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Abstract

Watermarking generative-AI systems, such
as LLMs, has gained considerable interest,
driven by their enhanced capabilities across
a wide range of tasks. Although current ap-
proaches have demonstrated that small, context-
dependent shifts in the word distributions can
be used to apply and detect watermarks, there
has been little work in analyzing the impact
that these perturbations have on the quality of
generated texts. Balancing high detectability
with minimal performance degradation is cru-
cial in terms of selecting the appropriate water-
marking setting; therefore this paper proposes
a simple analysis framework where compar-
ative assessment, a flexible NLG evaluation
framework, is used to assess the quality degra-
dation caused by a particular watermark set-
ting. We demonstrate that our framework pro-
vides easy visualization of the quality-detection
trade-off of watermark settings, enabling a sim-
ple solution to find an LLM watermark oper-
ating point that provides a well-balanced per-
formance. This approach is applied to two dif-
ferent summarization systems and a translation
system, enabling cross-model analysis for a
task, and cross-task analysis.

1 Introduction

Large Language Models (LLMs) have progressed
tremendously and are capable of generating high-
quality texts for a diverse range of tasks. While
these systems enhance automation, concerns arise
about potential misuse, such as students using chat
assistants for assignments or malicious users gen-
erating fake news articles. To counter this, current
work has introduced the idea of LLM watermarking
(Kirchenbauer et al., 2023a), where imperceptible
patterns are injected into the generated text, en-
abling the statistical identification of whether text
was generated by an LLM or not. However, most
proposed watermarking schemes restrict the output
generation space, which may lead to a trade-off

Figure 1: High-level overview of the WaterJudge Frame-
work: Given a system, watermarking parameters, and
set of inputs, watermarked outputs are assessed in terms
of quality and detectability, leading to a curve over all
operating points.

between quality and watermarking detection per-
formance. Although there has been great effort into
improving watermarking schemes for LLMs (Yoo
et al., 2023; Kuditipudi et al., 2023; Kirchenbauer
et al., 2023b), less work has analyzed the resulting
quality degradation. It is common for watermark-
ing schemes to measure quality by reporting the
perplexity from a larger pre-trained LLM (Kirchen-
bauer et al., 2023a; Takezawa et al., 2023; Wang
et al., 2023; Zhao et al., 2023; Ren et al., 2023; Liu
et al., 2023), or to report similarity metrics such as
BLEU or ROUGE(Fu et al., 2023; Takezawa et al.,
2023; Li et al., 2023; Kirchenbauer et al., 2023b),
however, these metrics are simplistic heuristics and
may not truly capture actual output text quality,
as discussed by Zhong et al. (2022); Wang et al.
(2022); Zheng et al. (2023).

This work proposes WaterJudge, a framework
for analyzing the trade-off between watermarking
detectability and the quality of generated water-
marked text. We leverage the LLM-as-a-judge eval-
uation approaches (Zheng et al., 2023; Liusie et al.,
2023) to measure the average probability that an
LLM prefers a watermarked text over an unwater-
marked text. This is used as a metric for quantify-
ing the quality degradation caused by watermark-
ing, which with watermark detection performance,
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can be used to determine the quality and detectabil-
ity of a watermark operating point. This provides
an approach for practitioners to visualize the effec-
tiveness of specific watermarking operating points,
enabling simple selection of an optimal watermark
setting with minimal quality degradation.

2 WaterJudge
2.1 Soft-Watermarking Scheme

Language Models predict the conditional distribu-
tion of the next token wi+1 ∈ V given the input
text x1:M ∈ VM and the previously generated to-
kens, w1:i. For identification of LLM generated
text, Kirchenbauer et al. (2023a) propose a sim-
ple soft-watermarking scheme, where the previous
token wi is used in a hash function to split the vo-
cabulary into a mutually exclusive green list Vg(w)
and red list Vr(w). The approach then incentivizes
green-list words to be generated at the next step,
such that the green-list word count can determine
whether a text was generated by the LLM or not.
The parameter g sets the relative size of the green
list, such that |Vg| = g · |V| and |Vr| = (1−g) · |V|.
The watermarking scheme then increases the logits
of all tokens in the green list by a bias δ,

lwm
k =

{
llmk + δ, if wlm

k ∈ Vg

llmk , otherwise
(1)

