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Abstract

This paper explores cost-efficient methods
to adapt pretrained Large Language Models
(LLMs) to new lower-resource languages, with
a specific focus on Estonian. Leveraging the
Llama 2 model, we investigate the impact
of combining cross-lingual instruction-tuning
with additional monolingual pretraining. Our
results demonstrate that even a relatively small
amount of additional monolingual pretraining
followed by cross-lingual instruction-tuning
significantly enhances results on Estonian. Fur-
thermore, we showcase cross-lingual knowl-
edge transfer from high-quality English instruc-
tions to Estonian, resulting in improvements
in commonsense reasoning and multi-turn con-
versation capabilities. Our best model, named
LLAMMAS, represents the first open-source
instruction-following LLM for Estonian. Ad-
ditionally, we publish Alpaca-est, the first gen-
eral task instruction dataset for Estonia. These
contributions mark the initial progress in the
direction of developing open-source LLMs for
Estonian.

1 Introduction

Instruction-tuning is a method for aligning large
language models (LLMs) with human preferences
(Ouyang et al., 2022; Mishra et al., 2022; Wei et al.,
2021). However, the majority of instruction-tuning
datasets and advancements focus on English. More-
over, to benefit from instruction tuning, a strong
foundation model is needed but due to the exten-
sive training training data required, such models
are available only for a few languages.

To overcome the lack of a strong foundation
model in the target language, one could try to elicit
non-English abilities from English-centric LLMs
through cross-lingual instruction-tuning. In this
setup, instructions are given in both English and the
target language, often including a translation task
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to directly stimulate the alignment (Ranaldi et al.,
2023; Ranaldi and Pucci, 2023; Zhu et al., 2023).
While empirical evidence indicates benefits from
incorporating translation-following demonstrations
into the training dataset, the best training strategy
and its effectiveness with monolingual pretraining
remain unclear.

In this paper, we investigate these aspects in the
context of creating an instruction-following model
for Estonian. We focus on a low-resource scenario
where only a relatively small amount of monolin-
gual data is available. By utilizing a novel general
task instruction dataset, Alpaca-est, we examine the
impact of combining monolingual pretraining with
cross-lingual instruction-tuning using both general
and translation task instructions. Our experiments
with Llama 2 (Touvron et al., 2023b) demonstrate
the benefits of translation task instructions when
no monolingual data is available for additional pre-
training. However, monolingual pretraining greatly
diminishes the importance of the translation task.

Furthermore, we showcase that supplementing
our instruction-tuning dataset consisting of Alpaca
(Taori et al., 2023) and Alpaca-est with high-quality
English instructions and English conversations fur-
ther enhances results on Estonian through cross-
lingual knowledge transfer. This is reflected in
improved commonsense reasoning and the ability
to engage in multi-turn conversations despite no
Estonian conversations used during training. As
a result, we present LLAMMAS - the first open-
source instruction-following conversational LLM
for Estonian that achieves competitive zero-shot
performance on multiple tasks.

2 Related Work

2.1 Instruction Tuning

Instruction-tuning is a method for guiding pre-
trained LLMs to follow natural language instruc-
tions (Ouyang et al., 2022; Mishra et al., 2022; Wei
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et al., 2021; Sanh et al., 2021; Chung et al., 2022;
Wang et al., 2022b). For that purpose, both human-
written and synthetic instructions generated with
LLMs have been shown to work remarkably well
(Wang et al., 2022b, 2023b). One of the prereq-
uisites for instruction-tuning is the availability of
a strong pretrained language model, which due
to high training costs is the major limiting fac-
tor for many to contribute to the development of
LLMs. Fortunately, over the last year, a few foun-
dation models (Workshop et al., 2022; Touvron
et al., 2023a,b; Jiang et al., 2023) have been pub-
licly released which somewhat mitigates the issue.
However, the models are mostly trained on English
and perform poorly on other languages.

A common method of acquiring instruction data
is using strong proprietary models such as GPT-
4 for generating instructions (Taori et al., 2023;
Chiang et al., 2023; Wang et al., 2022a). However,
Gudibande et al. (2023) have shown that models
trained on these generated datasets learn to imitate
the style of strong LLMs but not necessarily the
factuality.

2.2 Cross-lingual Instruction Tuning
Cross-lingual instruction tuning is a training
method where the model is simultaneously
instruction-tuned on instructions in multiple lan-
guages. Its goal is to strengthen cross-lingual se-
mantic alignment in LLMs to make them under-
stand and generate texts in a selected target lan-
guage. In practice, it is one of the most cost-
efficient ways to create instruction-following mod-
els for languages where data-heavy pretraining is
not possible.

