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Abstract
Stance detection aims at inferring an author’s
attitude towards a specific target in a text. Prior
methods mainly consider target-related back-
ground information for a better understanding
of targets while neglecting the accompanying
input texts. In this study, we propose to prompt
Large Language Models (LLMs) to explicitly
extract the relationship between paired text and
target as contextual knowledge. We then inject
such LLM-driven knowledge into a generation
model BART to exploit the rich contexts and
semantics. Moreover, to further enhance the
decoding capability of BART, a novel proto-
typical contrastive scheme is designed to align
input contents with stance labels. Our experi-
mental results demonstrate the state-of-the-art
performance across several publicly available
datasets, showcasing effectiveness in both zero-
shot and cross-target stance detection scenarios.
We publicly release our code to facilitate future
research.1

1 Introduction

The objective of stance detection is to ascertain an
individual’s stance regarding a specified target in a
text, which may either be explicitly mentioned or
implied only (Küçük and Can, 2022). The signifi-
cance of stance detection is evident in its role across
various fields, such as predicting election and refer-
endum outcomes (Kawintiranon and Singh, 2021),
classifying rumors (Lin et al., 2021), detecting fake
news (Hanselowski et al., 2018), and identifying
instances of disinformation (Hardalov et al., 2022).

Stance detection can be divided into three cate-
gories according to the availability of test targets:
1) target-specific: stance detection for fixed targets
(Hasan and Ng, 2014); 2) cross-target: stance detec-
tion for related targets (Augenstein et al., 2016); 3)
zero-shot: stance detection for unseen targets (All-
away and McKeown, 2020). Among these tasks,

∗Corresponding author.
1https://github.com/zhangzhao219/LKI-BART

Target: Joe Biden                                                         Stance: Favor
Text: #Correct! I am a #Republican and will vote for @JoeBiden.
Prior Target-Related Knowledge: Joe Biden was a member of the 
Democratic Party.         contains confusing information that the 
author and Joe Biden belong to different parties
Our LLM-Driven Knowledge: Despite his Republican affiliation, the 
author has made a decision to vote for Joe Biden.         resolves the
confusion by analyzing the relationship between the text and target

Figure 1: An example comparing our LLM-driven
knowledge with previous target-related knowledge.

the latter two are more challenging since test tar-
gets are inaccessible in the training data. One
promising solution is to incorporate background
knowledge as additional information, which previ-
ous works mainly focus on (He et al., 2022). De-
spite the understanding of specific targets being
improved, such approaches solely consider target-
related knowledge but ignore the relationship be-
tween texts and targets, which might mislead the
stance detection model as shown in Figure 1.

Recently, LLMs, such as ChatGPT released by
OpenAI2, have shown superior natural language
understanding performance. In this work, we spe-
cially design the prompt to make the most of Chat-
GPT’s internal knowledge and reasoning capabil-
ities for extracting the relationship between texts
and targets explicitly. We refer to the consequent
response as LLM-driven knowledge, a snippet of
which can also be found in Figure 1. Compared to
prior ones, LLM-driven knowledge is more specific
and context-rich for stance detection.

In order to bridge the semantic gap between
LLM-driven knowledge and stance labels, we
adopt a bidirectional autoregressive model - BART
(Lewis et al., 2020; Wen and Hauptmann, 2023) as
our backbone. As a result, the detection scheme is
reformulated as a conditional stance label genera-
tion task, where the condition consists of a partially
filled template, the input text, and knowledge de-
rived from LLMs. This transformation allows us

2https://openai.com/chatgpt
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to go beyond direct classification and leverage rich
semantics for stance decoding.

Based on the above framework, we further de-
vise a prototypical contrastive learning scheme
to align stance representations with label seman-
tics. Specifically, we adopt class-wise prototypes to
model the feature space. Then a contrastive loss is
optimized, forcing stance representations to be ap-
pealed to the corresponding prototype and repelled
to prototypes of other stances. As a result, per-class
representations can be clustered compactly on the
feature space, making it easier to learn a mapping
from stance representations to label semantics.