Where lk is the logit for the k’th token in the vocab-
ulary wlm

k . The watermarking scheme therefore has
two parameters, the green list size s and the green
list bias δ. The watermark score for a particular
text is then calculated as the number of green list
words present in the output text, where the higher
the score, the more likely the output was generated
by the watermarked LLM.

swm =
1

Nw

Nw∑

i=1

1(wi ∈ Vg(wi−1)) (2)

Where 1 is the indicator function. Note that this
watermarking scheme has the useful property that
detection can be achieved even without model ac-
cess. One only requires knowledge of the tokenizer
and hashing function as this enables the green and
red lists to be dynamically calculated, which is all
that’s needed to score texts. Further, if multiple
models share a tokenizer, there could be an agreed
watermarking convention that enables universal wa-
termark detection over a range of models.

Figure 2: Comparative assessment probabilities are at-
tained by calculating the likelihood of generating ‘Text
A’ or ‘Text B’, normalizing, and averaging over both
permutations. Example prompts are displayed, with the
actual prompts shown in Appendix A.

2.2 Zero-shot Comparative Assessment

LLM comparative assessment (Liusie et al., 2023;
Zheng et al., 2023), which prompts an LLM to
determine which of two texts is better, is used in
our framework to measure the quality degradation
caused by watermarking. This method was selected
due to being simple, zero-shot, and easily transfer-
able to a range of tasks, as well as demonstrating
impressive NLG evaluation performance.

For a given task and model, let x represent the
input text, y the generated output text, and ywm an
output text generated from the system when water-
marked. The Comparative assessment uses open-
sourced instruction-tuned LLMs by querying which
of the two provided texts is better. The comparative
assessment system outputs P (q(y1)>q(y2)|x), the
probability that the quality of text y1 is better than
the text y2, as demonstrated in Figure 2. The wa-
termark degradation is measured over a corpus of
input texts D = {x(i)}i=1...Nd

, with the average
comparative selective probability used as the qual-
ity metric

sq =
1

Nd

Nd∑

i=1

P (q(y(i)wm ) > q(y(i))|x(i)) (3)

where y(i) and y
(i)
wm are the generated base and wa-

termarked outputs respectively, given input x(i).

3 Experimental set up

3.1 Datasets

We analyze the trade-off between quality and de-
tection performance for two different tasks: sum-
marization and translation. For the summarization
task, 1024 contexts are sampled from the test set of
XSumm (Narayan et al., 2018), while for transla-
tion 3072 German sentences are sampled from the
test set of the XTREME corpus (Hu et al., 2020).

3516



0.30 0.35 0.40 0.45 0.50
Probability of watermarked text being better than unwatermarked

0.6

0.7

0.8

0.9

1.0

F 0
.5

Bias, 
0.5
1
1.5
2
2.5
3
3.5
4
5
6
8

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) BART

0.44 0.45 0.46 0.47 0.48 0.49 0.50
Probability of the watermarked text being better than unwatermarked

0.6

0.7

0.8

0.9

1.0

F 0
.5

Bias, 
0.5
1
1.5
2
2.5
3
3.5
4
5
6
8

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) Zephyr
Figure 3: The trade-off between quality and detectability when watermarking. Each point is a watermark setting with
green list size g and bias δ, displaying F0.5 detectability score and average Comparative Assessment probability.

3.2 Generative Models

Two different abstractive summarization systems
are used; a BART-based summarization model
trained on CNN-daily mail1 (Lewis et al., 2020)
and Zyphr-7B β instruction-tuned (Tunstall et al.,
2023) which we prompt to perform summarization.
For translation, mBART-large-50 is used, which is
a BART model fine-tuned for multilingual transla-
tion2 (Tang et al., 2020).