The approach has been explored, for example,
by Zhu et al. (2023) and Ranaldi et al. (2023) who
both use original and translated versions of Alpaca
(Taori et al., 2023) dataset. Moreover, they both
report additional benefits from supplementing the
general task instruction datasets with translation
task instructions. However, their approaches dif-
fer in the size of translation datasets. Zhu et al.
(2023) use datasets that sometimes contain around
10 times more translation task instructions than gen-
eral task instructions. Ranaldi et al. (2023) employ
a translation task instruction dataset that contains
only 20K instructions. Additionally, while Zhu
et al. (2023) report benefits from using English to
target language translations, Ranaldi et al. (2023)
demonstrated that using both translation directions
together is better than translating to only one di-

rection. Zhang et al. (2023a) propose to combine
the task of strengthening cross-lingual semantic
alignment and instruction-tuning via a multi-turn
translation task. Zhang et al. (2023b) utilize the
capabilities of LLMs to comprehend and execute
instructions in a high-resource language by using
that high-resource language as a pivot language
during response generation for the target language.

2.3 Monolingual Continued Pretraining

Another way to improve the ability of English-
centric pretrained LLMs to understand and gen-
erate content in a target language is via continued
pretraining on data in the target language. For
example, Cui et al. (2023) continue pretraining
LLaMA family models on a large-scale monolin-
gual Chinese corpus before the instruction-tuning.
Xu et al. (2023) show that continued pretraining
with even a relatively small monolingual dataset
can significantly improve the results of the trans-
lation instruction task. Moreover, they show that
after continued pretraining only a small amount
of high-quality parallel data is required to reach
competent translation.

2.4 Multilingual Models

To create models that can follow instructions across
diverse languages, multilingual pretraining can
be combined with multilingual instruction tuning.
For instance, Wei et al. (2023) pretrain a multilin-
gual language model and then employ multilingual
general task instructions generated through a self-
instruct paradigm (Wang et al., 2022a).

Yong et al. (2023) investigate strategies for adapt-
ing the multilingual language model BLOOM to
new languages under resource-constrained settings.
They find that adapter-based fine-tuning proves to
be more effective than continued pretraining. More-
over, they demonstrate the advantages of multilin-
gual instruction tuning over target language instruc-
tion tuning. Lin et al. (2024) continue pretraining
Llama-2-7B with low-rank adaptation (Hu et al.,
2022) to develop a multilingual language model
capable of encompassing 534 languages, including
Estonian.

3 Training Data

3.1 General Task Instructions

3.1.1 Alpacas
We combine the original Stanford Alpaca dataset
(Taori et al., 2023) with an Estonian version of
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it which we create by ourselves. We refer to the
combination of these two datasets as Alpacas.

Stanford Alpaca (Taori et al., 2023) A general
task instruction dataset generated with Self-Instruct
framework (Wang et al., 2023b). In our experi-
ments we use the cleaned version1 that consists of
filtered Alpaca (Taori et al., 2023) instructions and
GPT-4-LLM (Peng et al., 2023).

Alpaca-est Due to a lack of general task in-
struction data in Estonian, we generate an Esto-
nian version of Alpaca. Following Taori et al.
(2023), we first randomly sample from a set of
Estonian seed instructions and use an LLM to gen-
erate new instructions based on the examples. Us-
ing gpt-3.5-turbo-06132, we generate a total of
52,006 instructions for Estonian. The seed instruc-
tion set consists of 90 translated examples from
the original Alpaca seed set and 17 new instruc-
tions written by the authors. We make Alpaca-est
publicly available3.

3.1.2 High-Quality General Task Instructions
We supplement Alpacas with high-quality English
instructions that are not obtained with synthetic
data generation using OpenAI models. In our
dataset creation, we take inspiration from Wang
et al. (2023a); Ivison et al. (2023). We use Open
Assistant 1 (Köpf et al., 2023) multi-turn conver-
sations, taking the top-scoring English-only path
from each conversation tree. We also take 10,000
examples of both Chain-of-Thought and FLAN-2
mixtures (Chung et al., 2022; Longpre et al., 2023)
used in Ivison et al. (2023). We refer to this high-
quality mixture of data in short as HQI.

3.2 Translation Task Instructions

We create translation task instructions from rela-
tively low-quality translation bitexts: CCMatrix
(Schwenk et al., 2021b), WikiMatrix (Schwenk
et al., 2021a), OpenSubtitles (Lison and Tiede-
mann, 2016), and Europarl (Tiedemann, 2012). We
filter the data with OpusFilter (Aulamo et al., 2020)
using long word, sentence length, source-target
length-ratio, character score, language-ID, termi-
nal punctuation, and non-zero numerals filters.

