, 2002). With respect to
superlatives, our experiments show that the qual-

ity of the raw output is not entirely satisfactory.
However, we have also shown that some sim-
ple post-processing rules can increase the perfor-
mance considerably. This might indicate that the
way superlatives are annotated in the CCGbank,
although consistent, is not fully adequate for the
purpose of generating meaningful semantic repre-
sentations, but probably easy to amend.

7 Future Work

Given the syntactic and semantic complexity of
superlative expressions, there is still wide scope
for improving the coverage and accuracy of our
system. One obvious improvement is to amend
CCGbank in order to avoid the need for postpro-
cessing rules, thereby also allowing the creation
of more accurate language models. Another as-
pect which we have neglected in this study but
want to consider in future work is the interac-
tion between superlatives and focus (Heim, 1999;
Gawron, 1995). Also, only one of the possible
types of superlative was considered, namely the at-
tributive case. In future work we will consider the
interpretation of predicative and adverbial superla-
tives, as well as comparative expressions. Finally,
we would like to investigate the extent to which
existing NLP systems (such as open-domain QA
systems) can benefit from a detailed analysis of
superlatives.
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Abstract

We propose a supervised, two-phase
framework to address the problem of para-
phrase recognition (PR). Unlike most PR
systems that focus on sentence similarity,
our framework detects dissimilarities be-
tween sentences and makes its paraphrase
judgment based on the significance of such
dissimilarities. The ability to differenti-
ate significant dissimilarities not only re-
veals what makes two sentences a non-
paraphrase, but also helps to recall addi-
tional paraphrases that contain extra but
insignificant information. Experimental
results show that while being accurate
at discerning non-paraphrasing dissimilar-
ities, our implemented system is able to
achieve higher paraphrase recall (93%), at
an overall performance comparable to the
alternatives.

1 Introduction

The task of sentence-level paraphrase recognition
(PR) is to identify whether a set of sentences (typ-
ically, a pair) are semantically equivalent. In such
a task, “equivalence” takes on a relaxed meaning,
allowing sentence pairs with minor semantic dif-
ferences to still be considered as paraphrases.

PR can be thought of as synonym detection ex-
tended for sentences, and it can play an equally
important role in natural language applications.
As with synonym detection, applications such as
summarization can benefit from the recognition
and canonicalization of concepts and actions that
are shared across multiple documents. Automatic
construction of large paraphrase corpora could
mine alternative ways to express the same con-
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cept, aiding machine translation and natural lan-
guage generation applications.

In our work on sentence-level PR, we have iden-
tified two main issues through observation of sam-
ple sentences. The first is to identify all discrete in-
formation nuggets, or individual semantic content
units, shared by the sentences. For a pair of sen-
tences to be deemed a paraphrase, they must share
a substantial amount of these nuggets. A trivial
case is when both sentences are identical, word
for word. However, paraphrases often employ dif-
ferent words or syntactic structures to express the
same concept. Figure 1 shows two sentence pairs,
in which the first pair is a paraphrase while the
second is not. The paraphrasing pair (also denoted

Paraphrase (+pp):
Authorities said a young man injured Richard Miller.
Richard Miller was hurt by a young man.
Non-Paraphrase (-pp):
The technology-laced Nasdaq Composite Index
IXIC added 1.92 points, or 0.12 percent, at 1,647.94.
The technology-laced Nasdaq Composite Index
IXIC dipped 0.08 of a point to 1,646.

Figure 1:
paraphrasing

Examples: Paraphrasing & Non-

as the +pp class) use different words. Focusing
just on the matrix verbs, we note differences be-
tween “injured” and “hurt”. A paraphrase recogni-
tion system should be able to detect such semantic
similarities (despite the different syntactic struc-
tures). Otherwise, the two sentences could look
even less similar than two non-paraphrasing sen-
tences, such as the two in the second pair. Also in
the paraphrasing pair, the first sentence includes an
extra phrase “Authorities said”. Human annotators
tend to regard the pair as a paraphrase despite the
presence of this extra information nugget.

Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLRage6)18-26,
Sydney, July 200602006 Association for Computational Linguistics



This leads to the second issue: how to recognize
when such extra information is extraneous with
respect to the paraphrase judgment. Such para-
phrases are common in daily life. In news articles
describing the same event, paraphrases are widely
used, possibly with extraneous information.

We equate PR with solving these two issues,
presenting a natural two-phase architecture. In the
first phase, the nuggets shared by the sentences
are identified by a pairing process. In the second
phase, any unpaired nuggets are classified as sig-
nificant or not (leading to —pp and +pp classifica-
tions, respectively). If the sentences do not contain
unpaired nuggets, or if all unpaired nuggets are in-
significant, then the sentences are considered para-
phrases. Experiments on the widely-used MSR
corpus (Dolan et al., 2004) show favorable results.

We first review related work in Section 2. We
then present the overall methodology and describe
the implemented system in Section 3. Sections 4
and 5 detail the algorithms for the two phases re-
spectively. This is followed with our evaluation
and discussion of the results.

2 Related Work

Possibly the simplest approach to PR is an infor-
mation retrieval (IR) based “bag-of-words” strat-
egy. This strategy calculates a cosine similar-
ity score for the given sentence set, and if the
similarity exceeds a threshold (either empirically
determined or learned from supervised training
data), the sentences are paraphrases. PR systems
that can be broadly categorized as IR-based in-
clude (Corley and Mihalcea, 2005; Brockett and
Dolan, 2005). In the former work, the authors
defined a directional similarity formula reflect-
ing the semantic similarity of one text “with re-
spect to” another. A word contributes to the di-
rectional similarity only when its counterpart has
been identified in the opposing sentence. The as-
sociated word similarity scores, weighted by the
word’s specificity (represented as inverted docu-
ment frequency, idf), sum to make up the direc-
tional similarity. The mean of both directions
is the overall similarity of the pair. Brockett
and Dolan (2005) represented sentence pairs as
a feature vector, including features (among oth-
ers) for sentence length, edit distance, number of
shared words, morphologically similar word pairs,
synonym pairs (as suggested by WordNet and a
semi-automatically constructed thesaurus). A sup-
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port vector machine is then trained to learn the
{+pp, —pp} classifier.

Strategies based on bags of words largely ig-
nore the semantic interactions between words.
Weeds et al. (2005) addressed this problem by
utilizing parses for PR. Their system for phrasal
paraphrases equates paraphrasing as distributional
similarity of the partial sub-parses of a candidate
text. Wu (2005)’s approach relies on the genera-
tive framework of Inversion Transduction Gram-
mar (ITG) to measure how similar two sentences
arrange their words based on edit distance.

Barzilay and Lee (2003) proposed to apply
multiple-sequence alignment (MSA) for tradi-
tional, sentence-level PR. Given multiple articles
on a certain type of event, sentence clusters are
first generated. Sentences within the same clus-
ter, presumably similar in structure and content,
are then used to construct a lattice with “back-
bone” nodes corresponding to words shared by the
majority and “slots” corresponding to different re-
alization of arguments. If sentences from differ-
ent clusters have shared arguments, the associated
lattices are claimed to be paraphrase. Likewise,
Shinyama et al. (2002) extracted paraphrases from
similar news articles, but use shared named enti-
ties as an indication of paraphrasing. It should be
noted that the latter two approaches are geared to-
wards acquiring paraphrases rather than detecting
them, and as such have the disadvantage of requir-
ing a certain level of repetition among candidates
for paraphrases to be recognized.

All past approaches invariably aim at a proper
similarity measure that accounts for all of the
words in the sentences in order to make a judg-
ment for PR. This is suitable for PR where in-
put sentences are precisely equivalent semanti-
cally. However, for many people the notion of
paraphrases also covers cases in which minor or
irrelevant information is added or omitted in can-
didate sentences, as observed in the earlier ex-
ample. Such extraneous content should not be a
barrier to PR if the main concepts are shared by
the sentences. Approaches that focus only on the
similarity of shared contents may fail when the
(human) criteria for PR include whether the un-
matched content is significant or not. Correctly
addressing this problem should increase accuracy.
In addition, if extraneous portions of sentences
can be identified, their confounding influence on
the sentence similarity judgment can be removed,



leading to more accurate modeling of semantic
similarity for both recognition and acquisition.

3 Methodology

As noted earlier, for a pair of sentences to be a
paraphrase, they must possess two attributes:

1. similarity: they share a substantial amount of

information nuggets;

dissimilarities are extraneous: if extra infor-
mation in the sentences exists, the effect of
its removal is not significant.

A key decision for our two-phase PR framework
is to choose the representation of an information
nugget. A simple approach is to use representative
words as information nuggets, as is done in the
SimFinder system (Hatzivassiloglou et al., 2001).

Instead of using words, we choose to equate in-
formation nuggets with predicate argument tuples.
A predicate argument tuple is a structured repre-
sentation of a verb predicate together with its argu-
ments. Given a sentence from the example in Fig-
ure 1, its predicate argument tuple form in Prop-
Bank (Kingsbury et al., 2002) format is:

target(predicate):  hurt
arg): ayoung man
argl: Richard Miller

We feel that this is a better choice for the repre-
sentation of a nugget as it accounts for the action,
concepts and their relationships as a single unit.
In comparison, using fine-grained units such as
words, including nouns and verbs may result in in-
accuracy (sentences that share vocabulary may not
be paraphrases), while using coarser-grained units
may cause key differences to be missed. In the rest
of this paper, we use the term tuple for conciseness
when no ambiguity is introduced.

An overview of our paraphrase recognition sys-
tem is shown in Figure 2. A pair of sentences is
first fed to a syntactic parser (Charniak, 2000) and
then passed to a semantic role labeler (ASSERT;
(Pradhan et al., 2004)), to label predicate argu-
ment tuples. We then calculate normalized tuple
similarity scores over the tuple pairs using a met-
ric that accounts for similarities in both syntactic
structure and content of each tuple. A thesaurus
constructed from corpus statistics (Lin, 1998) is
utilized for the content similarity.

We utilize this metric to greedily pair together
the most similar predicate argument tuples across
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Figure 2: System architecture

sentences. Any remaining unpaired tuples repre-
sent extra information and are passed to a dissim-
ilarity classifier to decide whether such informa-
tion is significant. The dissimilarity classifier uses
supervised machine learning to make such a deci-
sion.

4 Similarity Detection and Pairing

We illustrate this advantage of using predicate ar-
gument tuples from our running example. In Ta-
ble 1, one of the model sentences is shown in the
middle column. Two edited versions are shown on
the left and right columns. While it is clear that
the left modification is an example of a paraphrase
and the right is not, the version on the left in-
volves more changes in its syntactic structure and
vocabulary. Standard word or syntactic similar-
ity measures would assign the right modification a
higher similarity score, likely mislabeling one or
both modifications.

In contrast, semantic role labeling identifies the
dependencies between predicates and their argu-
ments, allowing a more precise measurement of
sentence similarity. Assuming that the arguments
in predicate argument tuples are assigned the same
role when their roles are comparable', we define
the similarity score of two tuples T, and T} as
the weighted sum of the pairwise similarities of
all their shared constituents C'={(c,, )} (c being
either the rarget or one of the arguments that both

' ASSERT, which is trained on the Propbank, only guaran-
tees consistency of arg0 and argl slots, but we have found in
practice that aligning arg2 and above arguments do not cause
problems.



Modification 1: paraphrase Model Sentence Modification 2: non-paraphrase
Sentence Richard Miller was hurt by a | Authorities said a young man in- | Authorities said Richard Miller injured
young man. jured Richard Miller. a young man.
target: said | target: -said
. arg0:  Authorities arg0:  Authorities
(Paired) : .. : . . .
Tuples argl: a _young man injured argl: Richard Miller injured a
Richard Miller young man
target:  hurt target: __injured target: injured
arg(: ayoung man arg): ayoung man arg0: Richard Miller
argl: Richard Miller argl: Richard Miller argl: ayoung man

Table 1: Similarity Detection: pairing of predicate argument tuples

tuples have):

c==target
* wta'r‘get

Sim (T, Ty) = é S Simf(ea, ) )

c={target,argsphared}
where normalization factor « is the sum of the
weights of constituents in C, i.e.:

(@)

a = |{argsharca}ll + Wiarger

In our current implementation we reduce tar-
gets and their arguments to their syntactic head-
words. These headwords are then directly com-
pared using a corpus-based similarity thesaurus.
As we hypothesized that targets are more impor-
tant for predicate argument tuple similarity, we
multiply the target’s similarity by a weighting fac-
tor w,,,...,,» whose value we have empirically de-
termined as 1.7, based on a 300-pair development
set from the MSR training set.

We then proceed to pair tuples in the two sen-
tences using a greedy iterative algorithm. The al-
gorithm locates the two most similar tuples from
each sentence, pairs them together and removes
them from futher consideration. The process stops
when subsequent best pairings are below the simi-
larity threshold or when all possible tuples are ex-
hausted. If unpaired tuples still exist in a given
sentence pair, we further examine the copular con-
structions and noun phrases in the opposing sen-
tence for possible pairings®. This results in a one-

2Copular constructions are not handled by ASSERT. Such
constructions account for a large proportion of the semantic
meaning in sentences. Consider the pair “Microsoft rose 50
cents” and “Microsoft was up 50 cents”, in which the second
is in copular form. Similarly, NPs can often be equivalent
to predicate argument tuples when actions are nominalized.
Consider an NP that reads “(be blamed for) frequent attacks
on soldiers” and a predicate argument tuple: “(be blamed for)
attacking soldiers”. Again, identical information is conveyed
but not captured by semantic role labeling. In such cases,
they can be paired if we allow a candidate tuple to pair with
the predicative argument (e.g., 50 cents) of a copula, or (the
head of) an NP in the opposing sentence. As these heuristic
matches may introduce errors, we resort to these methods of

matching tuple only in the contingency when there are un-
paired tuples.

21

to-one mapping with possibly some tuples left un-
paired. The curved arrows in Table 1 denote the
correct results of similarity pairing: two tuples are
paired up if their target and shared arguments are
identical or similar respectively, otherwise they re-
main unpaired even if the “bag of words” they con-
tain are the same.

5 Dissimilarity Significance
Classification

If some tuples remain unpaired, they are dissimilar
parts of the sentence that need to be labeled by the
dissimilarity classifier. Such unpaired informa-
tion could be extraneous or they could be semanti-
cally important, creating a barrier for paraphrase.
We frame this as a supervised machine learning
problem in which a set of features are used to
inform the classifier. A support vector machine,
SVMZLi9t was chosen as the learning model as it
has shown to yield good performance over a wide
application range. We experimented with a wide
set of features of unpaired tuples, including inter-
nal counts of numeric expressions, named entities,
words, semantic roles, whether they are similar
to other tuples in the same sentence, and contex-
tual features like source/target sentence length and
paired tuple count. Currently, only two features
are correlated in improved classification, which
we detail now.

Syntactic Parse Tree Path: This is a series of
features that reflect how the unpaired tuple con-
nects with the context: the rest of the sentence.
It models the syntactic connection between the
constituents on both ends of the path (Gildea and
Palmer, 2002; Pradhan et al., 2004). Here, we
model the ends of the path as the unpaired tuple
and the paired tuple with the closest shared ances-
tor, and model the path itself as a sequence of con-
stituent category tags and directions to reach the
destination (the paired target) from the source (the




unpaired target) via the the shared ancestor. When
no tuples have been paired in the sentence pair,
the destination defaults to the root of the syntactic
parse tree. For example, the tuples with target “in-
jured” are unpaired when the model sentence and
the non-paraphrasing modification in Table 1 are
being compared. A path “Tvpp, Tvp, s, TsBAR
,Tvp, lvep” links a target “injured” to the paired
target “said”, as shown in Figure 3.

VP

VBD SBAR
said é
N b

/\
NNP NNP V?{\NP

|
Richard Miher injured

Figure 3: Syntactic parse tree path

The syntactic path can act as partial evidence
in significance classification. In the above exam-
ple, the category tag “y pp” assigned to “injured”
indicates that the verb is in its past tense. Such
a predicate argument tuple bears the main con-
tent of the sentence and generally can not be ig-
nored if its meaning is missing in the opposing
sentence. Another example is shown in Figure
4. The second sentence has one unpaired target
“proposed” while the rest all find their counter-
part. The path we get from the syntactic parse tree
reads “TyveN, Tnp, Ts, ..., showing that the un-
paired tuple (consisting of a single predicate) is a
modifier contained in an NP. It can be ignored if
there is no contradiction in the opposing sentence.

We represent a syntactic path by a set of n-gram
(n < 4) features of subsequences of category tags
found in the path, along with the respective direc-
tion. We require these n-gram features to be no
more than four category tags away from the un-
paired target, as our primary concern is to model
what role the target plays in its sentence.

Sheena Young of Child, the national infertility sup-
port network, hoped the guidelines would lead to a more
“fair and equitable” service for infertility sufferers.

Sheena Young, a spokesman for Child, the national
infertility support network, said the proposed guide-
lines should lead to a more “fair and equitable” service
for infertility sufferers.

Figure 4: Unpaired predicate argument tuple as
modifier in a paraphrase

Predicate: This is the lexical token of predi-
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cate argument tuple’s target, as a text feature. As
this feature is liable to run into sparse data prob-
lems, the semantic category of the target would be
a more suitable feature. However, verb similar-
ity is generally regarded as difficult to measure,
both in terms of semantic relatedness as well as
in finding a consistent granularity for verb cate-
gories. We investigated using WordNet as well as
Levin’s classification (Levin, 1993) as additional
features on our validation data, but currently find
that using the lexical form of the target works best.

5.1 Classifier Training Set Acquisition

Currently, no training corpus for predicate argu-
ment tuple significance exists. Such a corpus is in-
dispensable for training the classifier. Rather than
manually annotating training instances, we use
an automatic method to construct instances from
paraphrase corpora. This is possible as the para-
phrase judgments in the corpora can imply which
portion of the sentence(s) are significant barriers
to paraphrasing or not. Here, we exploit the simi-
larity detector implemented for the first phase for
this purpose. If unpaired tuples exist after greedy
pairing, we classify them along two dimensions:
whether the sentence pair is a (non-)paraphrase,
and the source of the unpaired tuples:

1. [PS] paraphrasing pairs and unpaired predicate argu-
ment tuples are only from a single sentence;

[NS] non-paraphrasing pairs and only one single un-
paired predicate argument tuple exists;

[PM] paraphrasing pairs and unpaired predicate argu-
ment tuples are from multiple (both) sentences;

[NM] non-paraphrasing pairs and multiple unpaired
predicate argument tuples (from either one or both sen-
tences) exist.

Assuming that similarity detector pairs tuples
correctly, for the first two categories, the para-
phrasing judgment is directly linked to the un-
paired tuples. PS tuple instances are therefore
used as insigni ficant class instances, and NS as
signi ficant ones. The last two categories can-
not be used for training data, as it is unclear which
of the unpaired tuples is responsible for the (non-)
paraphrasing as the similarity measure may mis-
takenly leave some similar predicate argument tu-
ples unpaired.

6 Evaluation

The goal of our evaluation is to show that our sys-
tem can reliably determine the cause(s) of non-



MSR Corpus Label +pp -PP

system prediction correct? T|] F| T] F| total
# sentence pairs (s-ps) 85 [ 23 | 55|37 | 200
# labelings (H&C agree) 80 | 19 | 53 | 35 | 187
# tuple pairs (7-ps) (S) 80 6|36 |35 | 157
# correct t-ps (H&S agree) 74 6 | 34 | 30 | 144
# missed 7-ps (H) 11 | 10 5 5 31
# sig. unpaired tuples(H) 6 4169 |51 130
# sig. unpaired tuples(S) 013270 0| 102
# sig. unpaired tuples(H&S) 0 4143 0 47

[ # -pp for other reasons [ O] O] 5] 2] 7]

Table 2: (H)uman annotations vs. (C)orpus anno-
tations and (S)ystem output

paraphrase examples, while maintaining the per-
formance level of the state-of-the-art PR systems.

For evaluation, we conduct both component
evaluations as well as a holistic one, resulting in
three separate experiments. In evaluating the first
tuple pairing component, we aim for high preci-
sion, so that sentences that have all tuples paired
can be safely assumed to be paraphrases. In evalu-
ating the dissimilarity classifier, we simply aim for
high accuracy. In our overall system evaluation,
we compare our system versus other PR systems
on standard corpora.

Experimental Data Set. For these experi-
ments, we utilized two widely-used corpora for
paraphrasing evaluation: the MSR and PASCAL
RTE corpora. The Microsoft Research Paraphrase
coupus (Dolan et al.,, 2004) consists of 5801
newswire sentence pairs, 3900 of which are an-
notated as semantically equivalent by human an-
notators. It reflects ordinary paraphrases that peo-
ple often encounter in news articles, and may be
viewed as a typical domain-general paraphrase
recognition task that downstream NLP systems
will need to deal with. The corpus comes divided
into standard training (70%) and testing (30%) di-
visions, a partition we follow in our experiments.
ASSERT (the semantic role labeler) shows for this
corpus a sentence contains 2.24 predicate argu-
ment tuples on average. The second corpus is
the paraphrase acquisition subset of the PASCAL
Recognizing Textual Entailment (RTE) Challenge
corpus (Dagan et al., 2005). This is much smaller,
consisting of 50 pairs, which we employ for test-
ing only to show portability.

To assess the component performance, we need
additional ground truth beyond the {+pp, —pp}
labels provided by the corpora. For the first eval-
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uation, we need to ascertain whether a sentence
pair’s tuples are correctly paired, misidentified or
mispaired. For the second, which tuple(s) (if any)
are responsible for a —pp instance. However, cre-
ating ground truth by manual annotation is expen-
sive, and thus we only sampled the data set to get
an indicative assessment of performance. We sam-
pled 200 random instances from the total MSR
testing set, and first processed them through our
framework. Then, five human annotators (two au-
thors and three volunteers) annotated the ground
truth for tuple pairing and the semantic signifi-
cance of the unpaired tuples, while checking sys-
tem output. They also independently came up with
their own {+pp,-pp} judgment so we could assess
the reliability of the provided annotations.

The results of this annotation is shown in Ta-
ble 2. Examining this data, we can see that the
similarity detector performs well, despite its sim-
plicity and assumption of a one-to-one mapping.
Out of the 157 predicate argument tuple pairs
identified through similarity detection, annotators
agreed that 144 (92%) are semantically similar or
equivalent. However, 31 similar pairs were missed
by the system, resulting in 82% recall. We defer
discussion on the other details of this table to Sec-
tion 7.

To assess the dissimilarity classifier, we focus
on the —pp subset of 55 instances recognized by
the system. For 43 unpaired tuples from 40 sen-
tence pairs (73% of 55), the annotators’ judgments
agree with the classifier’s claim that they are sig-
nificant. For these cases, the system is able to both
recognize that the sentence pair is not a paraphrase
and further correctly establish a cause of the non-
paraphrase.

In addition to this ground truth sampled evalu-
ation, we also show the effectiveness of the clas-
sifier by examining its performance on PS and NS
tuples in the MSR corpus as described in Section
5. The test set consists of 413 randomly selected
PS and NS instances among which 145 are signif-
icant (leading to non-paraphrases). The classifier
predicts predicate argument tuple significance at
an accuracy of 71%, outperforms a majority clas-
sifier (65%), a gain which is marginally statisti-
cally significant (p < .09).

significant | insignificant
112 263 insignificant by classifier
33 | 5 significant by classifier

We can see the classifier classifies the majority
of insignificant tuples correctly (by outputting a



709 Sentence Pairs Without | 1016 Sentence Pairs With
Unpaired Tuples Unpaired Tuples Overall
Algorithm (41.1% of Test set) (58.9% of Test set) (100% of Test set)
Acc | R ] P Acc | R | P Acc | R | P | FI
Majority Classifier | 79.5% | 100% 79.5% | 57.4% | 100% | 57.4% | 66.5% 100% | 66.5% | 79.9%
SimFinder | 82.2% | 92.2% 86.4% | 66.3% | 84.9% | 66.1% | 729% | 88.5% | 75.1% | 81.3%
CMO5 - - - - - - 71.5% | 92.5% | 72.3% | 81.2%
Our System | 79.5% | 100% 79.5% | 66.7% | 87.0% | 66.0% | 72.0% | 93.4% | 72.5% | 81.6%
Table 3: Results on MSR test set
17 Sentence Pairs Without | 33 Sentence Pairs With
Algorithm Unpaired Tuples Unpaired Tuples Overall
(34% of Test set) (66% of Test set) (100% of Test set)
Acc | R ] P Acc| R [ P Acc ]| R [ P | FI
Majority Classifier | 65% | 100% 65% 2% | 100% | 42% | 50% | 100% | 50% | 67%
SimFinder | 71% | 91% 71% 2% | 21% 27% | 52% | 52% | 52% | 52%
Our System | 65% | 100% 65% 48% | 64% 43% | 54% | 80% | 53% | 64%

Table 4: Results on PASCAL PP test set

score greater than zero), which is effectively a
98% recall of insignificant tuples. However, the
precision is less satisfatory. We suspect this is par-
tially due the tuples that fail to be paired up with
their counterpart. Such noise is found among the
automatically collected PS instances used in train-
ing.
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Figure 5: Dissimilarity classifier performance

For the final system-wide evaluation, we imple-
mented two baseline systems: a majority classifier
and SimFinder (Hatzivassiloglou et al., 2001), a
bag-of-words sentence similarity module incorpo-
rating lexical, syntactic and semantic features. In
Table 3, precision and recall are measured with re-
spect to the paraphrasing class. The table shows
sentence pairs falling under the column “pairs
without unpaired tuples” are more likely to be
paraphrasing than an arbitrary pair (79.5% ver-
sus 66.5%), providing further validation for using
predicate argument tuples as information nuggets.

The results for the experiment benchmarking the
overall system performance are shown under the
“Overall” column: our approach performs compa-
rably to the baselines at both accuracy and para-
phrase recall. The system performance reported in
(CMO5; (Corley and Mihalcea, 2005)), which is
among the best we are aware of, is also included
for comparison.

We also ran our system (trained on the MSR
corpus) on the 50 instances in the PASCAL para-
phrase acquisition subset. Again, the system per-
formance (as shown in Table 4) is comparable to
the baseline systems.

7 Discussion

We have just shown that when two sentences have
perfectly matched predicate argument tuples, they
are more likely to be a paraphrase than a random
sentence pair drawn from the corpus. Further-
more, in the sampled human evaluation in Table
2, among the 88 non-paraphrasing instances with
whose MSR corpus labels our annotators agreed
(53 correctly and 35 incorrectly judged by our sys-
tem), the cause of the —pp is correctly attributed
in 81 cases to one or more predicate argument tu-
ples. The remaining 7 cases (as shown in the last
row) are caused by phenomenon that are not cap-
tured by our tuple representation. We feel this jus-
tifies using predicate argument tuples as informa-
tion nuggets, but we are currently considering ex-
panding our representation to account for some of
these cases.

The evaluation also confirms the difficulty of
making paraphrase judgements. Although the
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MSR corpus used strict means of resolving inter-
rater disagreements during its construction, the an-
notators agreed with the MSR corpus labels only
93.5% (187/200) of the time.

One weakness of our system is that we rely on a
thesaurus (Lin, 1998) for word similarity informa-
tion for predicate argument tuple pairing. How-
ever, it is designed to provide similarity scores
between pairs of individual words (rather than
phrases). If a predicate argument tuple’s target or
one argument is realized as a phrase (borrow —
check out, for instance), the thesaurus is unable to
provide an accurate similarity score. For similarity
between predicate argument tuples, negation and
modality have yet to be addressed, although they
account for only a tiny fraction of the corpus.

We further estimated how the similarity detec-
tor can be affected when the semantic role labeler
makes mistakes (by failing to identify arguments
or assigning incorrect role names). Checking 94
pairs ground-truth similar tuples, we found that the
system mislabels 43 of them. The similarity detec-
tor failed to pair around 30% of them. In compar-
sion, all the tuple pairs free of labeling errors are
correctly paired. A saving grace is that labeling
errors rarely lead to incorrect pairing (one pairing
in all the examined sentences). The labeling er-
rors impact the whole system in two ways: 1) they
caused similar tuples that should have been paired
up to be added as noise in that dissimilarity clas-
sifier’s training set and 2) paired tuples with label-
ing errors erroneously increase the target weight
in Equation (1).

Some example paraphrasing cases that are prob-
lematic for our current system are:

1. Non-literal language issues such as implica-
ture, idiom, metaphor, efc. are not addressed in
our current system. When predicate argument tu-
ples imply each other, they are less similar than
what our system currently is trained for, causing
the pairing to fail:
+pp, Later in the day, a standoff developed between French
soldiers and a Hema battlewagon that attempted to pass the
UN compound.

French soldiers later threatened to open fire on a Hema bat-

tlewagon that tried to pass near the UN compound.

2. A paraphrasing pair may exceed the systems’
threshold for syntactic difference:
~+pp, With the exception of dancing, physical activity did not
decrease the risk.

Dancing was the only physical activity associated with a
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lower risk of dementia.

3. One or more unpaired tuples exist, but their
significance is not inferred correctly:
+pp, Inhibited children tend to be timid with new people,
objects, and situations, while uninhibited children sponta-
neously approach them.

Simply put, shy individuals tend to be more timid with new
people and situations.

In the MSR corpus, the first error case is more
frequent than the other two. We identify these as
challenging cases where idiomatic processing is
needed.

Below we show some unpaired predicate ar-
gument tuples (underlined) that are significant
enough to be paraphrase barriers. These examples
give an indicative categorization of what signifi-
cant tuples are and their corpus frequency (when
predicate argument tuples are the reasons; we ex-
amined 40 such cases for this estimation). There
is one thing in common: every case involves sub-
stantial information that is difficult to infer from
context. Such tuples appear as:

1. (40%) The nucleus of the sentence (often the
matrix tuple):

Michael Hill, a Sun reporter who is a member of the

Washington-Baltimore Newspaper Guild’s bargaining com-
mittee, estimated meetings to last late Sunday.
2. (30%) A part of a coordination:

Security lights have also been installed and police have

swept the grounds for booby traps.
3. (13%) A predicate of a modifying clause:

Westermayer was 26 then, and a friend and former manager

who knew she was unhappy in her job tipped her to another

position.
4. (7%) An adjunct:
While waiting for a bomb squad to arrive, the bomb exploded,
killing Wells.
5. (7%) An embedded sentence:
Dean told reporters traveling on his 10-city “Sleepless

Summer” tour that he considered campaigning in Texas a

challenge.

6. (3%) Or factual content that conflicts with
the opposing sentence:
Total sales for the period declined 8.0 percent to USDI1.99

billion from a year earlier.

Wal-Mart said sales at stores open at least a year rose 4.6

percent from a year earlier.

8 Conclusions

We have proposed a new approach to the para-
phrase recognition (PR) problem: a supervised,



two-phase framework emphasizing dissimilarity
classification. To emulate human PR judgment
in which insignificant, extraneous information
nuggets are generally allowed for a paraphrase,
we estimate whether such additional information
nuggets affect the final paraphrasing status of a
sentence pair. This approach, unlike previous PR
approaches, has the key benefit of explaining the
cause of a non-paraphrase sentence pair.

In the first, similarity detection module, using
predicate argument tuples as the unit for compar-
ison, we pair them up in a greedy manner. Un-
paired tuples thus represent additional information
unrepresented in the opposing sentence. A second,
dissimilarity classification module uses the lexical
head of the predicates and the tuples’ path of at-
tachment as features to decide whether such tuples
are barriers to paraphrase.

Our evaluations show that the system obtains 1)
high accuracy for the similarity detector in pairing
predicate argument tuples, 2) robust dissimilar-
ity classification despite noisy training instances
and 3) comparable overall performance to current
state-of-the-art PR systems. To our knowledge this
is the first work that tackles the problem of identi-
fying what factors stop a sentence pair from being
a paraphrase.

We also presented corpus examples that illus-
trate the categories of errors that our framework
makes, suggesting future work in PR. While we
continue to explore more suitable representation
of unpaired predicate argument tuples, we plan to
augment the similarity measure for phrasal units
to reduce the error rate in the first component. An-
other direction is to detect semantic redundancy in
a sentence. Unpaired tuples that are semantically
redundant should also be regarded as insignificant.
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Abstract

NLP systems for tasks such as question
answering and information extraction typ-
ically rely on statistical parsers. But the ef-
ficacy of such parsers can be surprisingly
low, particularly for sentences drawn from
heterogeneous corpora such as the Web.
We have observed that incorrect parses of-
ten result in wildly implausible semantic
interpretations of sentences, which can be
detected automatically using semantic in-
formation obtained from the Web.

Based on this observation, we introduce
Web-based semantic filtering—a novel,
domain-independent method for automat-
ically detecting and discarding incorrect
parses. We measure the effectiveness of
our filtering system, called WOODWARD,
on two test collections. On a set of TREC
questions, it reduces error by 67%. On
a set of more complex Penn Treebank
sentences, the reduction in error rate was
20%.

1 Introduction

Semantic processing of text in applications such
as question answering or information extraction
frequently relies on statistical parsers. Unfortu-
nately, the efficacy of state-of-the-art parsers can
be disappointingly low. For example, we found
that the Collins parser correctly parsed just 42%
of the list and factoid questions from TREC 2004
(that is, 42% of the parses had 100% precision and
100% recall on labeled constituents). Similarly,
this parser produced 45% correct parses on a sub-
set of 100 sentences from section 23 of the Penn
Treebank.
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Although statistical parsers continue to improve
their efficacy over time, progress is slow, par-
ticularly for Web applications where training the
parsers on a ‘“representative” corpus of hand-
tagged sentences is not an option. Because of the
heterogeneous nature of text on the Web, such a
corpus would be exceedingly difficult to generate.

In response, this paper investigates the possibil-
ity of detecting parser errors by using semantic in-
formation obtained from the Web. Our fundamen-
tal hypothesis is that incorrect parses often result
in wildly implausible semantic interpretations of
sentences, which can be detected automatically in
certain circumstances. Consider, for example, the
following sentence from the Wall Street Journal:
“That compares with per-share earnings from con-
tinuing operations of 69 cents.” The Collins parser
yields a parse that attaches “of 69 cents” to “op-
erations,” rather than “earnings.” By computing
the mutual information between “operations” and
“cents” on the Web, we can detect that this attach-
ment is unlikely to be correct.

Our WOODWARD system detects parser errors
as follows. First, it maps the tree produced by a
parser to a relational conjunction (RC), a logic-
based representation language that we describe in
Section 2.1. Second, WOODWARD employs four
distinct methods for analyzing whether a conjunct
in the RC is likely to be “reasonable” as described
in Section 2.

Our approach makes several assumptions. First,
if the sentence is absurd to begin with, then a cor-
rect parse could be deemed incorrect. Second, we
require a corpus whose content overlaps at least in
part with the content of the sentences to be parsed.
Otherwise, much of our semantic analysis is im-
possible.

In applications such as Web-based question an-
swering, these assumptions are quite natural. The
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questions are about topics that are covered exten-
sively on the Web, and we can assume that most
questions link verbs to nouns in reasonable com-
binations. Likewise, when using parsing for infor-
mation extraction, we would expect our assump-
tions to hold as well.

Our contributions are as follows:

1. We introduce Web-based semantic filtering—
a novel, domain-independent method for de-
tecting and discarding incorrect parses.

. We describe four techniques for analyzing
relational conjuncts using semantic informa-
tion obtained from the Web, and assess their
efficacy both separately and in combination.

We find that WooDwARD can filter good
parses from bad on TREC 2004 questions for
a reduction of 67% in error rate. On a harder
set of sentences from the Penn Treebank, the
reduction in error rate is 20%.

The remainder of this paper is organized as fol-
lows. We give an overview of related work in Sec-
tion 1.1. Section 2 describes semantic filtering, in-
cluding our RC representation and the four Web-
based filters that constitute the WOODWARD sys-
tem. Section 3 presents our experiments and re-
sults, and section 4 concludes and gives ideas for
future work.

1.1 Related Work

The problem of detecting parse errors is most sim-
ilar to the idea of parse reranking. Collins (2000)
describes statistical techniques for reranking alter-
native parses for a sentence. Implicitly, a rerank-
ing method detects parser errors, in that if the
reranking method picks a new parse over the orig-
inal one, it is classifying the original one as less
likely to be correct. Collins uses syntactic and lex-
ical features and trains on the Penn Treebank; in
contrast, WOODWARD uses semantic features de-
rived from the web. See section 3 for a comparison
of our results with Collins’.

Several systems produce a semantic interpreta-
tion of a sentence on top of a parser. For example,
Bos et al. (2004) build semantic representations
from the parse derivations of a CCG parser, and
the English Resource Grammar (ERG) (Toutanova
etal., 2005) provides a semantic representation us-
ing minimal recursion semantics. Toutanova et al.
also include semantic features in their parse se-
lection mechanism, although it is mostly syntax-
driven. The ERG is a hand-built grammar and thus
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does not have the same coverage as the grammar
we use. We also use the semantic interpretations
in a novel way, checking them against semantic
information on the Web to decide if they are plau-
sible.

NLP literature is replete with examples of sys-
tems that produce semantic interpretations and
use semantics to improve understanding. Sev-
eral systems in the 1970s and 1980s used hand-
built augmented transition networks or semantic
networks to prune bad semantic interpretations.
More recently, people have tried incorporating
large lexical and semantic resources like WordNet,
FrameNet, and PropBank into the disambiguation
process. Allen (1995) provides an overview of
some of this work and contains many references.
Our work focuses on using statistical techniques
over large corpora, reducing the need for hand-
built resources and making the system more robust
to changes in domain.

Numerous systems, including Question-
Answering systems like MULDER (Kwok et
al., 2001), PiQASso (Attardi et al., 2001), and
Moldovan et al.’s QA system (2003), use parsing
technology as a key component in their analysis
of sentences. In part to overcome incorrect parses,
Moldovan et al.’s QA system requires a complex
set of relaxation techniques. These systems
would greatly benefit from knowing when parses
are correct or incorrect. Our system is the first
to suggest using the output of a QA system to
classify the input parse as good or bad.

Several researchers have used pointwise mu-
tual information (PMI) over the Web to help make
syntactic and semantic judgments in NLP tasks.
\Volk (2001) uses PMI to resolve preposition at-
tachments in German. Lapata and Keller (2005)
use web counts to resolve preposition attachments,
compound noun interpretation, and noun count-
ability detection, among other things. And Mark-
ert et al. (2003) use PMI to resolve certain types of
anaphora. We use PMI as just one of several tech-
niques for acquiring information from the Web.

2 Semantic Filtering

This section describes semantic filtering as imple-
mented in the WOODWARD system. WOODWARD
consists of two components: a semantic interpreter
that takes a parse tree and converts it to a conjunc-
tion of first-order predicates, and a sequence of
four increasingly sophisticated methods that check
semantic plausibility of conjuncts on the Web. Be-
low, we describe each component in turn.



1. What(NP1) A are(VP1, NP1, NP2) A states(NP2) A producing(VP2, NP2, NP3) A
states(NP2) A producing(VP1, NP3, NP2, NP1) A 0il(NP3) A in(PP1, NP2, U.S))

2. What(NP1) A

0il (NP3) A in(PPL, NP2, U.S.)

Figure 2: Example relational conjunctions. The first RC is the correct one for the sentence “What are oil producing
states in the U.S.?” The second is the RC derived from the Collins parse in Figure 1. Differences between the two RCs

appear in bold.

SBARQ
WHNP sQ .
WP VBP NP VP ?
I I | —_— .
What are NN VBG NP
oil producing NP PP
I —
NNS IN NP
I I S
states in DT NNP
I I
the u.s.

Figure 1: An incorrect Collins Parse of a TREC ques-
tion. The parser treats “producing” as the main verb in
the clause, rather than “are”.

2.1 Semantic Interpreter

The semantic interpreter aims to make explicit the
relations that a sentence introduces, and the argu-
ments to each of those relations. More specifically,
the interpreter identifies the main verb relations,
preposition relations, and semantic type relations
in a sentence; identifies the number of arguments
to each relation; and ensures that for every ar-
gument that two relations share in the sentence,
they share a variable in the logical representation.
Given a sentence and a Penn-Treebank-style parse
of that sentence, the interpreter outputs a conjunc-
tion of First-Order Logic predicates. We call this
representation a relational conjunction (RC). Each
relation in an RC consists of a relation name and
a tuple of variables and string constants represent-
ing the arguments of the relation. As an example,
Figure 1 contains a sentence taken from the TREC
2003 corpus, parsed by the Collins parser. Fig-
ure 2 shows the correct RC for this sentence and
the RC derived automatically from the incorrect
parse.

Due to space constraints, we omit details about
the algorithm for converting a parse into an RC,
but Moldovan et al. (2003) describe a method sim-
ilar to ours.
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2.2 SemanticFilters

Given the RC representation of a parsed sentence
as supplied by the Semantic Interpreter, we test the
parse using four web-based methods. Fundamen-
tally, the methods all share the underlying princi-
ple that some form of co-occurrence of terms in
the vast Web corpus can help decide whether a
proposed relationship is semantically plausible.

Traditional statistical parsers also use co-
occurrence of lexical heads as features for making
parse decisions. We expand on this idea in two
ways: first, we use a corpus several orders of mag-
nitude larger than the tagged corpora traditionally
used to train statistical parses, so that the funda-
mental problem of data sparseness is ameliorated.
Second, we search for targeted patterns of words
to help judge specific properties, like the number
of complements to a verb. We now describe each
of our techniques in more detail.

2.3 A PMI-Based Filter

A number of authors have demonstrated important
ways in which search engines can be used to un-
cover semantic relationships, especially Turney’s
notion of pointwise mutual information (PMI)
based on search-engine hits counts (Turney, 2001).
WOoODWARD’s PMI-Based Filter (PBF) uses PMI
scores as features in a learned filter for predicates.
Following Turney, we use the formula below for
the PMI between two terms ¢1 and ¢2:

)

P(t1 A t2)
PMI(t1,t2) = log (P(tl)P(t2)

We use PMI scores to judge the semantic plau-
sibility of an RC conjunct as follows. We con-
struct a number of different phrases, which we call
discriminator phrases, from the name of the rela-
tion and the head words of each argument. For
example, the prepositional attachment “operations
of 65 cents” would yield phrases like “operations
of” and *operations of * cents”. (The “*’ char-
acter is a wildcard in the Google interface; it can
match any single word.) We then collect hitcounts
for each discriminator phrase, as well as for the
relation name and each argument head word, and
compute a PMI score for each phrase, using the
phrase’s hitcount as the numerator in Equation 1.




Given a set of such PMI scores for a single rela-
tion, we apply a learned classifier to decide if the
PMI scores justify calling the relation implausible.

This classifier (as well as all of our other ones)
is trained on a set of sentences from TREC and
the Penn Treebank; our training and test sets are
described in more detail in section 3. We parsed
each sentence automatically using Daniel Bikel’s
implementation of the Collins parsing model,*
trained on sections 2-21 of the Penn Treebank,
and then applied our semantic interpreter algo-
rithm to come up with a set of relations. We la-
beled each relation by hand for correctness. Cor-
rect relations are positive examples for our clas-
sifier, incorrect relations are negative examples
(and likewise for all of our other classifiers). We
used the LIBSVM software package? to learn a
Gaussian-kernel support vector machine model
from the PMI scores collected for these relations.
We can then use the classifier to predict if a rela-
tion is correct or not depending on the various PMI
scores we have collected.

Because we require different discriminator
phrases for preposition relations and verb rela-
tions, we actually learn two different models.
After extensive experimentation, optimizing for
training set accuracy using leave-one-out cross-
validation, we ended up using only two patterns
for verbs: “noun verb” (“verb noun” for non-
subjects) and “noun * verd” (“verb * noun” for
non-subjects). We use the PMI scores from the
argument whose PMI values add up to the lowest
value as the features for a verb relation, with the
intuition being that the relation is correct only if
every argument to it is valid.

For prepositions, we use a larger set of patterns.
Letting argl and arg2 denote the head words of
the two arguments to a preposition, and letting
prep denote the preposition itself, we used the pat-
terns “argl prep”, “argl prep * arg2”, “argl
prep the arg2”, "argl * arg2”, and, for verb at-
tachments, “argl it prep arg2” and “argl them
prep arg2”. These last two patterns are helpful for
preposition attachments to strictly transitive verbs.

2.4 TheVerb Arity Sampling Test

In our training set from the Penn Treebank, 13%
of the time the Collins parser chooses too many or
too few arguments to a verb. In this case, checking
the PMI between the verb and each argument in-
dependently is insufficient, and there is not enough

http:/www.cis.upenn.edu/~dbikel /sof tware.html
2http:/www.csie.ntu.edu.tw/~cjlin/libsvm/

30

data to find hitcounts for the verb and all of its ar-
guments at once. We therefore use a different type
of filter in order to detect these errors, which we
call the Verb Arity Sampling Test (VAST).