3.3 Watermarking Methodology

For each context, the model generates a baseline
text without any watermark, and then multiple wa-
termarked texts using various operating points. The
watermarking operating points are taken by consid-
ering all combinations of green list size g ranging
from 0.001 to 0.9 and bias δ ranging from 0.5 to
8. For summarization, the watermark score is the
count of the fraction of green list words in the gen-
erated text, while in translation the output texts are
grouped in sets of three (to achieve similar expected
lengths for detection) and the score is computed
for the grouped set. For each operating point, a
threshold is chosen to classify watermarked and
unwatermarked texts for the maximum F0.5 value,
which is then used as a detectability metric. F0.5 is
a weighted harmonic mean of precision and recall,
giving more importance to precision than F1 to
safeguard against false positives. We use the same
hashing seed to generate all green-lists, however,
Appendix D shows that consistent results can be
observed across random seeds.

1https://huggingface.co/facebook/
bart-large-cnn

2https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

3.4 Comparative Assessment Set Up
FLAN-T5 3B (Chung et al., 2022) is used as the
base evaluation LLM, chosen due to its demon-
strated pairwise evaluation abilities (Liusie et al.,
2023) and good multi-lingual capabilities. As the
maximum length of the model is 1024 tokens, if
the input prompt exceeds this limit, the end of the
context is truncated to fit into the maximum limit,
which avoids any of the summaries/translations be-
ing truncated. The comparative quality score is
taken as the average of all 1024/3072 samples.

4 Results
Summarization Figures 3a and 3b illustrate the
relationship between summary quality and water-
mark detection performance for BART and Zephyr
respectively. A clear trade-off between watermark
strength and output quality can be observed for
both systems, where strong watermarking degrades
quality while weak watermarking maintains qual-
ity but yields poor detection performance. The
results further suggest that though multiple oper-
ating points can yield similar quality-detectability
characteristics, the framework provides a simple
way to visualize points that achieve a good bal-
ance between the two. This can be useful for
hyper-parameter selection, e.g. to find the setting
where there’s minimal quality degradation for a
desired F0.5 detectability score. Note that the qual-
ity scores are upper-bounded near 0.5, consistent
with the idea that weak watermarking will enforce
little restriction and yield texts of similar quality,
while stronger watermarks will restrict generation
and therefore yield texts of worse quality. Further,
the saturation at F0.5=1 denotes the region where
one can perfectly differentiate watermarked texts
from unwatermarked texts, albeit often at the cost
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of large quality degradation.
Additionally, it is observed that different base

models can have varying optimal watermarking pa-
rameters. Zephyr-7B is much larger than BART
(7.2B vs 0.4B parameters) and is likely to have a
more accurate underlying task language model. As
such, it seems to better deal with the restrictions
imposed by watermarking, as seen by the vertical
region around the probability of 0.5 (where mini-
mal quality degradation and good detectability are
achieved). Further, in the most extreme settings,
Zephyr’s average comparative probability drops
to 0.44 compared to BART’s 0.28. Examples of
the generated watermarked text can be seen in Ap-
pendix H.

Translation We repeat analysis for translation,
with Figure 4 showing similar quality-detectability
characteristics when an mBART system, which
translates German sentences to English, is water-
marked. The plot shows further evidence of how
for weaker models (0.6B parameters supporting 50
languages) strong watermarking can cause a signif-
icant drop where the system struggles to maintain
quality. Additionally, we can observe that mBART
is more sensitive to watermarking parameter set-
tings and that quality is better for small-green list
sizes than for larger-green list sizes, even for set-
tings with equivalent detectability performance.
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Figure 4: Results for watermarked translations gener-
ated with mBART for combinations of green list size g
and bias δ.

Suitability of Comparative Assessment To verify
that comparative assessment provides meaningful
quality evaluation, we compare the generated qual-
ity scores against those from UniEval (Zhong et al.,
2022) and COMET(Rei et al., 2020) which both
demonstrate strong alignment with human judg-
ment. UniEval is a summary assessment method us-

ing a T5-based boolean-answering system trained
specifically to assess summaries on coherence, con-
sistency, fluency, and relevance, while COMET
is an open-source neural framework for machine
translation evaluation. For summarization, com-
parative assessment has a Spearman correlation of
0.986 relative to UniEval scores3, while in transla-
tion comparative assessment has a Spearman cor-
relation of 0.988 relative to COMET. Figure 5 il-
lustrates the relationship between the two quality
scores of watermarked summaries generated by
BART, with a similar graph for mBART transla-
tion shown in Appendix G). These results highlight
that despite being simple and zero-shot, quality
assessment via comparative assessment correlates
highly with alternative high-performing automatic
evaluation approaches that have been tailored to
particular tasks. WaterJudge is a clear improve-
ment over more dated metrics such as ROUGE or
BLEU, which when used fail to capture the quality-
detection trade-off (shown in Appendix C). Further,
current popular methods such as perplexity have
weaker correlations with UniEval and COMET
(0.922 for summarization and 0.940 for translation)
and are more difficult to compare between models,
where WaterJudge also shows additional promising
capabilities, discussed in the next section.