We refer to our method as LLM-Driven
Knowledge Injection BART (LKI-BART), and an
overview is depicted in Figure 2. Extensive ex-
periments on two benchmark datasets suggest that
LKI-BART achieves state-of-the-art performance
on zero-shot and cross-target stance detection tasks.
Additional ablation studies also indicate the effec-
tiveness of each technique, namely LLM-driven
knowledge, BART backbone, and prototypical con-
trastive learning, in LKI-BART.

2 Related Work

Zero-Shot and Cross-Target Stance Detection
with External Knowledge. In addition to de-
signing algorithms to learn transferable features,
several works introduce external knowledge for a
deeper understanding of unseen targets. Liu et al.
(2021) involved commonsense knowledge based on
the graph structure, Zhu et al. (2022) incorporated
external knowledge from Wikipedia. In recent stud-
ies, He et al. (2022); Wen and Hauptmann (2023);
Hanley and Durumeric (2023) have reached a con-
sensus on the usage of external knowledge. How-
ever, none of them considers explicitly acquiring
the relationship between texts and targets, which
may result in redundant and confusing information.

Utilize LLMs for Stance Detection. Recently,
some works have directly used LLMs for stance
detection. Zhang et al. (2023a,b) explores various
methods to prompt ChatGPT for stance reasoning.
Lan et al. (2023) adopts distinct LLM-based Agents
to create a collaborative stance detection system.
Also, some studies have expressed a negative opin-
ion on using LLMs for stance detection. Zhu et al.
(2023) uses ChatGPT to annotate stance labels but
obtains inferior results. Cruickshank and Ng (2023)
conclude that overall accuracy is not much better
than supervised models.

3 Approach

3.1 Problem Formulation
Formally, given a text x and a target t, the stance
detection task aims to identify the stance y that x
expresses towards t. y is basically in the collec-
tion S = {favor, against, neutral}, which may
vary in different datasets. The detection model is
trained to infer y given x and t with parameter θ. If
knowledge k is involved, the formulation will be:

f(x, t, k; θ) = y

3.2 LLM-Driven Knowledge
To acquire LLM-driven knowledge for stance detec-
tion, we employ a partially filled zero-shot prompt
for each input text in every dataset, as shown in Ap-
pendix A. Specifically, our prompt is designed with
three aspects in mind. First, we instruct the LLM
to list keywords. In that case, the subsequent detec-
tion model may pay more attention to these words.
Second, we prompt the LLM to analyze implied
emotions and rhetorical devices, as these may be
strong pieces of evidence for the expressed stance.
Finally, unlike previous studies, we ask the LLM
to briefly analyze the stance rather than produce ex-
act answers directly, reducing the risks of intrinsic
hallucination in LLMs, which may mislead the sub-
sequent detection model into generating incorrect
predictions. Besides, we add a brief description
of the dataset at the beginning, so that LLM may
find more background information concerning the
dataset by retrieving its internal knowledge.

3.3 BART Backbone
As LLM-driven knowledge may cover rich contex-
tual information, it is vital to associate such infor-
mation with stance semantics. Recently, generative
modeling has shown great potential by leveraging
pre-training objectives to decode the answer (Rad-
ford et al., 2019). Inspired by prior works (Wen and
Hauptmann, 2023), we inject LLM-driven knowl-
edge into BART (Lewis et al., 2020), an auto-
regressive transformer, for stance detection.