Instead of testing a verb to see if it can take a
particular argument, we test if it can take a certain
number of arguments. The verb predicate produc-
ing(VP1, NP3, NP2, NP1) in interpretation 2 of
Figure 2, for example, has too many arguments.
To check if this predicate can actually take three
noun phrase arguments, we can construct a com-
mon phrase containing the verb, with the property
that if the verb can take three NP arguments, the
phrase will often be followed by a NP in text, and
vice versa. An example of such a phrase is “which
it is producing.” Since “which” and “it” are so
common, this phrase will appear many times on
the Web. Furthermore, for verbs like “produc-
ing,” there will be very few sentences in which
this phrase is followed by a NP (mostly temporal
noun phrases like “next week”). But for verbs like
“give” or “name,” which can accept three noun
phrase arguments, there will be significantly more
sentences where the phrase is followed by a NP.

The VAST algorithm is built upon this obser-
vation. For a given verb phrase, VAST first counts
the number of noun phrase arguments. The Collins
parser also marks clause arguments as being es-
sential by annotating them differently. VAST
counts these as well, and considers the sum of the
noun and clause arguments as the number of es-
sential arguments. If the verb is passive and the
number of essential arguments is one, or if the verb
is active and the number of essential arguments
is two, VAST performs no check. We call these
strictly transitive verb relations. If the verb is pas-
sive and there are two essential arguments, or if the
verb is active and there are three, it performs the
ditransitive check below. If the verb is active and
there is one essential argument, it does the intran-
sitive check described below. We call these two
cases collectively nontransitive verb relations. In
both cases, the checks produce a single real-valued
score, and we use a linear kernel SVM to iden-
tify an appropriate threshold such that predicates
above the threshold have the correct arity.

The ditransitive check begins by querying
Google for two hundred documents containing the
phrase “which it verd” or “which they verd”. It
downloads each document and identifies the sen-
tences containing the phrase. It then POS-tags and
NP-chunks the sentences using a maximum en-
tropy tagger and chunker. It filters out any sen-



tences for which the word “which” is preceded by
a preposition. Finally, if there are enough sen-
tences remaining (more than ten), it counts the
number of sentences in which the verb is directly
followed by a noun phrase chunk, which we call an
extraction. It then calculates the ditransitive score
for verb v as the ratio of the number of extractions
E to the number of filtered sentences F":

(2)

The intransitive check performs a very similar
set of operations. It fetches up to two hundred
sentences matching the phrases “but it verd” or
“but they verd”, tags and chunks them, and ex-
tracts noun phrases that directly follow the verb.
It calculates the intransitive score for verb v using
the number of extractions E and sentences S as:

—1-L @

S

E
ditransitiveScore(v) = 7

intransitiveScore(v)

25 TextRunner Filter

TextRunner is a new kind of web search engine.
Its design is described in detail elsewhere (Ca-
farella et al., 2006), but we utilize its capabil-
ities in WOODWARD. TextRunner provides a
search interface to a set of over a billion triples
of the form (object string, predicate string, ob-
ject string) that have been extracted automatically
from approximately 90 million documents to date.
The search interface takes queries of the form
(stringl, string2, string3), and returns all tu-
ples for which each of the three tuple strings con-
tains the corresponding query string as a substring.

TextRunner’s object strings are very similar to
the standard notion of a noun phrase chunk. The
notion of a predicate string, on the other hand, is
loose in TextRunner; a variety of POS sequences
will match the patterns for an extracted relation.
For example, a search for tuples with a predicate
containing the word ‘with’ will yield the tuple
(risks, associated with dealing with, waste wood),
among thousands of others.

TextRunner embodies a trade-off with the PMI
method for checking the validity of a relation. Its
structure provides a much more natural search for
the purpose of verifying a semantic relationship,
since it has already arranged Web text into pred-
icates and arguments. It is also much faster than
querying a search engine like Google, both be-
cause we have local access to it and because com-
mercial search engines tightly limit the number
of queries an application may issue per day. On
the other hand, the TextRunner index is at present
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still about two orders of magnitude smaller than
Google’s search index, due to limited hardware.
The TextRunner semantic filter checks the va-
lidity of an RC conjunct in a natural way: it asks
TextRunner for the number of tuples that match
the argument heads and relation name of the con-
junct being checked. Since TextRunner predicates
only have two arguments, we break the conjunct
into trigrams and bigrams of head words, and av-
erage over the hitcounts for each. For predicate

P(Aq,...,A,) with n > 2, the score becomes
Text RunnerScore =
1 noo
n—1 2; thS(Ah P, Al)
1=

1. =~
+ E(hzts(Al, P)) + Zz:; hits(, P, A;))

As with PBF, we learn a threshold for good predi-
cates using the LIBSVM package.

2.6 Question Answering Filter

When parsing questions, an additional method of
detecting incorrect parses becomes available: use
a question answering (QA) system to find answers.
If a QA system using the parse can find an answer
to the question, then the question was probably
parsed correctly.

To test this theory, we implemented a
lightweight, simple, and fast QA system that di-
rectly mirrors the semantic interpretation. It re-
lies on TextRunner and KnowltNow (Cafarella et
al., 2005) to quickly find possible answers, given
the relational conjunction (RC) of the question.
KnowltNow is a state of the art Information Ex-
traction system that uses a set of domain inde-
pendent patterns to efficiently find hyponyms of
a class.

We formalize the process as follows: define a
question as a set of variables X; corresponding to
noun phrases, a set of noun type predicates 75 (X;),
and a set of relational predicates P;(X;1, ..., Xir)
which relate one or more variables and constants.
The conjunction of type and relational predicates
is precisely the RC.

We define an answer as a set of values for each
variable that satisfies all types and predicates

ans(xy, ..., Tyn) = /\Tz(xz) A /\Pj(xﬂ, s Tjk)
i J
The algorithm is as follows:

1. Compute the RC of the question sentence.



2. Vi find instances of the class T; for possible
values for X;, using KnowlItNow.

3. Vj find instances of the relation predicate
Pj(xj1,...,xj;). We use TextRunner to ef-
ficiently find objects that are related by the
predicate P;.

4. Return all tuples that satisfy ans(x1, ..., x,)

The QA semantic filter runs the Question An-
swering algorithm described above. If the number
of returned answers is above a threshold (1 in our
case), it indicates the question has been parsed cor-
rectly. Otherwise, it indicates an incorrect parse.
This differs from the TextRunner semantic filter in
that it tries to find subclasses and instances, rather
than just argument heads.

27 TheWOoODWARD Filter

Each of the above semantic filters has its strengths
and weaknesses. On our training data, TextRunner
had the most success of any of the methods on
classifying verb relations that did not have arity er-
rors. Because of sparse data problems, however, it
was less successful than PMI on preposition rela-
tions. The QA system had the interesting property
that when it predicted an interpretation was cor-
rect, it was always right; however, when it made a
negative prediction, its results were mixed.

WOoODWARD combines the four semantic filters
in a way that draws on each of their strengths.
First, it checks if the sentence is a question that
does not contain prepositions. If so, it runs the
QA module, and returns true if that module does.

After trying the QA module, WOODWARD
checks each predicate in turn. If the predicate
is a preposition relation, it uses PBF to classify
it. For nontransitive verb relations, it uses VAST.
For strictly transitive verb relations, it uses Text-
Runner. WOODWARD accepts the RC if every re-
lation is predicted to be correct; otherwise, it re-
jects it.

3 Experiments

In our experiments we tested the ability of WooD-
WARD to detect bad parses. Our experiments pro-
ceeded as follows: we parsed a set of sentences,
ran the semantic interpreter on them, and labeled
each parse and each relation in the resulting RCs
for correctness. We then extracted all of the nec-
essary information from the Web and TextRunner.
We divided the sentences into a training and test
set, and trained the filters on the labeled RCs from
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the training sentences. Finally, we ran each of the
filters and WOODWARD on the test set to predict
which parses were correct. We report the results
below, but first we describe our datasets and tools
in more detail.

3.1 Datasets and Tools

Because question-answering is a key application,
we began with data from the TREC question-
answering track. We split the data into a train-
ing set of 61 questions (all of the TREC 2002 and
TREC 2003 questions), and a test set of 55 ques-
tions (all list and factoid questions from TREC
2004). We preprocessed the questions to remove
parentheticals (this affected 3 training questions
and 1 test question). We removed 12 test questions
because the Collins parser did not parse them as
questions,® and that error was too easy to detect.
25 training questions had the same error, but we
left them in to provide more training data.

We used the Penn Treebank as our second data
set. Training sentences were taken from section
22, and test sentences from section 23. Because
PBF is time-consuming, we took a subset of 100
sentences from each section to expedite our exper-
iments. We extracted from each section the first
100 sentences that did not contain conjunctions,
and for which all of the errors, if any, were con-
tained in preposition and verb relations.

For our parser, we used Bikel’s implementation
of the Collins parsing model, trained on sections
2-21 of the Penn Treebank. We only use the top-
ranked parse for each sentence. For the TREC
data only, we first POS-tagged each question using
Ratnaparkhi’s MXPOST tagger. We judged each
of the TREC parses manually for correctness, but
scored the Treebank parses automatically.

3.2 Reaultsand Discussion

Our semantic interpreter was able to produce the
appropriate RC for every parsed sentence in our
data sets, except for a few minor cases. Two id-
iomatic expressions in the WSJ caused the seman-
tic interpreter to find noun phrases outside of a
clause to fill gaps that were not actually there. And
in several sentences with infinitive phrases, the se-
mantic interpreter did not find the extracted sub-
ject of the infinitive expression. It turned out that
none of these mistakes caused the filters to reject
correct parses, so we were satisfied that our results
mainly reflect the performance of the filters, rather
than the interpreter.

3That is, the root node was neither SBARQ nor SQ.



Relation Type | num. correct | num. incorrect | PBF acc. | VAST acc. | TextRunner acc.
Nontrans. Verb 41 35 0.54 0.66 0.52
Other Verb 126 68 0.72 N/A 0.73
Preposition 183 58 0.73 N/A 0.76

Table 1: Accuracy of the filters on three relation types in the TREC 2004 questions and WSJ data.

Baseline WOODWARD
sents. | parser eff. || filter prec. | filter rec. F1 || filter prec. | filter rec. F1 | red. err.
trec 43 54% 0.54 1.0 | 0.70 0.82 1.0 | 0.90 67%
wWsj 100 45% 0.45 1.0 | 0.62 0.58 0.88 | 0.70 20%

Table 2: Performance of WoobwaRD on different data sets. Parser efficacy reports the percentage of sentences that
the Collins parser parsed correctly. See the text for a discussion of our baseline and the precision and recall metrics. We
weight precision and recall equally in calculating F1. Reduction in error rate (red. err.) reports the relative decrease in

error (error calculated as 1 — F1) over baseline.

In Table 1 we report the accuracy of our first
three filters on the task of predicting whether a re-
lation in an RC is correct. We break these results
down into three categories for the three types of
relations we built filters for: strictly transitive verb
relations, nontransitive verb relations, and prepo-
sition relations. Since the QA filter works at the
level of an entire RC, rather than a single relation,
it does not apply here. These results show that the
trends on the training data mostly held true: VAST
was quite effective at verb arity errors, and Text-
Runner narrowly beat PBF on the remaining verb
errors. However, on our training data PBF nar-
rowly beat TextRunner on preposition errors, and
the reverse was true on our test data.

Our QA filter predicts whether a full parse is
correct with an accuracy of 0.76 on the 17 TREC
2004 questions that had no prepositions. The
Collins parser achieves the same level of accuracy
on these sentences, so the main benefit of the QA
filter for WOODWARD is that it never misclassi-
fies an incorrect parse as a correct one, as was ob-
served on the training set. This property allows
WOODWARD to correctly predict a parse is correct
whenever it passes the QA filter.

Classification accuracy is important for good
performance, and we report it to show how effec-
tive each of WOODWARD’s components is. How-
ever, it fails to capture the whole story of a filter’s
performance. Consider a filter that simply predicts
that every sentence is incorrectly parsed: it would
have an overall accuracy of 55% on our WSJ cor-
pus, not too much worse than WOODWARD’s clas-
sification accuracy of 66% on this data. However,
such a filter would be useless because it filters out
every correctly parsed sentence.

Let the filtered set be the set of sentences that a
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filter predicts to be correctly parsed. The perfor-
mance of a filter is better captured by two quanti-
ties related to the filtered set: first, how “pure” the
filtered set is, or how many good parses it contains
compared to bad parses; and second, how waste-
ful the filter is in terms of losing good parses from
the original set. We measure these two quantities
using metrics we call filter precision and filter re-
call. Filter precision is defined as the ratio of cor-
rectly parsed sentences in the filtered set to total
sentences in the filtered set. Filter recall is defined
as the ratio of correctly parsed sentences in the fil-
tered set to correctly parsed sentences in the un-
filtered set. Note that these metrics are quite dif-
ferent from the labeled constituent precision/recall
metrics that are typically used to measure statisti-
cal parser performance.

Table 2 shows our overall results for filtering
parses using WOODWARD. We compare against
a baseline model that predicts every sentence is
parsed correctly. WOODWARD outperforms this
baseline in precision and F1 measure on both of
our data sets.

Collins (2000) reports a decrease in error rate
of 13% over his original parsing model (the same
model as used in our experiments) by performing
a discriminative reranking of parses. Our WSJ
test set is a subset of the set of sentences used
in Collins’ experiments, so our results are not di-
rectly comparable, but we do achieve a roughly
similar decrease in error rate (20%) when we use
our filtered precision/recall metrics. We also mea-
sured the labeled constituent precision and recall
of both the original test set and the filtered set, and
found a decrease in error rate of 37% according to
this metric (corresponding to a jump in F1 from
90.1 to 93.8). Note that in our case, the error is re-



duced by throwing out bad parses, rather than try-
ing to fix them. The 17% difference between the
two decreases in error rate is probably due to the
fact that WoOODWARD is more likely to detect the
worse parses in the original set, which contribute a
proportionally larger share of error in labeled con-
stituent precision/recall in the original test set.

WooDWARD performs significantly better on
the TREC questions than on the Penn Treebank
data. One major reason is that there are far more
clause adjuncts in the Treebank data, and adjunct
errors are intrinsically harder to detect. Con-
sider the Treebank sentence: “The S&P pit stayed
locked at its 30-point trading limit as the Dow av-
erage ground to its final 190.58 point loss Friday.”
The parser incorrectly attaches the clause begin-
ning “as the Dow ...” to “locked”, rather than
to “stayed.” Our current methods aim to use key
words in the clause to determine if the attachment
is correct. However, with such clauses there is no
single key word that can allow us to make that de-
termination. We anticipate that as the paradigm
matures we and others will design filters that can
use more of the information in the clause to help
make these decisions.

4 Conclusions and Future Work

Given a parse of a sentence, WOODWARD coOn-
structs a representation that identifies the key se-
mantic relationships implicit in the parse. It then
uses a set of Web-based sampling techniques to
check whether these relationships are plausible.
If any of the relationships is highly implausible,
WOoODWARD concludes that the parse is incorrect.
WOoODWARD successfully detects common errors
in the output of the Collins parser including verb
arity errors as well as preposition and verb attach-
ment errors. While more extensive experiments
are clearly necessary, our results suggest that the
paradigm of Web-based semantic filtering could
substantially improve the performance of statisti-
cal parsers.

In future work, we hope to further validate this
paradigm by constructing additional semantic fil-
ters that detect other types of errors. We also plan
to use semantic filters such as WOODWARD to
build a large-scale corpus of automatically-parsed
sentences that has higher accuracy than can be
achieved today. Such a corpus could be used to
re-train a statistical parser to improve its perfor-
mance. Beyond that, we plan to embed semantic
filtering into the parser itself. If semantic filters
become sufficiently accurate, they could rule out
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enough erroneous parses that the parser is left with
just the correct one.
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Abstract

We propose a framework to derive the
distance between concepts from distribu-
tional measures of word co-occurrences.
We use the categories in a published
thesaurus as coarse-grained concepts, al-
lowing all possible distance values to

are expected to perform poorly when used to es-
timate distance between senses of part-of-speech
pairs other than noun—-noun, not just because the
WordNet hierarchies for other parts of speech are
less well developed, but also because the hierar-
chies for the different parts of speech are not well

connected.

The second kind of measures, which we will

be stored in a concept—concept matrix
roughly .01% the size of that created
by existing measures. We show that
the newly proposed concept-distance mea-
sures outperform traditional distributional
word-distance measures in the tasks of
(1) ranking word pairs in order of se-
mantic distance, and (2) correcting real-
word spelling errors. In the latter task,
of all the WordNet-based measures, only
that proposed by Jiang and Conrath out-
performs the best distributional concept-
distance measures.

refer to asdistributional measures, are inspired
by the maxim “You shall know a word by the
company it keeps” (Firth, 1957). These measures
rely simply on raw text, and hence are much less
resource-hungry than the semantic measures; but
they measure the distance between words rather
than word-senses or concepts. In these measures,
two words are considered close if they occur in
similar contexts. The context (or “company”) of
a target word is represented by dsstributional
profile (DP), which lists the strength of associ-
ation between the target and each of the lexical,
syntactic, and/or semantic units that co-occur with
it. Commonly usedneasures of strength of as-
sociation are conditional probability (0 to 1) and
Measures of distance of meaning are of two kindspointwise mutual information-{e to ). Com-
The first kind, which we will refer to aseman- monly used units of co-occurrence with the target
tic measures rely on the structure of a resource are othemwords and so we speak of thexical dis-
such as WordNet or, in some cases, a semantitibutional profile of a word (lexical DPW) . The
network, and hence they measure the distance bee-occurring words may be all those in a prede-
tween the concepts or word-senses that the nodégrmined window around the target, or may be re-
of the resource represent. Examples include thetricted to those that have a certain syntactig.(
measure for MeSH proposed by Rada et al. (1989erb—object) or semantie(g., agent-theme) re-
and those for WordNet proposed by Leacock andation with the target word. We will refer to the
Chodorow (1998) and Jiang and Conrath (1997)former kind of DPs aselation-free. Usually in
(Some of the more successful measures, such as
Jiang—Conrath, also use information content de- 1in our experiments, we set negative PMI values to 0, be-
rived from word frequency.) Typically, these mea- cause Church and Hanks (1990), in their seminal paper on
. . word association ratio, show that negative PMI values are not
sures rely on an extensive hierarchy of hyponym

; ] Yexpected to be accurate unless co-occurrence counts are made
relationships for nouns. Therefore, these measurésm an extremely large corpus.

1 Semantic and distributional measures
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The distributional hypothesis and its

Table 1: Measures of DP distance and measures gf C
limitations

strength of association.

The distributional hypothesis (Firth, 1957) states

DP distance Strength of association

a-skew divergence conditional probability that words that_ oc_;cur in _similar contexts tend to be

cosine pointwise mutual information semantically similar. It is often suggested, there-

i‘?”se”‘Sha”“O” divergence fore, that a distributional measure can act as a
n

proxy for a semantic measure: the distance be-
tween the DPs of words will approximate the dis-
tance between their senses. But when words have

the latter case, separate association values are c3lo o than one sense. it is not at all clear what se-

culated for each of the different relations betweer) . ... jistance between them actually means. A
the target and the co-occurring units. We will referWord in each of its senses is likely to co-occur

to such DPs agelatlon—constralned. _with different sets of words. For exampleank
Typical relation-free DPs are those of S i the “financial institution’ sense is likely to co-
and Pedersen (1997) and Yoshida et al. (2003)y.¢r withinterest, money, accountand so on,
Typical relation-constrained DPs are those Ofynereas the ‘river bank’ sense might have words
Lin (1998) and Lee (2001). Below are contrived, 5 ,chy agiver, erosion,andsilt around it. If we de-
but plausible, examples of each for the wprdse  fine the distance between two words, at least one
the numbers are conditional probabilities. of which is ambiguous, to be the closest distance
between some sense of one and some sense of the

relation-free DP other, then distributional distance between words

pulse  beat (.28), racing (.2), grow may indeed be used in place of semantic distance
(.13),beans(.09), heart(.04), ... between concepts. However, because measures of
distributional distance depend on occurrences of
relation-constrained DP the target word in all its senses, this substitution is
pulse <beaf subject-verb (.34), inaccurate. For example, observe that both DPWs
<racing, noun—qualifying adjective of pulseabove have words that co-occur with its
(:22), <grow, subject-verb (.14), ... ‘throbbing arteries’ sense and words that co-occur

_ _ ~with its ‘edible seed’ sense. Relation-free DPs of
The distance between two words, given theirpyisein its two separate senses might be as fol-
DPs, is calculated using measure of DP dis- |ows:

tance such as cosine. While any of the mea-
sures of DP distance may be used with any of the
measures of strength of association (see Table 1),
in practicea-skew divergence (ASD), cosine, and
Jensen-Shannon divergence (JSD) are used with
conditional probability (CP), whereas Lin is used
with PMI, resulting in the distributional measures
ASDy, (Lee, 2001) Cog, (Schitze and Pedersen, Thus, itis clear that different senses of a word have
1997),JSDyp, andLinpmi (Lin, 1998), respectively. different distributional profiles (“different com-
ASDy, is a modification of Kullback-Leibler diver- pany”). Using a single DP for the word will mean
gence that overcomes the latter’s problem of divithe union of those profiles. While this might be
sion by zero, which can be caused by data sparseiseful for certain applications, we believe that in
ness. JSO, is another relative entropy—baseda number of tasks (including estimating linguistic
measure (likeASDyy) but it is symmetric.JSO,  distance), acquiring different DPs for the differ-
andASDy, are distance measures that give scoreent senses is not only more intuitive, but also, as
between 0 (identical) and infinity (maximally dis- we will show through experiments in Section 5,
tant). Linpmi andCosy, are similarity measures that more useful. We argue thalistributional pro-
give scores between 0 (maximally distant) and ffiles of senses or concepts (DPCsan be used to
(identical). See Mohammad and Hirst (2005) for ainfer semantic properties of the senses: “You shall
detailed study of these and other measures. know a sense by the company it keeps.”

pulse ‘throbbing arteries’: beat (.36),
racing (.27),heart(.11), ...

pulse ‘edible seeds’:grow (.24), beans
(.14), ...
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3 Conceptual grain size and storage of matrices required by existing measures). We
requirements evaluate our distributional concept-distance mea-
sures on two tasks: ranking word pairs in order

As applications for linguistic distance becomeof their semantic distance, and correcting real-
more sophisticated and demanding, it becomes afyqq spelling errors. We compare performance
tractive to pre-compute and store the distance valjth distributional word-distance measures and

ues between all possible pairs of words or sensege WordNet-based concept-distance measures.
But both kinds of measures have large space re-

quirements to do this, requiring matrices of size4 Distributional measures of
N x N, whereN is the size of the vocabulary (per- concept-distance
haps 100,000 for most languages) in the case of . o ,
distributional measures and the number of sense%‘1 Capturing distributional profiles of
(75,000 just for nouns in WordNet) in the case of concepts
semantic measures. We use relation-freiexical DPs—both DPWs and

It is generally accepted, however, that WordNetPPCs—in our experiments, as they allow deter-
senses are far too fine-grained (Agirre and Lope#hination of semantic properties of the target from
de Lacalle Lekuona (2003) and citations therein)just its co-occurring words.
On the other hand, published thesauri, suicRas ~ Determining lexical DPWs simply involves
get'sandMacquarie group near-synonymous and making word-word co-occurrence counts in a
semantically related words into a relatively smallcorpus. A direct method to determine lexical
number ofcategories—typically between 800 and DPCs, on the other hand, requires information
1100—that roughly correspond to very coarsedbout which words occur with which concepts.
concepts or senses (Yarowsky, 1992). Words with" his means that the text from which counts are
more than one sense are listed in more than on@ade has to be sense annotated. Since exist-
category. A published thesaurus thus provides uld labeled data is minimal and manual annota-
with a very coarse human-developed set or invention is far too expensive, indirect means must be
tory of word senser concepté that are more in-  Used. In an earlier paper (Mohammad and Hirst,
tuitive and discernible than the “concepts” gener-2006), we showed how this can be done with sim-
ated by dimensionality-reduction methods such agle word sense disambiguation and bootstrapping
latent semantic analysis. Using coarse senses frofgchniques. Here, we summarize the method.
a known inventory means that the senses can be First, we create aword-category co-
represented unambiguously by a large number ddccurrence matrix (WCCM) using theBritish
possibly ambiguous words (conveniently availabléNational Corpus (BNC)and the Macquarie
in the thesaurus)—a feature that we exploited inf hesaurusThe WCCM has the following form:

our earlier work (Mohammad and Hirst, 2006) to

. : Ci C ... Cj
determine useful estimates of the strength of asso- W ml m2 mJ-
ciation between a concept and co-occurring words. o B

In this paper, we go one step further and use
the idea of a very coarse sense inventory to de- : :
velop a framework for distributional measures of Wi | Mg M2 ... M
concepts that can more naturally and more ac- : : : :
curately be used in place of semantic measures
of word senses. We use thidacquarie The- A cell mj, corresponding to wordy; and cate-
saurus(Bernard, 1986) as a sense inventory andjoryc;j, contains the number of timeg co-occurs
repository of words pertaining to each sense. Ithagn a window of £5 words in the corpus) with
812 categories with around 176,000 word tokensany of the words listed under categary in the
and 98,000 word types. This allows us to havethesaurus. Intuitively, the celly; captures the
much smallerconcept—concept distance matri- number of timesc; andw; co-occur. A contin-
cesof size just 812 812 (roughly .01% the size gency table for a single word and single category

e — _ can be created by simply collapsing all other rows
We use the termsensesand conceptsinterchangeably.

This is in contrast to studies, such as that of Cooper (2005),a_ml columng into one and summing their frequen-
that attempt to make a principled distinction between them. cies. Applying a suitable statistic, such as odds

W2 | Mpy Mp2 ... N
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BNC BNC Thesaurus

| ¢

word—word word—category
co-occurrence countin co-occurrence countin

- i . . bootstrapping and
word-wordco oi:currence matrix word—categor)co‘\‘occurrence matr»e’ sense disambiguation

‘ distributional measures ‘ distributional measures

| !

distributional relatedness afords distributional relatedness abncepts

Figure 1: Distributional word-distance. Figure 2: Distributional concept-distance.

ratio, on the contingency table gives the strengthance they use (see Mohammad and Hirst (2005)

of association between a concept (category) anfbr details). For example, following is the cosine

co-occurring word. Therefore, the WCCM can beformula for distance between words andw, us-

used to create the lexical DP for any concept. ing relation-free lexical DPWs, with conditional
The matrix that is created after one pass of therobability of the co-occurring word given the tar-

corpus, which we call thbase WCCM, although get as the strength of association:

noisy (as it is created from raw text and not sense-

annotated data), captures strong associations bE0%p(W1,W2) =

tween categories and co-occurring words. There- Y wec(wy)ucws) (P(W[wa) x P(W|w2))

fore the intended sense (thesaurus category) of a D) 2
P P
word in the corpus can now be determined using \/ZWEC(W” (Wiwa)* x \/ZWGC(W” (Wiwe)

frequencies qf co-occurring words and its Variouﬁiere,C(x) is the set of words that co-occur with
senses as evidence. A nbaotstrapped WCCM word xwithin a pre-determined window.

is created, after a second pass of the corpus, in In order to calculate distributionatoncept-

which the cellm; contains the number of times distance consider the same scenario, except that

zny wc;]rd use,\cjl n;lsense;dco-c;c;grs V\ggg\g Y]VE h the targets are now senses or concepts. Two con-
ave shown (Mohammad and Hirst, ) that t %epts are closer if their DPs are similar, and these

bootstrapped WCCM captures word—category coppg require the strength of association between

occurrences much more accura'Fe!y than the bastﬂe targetconceptsand their co-occurring words.
WCC_:M' using the task of determining word S€NS€rhe associations can be estimated from the boot-
dominance as a test bed. strapped WCCM, described in Section 4.1 above.
4.2 Applying distributional measures to Any of the distributiona! measures usec! for DPW_S
DPCs can now be used to estimate concept-distance with
DPCs. Figure 2 illustrates our methodology. Be-

Recall that in computing distributional word- o is the formula for cosine with conditional
distance, we consider two target words to be dispropapilities when applied to concepts:
tributionally similar (less distant) if they occur in

similar contexts. The contexts are represented bZosy(cy,C2) =

the DPs of the target words, where a DP gives the Y weC(e)uc(cr) (P(W[C1) x P(w|cz))
strength of association between the target and the
co-occurring units. A distributional measure uses \/ 3 wec(cr) P(W]e1)? x \/ 3 weC(cz) P(W|C2)?
a measure of DP distance to determine the distance

between two DPs and thereby between the two tafN oW, C(9 IS t'he set of Wmd? that co-occur with
oncept xwithin a pre-determined window.

get words (see Figure 1). The various measure$ i S
differ in what statistic they use to calculate the We will refer to such measures as distributional

strength of association and the measure of DP diépeasures of concept-d|'stancdD|'s{tr|bconc.ep),_
in contrast to the earlier-described distribu-

SNear-upper-bound results were achieved in the task ofional measures of word-distanceigtribyorg)

determining predominant senses of 27 words in 11 target texts d WordNet-b d fi f
with a wide range of sense distributions over their two moste! ordNet-based (or semantic) measures o

dominant senses. concept-distance VWNetoncep). We shall refer

38



to these three k|_nc_:|s of distance MEASUreS a3 ple 2: Correlation of distributional measures
measure-types Individual measures in each kind with human ranking Best results for each

will be referred to simply ameasures .
o . measure-type are shown in boldface.
A distributional measure of concept-distance

can be used to populate a small 812 812 Measure-type
concept—concept distance matrixwhere a cell Distribworg ~ Distribeoncept
mj, pertaining to concepts; and ¢j, contains Measure closest average
the distance between the two concepts. In con- ASDQ, .45 .60 -
trast, a word—word distance matrix for a conserva- Cogp .54 .69 42
tive vocabulary of 100,000 word types will have  JSDyp .48 .61 -

a size 100,000« 100,000, and a WordNet-based  Linpp .52 71 .59

concept—concept distance matrix will have a size
75,000 x 75,000 just for nouns. Our concept—

concept distance matrix is roughly .01% the siz&yord—word distance matrices. Applications that
of these matrices. require distance values will enjoy a run-time ben-
Note that the DPs we are using are relation-freefit if the distances are precomputed. While it is
because (1) we use all co-occurring words (not jusgasy to completely populate the concept—concept
those that are related to the target by certain syrnco-occurrence matrix, completely populating the

tactic or semantic relations) and (2) the WCCM,word—word distance matrix is a non-trivial task be-
as described in Section 4.1, does not maintain Seause of memory and time Constraiﬁts_

arate counts for the different relations between the
target and co-occurring words. Creating a large 1 Ranking word pairs
matrix with separate counts for the different rela-

tions would lead taelation-constrainedPs. A direct approach to evaluating linguistic dis-

tance measures is to determine how close they
5 Evaluation are to human judgment and intuition. Given a

set of word-pairs, humans can rank them in or-
To evaluate the distributional concept-distanceder of their distance—placing near-synonyms on
measures, we used them in the tasks of rankingne end of the ranking and unrelated pairs on the
word pairs in order of their semantic distance antther. Rubenstein and Goodenough (1965) pro-
of correcting real-word spelling errors, and com-vide a “gold-standard” list of 65 human-ranked
pared our results to those that we obtained on th@ord-pairs (based on the responses of 51 sub-
same tasks with distributional word-distance meajects). One automatic word-distance estimator,
sures and those that Budanitsky and Hirst (2006)hen, is deemed to be more accurate than another
obtained with WordNet-based semantic measures its ranking of word-pairs correlates more closely

The distributional concept-distance measuresvith this human ranking. Measures of concept-

used a bootstrapped WCCM created fromBINC  distance can perform this task by determining
and theMacquarie ThesaurusThe word-distance word-distance for each word-pair by finding the
measures used a word—word co-occurrence matrigoncept-distance between all pairs of senses of the
created from theBNC alone. TheBNC was not two words, and choosing the distance of the clos-
lemmatized, part of speech tagged, or chunkedest sense pair. This is based on the assumption that
The vocabulary was restricted to the words presenvhen humans are asked to judge the semantic dis-
in the thesaurus (about 98,000 word types) bothance between a pair of words, they implicitly con-
to provide a level evaluation platform and to keepsider its closest senses. For example, most people
the matrix to a manageable size. Co-occurrencevill agree thatbankandinterestare semantically
counts less than 5 were reset to 0, and wordselated, even though both have multiple senses—
that co-occurred with more than 2000 other wordsmost of which are unrelated. Alternatively, the
were stoplisted (543 in all). We usébBD, (0 = method could take the average of the distance of
0.99), Cosp, JSDp, andLinpmi* to populate corre-  all pairs of senses.

sponding concept—concept distance matricesand

- SAs we wanted to perform experiments with both
4Whereas Lin (1998) used relation-constrained DPs, inconcept—concept and word—word distance matrices, we pop-

our experiments all DPs are relation-free. ulated them as and when new distance values were calculated.
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spelling-variant is considered it®rrection. Hirst
and Budanitsky tested the method on 500 articles
from the 1987-89Nall Street Journakorpus for

Table 3: Hirst and St-Onge metrics for evaluation
of real-word spelling correction.

no. of true-suspects their experiments, replacing every 200th word b
fmal
suspect ratio = 5 oralse-suspEcts a spelling-variant. We adopt this method and this
no. of non-malaps test data, but whereas Hirst and Budanitsky used
_no. of true-alarms WordNet-based semantic measures, we use distri-
. _ no. of true-suspects . L. L)
alarmratio = 5 orrake-aarms butional measureBistribyorg andDistribeoncept
no. of false-suspects )
no. of true-alarms In order to determine whether two words are
detection ratio = mn—cc;f%;%%s “semantlcally close” or not as per any measure
no. of non-malaps of distance, ahreshold must be set. If the dis-
no. correfcted| malaps tance between two words is less than the threshold,
correction ratio = 5 ormmeas then they will be consideredemantically close
no. of non-malaps Hirst and Budanitsky (2005) pointed out that there
correction accuracy = 0o-ofcomected malaps js g notably wide band between 1.83 and 2.36

(on a scale of 0—4), such that all Rubenstein and
Goodenough word pairs were assigned values ei-
ther higher than 2.36 or lower than 1.83 by human
Table 2 lists correlations of human rank- subjects. They argue that somewhere within this
ings with those created using distributional mea-and is a suitable threshold between semantically
sures.  Observe thaDistribconcept Measures close and semantically distant, and therefore set
give markedly higher correlation values thanthresholds for the WordNet-based measures such
Distribworg measures. Also, using the distance ofthat there was maximum overlap in what the mea-
the closest sense pair (fQrogp andLinpm) gives  syres and human judgments considered semanti-
much better results than using the average discally close and distant. Following this idea, we
tance of all relevant sense pairs. (We do not repofse an automatic method to determine thresholds
average distance foASDy, and JSDy because for the variousDistribyorg and Distribeonceptmea-
they give very large distance values when sensesyres. Given a list of Rubenstein and Goodenough
pairs are unrelated—values that dominate the aMword pairs ordered according to a distance mea-
erages, overwhelming the others, and making thgure, we repeatedly consider the mean of all con-
results meaningless.) These correlations are, howsecutive distance values esndidate thresholds
ever, notably lower than those obtained by the best'hen we determine the number of Word-pairs cor-
WordNet-based measures (not shown in the table}ectly classified as semantically close or semanti-

which fall in the range .78 to .84 (Budanitsky and cally distant for each candidate threshold, consid-

Hirst, 2006). ering which side of the band they lie as per human
judgments. The candidate threshold with highest
5.2 Real-word spelling error correction accuracy is chosen as the threshold.

The set of Rubenstein and Goodenough word pairs We follow Hirst and St-Onge (1998) in the met-
is much too small to safely assume that measurescs that we use to evaluate real-word spelling cor-
that work well on them do so for the entire En- rection; they are listed in Table Suspect ratio
glish vocabulary. Consequently, semantic meaandalarm ratio evaluate the processes of identify-
sures have traditionally been evaluated through apgng suspects and raising alarms, respectivBlg-
plications that use them, such as the work by Hirstection ratio is the product of the two, and mea-
and Budanitsky (2005) on correctimgal-word  sures overall performance in detecting the errors.
spelling errors (or malapropisms). If a word  Correction ratio indicates overall correction per-
in a text is not “semantically close” to any other formance, and is the “bottom-line” statistic that we
word in its context, then it is consideredsas- focus on. Values greater than 1 for each of these
pect If the suspect has a spelling-variant thatratios indicate results better than random guessing.
is “semantically close” to a word in its context, The ability of the system to determine the intended
then the suspect is declared a probable real-wordiord, given that it has correctly detected an error,
spelling error and andlarm” is raised; the related is indicated by thecorrection accuracy (O to 1).

40



Table 4: Real-word error correction using distributional word-distarigistiib,,orq), distributional
concept-distance Dfstribconcep), and Hirst and Budanitsky’s (2005) results using WordNet-based
concept-distance measur&¥Netoncep). Best results for each measure-type are shown in boldface.

suspect alarm detection correctioncorrection detection correction
Measure ratio  ratio ratio  accuracy ratio P R F performance
Distribyorg
ASDy, 3.36 1.78 5.98 0.84 5.03 7.37 4553 12.69 10.66
Cogp 291 1.64 4.77 0.85 406 597 37.15 10.28 8.74
Jshy, 329 177 5.82 0.83 488 7.19 4432 12.37 10.27
Lin pmi 3.63 215 7.78 0.84 6.52 9.38 58.38 16.16 13.57
Distribconcept
ASDgp 4.11 2.54 10.43 0.91 9.49 12.19 25.28 16.44 14.96
Cogyp 4.00 251 10.03 0.90 9.05 11.77 26.99 16.38 14.74
Jshy, 3.58 2.46 8.79 0.90 7.87 10.47 34.66 16.08 14.47
Linpmi 3.02 2.60 7.84 0.88 6.87 9.45 36.86 15.04 13.24
WNetoncept
Hirst—St-Onge 424 195 8.27 0.93 7.70 9.67 26.33 14.15 13.16
Jiang—Conrath 473 297 14.02 0.92 1291 14.33 46.22 21.88 20.13
Leacock—Chodrow 3.23 272 8.80 0.83 7.30 1156 60.33 19.40 16.10
Lin 357 271 9.70 0.87 8.48 9.56 5156 16.13 14.03
Resnik 2.58 2.75 7.10 0.78 555 9.00 55.00 15.47 12.07

Notice that the correction ratio is the product of thethan the besDistribconceptmeasures. While it is
detection ratio and correction accuracy. The over€lear that the Leacock—Chodorow measure is rela-
all (single-point) precisiorP (no. of true-alarms / tively less accurate in choosing the right spelling-
no. of alarms), recalR (no. of true-alarms / no. variant for an alarm (correction accuracy), detec-
of malapropisms), an&-score E%R) of detec- tion ratio and detectioffr-score present contrary
tion are also computed. The product of detectiorpictures of relative performance in detection. As
F-score and correction accuracy, which we will correction ratio is determined by the product of
call correction performance, can also be used as a number of ratios, each evaluating the various
a bottom-line performance metric. stages of malapropism correction (identifying sus-
pects, raising alarms, and applying the correction),
we believe it is a better indicator of overall per-
formance than correction performance, which is

Table 4 details the performance Distribyrg
and Distribconceptmeasures. For comparison, re-

sults obtained by Hirst and Budanitsky (2005)a not-so-elegant product of &hscore and accu-

with the use ofWNe measures are also ) .
boncept ) ) racy. However, no matter which of the two is
shown. Observe that the correction ratio results . -
- chosen as the bottom-line performance statistic,

for the Distrib,,org measures are poor compared to

L . the results show that the newly proposed distri-
Distribconceptmeasures; the concept-distance mea; Y prop

L h butional concept-distance measures are clearly su-
sures are clearly superior, in particukgDl:, and . .
. . . : perior to word-distance measures. Further, of all
Cosp. Moreover, if we consider correction ratio to the WordNet-based measures, only that proposed
be the bottom-line statistic, then tistribconcept Oy

by Jiang and Conrath outperforms the best dis-
measures outperform alVNegonceptmeasures ex- = . . ;
. tributional concept-distance measures consistently
cept the Jiang—Conrath measure. If we con

sider correction performance to be the bottom-lineWlth respect to both bottom-line statistics.

statistic, then again we see that the distributionab Related Work

concept-distance measures outperform the word-

distance measures, except in the casdiofn, Patwardhan and Pedersen (2006) craggregate
which gives slightly poorer results with concept- co-occurrence vectorsfor a WordNet sense by
distance. Also, in contrast to correction ratio val-adding the co-occurrence vectors of the words in
ues, using the Leacock—Chodorow measure resulttss WordNet gloss. The distance between two
in relatively higher correction performance valuessenses is then determined by the cosine of the an-
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gle between their aggregate vectors. However, asrrors. We showed that distributional concept-
we pointed out in Mohammad and Hirst (2005),distance measures outperformed word-distance
such aggregate co-occurrence vectors are expectateasures in both tasks. They do not perform
to be noisy because they are created from data thas well as the best WordNet-based measures in
is not sense-annotated. Therefore, we employerhnking a small set of word pairs, but in the task
simple word sense disambiguation and bootstrapef correcting real-word spelling errors, they beat
ping techniques on our base WCCM to createall WordNet-based measures except for Jiang—
more-accurate co-occurrence vectors, which gav€onrath (which is markedly better) and Leacock-
markedly higher accuracies in the task of deterChodorow (which is slightly better if we consider
mining word sense dominance. In the exper-correction performance as the bottom-line statis-
iments described in this paper, we used theséc, but slightly worse if we rely on correction
bootstrapped co-occurrence vectors to determingtio). It should be noted that the Rubenstein
concept-distance. and Goodenough word-pairs used in the ranking
Pantel (2005) also provides a way to creatdask, as well as all the real-word spelling errors
co-occurrence vectors for WordNet senses. Thé the correction task are nouns. We expect that
lexical co-occurrence vectors of words in a leafthe WordNet-based measures will perform poorly
node are propagated up the WordNet hierarchywhen other parts of speech are involved, as those
A parent node inherits those co-occurrences thatierarchies of WordNet are not as extensively de-
are shared by its children. Lastly, co-occurrenceseloped. On the other hand, our DPC-based mea-
not pertaining to the leaf nodes are removed fronsures do not rely on any hierarchies (even if they
its vector. Even though the methodology at-exist in a thesaurus) but on sets of words that un-
tempts at associating a WordNet node or sensambiguously represent each sense. Further, be-
with only those co-occurrences that pertain to it,cause our measures are tied closely to the corpus
no attempt is made at correcting the frequencyirom which co-occurrence counts are made, we
counts. After allwordl—word2co-occurrence fre- expect the use of domain-specific corpora to result
quency (or association) is likely not the same adn even better results.
SENSEL-word2 co-occurrence frequency (or asso-
ciation), simply becauseordl may have senses

All the distributional measures that we have
considered in this paper aftexical—that is, the
other thansensel, as well. The co-occurrence yigyinytional profiles of the target word or con-

frequency of a parent is the weighted sum of COent are hased on their co-occurrence with words

occurrence frequencies of its children. The fre—in a text. By contrastsemanticDPs would be

quencies of the child nodes are used as weightaqeq on information such as what concepts usu-

Sense ambiguity issues apart, this is still proby ¢4 occur with the target word or concept. Se-

lematic because a parent concept (8§D) MaY  mantic profiles of words can be obtained from
co-occur much more frequently (or infrequently) the WCCM itself (using the row entry for the

with a word than its children (such aBen, ar-  4rq) 1t would be interesting to see how distri-
chaeopteryx, aquatic bird, trogoand others). In 1, sional measures of word-distance that use these
contrast, the bootstrapped WCCM we use not onlye yantic DPs of words perform. We also intend

identifies which words co—occgr'with whigh con- ¢ explore the use of semantic DPs of concepts
cepts, but also has more sophlstlcated estimates QEquired from aoncept—concept co-occurrence
the co-occurrence frequencies. matrix (CCCM) . A CCCM can be created from
the WCCM by setting the row entry for a concept
or category to be the average of WCCM row val-

We have proposed a framework that allows disUes for all the words pertaining to it.

tributional measures to estimate concept-distance Both DPW- and WordNet-based measures have
using a published thesaurus and raw text. Weéarge space and time requirements for pre-
evaluated them in comparison with traditional dis-computing and storing all possible distance val-
tributional word-distance measures and WordNetues for a language. However, by using the cate-
based measures through their ability in rankinggories of a thesaurus as very coarse concepts, pre-
word-pairs in order of their human-judged linguis- computing and storing all possible distance values
tic distance, and in correcting real-word spellingfor our DPC-based measures requires a matrix of

7 Conclusion
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size only about 80& 800. This level of concept-  taxonomy. InProceedings of International Con-
coarseness might seem drastic at first glance, but ference on Research on Computational Linguistics
we have shown that distributional measures of dis- (RQCLlNG X) Taiwan. _
tance between these coarse concepts are quite ué@%%’d'a '—FaCCI’Ck ar:d ':/'a”'('; %‘Ogﬁfc’tw- _19|93-t Cfom-
. . _ INing IocCal context an or et similarity Tor
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Abstract

We introduce SPMT, a new class of sta-
tistical Translation Models that use Syn-
tactified target language Phrases. The
SPMT models outperform a state of the art
phrase-based baseline model by 2.64 Bleu
points on the NIST 2003 Chinese-English
test corpus and 0.28 points on a human-
based quality metric that ranks translations
on a scale from 1 to 5.