0.30 0.35 0.40 0.45 0.50
Comparative assessment (LLM-as-a-judge)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Un
iE

va
l o

ve
ra

ll 
sc

or
e

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 5: Scatter plot showing correlation between Com-
parative Assessment and UniEval for BART.

Transferability of Settings As an extension to
the current analysis, we consider whether one can
avoid doing a full grid search over all watermarking
settings and instead transfer settings across differ-
ent models and tasks. Firstly, it’s observed that
by looking at the expected quality scores of gen-
erated summaries for different operating points on
BART and mBART, we observe a Pearson corre-

3scores of the 4 attributes are averaged as an overall score
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lation ρ= 0.927 (Figure 6), while for BART and
Zephyr, the correlation is ρ = 0.826. The lower
correlations for BART-Zephyr can be explained
due to the observed truncated linear relationship,
where for weak watermarks Zephyr can apply wa-
termarks without causing any quality loss, while
for medium watermarks (e.g. g = 0.5) there re-
mains a linear degradation to both systems (shown
in Figure 14 in the Appendix). Using perplexity
quality scores does not demonstrate strong cross-
system correlations, and as shown in Figure 7, does
not demonstrate the linear relationships that are
observed with comparative assessment. Therefore
perplexity scores may not be effective when con-
sidering transferring watermarking performance.
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Figure 6: Relationship of watermark settings’ compara-
tive assessment quality scores for BART and mBART.
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Figure 7: Relationship of watermark settings’ perplexity
scores for BART and mBART (ignoring the outlier, very
high perplexity, points).

Moreover, the F0.5 scores of watermark set-
tings on different models are also highly correlated:
BART-Zephyr quality scores have PCC ρ=0.986,
while for BART-mBART the PCC is ρ = 0.990.
Even though this is a cross-task comparison, BART
and mBART have a near 1:1 mapping in detectabil-

ity scores (Figure 8) while Zephyr detectability
scores tend to be slightly higher than those from
BART (which is mostly due to length mismatches,
as discussed in Appendix B). The high linear corre-
lations for both quality and detection suggest that
WaterJudge can be used to map performance on
one model/task to another, which may yield ad-
ditional predictive abilities for generating the full
detectability-quality trade-off curves. Initial ex-
amples of the effectiveness of transferring settings
across systems are shown in Appendix F.
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Figure 8: Comparison of watermark settings’ detectabil-
ity scores for BART and mBART.

5 Conclusions

This paper introduces WaterJudge, a framework for
investigating the quality-detection trade-off when
watermarking LLMs, enabling easy visualization
of various watermarking settings and simple hyper-
parameter selection. Comparative Assessment is
shown to be a practical metric for measuring qual-
ity degradation and improves on currently used
evaluation methods in its accuracy and versatility.
WaterJudge is also useful in cross-task and cross-
model analysis, showing good correlations for both
detectability and quality, despite varying character-
istics due to model strength.

6 Limitations
Although LLM evaluation approaches have re-
cently been demonstrated to be effective reference-
free evaluation methods, there may be inherent bi-
ases such as self-enhancement bias that can impact
the robustness of the approach and cause discrepan-
cies in human evaluation. This study could further
investigate sensitivity to evaluation prompt sensi-
tivity, or output length, as well as extend to more
models, watermarking schemes, and tasks.
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7 Ethical Concerns
Watermark detection performance may not be com-
pletely accurate, and false negatives may lead to
individuals being unfairly charged for using AIs,
when they may have written the text themselves.
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A Prompts

Use case Prompt

Zephyr
summarization

<|system|>
You are a tool providing a short
text summary.
<|user|>
Write a short summary of the
following text: context
<|assistant|>

FLAN-T5
summarization
Comparative
Assessment

Passage: {passage}
Summary A: {summary 1}
Summary B: {summary 2}
Between Summary A and Sum-
mary B, which text summarises
the passage better?