In that case, the task is reframed as a denoising
one, which takes h(x, t, k) as input and generates
an output sequence u containing stance labels.
Specifically, h(x, t, k) is a combination of input
text x, target t and LLM-driven knowledge k
with special tokens "<s> <stance> is the
stance for the target t </s></s>
x </s></s> k </s>", and u is formu-
lated as "<s> <stance> is the stance

372



Assuming that you are a social expert, you are given a short Passage of tweets on political figures in the presidential race of 2020 below, please think step by step, extract the 
keywords in the passage, analyze the author’s implied emotions …
Passage: #Correct! I am a #Republican and will vote for @JoeBiden 
Target: Joe Biden

BART  Encoder BART  Decoder

<s> <stance> is the stance for the target Joe Biden</s> </s> #Correct … </s> </s> Key words …</s>

Template Input Text 𝑥𝑥 LLM-Driven Knowledge 𝑘𝑘

Sequence 
Embeddings

<s> Supportive is the stance for the target Joe Biden </s>

LLM-Driven Knowledge

Prediction
Prototypical Contrastive Learning

Prototype for Sup

Prototype for Aga

Key words in the passage include "Republican“, "vote" and "@JoeBiden",
The author's implied emotions are not explicitly stated in the passage, but we can infer that they have made a decision to vote for Joe Biden despite their Republican affiliation, …

Projector
Stance

Embedding 𝑧𝑧

Projected
Embedding �̂�𝑧

𝑣𝑣1

𝑣𝑣0

Figure 2: Overview of our proposed LKI-BART.

for the target t </s>". Note that the
<stance> placeholder is kept in input while
being replaced by the predicted stance in output.

Finally, the BART model is trained by maximiz-
ing the log-likelihood over the whole sequence.

Lgen = −
|u|∑

i=1

log p(ui|,u<i, h(x, t, k); θ)

where p(ui|,u<i, h(x, t, k); θ) is the probability to
select a token ui at step i given the input h(x, t, k)
and previously generated tokens u<i.

3.4 Prototypical Contrastive Learning

One may notice that Lgen maximizes the likeli-
hood over the entire sentence. In fact, more opti-
mizations may be beneficial especially when de-
coding the stance label. To this end, we decouple
the stance embedding z ∈ Rembed_size (the em-
bedding used to generate the stance token) from
BART decoder outputs. We then project it into
a low-dimensional vector ẑ ∈ Rlow_embed_size to
prevent z losing much semantics and being over-
corrected. To regularize ẑ to be more discrimina-
tive in the latent space, inspired by Li et al. (2021a),
we introduce the concept of prototypes, they are
widely adopted in data-efficient learning Li et al.
(2024) and can be viewed as the representatives of
class-wise embeddings. However, different from Li
et al. (2021a), we view prototypes as the represen-
tatives of class-wise projected embeddings instead
of class-agnostic ones. By interacting with proto-
types, a contrastive loss is employed to increase the
intra-class similarity but decrease the inter-class

similarity of projected stance embeddings. In the
following, we will detail how to estimate class-wise
prototypes and formulate the contrastive loss.
Online Prototype Update For each stance class
c, we randomly initialize a vector vc as its proto-
type before normalizing it into a unit one at the
beginning. Along the training progress, we update
vc at each step in a moving average manner by,

vc ← Normalize(βvc + (1− β)v′
c)

where β is a momentum coefficient, Normalize(·)
is the normalization function, and v′

c is the centroid
of embeddings belonging to class c in the batch.
Prototypical Contrastive Loss To compute the
loss, we firstly obtain the embedding-to-class co-
sine similarity score sj = < ẑ,vj >. Then, we
optimize the following loss,

Lcon = −
C∑

c=1

yc log
exp( scγ )∑C
j=1 exp( sjγ )

where γ is a scalar temperature parameter and y
is the one-hot label for the current sample. If it
belongs to class c, optimizing Lcon will maximize
sc but minimize sj (j = 1, · · · , C and j ̸= c),
thereby pulling together ẑ and class c’s prototype
vc while pushing away ẑ from prototypes of other
classes. Consequently, a well-structured feature
space is modeled with stance embeddings from the
same class clustering together, making it easier to
reach semantic alignment.
Relation with JointCL Although previous work,
namely JointCL (Liang et al., 2022b), also intro-
duced the concept of prototypes, our approach is
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fundamentally distinctive from it. As for the pur-
pose of prototypes, JointCL obtains class-agnostic
prototypes to build a graph dedicated to adapt-
ing and refining representations of unseen targets,
while we rely on class-specific prototypes to reg-
ularize the feature space. Besides, JointCL still
follows the traditional supervised contrastive loss
(Khosla et al., 2020), forcing larger cosine simi-
larity between samples that share the same stance
label, while prototypes are not involved in con-
trastive loss at all. By contrast, our method encour-
ages large similarity scores between a sample’s
embedding and its corresponding prototype, which
is less computationally intensive and more robust,
since potential mis-calibration can be alleviated by
viewing prototypes as representatives of class-wise
embeddings.