1

During the last four years, various implemen-
tations and extentions to phrase-based statistical
models (Marcu and Wong, 2002; Koehn et al.,
2003; Och and Ney, 2004) have led to signif-
icant increases in machine translation accuracy.
Although phrase-based models yield high-quality
translations for language pairs that exhibit simi-
lar word order, they fail to produce grammatical
outputs for language pairs that are syntactically
divergent. Recent models that exploit syntactic
information of the source language (Quirk et al.,
2005) have been shown to produce better outputs
than phrase-based systems when evaluated on rel-
atively small scale, domain specific corpora. And
syntax-inspired formal models (Chiang, 2005), in
spite of being trained on significantly less data,
have shown promising results when compared on
the same test sets with mature phrase-based sys-
tems. To our knowledge though, no previous re-
search has demonstrated that a syntax-based sta-
tistical translation system could produce better re-
sults than a phrase-based system on a large-scale,
well-established, open domain translation task. In
this paper we present such a system.

Our translation models rely upon and naturally
exploit submodels (feature functions) that have
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been initially developed in phrase-based systems
for choosing target translations of source language
phrases, and use new, syntax-based translation and
target language submodels for assembling target
phrases into well-formed, grammatical outputs.

After we introduce our models intuitively, we
discuss their formal underpinning and parameter
training in Section 2. In Section 3, we present our
decoder and, in Section 4, we evaluate our models
empirically. In Section 5, we conclude with a brief
discussion.

2 SPMT: statistical Machine Translation
with Syntactified Phrases

2.1 Anintuitiveintroduction to SPMT

After being exposed to 100M+ words of parallel
Chinese-English texts, current phrase-based statis-
tical machine translation learners induce reason-
ably reliable phrase-based probabilistic dictionar-
ies. For example, our baseline statistical phrase-
based system learns that, with high probabilities,
the Chinese phrases “ASTRO- -NAUTS”, “FRANCE
AND RUSSIA” and “COMINGFROM” can be trans-
lated into English as “astronauts/‘cosmonauts”,

“france and russia’/“france and russian” and

“‘coming from”/from”, respectively. 1 Unfortu-
nately, when given as input Chinese sentence 1,
our phrase-based system produces the output
shown in 2 and not the translation in 3, which
correctly orders the phrasal translations into a
grammatical sequence. We believe this hap-
pens because the distortion/reordering models that
are used by state-of-the-art phrase-based systems,
which exploit phrase movement and ngram target

To increase readability, in this paper, we represent Chi-
nese words using fully capitalized English glosses and En-
glish words using lowercased letters.

Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLRagesy4-52,
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language models (Och and Ney, 2004; Tillman,
2004), are too weak to help a phrase-based de-
coder reorder the target phrases into grammatical
outputs.

THESE 7PEOPLE INCLUDE COMINGFROM

1

FRANCE AND RUSSIA p-DE ASTRO- -NAUTS . @)

the 7 people including those from france @
and the russian cosmonauts .

these 7 people include astronauts coming @)

from france and russia .

One method for increasing the ability of a de-
coder to reorder target language phrases is that
of decorating them with syntactic constituent in-
formation.  For example, we may make ex-
plicit that the Chinese phrase “ASTRO- -NAUTS”
may be translated into English as a noun phrase,
NP(NNS(astronauts)); that the phrase FRANCE AND
RUSSIA may be translated into a complex noun-
phrase, NP(NP(NNP(france)) CC(and) NP(NNP(russia)));
that the phrase COMINGFROM may be translated
into a partially realized verb phrase that is look-
ing for a noun phrase to its right in order to be
fully realized, VP(VBG(coming) PP(IN(from) NP:x0));
and that the Chinese particle p-DE, when occurring
between a Chinese string that was translated into
a verb phrase to its left and another Chinese string
that was translated into a noun phrase to its right,
VP:x1 p-DE NP:x0, should be translated to noth-
ing, while forcing the reordering of the two con-
stituents, NP(NP:x0, VP:x1). If all these translation
rules (labeled r;1 to 4 in Figure 1) were available
to a decoder that derives English parse trees start-
ing from Chinese input strings, this decoder could
produce derivations such as that shown in Fig-
ure 2. Because our approach uses translation rules
with Syntactified target language Phrases (see Fig-
ure 1), we call it SPMT.

2.2 A formal introduction to SPMT
2.2.1 Theoretical foundations

We are interested to model a generative process
that explains how English parse trees 7 and their
associated English string yields E, foreign sen-
tences, F', and word-level alignments, A, are pro-
duced. We assume that observed (7, F, A) triplets
are generated by a stochastic process similar to

r1 :NP(NNS(astronauts)) — ASTRO- -NAUTS

r2 :NP(NP(NNP(france)) CC(and) NP(NNP(russia))) —
FRANCE AND RUSSIA

r3 :VP(VBG(coming) PP(IN(from) NP:x0)) —
COMINGFROM x0

r4 :NP(NP:x0, VP:x1) — x1 p-DE x0

r5 :NNP(france) — FRANCE

76 :NP(NP(NNP(france)) CC(and) NP:x0) — FRANCE AND x0

r7 :NNS(astronauts) — ASTRO- -NAUTS

rs :NNP(russia) — RUSSIA

r9 :NP(NNS:x0) — x0

710 :PP(IN:x0 NP:x1) — x0 x1

711 :NP(NP:x0 CC:x1 NP:x2) — x0 x1 x2

r12 :NP(NNP:x0) — x0

r13 :CC(and) — AND

714 :NP(NP:x0 CC(and) NP:x1) — x0 AND x1

r15 :NP(NP:x0 VP(VBG(coming) PP(IN(from) NP:x1))) —
x1 COMINGFROM x0

Figure 1: Examples of xRS rules.

that used in Data Oriented Parsing models (Bon-
nema, 2002). For example, if we assume that the
generative process has already produced the top
NP node in Figure 2, then the corresponding par-
tial English parse tree, foreign/source string, and
word-level alignment could be generated by the
rule derivation r4(r1,73(r2)), where each rule is
assumed to have some probability.

The extended tree to string transducers intro-
duced by Knight and Graehl (2005) provide a nat-
ural framework for expressing the tree to string
transformations specific to our SPMT models.
The transformation rules we plan to exploit are
equivalent to one-state xRS top-down transduc-
ers with look ahead, which map subtree patterns
to strings. For example, rule r3 in Figure 1 can
be applied only when one is in a state that has a
VP as its syntactic constituent and the tree pat-
tern VP(VBG(coming) PP(IN(from) NP)) immediately
underneath. The rule application outputs the string
“COMINGFROM” as the transducer moves to the
state co-indexed by x0; the outputs produced from
the new state will be concatenated to the right of
the string “COMINGFROM”.

Since there are multiple derivations that could
lead to the same outcome, the probability of a
tuple (7, F, A) is obtained by summing over all
derivations 0; € © that are consistent with the tu-



NP
P

VP
PP
NP
N‘ NP NP
| |
cc
\ \ | \ \

NNS VBG IN NNP NNP

astronauts coming  from france and  russia

COMINGFROM FRANCE AND RUSSIA p-DE ASTRO- -NAUTS

Figure 2: English parse tree derivation of the Chi-
nese string COMINGFROM FRANCE AND RUSSIA p-
DE ASTRO- -NAUTS.

ple, ¢(©) = (m, F, A). The probability of each
derivation 6; is given by the product of the proba-
bilities of all the rules p(r;) in the derivation (see
equation 4).

Pr(m, F,A) =

> II ptry) @

0:€0,c(0)=(n,F,A) r;€b;

In order to acquire the rules specific to our
model and to induce their probabilities, we parse
the English side of our corpus with an in-house
implementation (Soricut, 2005) of Collins pars-
ing models (Collins, 2003) and we word-align the
parallel corpus with the Giza++2 implementation
of the IBM models (Brown et al., 1993). We
use the automatically derived (English-parse-tree,
English-sentence, Foreign-sentence, Word-level-
alignment) tuples in order to induce xRS rules for
several models.

222 SPMT Model 1

In our simplest model, we assume that each
tuple (m, F, A) in our automatically annotated
corpus could be produced by applying a com-
bination of minimally syntactified, lexicalized,
phrase-based compatible XRS rules, and mini-
mal/necessary, non-lexicalized xRS rules. We call
a rule non-lexicalized whenever it does not have
any directly aligned source-to-target words. Rules
rg—r12 in Figure 1 are examples of non-lexicalized
rules.

Minimally syntactified, lexicalized, phrase-
based-compatible xRS rules are extracted via a

2http://www.fjoch.com/GIZA++.html
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simple algorithm that finds for each foreign phrase
FZ.], the smallest xRS rule that is consistent with
the foreign phrase FZJ , the English syntactic tree
m, and the alignment A. The algorithm finds for
each foreign/source phrase span its projected span
on the English side and then traverses the En-
glish parse tree bottom up until it finds a node
that subsumes the projected span. If this node has
children that fall outside the projected span, then
those children give rise to rules that have variables.
For example, if the tuple shown in Figure 2 is in
our training corpus, for the foreign/source phrases
FRANCE, FRANCE AND, FRANCE AND RUSSIA, and
ASTRO- -NAUTS, we extract the minimally syntac-
tified, lexicalized phrase-based-compatible xRS
rules rs, g, 72, and r7 in Figure 1, respectively.
Because, as in phrase-based MT, all our rules have
continuous phrases on both the source and target
language sides, we call these phrase-based com-
patible xRS rules.

Since these lexicalized rules are not sufficient to
explain an entire (7, F), A) tuple, we also extract
the required minimal/necessary, non-lexicalized
XRS rules. The minimal non-lexicalized rules that
are licensed by the tuple in Figure 2 are labeled
r4,T9,710,711 and r1o in Figure 1. To obtain the
non-lexicalized xRS rules, we compute the set of
all minimal rules (lexicalized and non-lexicalized)
by applying the algorithm proposed by Galley et
al. (2006) and then remove the lexicalized rules.
We remove the Galley et al.’s lexicalized rules
because they are either already accounted for by
the minimally syntactified, lexicalized, phrase-
based-compatible XRS rules or they subsume non-
continuous source-target phrase pairs.

It is worth mentioning that, in our framework,
a rule is defined to be “minimal” with respect to a
foreign/source language phrase, i.e., it is the min-
imal xRS rule that yields that source phrase. In
contrast, in the work of Galley et al. (2004; 2006),
arule is defined to be minimal when it is necessary
in order to explain a (, F, A) tuple.

Under SPMT model 1, the tree in Figure 2 can
be produced, for example, by the following deriva-

tion: 74(rg(r7), r3(re(r12(r3)))).

223 SPMT Model 1 Composed

We hypothesize that composed rules, i.e., rules
that can be decomposed via the application of a
sequence of Model 1 rules may improve the per-
formance of an SPMT system. For example, al-
though the minimal Model 1 rules r1; and rq3 are



DT 1 NN

the mutual

THE MUTUAL UNDERSTANDING

understanding anotherword

Figure 3: Problematic syntactifications of phrasal
translations.

sufficient for building an English NP on top of two
NPs separated by the Chinese conjunction AND,
the composed rule r14 in Figure 1 accomplishes
the same result in only one step. We hope that the
composed rules could play in SPMT the same role
that phrases play in string-based translation mod-
els.

To test our hypothesis, we modify our rule ex-
traction algorithm so that for every foreign phrase
Fij, we extract not only a minimally syntactified,
lexicalized xRS rule, but also one composed rule.
The composed rule is obtained by extracting the
rule licensed by the foreign/source phrase, align-
ment, English parse tree, and the first multi-child
ancestor node of the root of the minimal rule. Our
intuition is that composed rules that involve the ap-
plication of more than two minimal rules are not
reliable. For example, for the tuple in Figure 2,
the composed rule that we extract given the for-
eign phrases AND and COMINGFROM are respec-
tively labeled as rules r14 and r15 in Figure 1.

Under the SPMT composed model 1,
the tree in Figure 2 can be produced,
for example, by the following derivation:

715(r9(r7), r14(r12(r5), 112(78)))-

224 SPMT Model 2

In many instances, the tuples (m, F, A) in our
training corpus exhibit alignment patterns that can
be easily handled within a phrase-based SMT
framework, but that become problematic in the
SPMT models discussed until now.

Consider, for example, the (7, F, A) tuple frag-
ment in Figure 3. When using a phrase-based
translation model, one can easily extract the
phrase pair (THE MUTUAL; the mutual) and use it
during the phrase-based model estimation phrase
and in decoding. However, within the xRS trans-
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ducer framework that we use, it is impossible to
extract an equivalent syntactified phrase transla-
tion rule that subsumes the same phrase pair be-
cause valid xRS translation rules cannot be multi-
headed. When faced with this constraint, one has
several options:

e One can label such phrase pairs as non-
syntactifiable and ignore them. Unfortu-
nately, this is a lossy choice. On our par-
allel English-Chinese corpus, we have found
that approximately 28% of the foreign/source
phrases are non-syntactifiable by this defini-
tion.

One can also traverse the parse tree upwards
until one reaches a node that is xRS valid, i.e.,
a node that subsumes the entire English span
induced by a foreign/source phrase and the
corresponding word-level alignment. This
choice is also inappropriate because phrase
pairs that are usually available to phrase-
based translation systems are then expanded
and made available in the SPTM models only
in larger applicability contexts.

A third option is to create xRS compati-
ble translation rules that overcome this con-
straint.

Our SPMT Model 2 adopts the third option by
rewriting on the fly the English parse tree for each
foreign/source phrase and alignment that lead to
non-syntactifiable phrase pairs. The rewriting pro-
cess adds new rules to those that can be created
under the SPMT model 1 constraints. The process
creates one xRS rule that is headed by a pseudo,
non-syntactic nonterminal symbol that subsumes
the target phrase and corresponding multi-headed
syntactic structure; and one sibling xRS rule that
explains how the non-syntactic nonterminal sym-
bol can be combined with other genuine nonter-
minals in order to obtain genuine parse trees. In
this view, the foreign/source phrase THE MUTUAL
and corresponding alignment in Figure 3 licenses
the rules «NPB«_NN(DT(the) JI(mutual)) — THE MU-
TUAL and NPB(xNPBx_NN:x0 NN:x1) — x0 x1 even
though the foreign word UNDERSTANDING is
aligned to an English word outside the NPB con-
situent. The name of the non-syntactic nontermi-
nal reflects the intuition that the English phrase “the
mutual” corresponds to a partially realized NPB that
needs an NN to its right in order to be fully real-
ized.



Our hope is that the rules headed by pseudo
nonterminals could make available to an SPMT
system all the rules that are typically available to
a phrase-based system; and that the sibling rules
could provide a sufficiently robust generalization
layer for integrating pseudo, partially realized con-
stituents into the overall decoding process.

225 SPMT Mode 2 Composed

The SPMT composed model 2 uses all rule
types described in the previous models.

2.3 Estimating rule probabilities

For each model, we extract all rule instances that
are licensed by a symmetrized Giza-aligned paral-
lel corpus and the constraints we put on the model.
We condition on the root node of each rule and use
the rule counts f(r) and a basic maximum likeli-
hood estimator to assign to each rule type a condi-
tional probability (see equation 5).

f(r)

r':root(r’)=root(r) f(’f'/)

It is unlikely that this joint probability model
can be discriminative enough to distinguish be-
tween good and bad translations. We are not too
concerned though because, in practice, we decode
using a larger set of submodels (feature functions).

Given the way all our lexicalized xRS rules have
been created, one can safely strip out the syntac-
tic information and end up with phrase-to-phrase
translation rules. For example, in string-to-string
world, rule r5 in Figure 1 can be rewritten as “france
— FRANCE”; and rule rg can be rewritten as “france
and — FRANCE AND”. When one analyzes the lex-
icalized xRS rules in this manner, it is easy to as-
sociate with them any of the submodel probability
distributions that have been proven useful in statis-
tical phrase-based MT. The non-lexicalized rules
are assigned probability distributions under these
submodels as well by simply assuming a NULL
phrase for any missing lexicalized source or target
phrase.

In the experiments described in this paper, we
use the following submodels (feature functions):
Syntax-based-like submodels:

® proot(7;) IS the root normalized conditional
probability of all the rules in a model.

p(r|root(r)) = 5 ()

® peig(r3) is the CFG-like probability of the
non-lexicalized rules in the model. The lexi-
calized rules have by definition perg = 1.
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e is lexicalized(r;) is an indicator feature func-
tion that has value 1 for lexicalized rules, and
value 0 otherwise.

e is.composed(r;) is an indicator feature func-
tion that has value 1 for composed rules.

e is_lowcount(r;) is an indicator feature func-
tion that has value 1 for the rules that occur
less than 3 times in the training corpus.

Phrase-based-like submodds:

lex_pef(r;) is the direct phrase-based con-
ditional probability computed over the for-
eign/source and target phrases subsumed by
arule.

lex_pfe(r; ) is the inverse phrase-based condi-
tional probability computed over the source
and target phrases subsumed by a rule.

ml(r;) is the IBM model 1 probability com-
puted over the bags of words that occur on
the source and target sides of a rule.

mlinv(r;) is the IBM model 1 inverse prob-
ability computed over the bags of words that
occur on the source and target sides of a rule.

Im(e) is the language model probability of
the target translation under an ngram lan-
guage model.

e wp(e) is a word penalty model designed to
favor longer translations.

All these models are combined log-linearly dur-
ing decoding. The weights of the models are
computed automatically using a variant of the
Maximum Bleu training procedure proposed by
Och (2003).

The phrase-based-like submodels have been
proved useful in phrase-based approaches to
SMT (Och and Ney, 2004). The first two syntax-
based submodels implement a “fused” translation
and lexical grounded distortion model (proo) and
a syntax-based distortion model (pcfg). The indi-
cator submodels are used to determine the extent
to which our system prefers lexicalized vs. non-
lexicalized rules; simple vs. composed rules; and
high vs. low count rules.



3 Decoding

3.1 Decoding with one SPMT model

We decode with each of our SPMT models using
a straightforward, bottom-up, CKY-style decoder
that builds English syntactic constituents on the
top of Chinese sentences. The decoder uses a bina-
rized representation of the rules, which is obtained
via a syncronous binarization procedure (Zhang et
al., 2006). The CKY-style decoder computes the
probability of English syntactic constituents in a
bottom up fashion, by log-linearly interpolating all
the submodel scores described in Section 2.3.

The decoder is capable of producing nbest
derivations and nbest lists (Knight and Graehl,
2005), which are used for Maximum Bleu train-
ing (Och, 2003). When decoding the test cor-
pus, the decoder returns the translation that has the
most probable derivation; in other words, the sum
operator in equation 4 is replaced with an argmax.

3.2 Decoding with multiple SPMT models

Combining multiple MT outputs to increase per-
formance is, in general, a difficult task (Matusov
et al., 2006) when significantly different engines
compete for producing the best outputs. In our
case, combining multiple MT outputs is much
simpler because the submodel probabilities across
the four models described here are mostly iden-
tifical, with the exception of the root normalized
and CFG-like submodels which are scaled differ-
ently — since Model 2 composed has, for example,
more rules than Model 1, the root normalized and
CFG-like submodels have smaller probabilities for
identical rules in Model 2 composed than in Model
1. We compare these two probabilities across the
submodels and we scale all model probabilities to
be compatible with those of Model 2 composed.

With this scaling procedure into place, we pro-
duce 6,000 non-unique nbest lists for all sentences
in our development corpus, using all SPMT sub-
models. We concatenate the lists and we learn a
new combination of weights that maximizes the
Bleu score of the combined nbest list using the
same development corpus we used for tuning the
individual systems (Och, 2003). We use the new
weights in order to rerank the nbest outputs on the
test corpus.
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4 Experiments

4.1 Automatic evaluation of the models

We evaluate our models on a Chinese to English
machine translation task. We use the same training
corpus, 138.7M words of parallel Chinese-English
data released by LDC, in order to train several
statistical-based MT systems:

e PBMT, a strong state of the art phrase-based
system that implements the alignment tem-
plate model (Och and Ney, 2004); this is the
system ISl has used in the 2004 and 2005
NIST evaluations.

four SPMT systems (M1, M1C, M2, M2C)
that implement each of the models discussed
in this paper;

a SPMT system, Comb, that combines the
outputs of all SPMT models using the pro-
cedure described in Section 3.2.

In all systems, we use a rule extraction algo-
rithm that limits the size of the foreign/source
phrases to four words. For all systems, we use
a Kneser-Ney (1995) smoothed trigram language
model trained on 2.3 billion words of English. As
development data for the SPMT systems, we used
the sentences in the 2002 NIST development cor-
pus that are shorter than 20 words; we made this
choice in order to finish all experiments in time for
this submission. The PBMT system used all sen-
tences in the 2002 NIST corpus for development.
As test data, we used the 2003 NIST test set.

Table 1 shows the number of string-to-string or
tree-to-string rules extracted by each system and
the performance on both the subset of sentences in
the test corpus that were shorter than 20 words and
the entire test corpus. The performance is mea-
sured using the Bleu metric (Papineni et al., 2002)
on lowercased, tokenized outputs/references.

The results show that the SPMT models clearly
outperform the phrase-based systems — the 95%
confidence intervals computed via bootstrap re-
sampling in all cases are around 1 Bleu point. The
results also show that the simple system combina-
tion procedure that we have employed is effective
in our setting. The improvement on the develop-
ment corpus transfers to the test setting as well.

A visual inspection of the outputs shows signif-
icant differences between the outputs of the four
models. The models that use composed rules pre-
fer to produce outputs by using mostly lexicalized



System # of rules Bleu score Bleu score | Bleu score
(in millions) on Dev on Test on Test

(4 refs) (4 refs) (4 refs)

< 20 words | < 20 words

PBMT 125.8 34.56 34.83 31.46
SPMT-M1 34.2 37.60 38.18 33.15
SPMT-M1C 75.7 37.30 38.10 32.39
SPMT-M2 70.4 37.77 38.74 33.39
SPMT-M2C 1111 37.48 38.59 33.16
SPMT-Comb 1111 39.44 39.56 34.10

Table 1: Automatic evaluation results.

rules; in contrast, the simple M1 and M2 mod-
els produce outputs in which content is translated
primarily using lexicalized rules and reorderings
and word insertions are explained primarily by the
non-lexical rules. It appears that the two strategies
are complementary, succeeding and failing in dif-
ferent instances. We believe that this complemen-
tarity and the overcoming of some of the search
errors in our decoder during the model rescoring
phase explain the success of the system combina-
tion experiments.

We suspect that our decoder still makes many
search errors. In spite of this, the SPTM outputs
are still significantly better than the PBMT out-
puts.

4.2 Human-based evaluation of the modéels

We also tested whether the Bleu score improve-
ments translate into improvements that can be per-
ceived by humans. To this end, we randomly se-
lected 138 sentences of less than 20 words from
our development corpus; we expected the transla-
tion quality of sentences of this size to be easier to
assess than that of sentences that are very long.

We prepared a web-based evaluation interface
that showed for each input sentence:

e the Chinese input;
e three English reference translations;
e the output of seven “MT systems”.

The evaluated “MT systems” were the six systems
shown in Table 1 and one of the reference trans-
lations. The reference translation presented as
automatically produced output was selected from
the set of four reference translations provided by
NIST so as to be representative of human transla-
tion quality. More precisely, we chose the second
best reference translation in the NIST corpus ac-
cording to its Bleu score against the other three
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reference translations. The seven outputs were
randomly shuffled and presented to three English
speakers for assessment.

The judges who participated in our experiment
were instructed to carefully read the three refer-
ence translations and seven machine translation
outputs, and assign a score between 1 and 5 to
each translation output on the basis of its quality.
Human judges were told that the translation qual-
ity assessment should take into consideration both
the grammatical fluency of the outputs and their
translation adequacy. Table 2 shows the average
scores obtained by each system according to each
judge. For convenience, the table also shows the
Bleu scores of all systems (including the human
translations) on three reference translations.

The results in Table 2 show that the human
judges are remarkably consistent in preferring the
syntax-based outputs over the phrase-based out-
puts. On a 1 to 5 quality scale, the difference be-
tween the phrase-based and syntax-based systems
was, on average, between 0.2 and 0.3 points. All
differences between the phrase-based baseline and
the syntax-based outputs were statistically signif-
icant. For example, when comparing the phrase-
based baseline against the combined system, the
improvement in human scores was significant at
P = 4.04e75(t = 4.67,df = 413).

The results also show that the LDC reference
translations are far from being perfect. Although
we selected from the four references the second
best according to the Bleu metric, this human ref-
erence was judged to be at a quality level of only
4.67 on a scale from 1 to 5. Most of the translation
errors were fluency errors. Although the human
outputs had most of the time the right meaning,
the syntax was sometimes incorrect.

In order to give readers a flavor of the types
of re-orderings enabled by the SPMT models, we
present in Table 3, several translation outputs pro-
duced by the phrase-based baseline and the com-



System Bleuscore | Judge 1 | Judge 2 | Judge 3 | Judge
on Dev avg

(3 refs)

< 20 words
PBMT 31.00 3.00 3.34 2.95 3.10
SPMT-M1 33.79 3.28 3.49 3.04 3.27
SPMT-M1C 33.66 3.23 3.43 3.26 3.31
SPMT-M2 34.05 3.24 3.45 3.10 3.26
SPMT-M2C 33.42 3.24 3.48 3.13 3.28
SPMT-Combined 35.33 3.31 3.59 3.25 3.38
Human Ref 40.84 4.64 4.62 4.75 4.67

Table 2: Human-based evaluation results.

bined SPMT system. The outputs were selected to
reflect both positive and negative effects of large-
scale re-orderings.

5 Discussion

The SPMT models are similar to the models pro-
posed by Chiang (2005) and Galley et al. (2006).
If we analyze these three models in terms of ex-
pressive power, the Galley et al. (2006) model is
more expressive than the SPMT models, which
in turn, are more expressive than Chiang’s model.
The xRS formalism utilized by Galley et al. (2006)
allows for the use of translation rules that have
multi-level target tree annotations and discontin-
uous source language phrases. The SPMT mod-
els are less general: they use translation rules that
have multi-level target tree annotations but require
that the source language phrases are continuous.
The Syncronous Grammar formalism utilized by
Chiang is stricter than SPMT since it allows only
for single-level target tree annotations.

The parameters of the SPMT models presented
in this paper are easier to estimate than those of
Galley et al’s (2006) and can easily exploit and
expand on previous research in phrase-based ma-
chine translation. Also, the SPMT models yield
significantly fewer rules that the model of Galley
et al. In contrast with the model proposed by Chi-
ang, the SPMT models introduced in this paper are
fully grounded in syntax; this makes them good
candidates for exploring the impact that syntax-
based language models could have on translation
performance.

From a machine translation perspective, the
SPMT translation model family we have proposed
in this paper is promising. To our knowledge,
we are the first to report results that show that a
syntax-based system can produce results that are
better than those produced by a strong phrase-
based system in experimental conditions similar
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to those used in large-scale, well-established in-
dependent evaluations, such as those carried out
annually by NIST.

Although the number of syntax-based rules
used by our models is smaller than the number
of phrase-based rules used in our state-of-the-art
baseline system, the SPMT models produce out-
puts of higher quality. This feature is encouraging
because it shows that the syntactified translation
rules learned in the SPMT models can generalize
better than the phrase-based rules.

We were also pleased to see that the Bleu
score improvements going from the phrase- to the
syntax-based models, as well as the Bleu improve-
ments going from the simple syntax-based models
to the combined models system are fully consis-
tent with the human qualitative judgments in our
subjective evaluations. This correlation suggests
that we can continue to use the Bleu metric to fur-
ther improve our models and systems.
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Abstract We define a phrasetable as a set of source
phrases (ngrams) and their translations, along
We discuss different strategies for smooth-  ith associated translation probabilitie&s|) and
ing the phrasetable in Statistical MT, and  ;(7|3). These conditional distributions are derived
give results over a range of translation set-  from the joint frequencies(s, #) of source/target

tings. We show that any type of smooth-  phrase pairs observed in a word-aligned parallel
ing is a better idea than the relative-  corpus.

frequency estimates that are often used.
The best smoothing techniques yield con-
sistent gains of approximately 1% (abso-
lute) according to the BLEU metric.

Traditionally, maximume-likelihood estimation
from relative frequencies is used to obtain con-
ditional probabilities (Koehn et al., 2003), eg,
p(3lt) = ¢(5,1)/ >z c(5,1) (since the estimation
problems forp(3|t) and p(t|3) are symmetrical,
we will usually refer only top(3|t) for brevity).
Smoothing is an important technique in statisticalThe most obvious example of the overfitting this
NLP, used to deal with perennial data sparsenessauses can be seen in phrase pairs whose con-
and empirical distributions that overfit the training stituent phrases occur only once in the corpus.
corpus. Surprisingly, however, it is rarely men-These are assigned conditional probabilities of 1,
tioned in statistical Machine Translation. In par- higher than the estimated probabilities of pairs for
ticular, state-of-the-art phrase-based SMT reliesvhich much more evidence exists, in the typical
on aphrasetable—a large set of ngram pairs over case where the latter have constituents that co-
the source and target languages, along with theinccur occasionally with other phrases. During de-
translation probabilities. This table, which may coding, overlapping phrase pairs are in direct com-
contain tens of millions of entries, and phrases opetition, so estimation biases such as this one in
up to ten words or more, is an excellent candidatdavour of infrequent pairs have the potential to sig-
for smoothing. Yet very few publications describe nificantly degrade translation quality.
phrasetable smoothing techniques in detalil. An excellent discussion of smoothing tech-

In this paper, we provide the first system-njques developed for ngram language models
atic study of smoothing methods for phrase-baseg| \ms) may be found in (Chen and Goodman,
SMT. Although we introduce a few new ideas, 1998: Goodman, 2001). Phrasetable smoothing
most methods described here were devised by othyiffers from ngram LM smoothing in the follow-
ers; the main purpose of this paper is not to injng ways:
vent new methods, but to compare methods. In
experiments over many language pairs, we show
that smoothing yields small but consistent gainsin e Probabilities of individual unseen events are
translation performance. We feel that this paper  not important. Because the decoder only
only scratches the surface: many other combina-  proposes phrase translations that are in the
tions of phrasetable smoothing techniques remain  phrasetable (ie, that have non-zero count), it
to be tested. never requires estimates for pairs having

1 Introduction
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c(3,t) = 0.1 However, probability mass is  To modelp(t, a|s), we use a standard loglinear
reserved for theset of unseen translations, approach:
implying that probability mass is subtracted

from the seen translations. p(t, als) o< exp [Z \ifils, b, a)]
7

e There is no obvious lower-order distribution
for backoff. One of the most important tech- where eachf;(s,t,a) is a feature function, and
niques in ngram LM smoothing is to com- Weights A; are set using Och's algorithm (Och,
bine estimates made using the previaus1 ~ 2003) to maximize the system's BLEU score (Pa-
words with those using only the previous-;  Pineni et al., 2001) on a development corpus. The
words, fori = 2...n. This relies on the features used in this study are: the lengthtpf
fact that closer words are more informative,@ single-parameter distortion penalty on phrase

which has no direct analog in phrasetablereordering ina, as described in (Koehn et al.,
smoothing. 2003); phrase translation model probabilities; and

trigram language model probabilitiésg p(t), us-

e The predicted objects are word sequencedg Kneser-Ney smoothing as implemented in the
(in another language). This contrasts to LMSRILM toolkit (Stolcke, 2002).
smoothing where they are single words, and Phrase translation model probabilities are fea-
are thus less amenable to decomposition fofures of the form:
smoothing purposes. K
_ _ _ log p(slt,a) ~ Zlogp(ék\fk)
We propose various ways of dealing with these =1
special features of the phrasetable smoothin

problem, and give evaluations of their perfor- ” ,
mance within a phrase-based SMT system are conditionally independent, and depend only on
) their aligned phrases,. The “forward” phrase

The paper is structured as follows: section 2

gives a brief description of our phrase-based SM1prObab|“t'eSp (t]5) are not used as features, but

) . . only as a filter on the set of possible translations:
system; section 3 presents the smoothing tech- -

; i . : : , or each source phraseghat matches some ngram
niques used; section 4 reviews previous work; sec-

. . i i . dn s, only the 30 top-ranked translationsccord-
tion 5 gives experimental results; and section ~ .
Ing top(t|s) are retained.

ncl nd di future work. . " - ,
concludes and discusses future wo To derive the joint countg(s,¢) from which
p(3|t) andp(t|3) are estimated, we use the phrase

2 Phrase-based Siatistical MT induction algorithm described in (Koehn et al.,
Given a source sentenseour phrase-based SMT 2003), ‘_’Vith symmetrized word alignments gener-
system tries to find the target sentericéhat is ~ &ted using IBM model 2 (Brown et al., 1993).

the most likely translation of. To make search

more efficient, we use the Viterbi approximation
and seek the most likely combination ofind its  Smoothing involves some recipe for modifying
alignmenta with s, rather than just the most likely conditional distributions away from pure relative-

9e, we assume that the phrasgsspecified bya

Smoothing Techniques

t: frequency estimates made from joint counts, in or-
der to compensate for data sparsity. In the spirit of

t = argmax p(t|s) ~ argmax p(t, als), ((Hastie et al., 2001), figure 2.11, pg. 38) smooth-

t ta ing can be seen as a way of combining the relative-

o o frequency estimate, which is a model with high
wherea = (51,t1, 1), ... 5k, tx, ji )i tr @r€ - complexity, high variance, and low bias, with an-
get phrases such thét= 1, ... t; 5; are source  other model with lower complexity, lower vari-
phrases such that = 5;, ...5;,; and sy is the  ance, and high bias, in the hope of obtaining bet-
translation of the:th target phrase;. ter performance on new data. There are two main
— o _ _ ingredients in all such recipes: some probability

This is a first approximation; exceptions occur when dif- . tribution that i ther th lative f
ferent phrasetables are used in parallel, and when rules at%_'s ribution thatis smoother than refative frequen-
used to translate certain classes of entities. cies (ie, that has fewer parameters and is thus less
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complex) and some technique for combining that,(5|t) is a smooth backoff distribution, andis
distribution with relative frequency estimates. Wea threshold above which counts are considered re-
will now discuss both these choices: the distribu-iable. Typically, = 1 andpy,(5|t) is version of
tion for carrying out smoothing and the combina-5(3|f) modified to reserve some probability mass
tion technique. In this discussion, we us@ to  for unseen events.

denote relative frequency distributions. Interpolation schemes have the general form:
Choice of Smoothing Distribution p(3lt) = a(3,8)p(3[t) + B3, H)pe(3lE), (1)

One can distinguish between two approaches tqhere o and 8 are combining coefficients. As
smoothing phrase tableBlack-box techniques do  noted in (Chen and Goodman, 1998), a key
not look inside phrases but instead treat them agjfference between interpolation and backoff is
atomic c_)bjecfs~: that is, both theand thet in the  ha¢ the former approach uses information from
expressiorp(s|t) are treated as units about which e smoothing distribution to modify(|f) for

nothing is known except their counts. In contrasthigher-frequency events, whereas the latter uses
glass-box methods break phrases down into theiryy only for low-frequency events (most often O-
component words. frequency events). Since for phrasetable smooth-
The Dblack-box approach, which is the sim-jng  petter prediction of unseen (zero-count)
pler of the two, has received little attention in o ents has no direct impact—only seen events are
the SMT literature. An interesting aspect of represented in the phrasetable, and thus hypoth-

this approach is that it allows one to implementesjzed during decoding—interpolation seemed a
phrasetable smoothing techniques that are analgnore suitable approach.

gous to LM smoothing techniques, by treating the  por combining  relative-frequency  estimates
problem of estimating(s|t) as if it were the prob- yith glass-box smoothing distributions, we em-
lem of estimating a bigram conditional probabil- yoved loglinear interpolation. This is the tradi-
ity. In this paper, we give experimental resultStjona| approach for glass-box smoothing (Koehn
for phrasetable smoothing techniques analogoug; g 2003; Zens and Ney, 2004). To illustrate the
to Good-Turing, Fixed-Discount, Kneser-Ney, andgjfference between linear and loglinear interpola-

Modified Kneser-Ney LM smoothing. ~ tion, consider combining two Bernoulli distribu-
Glass-box methods for phrasetable smoothingions . () andp,(z) using each method:

have been described by other authors: see sec-

tion 3.3. These authors decompqsé|i) into a  Plincar(®) = api(z) + (1 — a)pa(z)
set of lexical distributiong(s|t) by making inde- o

. L ‘ p1(x)*p2(x)
pendence assumptions about the wardss. The Ploglin(T)

other possibility, which is similar in spirit to ngram Pi(@)?pa(7) + q1(2)*a2()

LM lower-order estimates, is to combine estimatesvhereg;(x) = 1 — p;(x). Settingpa(z) = 0.5
made by replacing words ihwith wildcards, as to simulate uniform smoothing gives,g, (z) =
proposed in section 3.4. p1(x)*/(p1(2)® + qi(z)*). This is actuallyless
smooth than the original distributign (z): it pre-
serves extreme values 0 and 1, and makes inter-
Although we explored a variety of black-box and mediate values more extreme. On the other hand,
glass-box smoothing distributions, we only triedp;;,c(z) = api(z) + (1 — «)/2, which has the
two combination techniques: linear interpolation,opposite properties: it moderates extreme values
which we used for black-box smoothing, and log-and tends to preserve intermediate values.
linear interpolation, which we used for glass-box An advantage of loglinear interpolation is that
smoothing. we can tune loglinear weights so as to maximize
For black-box smoothing, we could have used &he true objective function, for instance BLEU; re-
backoff scheme or an interpolation scheme. Backeall that our translation model is itself loglinear,

Choice of Combination Technique

off schemes have the form: with weights set to minimize errors. In fact, a lim-
~ pn(3l), cG,H)>T itation of the experiments described in this paper
p(3[t) { pb(§|f)7 olse is that the loglinear weights for the glass-box tech-

niques were optimized for BLEU using Och’s al-
where p,(3|t) is a higher-order distribution, gorithm (Och, 2003), while the linear weights for
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black-box techniques were set heuristically. Ob-and Gale, 1991). We first take the log of the ob-
viously, this gives the glass-box techniques an adserved(c, n.) values, and then use a linear least
vantage when the different smoothing techniquesquares fit tdog n. as a function ofog c. To en-
are compared using BLEU! Implementing an al-sure that the result stays close to the reliable values
gorithm for optimizing linear weights according to of n. for largec, error terms are weighted lay ie:
BLEU is high on our list of priorities. c(logn. —logn’)?, wheren/, are the fitted values.
The preceding discussion implicitly assumes a Our implementation pools all count$s, t) to-
single set of counts(3, ) from which conditional gether to obtaim/. (we have not yet tried separate
distributions are derived. But, as phrases of differcounts based on length bés discussed above). It
ent lengths are likely to have different statisticalfollows directly from (2) that the total count mass
properties, it might be worthwhile to break down assigned to unseen phrase pairg,i®)ny = ni,
the global phrasetable into separate phrasetableghich we approximate by). This mass is dis-
for each value oft| for the purposes of smooth- tributed among contexts in proportion toc(),
ing. Any similar strategy that does not split up giving final estimates:
{3|c(5,t) > 0} for any fixedt can be applied to
any smoothing scheme. This is another idea we p(3[F) = Cg(fﬂf) _
are eager to try soon. Socg(8,8) +p(t)n)’
We now describe the individual smoothing ~ ~ _
schemes we have implemented. Four of thenyherep(t) = c(t)/ > 7 c(t).
are bla_ck—box technlques. qud—Tu_rlng and_thre%l2 Fixed-Discount Methods
fixed-discount techniques (fixed-discount inter-
polated with unigram distribution, Kneser-Ney Fixed-discount methods subtract a fixed discount
fixed-discount, and modified Kneser-Ney fixed-D from all non-zero counts, and distribute the re-
discount). Two of them are glass-box techniquessulting probability mass according to a smoothing
Zens-Ney “noisy-or” and Koehn-Och-Marcu IBM distribution (Kneser and Ney, 1995). We use an
smoothing. Our experiments tested not only thesénterpolated version of fixed-discount proposed by
individual schemes, but also some loglinear com{Chen and Goodman, 1998) rather than the origi-
binations of a black-box technique with a glass-nal backoff version. For phrase pairs with non-

box technique. zero counts, this distribution has the general form:
3.1 Good-Turin = c(3,t)—D -

e p(al) = CO L s, @
Good-Turing smoothing is a well-known tech- >osc(8,1)

nique (Church and Gale, 1991) in which observed e ) o
countsc are modified according to the formula: wherepy(5]t) is the smoothing distribution. Nor-
malization constraints fix the value aft):

cg = (c+ )net1/ne 2) - - -

o) = Dy (+,8)/ > e(3,9),
wherec, is a modified count value used to replace 8
c in subsequent relative-frequency estimates, and . _
n. is the number of events having count An Wh_erenlfg*’t) is the number of phrases for
intuitive motivation for this formula is that it ap- wt:/\u;h c(8,t) > 0. 4 with hoices for th
proximates relative-frequency estimates made by € e_xper_lmgnte_ W't~ _two ¢ loices for _t €
successively leaving out each event in the Corpuss:moothlng distribution (]¢). The first is a plain
and then averaging the results (Nadas, 1985). unigramp(s), and the second is the Kneser-Ney
A practical difficulty in implementing Good- lower-order distribution:

Turing smoothing is that the. are noisy for large o - -
c. For instance, there may be only one phrase Po(3) = n”(s’*)/zg:n”(s’*)’
pair that occurs exactly = 347,623 times in a
large corpus, and no pair that occurs- 347,624  ie, the proportion of unique target phrases thist
times, leading ta,(347,623) = 0, clearly not associated with, where,, (3, x) is defined anal-
what is intended. Our solution to this problem ogously ton (*,%). Intuitively, the idea is that
is based on the technique described in (Churckource phrases that co-occur with many different
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target phrases are more likely to appear in nevd.4 Lower-Order Combinations

contexts. _ ~ We mentioned earlier that LM ngrams have a

_For both unigram and Kneser-Ney smoothingnatyrally-ordered sequence of smoothing distribu-
oiistributions, we used a discounting cpefﬁment deTions, obtained by successively dropping the last
rived by (Ney et al., 1994) on the basis of a leaveyyorq in the context. For phrasetable smoothing,

one-out analysis:D = n1/(n1 + 2nz). Forthe  pecause no word i is a priori less informative
Kneser-Ney smoothing distribution, we also testeqnan any others, there is no exact parallel to this
the "Modified Kneser-Ney” extension suggestediachnique. However, itis clear that estimates made
in (Chen and Goodman, 1998), in which specificyy replacing particular target (conditioning) words
coefficients D, are used for small count values yth wildcards will be smoother than the original

¢ up to a maximum of three (i@ is used for rg|ative frequencies. A simple scheme for combin-
¢ > 3). Forc = 2 andc = 3, we used formu- ing them is just to average:

las given in that paper.
o ci(s,t) -

3.3 Lexical Decomposition p(3lE) =) m/f

The two glass-box techniques that we considered =1

involve decomposing source phrases with indewhere:

pendence assumptions. The simplest approach as- “(5 7 20(57751 ot

sumes that all source words are conditionally in- G
dependent, so that:

.. tf).
t;
; One might also consider progressively replacing
i ~ the least informative remaining word in the target
p(slt) = Hp(sj‘t) phrase (using tf-idf or a similar measure).
7=t R The same idea could be applied in reverse, by
We implemented two variants fqi(s;|t) that  replacing particular source (conditioned) words
are described in previous work. (Zens and Neywith wildcards. We have not yet implemented
2004) describe a “noisy-or” combination: this new glass-box smoothing technique, but it has
p(silH) = 1—p(sh) congid(,erable appeal. The ideais sir_n.ilar in spirit to
7 Collins’ backoff method for prepositional phrase
attachment (Collins and Brooks, 1995).