FLAN-T5
translation
Comparative
Assessment

Original text: {context}
Translation A: {translation 1}
Translation B: {translation 2}
Between Translation A and
Translation B, which is the bet-
ter translation of original text?

Table 1: prompts used for experiments.

For reproducibility, Table 1 shows the prompts
used for summary generation (using Zephyr 7B
β) and comparative assessment (with FLAN-T5 as
the base LLM). For summarization, we evaluated
the overall summary quality, as in initial experi-
ments where particular attributes were assessed, the
LLM struggled to differentiate between the differ-
ent attributes with simple prompts (e.g. ’fluency’,
’coherence’, ’consistency’, or ’relevance’). We use
a Tesla V100S 32Gb GPU to conduct all experi-
ments. FLAN-T5 Comparative assessment takes 6
minutes to assess each summarization watermark
operating point (1024 samples) and 10 minutes to

assess each translation operating point (3072 sam-
ples). It takes 5 minutes for BART to generate
1024 summaries, 40 minutes for Zephyr-7B β to
generate 1024 summaries, and MBART 12 minutes
to generate 3072 translations.

B Watermarked texts length

Figures 9, 10 and 11 show the average lengths
(in tokens) of the outputs of the models. BART
and mBART were fine-tuned for a specific task
and therefore the outputs typically have consistent
length (usually 60-80 tokens). Zephyr 7B β tends
to generate longer summaries with a larger variance
in the output lengths. Note that longer texts will typ-
ically be easier to detect since having more gener-
ated words will reduce the expected variance from
the expected fraction of green list words. There-
fore when choosing optimal operating points, one
should also take the length into account.
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Figure 9: Average length (in tokens) of output BART
(summarization) texts for various watermark settings.
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Figure 11: Average length (in tokens) of output mBART
(translation) texts for various watermark settings.

Moreover, the average lengths for models show
an issue with simple watermark partitioning into
green/red lists: if ‘</s>’ is in the red list of ‘.’,
then the outputs tend to grow overly long (since
ending the sequence incurs a red-list word). In
our experiments, green lists are subsets of larger
green lists, and, for both models, the aforemen-
tioned issue occurs when g < 0.4. High bias δ
texts with g < 0.4 are significantly longer than
those from other settings, which considerably im-
pacts text quality (though for very small green lists,
g ≤ 0.001, there are more red-list words generated
and therefore the sentence may end as expected).
For the given randomized seed, Zephyr does not
have eos token ‘</s>’ in green list of ‘.’ (for any
g > 0.9). Hence, the rise is visible for all larger
green lists g ≥ 0.1, but the issue is not as sig-
nificant as for the other models (due to its better
capability to adapt to watermark restrictions). This
highlights that this problem is significant when
evaluating very strong bias operating points (with
generally unusable outputs), but does not otherwise
influence evaluation (see Appendix D).

C Baseline Evaluation Metrics

Instead of using comparative assessment to assess
the quality degradation, we generate equivalent
plots using metrics such as ROUGE or BLEU
(against reference summaries/translations), which
are standard watermark evaluation metrics. Figure
12 shows that using these evaluation metrics leads
to curves that mask the quality-detection tradeoff
and provide little insight. The RougeL curves seem
to be strongly influenced by summary length (see
Figures 9, 10, 11), while the BLEU metric has little
explanation. This highlights that the WaterJudge
framework requires a capable and effective eval-

uation approach to capture the quality-detection
trade-off and that comparative assessment is a suit-
able method.
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Figure 12: Quality-Detectability trade-off curves for
commonly used similarity metrics.

D Green List Seed Consistency

Results in Appendix B suggested that there may be
some seed variability, dependent on specific word
(or special token) green list bi-grams. To verify
the consistency of our results, evaluation for three
different seeds is shown in Table 2. The seeds
were selected to maximize variability, such that
for seed 1 ‘</s>’ is never in the green list of ‘.’,
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for seed 2 it occurs when g > 0.4, and for seed 3
‘</s>’ is always in the green list of ‘.’ It’s observed
that even in these settings, there is little impact on
the metrics for the main operating points (δ is 3
or 6), and only when in regions with very heavy
watermarks (δ = 9) are small differences seen. It is
worth noting that the length is affected by the seeds,
but it’s not necessarily negatively received by the
Comparative Assessment (in contrast to metrics
like Rouge). Due to this designed length bias, seed
1 does on average report slightly higher F0.5.