The overall loss function of LKI-BART consid-
ering both Lgen and Lcon is defined as follows:

L = λl · Lgen + (1− λl) · Lcon

where λl is involved to balance the optimization.

4 Experiments

We evaluate our LKI-BART on VAST (Allaway
and McKeown, 2020) and P-Stance (Li et al.,
2021b), please refer to Appendix B and Appendix
C for details of the training datasets as well as our
experimental setup.

4.1 Results
4.1.1 Zero-Shot Stance Detection
We test our model on VAST, where the model is
trained on thousands of targets and evaluated on
targets not present in the training data.

Model VAST
Sup Aga Neu Avg

StSQA - - - 68.9
GDA-CL 59.8 62.3 89.3 70.5
PT-HCL 61.7 63.5 89.6 71.6
JointCL 64.9 63.2 88.9 72.3

BS-RGCN 60.8 67.4 89.5 72.6
COLA 73.4 77.2 - 73.4

TarBK-BERT 65.7 63.9 91.2 73.6
WS-BERT-Single - - - 75.3

CondGen - - - 76.4
KASD-BERT - - - 76.8

TATA 69.5 71.1 90.5 77.1
LKI-BART 75.1 72.9 90.7 79.6

Table 1: Experimental results on VAST.

Baselines. We compare our model with StSQA
(Zhang et al., 2023b), GDA-CL (Li and Yuan,

2022), PT-HCL (Liang et al., 2022a), JointCL
(Liang et al., 2022b), BS-RGCN (Luo et al., 2022),
COLA (Lan et al., 2023), TarBK-BERT (Zhu et al.,
2022), WS-BERT-Single (He et al., 2022), Cond-
Gen (Wen and Hauptmann, 2023), KASD-BERT
(Li et al., 2023) and TATA (Hanley and Durumeric,
2023).

Results and Analysis. The results of LKI-BART
on VAST are presented in Table 1. Notably, LKI-
BART exhibits a significant performance improve-
ment over prior approaches, validating its effective-
ness on the zero-shot stance detection task.

Ablation Study on LLM-Driven Knowledge.
To validate the effectiveness of our proposed LLM-
driven knowledge, we integrate different compo-
nents of it into our model as well as target-related
knowledge from Wikipedia (He et al., 2022). The
results are presented in Table 2, showing that each
component contributes to the performance gain
and the combination of them can complement each
other and generally yields a superior result beyond
Wiki knowledge only. Besides, we observe a signif-
icant improvement with the "Analyse stance" part.
This is because instructing LLMs to analyze the
stance directly seems to be the most straightforward
way. Nevertheless, the other components also play
essential roles. In cases where "Analyse stance"
leads to an incorrect answer, our LKI-BART can
still correct it with the guidance of other parts, sug-
gesting its robustness.

Component VAST
Sup Aga Neu Avg

None 65.9 68.4 90.1 74.8
Wiki 71.4 71.8 87.4 76.9

Keywords 67.2 70.3 89.6 75.7
Implied emotions 67.6 72.5 90.6 76.9
Rhetorical devices 67.7 71.0 89.9 76.2

Analyse stance 71.2 71.9 89.3 77.4
All 75.1 72.9 90.7 79.6

Table 2: Ablation study on different knowledge types or
components as contextual information for BART model.

