That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets

William Yang Wang, Diyi Yang


Anthology ID:
D15-1306
Volume:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
Month:
September
Year:
2015
Address:
Lisbon, Portugal
Editors:
Lluís Màrquez, Chris Callison-Burch, Jian Su
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
2557–2563
Language:
URL:
https://aclanthology.org/D15-1306
DOI:
10.18653/v1/D15-1306
Bibkey:
Cite (ACL):
William Yang Wang and Diyi Yang. 2015. That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2557–2563, Lisbon, Portugal. Association for Computational Linguistics.
Cite (Informal):
That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets (Wang & Yang, EMNLP 2015)
Copy Citation:
PDF:
https://preview.aclanthology.org/naacl24-info/D15-1306.pdf