We use a setup in which 75% of instructions
prompt translation from English to Estonian, and
25% prompt translation in the opposite direction.

1https://github.com/gururise/AlpacaDataCleaned
2https://platform.openai.com/docs/models
3https://github.com/TartuNLP/alpaca-est

The goal of including a small amount of Estonian-
English is to maintain the quality of English gener-
ation. We refer to this translation task instructions
dataset as TRTASK.

We supplement the relatively low-quality TR-
TASK dataset with high-quality parallel data from
WMT18 dev set (Bojar et al., 2018) and MTee (Tät-
tar et al., 2022) held-out validation dataset. We re-
fer to it as HQTRTASK. In HQTRTASK WMT18
dev set is given in a document-level format with
documents exceeding 900 tokens split into multi-
ple parts. To convert the translation examples to
instructions we utilize 32 English and 13 Estonian
prompt templates as Sanh et al. (2021) has demon-
strated the importance of using a diverse set of
prompts.

3.3 Pretraining Data

For pretraining, we use a subset of Estonian and
English data from CulturaX (Nguyen et al., 2023)
to make the base model more familiar with Esto-
nian but not forget English. Although the data in
CulturaX has already gone through an extensive
cleaning pipeline, we expand it by only allowing
Estonian data that comes from websites ending
with either .ee, .org, or .net. The pretraining is
done with up to 5B tokens. We sample the data
so that 75% of CulturaX training documents are in
Estonian while the rest are in English, to prevent
English knowledge forgetting.

4 Experimental Setup

4.1 Base Model

To obtain the base model, we continue pretraining
Llama-2-7B (Touvron et al., 2023b) with the addi-
tional 5B tokens of pretraining data described in
Section 3.3. We call the base model LLAMMAS-
BASE. We use packing for pretraining which means
that the training examples are concatenated to fill
the model context. The training setup and param-
eters are outlined in Appendix A. We publish our
training code4.

4.2 Instruction-tuned Models

Models instruction-tuned only with Alpacas or
translation task instructions use the Alpaca prompt-
ing format (Taori et al., 2023). The models relying
on high-quality instructions (HQI or HQTRTASK)
are trained as conversational models with conver-

4https://github.com/TartuNLP/llammas
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Figure 1: Results on Estonian tasks after fine-
tuning Llama-2-7B with cross-lingual instruction-tuning
dataset Alpacas. The colors of the bars indicate the size
of the pretraining dataset.

sation format following Wang et al. (2023a, see
Table 5).

During the training, we calculate the loss only
on responses, ignoring user input (including multi-
turn) and instructions. The models are trained for 3
epochs. We picked the best checkpoint according
to the validation loss, which was always the first
checkpoint (trained for 1 epoch) in our experiments.
See Appendix A for other training details.

4.3 Evaluation Datasets

Following Ranaldi et al. (2023); Zhu et al. (2023),
we use EstQA (Käver, 2021), an Estonian version
of SQUAD (Rajpurkar et al., 2016) as one of the
evaluation datasets. Since the original EstQA does
not include a validation split, we create one our-
selves by separating a small subset of training data
for that purpose.

We also evaluate our models on Estonian com-
monsense reasoning (CSR) and grammatical error
correction (GEC) tasks. For commonsense rea-
soning, we use EstCOPA (Kuulmets et al., 2022),
which is an Estonian version of the COPA task
(Roemmele et al., 2011). EstCOPA includes both
machine-translated and manually post-edited ver-
sions of COPA. We use the latter for our evalua-
tions. Grammatical error correction is evaluated
with EstGEC-L2 dataset5.

Finally, results for English-Estonian and
Estonian-English translation (MT) tasks are re-
ported using FLORES-200 devtest (NLLB Team,
2022). It is important to note that, depending on the
model, the translation task may be included into
the training process, while the models are never
exposed to any other evaluation tasks.

5https://github.com/tlu-dt-nlp/EstGEC-L2-Corpus
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Figure 2: Performance gained or lost on Estonian tasks
after fine-tuning Llama-2-7B first on translation task
and then on Alpacas compared to when translation task
is omitted (Figure 1). The colors of the bars indicate the
size of the pretraining dataset.

4.4 Perfomance on English

Ideally, our model should also perform reason-
ably well in English. If that was not the case it
would mean that we might have washed out the pre-
existing knowledge from the models. That could
happen, for example, with overly extensive training
on task-specific datasets. Naturally, it would be an
indication that the model is not using its knowledge
in English to generate answers in Estonian. To ver-
ify that our models can still understand English, we
evaluate our best models on COPA, on an English
subset of XQuAD (Artetxe et al., 2020), and an
English grammatical error correction task using the
W&I+LOCNESS test set (Bryant et al., 2019).