1- H(l —p(s;lti)
i=1 4 Related Work

where s; is the probability thats; is not in the _ _

translation off, and p(s;|t;) is a lexical proba- As mentioned previously, (Chen and Goodman,

bility. (Zens and Ney, 2004) obtain(s;¢;) from i998) give a c_omprehensive survey and evalua-
smoothed relative-frequency estimates in a wordtion of smoothing techniques for language mod-
aligned corpus. Our implementation simply use<!iNg-  As also mentioned previously, there is

IBM1 probabilities, which obviate further smooth- relatively little published work on smoothing for
ing. statistical MT. For the IBM models, alignment

The noisy-or combination stipulates  thag probabilities need to be smooth_e.d for combina-
should not appear i if it is not the translation {10NS Of sentence lengths and positions not encoun-
of any of the words iri. The complement of this, tered in training data (Garcia-Varea et_ al., 1998).
proposed in (Koehn et al., 2005), to say that Moore (200_4) has found tha_lt smoothin_g _to cor-
should appear ir§ if it is the translation of at least rect overestimated IBM1 lexical probabilities for

Q

one of the words iff: rare words can improve word-alignment perfor-
. mance. Langlais (2005) reports negative results

p(sjlt) = Z p(s;lti) /14 for synonym-based smoothing of IBM2 lexical
i€4; probabilities prior to extracting phrases for phrase-

whereA; is a set of likely alignment connections based SMT.
for s;. In our implementation of this method, For phrase-based SMT, the use of smoothing to

we assumed that; = {1,... ,I}, ie the set of avoid zero probabilities during phrase induction is
all connections, and used IBM1 probabilities forreported in (Marcu and Wong, 2002), but no de-
p(slt). tails are given. As described above, (Zens and
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Ney, 2004) and (Koehn et al., 2005) use two dif-sets for tuning loglinear parameters, and tested on
ferent variants of glass-box smoothing (which theythe 3064-sentence test sets.

call “lexical smoothing”) over the phrasetable, and Results are shown in table 1 for relative-
combine the resulting estimates with pure relativefrequency (RF), Good-Turing (GT), Kneser-Ney
frequency ones in a loglinear model. Finally, (Cet-with 1 (KN1) and 3 (KN3) discount coefficients;
tollo et al., 2005) describes the use of Witten-Belland loglinear combinations of both RF and KN3
smoothing (a black-box technique) for phrasetablephrasetables with Zens-Ney-IBM1 (ZN-IBM1)
counts, but does not give a comparison to othesmoothed phrasetables (these combinations are
methods. As Witten-Bell is reported by (Chen anddenoted RF+ZN-IBM1 and KN3+ZN-IBM1).
Goodman, 1998) to be significantly worse than |t is apparent from table 1 that any kind of
Kneser-Ney smoothing, we have not yet tested thiphrase table smoothing is better than using none;

method. the minimum improvement is 0.45 BLEU, and
_ the difference between RF and all other meth-
S Experiments ods is statistically significant. Also, Kneser-

We carried out experiments in two different set-Ney smoothing gives a statls_,tlcally_S|gn|f|c_a_nt m-
rovement over GT smoothing, with a minimum

tings: broad—_coverqge Ones across six Europeahg1ain of 0.30 BLEU. Using more discounting co-
language pairs using selected smoothing tech=

: . o _ efficients does not appear to help. Smoothing
niques and relatively small training corpora; and . . . .
. . . . ._relative frequencies with an additional Zens-Ney
Chinese to English experiments using all im-

plemented smoothing techniques and large trainphrasetable gives about the same gain as Kneser-

ing corpora.  For the black-box techniques Ney smoothing on its own. However, combining

the smoothed phrase table replaced the originallmeser"\Iey with Zens-Ney gives a clear gain over

relative-frequency (RF) phrase table. For th any other method (statistically significant for all

glass-box techniques, a phrase table (either thsé;?aq[lijnag'?hz?l[rhseizczpt;e()raesha;nsdaizﬁg(?r)nd?emmoenr;tar
original RF phrase table or its replacement after g P P Y-

black-qu sm_oothing) was i_nterpolated in !og!in- 52 Chinese-English Experiments

ear fashion with the smoothing glass-box distribu- . )

tion, with weights set to maximize BLEU on a de- 10 test the effects of smoothing with larger

velopment corpus. corpora, we ran a set of experiments for
To estimate the significance of the results acros§hinese-English translation using the corpora

different methods, we used 1000-fold pairwisedistributed for the NIST MTO5 evaluation

bootstrap resampling at the 95% confidence level(WWW.nist.gov/speech/tests/mt). These are sum-
marized in table 2. Due to the large size of

5.1 Broad-Coverage Experiments the out-of-domain UN corpus, we trained one

In order to measure the benefit of hrasetablghrasetable on it, and another on all other parallel
. . P corpora (smoothing was applied to both). We also
smoothing for relatively small corpora, we used

: f the English Gi
the data made available for the WMTO06 shared; zgeggq:nﬁg:elfl\ﬁ t:aiiingggr:Zterci;;?aword corpus to
task (WMT, 2006). This exercise is conducted '

openly with access to all needed resources anjcOrpus use sentences
is thus ideal for benchmarking statistical phrase- non-UN phrasetablel + LM 3,164,180
ba_sed translation systems on a number of IanguageUN phrasetable2 + LM 4,979,345
pairs. _ Gigaword LM 11,681,852
The WMTO6 corpus is based on sentences exj muli-p3  dev 993
tracted from the proceedings of the European Par; o\a1.04 test 1788
liament. Separate sentence-aligned parallel cor-
pora of about 700,000 sentences (about 150MB) Table 2: Chinese-English Corpora

are provided for the three language pairs hav-

ing one of French, Spanish and German with En- Table 3 contains results for the Chinese-English
glish. SRILM language models based on the samexperiments, including fixed-discount with uni-

source are also provided for each of the four langram smoothing (FDU), and Koehn-Och-Marcu

guages. We used the provided 2000-sentence desmoothing with the IBM1 model (KOM-IBM1)
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smoothing method fr —en es—en de—en en—fr en—es en—de
RF 25.35 27.25 20.46 27.20 27.18 14.60
GT 25.95 28.07 21.06 27.85 27.96 15.05
KN1 26.83 28.66 21.36 28.62 28.71 15.42
KN3 26.84 28.69 21.53 28.64 28.70 15.40
RF+ZN-IBM1 26.84 28.63 21.32 28.84 28.45 15.44
KN3+ZN-1BM1 27.25 29.30 21.77 29.00 28.86 15.49

Table 1: Broad-coverage results

as described in section 3.3. As with theto apply KN3 smoothing to the phrasetable that
broad-coverage experiments, all of the black-boxgets combined with the best glass-box phrasetable
smoothing techniques do significantly better than(ZN), whereas in the latter setting it does not. To
the RF baseline. However, GT appears to workest whether this was due to corpus size (as the
better in the large-corpus setting: it is statisticallybroad-coverage corpora are around 10% of those
indistinguishable from KN3, and both these methfor Chinese-English), we calculated Chinese-
ods are significantly better than all other fixed-English learning curves for the RF+ZN-IBM1 and
discount variants, among which there is little dif- KN3-ZN-IBM1 methods, shown in figure 1. The
ference. results are somewhat inconclusive: although the
Not surprisingly, the two glass-box methods, KN3+ZN-IBM1 curve is perhaps slightly flatter,
ZN-IBM1 and KOM-IBM1, do poorly when used the most obvious characteristic is that this method
on their own. However, in combination with an- appears to be highly sensitive to the particular cor-
other phrasetable, they yield the best results, obpus sample used.
tained by RF+ZN-IBM1 and GT+KOM-IBM1,
which are statistically indistinguishable. In con- Learning curves for smoothing methods
strast to the situation in the broad-coverage set- " ) ) ) )
ting, these are not significantly better than the oz}
best black-box method (GT) on its own, although 5|
RF+ZN-IBM1 is better than all other glass-box
combinations.

0.285

028 /

smoothing method BLEU score SR |
RF 29.85 B
GT 30.66 ol |
FDU 30.23 0265
KN1 30.29 ok
KN2 30.13
KN3 30.54 el | RF+ZN-IBM1 —+— ]
ZN-1BM1 29.55 0.25 it " . . KNa2N- B
0 10 20 30 40 50 60 70 80
KO M - | B M 1 28 . 09 proportion of corpus
RF+ZN-IBM1 30.95
RE+KOM-IBM1 30.10 Figure 1: Learning curves for two glass-box com-
GT+ZN-IBM1 30.45 binations.
GT+KOM-IBM1 30.81
KN3+ZN-1BM1 30.66 6 Conclusion and Future Work
Table 3: Chinese-English Results We tested different phrasetable smoothing tech-

niques in two different translation settings: Eu-

A striking difference between the broad- ropean language pairs with relatively small cor-
coverage setting and the Chinese-English settingora, and Chinese to English translation with large
is that in the former it appears to be beneficialcorpora. The smoothing techniques fall into two
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categories: black-box methods that work only onReferences
phrase-pair counts; and glass-box methods that d?”eter F. Brown, Stephen A. Della Pietra, Vincent

compose phrase probabilities into lexical proba-
bilities. In our implementation, black-box tech-

niques use linear interpolation to combine relative
frequency estimates with smoothing distributions,

Della J. Pietra, and Robert L. Mercer. 1993. The
mathematics of Machine Translation: Parameter es-
timation. Computational Linguistics, 19(2):263—
312, June.

while glass-box techniques are combined in log-u. Cettollo, M. Federico, N. Bertoldi, R. Cattoni, and

linear fashion with either relative-frequencies or
black-box estimates.

All smoothing techniques tested gave statisti-
cally significant gains over pure relative-frequency
estimates.
technique is a loglinear combination of Kneser-
Ney count smoothing with Zens-Ney glass-box
smoothing; this yields an average gain of 1.6
BLEU points over relative frequencies.

large-corpus setting, the best technique is a log-

linear combination of relative-frequency estimates
with Zens-Ney smoothing, with a gain of 1.1

B. Chen. 2005. A look inside the ITC-irst SMT
system. InProceedings of MT Summit X, Phuket,
Thailand, September. International Association for
Machine Translation.

In the small-corpus setting, the besbtanley F. Chen and Joshua T. Goodman. 1998. An

empirical study of smoothing techniques for lan-
guage modeling. Technical Report TR-10-98, Com-
puter Science Group, Harvard University.

In the K. Church and W. Gale. 1991. A comparison of the

enhanced Good-Turing and deleted estimation meth-
ods for estimating probabilities of English bigrams.
Computer speech and language, 5(1):19-54.

BLEU points. Of the two glass-box smoothing M. Collins and J. Brooks. 1995. Prepositional phrase
methods tested, Zens-Ney appears to have a slight attachment through a backed-off model Proceed-

advantage over Koehn-Och-Marcu. Of the black-
box methods tested, Kneser-Ney is clearly bet-

ings of the 3rd ACL Wbrkshop on Very Large Cor-
pora (WVLC), Cambridge, Massachusetts.

ter for small corpora, but is equivalent to Good-Ismael Garcia-Varea, Francisco Casacuberta, and Her-

Turing for larger corpora.

The paper describes several smoothing alterna-

tives which we intend to test in future work:

e Linear versus loglinear combinations (in our

mann Ney. 1998. An iterative, DP-based search al-
gorithm for statistical machine translation. fno-
ceedingsof the 5th International Conference on Spo-

ken Language Processing (ICSLP) 1998, volume 4,
pages 1135-1138, Sydney, Australia, December.

current work, these coincide with the black- Joshua Goodman. 2001. A bit of progress in language

box versus glass-box distinction, making it
impossible to draw conclusions).

e Lower-order distributions as described in sec-
tion 3.4.

modeling.Computer Speech and Language.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-

man. 2001. The Elements of Statistical Learning.
Springer.

. : Reinhard Kneser and Hermann Ney. 1995. Improved
e Separate count-smoothing bins based on backing-off for m-gram language modeling. Frno-

phrase length.
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The impact of parse quality on syntactically-informed statistical machine
translation

Chris Quirk andSimon Corston-Oliver
Microsoft Research
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Abstract ing techniques, but that current parsers are not of
_ _ _ _ sufficient quality to be of use in SMT.
We investigate the impact of parse quality With these questions and concerns, let us be-

on a syntactically-informed statistical ma-  gin. Following some background discussion we
chine translation system applied to techni-  describe a set of experiments intended to elucidate

cal text. We vary parse quality by vary-  the impact of parse quality on SMT.
ing the amount of data used to train the

parser. As the amount of data increases, 2 Background
parse quality improves, leading to im-
provements in machine translation output
and results that significantly outperform a
state-of-the-art phrasal baseline.

We trained statistical machine translation systems

on technical text. In the following sections we

provide background on the data used for training,

the dependency parsing framework used to pro-

1 Introduction duce treelets, the treelet translation framework and

salient characteristics of the target languages.

The current study is a response to a question _

that proponents of syntactically-informed machine?-1  Dependency parsing

translation frequently encounter: How sensitive isDependency analysis is an alternative to con-

a syntactically-informed machine translation sys-stituency analysis (Tesgie, 1959; Matuk, 1988).

tem to the quality of the input syntactic analysis?In a dependency analysis of syntax, words di-

It has been shown that phrasal machine translatiorectly modify other words, with no intervening

systems are not affected by the quality of the innon-lexical nodes. We use the terms child node

put word alignments (Koehn et al., 2003). Thisand parent node to denote the tokens in a depen-

finding has generally been cast in favorable termsdency relation. Each child has a single parent, with

such systems are robust to poor quality word alignthe lexical root of the sentence dependent on a syn-

ment. A less favorable interpretation of these rethetic ROOT node.

sults might be to conclude that phrasal statistical We use the parsing approach described in

machine translation (SMT) systems do not stanqCorston-Oliver et al., 2006). The parser is trained

to benefit from improvements in word alignment. on dependencies extracted from the English Penn
In a similar vein, one might ask whether con-Treebank version 3.0 (Marcus et al., 1993) by

temporary syntactically-informed machine trans-using the head-percolation rules of (Yamada and

lation systems would benefit from improvementsMatsumoto, 2003).

in parse accuracy. One possibility is that cur- Given a sentencg, the goal of the parser is to

rent syntactically-informed SMT systems are de-ind the highest-scoring pargeamong all possible

riving only limited value from the syntactic anal- parseg/ €V:

yses, and would therefore not benefit from im-

proved analyses. Another possibility is that syn- y=arg Q@ﬁ(X,y) 1)

tactic analysis does indeed contain valuable infor-

mation that could be exploited by machine learn-The score of a given parseis the sum of the
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scores of all its dependency linkis j) € y: pair; together, the target language treelets in those
treelet translation pairs will form the target trans-
s(xy)= Y d(i,j)= Y w-f(i,j) (2) lation. Next the target language treelets are joined
(i.))ey (i.))ey to form a single tree: the parent of the root of each
treelet is dictated by the source. liebe the root
of the target language treelet, agcbe the source
node aligned to it. Ifs is the root of the source
sentence, themn is made the root of the target lan-
guage tree. Otherwise Ig} be the parent o,
o andtp be the target node aligned 83: t; is at-
The feature vectof(i, j) computed for each ..o tdp. Finally the ordering of all the nodes
possible parent-child dependency includes thes jetermined, and the target tree is specified, and

part-of-spe_ech (POS), lexeme and stem of the Pathe target sentence is produced by reading off the
ent and child tokens, the POS of tokens ad]ace%bels of the nodes in order.

to the child and parent, and the POS of each to- Translations are scored according to a log-linear

ken that intervenes between the parent and child.g hination of feature functions, each scoring dif-
Various combinations of these features are useqg oy aspects of the translation process. We use a

for example a new feature is created that combineﬁeam search decoder to find the best translation
the POS_Of the parent, lexeme OT the parent, PO§1ccording to the log-linear combination of models:
of the child and lexeme of the child. Each feature

where the link(i, j) indicates a parent-child de-
pendency between the token at positicand the
token at positionj. The scoral(i, j) of each de-
pendency link(i, j) is further decomposed as the
weighted sum of its featurd§i, j).

is also conjoined with the direction and distance
of the parent, e.g. does the child precede or follow T = argmax ZFM f(ST,A) 3)
the parent, and how many tokens intervene? <

To set the weight vectow, we frain twenty The models include inverted and direct channel
averaged perceptrons (Collins, 2002) on differentnodels estimated by relative frequency, lexical
shuffles of data drawn from sections 02-21 of th%eighting channel models following (Vogel et al.,
Penn Treebank. The averaged perceptrons are th9003), a trigram target language model using mod-
combined to form a Bayes Point Machine (Her-ifigq Kneser-Ney smoothing (Goodman, 2001),
brich et al., 2001; Harrington et al., 2003), result-3, order model following (Quirk et al., 2005),
ing in a linear classifier that is competitive with 3,4 word count and phrase count functions. The
wide margin techniques. weights for these models are determined using the

To find the optimal parse given the weight vec-method described in (Och, 2003).
torw and feature vectdf(i, j) we use the decoder 1o estimate the models and extract the treelets,
described in (Eisner, 1996). we begin from a parallel corpus. First the cor-
pus is word-aligned using GIZA++ (Och and Ney,
2000), then the source sentence are parsed, and
For syntactically-informed translation, we fol- finally dependencies are projected onto the target
low the treelet translation approach describegide following the heuristics described in (Quirk et
in (Quirk et al., 2005). In this approach, trans-al., 2005). This word aligned parallel dependency
lation is guided by treelet translation pairs. Here tree corpus provides training material for an order
atreeletis a connected subgraph of a dependencyhodel and a target language tree-based language
tree. A treelet translation pair consists of a sourcenodel. We also extract treelet translation pairs
treeletS, a target treelet, and a word alignment from this parallel corpus. To limit the combina-

A C Sx T such that for alls € S, there exists a torial explosion of treelets, we only gather treelets
uniquet € T such tha(s,t) € A, and ift is the root  that contain at most four words and at most two
of T, there is a uniqus € Ssuch thaf(s,t) € A. gaps in the surface string. This limits the number

Translation of a sentence begins by parsingf mappings to b&(n®) in the worst case, where
that sentence into a dependency representation.is the number of nodes in the dependency tree.
This dependency graph is partitioned into treelets; _
like (Koehn et al., 2003), we assume a uniform?-3 Language pairs
probability distribution over all partitions. Each In the present paper we focus on English-to-
source treelet is matched to a treelet translatioGerman and English-to-Japanese machine transla-

2.2 Treelet translation
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Figure 1: Example German-English and Japanese-English sentence pairs, with word alignments.

tion. Both German and Japanese differ markedlygonsiderable distance from the verb on which they
from English in ways that we believe illumi- depend, and extraposition of various kinds of sub-

nate well the strengths of a syntactically-informedordinate clause is common. In the case of extrapo-
SMT system. We provide a brief sketch of the lin-sition, for example, more than one third of relative

guistic characteristics of German and Japanese rettauses in human-translated German technical text
evant to the present study. are extraposed. For comparable English text the
figure is considerably less than one percent (Ga-

23.1 German mon et al., 2002).

Although English and German are closely re-
lated — they both belong to the western branch of-3-2 Japanese
the Germanic fam||y of |nd0-European |anguages Word order in Japanese is rather different from
— the languages differ typologically in ways that English. English has the canonical constituent or-
are especially problematic for current approacheger subject-verb-object, whereas Japanese prefers
to statistical machine translation as we shall nowsubject-object-verb order. Prepositional phrases
illustrate. We believe that these typological differ-in English generally correspond to postpositional
ences make English-to-German machine transldhrases in Japanese. Japanese noun phrases are
tion a fertile test bed for Syntax-based SMT. Strictly head-final whereas EngllSh noun phrases

German has richer inflectional morphology than@llow postmodifiers such as prepositional phrases,
English, with obligatory marking of case, num- relative clauses and adjectives. Japanese has lit-
ber and lexical gender on nominal elements ande€ nominal morphology and does not obligatorily
person, number, tense and mood on verbal e|énark number, gender or definiteness. Verbal mor-
ments. This morphological complexity, combinedPhology in Japanese is complex with morphologi-
with pervasive, productive noun compounding isc@l marking of tense, mood, and politeness. Top-
problematic for current approaches to word alignicalization and subjectless clauses are pervasive,
ment (Corston-Oliver and Gamon, 2004). and problematic for current SMT approaches.

Equally problematic for machine translation is The Japanese sentence in Figure 1 illustrates
the issue of word order. The position of verbs isseveral of these typological differences. The
strongly determined by clause type. For examsentence-initial imperative verb “move” in the En-
ple, in main clauses in declarative sentences, finitglish corresponds to a sentence-final verb in the
verbs occur as the second constituent of the sedapanese. The Japanese translation of the object
tence, but certain non-finite verb forms occur in fi-noun phrase “the camera slider switch” precedes
nal position. In Figure 1, for example, the Englishthe verb in Japanese. The English preposition “to”
“can” aligns with German “knnen” in second po- aligns to a postposition in Japanese.
sition and “set” aligns with German “festlegen” in
final position.

Aside from verbs, German is usually charac-Our goal in the current paper is to measure the
terized as a “free word-order” language: majorimpact of parse quality on syntactically-informed
constituents of the sentence may occur in varioustatistical machine translation. One method for
orders, so-called “separable prefixes” may occuproducing parsers of varying quality might be to
bound to the verb or may detach and occur at @rain a parser and then to transform its output, e.g.

3 Experiments
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by replacing the parser’s selection of the parent for
certain tokens with different nodes.

Rather than randomly adding noise to the
parses, we decided to vary the quality in ways that
more closely mimic the situation that confronts us
as we develop machine translation systems. An-
notating data for POS requires considerably less —m— PTB Section 23
human time and expertise than annotating syntac- —e— Technical text
tic relations. We therefore used an automatic POS e e

Dependency accuracy
g ¢

tagger (Toutanova et al., 2003) trained on the com- 0 10000 20000 30000 40000
plete training section of the Penn Treebank (sec- ' o ' '
tions 02-21). Annotating syntactic dependencies Sample size

is time consuming and requires considerable lin-

guistic expertisé. We can well imagine annotat- __ _
ing syntactic dependencies in order to develop &'9uré 2: Unlabeled dependency accuracy of

machine translation system by annotating first Jarsers trained on different numbers of_ sentences.
small quantity of data, training a parser, training al N 9raph compares accuracy on the blind test sec-

system that uses the parses produced by that pardign ©f the Penn Treebank to accuracy on a set of
and assessing the quality of the machine translff-5_o sentences drawn from technical text. Punctu-
tion output. Having assessed the quality of the out2tion tokens are excluded from the measurement
put, one might annotate additional data and traifff dePendency accuracy.

systems until it appears that the quality of the ma-

chine translation output is no longer improving. . | blind test secti fthe P Treebank
We therefore produced parsers of varying qualit)}!ona ind test section of the Penn Treebank (sec-

by training on the firsh sentences of sections 02— tion 23). Asis vyell-known Inthe parsing commu-
21 of the Penn Treebank, whereanged from 250 nity, parse quality degrades when a parser trained

to 39,892 (the complete training section). At train-" the Wall Street Journal text in the Penn Tree-

ing time, the gold-standard POS tags were use&ank is applied to a different genre or semantic do-

For parser evaluation and for the machine translgmain. Since the technical materials that we were

tion experiments reported here, we used an autc;[amlng the translation system on differ from the

matic POS tagger (Toutanova et al., 2003) trainetyva” Street Journal in lexicon and syntfax, we an-
on sections 02—21 of the Penn Treebank. notated a set of 250 sentences of technical material

We trained English-to-German and Enghsh-to-_to use in evaluating the parser. Each of the authors
. independently annotated the same set of 250 sen-

Japanese treelet translation systems on approxi- ) .
: . tences. The annotation took less than six hours for

mately 500,000 manually aligned sentence pairs

. .__each author to complete. Inter-annotator agree-
drawn from technical computer documentation. . : :
. . . ment excluding punctuation was 91.8%. Differ-
The sentence pairs consisted of the English source | . ; .
. ences in annotation were resolved by discussion,
sentence and a human-translation of that sentence, ) .
. L . and the resulting set of annotations was used to
Table 1 summarizes the characteristics of this data.
: evaluate the parsers.
Note that German vocabulary and singleton counts

are slightly more than double the corresponding Figure 2 shows the accuracy of parsers trained
English counts due to complex morphology andon samples of various sizes, excluding punctua-

pervasive compounding (see section 2.3.1). tion tokens from the evaluation, as is customary
in evaluating dependency parsers. When mea-
3.1 Parser accuracy sured against section 23 of the Penn Treebank,

To evaluate the accuracy of the parsers trained owe section tradltlon_ally used for blind evaluation,
he parsers range in accuracy from 77.8% when

different samples of sentences we used the trad}- ] .
P trained on 250 sentences to 90.8% when trained

Lvarious people have suggested to us that the linguisti©n all of sections 02-21. As expected, parse accu-
expertise required to annotate syntactic dependencies is Ieﬁacy degrades when measured on text that differs
than the expertise required to apply a formal theory of con- . .
stituency like the one that informs the Penn Treebank. Wegreatly from the training text. A parser trained on
tend to agree, but have not put this claim to the test. 250 Penn Treebank sentences has a dependency
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English German  English  Japanese

Training  Sentences 515,318 500,000
Words 7,292,903 8,112,831 7,909,198 9,379,240
Vocabulary 59,473 134,829 66,731 68,048
Singletons 30,452 66,724 50,381 52,911

Test  Sentences 2,000 2,000
Words 28,845 31,996 30,616 45,744

Table 1: Parallel data characteristics

accuracy of 76.6% on the technical text. A parser EG EJ
trained on the complete Penn Treebank training Phrasal decoder | 31.741.2 | 32.9£0.9
section has a dependency accuracy of 84.3% on Treelet decoder
the technical text. Right-branching | 31.4+1.3 | 28.0+-0.7

Since the parsers make extensive use of lexi- 250 sentences | 32.8+£1.4 | 34.1+0.9
cal features, it is not surprising that the perfor- 2,500 sentences 33.0+£1.4 | 34.6£1.0
mance on the two corpora should be so similar 25,000 sentences33.7£1.5 | 35.7+0.9
with only 250 training sentences; there were not 39,892 sentences33.6:£1.5 | 36.0+£1.0
sufficient instances of each lexical item to train re-
liable weights or lexical features. As the amountTable 2: BLEU score vs. decoder and parser vari-
of training data increases, the parsers are able t@ants. Here sentences refer to the amount of parser
learn interesting facts about specific lexical itemstraining data, not MT training data.
leading to improved accuracy on the Penn Tree-
bank. Many of the lexical items that occur in the

. eighbor and the root of a sentence is the first
Penn Treebank, however, occur infrequently or no , . . :
. . : T word. With this analysis, treelets are simply sub-
at all in the technical materials so the lexical infor-

mation is of litle benefit. This reflects the mis- >cducceS of the sentence, and therefore are very
similar to the phrases of Phrasal SMT. In English-

match of content. The Wall Street Journal articlest .
in the Penn Treebank concern such topics as worl -German, this resuit produces results very com-
parable to a phrasal SMT system (Koehn et al.,

affairs and the policies of the Reagan administra; ) :
S P : g . 2003) trained on the same data. For English-to-
tion; these topics are absent in the technical mate: . )
. . Japanese, however, this baseline performs much
rials. Conversely, the Wall Street Journal articles
, ) ) . .. _worse than a phrasal SMT system. Although
contain no discussion of such topics as the intrica- . >
. . phrases and treelets should be nearly identical
cies of SQL database queries.

under this scenario, the decoding constraints are
3.2 Translation quality somewhat different: the treelet decoder assumes
hrasal cohesion during translation. This con-

Table 2 presents the impact of parse quality on gt it tfor the d . lit
treelet translation system, measured using BLEY rg!n m?%/ acco::r(; or 'et ropllnfqual Y- _
(Papineni et al., 2002). Since our main goal is to Ince the confidence Intervais for many pairs

investigate the impact of parser accuracy on transgverlap, we ran pairwise tests for each system to

lation quality, we have varied the parser trainingdhetermige0 V\I/hicf; differerr:cebs were signifri]ce;n(tj at
data, but have held the MT training data, part-of-t ep < 0.05level using the bootstrap method de-

speech-tagger, and all other factors constant. \/\lécr't_)ed n (_Zhang ant_j Vogel, 2_004); Table 3 sum-
observe an upward trend in BLEU score as more"arzes this comparison. N'e'lther I_anguage pair
training data is made available to the parser; th ch|e\_/es a s_tatlstlcally .S|_gn|f|cant Improvement
trend is even clearer in JapanésAs a baseline, rom increasing the training data from 25,000

we include right-branching dependency trees, i.e.'?_airs to the full trai_ning set; this is no_t surprising
trees in which the parent of each word is its leftSince the increase in parse accuracy is quite small
S (90.2% to 90.8% on Wall Street Journal text).

2This is particularly encouraging since various people To further understand what differences in de-
have remarked to us that syntax-based SMT systems m

a . : .
be disadvantaged under n-gram scoring techniques such éendency analysis were affecting t_ranSIat'on qual-
BLEU. ity, we compared a treelet translation system that
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Pharaoh| Right-branching| 250 | 2,500| 25,000| 39,892

Pharaoh ~ > > > >
Right-branching > > > >
250 ~ > >

2,500 > >

25,000 ~

(a) English-German

Pharaoh| Right-branching| 250 | 2,500| 25,000| 39,892

Pharaoh < ~ > > >
Right-branching > > > >
250 > > >

2,500 > >

25,000 ~

(b) English-Japanese
Table 3: Pairwise statistical significance testdndicates that the system on the top is significantly better

than the system on the lef; indicates that the system on top is significantly worse than the system on
the left; ~ indicates that difference between the two systems is not statistically significant.

link. In the analysis, we borrow the term “NP

37 i [Noun Phrase] identification” from constituency
% | —#— Japanese analysis to describe the identification of depen-
o - |~ German /-/. dency treelets spanning complete noun phrases.
o) 35 There were 141 sentences for which the ma-
g i ./-/ chine translated output improved, 71 sentences for
M 3 i which the output regressed and 38 sentences for
m i / which the output was identical. Improvements in
3L . the attachment of prepositions, adverbs, gerunds
i and dependent verbs were common amongst im-
0 | " ‘ proved translations, but rare amongst regressed
translations. Correct identification of the depen-
100 1000 10000 100000

dent of a prepositichwas also much more com-
mon amongst improvements.

. Certain changes, such as improved root identifi-
Figure 3: BLEU score vs. number of sentencegation and final punctuation attachment, were very
used to train the dependency parser common across the corpus. Therefore their com-
mon occurrence amongst regressions is not very

used a parser trained on 250 Penn Treebank sep- Prsing. It was often the case that improve-

tences to a treelet translation system that use@ents in root identification or final punctuation at-

a parser trained on 39,892 Treebank sentence:qghsrgarg Zveirteer?fset by regressions elsewhere in
From the test data, we selected 250 sentences o
Improvements in the parsers are cases where

where these two parsers produced different anal-

yses. A native speaker of German categorized thi'€ Syntactic analysis more closely resembles the
differences in machine translation output as eithef"2!ysis of dependency structure that results from

improvements or regressions. We then examine@PPlYing Yamada and Matsumoto’s head-finding

and categorized the differences in the dependendy/es to the Penn Treebank. Figure 4 shows dif-
analyses. Table 4 summarizes the results of thi€r€Nnt parses produced by parsers trained on dif-

comparison. Note that this table simply identifies——
P Py 3In terms of constituency analysis, a prepositional phrase

Correlation_s between parse changes ar_]d trans‘l"‘mgﬁould consist of a preposition governing a single noun
changes; it does not attempt to identify a causaphrase

Parser training sentences
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ROOT You can manipulate Microsoft Access objects from another application that also supports automation .

(a) Dependency analysis produced by parser trained on 250 Wall Street Journal sentences.

T v N\ TSN~ SN

ROOT You can manipulate Microsoft Access objects from another application that also supports automation .

(b) Dependency analysis produced by parser trained on 39,892 Wall Street Journal sentences.

Figure 4: Parses produced by parsers trained on different numbers of sentences.

ferent numbers of sentences. The parser trained Error category Regress Improve
on 250 sentences incorrectly attaches the prepo- Attachment of prep 1% 22%
sition “from” as a dependent of the noun “ob- Root identification 13% 28%
jects” whereas the parser trained on the complete  Final punctuation 18% 30%
Penn Treebank training section correctly attaches Coordination 6% 16%
the preposition as a dependent of the verb “ma- Dependent verbs 14% 32%
nipulate”. These two parsers also yield different ~ Arguments of verb 6% 15%
analyses of the phrase “Microsoft Access objects”. NP identification 24% 33%
In parse (a), “objects” governs “Office” and “Of- Dependent of prep 0% 7%
fice” in turn governs “Microsoft”. This analy- Other attachment 3% 22%

sis is linguistically well-motivated, and makes a

treelet spanning “Microsoft Office” available to Table 4: Error analysis, showing percentage of
the treelet translation system. In parse (b), theegressed and improved translations exhibiting a
parser has analyzed this phrase so that “objectgjarse improvement in each specified category
directly governs “Microsoft” and “Office”. The

analysis more closely reflects the flat branchinqhe input syntactic analyses. With the less accu-
structure of the Penn Treebank but obscures the :

rate parsers that result from training on extremely
An additional measure of parse utility for MT small numbers of sentences, performance is com-
P y éaarable to state-of-the-art phrasal SMT systems.

is the amount of translation material that can b i )
extracted from a parallel corpus. We increased thé‘S the amount of data used to train the parser in-
P bus. reases, both English-to-German and English-to-

parser training data from 250 sentences to 39,98 apanese treelet SMT improve, and produce re-

sentences, but held the number of aligned sentence . .
. . Sults that are statistically significantly better than
pairs used train other modules constant. The cou

) . . : %e phrasal baseline.
of treelet translation pairs occurring at least twice . ) .
. . In the introduction we mentioned the concern
in the English-German parallel corpus grew from .

that others have raised when we have presented
1,895,007 to 2,010,451. _ . . .

our research: syntax might contain valuable infor-
mation but current parsers might not be of suffi-
cient quality. It is certainly true that the accuracy
We return now to the questions and concern®fthe best parser used here falls well short of what
raised in the introduction. First, is a treelet SMTwe might hope for. A parser that achieves 90.8%
system sensitive to parse quality? We have showdependency accuracy when trained on the Penn
that such a systens sensitive to the quality of Treebank Wall Street Journal corpus and evalu-

affinity of “Microsoft” and “Office”.

4 Conclusions
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ated on comparable text degrades to 84.3% accu- sition: A case study in German sentence realization.
racy when evaluated on technical text. Despite the In Proceedings of COLINGages 301-307.
degradation in parse accuracy caused by the drgpshya Goodman. 2001. A bit of progress in lan-
matic differences between the Wall Street Journal guage modeling, extended version. Technical Re-
text and the technical articles, the treelet SMT sys- port MSR-TR-2001-72, Microsoft Research.

tem was able to extract useful patterns. Resear¢hy,ard Harrington, Ralf Herbrich, Jyrki Kivinen,
on syntactically-informed SMT is not impeded by  john C. Platt, and Robert C. Williamson. 2003. On-
the accuracy of contemporary parsers. line bayes point machines. Rroc. 7th Pacific-Asia

One significant finding is that as few as 250 _Conference on Knowledge Discovery and Data Min-
sentences suffice to train a dependency parser for Ing, pages 241-252.
use in the treelet SMT framework. To date ourRalf Herbrich, Thore Graepel, and Colin Campbell.
research has focused on translation from English 2001. Bayes Point Machineslournal of Machine
to other languages. One concern in applying the -€2mMing Researcipages 245-278.
treelet SMT framework to translation from lan- Philipp Koehn, Franz Josef Och, and Daniel Marcu.
guages other than English has been the expense2003. Statistical phrase-based translation.Pto-
of data annotation: would we require 40,000 sen- C€edings of HLT/NAACL
tences annotated for syntactic dependencies, i.ev. Marcus, B. Santorini, and M. Marcinkiewicz.
an amount comparable to the Penn Treebank, in 1993. Building a large annotated corpus of en-
order to train a parser that was sufficiently accu- 9lish: The Penn TreebaniComputational Linguis-

. . . . tics, 19(2):313-330.

rate to achieve the machine translation quality that
we have seen when translating from English? Thégor A. Mel¢uk. 1988. Dependency Syntax: Theory
current study gives hope that source languages can and Practice State University of New York Press.
be added with relatively modest investments incran; josef Och and Hermann Ney. 2000. Improved
data annotation. As more data is annotated with statistical alignment models. Rroceedings of the
syntactic dependencies and more accurate parsersACL, pages 440-447, Hongkong, China, October.

are tral_ned, We'would hopg to see similarimprover, ;. josef Och. 2003. Minimum error rate training
ments in machine translation output. in statistical machine translation. Rroceedings of
We challenge others who are conducting re- the ACL

search on syntactlcally—lnformed SMT to verify Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
whether or to what extent their systems are sen- jing zhu. 2002. Bleu: a method for automatic eval-

sitive to parse quality. uation of machine translation. Proceedings of the
ACL, pages 311-318, Philadelpha, Pennsylvania.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
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Abstract

Reordering is currently one of the most
important problems in statistical machine
translation systems. This paper presents
a novel strategy for dealing with it: sta-
tistical machine reordering (SMR). It con-
sists in using the powerful techniques de-
veloped for statistical machine translation
(SMT) to translate the source language
(S) into a reordered source language (S’),
which allows for an improved translation
into the target language (7). The SMT task
changes from S27 to S’2T which leads to a
monotonized word alignment and shorter
translation units. In addition, the use of
classes in SMR helps to infer new word
reorderings. Experiments are reported in
the EsEn WMTO06 tasks and the ZhEn
IWSLTO5 task and show significant im-
provement in translation quality.

1 Introduction

During the last few years, SMT systems
have evolved from the original word-based ap-
proach (Brown et al., 1993) to phrase-based trans-
lation systems (Koehn et al., 2003). In parallel
to the phrase-based approach, the use of bilin-
gual n-grams gives comparable results, as shown
by Crego et al. (2005a). Two basic issues differ-
entiate the n-gram-based system from the phrase-
based: training data are monotonously segmented
into bilingual units; and, the model considers n-
gram probabilities rather than relative frequencies.
This translation approach is described in detail by
Marifio et al. (2005). The n-gram-based system
follows a maximum entropy approach, in which a
log-linear combination of multiple models is im-
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plemented (Och and Ney, 2002), as an alternative
to the source-channel approach.

In both systems, introducing reordering capabil-
ities is of crucial importance for certain language
pairs. Recently, new reordering strategies have
been proposed in the literature on SMT such as the
reordering of each source sentence to match the
word order in the corresponding target sentence,
see Kanthak et al. (2005) and Crego et al. (2005b).
Similarly, Matusov et al. (2006) describe a method
for simultaneously aligning and monotonizing the
training corpus. The main problems of these ap-
proaches are: (1) the fact that the proposed mono-
tonization is based on the alignment and cannot be
applied to the test sets, and (2) the lack of reorder-
ing generalization.

This paper presents a reordering approach
called statistical machine reordering (SMR) which
improves the reordering capabilities of SMT sys-
tems without incurring any of the problems men-
tioned above. SMR is a first-pass translation
performed on the source corpus, which converts
it into an intermediate representation, in which
source-language words are presented in an order
that more closely matches that of the target lan-
guage. SMR and SMT are performed using the
same modeling tools as n-gram-based systems but
using different statistical log-linear models.

In order to be able to infer new reorderings we
use word classes instead of words themselves as
the input to the SMR system. In fact, the use of
classes to help in the reordering is a key difference
between our approach and standard SMT systems.

This paper is organized as follows: Section 2
outlines the baseline system. Section 3 describes
the reordering strategy in detail. Section 4 presents
and discusses the results, and Section 5 presents
our conclusions and suggestions for further work.

Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLRages)70-76,
Sydney, July 200602006 Association for Computational Linguistics



2 N-gram-based SMT System

This section briefly describes the n-gram-based
SMT which uses a translation model based on
bilingual n-grams. It is actually a language model
of bilingual units, referred to as tuples, which ap-
proximates the joint probability between source
and target languages by using bilingual n-grams
(de Gispert and Marifio, 2002).

Bilingual units (tuples) are extracted from any
word alignment according to the following con-
straints:

1. a monotonous segmentation of each bilingual
sentence pairs is produced,

2. no word inside the tuple is aligned to words
outside the tuple, and

3. no smaller tuples can be extracted without vi-
olating the previous constraints.

As a result of these constraints, only one seg-
mentation is possible for a given sentence pair.

Figure 1 presents a simple example which illus-
trates the tuple extraction process.

would like 1 NULL | to eat huge ice—cream

quisiera un

|
|
|
|
|
|
|
|
|
|
|
|
|
| helado gigante
|

|

|

|

Figure 1: Example of tuple extraction from an
aligned bilingual sentence pair.

Two important issues regarding this translation
model must be considered. First, it often occurs
that large number of single-word translation prob-
abilities are left out of the model. This happens
for all words that are always embedded in tuples
containing two or more words. Consider for ex-
ample the word “ice-cream” in Figure 1. As seen
from the Figure, “ice-cream” is embedded into tu-
ple tg. If a similar situation is encountered for all
occurrences of “ice-cream” in the training corpus,
then no translation probability for an independent
occurrence of this word will exist.

To overcome this problem, the tuple 4-gram
model is enhanced by incorporating 1-gram trans-

lation probabilities for all the embedded words de-
tected during the tuple extraction step. These 1-
gram translation probabilities are computed from
the intersection of both, the source-to-target and
the target-to-source alignments.

The second issue has to do with the fact that
some words linked to NULL end up producing tu-
ples with NULL source sides. Consider for exam-
ple the tuple ¢3 in Figure 1. Since no NULL is ac-
tually expected to occur in translation inputs, this
type of tuple is not allowed. Any target word that
is linked to NULL is attached either to the word
that precedes or the word that follows it. To de-
termine this, we use the /BM 1 probabilities, see
Crego et al. (2005a).

In addition to the bilingual n-gram transla-
tion model, the baseline system implements a
log-linear combination of four feature functions,
which are described as follows:

e A target language model. This feature con-
sists of a 4-gram model of words, which is
trained from the target side of the bilingual
corpus.

e A word bonus function. This feature intro-
duces a bonus based on the number of target
words contained in the partial-translation hy-
pothesis. It is used to compensate for the sys-
tem’s preference for short output sentences.

e A source-to-target lexicon model. This fea-
ture, which is based on the lexical param-
eters of the IBM Model 1 (Brown et al.,
1993), provides a complementary probabil-
ity for each tuple in the translation table.
These lexicon parameters are obtained from
the source-to-target alignments.

e A target-to-source lexicon model. Similarly
to the previous feature, this feature is based
on the lexical parameters of the IBM Model
1 but, in this case, these parameters are ob-
tained from target-to-source alignments.

All these models are combined in the de-
coder. Additionally, the decoder allows for a non-
monotonous search with the following distorsion
model.



e A word distance-based distorsion model.
K
P(tf) = exp(— Y dy)
k=1

where d;, is the distance between the first
word of the k' tuple (unit), and the last
word+1 of the (k — 1) tuple. Distance
are measured in words referring to the units
source side.

To reduce the computational cost we place lim-
its on the search using two parameters: the dis-
tortion limit (the maximum distance measured in
words that a tuple is allowed to be reordered, m)
and the reordering limit (the maximum number of
reordering jumps in a sentence, j). This feature is
independent of the reordering approach presented
in this paper, so they can be used simultaneously.

In order to combine the models in the decoder
suitably, an optimization tool is needed to compute
log-linear weights for each model.

3 Statistical Machine Reordering

As mentioned in the introduction, SMR and SMT
are based on the same principles. Here, we give
a detailed description of the SMR reordering ap-
proach proposed.

3.1 Concept

The aim of SMR consists in using an SMT sys-
tem to deal with reordering problems. Therefore,
the SMR system can be seen as an SMT system
which translates from an original source language
(S) to a reordered source language (S’), given a
target language (7). Then, the translation tasks
changes from S27 to $’2T. The main difference
between the two tasks is that the latter allows for:
(1) monotonized word alignment, and (2) higher
quality monotonized translation.

3.2 Description

Figure 2 shows the SMR block diagram. The in-
put is the initial source sentence (S) and the output
is the reordered source sentence (S’). There three
blocks inside SMR: (1) class replacing ; (2) the de-
coder, which requires the translation model; and,
(3) the block which reorders the original sentence
using the indexes given by the decoder. The fol-
lowing example specifies the input and output of
each block inside the SMR.
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SMR translation model

S S-c T
Extract Decoder
Classes
Reorder s
Source
Sentence

Figure 2: SMR block diagram.

. Source sentence (S):

El compromiso sélo podria mejorar

Source sentence classes (S-¢):
C38 C43 C49 C42 C22

. Decoder output (translation, 7T'):
C38#0 | C43 C49 C42#1 20| C22#0

where | indicates the segmentation into trans-
lation units and # divides the source and tar-
get. The source part is composed of word
classes and the target part is composed of
the new positions of the source word classes,
starting at 0.

SMR output (S”). The reordering information
inside each translation unit of the decoder
output (1") is applied to the original source
sentence (.5):

El solo podria compromiso mejorar

3.3 Training

For the reordering translation, we used an n-gram-
based SMT system (and considered only the trans-
lation model). Figure 3 shows the block diagram
of the training process of the SMR translation
model, which is a bilingual n-gram-based model.
The training process uses the training source and
target corpora and consists of the following steps:

1. Determine source and target word classes.

2. Align parallel training sentences at the word
level in both translation directions. Compute
the union of the two alignments to obtain a
symmetrized many-to-many word alignment.

