Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter

Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias Iosif, Nikolaos Malandrakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth Narayanan, Alexandros Potamianos


Abstract
In this paper, we describe our submission to SemEval2017 Task 4: Sentiment Analysis in Twitter. Specifically the proposed system participated both to tweet polarity classification (two-, three- and five class) and tweet quantification (two and five-class) tasks.
Anthology ID:
S17-2112
Volume:
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
Month:
August
Year:
2017
Address:
Vancouver, Canada
Editors:
Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, David Jurgens
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
675–682
Language:
URL:
https://aclanthology.org/S17-2112
DOI:
10.18653/v1/S17-2112
Bibkey:
Cite (ACL):
Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias Iosif, Nikolaos Malandrakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth Narayanan, and Alexandros Potamianos. 2017. Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 675–682, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter (Kolovou et al., SemEval 2017)
Copy Citation:
PDF:
https://preview.aclanthology.org/naacl24-info/S17-2112.pdf