4.5 Evaluation Metrics

To evaluate commonsense reasoning and question-
answering we use the assessments of GPT-4
Turbo2. More precisely, we employ LLM-as-a-
Judge (Zheng et al., 2023) with reference-guided
grading where the model is asked to assess the cor-
rectness of the predicted answer given the reference
answer and the task itself. We modified the evalua-
tion prompt from Zheng et al. (2023) to align with
our tasks. We chose GPT-4 Turbo as the evaluator
over ChatGPT2 to ensure the reliability of the re-
sults, as it demonstrated a significant improvement
in assessment quality (specifically, a reduction in
false positives) in our preliminary experiments. To
reduce API usage costs, we base our QA accuracy
report on 100 randomly chosen samples from the
corresponding datasets and splits. When evaluat-
ing the commonsense reasoning task, we feed to
GPT-4 Turbo only answers that we were not able
to classify with a simple string comparison.
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Model CSR QA MTEN-ET MTET-EN GEC

acc. F1 acc. BLEU BLEU F0.5

LLAMMAS-BASE fine-tuned

(1) Alpacas 63.6 46.5 81 22.5 32.3 56.6
(2) 1) TRTASK 2) Alpacas 59.2 46.1 73 25.0 34.5 59.4

(3) Alpacas + HQI 66.4 52.9 82 23.1 32.4 59.4
(4) Alpacas + HQI + HQTRTASK 66.4 54.8 84 22.6 34.6 60.3
(5) 1) TRTASK 2) (4) 62.2 43.5 76 26.9 36.9 61.2

Commercial baselines

GPT3.5-turbo 86.0 34.2 93 26.0 37.5 63.4
GPT4 98.4 35.1 97 28.5 37.7 67.4

Table 1: Results on Estonian tasks after fine-tuning LLAMMAS-BASE on different cross-lingual instruction datasets.
We call (4) LLAMMAS and (5) LLAMMAS-MT.

We also report standard metrics for most of
the tasks. For question answering and grammati-
cal error correction we report F1 and M2 scorer6

(Dahlmeier and Ng, 2012) or ERRANT (Bryant
et al., 2017) F0.5, respectively. For translation
tasks we calculate BLEU7 (Papineni et al., 2002)
and chrF++8 (Popović, 2017) using sacreBLEU
(Post, 2018), and COMET (Rei et al., 2020) scores
using the unbabel-wmt22-comet-da model (Rei
et al., 2022).

4.6 Evaluation Prompts

During the development phase, the performance on
EstCOPA, EstQA, and their English equivalents is
measured with 8 different prompts. The English
prompts are from Wei et al. (2021), while prompts
for Estonian tasks are written by the authors. On de-
velopment datasets, we report the best score across
the 8 prompts, while on test datasets, we only report
the scores obtained with the best prompt according
to the development datasets. For machine trans-
lation and grammatical error correction tasks, we
use the same single prompt during the development
and test phases (see Table 7).

5 Experiments and Results

Our experiments are divided into two main sections.
In the first section, we pretrain Llama-2-7B on dif-
ferent amounts of pretraining data and investigate
the effect of it on cross-lingual instruction-tuning
that is done with translation task and general task

6https://github.com/TartuNLP/estgec/tree/main/M2_scorer_est
7sacreBLEU signature:

nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1

8sacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:2|space:no|version:2.3.1

instructions (Alpacas).
In the second section, we study the influence of

supplementing Alpacas with high-quality English
instructions, translations, and conversations to the
results on Estonian.

5.1 Continued Pretraining of Llama 2
We compare three base models. First, Llama-2-
7B without any additional pretraining. Second,
the checkpoint of LLAMMAS-BASE that has seen
1B tokens of pretraining data. Third, LLAMMAS-
BASE trained on the entire pretraining dataset of
5B tokens. We instruction-tune all three models
on Alpacas that consisting of Estonian and English
general task instructions. The results of the three
models are compared in Figure 1. We observe
performance gains on all Estonian tasks as the size
of the pretraining dataset increases.

In our preliminary experiment (included into the
ablation study, Section 6.1) we observed that af-
ter additional pretraining of Llama-2-7B with 1B
tokens the benefits of using translation task dur-
ing fine-tuning diminished. To assess whether
this trend persists with even larger pretraining, we
instruction-tune the base models with a dataset that
consists of both translation and general task in-
structions, i.e., TRTASK and Alpacas. We adopt
sequential training based on our preliminary exper-
iment (Section 6.1), which indicated that this setup
has a milder negative impact on performance in
zero-shot tasks.