3. Extract reordering tuples, see Figure 4.

(a) From union word alignment, extract
bilingual S27T tuples (i.e. source and
target fragments) while maintaining the



2 3 4
S
T Word Tuple LM toolkit
Aligner Extraction SMR
translation
=7 model
Extract | |
1 |Classes| |
~._|Extract | |
- |Classes| !
! 1

Figure 3: Block diagram of the training process of the SMR translation model.

(a) bilingual S2T tuple

only possible compromise # compromiso solo podria # 0-1 1-1 1-2 2-0
(target) (source)

(word alignment)

(wrd_src-wrd_trg)

(b) many-to-many word alignment—> many-to-one word alignment
P_ibm (only, solo)>P_ibm(possible, solo)

only possible compromise # compromiso solo podria # 0-1 1-2 2-0

(c) bilingual S2S' tuple

compromiso solo podria# 12 0
(source) (new order)

(e) classes substitution

C43C49C42#120

Figure 4: Example of the extraction of reordering
tuples (step 3).

alignment inside the tuple. As an ex-
ample of a bilingual S27 tuple consider:
only possible compromise # compromiso
solo podria # 0-1 1-1 1-2 2-0, as shown
in Figure 4, where the different fields are
separated by # and correspond to: (1)
the target fragment; (2) the source frag-
ment; and (3) the word alignment (in
this case, the fields that respectively cor-
respond to a target and source word are
separated by —).

(b) Modify the many-to-many word align-
ment from each tuple to many-to-one.
If one source word is aligned to two or
more target words, the most probable
link given IBM Model 1 is chosen, while
the other are omitted (i.e. the num-
ber of source words is the same before
and after the reordering translation). In
the above example, the tuple would be

changed to: only possible compromise
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# compromiso sélo podria # 0-1 1-2 2-
0, as Py (only, s6lo) is higher than
Pypyn1 (possible, sélo).

(c) From bilingual S27 tuples (with many-
to-one inside alignment), extract bilin-
gual S2§’ tuples (i.e. the source frag-
ment and its reordering). As in the ex-
ample: compromiso sélo podria # 1 2 0,
where the first field is the source frag-
ment, and the second is the reordering

of these source words.

(d)

Eliminate tuples whose source fragment
consists of the NULL word.

(e) Replace the words of each tuple source
fragment with the classes determined in

Step 1.

4. Compute the bilingual language model of the
bilingual $2S’ tuple sequence composed of
the source fragment (in classes) and its re-
order.

Once the translation model is built, the origi-
nal source corpus S is translated into the reordered
source corpus S’ with the SMR system, see Fig-
ure 2. The reordered training source corpus and
the original training target corpus are used to train
the SMT system (as explained in Section 2). Fi-
nally, with this system, the reordered test source
corpus is translated.

4 Evaluation Framework

In this section, we present experiments carried out
using the EsEn WMTO06 and the ZhEn IWSLTO05
parallel corpus. We detail the tools which have
been used and the corpus statistics.



‘ EuroParl ‘ Spanish ‘ English ‘ ‘ BTEC ‘ Chinese ‘ English ‘
Training Sentences 727.1k | 727.1k Training Sentences 20k 20k
Words 157M | 152M Words 176.2k | 1823k
Vocabulary 108.7k | 723k Vocabulary 8.7k 7.3k
Development Sentences | 500 500 Development Sentences | 506 506
Words 152k 14.8 k Words 35k 33k
Vocabulary 3.6k 3k Vocabulary 870 799
Test Sentences 3064 3064 Test Sentences 506 506
Words 919k |852k Words 4k 3k
Vocabulary 111k |91k Vocabulary 916 818

Table 1: Spanish to English task. EuroParl cor-
pus: training, development and test data sets.

4.1 Tools

e The word alignments were computed using

the GIZA++ tool (Och, 2003).

The word classes were determined us-
ing 'mkcls’, a freely-available tool with
GIZA++.

The language model was estimated using the
SRILM toolkit (Stolcke, 2002).

We used MARIE as a decoder (Crego et al.,
2005b).

The optimization tool used for computing
log-linear weights (see Section 2) is based
on the simplex method (Nelder and Mead,
1965).

4.2 Corpus Statistics

Experiments were carried out on the Spanish and
English task of the WMTO6 evaluation' (EuroParl
Corpus) and on the Chinese to English task of the
IWSLTO5 evaluation? (BTEC Corpus). The for-
mer is a large corpus, whereas the latter is a small
corpus translation task. Table 1 and 2 show the
main statistics of the data used, namely the number
of sentences, words, vocabulary, and mean sen-
tence lengths for each language.

4.3 Units

In this section different statistics units of both ap-
proaches (S2T and S°2T) are shown (using the
ZhEn task). All the experiments in this section
were carried out using 100 classes in the SMR
step.

'www.statmt.org/wmt06/shared-task/
2www.slt.atr.jp/IWSLT2005
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Table 2: Chinese to English task. BTEC corpus:
training, development and test data sets. Develop-
ment and test data sets have 16 references.

Table 3 shows the vocabulary of bilingual n-
grams and embedded words in the translation
model. Once the reordering translation has been
computed, alignment becomes more monotonic. It
is commonly known that non-monotonicity poses
difficulties for word alignments. Therefore, when
the alignment becomes more monotonic, we ex-
pect an improvement in the alignment, and, there-
fore in the translation. Here, we can observe a
significant enlargement of the number of transla-
tion units, which leads to a growth of the transla-
tion vocabulary. We also observe a decrease in the
number of embedded words (around 20%). From
Section 2, we know that the probability of embed-
ded words is estimated independently of the trans-
lation model. Reducing embedded words allows
for a better estimation of the translation model.

Figure 5 shows the histogram of the tuple size in
the two approaches. We observe that the number
of tuples is similar over length 5. However, there
are a greater number of shorter units in the case of
SMR+NB (shorter units lead to a reduction in data
sparseness).

80000

" NB ——
SMR + NB —x—
70000 |-

60000
50000
40000 -
30000 -
20000 -

10000 |

0

Figure 5: Comparison of the histogram of the tuple
size in the two approaches (NB and SMR+NB).



‘ System

‘ lgr ‘ 2gr ‘ 3gr ‘ 4gr ‘Embedded‘

NB
SMR + NB

34487
35638

57597
70947

3536
5894

1918
3412

5735
4632

Table 3: Vocabulary of n-grams and embedded words in the translation model.

‘ System ‘ Total ‘ Vocabulary ‘
NB 4460 959
SMR + NB | 4628 1052

Table 4: Tuples used to translate the test set (total
number and vocabulary).

Table 4 shows the tuples used to translate the
test set (total number and vocabulary). Note that
the number of tuples and vocabulary used to trans-
late the test set is significantly greater after the re-
ordering translation.

4.4 Results

Here, we introduce the experiments that were car-
ried out in order to evaluate the influence of the
SMR approach in both tasks EsEn and ZhEn. The
log-linear translation model was optimized with
the simplex algorithm by maximizing over the
BLEU score. The evaluation was carried out us-
ing references and translation in lowercase and, in
the ZhEn task, without punctuation marks.

We studied the influence of the proposed SMR
approach on the n-gram-based SMT system de-
scribed using a monotonous search (NBm or
monotonous baseline configuration) in the two
tasks and a non-monotonous search (NBnm or
non-monotonous baseline configuration) in the
ZhEn task. In allowing for reordering in the SMT
decoder, the distortion limit (m) and reordering
limit (j) (see Section 2) were empirically set to
5 and 3, as they showed a good trade-off between
quality and efficiency. Both systems include the
four features explained in Section 2: the language
model, the word bonus, and the source-to-target
and target-to-source lexicon models.

Tables 5 and 6 show the results in the test set.
The former corresponds to the influence of the
SMR system on the EsEn task (NBm), whereas
the latter corresponds to the influence of the SMR
system on the ZhEn task (NBm and NBnm).
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4.5 Discussion

Both BLEU and NIST coherently increase after
the inclusion of the SMR step when 100 classes
are used. The improvement in translation quality
can be explained as follows:

e SMR takes advantage of the use of classes
and correctly captures word reorderings that
are missed in the standard SMT system. In
addition, the use of classes allows new re-
orderings to be inferred.

The new task S§’2T becomes more
monotonous. Therefore, the translation
units tend to be shorter and SMT systems
perform better.

The gain obtained in the SMR+NBnm case indi-
cates that the reordering provided by SMR system
and the non-monotonous search are complemen-
tary. It means that the output of the SMR could
still be further monotonized. Note that the ZhEn
task has complex word reorderings.

These preliminary results also show that SMR
itself provides further improvements to those pro-
vided by the non-monotonous search.

5 Conclusions and Further Research

In this paper we have mainly dealt with the re-
ordering problem for an n-gram-based SMT sys-
tem. However, our approach could be used sim-
ilarly for a phrase-based system. We have ad-
dressed the reordering problem as a translation
from the source sentence to a monotonized source
sentence. The proposed SMR system is applied
before a standard SMT system. The SMR and
SMT systems are based on the same principles and
share the same type of decoder.

In extracting bilingual units, the change of order
performed in the source sentence has allowed the
modeling of the translation units to be improved
(shorter units mean a reduction in data sparse-
ness). Also, note that the SMR approach allows
the coherence between the change of order in the
training and test source corpora to be maintained.



‘ System

| Classes | BLEU | NIST | WER | PER |

NBm - 27.69 | 7.31 | 61.6 | 45.34
SMR + NBm - 28.60 | 7.53 | 59.89 | 43.53
SMR + NBm 100 30.89 | 7.75 | 55.77 | 42.85

Table 5: Results in the test set of the EsEn task using a monotonous search.

System | Classes | BLEU | NIST | WER | PER |
NBm - 4242 1 83 [42.87 | 33.44
NBnm - 4358 | 8.9 | 43.89 | 34.05
SMR + NBm 100 | 43.75 | 8.49 | 42.45 | 33.85
SMR +NBnm | 100 | 4597 | 9.0 |40.92 | 32.32

Table 6: Results in the test set of the ZhEn task using a monotonous and a non-monotonous search.

Performing reordering as a preprocessing step
and independently from the SMT system allows
for a more efficient final system implementation
and a quicker translation. Additionally, using
word classes helps to infer unseen reorderings.
These preliminary results show consistent and sig-
nificant improvements in translation quality.

As further research, we would like to add extra
features to the SMR system, and study new types
of classes for the reordering task.
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Abstract

In this paper, we present ParaEval, an
automatic evaluation framework that uses
paraphrases to improve the quality of
machine translation evaluations. Previous
work has focused on fixed n-gram
evaluation metrics coupled with lexical
identity matching. ParaEval addresses
three important issues: support for para-
phrase/synonym matching, recall meas-
urement, and correlation with human
judgments. We show that ParaEval corre-
lates significantly better than BLEU with
human assessment in measurements for
both fluency and adequacy.

1 Introduction

The introduction of automated evaluation proce-
dures, such as BLEU (Papineni et al., 2001) for
machine translation (MT) and ROUGE (Lin and
Hovy, 2003) for summarization, have prompted
much progress and development in both of these
areas of research in Natural Language Processing
(NLP). Both evaluation tasks employ a compari-
son strategy for comparing textual units from
machine-generated and gold-standard texts. Ide-
ally, this comparison process would be per-
formed manually, because of humans’ abilities to
infer, paraphrase, and use world knowledge to
relate differently worded pieces of equivalent
information. However, manual evaluations are
time consuming and expensive, thus making
them a bottleneck in system development cycles.

BLEU measures how close machine-generated
translations are to professional human transla-
tions, and ROUGE does the same with respect to
summaries. Both methods incorporate the com-
parison of a system-produced text to one or more
corresponding reference texts. The closeness be-

tween texts is measured by the computation of a
numeric score based on n-gram co-occurrence
statistics. Although both methods have gained
mainstream acceptance and have shown good
correlations with human judgments, their defi-
ciencies have become more evident and serious
as research in MT and summarization progresses
(Callison-Burch et al., 2006).

Text comparisons in MT and summarization
evaluations are performed at different text granu-
larity levels. Since most of the phrase-based,
syntax-based, and rule-based MT systems trans-
late one sentence at a time, the text comparison
in the evaluation process is also performed at the
single-sentence level. In summarization evalua-
tions, there is no sentence-to-sentence corre-
spondence between summary pairs—essentially
a multi-sentence-to-multi-sentence comparison,
making it more difficult and requiring a com-
pletely different implementation for matching
strategies. In this paper, we focus on the intrica-
cies involved in evaluating MT results and ad-
dress two prominent problems associated with
the BLEU-esque metrics, namely their lack of
support for paraphrase matching and the absence
of recall scoring. Our solution, ParaEval, utilizes
a large collection of paraphrases acquired
through an unsupervised process—identifying
phrase sets that have the same translation in an-
other language—using state-of-the-art statistical
MT word alignment and phrase extraction meth-
ods. This collection facilitates paraphrase match-
ing, additionally coupled with lexical identity
matching which is designed for comparing
text/sentence fragments that are not consumed by
paraphrase matching. We adopt a unigram count-
ing strategy for contents matched between sen-
tences from peer and reference translations. This
unweighted scoring scheme, for both precision
and recall computations, allows us to directly
examine both the power and limitations of
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ParaEval. We show that ParaEval is a more sta-
ble and reliable comparison mechanism than
BLEU, in both fluency and adequacy rankings.

This paper is organized in the following way:
Section 2 shows an overview on BLEU and lexi-
cal identity n-gram statistics; we describe ParaE-
val’s implementation in detail in Section 3; the
evaluation of ParaEval is shown in Section 4;
recall computation is discussed in Section 5; in
Section 6, we discuss the differences between
BLEU and ParaEval when the numbers of refer-
ence translations change; and we conclude and
discuss future work in Section 7.

2 N-gram Co-occurrence Statistics

Being an $8 billion industry (Browner, 2006),
MT calls for rapid development and the ability to
differentiate good systems from less adequate
ones. The evaluation process consists of compar-
ing system-generated peer translations to human
written reference translations and assigning a
numeric score to each system. While human as-
sessments are still the most reliable evaluation
measurements, it is not practical to solicit manual
evaluations repeatedly while making incremental
system design changes that would only result in
marginal performance gains. To overcome the
monetary and time constraints associated with
manual evaluations, automated procedures have
been successful in delivering benchmarks for
performance hill-climbing with little or no cost.

While a variety of automatic evaluation meth-
ods have been introduced, the underlining com-
parison strategy is similar—matching based on
lexical identity. The most prominent implemen-
tation of this type of matching is demonstrated in
BLEU (Papineni et al, 2002). The remaining part
of this section is devoted to an overview of
BLEU, or the BLEU-esque philosophy.

2.1 The BLEU-esque Matching Philosophy

The primary task that a BLEU-esque procedure
performs is to compare n-grams from the peer
translation with the n-grams from one or more
reference translations and count the number of
matches. The more matches a peer translation
gets, the better it is.

BLEU is a precision-based metric, which is
the ratio of the number of n-grams from the peer
translation that occurred in reference translations
to the total number of n-grams in the peer trans-
lation. The notion of Modified n-gram Precision
was introduced to detect and avoid rewarding
false positives generated by translation systems.
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To gain high precision, systems could potentially
over-generate “good” n-grams, which occur mul-
tiple times in multiple references. The solution to
this problem was to adopt the policy that an n-
gram, from both reference and peer translations,
is considered exhausted after participating in a
match. As a result, the maximum number of
matches an n-gram from a peer translation can
receive, when comparing to a set of reference
translations, is the maximum number of times
this n-gram occurred in any single reference
translation. Papineni et al. (2002) called this cap-
ping technique clipping. Figure 1, taken from the
original BLEU paper, demonstrates the computa-
tion of the modified unigram precision for a peer
translation sentence.

Candidate: the the the the the the the.
Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.
Modified Unigram Precision = 2/7.3

Figure 1. Modified n-gram precision from
BLEU.

To compute the modified n-gram precision,
Pn, for a whole test set, including all translation
segments (usually in sentences), the formula is:

E 2 Count,;,(n— gram)

P - CE{ peers}) n-gram<C

" 2 2 Count(n — gram)

C&{ peers} n-grameC

2.2

Humans are very good at finding creative ways
to convey the same information. There is no one
definitive reference translation in one language
for a text written in another. Having acknowl-
edged this phenomenon, however natural it is,
human evaluations on system-generated transla-
tions are much more preferred and trusted. How-
ever, what humans can do with ease puts ma-
chines at a loss. BLEU-esque procedures recog-
nize equivalence only when two n-grams exhibit
the same surface-level representations, i.e. the
same lexical identities. The BLEU implementa-
tion addresses its deficiency in measuring seman-
tic closeness by incorporating the comparison
with multiple reference translations. The ration-
ale is that multiple references give a higher
chance that the n-grams, assuming correct trans-
lations, appearing in the peer translation would
be rewarded by one of the reference’s n-grams.
The more reference translations used, the better

Lack of Paraphrasing Support



the matching and overall evaluation quality. Ide-
ally (and to an extreme), we would need to col-
lect a large set of human-written translations to
capture all possible combinations of verbalizing
variations before the translation comparison pro-
cedure reaches its optimal matching ability.

One can argue that an infinite number of ref-
erences are not needed in practice because any
matching procedure would stabilize at a certain
number of references. This is true if precision
measure is the only metric computed. However,
using precision scores alone unfairly rewards
systems that “under-generate”—producing un-
reasonably short translations. Recall measure-
ments would provide more balanced evaluations.
When using multiple reference translations, if an
n-gram match is made for the peer, this n-gram
could appear in any of the references. The com-
putation of recall becomes difficult, if not impos-
sible. This problem can be reversed if there is
crosschecking for phrases occurring across refer-
ences—paraphrase recognition. BLEU uses the
calculation of a brevity penalty to compensate
the lack of recall computation problem. The
brevity penalty is computed as follows:

1 ife>r
BP_{ ell=rlc) if e<r

Then, the BLEU score for a peer translation is

computed as:
N

BLEU= BP-exp (2 W logpn)
n=1

BLEU’s adoption of the brevity penalty to off-
set the effect of not having a recall computation
has drawn criticism on its crudeness in measur-
ing translation quality. Callison-Burch et al.
(2006) point out three prominent factors:

“Synonyms and paraphrases are only
handled if they are in the set of multiple
reference translations [available].

The scores for words are equally
weighted so missing out on content-
bearing material brings no additional pen-
alty.

The brevity penalty is a stop-gap meas-
ure to compensate for the fairly serious
problem of not being able to calculate re-
call.”

With the introduction of ParaEval, we will ad-
dress two of these three issues, namely the para-
phrasing problem and providing a recall meas-
ure.
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3
3.1

Reference translations are created from the same
source text (written in the foreign language) to
the target language. ldeally, they are supposed to
be semantically equivalent, i.e. overlap com-
pletely. However, as shown in Figure 2, when
matching based on lexical identity is used (indi-
cated by links), only half (6 from the left and 5
from the right) of the 12 words from these two
sentences are matched. Also, “to” was a mis-
match. In applying paraphrase matching for MT
evaluation from ParaEval, we aim to match all
shaded words from both sentences.

ParaEval for MT Evaluation

Overview

This This
is is
the the
fourth fourth
chromosome | chromosome
whose to
sequence be
has - fully
been //"/( sequenced
completed.~ ' up
to tin
date now

Figure 2. Two reference translations. Grey
areas are matched by using BLEU.

3.2

The process of acquiring a large enough collec-
tion of paraphrases is not an easy task. Manual
corpus analyses produce domain-specific collec-
tions that are used for text generation and are
application-specific. But operating in multiple
domains and for multiple tasks translates into
multiple manual collection efforts, which could
be very time-consuming and costly. In order to
facilitate smooth paraphrase utilization across a
variety of NLP applications, we need an unsu-
pervised paraphrase collection mechanism that
can be easily conducted, and produces para-
phrases that are of adequate quality and can be
readily used with minimal amount of adaptation
effort.

Our method (Anonymous, 2006), also illus-
trated in (Bannard and Callison-Burch, 2005), to
automatically construct a large domain-
independent paraphrase collection is based on the
assumption that two different phrases of the
same meaning may have the same translation in a

Paraphrase Acquisition



it has been nearly 10years since the terrorist (bombing of PanAm fiight 103

[ bombing aftack |
I~ destruction |
blowing up
destroyed
explosion
damaging
Blown up
Bomblng

AEXZERE (xR E B

/ I\ .
Y \ 9
on the King hotel
Glowing §p 5 X0

Figure 3. An example of the paraphrase extraction
process.

foreign language. Phrase-based Statistical Ma-
chine Translation (SMT) systems analyze large
quantities of bilingual parallel texts in order to
learn translational alignments between pairs of
words and phrases in two languages (Och and
Ney, 2004). The sentence-based translation
model makes word/phrase alignment decisions
probabilistically by computing the optimal model
parameters with application of the statistical es-
timation theory. This alignment process results in
a corpus of word/phrase-aligned parallel sen-
tences from which we can extract phrase pairs
that are translations of each other. We ran the
alignment algorithm from (Och and Ney, 2003)
on a Chinese-English parallel corpus of 218 mil-
lion English words, available from the Linguistic
Data Consortium (LDC). Phrase pairs are ex-
tracted by following the method described in
(Och and Ney, 2004) where all contiguous
phrase pairs having consistent alignments are
extraction candidates. Using these pairs we build
paraphrase sets by joining together all English
phrases that have the same Chinese translation.
Figure 3 shows an example word/phrase align-
ment for two parallel sentence pairs from our
corpus where the phrases “blowing up” and
“bombing” have the same Chinese translation.
On the right side of the figure we show the para-
phrase set which contains these two phrases,
which is typical in our collection of extracted
paraphrases.

Although our paraphrase extraction method is
similar to that of (Bannard and Callison-Burch,
2005), the paraphrases we extracted are for com-
pletely different applications, and have a broader
definition for what constitutes a paraphrase. In
(Bannard and Callison-Burch, 2005), a language
model is used to make sure that the paraphrases
extracted are direct substitutes, from the same
syntactic categories, etc. So, using the example

80

in Figure 3, the paraphrase table would contain
only “bombing” and “bombing attack”. Para-
phrases that are direct substitutes of one another
are useful when translating unknown phrases.
For instance, if a MT system does not have the
Chinese translation for the word “bombing”, but
has seen it in another set of parallel data (not in-
volving Chinese) and has determined it to be a
direct substitute of the phrase “bombing attack”,
then the Chinese translation of “bombing attack”
would be used in place of the translation for
“bombing”. This substitution technique has
shown some improvement in translation quality
(Callison-Burch et al., 2006).

3.3

We adopt a two-tier matching strategy for MT
evaluation in ParaEval. At the top tier, a para-
phrase match is performed on system-translated
sentences and corresponding reference sentences.
Then, unigram matching is performed on the
words not matched by paraphrases. Precision is
measured as the ratio of the total number of
words matched to the total number of words in
the peer translation.

Running our system on the example in Figure
2, the paraphrase-matching phase consumes the
words marked in grey and aligns “have been”
and “to be”, “completed” and “fully”, “to date”
and “up till now”, and “sequence” and “se-
qguenced”. The subsequent unigram-matching
aligns words based on lexical identity.

We maintain the computation of modified uni-
gram precision, defined by the BLEU-esque Phi-
losophy, in principle. In addition to clipping in-
dividual candidate words with their correspond-
ing maximum reference counts (only for words
not matched by paraphrases), we clip candidate
paraphrases by their maximum reference para-
phrase counts. So two completely different
phrases in a reference sentence can be counted as
two occurrences of one phrase. For example in
Figure 4, candidate phrases “blown up” and
“bombing” matched with three phrases from the
references, namely “bombing” and two instances
of “explosion”. Treating these two candidate
phrases as one (paraphrase match), we can see its
clip is 2 (from Ref 1, where “bombing” and “ex-
plosion” are counted as two occurrences of a sin-
gle phrase). The only word that was matched by
its lexical identity is “was”. The modified uni-
gram precision calculated by our method is 4/5,
where as BLEU gives 2/5.

The ParaEval Evaluation Procedure



Candidate: [blown up] [bombing] was happening
Ref 1: the [bombing] resulted in an [explosion]

Ref 2: there was an [explosion]
Modified Unigram Precision
paraphrase match + lexical match
= total number of words in peer
2+D+1 4
5 s

Figure 4. ParaEval’s matching process.

4  Evaluating ParaEval

To be effective in MT evaluations, an automated
procedure should be capable of distinguishing
good translation systems from bad ones, human
translations from systems’, and human transla-
tions of differing quality. For a particular evalua-
tion exercise, an evaluation system produces a
ranking for system and human translations, and
compares this ranking with one created by hu-
man judges (Turian et al., 2003). The closer a
system’s ranking is to the human’s, the better the
evaluation system is.

4.1 Validating ParaEval

To test ParaEval’s ability, NIST 2003 Chinese
MT evaluation results were used (NIST 2003).
This collection consists of 100 source documents
in Chinese, translations from eight individual
translation systems, reference translations from
four humans, and human assessments (on flu-
ency and adequacy). The Spearman rank-order
coefficient is computed as an indicator of how
close a system ranking is to gold-standard human
ranking. It should be noted that the 2003 MT
data is separate from the corpus that we extracted
paraphrases from.

For comparison purposes, BLEU' was also
run. Table 1 shows the correlation figures for the
two automatic systems with the NIST rankings
on fluency and adequacy. The lower and higher
95% confidence intervals are labeled as “L-CI”
and “H-CI”. To estimate the significance of the
rank-order correlation figures, we applied boot-
strap resampling to calculate the confidence in-
tervals. In each of 1000 runs, systems were
ranked based on their translations of 100 ran-
domly selected documents. Each ranking was
compared with the NIST ranking, producing a
correlation score for each run. A t-test was then

! Results shown are from BLEU v.11 (NIST).
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BLEU ParaEval
Fluency 0.6978 0.7575
95% L-CI 0.6967 0.7553
95% H-CI 0.6989 0.7596
Adequacy 0.6108 0.6918
95% L-ClI 0.6083 0.6895
95% H-CI 0.6133 0.694

Table 1. Ranking correlations with human
assessments.

performed on the 1000 correlation scores. In both
fluency and adequacy measurements, ParaEval
correlates significantly better than BLEU. The
ParaEval scores used were precision scores. In
addition to distinguishing the quality of MT sys-
tems, a reliable evaluation procedure must be
able to distinguish system translations from hu-
mans’ (Lin and Och, 2004). Figure 5 shows the
overall system and human ranking. In the upper
left corner, human translators are grouped to-
gether, significantly separated from the auto-
matic MT systems clustered into the lower right
corner.

Human and System Translations Graded

0.95
0.9
0.85
0.8

0.75

S

0.7

ParaEval Scores

0.65 =
-

0.6
0.55 systems

0.5

EO1 EO3 EO4 EO2 E14 E12 E11 E17 E15 E22 E20 E21
Humans and Systems

Figure 5. Overall system and human ranking.

4.2

We experimented with restricting the para-
phrases being matched to various lengths. When
allowing only paraphrases of three or more
words to match, the correlation figures become
stabilized and ParaEval achieves even higher
correlation with fluency measurement to 0.7619
on the Spearman ranking coefficient.

This phenomenon indicates to us that the bi-
gram and unigram paraphrases extracted using
SMT word-alignment and phrase extraction pro-
grams are not reliable enough to be applied to
evaluation tasks. We speculate that word pairs
extracted from (Liang et al., 2006), where a bidi-
rectional discriminative training method was
used to achieve consensus for word-alignment

Implications to Word-alignment



(mostly lower n-grams), would help to elevate
the level of correlation by ParaEval.

4.3 Implications to Evaluating Paraphrase

Quality

Utilizing paraphrases in MT evaluations is also a
realistic way to measure the quality of para-
phrases acquired through unsupervised channels.
If a comparison strategy, coupled with para-
phrase matching, distinguishes good and bad MT
and summarization systems in close accordance
with what human judges do, then this strategy
and the paraphrases used are of sufficient quality.
Since our underlining comparison strategy is that
of BLEU-1 for MT evaluation, and BLEU has
been proven to be a good metric for their respec-
tive evaluation tasks, the performance of the
overall comparison is directly and mainly af-
fected by the paraphrase collection.

5 ParaEval’s Support for Recall Com-

putation

Due to the use of multiple references and allow-
ing an n-gram from the peer translation to be
matched with its corresponding n-gram from any
of the reference translations, BLEU cannot be
used to compute recall scores, which are conven-
tionally paired with precision to detect length-
related problems from systems under evaluation.

5.1 Using Single References for Recall

The primary goal in using multiple references is
to overcome the limitation in matching on lexical
identity. More translation choices give more
variations in verbalization, which could lead to
more matches between peer and reference trans-
lations. Since MT results are generated and
evaluated at a sentence-to-sentence level (or a
segment level, where each segment may contain
a small number of sentences) and no text con-
densation is employed, the number of different
and correct ways to state the same sentence is
small. This is in comparison to writing generic
multi-document summaries, each of which con-
tains multiple sentences and requires significant
amount of “rewriting”. When using a large col-
lection of paraphrases while evaluating, we are
provided with the alternative verbalizations
needed. This property allows us to use single
references to evaluate MT results and compute
recall measurements.
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When validating the computed recall scores for
MT systems, we correlate with human assess-
ments on adequacy only. The reason is that ac-
cording to the definition of recall, the content
coverage in references, and not the fluency re-
flected from the peers, is being measured. Table
2 shows ParaEval’s recall correlation with NIST
2003 Chinese MT evaluation results on systems
ranking. We see that ParaEval’s correlation with
adequacy has improved significantly when using
recall scores to rank than using precision scores.

Recall and Adequacy Correlations

BLEU ParaEval
Adequacy 0.6108 0.7373
95% L-CI 0.6083 0.7368
95% H-CI 0.6133 0.7377

Table 2. ParaEval’s recall ranking correlation.

5.3 Not All Single References are Created

Equal

Human-written translations differ not only in
word choice, but also in other idiosyncrasies that
cannot be captured with paraphrase recognition.
So it would be presumptuous to declare that us-
ing paraphrases from ParaEval is enough to al-
low using just one reference translation to evalu-
ate. Using multiple references allow more para-
phrase sets to be explored in matching.

In Table 3, we show ParaEval’s correlation
figures when using single reference translations.
E01-EO4 indicate the sets of human translations
used correspondingly.

EO1 EO2 EO3 EO4
Fluency 0.683 0.6501| 0.7284| 0.6192
95% L-CI 0.6795 0.6482| 0.7267| 0.6172
95% H-CI 0.6864 0.6519 0.73| 0.6208
Adequacy 0.6308 0.5741| 0.6688| 0.5858
95% L-CI 0.6266 0.5705 0.665| 0.5821
95% H-CI 0.635 0.5777| 0.6727| 0.5895

Table 3. ParaEval’s correlation (precision)
while using only single references.

Notice that the correlation figures vary a great
deal depending on the set of single references
used. How do we differentiate human transla-
tions and know which set of references to use? It
is difficult to quantify the quality that a human
written translation reflects. We can only define
“good” human translations as translations that
are written not very differently from what other
humans would write, and “bad” translations as
the ones that are written in an unconventional
fashion. Table 4 shows the differences between
the four sets of reference translations when com-



paring one set of references to the other three.
The scores here are the raw ParaEval precision
scores. EO1 and EO3 are better, which explains
the higher correlations ParaEval has using these
two sets of references individually, shown in Ta-
ble 3.

ParaEval 95% L-ClI 95% H-CI
EO1 0.8086 0.8 0.8172
EO2 0.7383 0.7268 0.7497
EO3 0.7839 0.7754 0.7923
EO4 0.7742 0.7617 0.7866

Table 4. Differences among reference
translations (raw ParaEval precision
scores).

6 Observation of Change in Number of

References

When matching on lexical identity, it is the gen-
eral consensus that using more reference transla-
tions would increase the reliability of the MT
evaluation (Turian et al., 2003). It is expected
that we see an improvement in ranking correla-
tions when moving from using one reference
translation to more. However, when running
BLEU for the NIST 2003 Chinese MT evalua-
tion, this trend is inverted, and using single refer-
ence translation gave higher correlation than us-

ing all four references, as illustrated in Table 5.

BLEU EO1 EO2 EO3 EO4 4 refs
Fluency | 0.7114| 0.701| 0.7084| 0.7192| 0.6978
95% L-Cl | 0.7099| 0.6993| 0.7065| 0.7177| 0.6967
95% H-Cl | 0.7129| 0.7026]| 0.7102| 0.7208| 0.6989

Adequacy| 0.644| 0.6238| 0.6535| 0.675| 0.6108
95% L-Cl [ 0.6404| 0.6202| 0.6496| 0.6714[ 0.6083
95% H-Cl | 0.6476| 0.6274| 0.6574| 0.6786| 0.6133

Table 5. BLEU'’s correlating behavior with
multi- and single-reference.

Turian et al. (2003) reports the same peculiar
behavior from BLEU on Arabic MT evaluations
in Figure 5b of their paper. When using three
reference translations, as the number of segments
(sentences usually) increases, BLEU correlates
worse than using single references.

Since the matching and underlining counting
mechanisms of ParaEval are built upon the
fundamentals of BLEU, we were keen to find out
the differences, other than paraphrase matching,
between the two methods when the number of
reference translation changes. By following the
description from the original BLEU paper, three
incremental steps were set up for duplicating its
implementation, namely modified unigram preci-
sion (MUP), geometric mean of MUP (GM), and
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MUP EO1 EOQ2 EO3 EO4 4 refs
Fluency 0.6597| 0.6216| 0.6923| 0.4912| 0.692
95% L-Cl | 0.6568| 0.6189| 0.6917| 0.4863| 0.6915
95% H-Cl | 0.6626| 0.6243| 0.6929| 0.496| 0.6925

Adequacy| 0.5818| 0.5459| 0.6141| 0.4602( 0.6165
95% L-Cl | 0.5788| 0.5432| 0.6132| 0.4566| 0.6156
95% H-CI | 0.5847| 0.5486| 0.6151| 0.4638| 0.6174

6(a). System-ranking correlation when using modified
unigram precision (MUP) scores.

GM EO1 EO02 EO3 EO4 4 refs
Fluency 0.6633| 0.6228| 0.6925| 0.4911| 0.6922
95% L-Cl | 0.6604| 0.6201 0.692| 0.4862| 0.6918
95% H-Cl | 0.6662| 0.6255[ 0.6931| 0.4961| 0.6929

Adequacy| 0.5817 0.548 0.615| 0.4641| 0.6159
95% L-Cl | 0.5813| 0.5453 0.614| 0.4606| 0.615
95% H-CI | 0.5871| 0.5508 0.616| 0.4676] 0.6169

6(b). System-ranking correlation when using geometric mean

(GM) of MUPs.

BP-BLEU EOL EO2 EO3 EO4 4 refs

Fluency 0.6637| 0.6227| 0.6921| 0.4947| 0.5743
95% L-CI 0.6608 0.62| 0.6916( 0.4899| 0.5699
95% H-CI 0.6666| 0.6254| 0.6927| 0.4996| 0.5786
Adequacy| 0.5812| 0.5486| 0.5486| 0.5486| 0.6671
95% L-CI 0.5782]| 0.5481| 0.5458| 0.5458] 0.6645
95% H-CI 0.5842]| 0.5514| 0.5514| 0.5514] 0.6697

6(c). System-ranking correlation when multiplying the
brevity penalty with GM.

Table 6. Incremental implementation of

BLEU and the correlation behavior at the
three steps: MUP, GM, and BP-BLEU.

multiplying brevity penalty with GM to get the
final score (BP-BLEU). At each step, correla-
tions were computed for both using single- and
multi- references, shown in Table 6a, b, and c.

Given that many small changes have been
made to the original BLEU design, our replica-
tion would not produce the same scores from the
current version of BLEU. Nevertheless, the in-
verted behavior was observed in fluency correla-
tions at the BP-BLEU step, not at MUP and GM.
This indicates to us that the multiplication of the
brevity penalty to balance precision scores is
problematic. According to (Turian et al., 2003),
correlation scores computed from using fewer
references are inflated because the comparisons
exclude the longer n-gram matches that make
automatic evaluation procedures diverge from
the human judgments. Using a large collection of
paraphrases in comparisons allows those longer
n-gram matches to happen even if single refer-
ences are used. This collection also allows
ParaEval to directly compute recall scores,
avoiding an approximation of recall that is
problematic.



7 Conclusion and Future Work

In this paper, we have described ParaEval, an
automatic evaluation framework for measuring
machine translation results. A large collection of
paraphrases, extracted through an unsupervised
fashion using SMT methods, is used to improve
the quality of the evaluations. We addressed
three important issues, the paraphrasing support,
the computation of recall measurement, and pro-
viding high correlations with human judgments.

Having seen that using paraphrases helps a
great deal in evaluation tasks, naturally the next
task is to explore the possibility in paraphrase
induction. The guestion becomes how to use con-
textual information to calculate semantic close-
ness between two phrases. Can we expand the
identification of paraphrases to longer ones, ide-
ally sentences?

The problem in which content bearing words
carry the same weights as the non-content bear-
ing ones is not addressed. From examining the
paraphrase extraction process, it is unclear how
to relate translation probabilities and confidences
with semantic closeness. We plan to explore the
parallels between the two to enable a weighted
implementation of ParaEval.
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Abstract

In this paper we study the utility of dis-
course structure for spoken dialogue per-
formance modeling. We experiment with
various ways of exploiting the discourse
structure: in isolation, as context infor-
mation for other factors (correctness and
certainty) and through trajectories in the
discourse structure hierarchy. Our corre-
lation and PARADISE results show that,
while the discourse structure is not useful
in isolation, using the discourse structure
as context information for other factors
or via trajectories produces highly predic-
tive parameters for performance analysis.

1 Introduction

Predictive models of spoken dialogue system
(SDS) performance are an important tool for re-
searchers and practitioners in the SDS domain.
These models offer insights on what factors are
important for the success of a SDS and allow
researchers to assess the performance of future
system improvements without running additional
costly user experiments.

One of the most popular models of perform-
ance is the PARADISE framework proposed by
(Walker et al., 2000). In PARADISE, a set of
interaction parameters are measured in a SDS
corpus, and then used in a multivariate linear
regression to predict the target performance met-
ric. A critical ingredient in this approach is the
relevance of the interaction parameters for the
SDS success. A number of parameters that
measure the dialogue efficiency (e.g. number of
system/user turns, task duration) and the dia-
logue quality (e.g. recognition accuracy, rejec-
tions, helps) have been shown to be successful in

Diane J. Litman
University of Pittsburgh
Pittsburgh, USA

litman@cs.pitt.edu

(Walker et al., 2000). An extensive set of pa-
rameters can be found in (Moller, 2005a).

In this paper we study the utility of discourse
structure as an information source for SDS per-
formance analysis. The discourse structure hier-
archy has been shown to be useful for other
tasks: understanding specific lexical and pro-
sodic phenomena (Hirschberg and Nakatani,
1996; Levow, 2004), natural language generation
(Hovy, 1993), predictive/generative models of
postural shifts (Cassell et al., 2001), and essay
scoring (Higgins et al., 2004).

We perform our analysis on a corpus of
speech-based tutoring dialogues. A tutoring SDS
(Litman and Silliman, 2004; Pon-Barry et al.,
2004) has to discuss concepts, laws and relation-
ships and to engage in complex subdialogues to
correct student misconceptions. As a result, dia-
logues with such systems have a rich discourse
structure.

We perform three experiments to measure
three ways of exploiting the discourse structure.
In our first experiment, we test the predictive
utility of the discourse structure in itself. For ex-
ample, we look at whether the number of pop-up
transitions in the discourse structure hierarchy
predicts performance in our system.

The second experiment measures the utility of
the discourse structure as contextual information
for two types of student states: correctness and
certainty. The intuition behind this experiment is
that interaction events should be treated differ-
ently based on their position in the discourse
structure hierarchy. For example, we test if the
number of incorrect answers after a pop-up tran-
sition has a higher predictive utility than the total
number of incorrect student answers. In contrast,
the majority of the previous work either ignores
this contextual information (Moller, 2005a;
Walker et al., 2000) or makes limited use of the
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discourse structure hierarchy by flattening it
(Walker et al., 2001) (Section 5).

As another way to exploit the discourse struc-
ture, in our third experiment we look at whether
specific trajectories in the discourse structure are
indicative of performance. For example, we test
if two consecutive pushes in the discourse struc-
ture are correlated with higher learning.

To measure the predictive utility of our inter-
action parameters, we focus primarily on corre-
lations with our performance metric (Section 4).
There are two reasons for this. First, a significant
correlation between an interaction parameter and
the performance metric is a good indicator of the
parameter’s relevance for PARADISE modeling.
Second, correlations between factors and the per-
formance metric are commonly used in tutoring
research to analyze the tutoring/learning process
(Chi et al., 2001).

Our correlation and PARADISE results show
that, while the discourse structure is not useful in
isolation, using the discourse structure as context
information for other factors or via trajectories
produces highly predictive parameters for per-
formance analysis.

2 Annotation

Our annotation for discourse structure and stu-
dent state has been performed on a corpus of 95
experimentally obtained spoken tutoring dia-
logues between 20 students and our system
ITSPOKE (Litman and Silliman, 2004).
ITSPOKE is a speech-enabled version of the
text-based Why2-Atlas conceptual physics tutor-
ing system (VanLehn et al., 2002). When inter-
acting with ITSPOKE, students first type an es-
say answering a qualitative physics problem us-
ing a graphical user interface. ITSPOKE then
engages the student in spoken dialogue (using
head-mounted microphone input and speech out-
put) to correct misconceptions and elicit more
complete explanations, after which the student
revises the essay, thereby ending the tutoring or
causing another round of tutoring/essay revision.
Each student went through the same procedure:
1) read a short introductory material, 2) took a
pretest to measure the initial physics knowledge,
3) work through a set of 5 problems with
ITSPOKE, and 4) took a posttest similar to the
pretest. The resulting corpus had 2334 student
turns and a comparable number of system turns.

2.1

We base our annotation of discourse structure on
the Grosz & Sidner theory of discourse structure

Discourse structure
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(Grosz and Sidner, 1986). A critical ingredient of
this theory is the intentional structure. According
to the theory, each discourse has a discourse pur-
pose/intention. Satisfying the main discourse
purpose is achieved by satisfying several smaller
purposes/intentions organized in a hierarchical
structure. As a result, the discourse is segmented
in discourse segments each with an associated
discourse segment purpose/intention. This theory
has inspired several generic dialogue managers
for spoken dialogue systems (Bohus and Rud-
nicky, 2003).
ESSAY SUBMISSION & ANALYSIS
NewTeplLevel
DS1~ 2~
TU”_I‘ORI: Consider Newton's laws applied to two
. : objects that move together. ~What three
quantities does Newton's Second Law
| : describe the relationship between?
L7 Student answer,: correct (e.g. force, mass, accel.)
TUTORZ If two bodies are connected so that they move
\ \ together and you know the acceleration of the
IP\ \ . first body, what is the acceleration of tl),e
lh second body?
\\ \SZHdenr answer,: incorrect (e.g. zero)
Ds7<. o
TUTOR;: If the two bodies always move @,‘Iil

together and one body speeds up,
what happens to the other?

‘|
1

/\
v

[}
AeVance
1

~< 7 Student answers: incorrect (e.g. lags behind)
TUTORy: The Second body will speed up too. If )i

~ 1
i the first body accelerates at a ,'I'

® / particular rate, will the second body,",’
|..(l[§)&(§hﬂ accelerate at an equal or differentt”
/, rate?

y

v Student answer,: correct (e.g. equal)
\_,’3".
TUTORs: If a force acts on one body such
Vo that it moves, what happens to the second
Same®eal body?
"< Student answers: incorrect but rejected (e.g. stays)
TUTORg: Could you please repeat that?
o
Figure 1. The discourse structure and transition anno-

tation

We automate our annotation of the discourse
structure by taking advantage of the structure of
the tutored information. A dialogue with
ITSPOKE follows a question-answer format (i.e.
system initiative): ITSPOKE asks a question, the
student provides the answer and then the process
is repeated. Deciding what question to ask, in
what order and when to stop is hand-authored
beforehand in a hierarchical structure that resem-
bles the discourse segment structure (see Figure
1). Tutor questions are grouped in segments
which correspond roughly to the discourse seg-
ments. Similarly to the discourse segment pur-
pose, each question segment has an associated
tutoring goal or purpose. For example, in



ITSPOKE there are question segments discuss-
ing about forces acting on the objects, others dis-
cussing about objects’ acceleration, etc.