Ablation Study on BART Backbone. As
LLM-driven knowledge may cover rich contextual
information, it is vital to associate such informa-
tion with stance semantics. Therefore, we choose a
seq2seq generative model BART as our backbone.
To further verify this choice, we try two alterna-
tives of BART to examine its effects in Table 3:
1) feed the LLM-driven knowledge into a BERT
(Devlin et al., 2019) classification model (denoted
as BERT); 2) feed the LLM-driven knowledge into
another LLM and use its few-shot in-context abili-
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ties to directly infer the stance (denoted as few-shot
LLM). As shown, training a seq2seq BART sepa-
rately performs best, as it can learn how to leverage
the knowledge provided by LLMs more effectively.

Backbone VAST
Sup Aga Neu Avg

few-shot LLM 68.7 67.8 72.4 69.6
BERT 73.5 74.3 85.2 77.7
BART 75.1 72.9 90.7 79.6

Table 3: Ablation study on different backbones.

4.1.2 Cross-Target Stance Detection
We adopt P-Stance for cross-target stance detection
evaluation, where our model is trained on one target
and tested on another related target.

Baselines. We compare our model with BiCE
(Augenstein et al., 2016), CrossNet (Xu et al.,
2018), BERTweet (Li et al., 2021b) and WS (He
et al., 2022).

Results and Analysis. The results of our model
on P-Stance are shown in Table 4. We can ob-
serve that LKI-BART outperforms the previous
best model by 10-15 F1-pts. Interestingly, we note
that among the three targets, our model performs
best on JB, followed by DT and BS. We speculate
that this discrepancy arises from JB being the cur-
rent president and DT being the former president.
In that case, LLMs possess more internal infor-
mation about JB and DT thereby producing more
informative knowledge on them after prompting.

Target P-Stance
CrossNet BERTweet WS LKI-BART

DT→ JB 56.67 58.88 68.30 85.02
DT→ BS 50.08 56.50 64.40 79.57
JB→ DT 60.43 63.64 67.70 80.74
JB→ BS 60.81 67.04 69.00 79.65
BS→ DT 52.99 58.75 63.60 80.91
BS→ JB 62.51 72.99 76.80 85.56

Table 4: Experimental results on P-Stance, where JB,
DT, BS are short for Joe Biden, Donald Trump, and
Bernie Sanders, respectively.

Feature Visualizations. Figure 3 shows the t-
SNE (van der Maaten and Hinton, 2008) visualiza-
tion of stance embeddings (the definition is given
in Section 3.4) from the vanilla BART model and
our LKI-BART model on the test set. Specifically,
the vanilla BART model is based on the generation
framework but trained without LLM-driven knowl-
edge or prototypical contrastive loss. As shown, the
visualization of the vanilla BART shows basically

no clusters, while embeddings with our LKI-BART
are gathered according to their labels.

Figure 3: The t-SNE visualization of stance embeddings
from the vanilla BART (left) and our LKI-BART (right).
We use random initialization with perplexity as 50, blue
stands for AGAINST label, and red stands for FAVOR
label.

Ablation Study on Training Strategies. To
validate the effects of our proposed strategies, we
conduct several experiments. The corresponding
results are listed in Table 5. As seen, LK greatly
boosts the detection ability by explicitly modeling
relationships between texts and targets while PCL
can further bring about improvements as it helps
to regularize the feature space. Besides, our PCL
surpasses its variant SCL, which may be easily
influenced by in-batch outliers due to its sample-to-
sample contrastive formula.

Target P-Stance
- LK LK + SCL LK + PCL

DT→ JB 73.63 84.09 84.55 85.02
DT→ BS 62.36 78.71 79.69 79.57
JB→ DT 65.25 79.62 80.13 80.74
JB→ BS 66.74 78.68 78.41 79.65
BS→ DT 59.32 79.60 80.22 80.91
BS→ JB 72.67 84.83 84.98 85.56

Table 5: Ablation study for training strategies on P-
Stance, where LK represents the LLM-driven knowl-
edge, SCL denotes the supervised contrastive loss
adopted in (Liang et al., 2022b), and PCL represents the
proposed prototypical contrastive learning.

