Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, Michael Bendersky


Abstract
Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets.We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these challenging ranking formulations. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP).Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL 2019&2020, PRP based on the Flan-UL2 model with 20B parameters performs favorably with the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, while outperforming other LLM-based solutions, such as InstructGPT which has 175B parameters, by over 10% for all ranking metrics. By using the same prompt template on seven BEIR tasks, PRP outperforms supervised baselines and outperforms the blackbox commercial ChatGPT solution by 4.2% and pointwise LLM-based solutions by more than 10% on average NDCG@10.Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity.
Anthology ID:
2024.findings-naacl.97
Volume:
Findings of the Association for Computational Linguistics: NAACL 2024
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1504–1518
Language:
URL:
https://aclanthology.org/2024.findings-naacl.97
DOI:
Bibkey:
Cite (ACL):
Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. 2024. Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 1504–1518, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting (Qin et al., Findings 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/naacl24-info/2024.findings-naacl.97.pdf
Copyright:
 2024.findings-naacl.97.copyright.pdf