In Figure 1 we illustrate ITSPOKE’s behavior
and our discourse structure annotation. First,
based on the analysis of the student essay,
ITSPOKE selects a question segment to correct
misconceptions or to elicit more complete expla-
nations. This question segment will correspond
to the top level discourse segment (e.g. DS1).
Next, ITSPOKE asks the student each question
in DS1. If the student answer is correct, the sys-
tem moves on to the next question (e.g. Tu-
tor;—Tutor,). If the student answer is incorrect,
there are two alternatives. For simple questions,
the system will simply give out the correct an-
swer and move on to the next question (e.g. Tu-
tor;—>Tutory). For complex questions (e.g. apply-
ing physics laws), ITSPOKE will engage into a
remediation subdialogue that attempts to reme-
diate the student’s lack of knowledge or skills.
The remediation subdialogue is specified in an-
other question segment and corresponds to a new
discourse segment (e.g DS2). The new discourse
segment is dominated by the current discourse
segment (e.g. DS2 dominated by DS1). Tutor,
system turn is a typical example; if the student
answers it incorrectly, ITSPOKE will enter dis-
course segment DS2 and go through its questions
(Tutor; and Tutors). Once all the questions in
DS2 have been answered, a heuristic determines
whether ITSPOKE should ask the original ques-
tion again (Tutor,) or simply move on to the next
question (Tutors).

To compute interaction parameters from the
discourse structure, we focus on the transitions in
the discourse structure hierarchy. For each sys-
tem turn we define a transition feature. This fea-
ture captures the position in the discourse struc-
ture of the current system turn relative to the
previous system turn. We define six labels (see
Table 1). NewTopLevel label is used for the first
question after an essay submission (e.g. Tutor).
If the previous question is at the same level with
the current question we label the current question
as Advance (e.g. Tutor, 4). The first question in a
remediation subdialogue is labeled as Push (e.g.
Tutor;). After a remediation subdialogue is com-
pleted, ITSPOKE will pop up and it will either
ask the original question again or move on to the
next question. In the first case, we label the sys-
tem turn as PopUp. Please note that Tutor, will
not be labeled with PopUp because, in such
cases, an extra system turn will be created be-
tween Tutory and Tutors with the same content as
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Tutor,. In addition, variations of “Ok, back to the
original question” are also included in the new
system turn to mark the discourse segment
boundary transition. If the system moves on to
the next question after finishing the remediation
subdialogue, we label the system turn as
PopUpAdv (e.g. Tutors). Note that while the
sum of PopUp and PopUpAdv should be equal
with Push, it is smaller in our corpus because in
some cases ITSPOKE popped up more than one
level in the discourse structure hierarchy. In case
of rejections, the system question is repeated us-
ing variations of “Could you please repeat that?”.
We label such cases as SameGoal (e.g. Tutorg).
Discourse structure transitions

Advance 53.4%
NewTopLevel 13.5%
PopUp 9.2%
PopUpAdv 3.5%
Push 14.5%
SameGoal 5.9%
Certainty
Certain 41.3%
Uncertain 19.1%
Mixed 2.4%
Neutral 37.3%
Correctness
Correct 63.3%
Incorrect 23.3%
Partially Correct 6.2%
Unable to Answer 7.1%

Table 1: Transition and student state distribution.

Please note that each student dialogue has a
specific discourse structure based on the dialogue
that dynamically emerges based on the correct-
ness of her answers. For this reason, the same
system question in terms of content may get a
different transition label for different students.
For example, in Figure 1, if the student would
have answered Tutor, correctly, the next tutor
turn would have had the same content as Tutors
but the Advance label. Also, while a human an-
notation of the discourse structure will be more
complex but more time consuming (Hirschberg
and Nakatani, 1996; Levow, 2004), its advan-
tages are outweighed by the automatic nature of
our discourse structure annotation.

We would like to highlight that our transition
annotation is domain independent and automatic.
Our transition labels capture behavior like start-
ing a new dialogue (NewTopLevel), crossing
discourse segment boundaries (Push, PopUp,
PopUpAdv) and local phenomena inside a dis-
course segment (Advance, SameGoal). If the dis-
course structure information is available, the



transition information can be automatically com-
puted using the procedure described above.

2.2  Student state

Because for our tutoring system student learning
is the relevant performance metric, we hypothe-
size that information about student state in each
student turn, in terms of correctness and cer-
tainty, will be an important indicator. For exam-
ple, a student being more correct and certain dur-
ing her interaction with ITSPOKE might be
indicative of a higher learning gain. Also,
previous studies have shown that tutoring
specific parameters can improve the quality of
SDS performance models that model the learning
gain (Forbes-Riley and Litman, 2006).

In our corpus, each student turn was manually
labeled for correctness and certainty (Table 1).
While our system assigns a correctness label to
each student turn to plan its next move, we
choose to use a manual annotation of correctness
to eliminate the noise introduced by the auto-
matic speech recognition component and the
natural language understanding component. A
human annotator used the human transcripts and
his physics knowledge to label each student turn
for various degrees of correctness: correct, par-
tially correct, incorrect and unable to answer.
“Unable to Answer” label was used for turns
where the student did not answer the system
question or used variants of “I don’t know”.

Previous work has shown that certainty plays
an important role in the learning and tutoring
process (Pon-Barry et al., 2006; VanLehn et al.,
2003). A human annotator listened to the dia-
logues between students and ITSPOKE and la-
beled each student turn for its perceived degree
of certainness. Four labels were used: certain,
uncertain, neutral and mixed (both certain and
uncertain). To date, one annotator has labeled all
student turns in our corpus'.

3 Interaction parameters

For each user, interaction parameters measure
specific aspects of the dialogue with the system.
We use our transition and student state annota-
tion to create two types of interaction parame-

" The agreement between the manual correctness an-
notation and the correctness assigned by ITSPOKE is
90% (kappa of 0.79). In a preliminary agreement
study, a second annotator labeled our corpus for a
binary version of certainty (uncertainty versus other),
resulting in a 90% inter-annotator agreement and a
kappa of 0.68.
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ters: unigrams and bigrams. The difference be-
tween the two types of parameters is whether the
discourse structure context is used or not. For
each of our 12 labels (4 for correctness, 4 for
certainty and 6 for discourse structure), we de-
rive two unigram parameters per student over the
5 dialogues for that student: a fotal parameter
and a percentage parameter. For example, for the
‘Incorrect’ unigram we compute, for each stu-
dent, the total number of student turns labeled
with ‘Incorrect’ (parameter Incorrect) and the
percentage of such student turns out of all stu-
dent turns (parameter Incorrect%). For example,
if we consider only the dialogue in Figure 1, In-
correct = 3 (Student,35) and Incorrect% = 60%
(3 out of 5).

Bigram parameters exploit the discourse struc-
ture context. We create two classes of bigram
parameters by looking at transition—student state
bigrams and transition—transition bigrams. The
transition—student state bigrams combine the in-
formation about the student state with the transi-
tion information of the previous system turn. Go-
ing back to Figure 1, the three incorrect answers
will be distributed to three bigrams: Advance—
Incorrect (Tutor,—Student,), Push—Incorrect (Tu-
tor;—Student;) and PopUpAdv—Incorrect (Tutors—
Students). The transition—transition bigram looks
at the transition labels of two consecutive system
turns. For example, the Tutor,—Tutors pair will
be counted as an Advance—PopUpAdv bigram.

Similar to the unigrams, we compute a total
parameter and a percentage parameter for each
bigram. The percentage denominator is number
of student turns for the transition—student state
bigrams and the number of system turns minus
one for the transition—transition bigram. In addi-
tion, for each bigram we compute a relative per-
centage parameter (bigram followed by %rel) by
computing the percentage relative to the total
number of times the transition unigram appears
for that student. For example, we will compute
the Advance—Incorrect %rel parameter by divid-
ing the number of Advance—Incorrect bigrams
with the number of Advance unigrams (1 divided
by 2 in Figure 1); this value will capture the per-
centage of times an Advance transition is fol-
lowed by an incorrect student answer.

4 Results

We use student learning as our evaluation metric
because it is the primary metric for evaluating
the performance of tutoring systems. Previous
work (Forbes-Riley and Litman, 2006) has suc-



cessfully used student learning as the perform-
ance metric in the PARADISE framework. Two
quantities are used to measure student learning:
the pretest score and the posttest score. Both tests
consist of 40 multiple-choice questions; the test’s
score is computed as the percentage of correctly
answered questions. The average score and stan-
dard deviation for each test are: pretest 0.47
(0.17) and posttest 0.68 (0.17).

We focus primarily on correlations between
our interaction parameters and student learning.
Because in our data the pretest score is signifi-
cantly correlated with the posttest score, we
study partial Pearson’s correlations between our
parameters and the posttest score that account for
the pretest score. This correlation methodology is
commonly used in the tutoring research (Chi et
al., 2001). For each trend or significant correla-
tion we report the unigram/bigram, its average
and standard deviation over all students, the
Pearson’s Correlation Coefficient (R) and the
statistical significance of R (p).

First we report significant correlations for uni-
grams to test our first hypothesis. Next, for our
second and third experiment, we report correla-
tions for transition—student state and transition—
transition parameters. Finally, we report our pre-
liminary results on PARADISE modeling.

4.1 Unigram correlations

In our first proposed experiment, we want to test
the predictive utility of discourse structure in
isolation. We compute correlations between our
transition unigram parameters and learning. We
find no trends or significant correlations. This
result suggests that discourse structure in isola-
tion has no predictive utility.

Here we also report all trends and significant
correlations for student state unigrams as the
baseline for contextual correlations to be pre-
sented in Section 4.2. We find only one signifi-
cant correlation (Table 2): students with a higher
percentage of neutral turns (in terms of certainty)
are negatively correlated with learning. We hy-
pothesize that this correlation captures the stu-
dent involvement in the tutoring process: more
involved students will try harder thus expressing
more certainty or uncertainty. In contrast, less
involved students will have fewer certain/uncer-
tain/mixed turns and, in consequence, more neu-
tral turns. Surprisingly, student correctness does
not significantly correlate with learning.

Parameter Mean (SD) R. p

Neutral % 37% (8%) -.47 .04

Table 2: Trend and significant unigram correlations

4.2 Transition—student state correlations

For our second experiment, we need to determine
the predictive utility of transition—student state
bigram parameters. We find a large number of
correlations for both transition—correctness bi-
grams and transition—certainty bigrams.

Transition—correctness bigrams

This type of bigram informs us whether ac-
counting for the discourse structure transition
when looking at student correctness has any pre-
dictive value. We find several interesting trends
and significant correlations (Table 3).

The student behavior, in terms of correctness,
after a PopUp or a PopUpAdv transition is very
informative about the student learning process.
In both situations, the student has just finished a
remediation subdialogue and the system is pop-
ping up either by reasking the original question
again (PopUp) or by moving on to the next ques-
tion (PopUpAdv). We find that after PopUp, the
number of correct student answers is positively
correlated with learning. In contrast, the number,
the percentage and the relative percentage of in-
correct student answers are negatively correlated
with learning. We hypothesize that this correla-
tion indicates whether the student took advantage
of the additional learning opportunities offered
by the remediation subdialogue. By answering
correctly the original system question (PopUp-—
Correct), the student demonstrates that she has
absorbed the information from the remediation
dialogue. This bigram is an indication of a suc-
cessful learning event. In contrast, answering the
original system question incorrectly (PopUp-—
Incorrect) is an indication of a missed learning
opportunity; the more events like this happen the
less the student learns.

Parameter Mean (SD) R. p
PopUp—Correct 7(3.3) 45 .05
PopUp—Incorrect 2(1.8) -42 .07
PopUp-Incorrect % 1.6% (1.2%) -46 .05
PopUp—Incorrect %rel 17% (13%) -39 .10
PopUpAdv—Correct 2.5(2) 43 .06
PopUpAdv—Correct % 2% (1.3%) 520 .02
NewTopLevel-Incorrect 2.3(1.8) 56 .01

NewTopLevel-Incorrect % 1.9% (1.4%) 49 .03

NewTopLevel-Incorrect %rel ~ 15% (12%) S10 .02

Advance—Correct 40.5 (9.8) 45 .05

Table 3: Trend and significant transition—correctness
bigram correlations

Similarly, being able to correctly answer the

tutor question after popping up from a remedia-

tion subdialogue (PopUpAdv—Correct) is posi-

tively correlated with learning. Since in many

cases, these system questions will make use of
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the knowledge taught in the remediation subdia-
logues, we hypothesize that this correlation also
captures successful learning opportunities.

Another set of interesting correlations is pro-
duced by the NewTopLevel-Incorrect bigram.
We find that the number, the percentage and the
relative percentage of times ITSPOKE starts a
new essay revision dialogue that results in an
incorrect student answer is positively correlated
with learning. The content of the essay revision
dialogue is determined based on ITSPOKE’s
analysis of the student essay. We hypothesize
that an incorrect answer to the first tutor question
is indicative of the system’s picking of a topic
that is problematic for the student. Thus, we see
more learning in students for which more knowl-
edge gaps are discovered and addressed by
ITSPOKE.

Finally, we find the number of times the stu-
dent answers correctly after an advance transition
is positively correlated with learning (the Ad-
vance—Correct bigram). We hypothesize that this
correlation captures the relationship between
students that advance without having major prob-
lems and a higher learning gains.

Transition—certainty bigrams

Next we look at the combination between the
transition in the dialogue structure and the stu-
dent certainty (Table 4). These correlations offer
more insight on the negative correlation between
the Neutral % unigram parameter and student
learning. We find that out of all neutral student
answers, those that follow an Advance transi-
tions are negatively correlated with learning.
Similar to the Neutral % correlation, we hy-
pothesize that Advance—Neutral correlations cap-
ture the lack of involvement of the student in the
tutoring process. This might be also due to
ITSPOKE engaging in teaching concepts that the
student is already familiar with.

Parameter Mean (SD) R. P
Advance—Neutral 27 (8.3) -40 .08
Advance—Neutral % 21% (6%) -.62 .00
Advance—Neutral %rel 38% (10%) -73 .00
SameGoal—Neutral %rel 35% (31%) 46 .05

Table 4: Trend and significant transition—certainty
bigram correlations

In contrast, staying neutral in terms of cer-
tainty after a system rejection is positively corre-
lated with learning. These correlations show that
based on their position in the discourse structure,
neutral student answers will be correlated either
negatively or positively with learning.

Unlike student state unigram parameters
which produce only one significant correlation,
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transition—student state bigram parameters pro-
duce a large number of trend and significant cor-
relations (14). This result suggests that exploiting
the discourse structure as a contextual informa-
tion source can be beneficial for performance
modeling.

4.3 Transition—transition bigrams

For our third experiment, we are looking at the
transition—transition bigram correlations (Table
5). These bigrams help us find trajectories of
length two in the discourse structure that are as-
sociated with better student learning. Because
our student state is domain dependent, translating
the transition—student state bigrams to a new
domain will require finding a new set of relevant
factors to replace the student state. In contrast,
because our transition information is domain in-
dependent, transition—transition bigrams can be
easily implemented in a new domain.

The Advance—Advance bigram covers situa-
tions where the student is covering tutoring ma-
terial without major knowledge gaps. This is be-
cause an Advance transition happens when the
student either answers correctly or his incorrect
answer can be corrected without going into a
remediation subdialogue. Just like with the Ad-
vance—Correct correlation (recall Table 3), we
hypothesize that these correlations links higher
learning gains to students that cover a lot of ma-
terial without many knowledge gap.

Parameter Mean (SD) R. p
Advance—Advance 35(9.1) 47 .04
Push—Push 2217 S50 .03
Push—Push % 1.8% (1.3%) 520 .02
Push—Push %rel 11% (7%) 520 .02
SameGoal—Push %rel 18% (23%) 49 .03

Table 5: Trend and significant transition—transition
bigram correlations

The Push—Push bigrams capture another inter-
esting behavior. In these cases, the student incor-
rectly answers a question, entering a remediation
subdialogue; she also incorrectly answers the
first question in the remediation dialogue enter-
ing an even deeper remediation subdialogue. We
hypothesize that these situations are indicative of
big student knowledge gaps. In our corpus, we
find that the more such big knowledge gaps are
discovered and addressed by the system the
higher the learning gain.

The SameGoal-Push bigram captures another
type of behavior after system rejections that is
positively correlated with learning (recall the
SameGoal-Neutral bigram, Table 4). In our pre-
vious work (Rotaru and Litman, 2006), we per-



formed an analysis of the rejected student turns
and studied how rejections affect the student
state. The results of our analysis suggested a new
strategy for handling rejections in the tutoring
domain: instead of rejecting student answers, a
tutoring SDS should make use of the available
information. Since the recognition hypothesis for
a rejected student turn would be interpreted most
likely as an incorrect answer thus activating a
remediation subdialogue, the positive correlation
between SameGoal-Push and learning suggests
that the new strategy will not impact learning.

Similar to the second experiment, the results
of our third experiment are also positive: in con-
trast to transition unigrams, our domain inde-
pendent trajectories can produce parameters with
a high predictive utility.

4.4 PARADISE modeling

Here we present our preliminary results on ap-
plying the PARADISE framework to model
ITSPOKE performance. A stepwise multivariate
linear regression procedure (Walker et al., 2000)
is used to automatically select the parameters to
be included in the model. Similar to (Forbes-
Riley and Litman, 2006), in order to model the
learning gain, we use posttest as the dependent
variable and force the inclusion of the pretest
score as the first variable in the model.

For the first experiment, we feed the model all
transition unigrams. As expected due to lack of
correlations, the stepwise procedure does not
select any transition unigram parameter. The
only variable in the model is pretest resulting in a
model with a R? of .22.

For the second and third experiment, we first
build a baseline model using only unigram pa-
rameters. The resulting model achieves an R” of
.39 by including the only significantly correlated
unigram parameter: Neutral %. Next, we build a
model using all unigram parameters and all sig-
nificantly correlated bigram parameters. The new
model almost doubles the R” to 0.75. Besides the
pretest, the parameters included in the resulting
model are (ordered by the degree of contribution
from highest to lowest): Advance—Neutral %rel,
and PopUp—Incorrect %. These results strengthen
our correlation conclusions: discourse structure
used as context information or as trajectories in-
formation is useful for performance modeling.
Also, note that the inclusion of student certainty
in the final PARADISE model provides addi-
tional support to a hypothesis that has gained a
lot of attention lately: detecting and responding
to student emotions has the potential to improve
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learning (Craig et al., 2004; Forbes-Riley and
Litman, 2005; Pon-Barry et al., 20006).

The performance of our best model is compa-
rable or higher than training performances re-
ported in previous work (Forbes-Riley and Lit-
man, 2006; Mdoller, 2005b; Walker et al., 2001).
Since our training data is relatively small (20
data points) and overfitting might be involved
here, in the future we plan to do a more in-depth
evaluation by testing if our model generalizes on
a larger ITSPOKE corpus we are currently anno-
tating.

5 Related work

Previous work has proposed a large number of
interaction parameters for SDS performance
modeling (Moller, 2005a; Walker et al., 2000;
Walker et al., 2001). Several information sources
are being tapped to devise parameters classified
by (Moller, 2005a) in several categories: dia-
logue and communication parameters (e.g. dia-
logue duration, number of system/user turns),
speech input parameters (e.g. word error rate,
recognition/concept  accuracy) and meta-
communication parameters (e.g. number of help
request, cancel requests, corrections).

But most of these parameters do not take into
account the discourse structure information. A
notable exception is the DATE dialogue act an-
notation from (Walker et al., 2001). The DATE
annotation captures information on three dimen-
sions: speech acts (e.g. acknowledge, confirm),
conversation domain (e.g. conversation- versus
task-related) and the task model (e.g. subtasks
like getting the date, time, origin, and destina-
tion). All these parameters can be linked to the
discourse structure but flatten the discourse
structure. Moreover, the most informative of
these parameters (the task model parameters) are
domain dependent. Similar approximations of the
discourse structure are also common for other
SDS tasks like predictive models of speech rec-
ognition problems (Gabsdil and Lemon, 2004).

We extend over previous work in several ar-
eas. First, we exploit in more detail the hierarchi-
cal information in the discourse structure. We
quantify this information by recording the dis-
course structure transitions. Second, in contrast
to previous work, our usage of discourse struc-
ture is domain independent (the transitions).
Third, we exploit the discourse structure as a
contextual information source. To our knowl-
edge, previous work has not employed parame-
ters similar with our transition—student state bi-



gram parameters. Forth, via the transition—
transition bigram parameters, we exploit trajecto-
ries in the discourse structure as another domain
independent source of information for perform-
ance modeling. Finally, similar to (Forbes-Riley
and Litman, 2006), we are tackling a more prob-
lematic performance metric: the student learning
gain. While the requirements for a successful
information access SDS are easier to spell out,
the same can not be said about tutoring SDS due
to the current limited understanding of the hu-
man learning process.

6 Conclusion

In this paper we highlight the role of discourse
structure for SDS performance modeling. We
experiment with various ways of using the dis-
course structure: in isolation, as context informa-
tion for other factors (correctness and certainty)
and through trajectories in the discourse structure
hierarchy. Our correlation and PARADISE re-
sults show that, while the discourse structure is
not useful in isolation, using the discourse struc-
ture as context information for other factors or
via trajectories produces highly predictive pa-
rameters for performance analysis. Moreover, the
PARADISE framework selects in the final model
only discourse-based parameters ignoring pa-
rameters that do not use the discourse structure
(certainty and correctness unigrams are ignored).

Our significant correlations also suggest ways
we should modify our system. For example, the
PopUp—Incorrect negative correlations suggest
that after a failed learning opportunity the system
should not give out the correct answer but en-
gage in a secondary remediation subdialogue
specially tailored for these situations.

In the future, we plan to test the generality of
our PARADISE model on other corpora and to
compare models built using our interaction pa-
rameters against models based on parameters
commonly used in previous work (Moller,
2005a). Testing if our results generalize to a hu-
man annotation of the discourse structure and
automated models of certainty and correctness is
also of importance. We also want to see if our
results hold for performance metrics based on
user satisfaction questionnaires; in the new
ITSPOKE corpus we are currently annotating,
each student also completed a user satisfaction
survey (Forbes-Riley and Litman, 2006) similar
to the one used in the DARPA Communicator
multi-site evaluation (Walker et al., 2002).
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Our work contributes to both the computa-
tional linguistics domain and the tutoring do-
main. For the computational linguistics research
community, we show that discourse structure is
an important information source for SDS per-
formance modeling. Our analysis can be ex-
tended easily to other SDS. First, a similar auto-
matic annotation of the discourse structure can
be performed in SDS that rely on dialogue man-
agers inspired by the Grosz & Sidner theory of
discourse (Bohus and Rudnicky, 2003). Second,
the transition—transition bigram parameters are
domain independent. Finally, for the other suc-
cessful usage of discourse structure (transition—
student state bigrams) researchers have only to
identify relevant factors and then combine them
with the discourse structure information. In our
case, we show that instead of looking at the user
state in isolation (Forbes-Riley and Litman,
2006), combining it with the discourse structure
transition can generate informative interaction
parameters.

For the tutoring research community, we show
that discourse structure, an important concept in
computational linguistics theory, can provide
useful insights regarding the learning process.
The correlations we observe in our corpus have
intuitive interpretations (successful/failed learn-
ing opportunities, discovery of deep student
knowledge gaps, providing relevant tutoring).
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Abstract

In this paper we address the issue of au-
tomatically assigning information status to
discourse entities. Using an annotated cor-
pus of conversational English and exploit-
ing morpho-syntactic and lexical features,
we train a decision tree to classify entities
introduced by noun phrases as old, medi-
ated, or new. We compare its performance
with hand-crafted rules that are mainly
based on morpho-syntactic features and
closely relate to the guidelines that had
been used for the manual annotation. The
decision tree model achieves an overall ac-
curacy of 79.5%, significantly outperform-
ing the hand-crafted algorithm (64.4%).
We also experiment with binary classifica-
tions by collapsing in turn two of the three
target classes into one and retraining the
model. The highest accuracy achieved on
binary classification is 93.1%.

1 Introduction

Information structure is the way a speaker or
writer organises known and new information in
text or dialogue. Information structure has been
the subject of numerous and very diverse linguistic
studies (Halliday, 1976; Prince, 1981; Hajicova,
1984; Vallduvi, 1992; Lambrecht, 1994; Steed-
man, 2000, for instance), thus also yielding a
wide range of terms and definitions (see (Vallduvi,

*The work reported in this paper was carried out while
the author was a research fellow at the Institute for Com-
municating and Collaborative Systems of the University
of Edinburgh, United Kingdom, and was supported by a
Scottish Enterprise Edinburgh-Stanford Link grant (265000-
3102-R36766).

1992; Kruijff-Korbayova and Steedman, 2003) for
a discussion). In the present study, we adopt the
term “Information Status”, following the defini-
tion employed for the annotation of the corpus we
use for our experiments (Nissim et al., 2004). In-
formation status describes to which degree a dis-
course entity is available to the hearer, in terms
of the speaker’s assumptions about the hearer’s
knowledge and beliefs. Although there is a fine
line in the distinction between Information Sta-
tus and Information Structure, it is fair to say that
whereas the latter models wider discourse coher-
ence, the former focuses mainly on the local level
of discourse entities. Section 2 provides more de-
tails on how this notion is encoded in our corpus.

Information status has generated large interest
among researchers because of its complex interac-
tion with other linguistic phenomena, thus affect-
ing several Natural Language Processing tasks.
Since it correlates with word order and pitch ac-
cent (Lambrecht, 1994; Hirschberg and Nakatani,
1996), for instance, incorporating knowledge on
information status would be helpful for natural
language generation, and in particular text-to-
speech systems. Stober and colleagues, for ex-
ample, ascribe to the lack of such information the
lower performance of text-to-speech compared to
concept-to-speech generation, where such knowl-
edge could be made directly available to the sys-
tem (Stober et al., 2000).

Another area where information status can play
an important role is anaphora resolution. A major
obstacle in the resolution of definite noun phrases
with full lexical heads is that only a small pro-
portion of them is actually anaphoric (ca. 30%
(Vieira and Poesio, 2000)). Therefore, in the ab-
sence of anaphoricity information, a resolution
system will try to find an antecedent also for non-
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anaphoric definite noun phrases, thus severely af-
fecting performance. There has been recent in-
terest in determining anaphoricity before perform-
ing anaphora resolution (Ng and Cardie, 2002;
Uryupina, 2003), but results have not been en-
tirely satisfactory. Given that old entities are more
likely to be referred to by anaphors, for instance,
identification of information status could improve
anaphoricity determination.

Postolache et al. (2005) have recently shown
that learning information structure with high ac-
curacy is feasible for Czech. However, there are
yet no studies that explore such a task for English.
Exploiting an existing annotated corpus, in this pa-
per we report experiments on learning a model for
the automatic identification of information status
in English.

2 Data

For our experiments we annotated a portion of the
transcribed Switchboard corpus (Godfrey et al.,
1992), consisting of 147 dialogues (Nissim et al.,
2004).! In the following section we provide a brief
description of the annotation categories.

2.1 Annotation

Our annotation of information status mainly builds
on (Prince, 1992), and employs a distinction into
old, mediated, and new entities similar to the work
of (Strube, 1998; Eckert and Strube, 2001).

All noun phrases (NPs) were extracted as mark-
able entities using pre-existing parse information
(Carletta et al., 2004). An entity was annotated as
new if it has not been previously referred to and
is yet unknown to the hearer. The tag mediated
was instead used whenever an entity that is newly
mentioned in the dialogue can be inferred by the
hearer thanks to prior or general context.”> Typ-
ical examples of mediated entities are generally
known objects (such as “the sun”, or “the Pope”
(Lobner, 1985)), and bridging anaphors (Clark,
1975; Vieira and Poesio, 2000), where an entity
is related to a previously introduced one. When-
ever an entity was neither new nor mediated, it was
considered as old.

!'Switchboard is a collection of spontaneous phone con-
versations, averaging six minutes in length, between speakers
of American English on predetermined topics. A third of the
corpus is syntactically parsed as part of the Penn Treebank
(Marcus et al., 1993)

>This type corresponds to Prince’s (1981; 1992) in-
ferrables.
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In order to account for the complexity of the
notion of information status, the annotation also
includes a sub-type classification for old and me-
diated entities that provides a finer-grained dis-
tinction with information on why a given entity is
mediated (e.g., set-relation, bridging) or old (e.g.,
coreference, generic pronouns). In order to test
the feasibility of automatically assigning informa-
tion status to discourse entities, we took a modular
approach and only considered the coarser-grained
distinctions for this first study. Information about
the finer-grained subtypes will be used in future
work.

In addition to the main categories, we used two
more annotation classes: a tag non-applicable,
used for entities that were wrongly extracted in the
automatic selection of markables (e.g. “course” in
“of course”), for idiomatic occurrences, and ex-
pletive uses of “it”; and a tag not-understood to be
applied whenever an annotator did not fully under-
stand the text. Instances annotated with these two
tags, as well as all traces, which were left unanno-
tated, were excluded from all our experiments.

Inter-annotator agreement was measured using
the kappa (K) statistics (Cohen, 1960; Carletta,
1996) on 1,502 instances (three Switchboard dia-
logues) marked by two annotators who followed
specific written guidelines. Given that the task
involves a fair amount of subjective judgement,
agreement was remarkably high. Over the three
dialogues, the annotation yielded K = .845 for
the old/med/new classification (K = .788 when
including the finer-grained subtype distinction).
Specifically, “old” proved to be the easiest to dis-
tinguish, with K = .902; for “med” and “new”
agreement was measured at K = .800 and K =
.794, respectively. A value of K > .76 is usually
considered good agreement. Further details on the
annotation process and corpus description are pro-
vided in (Nissim et al., 2004)

2.2 Setup

We split the 147 dialogues into a training, a de-
velopment and an evaluation set. The training set
contains 40,865 NPs distributed over 94 dialogues,
the development set consists of 23 dialogues for a
total of 10,565 NPs, and the evaluation set com-
prises 30 dialogues with 12,624 NPs. Instances
were randomised, so that occurrences of NPs from
the same dialogue were possibly split across the
different sets.



Table 1 reports the distribution of classes for
the training, development and evaluation sets. The
distributions are similar, with a majority of old en-
tities, followed by mediated entities, and lastly by
new ones.

Table 1: Information status distribution of NPs in
training, development and evaluation sets

TRAIN DEV EVAL
old | 19730 (48.3%) | 5181 (49.0%) | 6049 (47.9%)
med | 15184 (37.1%) | 3762 (35.6%) | 4644 (36.8%)
new | 5951 (14.6%) | 1622 (15.4%) | 1931 (15.3%)
total | 40865 (100%) | 10565 (100%) | 12624 (100%)

3 C(Classification with hand-crafted rules

The target classes for our classification experi-
ments are the annotation tags: old, mediated, and
new. As baseline, we could take a simple “most-
frequent-class” assignment that would classify all
entities as old, thus yielding an accuracy of 47.9%
on the evaluation set (see Table 1). Although the
“all-old” assumption makes a reasonable baseline,
it would not provide a particularly interesting solu-
tion from a practical perspective, since a dialogue
should also contain not-old information. Thus,
rather than adopting this simple strategy, we de-
veloped a more sophisticated baseline working on
a set of hand-crafted rules.

This hand-crafted algorithm is based on rather
straightforward, intuitive rules, partially reflecting
the instructions specified in the annotation guide-
lines. As shown in Figure 1, the top split is the
NP type: whether the instance to classify is a pro-
noun, a proper noun, or a common noun. The
other information that the algorithm uses is about
complete or partial string overlapping with respect
to the dialogue’s context. For common nouns we
also consider the kind of determiner (definite, in-
definite, demonstrative, possessive, or bare).

In order to obtain the NP type information, we
exploited the pre-existing morpho-syntactic tree-
bank annotation of Switchboard. Whenever the
extraction failed, we assigned a type “other” and
always backed-off these cases to old (the most fre-
quent class in training data). Values for the other
features were obtained by simple pattern matching
and NP extraction.

Evaluation measures The algorithm’s perfor-
mance is evaluated with respect to its general ac-
curacy (Acc): the number of correctly classified
instances over all assignments. Moreover, for each
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case NP is a pronoun

status := old

case NP is a proper noun

if first occurrence then
status := med
else
status := old
endif

case NP is a common noun

if identical string already mentioned then
status := old

else

if partial string already mentioned then

status := med
else
if determiner is def/dem/poss then
status := med

else
status := new
endif
endif
endif
otherwise

status := old

Figure 1: Hand-crafted rule-based algorithm for
the assignment of information status to NPs.

class (c), we report precision (P), recall (R), and f-
score (F) thus calculated:

correct assignments of ¢

P.= total assignments of ¢
R. = correct assignments of ¢
€ ™ total corpus instances of c
F.= 2P R,
¢ PR

The overall accuracy of the rule-based algo-
rithm is 65.8%. Table 2 shows the results for each
target class in both the development and evaluation
sets. We discuss results on the latter.

Although a very high proportion of old entities
is correctly retrieved (93.5%), this is done with
relatively low precision (66.7%). Moreover, both
precision and recall for the other classes are dis-
appointing. Unsurprisingly, the rules that apply
to common nouns (the most ambiguous with re-
spect to information status) generate a large num-



Table 2: Per class performance of hand-crafted
rules on the development and evaluation sets

DEV EVAL
P R F P R F
old | .677 | .932 | .784 | .667 | .935 | .779
med | .641 | 488 | .554 | .666 | .461 | .545
new | .517 | .180 | .267 | 436 | .175 | .250

ber of false positives. The rule that predicts an
old entity in case of a full previous mention, for
example, has a precision of only 39.8%. Better,
but not yet satisfactory, is the precision of the rule
that predicts a mediated entity for a common noun
that has a previous partial mention (64.7%). The
worst performing rule is the one that assigns the
most frequent class (old) to entities of syntactic
type “other”, with a precision of 35.4%. To give an
idea of the correlation between NP type and infor-
mation status, in Table 3 we report the distribution
observed in the evaluation set.

Table 3: Distribution of information status over
NP types in the evaluation set

old med new
pronoun | 4465 159 13
proper 107 198 27
common 752 2874 1256
other 725 1413 635

4 Learning Information Status

Our starting point for the automatic assignment
of information status are the three already intro-
duced classes: old, mediated and new. Addition-
ally, we experiment with binary classifications, by
collapsing mediated entities in turn with old and
new ones.

For training, developing and evaluating the
model we use the split described in Section 2.2
(see Table 1). Performance is evaluated accord-
ing to overall accuracy and per class precision, re-
call, and f-score as described in Section 3. To train
a C4.5 decision tree model we use the J48 Weka
implementation (Witten and Frank, 2000). The
choice of features to build the tree is described in
the following section.

4.1 Features

The seven features we use are automatically ex-
tracted from the annotated data exploiting pre-
existing morpho-syntactic markup and using sim-
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Table 4: Feature set for learning experiments

FEATURE VALUES

full prev mention numeric
mention time {first,second,more }
partial prev mention | {yes,no,na}

determiner {bare,def,dem,indef,poss,na}

NP length numeric

grammatical role {subject,subjpass,object,pp,other }
NP type {pronoun,common,proper,other}

ple pattern matching techniques. They are sum-
marised in Table 4.

The choice of features is motivated by the fol-
lowing observations. The information coming
from partial previous mentions is particularly use-
ful for the identification of mediated entities. This
should account specifically for cases of media-
tion via set-relations; for example, “your children”
would be considered a partial previous mention of
“my children” or “your four children”. The value
“na” stands for “non-applicable” and is mainly
used for pronouns. Full previous mention is likely
to be a good indicator of old entities. Both full and
partial previous mentions are calculated within
each dialogue without any constraints based on
distance.

NP type and determiner type are expected to be
helpful for all categories, with pronouns, for in-
stance, tending to be old and indefinite NPs being
often new. We included the length of NPs (mea-
sured in number of words) since linguistic studies
have shown that old entities tend to be expressed
with less lexical material (Wasow, 2002). In exper-
iments on the development data we also included
the NP string itself, on the grounds that it might
be of use in cases of general mediated instances
(common knowledge entities), such as “the sun”,
“people”, “Mickey Mouse”, and so on. However,
this feature turned out to negatively affect perfor-
mance, and was not included in the final model.

4.2 Results

With an overall final accuracy of 79.5% on the
evaluation set, C4.5 significantly outperforms the
hand-crafted algorithm (65.8%). Although the
identification of old entities is quite successful
(F=.928), performance is not entirely satisfactory.
This is especially true for the classification of new
entities, for which the final f-score is .320, mainly
due to extremely low recall (.223). Mediated enti-
ties, instead, are retrieved with a fairly low preci-
sion but higher recall. Table 5 summarises preci-
sion, recall, and f-score for each class.



Table 5: Per class performance of C4.5 on the de-
velopment and evaluation sets

DEV EVAL
P R F P R F
old | 935 | 911 | .923 | 941 | 915 | .928
med | .673 | .878 | .762 | .681 | .876 | .766
new | .623 | .234 | 341 | .563 | .223 | .320

The major confusion in the classification arises
between mediated and new (the most difficult de-
cision to make for human annotators too, see Sec-
tion 2.1), which are often distinguished on the ba-
sis of world knowledge, not available to the classi-
fier. This is clearly shown by the confusion matrix
in Table 6: the highest proportion of mistakes is
due to 1,453 new instances classified as mediated.
Also significant is the wrong assignment of me-
diated tags to old entities. Such behaviour of the
classifier is to be expected, given the ‘in-between’
nature of mediated entities.

Table 6: Confusion matrix for evaluation set.
C=Classifier tag; G=Gold tag

C — old med new
G|
old 5537 452 60
med 303 4066 275
new 47 1453 431

4.3 Classification with two categories only

Given the above observations, we collapsed me-
diated entities in turn with old ones (focusing on
their non-newness) or new ones (enhancing their
non complete givenness), thus reducing the task to
a binary classification.

Since it appears to be more difficult to distin-
guish mediated and new rather than mediated and
old (Table 6), we expect the classifier to perform
better when mediated is binned with new rather
than old. Also, in the case where mediated and old
entities are collapsed into one single class as op-
posed to new ones, the distribution of classes be-
comes highly skewed towards old entities (84.7%)
so that the learner is likely to lack sufficient infor-
mation for identifying new entities.

Table 7 shows the final accuracy for the two bi-
nary classifications (and the three-way one). As
expected, when mediated entities are joint with
new ones, the classifier performs best (93.1%),
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with high f-scores for both old and new, and is sig-
nificantly better than the alternative binary classi-
fication (t-test, p < 0.001). Indeed, the old+med
vs new classification is nearly an all-old assign-
ment and its overall final accuracy (85.5%) is not
a significant improvement over the all-old baseline
(84.7%). Results suggest that mediated NPs are
more similar to new than to old entities and might
provide interesting feedback for the theoretical as-
sumptions underlying the corpus annotation.

4.4 Comparison with two categories only

For a fair comparison, we performed a two-way
classification using the hand-crafted algorithm,
which had to be simplified to account for the lack
of a mediated class.

In the case where all mediated instances where
collapsed together with the old ones, the decision
rules are very simple: pronouns, proper nouns, and
common nouns that have been previously fully or
partially mentioned are classified as old; first men-
tion common nouns are new; everything else is
old. Both precision and recall for old instances
are quite high (.868 and .906 respectively), for a
resulting f-score of .887. Conversely, the perfor-
mance on identifying new entities is very poor,
with a precision of .337 and a recall of .227, for
a combined f-score of .271. The overall accuracy
is .803, and this is significantly lower than the per-
formance of C4.5, which achieves an overall accu-
racy of .850 (t-test, p < 0.001).

When mediated entities are collapsed with new
ones, rule-based classification is done again with
a very basic algorithm derived from the rules in
Figure 1: pronouns are old; proper nouns are new
if first mention, old otherwise; common nouns
that have been fully previously mentioned are old,
otherwise new. Everything else is new, which in
the training set is now the most frequent class
(51.7%). The overall accuracy of .849 is signif-
icantly lower than that achieved by C4.5, which
is .931 (t-test, p < 0.001). Differently from the
previous case (mediated collapsed with old), the
performance on each class is comparable, with a
precision, recall and f-score of .863, .815, and .838
for old and of .838, .881, and .859 for new.

5 Discussion

5.1 Influence of training size

In order to assess the contribution of training size
to performance, we experimented with increas-



Table 7: Overview of accuracy for hand-crafted
rules and C4.5 on three-way and binary classifica-
tions on development and evaluation sets

DEV EVAL
classification rules | C4.5 | rules | C4.5
old vs med vs new | .658 | .796 | .644 | .795
old+med vs new .810 | .861 | .803 | .855
old vs med+new 844 | 926 | .849 | 931

ingly larger portions of the training data (from 50
to 30,000 instances). For each training size we ran
the classifier 5 times, each with a different ran-
domly picked set of instances. This was done for
the three-way and the two binary classifications.
Reported results are always averaged over the 5
runs. Figure 2 shows the three learning curves.

7
{F

]

—{—— old vs med+new
——O—— old vs med vs new
—7/v—— old+med vs new
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Figure 2: Learning curves for three- and two-way
classifications

The curve for the three-way classification shows a
slight constant improvement, though it appears to
reach a plateau after 5,000 instances. The result
obtained training on the full set (40865 instances)
is significantly better only if compared to a train-
ing set of 4,000 or less (t-test, p < 0.05). No other
significant difference in accuracy can be observed.

Increasing the training size over 5,000 instances
when learning to classify old+mediated vs new
leads to a slight improvement due to the learner
being able to identify some new entities. With a
smaller training set the proportion of new entities
is far too small to be of use. However, as said, the
overall final accuracy of 85.5% (see Table 7) does
not significantly improve over the baseline.
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Table 8: Performance of leave-one-out and single-
feature classifiers on three-way classification

ACCURACY

FEATURE

removed | single
full prev mention 793 730
mention time 795 730
partial prev mention 191 769
determiner 789 775
NP length 793 733
gram role 782 .656
NP type 784 701
full set 195

5.2 Feature contribution

We are also interested in the contribution of each
single feature. Therefore, we ran the classifier
again, leaving out one feature at a time. No sig-
nificant drop or gain was observed in any of the
runs (t-test, p < 0.01), though the worst detri-
ments were yielded by removing the grammati-
cal role and the NP type. These two features,
however, also appear to be the least informative
in single-feature classification experiments, thus
suggesting that such information comes very use-
ful only when combined with other evidence (see
also Section 5.4. All results for leave-one-out and
single-feature classifiers are shown in Table 8.

5.3 Error Analysis

The overwhelming majority of mistakes (1,453,
56.1% of all errors) in the three-way classification
stems from classifying as mediated entities that
are in fact new (Table 6). Significant confusion
arises from proper nouns, as they are annotated as
mediated or new entities, depending on whether
they are generally known (such as names of US
presidents, for example), or domain/community-
specific (such as the name of a local store that only
the speaker knows). This inconsistency in the an-
notation might reflect well the actual status of en-
tities in the dialogues, but it can be misleading for
the classifier.

Another large group of errors is formed by old
entities classified as mediated (452 cases). This is
probably due to the fact that the first node in the
decision tree is the “partial mention” feature (see
Figure 3). The tree correctly captures the fact that
a firstly mentioned entity which has been partially
mentioned before is mediated. An entity that has
a previous partial mention but also a full previous
mention is classified as old only if it is a proper
noun or a pronoun, but as mediated if it is a com-
mon noun. This yields a large number of mis-



takes, since many common nouns that have been
previously mentioned (both in full and partially)
are in fact old. Another problem with previous
mentions is the lack of restriction in distance: we
consider a previous mention any identical mention
of a given NP anywhere in the dialogue, and we
have no means of checking that it is indeed the
same entity that is referred to. A way to alleviate
this problem might be exploiting speaker turn in-
formation. Using anaphoric chains could also be
of help, but see Section 6.

5.4 Learnt trees meet hand-crafted rules

The learnt trees provide interesting insights on the
intuitions behind the choice of hand-crafted rules.

partial = yes
full <=1
| det = def: med
det = indef
| length <= 2

| gramm = subj: med
gramm = subjpassive: new
gramm = obj: med
gramm = pp: med
gramm = other
| type = proper: med
| type = common: new
| type pronoun: new
| type = other: med

\

\

\

\

\

\

\

\

\

| length > 2: med
det = dem

\ gramm = subj

Figure 3: Top of C.5, full training set, three classes

Figure 3 shows the top of C4.5 (trained on the full
training set for the three-way classification), which
looks remarkably different from the rules in Fig-
ure 1. We had based our decision of emphasising
the importance of the NP type on the linguistic ev-
idence that different syntactic realisations reflect
different degrees of availability of discourse enti-
ties (Givon, 1983; Ariel, 1990; Grosz et al., 1995).
In the learnt model, however, knowledge about NP
type is only used as subordinate to other features.
This is indeed mirrored in the fact that removing
NP type information from the feature set causes
accuracy to drop, but a classifier building on NP
type alone performs poorly (see Table 8).3 In-
terestingly, though, more informative knowledge
about syntactic form seems to be derived from the
determiner type, which helps distinguish degrees
of oldness among common nouns.

3The NPtype-only classifier assigns old to pronouns and
med to all other types; it never assigns new.