F0.5 Quality
g δ 1 2 3 1 2 3

0.2 3 0.90 0.86 0.88 0.44 0.44 0.44

0.5 3 0.90 0.89 0.86 0.44 0.44 0.43

0.8 3 0.76 0.73 0.72 0.46 0.45 0.45

0.1 6 1.00 1.0 1.0 0.28 0.29 0.29

0.4 6 1.00 1.0 1.0 0.35 0.34 0.33

0.7 6 0.99 0.99 0.99 0.39 0.40 0.39

0.01 9 1.0 1.0 1.0 0.15 0.12 0.12

0.2 9 1.0 1.0 1.0 0.16 0.15 0.16

0.3 9 1.0 1.0 1.0 0.23 0.19 0.20

0.6 9 1.0 1.0 1.0 0.31 0.30 0.28

Table 2: Table comparing detectability and quality
scores of three additional seeds for various operating
points in BART summarization , with good agreement
between all seeds.

E Model to model comparison

Figures 13 details the relationship of detectabil-
ity for different watermarking settings for BART-
Zephyr, while Figure 14 shows the equivalent
graphs for quality. Figure 15 shows the BART
to Zephyr comparison for Perplexity, where no-
tably most of the points are tightly grouped in a
single region. Note that highly hallucinated outputs
have extremely high perplexity scores, and so have
been cropped out of the plot. Moreover, Figure
14 suggests that for most models, large green list
sizes can yield reasonable detectability with min-
imal quality degradation, medium green list sizes
have predictable and transferable linear degrada-
tion, while small/very small green lists have unpre-
dictable behavior and should be avoided.
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Figure 13: Comparison of watermark settings’ de-
tectability scores for BART and Zephyr

0.30 0.35 0.40 0.45 0.50
Comparative score BART

0.44

0.45

0.46

0.47

0.48

0.49

0.50

Co
m

pa
ra

tiv
e 

sc
or

e 
Ze

ph
yr

Bias, 
0.5
1
1.5
2
2.5
3
3.5
4
5
6
8

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Green List Size, g
0.001
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 14: Comparison of watermark settings’ quality
scores for BART and Zephyr
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Figure 15: Comparison of watermark settings’ PPL
for BART and Zephyr (ignoring the outlier, very high
perplexity, points).

F WaterJudge predicitive capabilities

Appendix E and Section 4 demonstrated that both
Zephyr-BART and mBART-BART have consis-
tent and linear relationships between quality and
predictive scores. Detectability is nearly equiva-
lent across different watermarking settings, start-
ing from F0.5 = 0.5 and linearly increasing to
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F0.5 = 1. Alternately, the Quality comparisons
can be broken into three regions: for weak wa-
termark settings, large models (like Zephyr) can
maintain quality, for medium strength watermarks
(e.g. g=0.5) there is a linear degradation for all
systems, while strong watermarks can lead to mean-
ingless output texts and low transferability (devia-
tions from the trend). Meaningful regions of both
of these curves can be estimated well with a two-
parameter function (such as truncated at the top
linear function), which enables a transformation
of watermark performance from one system to an-
other while using only a few tested operating points.
To achieve the fitting, a parameterized hyperbolic
tangent was fitted to the BART quality-detection
curve, as shown in Figure 16, by minimizing the
average perpendicular Mahalanobis distance of the
operating points from the curve. This has been
done to get a smooth baseline function capturing
the whitened data shape.
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Figure 16: Curve fit to BART operating points graph.

By fitting truncated linear functions to the relation-
ships such as Figures 13-14, one can transform a
baseline curve to achieve predicted fits, as shown in
Figure 17. These ’predicted’ shapes are achieved
with significantly fewer points and avoid the grid
search, which can be useful when attempting to
determine whether an effective watermark setting
exists for the new system, and also enable fast and
thorough testing across hyperparameters and mod-
els.