Figure 2 shows the performance gained or lost
for each task and base model with the translation
task used as the first step during instruction-tuning.
We can see that without additional pretraining, the
translation task significantly improves the results
for QA, machine translation, and GEC. However,
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Model Param. ET→EN EN→ET

BLEU chrfF++ COMET BLEU chrfF++ COMET

MTee (Tättar et al., 2022) 227M 36.7 61.3 88.5 27.6 56.9 89.2
NLLB-MoE (NLLB Team, 2022) 54.5B 38.8 62.6 89.3 27.1 56.1 91.4

GPT-3.5-turbo - 37.5 63.0 89.5 26.0 56.3 91.7
GPT-4-turbo - 37.7 63.8 89.7 28.5 58.4 92.6

LLAMMAS (ours) 7B 34.6 59.2 89.0 22.6 51.8 91.0
LLAMMAS-MT (ours) 7B 36.9 61.2 89.1 26.9 56.4 91.9

Table 2: Translation metric scores on FLORES-200 devtest (NLLB Team, 2022).

Model ET EN

P R F0.5 P R F0.5

GPT-3.5-turbo 69.6 46.7 63.4 53.6 70.1 56.3
GPT-4 74.3 49.2 67.4 56.7 71.6 59.1

LLAMMAS (ours) 67.6 42.2 60.3 58.0 59.5 58.3
LLAMMAS-MT (ours) 68.0 43.6 61.2 55.9 59.3 56.6

Table 3: GEC scores on EstGEC-L2 and W&I+LOCNESS test sets.

the benefit diminishes greatly when the pretrain-
ing step is introduced. For QA and commonsense
reasoning, omitting the translation task after pre-
training tends to produce stronger results compared
to models where pretraining is followed by the
translation task.

5.2 Beyond Alpacas: Knowledge Transfer via
High-Quality English Instructions

Instruction-tuning datasets generated with Self-
Instruct (Wang et al., 2023b) might suffer from
various issues that lower the overall quality of the
dataset1. Meanwhile, it has been shown that it
is possible to achieve remarkably strong perfor-
mance with just 1,000 high-quality training exam-
ples (Zhou et al., 2023). In light of this, we hypoth-
esize that supplementing the Alpacas dataset with
a set of high-quality instructions could improve
the models. However, as there are no high-quality
instruction datasets available for Estonian, we use
only high-quality English instructions (HQI). For
comparison, we train a model where high-quality
English instructions are supplemented with high-
quality translation task instructions (HQTRTASK).

The results are shown in Table 1. Compared to
the baseline model (1) that is trained on just Al-
pacas, we observe a somewhat surprising increase
in all scores when Alpacas is supplemented with
high-quality English instructions (model (3)). This
suggests that there is a positive cross-lingual knowl-
edge transfer from the added high-quality English
instructions into Estonian. Moreover, combining

high-quality English instructions with high-quality
translation tasks further enhances the knowledge
transfer (model (4)). We call this model LLAM-
MAS. However, we observe that the best results
for EN→ET, ET→EN, and GEC are obtained with
a model that is trained sequentially, with HQTR-
TASK as the first step of fine-tuning (model (5)).
We call this model LLAMMAS-MT.

Models (3) – (5) are trained with the data in
chat format (see Table 5), since HQI contains En-
glish conversational data from Open Assistant 1.
Through manual evaluation with 5 conversations
(up to 6 turns), we determine that model (4)
(LLAMMAS) can adequately engage in multi-turn
conversations. It can recall content from previ-
ous turns and respond to user requests fairly well.
However, we also see that the model sometimes
makes grammatical mistakes and uses words or
phrases that a native Estonian speaker would not
use. Many of these phrases sound like translations
from English. An example conversation can be
seen in Table 12. The model’s conversational abil-
ity suggests that the model has learned to hold a
multi-turn conversation in Estonian through cross-
lingual transfer, however, more experiments would
be needed to confirm that.

5.3 Results on Translation Task

Conventional neural machine translation (NMT)
models leverage tens of millions of parallel sen-
tences along with the use of monolingual corpora.
In contrast, LLAMMAS-MT uses a modest 1 million
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sentence pairs from relatively low-quality parallel
data sources and a small number of sentences from
high-quality sources. In combination with gen-
eral task instructions, this results in a competitive
translation model, as presented in Table 2. We can
see that LLAMMAS-MT outperforms LLAMMAS al-
though, in terms of COMET, which is more highly
correlated with human judgments (Freitag et al.,
2022), LLAMMAS still seems competitive.