5.5 Naive Bayes model

For additional comparison, we also trained a Naive
Bayes classifier with the same experimental set-
tings. Results are significantly worse than C4.5’s
in all three scenarios (t-test, p < 0.005), with an
accuracy of 74.6% in the three-way classification,
63.3% for old+mediated vs new, and 91.0% for old
vs mediated+new. The latter distribution appears
again to be the easiest to learn.

6 Related Work

To our knowledge, there are no other studies on the
automatic assignment of information status in En-
glish. Recently, (Postolache et al., 2005) have re-
ported experiments on learning information struc-
ture in the Prague TreeBank. The Czech tree-
bank is annotated following the Topic-Focus artic-
ulation theory (Hajicova et al., 1998). The theo-
retical definitions underlying the Prague Treebank
and the corpus we are using are different, with the
former giving a more global picture of informa-
tion structure, and the latter a more entity-specific
one. For this reason, and due to the fact that Pos-
tolache et al.’s experiments are on Czech (with a
freer word order than English), comparing results
is not straightforward.

Their best system (C4.5 decision tree) achieves
an accuracy of 90.69% on the topic/focus identi-
fication task. This result is comparable with the
result we obtain when training and testing on the
corpus where mediated and new entities are not
distinguished (93.1%). Postolache and colleagues
also observe a slowly flattening learning curve af-
ter a very small amount of data (even 1%, in their
case). Therefore, they predict an increase in per-
formance will mainly come from better features
rather than more training data. This is likely to be
true in our case as well, also because our feature
set is currently small and we will further benefit
from incorporating additional features. Postolache
et al. use a larger feature set, which also includes
coreference information. The corpus we use has
manually annotated coreference links. However,
because we see anaphoricity determination as a
task that could benefit from automatic information
status assignment, we decided not to exploit this
information in the current experiments. Moreover,
we did not want our model to rely too heavily on a
feature that is not easy to obtain automatically.
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7 Conclusions and Future Work

We have presented a model for the automatic as-
signment of information status in English. On the
three-way classification into old, mediated, and
new that reflects the corpus annotation tags, the
learnt tree outperforms a hand-crafted algorithm
and achieves an accuracy of 79.5%, with high pre-
cision and recall for old entities, high recall for
mediated entities, and a fair precision, but very
poor recall, for new ones. When we collapsed me-
diated and new entities into one category only op-
posing this to old ones, the classifier performed
with an accuracy of 93.1%, with high f-scores for
both classes. Binning mediated and old entities to-
gether did not produce interesting results, mainly
due to the highly skewed distribution of the result-
ing corpus towards old entities. This suggests that
mediated entities are more similar to new than to
old ones, and might provide interesting feedback
for the theoretical assumptions underlying the an-
notation. Future work will examine specific cases
and investigate how such insights can be used to
make the theoretical framework more accurate.

As the first experiments run on English to learn
information status, we wanted to concentrate on
the task itself and avoid noise introduced by au-
tomatic processing. More realistic settings for in-
tegrating an information status model in a large-
scale NLP system would imply obtaining syntactic
information via parsing rather than directly from
the treebank. Future experiments will assess the
impact of automatic preprocessing of the data.

Results are very promising but there is room for
improvement. First, the syntactic category “other”
is far too large, and finer distinctions must be made
by means of better extraction rules from the trees.
Second, and most importantly, we believe that us-
ing more features will be the main trigger of higher
accuracy. In particular, we plan to use additional
lexical and relational features derived from knowl-
edge sources such as WordNet (Fellbaum, 1998)
and FrameNet (Baker et al., 1998) which should
be especially helpful in distinguishing mediated
from new entities, the most difficult decision to
make. For example, an entity that is linked in
WordNet (within a given depth) and/or FrameNet
to a previously introduced one is more likely to be
mediated than new.

Additionally, we will attempt to exploit dia-
logue turns, since knowing which speaker said
what is clearly very valuable information. In a

similar vein, we will experiment with distance
measures, in terms of turns, sentences, or even
time, for determining when an introduced entity
might stop to be available.

We also plan to run experiments on the auto-
matic classification of old and mediated subtypes
(the finer-grained classification) that is included
in the corpus but that we did not consider for the
present study (see Section 2.1). The major benefit
of this would be a contribution to the resolution of
bridging anaphora.
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Abstract

Citation function is defined as the author’s
reason for citing a given paper (e.g. ac-
knowledgement of the use of the cited
method). The automatic recognition of the
rhetorical function of citations in scientific
text has many applications, from improve-
ment of impact factor calculations to text
summarisation and more informative ci-
tation indexers. We show that our anno-
tation scheme for citation function is re-
liable, and present a supervised machine
learning framework to automatically clas-
sify citation function, using both shallow
and linguistically-inspired features. We
find, amongst other things, a strong re-
lationship between citation function and
sentiment classification.

1 Introduction

Why do researchers cite a particular paper? This
is a question that has interested researchers in
discourse analysis, sociology of science, and in-
formation sciences (library sciences) for decades
(Garfield, 1979; Small, 1982; White, 2004). Many
annotation schemes for citation motivation have
been created over the years, and the question has
been studied in detail, even to the level of in-depth
interviews with writers about each individual cita-
tion (Hodges, 1972).

Part of this sustained interest in citations can
be explained by the fact that bibliometric met-
rics are commonly used to measure the impact of
a researcher’s work by how often they are cited
(Borgman, 1990; Luukkonen, 1992). However, re-
searchers from the field of discourse studies have
long criticised purely quantitative citation analy-
sis, pointing out that many citations are done out
of “politeness, policy or piety” (Ziman, 1968),
and that criticising citations or citations in pass-

ing should not “count” as much as central cita-
tions in a paper, or as those citations where a re-
searcher’s work is used as the starting point of
somebody else’s work (Bonzi, 1982). A plethora
of manual annotation schemes for citation motiva-
tion have been invented over the years (Garfield,
1979; Hodges, 1972; Chubin and Moitra, 1975).
Other schemes concentrate on citation function
(Spiegel-Riising, 1977; O’Connor, 1982; Wein-
stock, 1971; Swales, 1990; Small, 1982)). One
of the best-known of these studies (Moravcsik
and Murugesan, 1975) divides citations in running
text into four dimensions: conceptual or opera-
tional use (i.e., use of theory vs. use of technical
method); evolutionary or juxtapositional (i.e., own
work is based on the cited work vs. own work is an
alternative to it); organic or perfunctory (i.e., work
is crucially needed for understanding of citing ar-
ticle or just a general acknowledgement); and fi-
nally confirmative vs. negational (i.e., is the cor-
rectness of the findings disputed?). They found,
for example, that 40% of the citations were per-
functory, which casts further doubt on the citation-
counting approach.

Based on such annotation schemes and hand-
analyzed data, different influences on citation be-
haviour can be determined. Nevertheless, re-
searchers in the field of citation content analysis
do not normally cross-validate their schemes with
independent annotation studies with other human
annotators, and usually only annotate a small num-
ber of citations (in the range of hundreds or thou-
sands). Also, automated application of the annota-
tion is not something that is generally considered
in the field, though White (2004) sees the future of
discourse-analytic citation analysis in automation.

Apart from raw material for bibliometric stud-
ies, citations can also be used for search purposes
in document retrieval applications. In the library
world, printed or electronic citation indexes such
as ISI (Garfield, 1979) serve as an orthogonal
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Li and Abe 96

Brown et al. 90a Church and Gale 91

Resnik 95 Rose et al. 90

Dagan et al. 94
Nitta and Niwa 94 Dagan et al 93

Hindle 90 /

Pereira et al. 93
His notion of similarity
seems to agree with our
intuitions in many cases,
but it is not clear how it
can be used directly to
construct word classes
and corresponding
models of association.

Following Pereira et al, we measure
word similarity by the relative entropy|
or Kulbach-Leibler (KL) distance, bet|
ween the corresponding conditional
distributions.

Figure 1: A rhetorical citation map

search tool to find relevant papers, starting from a
source paper of interest. With the increased avail-
ability of documents in electronic form in recent
years, citation-based search and automatic citation
indexing have become highly popular, cf. the suc-
cessful search tools Google Scholar and CiteSeer
(Giles et al., 1998).!

But not all search needs are fulfilled by current
citation indexers. Experienced researchers are of-
ten interested in relations between articles (Shum,
1998). They want to know if a certain article crit-
icises another and what the criticism is, or if the
current work is based on that prior work. This
type of information is hard to come by with current
search technology. Neither the author’s abstract,
nor raw citation counts help users in assessing the
relation between articles.

Fig. 1 shows a hypothetical search tool which
displays differences and similarities between a tar-
get paper (here: Pereira et al., 1993) and the pa-
pers that it cites and that cite it. Contrastive links
are shown in grey — links to rival papers and pa-
pers the current paper contrasts itself to. Continu-
ative links are shown in black — links to papers that
use the methodology of the current paper. Fig. 1
also displays the most characteristic textual sen-
tence about each citation. For instance, we can see
which aspect of Hindle (1990) our example paper
criticises, and in which way the example paper’s
work was used by Dagan et al. (1994).

Note that not even the CiteSeer text snippet

"These tools automatically citation-index all scientific ar-
ticles reached by a web-crawler, making them available to
searchers via authors or keywords in the title, and displaying
the citation in context of a text snippet.

can fulfil the relation search need: it is always
centered around the physical location of the ci-
tations, but the context is often not informative
enough for the searcher to infer the relation. In
fact, studies from our annotated corpus (Teufel,
1999) show that 69% of the 600 sentences stat-
ing contrast with other work and 21% of the
246 sentences stating research continuation with
other work do not contain the corresponding cita-
tion; the citation is found in preceding sentences
(which means that the sentence expressing the
contrast or continuation is outside the CiteSeer
snippet). A more sophisticated, discourse-aware
citation indexer which finds these sentences and
associates them with the citation would add con-
siderable value to the researcher’s bibliographic
search (Ritchie et al., 2006b).

Our annotation scheme for citations is based
on empirical work in content citation analysis. It
is designed for information retrieval applications
such as improved citation indexing and better bib-
liometric measures (Teufel et al., 2006). Its 12 cat-
egories mark relationships with other works. Each
citation is labelled with exactly one category. The
following top-level four-way distinction applies:

e Explicit statement of weakness

e Contrast or comparison with other work (4
categories)

e Agreement/usage/compatibility with other
work (6 categories), and

e A neutral category.

In this paper, we show that the scheme can be
reliably annotated by independent coders. We also
report results of a supervised machine learning ex-
periment which replicates the human annotation.

2 An annotation scheme for citations

Our scheme (given in Fig. 2) is adapted from that
of Spiegel-Riising (1977) after an analysis of a
corpus of scientific articles in computational lin-
guistics. We avoid sociologically orientated dis-
tinctions (“paying homage to pioneers”), as they
can be difficult to operationalise without deep
knowledge of the field and its participants (Swales,
1986). Our redefinition of the categories aims at
reliably annotation; at the same time, the cate-
gories should be informative enough for the docu-
ment management application sketched in the in-
troduction.
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Category | Description

Weak Weakness of cited approach

CoCoGM | Contrast/Comparison in Goals or Meth-
ods(neutral)

CoCo- Author’s work is stated to be superior to
cited work

CoCoRO Contrast/Comparison in Results (neutral)

CoCoXY | Contrast between 2 cited methods

PBas Author uses cited work as basis or starting
point

PUse Author uses
tools/algorithms/data/definitions

PModi Author adapts or modifies
tools/algorithms/data

PMot This citation is positive about approach
used or problem addressed (used to mo-
tivate work in current paper)

PSim Author’s work and cited work are similar

PSup Author’s work and cited work are compat-
ible/provide support for each other

Neut Neutral description of cited work, or not
enough textual evidence for above cate-
gories, or unlisted citation function

Figure 2: Annotation scheme for citation function.

Our categories are as follows: One category
(Weak) is reserved for weakness of previous re-
search, if it is addressed by the authors. The next
four categories describe comparisons or contrasts
between own and other work. The difference be-
tween them concerns whether the contrast is be-
tween methods employed or goals (CoCoGM), or
results, and in the case of results, a difference is
made between the cited results being worse than
the current work (CoCo-), or comparable or bet-
ter results (CoCoRO0). As well as considering dif-
ferences between the current work and other work,
we also mark citations if they are explicitly com-
pared and contrasted with other work (i.e. not
the work in the current paper). This is expressed
in category CoCoXY. While this is not typically
annotated in the literature, we expect a potential
practical benefit of this category for our applica-
tion, particularly in searches for differences and
rival approaches.

The next set of categories we propose concerns
positive sentiment expressed towards a citation, or
a statement that the other work is actively used
in the current work (which we consider the ulti-
mate praise). We mark statements of use of data
and methods of the cited work, differentiating un-
changed use (PUse) from use with adaptations
(PModi). Work which is stated as the explicit
starting point or intellectual ancestry is marked
with our category PBas. If a claim in the liter-
ature is used to strengthen the authors’ argument,

or vice versa, we assign the category PSup. We
also mark similarity of (an aspect of) the approach
to the cited work (PSim), and motivation of ap-
proach used or problem addressed (PMot).

Our twelfth category, Neut, bundles truly neu-
tral descriptions of cited work with those cases
where the textual evidence for a citation function
was not enough to warrant annotation of that cate-
gory, and all other functions for which our scheme
did not provide a specific category.

Citation function is hard to annotate because it
in principle requires interpretation of author inten-
tions (what could the author’s intention have been
in choosing a certain citation?). One of our most
fundamental principles is thus to only mark explic-
itly signalled citation functions. Our guidelines
explicitly state that a general linguistic phrase such
as “better” or “used by us” must be present; this
increases the objectivity of defining citation func-
tion. Annotators must be able to point to textual
evidence for assigning a particular function (and
are asked to type the source of this evidence into
the annotation tool for each citation). Categories
are defined in terms of certain objective types of
statements (e.g., there are 7 cases for PMot, e.g.
“Citation claims that or gives reasons for why
problem Y is hard”). Annotators can use general
text interpretation principles when assigning the
categories (such as anaphora resolution and par-
allel constructions), but are not allowed to use in-
depth knowledge of the field or of the authors.

Guidelines (25 pages, ~ 150 rules) describe the
categories with examples, provide a decision tree
and give decision aids in systematically ambigu-
ous cases. Nevertheless, subjective judgement of
the annotators is still necessary to assign a single
tag in an unseen context, because of the many dif-
ficult cases for annotation. Some of these concern
the fact that authors do not always state their pur-
pose clearly. For instance, several earlier studies
found that negational citations are rare (Moravc-
sik and Murugesan, 1975; Spiegel-Riising, 1977);
MacRoberts and MacRoberts (1984) argue that the
reason for this is that they are potentially politi-
cally dangerous. In our data we found ample evi-
dence of the “meekness” effect. Other difficulties
concern the distinction of the usage of a method
from statements of similarity between a method
and the own method (i.e., the choice between cat-
egories PSim and PUse). This happens in cases
where authors do not want to admit (or stress)
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that they are using somebody else’s method. An-
other difficult distinction concerns the judgement
of whether the authors continue somebody’s re-
search (i.e., consider their research as intellectual
ancestry, i.e. PBas), or whether they simply use
the work (PUse).

The unit of annotation is a) the full citation (as
recognised by our automatic citation processor on
our corpus), and b) names of authors of cited pa-
pers anywhere in running text outside of a for-
mal citation context (i.e., without date). These
latter are marked up, slightly unusually in com-
parison to other citation indexers, because we be-
lieve they function as important referents compa-
rable in importance to formal citations.> In prin-
ciple, there are many other linguistic expressions
by which the authors could refer to other people’s
work: pronouns, abbreviations such as “Mueller
and Sag (1990), henceforth M & S”, and names of
approaches or theories which are associated with
particular authors. The fact that in these contexts
citation function cannot be annotated (because it
is not technically feasible to recognise them well
enough) sometimes causes problems with context
dependencies.

While there are unambiguous example cases
where the citation function can be decided on the
basis of the sentence alone, this is not always the
case. Most approaches are not criticised in the
same sentence where they are also cited: it is more
likely that there are several descriptive sentences
about a cited approach between its formal cita-
tion and the evaluative statement, which is often at
the end of the textual segment about this citation.
Nevertheless, the annotator must mark the func-
tion on the nearest appropriate annotation unit (ci-
tation or author name). Our rules decree that con-
text is in most cases constrained to the paragraph
boundary. In rare cases, paper-wide information
is required (e.g., for PMot, we need to know that
a praised approach is used by the authors, infor-
mation which may not be local in the paragraph).
Annotators are thus asked to skim-read the paper
before annotation.

One possible view on this annotation scheme
could consider the first two sets of categories as
“negative” and the third set of categories “posi-
tive”, in the sense of Pang et al. (2002) and Turney
(2002). Authors need to make a point (namely,

2Qur citation processor can recognise these after parsing
the citation list.

that they have contributed something which is bet-
ter or at least new (Myers, 1992)), and they thus
have a stance towards their citations. But although
there is a sentiment aspect to the interpretation of
citations, this is not the whole story. Many of our
“positive” categories are more concerned with dif-
ferent ways in which the cited work is useful to the
current work (which aspect of it is used, e.g., just a
definition or the entire solution?), and many of the
contrastive statements have no negative connota-
tion at all and simply state a (value-free) differ-
ence between approaches. However, if one looks
at the distribution of positive and negative adjec-
tives around citations, it is clear that there is a non-
trivial connection between our task and sentiment
classification.

The data we use comes from our corpus of
360 conference articles in computational linguis-
tics, drawn from the Computation and Language
E-Print Archive (http://xxx.lanl.gov/cmp-lg). The
articles are transformed into XML format; head-
lines, titles, authors and reference list items are au-
tomatically marked up. Reference lists are parsed
using regular patterns, and cited authors’ names
are identified. Our citation parser then finds cita-
tions and author names in running text and marks
them up. Ritchie et al. (2006a) report high ac-
curacy for this task (94% of citations recognised,
provided the reference list was error-free). On av-
erage, our papers contain 26.8 citation instances in
running text®>. For human annotation, we use our
own annotation tool based on XML/XSLT tech-
nology, which allows us to use a web browser to
interactively assign one of the 12 tags (presented
as a pull-down list) to each citation.

We measure inter-annotator agreement between
three annotators (the three authors), who indepen-
dently annotated 26 articles with the scheme (con-
taining a total of 120,000 running words and 548
citations), using the written guidelines. The guide-
lines were developed on a different set of articles
from the ones used for annotation.

Inter-annotator agreement was Kappa=.72
(n:12;N=548;k=3)4. This is quite high, consider-
ing the number of categories and the difficulties

3 As opposed to reference list items, which are fewer.

4Following Carletta (1996), we measure agreement in
Kappa, which follows the formula K = %(PE()E) where
P(A) is observed, and P(E) expected agreement. Kappa
ranges between -1 and 1. K=0 means agreement is only as
expected by chance. Generally, Kappas of 0.8 are considered
stable, and Kappas of .69 as marginally stable, according to
the strictest scheme applied in the field.
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(e.g., non-local dependencies) of the task. The
relative frequency of each category observed in
the annotation is listed in Fig. 3. As expected,
the distribution is very skewed, with more than
60% of the citations of category Neut.’® What
is interesting is the relatively high frequency
of usage categories (PUse, PModi, PBas)
with a total of 18.9%. There is a relatively low
frequency of clearly negative citations (Weak,
CoCo-, total of 4.1%), whereas the neutral-
contrastive  categories (CoCoRO, CoCoXY,
CoCoGM) are slightly more frequent at 7.6%.
This is in concordance with earlier annotation
experiments (Moravcsik and Murugesan, 1975;
Spiegel-Riising, 1977).

3 Features for automatic recognition of
citation function

This section summarises the features we use for
machine learning citation function. Some of these
features were previously found useful for a dif-
ferent application, namely Argumentative Zoning
(Teufel, 1999; Teufel and Moens, 2002), some are
specific to citation classification.

3.1 Cue phrases

Myers (1992) calls meta-discourse the set of ex-
pressions that talk about the act of presenting re-
search in a paper, rather than the research itself
(which is called object-level discourse). For in-
stance, Swales (1990) names phrases such as “to
our knowledge, no...” or “As far as we aware” as
meta-discourse associated with a gap in the cur-
rent literature. Strings such as these have been
used in extractive summarisation successfully ever
since Paice’s (1981) work.

We model meta-discourse (cue phrases) and
treat it differently from object-level discourse.
There are two different mechanisms: A finite
grammar over strings with a placeholder mecha-
nism for POS and for sets of similar words which
can be substituted into a string-based cue phrase
(Teufel, 1999). The grammar corresponds to 1762
cue phrases. It was developed on 80 papers which
are different to the papers used for our experiments
here.

The other mechanism is a POS-based recog-
niser of agents and a recogniser for specific actions
these agents perform. Two main agent types (the

SSpiegel-Riising found that out of 2309 citations she ex-
amined, 80% substantiated statements.

authors of the paper, and everybody else) are mod-
elled by 185 patterns. For instance, in a paragraph
describing related work, we expect to find refer-
ences to other people in subject position more of-
ten than in the section detailing the authors’ own
methods, whereas in the background section, we
often find general subjects such as “researchers in
computational linguistics” or “in the literature”.
For each sentence to be classified, its grammatical
subject is determined by POS patterns and, if pos-
sible, classified as one of these agent types. We
also use the observation that in sentences without
meta-discourse, one can assume that agenthood
has not changed.

20 different action types model the main verbs
involved in meta-discourse. For instance, there is
a set of verbs that is often used when the over-
all scientific goal of a paper is defined. These
are the verbs of presentation, such as “propose,
present, report” and “suggest’; in the corpus we
found other verbs in this function, but with a lower
frequency, namely “describe, discuss, give, intro-
duce, put forward, show, sketch, state” and “talk
about’. There are also specialised verb clusters
which co-occur with PBas sentences, e.g., the
cluster of continuation of ideas (eg. “adopt, agree
with, base, be based on, be derived from, be orig-
inated in, be inspired by, borrow, build on,...”).
On the other hand, the semantics of verbs in Weak
sentences is often concerned with failing (of other
researchers’ approaches), and often contain verbs
such as “abound, aggravate, arise, be cursed, be
incapable of, be forced to, be limited to, ... " .

We use 20 manually acquired verb clusters.
Negation is recognised, but too rare to define its
own clusters: out of the 20 x 2 = 40 theoretically
possible verb clusters, only 27 were observed in
our development corpus. We have recently auto-
mated the process of verb—object pair acquisition
from corpora for two types of cue phrases (Abdalla
and Teufel, 2006) and are planning on expanding
this work to other cue phrases.

3.2 Cues Identified by annotators

During the annotator training phase, the anno-
tators were encouraged to type in the meta-
description cue phrases that justify their choice of
category. We went through this list by hand and
extracted 892 cue phrases (around 75 per cate-
gory). The files these cues came from were not
part of the test corpus. We included 12 features
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Neut PUse | CoCoGM | PSim | Weak | PMot | CoCoRO | PBas | CoCoXY | CoCo- | PModi | PSup
62.7% | 15.8% 3.9% 38% | 3.1% | 22% 0.8% 1.5% 2.9% 1.0% 1.6% 1.1%
Figure 3: Distribution of citation categories
Weak | CoCoGM | CoCoRO | CoCo- | CoCoXY | PBas | PUse | PModi | PMot | PSim | PSup | Neut
P 78 .81 77 .56 72 .76 .66 .60 75 .68 .83 .80
R 49 52 46 .19 .54 46 .61 27 .64 .38 32 92
F .60 .64 .57 .28 .62 .58 .63 .37 .69 A48 47 .86

Percentage Accuracy 0.77
Kappa (n=12; N=2829; k=2) 0.57
Macro-F 0.57

Figure 4: Summary of Citation Analysis results (10-fold cross-validation; IBk algorithm; k=3).

that recorded the presence of cues that our annota-
tors associated with a particular class.

3.3 Other features

There are other features which we use for this
task. We know from Teufel and Moens (2002) that
verb tense and voice should be useful for recogniz-
ing statements of previous work, future work and
work performed in the paper. We also recognise
modality (whether or not a main verb is modified
by an auxiliary, and which auxiliary it is).

The overall location of a sentence containing
a reference should be relevant. We observe that
more PMot categories appear towards the begin-
ning of the paper, as do Weak citations, whereas
comparative results (CoCoR0O, CoCoR-) appear
towards the end of articles. More fine-grained lo-
cation features, such as the location within the
paragraph and the section, have also been imple-
mented.

The fact that a citation points to own previous
work can be recognised, as we know who the pa-
per authors are. As we have access to the infor-
mation in the reference list, we also know the last
names of all cited authors (even in the case where
an et al. statement in running text obscures the
later-occurring authors). With self-citations, one
might assume that the probability of re-use of ma-
terial from previous own work should be higher,
and the tendency to criticise lower.

4 Results

Our evaluation corpus for citation analysis con-
sists of 116 articles (randomly drawn from the part
of our corpus which was not used for guideline
development or cue phrase acquisition). The 116
articles contain 2829 citation instances. Each
citation instance was manually tagged as one

Weakness | Positive | Contrast | Neutral
P .80 5 a7 81
R 49 .65 .52 .90
F .61 .70 .62 .86
Percentage Accuracy 0.79
Kappa (n=12; N=2829; k=2)  0.59
Macro-F 0.68

Figure 5: Summary of results (10-fold cross-
validation; IBk algorithm; k=3): Top level classes.

Weakness | Positive | Neutral
P 77 75 .85
R 42 .65 .92
F .54 .70 .89
Percentage Accuracy 0.83
Kappa (n=12; N=2829; k=2)  0.58
Macro-F 0.71

Figure 6: Summary of results (10-fold cross-
validation; IBk algorithm; k=3): Sentiment Anal-
ysis.

of {Weak, CoCoGM, CoCo-, CoCoR0O, CoCoXY,
PBas, PUse, PModi, PMot, PSim, PSup, Neut}.
The papers are then further processed (e.g. to-
kenised and POS-tagged). All other features are
automatically determined (e.g. self-citations are
detected by overlap of citing and cited authors);
then, machine learning is applied to the feature
Vectors.

The 10-fold cross-validation results for citation
classification are given in Figure 4, comparing the
system to one of the annotators. Results are given
in three overall measures: Kappa, percentage ac-
curacy, and Macro-F (following Lewis (1991)).
Macro-F is the mean of the F-measures of all
twelve categories. We use Macro-F and Kappa be-
cause we want to measure success particularly on
the rare categories, and because Micro-averaging
techniques like percentage accuracy tend to over-
estimate the contribution of frequent categories in
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heavily skewed distributions like ours®.

In the case of Macro-F, each category is treated
as one unit, independent of the number of items
contained in it. Therefore, the classification suc-
cess of the individual items in rare categories
is given more importance than classification suc-
cess of frequent category items. However, one
should keep in mind that numerical values in
macro-averaging are generally lower (Yang and
Liu, 1999), due to fewer training cases for the rare
categories. Kappa has the additional advantage
over Macro-F that it filters out random agreement
(random use, but following the observed distribu-
tion of categories).

For our task, memory-based learning outper-
formed other models. The reported results use the
IBk algorithm with k& = 3 (we used the Weka ma-
chine learning toolkit (Witten and Frank, 2005)
for our experiments). Fig. 7 provides a few ex-
amples from one file in the corpus, along with the
gold standard citation class, the machine predic-
tion, and a comment.

Kappa is even higher for the top level distinc-
tion. We collapsed the obvious similar categories
(all P categories into one category, and all CoCo
categories into another) to give four top level
categories (Weak, Positive, Contrast,
Neutral; results in Fig. 5). Precision for all the
categories is above 0.75, and K=0.59. For con-
trast, the human agreement for this situation was
K=0.76 (n=3,N=548,k=3).

In a different experiment, we grouped the cate-
gories as follows, in an attempt to perform senti-
ment analysis over the classifications:

Old Categories | New Category

Weak, CoCo- | Negative
PMot, PUse, PBas, PModi, PSim, PSup | Positive
CoCoGM, CoCoRO, CoCoXY, Neut | Neutral

Thus negative contrasts and weaknesses are
grouped into Negative, while neutral contrasts
are grouped into Neutral. All positive classes
are conflated into Positive.

Results show that this grouping raises results
to a smaller degree than the top-level distinction
did (to K=.58). For contrast, the human agree-
ment for these collapsed categories was K=.75
(n=3,N=548 k=3).

®This situation has parallels in information retrieval,
where precision and recall are used because accuracy over-
estimates the performance on irrelevant items.

5 Conclusion

We have presented a new task: annotation of ci-
tation function in scientific text, a phenomenon
which we believe to be closely related to the over-
all discourse structure of scientific articles. Our
annotation scheme concentrates on weaknesses of
other work, and on similarities and contrast be-
tween work and usage of other work. In this
paper, we present machine learning experiments
for replicating the human annotation (which is re-
liable at K=.72). The automatic result reached
K=.57 (acc=.77) for the full annotation scheme;
rising to Kappa=.58 (acc=.83) for a three-way
classification (Weak, Positive, Neutral).

We are currently performing an experiment to
see if citation processing can increase perfor-
mance in a large-scale, real-world information
retrieval task, by creating a test collection of
researchers’ queries and relevant documents for
these (Ritchie et al., 2006a).
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1

There have been a number of recent studies on
probabilistic treebank parsing of German (Dubey,
2005; Dubey and Keller, 2003; Schiehlen, 2004
Schulte im Walde, 2003), using the Negra tree
bank (Skut et al., 1997) as their underlying data
source. A common theme that has emerged fro
this research is the claim that lexicalization of
PCFGs, which has been proven highly beneficia
for other languagés is detrimental for parsing

In fact, this assumption
is by now so widely held that Schiehlen (2004)

accuracy of German.

Is it Really that Difficult to Parse German?

Sandra Kubler, Erhard W. Hinrichs, Wolfgang Maier
SfS-CL, SFB 441, University of Tubingen
Wilhelmstr. 19
72074 Tubingen, Germany
{kuebl er, eh, wmai er }@f s. uni - t uebi ngen. de

Abstract

This paper presents a comparative study
of probabilistic treebank parsing of Ger-

man, using the Negra and TuBa-D/Z tree-
banks. Experiments with the Stanford

parser, which uses a factored PCFG and
dependency model, show that, contrary to
previous claims for other parsers, lexical-

ization of PCFG models boosts parsing
performance for both treebanks. The ex-
periments also show that there is a big
difference in parsing performance, when

trained on the Negra and on the TUBa-
D/Z treebanks. Parser performance for the
models trained on TiBa-D/Z are compara-
ble to parsing results for English with the

Stanford parser, when trained on the Penn
treebank. This comparison at least sug-
gests that German is not harder to parse
than its West-Germanic neighbor language
English.

Introduction

‘ever, that our experiments concentrate on the orig-

m

parameter and concentrates instead only on tree-
bank transformations of various sorts in his exper-
iments.

Another striking feature of all studies men-
tioned above are the relatively low parsing F-
scores achieved for German by comparison to the
scores reported for English, its West-Germanic
neighbor, using similar parsers. This naturally
raises the question whether German is just harder
to parse or whether it is just hard to parse the Ne-
gra treebank.

The purpose of this paper is to address pre-
cisely this question by training the Stanford parser
(Klein and Manning, 2003b) and the LoPar parser
(Schmid, 2000) on the two major treebanks
available for German, Negra and TuBa-D/Z, the
Tlbingen treebank of written German (Telljohann
et al.,, 2005). A series of comparative parsing
experiments that utilize different parameter set-
tings of the parsers is conducted, including lexi-
calization and markovization. These experiments
show striking differences in performance between
the two treebanks. What makes this comparison
interesting is that the treebanks are of compara-
ble size and are both based on a newspaper cor-
pus. However, both treebanks differ significantly
in their syntactic annotation scheme. Note, how-

inal (context-free) annotations of the treebank.

The structure of this paper is as follows: sec-
tion 2 discusses three characteristic grammatical
reatures of German that need to be taken into ac-
count in syntactic annotation and in choosing an
appropriate parsing model for German. Section 3

introduces the Negra and TuBa-D/Z treebanks and

does not even consider lexicalization as a possible 2German is not the first language for which this question

For English, see Collins (1999).

has been raised. See Levy and Manning (2003) for a similar
discussion of Chinese and the Penn Chinese Treebank.
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discusses the main differences between their ann@f topological fields states the fundamental regu-
tation schemes. Section 4 explains the experimeriarities of German word order.

tal setup, sections 5-7 the experiments, and section The topological field structures in (2) for the ex-
8 discusses the results. amples in (1) illustrate the assignment of topolog-

_ ical fields for different clause types.
2 Grammatical Features of German

L ) (2) a. [vr [wp Peter]] [Lx Wird | [mF [vp das
There are three distinctive grammatical features Buch] ] [rx [vc gelesen haber]
that make syntactic annotation and parsing of Ger- b. [Lx Wird] [mF [vp Peter] [vp das Buch ]
man particularly challenging: its placement of the [rx [vc gelesen habenf)
finite verb, its flexible phrasal ordering, and the c. [k [cr dass]] [ur [vp Peter] [vp das

presence of discontinuous constituents. These fea- Buch]] [z« [vc gelesen haben wird ]

tures will be discussed in the following subsec-

tions. (2a) and (2b) are made up of the following

fields: LK (for: linke Satzklammer) is occupied
2.1 Finite Verb Placement by the finite verb. MF (for: Mittelfeld) contains
Edjuncts and complements of the main verb. RK

on the clause type. In non-embedded assertio for: rechte Satzklammer) is realized by the ver-

clauses, the finite verb occupies the second p05|-aI complex (VC). Additionally, (2a) realizes the

tion in the clause, as in (La). In yes/no questionstOpOIOQ'Cal field VF (for: Vorfeld), which contains

as in (1b), the finite verb appears clause-initially,fhe sentencejlnltlal constituent. The left sentence
whereas in embedded clauses it appears clause P[ack_et (LK) in (2¢) is r_eallzed by a complemen-
nally, as in (1c). tizer field (CF) and the right sentence _bracket (R_K)

by a verbal complex (VC) that contains the finite
verbwird.

In German, the placement of finite verbs depend

(1) a. Petewird dasBuchgeleserhaben.
Peterwill the bookread have

'Peter will have read the book.’ . .
b. Wird PeterdasBuchgeleserhaben? 2.2 Flexible Phrase Ordering
WIllPeterthe book have  read The second noteworthy grammatical feature of
Will Peter have read the book?’ German concerns its flexible phrase ordering. In
¢. dasdeterdasBuchgeleserhaberwird. (3), any of the three complements and adjuncts

that Peterthe bookread have will .
" that Peter will have read the book” pf_tthﬁ main verb(ge)lesencan appear sentence-
initially.

Regardless of the particular clause type, any
cluster of non-finite verbs, such gelesen haben ~ (3) ~a DerMannhatgestern denRoman
. .. Theman hasyesterdaythe novel
in (1a) and (1b) ogelesen haben wirth (1c), ap-

gelesen.
pears at the right periphery of the clause. read
The discontinuous positioning of the verbal el- "The man read the novel yesterday.
ements in verb-first and verb-second clauses is the b. Gestern hat der Mann den Roman gelesen
traditional reason for structuring German clauses c. Den Roman hat der Mann gestern gelesen

into so-calledtopological fields (Drach, 1937;

Erdmann, 1886; Hohle, 1986). The positions of In addition, the ordering of the elements that oc-
the verbal elements form th8atzklammer(sen-  cur in the Mittelfeld is also free so that there are
tence bracket) which divides the sentence into &vo possible linearizations for each of the exam-
\Vorfeld (initial field), a Mittelfeld (middle field), ples in (3a) - (3b), yielding a total of six distinct
and aNachfeld (final field). The Vorfeld and the orderings for the three complements and adjuncts.
Mittelfeld are divided by thdinke Satzklammer Due to this flexible phrase ordering, the gram-
(left sentence bracket), which is realized by thematical functions of constituents in German, un-
finite verb or (in verb-final clauses) by a comple-like for English, cannot be deduced from the con-
mentizer field. Theechte Satzklammdright sen-  stituents’ location in the tree. As a consequence,
tence bracket) is realized by the verb complex angbarsing approaches to German need to be based on
consists of verbal particles or sequences of verbdreebank data which contain a combination of con-
This right sentence bracket is positioned betweestituent structure and grammatical functions — for
the Mittelfeld and the Nachfeld. Thus, the theoryparsing and evaluation.
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Diese  Metapher  kann die Freizeitmalerin  durchaus  auch auf ihr Leben anwenden
PDAT NN VMFIN  ART NN ADV ADV  APPR PPOSAT NN VVINF $.

Figure 1: A sample tree from Negra.

2.3 Discontinuous Constituents erage of 1.4 clause nodes per sentence, TiiBa-D/Z
A third characteristic feature of German syntax-> clause nodes. _
that is a challenge for syntactic annotation and BOth treebanks use an annotation framework

for parsing is the treatment of discontinuous con{hat is based on phrase structure grammar and that
is enhanced by a level of predicate-argument struc-

stituents. / :
ture. Annotation for both was performed semi-

(4) DerMannhatgestern denRomangelesen, automatically. Despite all these similarities, the

Theman hasyesterdaythe novel read . . . .

den  ihm Peterempfahl. treebank annotations differ in four important as-
which him Peterrecommended pects: 1) Negra does not allow unary branching
'Yesterday the man read the novel which Peter rec-whereas TuBa-D/Z does; 2) in Negra, phrases re-
ommended to him- ceive a flat annotation whereas TiiBa-D/Z uses
(5) Petersoll demMannempfohlen habenden phrase internal structure; 3) Negra uses crossing
Peteris tothe man recommendetiave the branches to represent long-distance relationships
Romarzulesen. whereas TiiBa-D/Z uses a pure tree structure com-

novel to read . . . ..
, o bined with functional labels to encode this infor-
Peter is said to have recommended to the man to . . .
read the novel. mation; 4) Negra encodes grammatical functions
in a combination of structural and functional la-
(4) shows an extraposed relative clause whictbeling whereas TiIBa-D/Z uses a combination of
is separated from its head noden Romarby the  topological fields functional labels, which results
non-finite verbgelesen (5) is an example of an in a flatter structure on the clausal level. The two
extraposed non-finite VP complement that forms areebanks also use different notions of grammat-
discontinuous constituent with its governing verbijcal functions: TiBa-D/Z defines 36 grammati-
empfohlenbecause of the intervening non-finite cal functions covering head and non-head infor-
auxiliary haben Such discontinuous structures mation, as well as subcategorization for comple-
occur frequently in both treebanks and are handle¢hents and modifiers. Negra utilizes 48 grammat-
differently in the two annotation schemes, as willical functions. Apart from commonly accepted
be discussed in more detail in the next section. grammatical functions, such &B (subject) or
_ OA (accusative object), Negra grammatical func-
3 The Negra and the TuBa-D/Z tions comprise a more extended notion, eRE
Treebanks (repeated element) &R C (relative clause).

Both treebanks use German newspapers as their (g) pieseMetapherkanndie Freizeitmalerin
data source: the Frankfurter Rundschau news- This metaphorcan theamateur painter
paper for Negra and the 'die tageszeitung’ (taz) durchaus auchaufihr Lebenanwenden.
.. . by all meansalso to herlife  apply.

newspaper for TiBa-D/Z. Negra comprises 20 000 , ) .

.. . The amateur painter can by all means apply this
sentences, TuBa-D/Z 15 000 sentences. There is metaphor also to her life.
evidence that the complexity of sentences in both
treebanks is comparable: sentence length as well Figure 1 shows a typical tree from the Negra
as the percentage of clause nodes per sentencetisebank for sentence (6). The syntactic categories
comparable. In Negra, a sentence is 17.2 wordare shown in circular nodes, the grammatical func-
long, in Tiba-D/Z, 17.5 words. Negra has an avtions as edge labels in square boxes. A major
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Diese  Metapher  kann die Freizeitmalerin  durchaus  auch auf ihr Leben anwenden
PDAT NN VMFIN  ART NN ADV AD APPR  PPOSAT VVINF $.

Figure 2: A Negra tree with resolved crossing branches.

¢

SIMPX

[MoD]

G

d
Den vorigen Sonntag héatte  Frank Michael Nehr am liebsten aus dem  Kalender gestrichen
ART ADJA NN VAFIN NE NE NE PTKA  ADJD APPR ART NN VVPP $.

Figure 3: A sample tree from Tuba-D/Z.

phrasal category that serves to structure the semead constituents as sisters of the lowest mother
tence as a whole is the verb phrase (VP). It connode that dominates all constituents in question in
tains non-finite verbs (hereanwende) together the original Negra tree.
with their complements (here: the accusative ob- Figure 2 shows the result of this transformation
ject Diese Metaphérand adjuncts (here: the ad- of the tree in Figure 1. Here, the fronted accusative
verb durchausand the PP modifieauch auf ihr  objectDiese Metaphers reattached on the clause
Leben. The subject NP (heredie Freizeitma- level. Crossing branches do not only arise with re-
lerin) stands outside the VP and, depending on itspect to the subject at the sentence level but also in
linear position, leads to crossing branches with theases of extraposition and fronting of partial con-
VP. This happens in all cases where the subjeditituents. As a result, approximately 30% of all
follows the finite verb as in Figure 1. Notice also Negra trees contain at least one crossing branch.
that the PP is completely flat and does not contaiThus, tree transformations have a major impact
an internal NP. on the type of constituent structures that are used
Another phenomenon that leads to the introducfor training probabilistic parsing models. Previous
tion of crossing branches in the Negra treebank areork, such as Dubey (2005), Dubey and Keller
discontinuous constituents of the kind illustrated(2003), and Schiehlen (2004), uses the version of
in section 2.3. Extraposed relative clauses, as ilNegra in which the standard approach to resolving
(4), are analyzed in such a way that the relativecrossing branches has been applied.
clause constituent is a sister of its head noun in the

. Denvorigen Sonntaghatte FrankMichael
Negra tree and crosses the branch that dominates The previousSunday would haveFrank Michael
the intervening non-finite verpelesen Nehram liebsteraus demKalendergestrichen.

Nehrpreferably fromthe calendardeleted.

'Frank Michael Nehr would rather have deleted the
previous Sunday from the calendar.’

The crossing branches in the Negra treebank
cannot be processed by most probabilistic parsing
models since such parsers all presuppose a strictly
context-free tree structure. Therefore the Negra Figure 3 shows the TUBa-D/Z annotation for
trees must be transformed into proper trees priosentence (7), a sentence with almost identi-
to training such parsers. The standard approacbtal phrasal ordering to sentence (6). Crossing
for this transformation is to re-attach crossing non-branches are avoided by the introduction of topo-

114



SIMPX

[ []
© G ©,
[0
Far diese Behauptung hat Beckmeyer bisher keinen Nachweis geliefert
APPR PDAT NN VAFIN NE ADV PIAT NN VVPP $.

Figure 4: TuBa-D/Z annotation without crossing branches.

logical structures (here: VF, MF and VC) into the the Stanford parser and the pure PCFG parser
tree. Notice also that compared to the Negra annd-oPar (Schmid, 2000) (Experiment Il), and an in-
tation, TuBa-D/Z introduces more internal struc-depth evaluation of the three major grammatical

ture into NPs and PPs. functions subject accusative objectand dative
(8) FurdieseBehauptundhat Beckmeyeibisher object using the Stanford parser (Experiment Il1).

Forthis claim  hasBeckmeyeryet All three experiments use gold POS tags ex-
keinenNachweisgeliefert. tracted from the treebanks as parser input. All
no evidence provided. .
, o . . parsing results shown below are averaged over a
For this claim, Beckmeyer has not provided evi- . .
dence yet. ten-fold cross-validation of the test data. Experi-

) _ _ _ ments | and Il used versions of the treebanks that
In TtBa-D/Z, long-distance relationships are eclyded grammatical information, thus only con-
represented by a pure tree structure and specifigineq constituent labeling. For Experiment Ill,
functional labels. Figure 4 shows the TuBa-D/Z )| syntactic labels were extended by their gram-
annotation for sentence (8?. In this sentencematical function (e.g NX-ON for a subject NP in
the prepositional phraséir diese Behauptun®  TyBa-D/Z or NP-SB for a Negra subject). Experi-
fronted. Its functional label@QA-MOD) provides  ments | and Il included all sentences of a maximal
the information that it modifies the accusative Ob'length of 40 words. Due to memory limitations

ject (OA) keinen Nachweis (7 GB), Experiment Ill had to be restricted to sen-
4 Experimental Setup tences of a maximal length of 35 words.
The main goals behind our experiments weres Experiment I: Lexicalization
twofold: (1) to re-investigate the claim that lex-
icalization is detrimental for treebank parsing of Experiment | investigates the effect of lexicaliza-
German, and (2) to compare the parsing results faiion on parser performance for the Stanford Parser.
the two German treebanks. The results, summarized in Table 1, show that lex-
To investigate the first issue, the Stanford Parseicalization improves parser performance for both
(Klein and Manning, 2003b), a state-of-the-artthe Negra and the TuBa-D/Z treebank in compar-
probabilistic parser, was trained with both lexical-ison to unlexicalized counterpart models: for la-
ized and unlexicalized versions of the two tree-beled bracketing, an F-score improvement from
banks (Experiment I). For lexicalized parsing, the86.48 to 88.88 for TuBa-D/Z and an improve-
Stanford Parser provides a factored probabilistianent from 66.92 to 67.13 for Negra. This di-
model that combines a PCFG model with a depenkrectly contradicts the findings reported by Dubey
dency model. and Keller (2003) that lexicalization has a nega-
For the comparison between the two treebanksjve effect on probabilistic parsing models for Ger-
two types of experiments were performed: aman. We therefore conclude that these previous
purely constituent-based comparison using botlelaims, while valid for particular configurations of
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Negra TuBa-D/z

precision| recall | F-score| precision| recall | F-score

Stanford PCFG unlabeled 71.24| 72.68| 71.95 93.07|89.41| 91.20
labeled 66.26 | 67.59| 66.92 88.25| 84.78| 86.48

Stanford lexicalized wunlabeled 71.31| 73.12| 72.20 91.60| 91.21| 91.36
labeled 66.30| 67.99| 67.13 89.12| 88.65| 88.88

Table 1: The results of lexicalizing German.