5 Conclusion

In this paper, we propose to collect LLM-driven
knowledge to incorporate connections between in-
put texts and unseen targets for zero-shot and cross-
target stance detection. A generation framework
BART is adopted to better leverage LLM-driven
knowledge for detection and a prototypical con-
trastive loss is optimized for better alignment be-
tween input materials and stance semantics. Com-
bining all the above techniques, our LKI-BART
finally achieves state-of-the-art performance on
VAST and P-Stance datasets.
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Limitations

LKI-BART relies on knowledge generated by
LLMs. Due to constraints in budget and time, we
only experiment with GPT-3.5-turbo from Azure.
We encourage further exploration by researchers to
compare various LLMs and prompt formats.

Ethical Statement

In this research, it’s crucial to acknowledge the po-
tential limitations of LLMs. Although Azure has
made significant progress to guard against abuse
and unintended harm, ChatGPT may also produce
biased information on certain targets as many other
LLMs, especially on targets related to people. How-
ever, we do not adopt any additional processing for
LLM-driven knowledge, while other parts of the
training data come from publicly available datasets
that are commonly employed in prior research. We
keep fair and honest in our analysis of experimental
results. Additionally, our LKI-BART is extremely
lightweight and allows the reproduction of the ex-
periments on common GPUs. We have made our
code accessible for future investigations.
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A Prompt Details

Assuming that you are a social expert, you are given
a short Passage of {dataset_description} below,
please think step by step, extract the keywords in
the passage, analyze the author’s implied emotions,
rhetorical devices, etc., finally briefly analyze the
author’s stance on the Target, paying attention to
giving the process of analysis without giving the
conclusion.

Passage:{text}
Target:{target}

B Datasets

Allaway and McKeown (2020) construct a dataset
named VAST with varied topics for evaluating
zero-shot stance detection, the original examples of
VAST are collected from (Habernal et al., 2018) un-
der Apache-2.0 license3, while P-Stance by Li et al.
(2021b) is a commonly adopted benchmark for
cross-target stance detection, under MIT license4.

1) VAST contains 18,548 comments from New
York Times "Room for Debate" section with 5,630
different targets for zero-shot and few-shot stance
detection. Each instance can be classified as Favor,
Against, or Neutral. The statistics are summarized
in Table 6.

Train Dev Test
# Examples 13,477 2,062 3,006

# Unique Comments 1,845 682 786
# Zero-shot Topics 4,003 383 600
# Few-shot Topics 638 114 159

Table 6: Statistics of VAST dataset.

2) P-Stance contains 21,574 political tweets
with stance annotations for “Donald Trump”, “Joe
Biden”, and “Bernie Sanders”. Each tweet is anno-
tated with a stance label “Favor” or “Against”. The
statistics are summarized in Table 7.

3https://github.com/UKPLab/
argument-reasoning-comprehension-task/blob/
master/LICENSE

4https://github.com/chuchun8/PStance/blob/
main/LICENSE

Trump Biden Sanders
Train Favor 2,937 2,552 2,858

Against 3,425 3,254 2,198
Dev Favor 365 328 350

Against 430 417 284
Test Favor 361 337 343

Against 435 408 292

Table 7: Statistics of P-Stance dataset.

C Experimental Setup

We use unmodified bart-base from huggingface.co5.
All our experiments are carried out on a single
NVIDIA A100 40G with 50 epochs, which gener-
ally take about 3 hours for training. We use a base
learning rate of 5e-6 with a warm-up proportion of
0.1 and AdamW (Loshchilov and Hutter, 2019) is
adopted as the optimizer. The training batch size
is defined as 64. For prototypical contrastive learn-
ing, hyper-parameters τ , λl, and β are set to 0.1,
0.8, and 0.99 respectively. Test results are reported
based on the best overall F1 performance on the
development set, using the averaged results from 5
different random seeds. Following the experimen-
tal setup by previous works, we use macro-F1 as
the evaluation metric.

5https://huggingface.co/facebook/bart-base
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