When comparing LLAMAS-TRANSLATE to the
open-source encoder-decoder models MTee and
NLLB-MoE, LLAMAS-TRANSLATE achieves bet-
ter scores on COMET and similar scores on BLEU
and chrF++. On ET→EN LLAMMAS-MT is outper-
formed by NLLB-MoE, however, it outperforms
MTee on COMET and achieves a similar score in
chrF++. We can also see that LLAMMAS-MT is
competitive with GPT-3.5-turbo, however it is out-
performed by GPT-4-turbo (for used prompt, see
Figure 6).

5.4 Results on Grammatical Error Correction

LLMs are good at text correction, yet they fre-
quently make extensive edits that diverge from tra-
ditional GEC metrics, known for preferring mini-
mal modifications (Coyne et al., 2023). This ten-
dency is apparent in English, where the models
exhibit higher recall than precision (see Table 3).
For Estonian, in contrast, the models show higher
precision but reduced recall, indicating a different
correction pattern from Estonian. We leave further
exploration of that phenomenon for future work.
Finally, we can see that translation task instruc-
tions (TRTASK, used for training LLAMMAS-MT)
enhance performance in Estonian which is in ac-
cordance with our earlier experiments.

5.5 Results on XQUAD and COPA

The results on English QA and commonsense rea-
soning tasks are shown in Table 5. On the QA
task, LLAMMAS achieves similar accuracy in En-
glish and Estonian (83% vs 84%). However, we
observed that LLAMMAS is more chatty in English,
resulting in longer answers and therefore lower
F1 score when compared to Estonian. Finally, we
observe that LLAMMAS solves commonsense rea-
soning problems significantly better in English than
in Estonian (80.6% vs 66.4%) This indicates that
LLAMMAS is still not able to utilize all the reason-
ing capabilities it has in English when the input is
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Figure 3: EstCOPA development set accuracy and Es-
tQA development set F1-score of 8 prompts on models
fine-tuned from LLAMMAS-BASE (see Table 1).

given in Estonian.9

5.6 Robustness on Diverse Prompts
We look into the distribution of metric scores on
8 development prompts (Table 1) to assess the ro-
bustness of our models when encountering various
input prompts.

EstCOPA shows an increase in robustness and
average scores with various prompts when high-
quality English instructions are used (see Figure 3).
This is even further increased by the addition of
high-quality translation instructions. While having
lower scores than the models without a transla-
tion step, Llammas-mt still displays good robust-
ness. On EstQA, however, we don’t see the same
trend. There is an increase in the median of the
metric score, yet the robustness does not increase.
For models involving the use of high-quality data,
the lowest-scoring prompts still achieve higher F1
scores than the median of the model fine-tuned on
Alpacas.

9Hence the name LLAMMAS as in Estonian the word lam-
mas means sheep.
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Model MMLU TruthfulQA WinoGrande TriviaQA HellaSwag

Llama-2-7B 45.8 32.1 68.8 52.4 76.0
LLAMMAS-BASE 42.6 31.9 70.0 49.8 74.8

difference -3.1 -0.2 1.2 -2.6 -1.2

Table 4: Comparing the performance of Llama-2-7B and LLAMMAS-BASE on different English benchmarks.

Model CSR QA
acc. F1 acc.

Alpacas 63.4 30.4 85
1) TrTask 2) Alpacas 70.2 29.5 81

Alpacas + HQI 78.6 33.3 87
LLAMMAS 80.6 41.0 83
LLAMMAS-MT 73.6 31.4 82

GPT3.5 95.2 30.7 95
GPT4 99.8 33.2 96

Table 5: Results on English commonsense reasoning
and question answering.

5.7 Extended Evaluation on English

To better understand how the performance on En-
glish is affected by continued pretraining on data
that mostly contains Estonian, we extend our eval-
uation beyond English datasets for which Esto-
nian equivalents are available. More precisely,
we conduct additional evaluation on 5 popular En-
glish benchmarks. The benchmarks are MMLU
(Hendrycks et al., 2021) which covers 57 tasks
with different levels of difficulties; TruthfulQA
(Lin et al., 2022) that measures truthfulness with
questions designed to cause imitative falsehoods;
WinoGrande (Sakaguchi et al., 2021), a pronoun
resolution challenge; TriviaQA (Joshi et al., 2017),
a question answering dataset; and HellaSwag
(Zellers et al., 2019), a commonsense reasoning
task. We use lm-evaluation-harness (Gao et al.,
2023) and compare Llama-2-7B and LLAMMAS-
BASE on these benchmarks. We report 5-shot accu-
racy on MMLU and 0-shot on other benchmarks.