Negra TuBa-D/z

precision| recall | F-score| precision| recall | F-score

LoPar unlabeled 70.84| 72.51| 71.67 92.62| 88.58| 90.56
labeled 65.86| 67.41| 66.62 87.39| 83.57| 85.44

Stanford unlabeleg 71.24| 72.68| 71.95 93.07| 89.41| 91.20
labeled 66.26| 67.59| 66.92 88.25| 84.78| 86.48
Stanford + markov unlabeled  74.13| 74.12| 74.12 92.28| 90.90| 91.58
labeled 69.96| 69.95| 69.95 89.86| 88.51| 89.18

Table 2: A comparison of unlexicalized parsing of Negra aii@3-D/Z.

parsers and parameters, should not be generalizeshe with and one without markovization. The ex-
to claims about probabilistic parsing of German inperiment with markovization used parent informa-
general. tion (v=1) and a second order Markov model for
Experiment | also shows considerable differ-horizontal markovization (h=2). The results, sum-
ences in the overall scores between the two treemarized in Table 2, show that parsing results for all
banks, with the F-scores for TUBa-D/Z parsing ap-unlexicalized experiments show roughly the same
proximating scores reported for English, but with20 point difference in F-score that were obtained
Negra scores lagging behind by an average mafor the lexicalized models in Experiment I. We
gin of appr. 20 points. Of course, it is impor- can therefore conclude that the difference in pars-
tant to note that such direct comparisons with Ening performance is robust across two parsers with
glish are hardly possible due to different annota-different parameter settings, such as lexicalization
tion schemes, different underlying text corpora,and markovization.
etc. Nevertheless, the striking difference in parser Experiment Il also confirms the finding of Klein
performance between the two German treebankand Manning (2003a) and of Schiehlen (2004) that
warrants further attention. Experiments Il and Il horizontal and vertical markovization has a pos-
will investigate this matter in more depth. itive effect on parser performance. Notice also
that markovization with unlexicalized grammars
yields almost the same improvement as lexicaliza-

The purpose of Experiment Il is to rule out the pos-tion does in Experiment |.
sibility that the differences in parser performance7 Experiment Ill: Grammatical
for the two German treebanks produced by Ex- :

, . : . Functions
periment | may just be due to using a particular
parser — in this particular case the hybrid PCFQAn Experiments | and Il, only constituent structure
and dependency model of the Stanford parser. Afwas evaluated, which is highly annotation depen-
ter all, Experiment | also yielded different resultsdent. It could simply be the case that the TuBa-
concerning the received wisdom about the utilityD/Z annotation scheme contains many local struc-
of lexicalization from previously reported results. tures that can be easily parsed by a PCFG model
In order to obtain a broader experimental base, uner the hybrid Stanford model. Moreover, such
lexicalized models of the Stanford parser and theeasy to parse structures may not be of great im-
pure PCFG parser LoPar were trained on both tregaortance when it comes to determining the cor-
banks. In addition we experimented with two dif- rect macrostructure of a sentence. To empirically
ferent parameter settings of the Stanford parsexerify such a conjecture, a separate evaluation of

6 Experiment IlI: Different Parsers
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EXER

Moran ist langst  weiter
NE VAFIN ADV  ADJD $.

Figure 5: Negra annotation without unary nodes.

Negra TuBa-D/Z
lab. prec.| lab. rec.| lab. F-score| lab. prec.| lab. rec.| lab. F-score
without gramm. functiong 69.96| 69.95 69.95 89.86| 88.51 89.18
all gramm. functions 47.20| 56.43 51.41 75.73| 74.93 75.33
subjects 52.50| 58.02 55.12 66.82| 75.93 71.08
accusative objects 35.14| 36.30 35.71 43.84| 47.31 45.50
dative objects 8.38 3.58 5.00 24.46 9.96 14.07

Table 3: A comparison of unlexicalized, markovized parsifigonstituent structure and grammatical
functions in Negra and TuBa-D/Z.

parser performance for different constituent typesnatical functions, this information is available for
would be necessary. However, even such an evaparsing and can ultimately lead to a more mean-
uation would only be meaningful if the annotation ingful comparison of the two treebanks when used
schemes agree on the defining characteristics dbr parsing.

such constituent types. Unfortunately, this is not The purpose of Experiment Il is to investigate

the case for the two treebanks under considergsarser performance on the treebanks when gram-
tion. Even for arguably theory-neutral constituentsmatical functions are included in the trees. For
such as NPs, the two treebanks differ considerablftnese experiments, the unlexicalized, markovized

In the Negra annotation scheme, single word NP®CEG version of the Stanford parser was used,
directly project from the POS level to the clausalyith markovization parameters v=1 and h=2, as
level, while in TiBa-D/Z, they project by a unary i Experiment II. The results of this experiment
rule first to an NP. An extreme case of this Negragre shown in Table 3. The comparison of the ex-
annotation is shown in Figure 5 for sentence (9)periments with (line 2) and without grammatical
Here, all the phrases are one word phrases and afgnctions (line 1) confirms the findings of Dubey
thus projected directly to the clause level. and Keller (2003) that the task of assigning cor-
(9) Moranistlangst weiter. rect grammatical functions is harder than mere
Moranis alreadyfurther constituent-based parsing. When evaluating on all
‘Moran is already one step ahead” grammatical functions, the results for Negra de-
There is an even more important motivationCréase from 69.95 to 51.41, and for TuBa-D/Z
for not focusing on the standard constituent-basedom 89.18 to 75.33. Notice however, that the rela-
parseva| measures — at least when parsing Ge?iye differences between Negra and TuBa-D/Z that
man. As discussed earlier in section 2.2, obtainWere true for Experiments | and Il remain more or
ing the correct constituent structure for a Germarl€Ss constant for this experiment as well.
sentence will often not be sufficient for determin- In order to get a clearer picture of the quality
ing its intended meaning. Due to the word orderof the parser output for each treebank, it is im-
freeness of phrases, a given NP in any one poportant to consider individual grammatical func-
sition may in principle fulfill different grammat- tions. As discussed in section 3, the overall in-
ical functions in the sentence as a whole. Thereventory of grammatical functions is different for
fore grammatical functions need to be explicitly the two treebanks. We therefore evaluated those
marked in the treebank and correctly assigned dugrammatical functions separately that are crucial
ing parsing. Since both treebanks encode granfor determining function-argument structure and
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that are at the same time the most comparable fahat it was originally attached to the VP. Experi-
the two treebanks. These are the functions of sutments with this version showed a decrease in F-
ject (encoded aSBin Negra and a®N in TuBa- score from 52.30 to 49.75. Consequently, adding
D/Z), accusative objectdA), and dative object this information in a similar way to the encoding
(DA in Negra andOD in TuiBa-D/Z). Once again, of discontinuous constituents in Tiiba-D/Z harms
the results are consistently better for TiBa-D/Zperformance.

(cf. lines 3-5 in Table 3), with subjects yielding By contrast, TiBa-D/Z uses topological fields
the highest results (71.08 vs. 55.12 F-score) ands the primary structuring principle, which leads to
dative objects the lowest results (14.07 vs. 5.00)a purely context-free annotation of discontinuous
The latter results must be attributed to data sparsestructures. There is evidence that the use of topo-
ness, dative object occur only appr. 1 000 timesogical fields is advantageous also for other pars-
in each treebank while subjects occur more thaing approaches (Frank et al., 2003; Kubler, 2005;

15 000 times. Maier, 2006).
_ _ Another difference in the annotation schemes
8 Discussion concerns the treatment of phrases. Negra phrases

) ) ) are flat, and unary projections are not annotated.
The experiments presented in sections 5-7 Sho"’fUBa-D/Z always projects to the phrasal category

that there is a difference in results of appr. 20%,,4 annotates more phrase-internal structure. The

between Negra and TuBa-D/Z. This difference isyeeper structures in TuBa-D/Z lead to fewer rules

consistent throughout, i.e. with different parsersg,, phrasal categories, which allows the parser a
under lexicalization and markovization. These re+,, ;e consistent treatment of such phrases. For ex-
sults lead to the conjecture that the reasons fogmpje the direct attachment of one word subjects
these differences must be sought in the differencegy, ihe clausal level in Negra leads to a high num-

In the annotation schemes of the two treebanks. yqr of gifferent S rules with different POS tags for

~ In section 3, we showed that one of the mathe subject phrase. An empirical proof for the as-

jor differences in annotation is the treatment Ofs,mption that flat phrase structures and the omis-
discontinuous constituents. In Negra, such congjgn of unary nodes decrease parsing results is pre-
stituents are annotated via crossing brancheggnteq by Kiibler (2005) and Maier (2006).

which have to be resolved before parsing. In such \ve want to emphasize that our experiments

cases, constituents are extracted from their mOthet':roncentrate on the original context-free annota-
constituents and reattached at higher constituent§yns of the treebanks. We did not investigate
In the case of the discontinuous VP in Figure 14,e influence of treebank refinement in this study.
it leads to a VP rule W|th_ f[he foIIowmg. daugh- However, we would like to note that by a com-

ters: head kD) and modifier O), while the  hination of suffix analysis and smoothing, Dubey
accusative object is directly attached at the SeNr005) was able to obtain an F-score of 85.2 for
tence level as a sister of the VP. This conversioq\legra_ For other work in the area of treebank re-

leads to inconsistencies in the training data sinC@,ament using the German treebanks see Kiibler
the annotation scheme requires that object NPs al®00s), Maier (2006), and Ule (2003).

daughters of the VP rather than of S. The incon-

sistency introduced by tree conversion are cong conclusion and Future Work

siderable since they cover appr. 30% of all Ne-

gra trees (cf. section 3). One possible explana¥We have presented a comparative study of proba-
tion for the better performance of Tiiba-D/Z might bilistic treebank parsing of German, using the Ne-
be that it has more information about the correcigra and TuBa-D/Z treebanks. Experiments with
attachment site of extraposed constituents, whickhe Stanford parser, which uses a factored PCFG
is completely lacking in the context-free versionand dependency model, show that, contrary to
of Negra. For this reason, Kibler (2005) andprevious claims for other parsers, lexicalization
Maier (2006) tested a version of Negra which con-of PCFG models boosts parsing performance for
tained information of the original attachment siteboth treebanks. The experiments also show that
of these discontinuous constituents. In this verthere is a big difference in parsing performance,
sion of Negra, the grammatical functicDA in  when trained on the Negra and on the TuBa-D/Z
Figure 2 would be changed ©A< VP to show treebanks. This difference remains constant across
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lexicalized, unlexicalized (also using the LoPar dargestellt Verlag der Cotta’schen Buchhandlung,

parser), and markovized models and also extends Stuttgart, Germany.

to parsing of major grammatical functions. Parseinnette Frank, Markus Becker, Berthold Crysmann,
performance for the models trained on TuBa-D/Z Bernd Kiefer, and Ulrich Schafer. 2003. Integrated
are comparable to parsing results for English with shallow and deep parsing: TopP meets HPSG. In
the Stanford parser, when trained on the Penn tree- Proceedings of ACL 2003apporo, Japan.

bank. This comparison at least suggests that Getrilman Hohle. 1986. Der Begriff "Mittel-

man is not harder to parse than its West-Germanic feld”, Anmerkungen Uber die Theorie der topo-
neighbor language Enaglish. logischen Felder. InAkten des Siebten Interna-
g guag g tionalen Germanistenkongresses 19fages 329—

Additional experiments with the TuBa-D/Z 340, Gottingen, Germany.

treebank are planned in future work. A new re- ' . .
lease of the TiiBa-D/Z treebank has become avail®an ’f'e!” all_nddChrlstpphe”r?Manmg_g. 2023:16: I_Agglégate
able that includes appr. 22 000 trees, instead of unhiexicalzed parsing. 1wroceedings o
’ ages 423-430, Sapporo, Japan.
the release with 15 000 sentences used for the ex- pag PP P
periments reported in this paper. This new reDan Klein and Christopher Manning. 2003b. Fast ex-

lease also contains morphological information at act inference with a factored model for natural lan-
guage parsing. IAdvances in Neural Information

the POS level, including case and number. With Processing Systems 15 (NIPS 2Q0gjges 3-10,
this additional information, we expect consider- Vancouver, Canada.

able improvement in grammatical function aSSIgn_Sandra Kibler. 2005. How do treebank annotation

ment fo'r the fpnctionsubjec,t accusative obj(?pt schemes influence parsing results? Or how not to
and dative object which are marked by nomina-  compare apples and oranges. Rmceedings of
tive, accusative, and dative case, respectively. RANLP 2005Borovets, Bulgaria.

Roger Levy and Christopher Manning. 2003. s it
harder to parse Chinese, or the Chinese treebank? In
Proceedings of ACL 200pages 439-446, Sapporo,
Japan.
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Abstract

Discriminative learning methods are
widely used in natural language process-
ing. These methods work best when their
training and test data are drawn from the
same distribution. For many NLP tasks,
however, we are confronted with new
domains in which labeled data is scarce
or non-existent. In such cases, we seek
to adapt existing models from a resource-
rich source domain to a resource-poor
target domain. We introduce structural
correspondence learning to automatically
induce correspondences among features
from different domains. We test our tech-
nique on part of speech tagging and show
performance gains for varying amounts
of source and target training data, as well
as improvements in target domain parsing
accuracy using our improved tagger.

1 Introduction

Discriminative learning methods are ubiquitous in
natural language processing. Discriminative tag-
gers and chunkers have been the state-of-the-art
for more than a decade (Ratnaparkhi, 1996; Sha
and Pereira, 2003). Furthermore, end-to-end sys-
tems like speech recognizers (Roark et al., 2004)
and automatic translators (Och, 2003) use increas-
ingly sophisticated discriminative models, which
generalize well to new data that is drawn from the
same distribution as the training data.

However, in many situations we may have a
source domain with plentiful labeled training data,
but we need to process material from a target do-
main with a different distribution from the source
domain and no labeled data. In such cases, we
must take steps to adapt a model trained on the
source domain for use in the target domain (Roark
and Bacchiani, 2003; Florian et al., 2004; Chelba

and Acero, 2004; Ando, 2004; Lease and Char-
niak, 2005; Daumé IIl and Marcu, 2006). This
work focuses on using unlabeled data from both
the source and target domains to learn a common
feature representation that is meaningful across
both domains. We hypothesize that a discrimi-
native model trained in the source domain using
this common feature representation will general-
ize better to the target domain.

This representation is learned using a method
we call structural correspondence learning (SCL).
The key idea of SCL is to identify correspon-
dences among features from different domains by
modeling their correlations with pivot features.
Pivot features are features which behave in the
same way for discriminative learning in both do-
mains. Non-pivot features from different domains
which are correlated with many of the same pivot
features are assumed to correspond, and we treat
them similarly in a discriminative learner.

Even on the unlabeled data, the co-occurrence
statistics of pivot and non-pivot features are likely
to be sparse, and we must model them in a com-
pact way. There are many choices for modeling
co-occurrence data (Brown et al., 1992; Pereira
et al., 1993; Blei et al., 2003). In this work we
choose to use the technique of structural learn-
ing (Ando and Zhang, 2005a; Ando and Zhang,
2005b). Structural learning models the correla-
tions which are most useful for semi-supervised
learning. We demonstrate how to adapt it for trans-
fer learning, and consequently the structural part
of structural correspondence learning is borrowed
from it.1

SCL is a general technique, which one can ap-
ply to feature based classifiers for any task. Here,

IStructural learning is different from learning with struc-
tured outputs, a common paradigm for discriminative nat-
ural language processing models. To avoid terminologi-
cal confusion, we refer throughout the paper to a specific
structural learning method, alternating structural optimiza-
tion (ASO) (Ando and Zhang, 2005a).
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(a) Wall Street Journal

DT JJ VBZ DT NN IN DT JJ NN
The clash is a sign of a new  toughness
cC NN IN NNP  POS JJ JJ NN
and  divisiveness in Japan ’s once-cozy financial circles
(b) MEDLINE
DT JJ VBN NNS IN DT NN NNS VBP
The oncogenic  mutated forms of the ras proteins are
RB JJ cC VBP IN JJ NN NN
constitutively active and interfere  with normal signal transduction

Figure 1: Part of speech-tagged sentences from both corpora

we investigate its use in part of speech (PoS) tag-
ging (Ratnaparkhi, 1996; Toutanova et al., 2003).
While PoS tagging has been heavily studied, many
domains lack appropriate training corpora for PoS
tagging. Nevertheless, PoS tagging is an impor-
tant stage in pipelined language processing sys-
tems, from information extractors to speech syn-
thesizers. We show how to use SCL to transfer a
PoS tagger from the Wall Street Journal (financial
news) to MEDLINE (biomedical abstracts), which
use very different vocabularies, and we demon-
strate not only improved PoS accuracy but also
improved end-to-end parsing accuracy while using
the improved tagger.

An important but rarely-explored setting in do-
main adaptation is when we have no labeled
training data for the target domain. We first
demonstrate that in this situation SCL significantly
improves performance over both supervised and
semi-supervised taggers. In the case when some
in-domain labeled training data is available, we
show how to use SCL together with the classifier
combination techniques of Florian et al. (2004) to
achieve even greater performance.

In the next section, we describe a motivating
example involving financial news and biomedical
data. Section 3 describes the structural correspon-
dence learning algorithm. Sections 6 and 7 report
results on adapting from the Wall Street Journal to
MEDLINE. We discuss related work on domain
adaptation in section 8 and conclude in section 9.

2 A Motivating Example

Figure 1 shows two PoS-tagged sentences, one
each from the Wall Street Journal (hereafter WSJ)
and MEDLINE. We chose these sentences for two
reasons. First, we wish to visually emphasize the
difference between the two domains. The vocab-
ularies differ significantly, and PoS taggers suf-
fer accordingly. Second, we want to focus on the

(a) An ambiguous instance

JJ

with  normal

signal

vs. NN

transduction

(b) MEDLINE occurrences of

signal, together with pivot
features

(c) Corresponding WSJ
words, together with pivot
features

the signal required to
stimulatory signal from
essential signal for

of investment required
of buyouts frombuyers
to jail for violating

Figure 2: Correcting an incorrect biomedical tag.
Corresponding words are in bold, and pivot fea-
tures are italicized

phrase “with normal signal transduction” from the
MEDLINE sentence, depicted in Figure 2(a). The
word “signal” in this sentence is a noun, but a tag-
ger trained on the WSJ incorrectly classifies it as
an adjective. We introduce the notion of pivot fea-
tures. Pivot features are features which occur fre-
quently in the two domains and behave similarly
in both. Figure 2(b) shows some pivot features
that occur together with the word “signal” in our
biomedical unlabeled data. In this case our pivot
features are all of type <t he t oken on the
ri ght >. Note that “signal” is unambiguously a
noun in these contexts. Adjectives rarely precede
past tense verbs such as “required” or prepositions
such as “from” and *“for”.

We now search for occurrences of the pivot fea-
tures in the WSJ. Figure 2(c) shows some words
that occur together with the pivot features in the
WSJ unlabeled data. Note that “investment”,
“buy-outs”, and “jail”” are all common nouns in the
financial domain. Furthermore, since we have la-
beled WSJ data, we expect to be able to label at
least some of these nouns correctly.

This example captures the intuition behind
structural correspondence learning. We want to
use pivot features from our unlabeled data to put
domain-specific words in correspondence. That s,
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Input:  labeled source data {(x¢, y¢)i—1 },
unlabeled data from both domains {x; }
Output:  predictor f: X — Y

1. Choose m pivot features. Create m binary
prediction problems, p,(x), £ =1...m

2. Fori=1tom
W = argmin (Zj L(w - xj,pe(x5))+

Alwli?)
end

3 W =[] )
0= U[l:h,:]

[UDVT] =svD(W),

4. Return f, a predictor trained

o {([5]0) )

Figure 3: SCL Algorithm

we want the pivot features to model the fact that in
the biomedical domain, the word signal behaves
similarly to the words investments, buyouts and
jail in the financial news domain. In practice, we
use this technique to find correspondences among
all features, not just word features.

3 Structural Correspondence Learning

Structural correspondence learning involves a
source domain and a target domain. Both domains
have ample unlabeled data, but only the source do-
main has labeled training data. We refer to the task
for which we have labeled training data as the su-
pervised task. In our experiments, the supervised
task is part of speech tagging. We require that the
input x in both domains be a vector of binary fea-
tures from a finite feature space. The first step of
SCL is to define a set of pivot features on the unla-
beled data from both domains. We then use these
pivot features to learn a mapping 6 from the orig-
inal feature spaces of both domains to a shared,
low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
gree of correspondence.

During supervised task training, we use both
the transformed and original features from the
source domain. During supervised task testing, we
use the both the transformed and original features
from the target domain. If we learned a good map-
ping 6, then the classifier we learn on the source
domain will also be effective on the target domain.
The SCL algorithm is given in Figure 3, and the
remainder of this section describes it in detail.

3.1 Pivot Features

Pivot features should occur frequently in the un-
labeled data of both domains, since we must esti-
mate their covariance with non-pivot features ac-
curately, but they must also be diverse enough
to adequately characterize the nuances of the su-
pervised task. A good example of this tradeoff
are determiners in PoS tagging. Determiners are
good pivot features, since they occur frequently
in any domain of written English, but choosing
only determiners will not help us to discriminate
between nouns and adjectives. Pivot features cor-
respond to the auxiliary problems of Ando and
Zhang (2005a).

In section 2, we showed example pivot fea-
tures of type <t he token on the right>.
We also use pivot features of type <t he t oken
on the left> and <the token in the
m ddl e>. In practice there are many thousands
of pivot features, corresponding to instantiations
of these three types for frequent words in both do-
mains. We choose m pivot features, which we in-
dex with /.

3.2 Pivot Predictors

From each pivot feature we create a binary clas-
sification problem of the form “Does pivot fea-
ture ¢ occur in this instance?”. One such ex-
ample is “Is <t he t oken on the right>
required?” These binary classification problems
can be trained from the unlabeled data, since they
merely represent properties of the input. If we rep-
resent our features as a binary vector x, we can
solve these problems using m linear predictors.
fo(x) =sgn(wy-x), £=1...m

Note that these predictors operate on the original
feature space. This step is shown in line 2 of Fig-
ure 3. Here L(p,y) is a real-valued loss func-
tion for binary classification. We follow Ando and
Zhang (2005a) and use the modified Huber loss.

Since each instance contains features which are
totally predictive of the pivot feature (the feature
itself), we never use these features when making
the binary prediction. That is, we do not use any
feature derived from the right word when solving
a right token pivot predictor.

The pivot predictors are the key element in SCL.
The weight vectors w, encode the covariance of
the non-pivot features with the pivot features. If
the weight given to the z’th feature by the ¢’th
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pivot predictor is positive, then feature z is posi-
tively correlated with pivot feature ¢. Since pivot
features occur frequently in both domains, we ex-
pect non-pivot features from both domains to be
correlated with them. If two non-pivot features are
correlated in the same way with many of the same
pivot features, then they have a high degree of cor-
respondence. Finally, observe that wy, is a linear
projection of the original feature space onto R.

3.3 Singular Value Decomposition

Since each pivot predictor is a projection onto R,
we could create m new real-valued features, one
for each pivot. For both computational and statis-
tical reasons, though, we follow Ando and Zhang
(2005a) and compute a low-dimensional linear ap-
proximation to the pivot predictor space. Let W
be the matrix whose columns are the pivot pre-
dictor weight vectors. Now let W = UDV” be
the singular value decomposition of W, so that
6 = Uf., is the matrix whose rows are the top
left singular vectors of .

The rows of @ are the principal pivot predictors,
which capture the variance of the pivot predictor
space as best as possible in i dimensions. Further-
more, ¢ is a projection from the original feature
space onto R”. That is, 6x is the desired mapping
to the (low dimensional) shared feature represen-
tation. This is step 3 of Figure 3.

3.4 Supervised Training and Inference

To perform inference and learning for the super-
vised task, we simply augment the original fea-
ture vector with features obtained by applying the
mapping #. We then use a standard discrimina-
tive learner on the augmented feature vector. For
training instance ¢, the augmented feature vector
will contain all the original features x; plus the
new shared features 6x;. If we have designed the
pivots well, then # should encode correspondences
among features from different domains which are
important for the supervised task, and the classi-
fier we train using these new features on the source
domain will perform well on the target domain.

4 Mode Choices

Structural correspondence learning uses the tech-
niques of alternating structural optimization
(ASO) to learn the correlations among pivot and
non-pivot features. Ando and Zhang (2005a) de-
scribe several free paramters and extensions to

ASO, and we briefly address our choices for these
here. We set h, the dimensionality of our low-rank
representation to be 25. As in Ando and Zhang
(2005a), we observed that setting h between 20
and 100 did not change results significantly, and a
lower dimensionality translated to faster run-time.
We also implemented both of the extensions de-
scribed in Ando and Zhang (2005a). The first is
to only use positive entries in the pivot predictor
weight vectors to compute the SVD. This yields
a sparse representation which saves both time and
space, and it also performs better. The second is to
compute block SVDs of the matrix T, where one
block corresponds to one feature type. We used
the same 58 feature types as Ratnaparkhi (1996).
This gave us a total of 1450 projection features for
both semisupervised ASO and SCL.

We found it necessary to make a change to the
ASO algorithm as described in Ando and Zhang
(2005a). We rescale the projection features to al-
low them to receive more weight from a regular-
ized discriminative learner. Without any rescaling,
we were not able to reproduce the original ASO
results. The rescaling parameter is a single num-
ber, and we choose it using heldout data from our
source domain. In all our experiments, we rescale
our projection features to have average L1 norm on
the training set five times that of the binary-valued
features.

Finally, we also make one more change to make
optimization faster. We select only half of the
ASO features for use in the final model. This
is done by running a few iterations of stochas-
tic gradient descent on the PoS tagging problem,
then choosing the features with the largest weight-
variance across the different labels. This cut in
half training time and marginally improved perfor-
mance in all our experiments.

5 Data Setsand Supervised Tagger

5.1 Source Domain: WSJ

We used sections 02-21 of the Penn Treebank
(Marcus et al., 1993) for training. This resulted in
39,832 training sentences. For the unlabeled data,
we used 100,000 sentences from a 1988 subset of
the WSJ.

5.2 Target Domain: Biomedical Text

For unlabeled data we used 200,000 sentences that
were chosen by searching MEDLINE for abstracts
pertaining to cancer, in particular genomic varia-
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MEDLINE Only

assays

| neur onal || transi ent |

functional

| receptors || mutati on | | | esions | | netastatic |

| transaction | | officials |

political

WSJ Only

investors short-term

Figure 4. An example projection of word features onto R. Words on the left (negative valued) behave
similarly to each other for classification, but differently from words on the right (positive valued). The
projection distinguishes nouns from adjectives and determiners in both domains.

tions and mutations. For labeled training and test-
ing purposes we use 1061 sentences that have been
annotated by humans as part of the Penn BiolE
project (PennBiolE, 2005). We use the same 561-
sentence test set in all our experiments. The part-
of-speech tag set for this data is a superset of
the Penn Treebank’s including the two new tags
HYPH (for hyphens) and AFX (for common post-
modifiers of biomedical entities such as genes).
These tags were introduced due to the importance
of hyphenated entities in biomedical text, and are
used for 1.8% of the words in the test set. Any
tagger trained only on WSJ text will automatically
predict wrong tags for those words.

5.3 Supervised Tagger

Since SCL is really a method for inducing a set
of cross-domain features, we are free to choose
any feature-based classifier to use them. For
our experiments we use a version of the discrim-
inative online large-margin learning algorithm
MIRA (Crammer et al., 2006). MIRA learns and
outputs a linear classification score, s(x,y;w) =
w - f(x,y), where the feature representation f can
contain arbitrary features of the input, including
the correspondence features described earlier. In
particular, MIRA aims to learn weights so that
the score of correct output, y¢, for input x; is
separated from the highest scoring incorrect out-
puts?, with a margin proportional to their Ham-
ming losses. MIRA has been used successfully for
both sequence analysis (McDonald et al., 2005a)
and dependency parsing (McDonald et al., 2005b).
As with any structured predictor, we need to
factor the output space to make inference tractable.
We use a first-order Markov factorization, allow-
ing for an efficient Viterbi inference procedure.

2\\e fix the number of high scoring incorrect outputs to 5.

6 Visualizing 6

In section 2 we claimed that good representations
should encode correspondences between words
like “signal” from MEDLINE and “investment”
from the WSJ. Recall that the rows of # are pro-
jections from the original feature space onto the
real line. Here we examine word features under
these projections. Figure 4 shows a row from
the matrix 6. Applying this projection to a word
gives a real value on the horizontal dashed line
axis. The words below the horizontal axis occur
only in the WSJ. The words above the axis occur
only in MEDLINE. The verticle line in the mid-
dle represents the value zero. Ticks to the left or
right indicate relative positive or negative values
for a word under this projection. This projection
discriminates between nouns (negative) and adjec-
tives (positive). A tagger which gives high pos-
itive weight to the features induced by applying
this projection will be able to discriminate among
the associated classes of biomedical words, even
when it has never observed the words explicitly in
the WSJ source training set.

7 Empirical Results

All the results we present in this section use the
MIRA tagger from Section 5.3. The ASO and
structural correspondence results also use projec-
tion features learned using ASO and SCL. Sec-
tion 7.1 presents results comparing structural cor-
respondence learning with the supervised baseline
and ASO in the case where we have no labeled
data in the target domain. Section 7.2 gives results
for the case where we have some limited data in
the target domain. In this case, we use classifiers
as features as described in Florian et al. (2004).
Finally, we show in Section 7.3 that our SCL PoS
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Figure 6: PoS tagging results with no target labeled training data

tagger improves the performance of a dependency
parser on the target domain.

7.1 NoTarget Labeled Training Data

For the results in this section, we trained a
structural correspondence learner with 100,000
sentences of unlabeled data from the WSJ and
100,000 sentences of unlabeled biomedical data.
We use as pivot features words that occur more
than 50 times in both domains. The supervised
baseline does not use unlabeled data. The ASO
baseline is an implementation of Ando and Zhang
(2005b). It uses 200,000 sentences of unlabeled
MEDLINE data but no unlabeled WSJ data. For
ASO we used as auxiliary problems words that oc-
cur more than 500 times in the MEDLINE unla-
beled data.

Figure 5(a) plots the accuracies of the three
models with varying amounts of WSJ training
data. With one hundred sentences of training
data, structural correspondence learning gives a
19.1% relative reduction in error over the super-
vised baseline, and it consistently outperforms
both baseline models. Figure 5(b) gives results
for 40,000 sentences, and Figure 5(c) shows cor-
responding significance tests, with p < 0.05 be-
ing significant. We use a McNemar paired test for
labeling disagreements (Gillick and Cox, 1989).
Even when we use all the WSJ training data avail-
able, the SCL model significantly improves accu-
racy over both the supervised and ASO baselines.

The second column of Figure 5(b) gives un-
known word accuracies on the biomedical data.
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Of thirteen thousand test instances, approximately
three thousand were unknown. For unknown
words, SCL gives a relative reduction in error of
19.5% over Ratnaparkhi (1996), even with 40,000
sentences of source domain training data.

7.2 SomeTarget Labeled Training Data

In this section we give results for small amounts of
target domain training data. In this case, we make
use of the out-of-domain data by using features of
the source domain tagger’s predictions in training
and testing the target domain tagger (Florian et al.,
2004). Though other methods for incorporating
small amounts of training data in the target domain
were available, such as those proposed by Chelba
and Acero (2004) and by Daumé Ill and Marcu
(2006), we chose this method for its simplicity and
consistently good performance. We use as features
the current predicted tag and all tag bigrams in a
5-token window around the current token.

Figure 6(a) plots tagging accuracy for varying
amounts of MEDLINE training data. The two
horizontal lines are the fixed accuracies of the
SCL WSJ-trained taggers using one thousand and
forty thousand sentences of training data. The five
learning curves are for taggers trained with vary-
ing amounts of target domain training data. They
use features on the outputs of taggers from sec-
tion 7.1. The legend indicates the kinds of features
used in the target domain (in addition to the stan-
dard features). For example, “40k-SCL” means
that the tagger uses features on the outputs of an
SCL source tagger trained on forty thousand sen-
tences of WSJ data. “nosource” indicates a tar-
get tagger that did not use any tagger trained on
the source domain. With 1000 source domain sen-
tences and 50 target domain sentences, using SCL
tagger features gives a 20.4% relative reduction
in error over using supervised tagger features and
a 39.9% relative reduction in error over using no
source features.

Figure 6(b) is a table of accuracies for 500 tar-
get domain training sentences, and Figure 6(c)
gives corresponding significance scores. With
1000 source domain sentences and 500 target do-
main sentences, using supervised tagger features
gives no improvement over using no source fea-
tures. Using SCL features still does, however.

7.3 Improving Parser Performance

We emphasize the importance of PoS tagging in a
pipelined NLP system by incorporating our SCL

Dependency Parsing for 561 Test Sentences
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Figure 7: Dependency parsing results using differ-
ent part of speech taggers

tagger into a WSJ-trained dependency parser and
and evaluate it on MEDLINE data. We use the
parser described by McDonald et al. (2005b). That
parser assumes that a sentence has been PoS-
tagged before parsing. We train the parser and PoS
tagger on the same size of WSJ data.

Figure 7 shows dependency parsing accuracy on
our 561-sentence MEDLINE test set. We parsed
the sentences using the PoS tags output by our
source domain supervised tagger, the SCL tagger
from subsection 7.1, and the gold PoS tags. All
of the differences in this figure are significant ac-
cording to McNemar’s test. The SCL tags consis-
tently improve parsing performance over the tags
output by the supervised tagger. This is a rather in-
direct method of improving parsing performance
with SCL. In the future, we plan on directly incor-
porating SCL features into a discriminative parser
to improve its adaptation properties.

8 Reated Work

Domain adaptation is an important and well-
studied area in natural language processing. Here
we outline a few recent advances. Roark and Bac-
chiani (2003) use a Dirichlet prior on the multi-
nomial parameters of a generative parsing model
to combine a large amount of training data from a
source corpus (WSJ), and small amount of train-
ing data from a target corpus (Brown). Aside
from Florian et al. (2004), several authors have
also given techniques for adapting classification to
new domains. Chelba and Acero (2004) first train
a classifier on the source data. Then they use max-
imum a posteriori estimation of the weights of a
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maximum entropy target domain classifier. The
prior is Gaussian with mean equal to the weights
of the source domain classifier. Daumé Il and
Marcu (2006) use an empirical Bayes model to es-
timate a latent variable model grouping instances
into domain-specific or common across both do-
mains. They also jointly estimate the parameters
of the common classification model and the do-
main specific classification models. Our work fo-
cuses on finding a common representation for fea-
tures from different domains, not instances. We
believe this is an important distinction, since the
same instance can contain some features which are
common across domains and some which are do-
main specific.

The key difference between the previous four
pieces of work and our own is the use of unlabeled
data. We do not require labeled training data in
the new domain to demonstrate an improvement
over our baseline models. We believe this is essen-
tial, since many domains of application in natural
language processing have no labeled training data.
Lease and Charniak (2005) adapt a WSJ parser
to biomedical text without any biomedical tree-
banked data. However, they assume other labeled
resources in the target domain. In Section 7.3 we
give similar parsing results, but we adapt a source
domain tagger to obtain the PoS resources.

To the best of our knowledge, SCL is the first
method to use unlabeled data from both domains
for domain adaptation. By using just the unlabeled
data from the target domain, however, we can view
domain adaptation as a standard semisupervised
learning problem. There are many possible ap-
proaches for semisupservised learning in natural
language processing, and it is beyond the scope
of this paper to address them all. We chose to
compare with ASO because it consistently outper-
forms cotraining (Blum and Mitchell, 1998) and
clustering methods (Miller et al., 2004). We did
run experiments with the top-k version of ASO
(Ando and Zhang, 2005a), which is inspired by
cotraining but consistently outperforms it. This
did not outperform the supervised method for do-
main adaptation. We speculate that this is because
biomedical and financial data are quite different.
In such a situation, bootstrapping techniques are
likely to introduce too much noise from the source
domain to be useful.

Structural correspondence learning is most sim-
ilar to that of Ando (2004), who analyzed a

situation with no target domain labeled data.
Her model estimated co-occurrence counts from
source unlabeled data and then used the SVD of
this matrix to generate features for a named en-
tity recognizer. Our ASO baseline uses unlabeled
data from the target domain. Since this consis-
tently outperforms unlabeled data from only the
source domain, we report only these baseline re-
sults. To the best of our knowledge, this is the first
work to use unlabeled data from both domains to
find feature correspondences.

One important advantage that this work shares
with Ando (2004) is that an SCL model can be
easily combined with all other domain adaptation
techniques (Section 7.2). We are simply induc-
ing a feature representation that generalizes well
across domains. This feature representation can
then be used in all the techniques described above.

9 Conclusion

Structural correspondence learning is a marriage
of ideas from single domain semi-supervised
learning and domain adaptation. It uses unla-
beled data and frequently-occurring pivot features
from both source and target domains to find corre-
spondences among features from these domains.
Finding correspondences involves estimating the
correlations between pivot and non-pivot feautres,
and we adapt structural learning (ASO) (Ando and
Zhang, 2005a; Ando and Zhang, 2005b) for this
task. SCL is a general technique that can be ap-
plied to any feature-based discriminative learner.

We showed results using SCL to transfer a PoS
tagger from the Wall Street Journal to a corpus
of MEDLINE abstracts. SCL consistently out-
performed both supervised and semi-supervised
learning with no labeled target domain training
data. We also showed how to combine an SCL
tagger with target domain labeled data using the
classifier combination techniques from Florian et
al. (2004). Finally, we improved parsing perfor-
mance in the target domain when using the SCL
PoS tagger.

One of our next goals is to apply SCL directly
to parsing. We are also focusing on other po-
tential applications, including chunking (Sha and
Pereira, 2003), named entity recognition (Florian
et al., 2004; Ando and Zhang, 2005b; Daumé IlI
and Marcu, 2006), and speaker adaptation (Kuhn
et al., 1998). Finally, we are investigating more
direct ways of applying structural correspondence
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learning when we have labeled data from both
source and target domains. In particular, the la-
beled data of both domains, not just the unlabeled
data, should influence the learned representations.

Acknowledgments

We thank Rie Kubota Ando and Tong Zhang
for their helpful advice on ASO, Steve Carroll
and Pete White of The Children’s Hospital of
Philadelphia for providing the MEDLINE data,
and the PennBiolE annotation team for the anno-
tated MEDLINE data used in our test sets. This
material is based upon work partially supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHDO030010.
Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those
of the author(s) and do not necessarily reflect
the views of the DARPA or the Department
of Interior-National Business Center (DOI-NBC).
Additional support was provided by NSF under
ITR grant EIA-0205448.

References

R. Ando and T. Zhang. 2005a. A framework for learn-
ing predictive structures from multiple tasks and un-
labeled data. IMLR, 6:1817-1853.

R. Ando and T. Zhang. 2005b. A high-performance
semi-supervised learning method for text chunking.
In ACL.

R. Ando. 2004. Exploiting unannotated corpora for
tagging and chunking. In ACL. Short paper.

D. Blei, A. Ng, and M. Jordan. 2003. Latent dirichlet
allocation. JMLR, 3:993-1022.

A. Blum and T. Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In Workshop
on Computational Learning Theory.

P. Brown, V. Della Pietra, P. deSouza, J. Lai, and
R. Mercer. 1992. Class-based n-gram models
of natural language. Computational Linguistics,
18(4):467-479.

C. Chelba and A. Acero. 2004. Adaptation of maxi-
mum entropy capitalizer; Little data can help a lot.
In EMNLP.

K. Crammer, Dekel O, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. JMLR, 7:551-585.

H. Daum™ Il and D. Marcu. 2006. Domain adaptation
for statistical classifiers. JAIR.

R. Florian, H. Hassan, A.lttycheriah, H. lJing,
N. Kambhatla, X. Luo, N. Nicolov, and S. Roukos.
2004. A statistical model for multilingual entity de-
tection and tracking. In of HLT-NAACL.

L. Gillick and S. Cox. 1989. Some statistical issues in
the comparison of speech recognition algorithms. In
ICASSP.

R. Kuhn, P. Nguyen, J.C. Junqua, L. Goldwasser,
N. Niedzielski, S. Fincke, K. Field, and M. Con-
tolini. 1998. Eigenvoices for speaker adaptation.
InICSLP.

M. Lease and E. Charniak. 2005. Parsing biomedical
literature. In IJCNLP.

M. Marcus, B. Santorini, and M. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313-330.

R. McDonald, K. Crammer, and F. Pereira. 2005a.
Flexible text segmentation with structured multil-
abel classification. In HLT-EMNLP.

R. McDonald, K. Crammer, and F. Pereira. 2005h. On-
line large-margin training of dependency parsers. In
ACL.

S. Miller, J. Guinness, and A. Zamanian. 2004. Name
tagging with word clusters and discriminative train-
ing. In HLT-NAACL.

F. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. of ACL.

PennBiolE. 2005. Mining The Bibliome Project.
http://bioie.ldc.upenn.edu/.

F. Pereira, N. Tishby, and L. Lee. 1993. Distributional
clustering of english words. In ACL.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In EMNLP.

B. Roark and M. Bacchiani. 2003. Supervised and
unsupervised PCFG adaptation to novel domains. In
HLT-NAACL.

B. Roark, M. Saraclar, M. Collins, and M. Johnson.
2004. Discriminative language modeling with con-
ditional random fields and the perceptron algorithm.
In ACL.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fields. In HLT-NAACL.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In NAACL.

128



Incremental Integer Linear Programming for Non-pr oj ective Dependency
Parsing

Sebastian Riedel and James Clarke
School of Informatics, University of Edinburgh
2 Bucclecuch Place, Edinburgh EH8 9LW, UK
s.r.riedel @ns. ed. ac. uk,jcl arke@d. ac. uk

Abstract

Integer Linear Programming has recently
been used for decoding in a number of
probabilistic models in order to enforce
global constraints. However, in certain ap-
plications, such as non-projective depen-
dency parsing and machine translation,
the complete formulation of the decod-
ing problem as an integer linear program
renders solving intractable. We present an
approach which solves the problem in-
crementally, thus we avoid creating in-
tractable integer linear programs. This ap-
proach is applied to Dutch dependency
parsing and we show how the addition
of linguistically motivated constraints can
yield a significant improvement over state-
of-the-art.

1 Introduction

Many inference algorithms require models to
make strong assumptions of conditional indepen-
dence between variables. For example, the Viterbi
algorithm used for decoding in conditional ran-
dom fields requires the model to be Markovian.
Strong assumptions are also made in the case of
McDonald et al.’s (2005b) non-projective depen-
dency parsing model. Here attachment decisions
are made independently of one another!. However,
often such assumptions can not be justified. For
example in dependency parsing, if a subject has
already been identified for a given verb, then the
probability of attaching a second subject to the
verb is zero. Similarly, if we find that one coor-
dination argument is a noun, then the other argu-

'Tf we ignore the constraint that dependency trees must be
cycle-free (see sections 2 and 3 for details).

ment cannot be a verb. Thus decisions are often
co-dependent.

Integer Linear Programming (ILP) has recently
been applied to inference in sequential condi-
tional random fields (Roth and Yih, 2004), this
has allowed the use of truly global constraints
during inference. However, it is not possible to
use this approach directly for a complex task like
non-projective dependency parsing due to the ex-
ponential number of constraints required to pre-
vent cycles occurring in the dependency graph.
To model all these constraints explicitly would re-
sult in an ILP formulation too large to solve effi-
ciently (Williams, 2002). A similar problem also
occurs in an ILP formulation for machine transla-
tion which treats decoding as the Travelling Sales-
man Problem (Germann et al., 2001).

In this paper we present a method which extends
the applicability of ILP to a more complex set of
problems. Instead of adding all the constraints we
wish to capture to the formulation, we first solve