G COMET Comparison

Figure 18 shows how Comparative Assessment
for translation is also strongly correlated with the
most recent automatic translation evaluation met-
ric: COMET. The Spearman correlation of quality
scores is 0.988.
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Figure 17: Estimated LLM Quality-Detectability trade-
off curves from model-to-model comparisons.
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Figure 18: Correlation between Comparative Assess-
ment and COMET score for mBART translation.
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H Examples of watermarked texts

Table H provides examples of possible output texts under various operating points for the two summariza-
tion experiments for a sampled article. The texts achieve various detectability and show varied degradation
in text quality.

Context

The 41-year-old reached the semi-final for the first time since he last lifted the trophy
in 2011 with a 13-6 win over Kyren Wilson. The world number six will now face the
winner of Stephen Maguire’s match against Barry Hawkins for a place in Sunday’s final.
"I believe I can [win], and that’s a great feeling to have," Higgins said. "I was close last
year, Alan [McManus] pipped me [in the quarter-final]," he added. "A couple of years
after 2011, I’d been losing, my form wasn’t great and you don’t think you’re [continues]

Unwatermarked BART
Higgins beat Kyren Wilson 13-6 to reach the semi-final of the World Championship.
The Scot will face the winner of Stephen Maguire’s match against Barry Hawkins. The
41-year-old believes he can win the tournament for the first time since 2011.

g = 0.7, δ = 6
F0.5 = 0.996
Quality score 0.434

Higgins beat Kyren Wilson 13-6 in the quarter-finals at the World Cup. He now awaits
the winner of Stephen Maguire’s match against Barry Hawkins. It is the first time the
41-year-old Scot is in the semi-final since he lifted the trophy in 2011.

g = 0.5, δ = 4
F0.5 = 0.988
Quality score 0.450

Scottishman Higgins is into the semi-final for the first time since 2011. He beat Kyren
Wilson 13-6 in his quarter-final on Wednesday. He now faces the winner of Stephen
Maguire and Barry Hawkins. He says he has more self-confidence heading to final.

g = 0.1, δ = 8
F0.5 = 1.00
Quality score 0.336

Bobbyiggins into first semifinal since picking off David Higgins 11 years ago. 41-year-
old Scot defeated World 16’s KYRN WEIRD 12 4 8 3 3 3 8 1 this night at BAVCA PIA
Stadium. Beats Ian Pinn are first-round bye; winner of Stephen MagUires takes part
Saturday afternoon and it goes 6 vs 6 - winner to meet for the tournament [continues]

Unwatermarked Zephyr

John Higgins, aged 41, advanced to the snooker World Championship semi-finals for the
first time in a decade with a 13-6 victory over Kyren Wilson. Higgins will face either
Stephen Maguire or Barry Hawkins for a place in the final, and believes he can win the
tournament. The Scot has won all three sessions against Wilson and [continues]

g = 0.5, δ = 4
F0.5 = 0.984
Quality score 0.491

John Higgins, 41, progressed to his seventh World Snooker Championship semi-final,
beating Kyren Wilson 13-6. Higgins, ranked sixth, aims for his fourth title after last
lifting the trophy in 2011. The Scottish player faces either Stephen Maguire or Barry
Hawkins in the last four, with Higgins preferring a Maguire match as a fellow [continues]

g = 0.1, δ = 8
F0.5 = 1.00
Quality score 0.438

John Higgins, aged 41, advanced to the world snooker championship semi-finals for the
first time since lifting the trophy in 2011. In the quarter-finals, Higgins defeated Kyren
Wilson in three sessions by a scoreline of 13-6. In the semi-finals, Higgins will confront
either Stephen Maguire or Barry Hawkins for a position in the final on Sunday. Reflecting
after his match against Wilson, Higgins stated that he "believ(ed) (he) [continues]

Table 3: Examples of watermarked and unwatermarked outputs for a few chosen operating points for summarization.
It may be noted that in the strong watermarking region, the model begins ‘hallucinating’ or repeating text continu-
ously. This yields long, unusable texts with high density of green list words, making the operating points a bit less
meaningful for analysis. This is more difficult to trigger for larger models like Zephyr.
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