Model Hum. STEM Social Other

Llama-2-7B 43.3 37.0 51.5 52.7
LLAMMAS-BASE 40.0 34.7 47.7 49.7

difference -3.3 -2.3 -3.8 -3.0

Table 6: Performance of Llama-2-7B and LLAMMAS-
BASE across categories in MMLU benchmark.

The results in Table 4 show that LLAMMAS-
BASE drops only slightly in performance on 4 out of
5 English benchmarks. On average, the difference

is 1.2%. The biggest contributor to the difference is
MMLU from which tasks covering humanities and
social sciences have the weakest accuracy when
compared to Llama-2-7B (Table 6). Overall, we no-
tice that the difference is larger for benchmarks that
measure world knowledge (MMLU, TriviaQA) and
smaller for commonsense reasoning tasks (wino-
grande, HellaSwag). The least affected by contin-
ued pretraining is TruthfulQA.

6 Ablation Study

6.1 Instruction-Tuning: Sequentially or with
a Combined Dataset?

Previous research has explored approaches that
combine translation and general task instructions
for cross-lingual instruction-tuning (Ranaldi and
Pucci, 2023; Ranaldi et al., 2023; Zhu et al., 2023).
However, these approaches combine both types of
instructions into a single dataset for model fine-
tuning. We hypothesize that such setup, especially
when a significantly larger translation task dataset
is used (e.g. by Zhu et al., 2023), may diminish the
contribution of general task instructions during the
training, adversely impacting the model’s ability to
generalize to new tasks.

To test the hypothesis we compare fine-tuning
Llama-2-7B on a combined dataset to fine-tuning
it with sequential training. The latter involves first
training the model on the translation task and then
on general task instructions. We replicate the exper-
iment with Llama-2-7B further pretrained on 1B to-
kens, to validate the consistency of results when the
pretraining step is included. We use context size of
224 and, following Zhu et al. (2023), only English
to target language translations (TRTASKEN→ET).
We compare the results with baselines where trans-
lation task data is entirely omitted.

The results in Table 9 show that fine-tuning
Llama-2-7B on translation task improves most re-
sults (except commonsense reasoning). Combined
training is particularly beneficial for EN→ET and
grammatical error correction. The latter aligns with
the improvement in EN→ET as MT and GEC are
similar tasks and often approached in a similar way
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(Junczys-Dowmunt et al., 2018). However, QA
and ET→EN gain more from sequential training.
It is especially notable for ET→EN where general
task instructions recover the performance after the
initial degradation.

However, we observe that when pretraining
Llama-2-7B on 1B tokens is included, the per-
formance generally suffers when translation task
instructions are used. Exceptions are English-
Estonian and grammatical error correction that nat-
urally benefit from the translation task.

Finally, we can see that EN→ET is rather weak
on pretrained Llama-2-7B after fine-tuning on just
Alpacas. However, including the task drastically
hurts the performance of ET→EN translation task.

6.2 Translation Data: The Impact of Quality
and Quantity

In Section 6.1 we found that language-specific pre-
training of Llama-2-7B followed by fine-tuning on
just Alpacas outperforms the same base model fine-
tuned on both translation and general task instruc-
tions. Combining the datasets (TRTASKEN→ET
+ Alpacas) yielded weaker scores than sequential
training (1) TRTASKEN→ET 2) Alpacas). To ad-
dress the potential negative influence from the im-
balanced dataset, where translation instructions out-
number general task instructions by about 10 times,
we conduct an experiment with a balanced dataset.
We fine-tune the base model with a dataset combin-
ing general task instructions with 100K translation
task instructions (similar in size to Alpacas) from
the data mix described in Section 3.2. Table 10
shows that the model does not outperform the Al-
pacas baseline.

Additionally, we train the base model with a
dataset combining general task instructions with
a small set of high-quality translation task instruc-
tions from MTee held-out validation sets (Tättar
et al., 2022) and WMT18 development set (Bojar
et al., 2018). This model also does not outperform
the baseline model, except in GEC which seems to
benefit from high-quality translation task.

6.3 Translation Data: Single Translation
Direction or Both?

We investigate the effect of EN→ET : ET→EN
translation direction proportion in our data. From
Table 11, we can see that for all tasks, having
only EN→ET direction is not optimal when trans-
lation data is used. For MTET→EN and GEC 25%
ET→EN seems to offer the best scores, while for

other tasks 50% offers the highest scores. For CSR,
having no translation data at all offers the highest
accuracy.

7 Conclusion

We successfully adapt Llama 2 to Estonian by creat-
ing LLAMMAS - an instruction-following model for
Estonian. Additionally, we release Alpaca-est, an
Alpaca-style general task instruction dataset for Es-
tonian. Our work has shown competitive results for
tasks such as question-answering, machine trans-
lation, and grammatical error correction in Esto-
nian while keeping solid results for English. We
have also identified signs of cross-lingual transfer
from English to Estonian and investigated the ef-
fects of translation bitexts in the fine-tuning process.
This work marks the first step towards open-source
LLMs for Estonian.

Limitations

The key limitation of this work is the dependence
on data generated with OpenAI’s proprietary LLMs.
As Gudibande et al. (2023) have found, these gen-
erated datasets result in the imitation of the pro-
prietary LLM’s style but not necessarily factuality.
Secondly, due to the limited number of benchmarks
for Estonian, our evaluation is limited to a rather
small number of NLP tasks. Because of the early
stages of the research on capabilities and harm-
lessness, the model will be limited to research pur-
poses.

Ethics

We believe that extending open-source large lan-
guage models to previously uncovered languages
poses a net positive impact as it allows more peo-
ple access to them. However, the currently re-
leased model lacks safety evaluation, meaning that
it should be used only for research purposes. Fur-
thermore, the self-instruct style generated instruc-
tions have not been manually checked, increasing
the risks (for example bias) even more. Further
research into evaluating the harmlessness and help-
fulness of LLMs for Estonian is needed, as this has
not been done for proprietary LLMs that support
Estonian either.
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A Training Parameters

The context length in our training experiments is
1024 tokens with the overlapping examples trun-
cated. The models are trained with bf16 precision
using DeepSpeed (Rasley et al., 2020). A learning
rate of 2e-5 is used and is linearly decayed to 2e-6.
During pretraining a batch size of 256 is used and
during instruction-tuning the batch size is 128. We
train our models on 4 AMD MI250x GPUs (acting
as 8 GPUs) on the LUMI supercomputer.

The pretraining on 5B tokens took 1184 GPU-
hours (LLAMMAS-BASE). Instruction-tuning
of LLAMMAS took 80 GPU-hours (3 epochs).
Instruction-tuning on translation data (TRTASK)
for LLAMMAS-MT took 190 GPU-hours (3 epochs),
in addition to the instruction-tuning on the general
instructions (i.e, fine-tuning LLAMMAS).

B Sizes of Datasets

Training, test and validation dataset sizes are shown
in Tables 7 and 8.

General task instructions

Alpaca-cleaned (Taori et al., 2023) 52 000
Alpaca-est (ours) 52 006

HQI

CoT (Chung et al., 2022; Ivison et al., 2023) 10 000
FlanV2 (Chung et al., 2022; Ivison et al., 2023) 10 000
Open Assistant 1 (Köpf et al., 2023) 2 363

Translation task instructions

TRTASK

CCMatrix (Schwenk et al., 2021b) 500 000
WikiMatrix (Schwenk et al., 2021a) 400 000
Europarl (Tiedemann, 2012) 50 000
OpenSubtitles (Lison and Tiedemann, 2016) 50 000

HQTRTASK

WMT18 dev (doc. level) (Bojar et al., 2018) 245
MTee valid held-out (general) (Tättar et al., 2022) 1 528

Additional HQ translation data

MTee valid held-out (all) (Tättar et al., 2022) 4 353
WMT18 dev (sent. level) (Bojar et al., 2018) 2 000

Table 7: Sizes of instruction datasets (number of exam-
ples).

C Ablation Study Tables

Results of ablation experiments are shown in Tables
9, 10, and 11.

Validation Test

Question Answering

EstQA (Käver, 2021) 85 603
XQuAD (Artetxe et al., 2020) 1 190 -

Commonsense Reasoning

EstCOPA (Kuulmets et al., 2022) 100 500
COPA (Roemmele et al., 2011) 100 500

Grammatical Error Correction

EstGEC-L25 879 2 029
W&I+LOCNESS (Bryant et al., 2019) 4 385 4 477

Machine Translation

FLORES-200 (NLLB Team, 2022) 997 1 012

Table 8: Sizes of evaluation and test datasets (number
of examples). The entire XQUaD was used for both
validation and testing.

Below is an instruction that describes a task,

paired with an input that provides further

context. Write a response that appropriately

completes the request.

### Instruction:

{instruction}

### Input:

{input}

### Response:

Figure 4: Alpaca instruction format (Taori et al., 2023)

D Evaluation Prompts

Prompts for each evaluation task are shown in Fig-
ure 7. Alpaca instruction format is shown in Figure
4 and chat format for training LLAMMAS is shown
in Figure 5. The prompt used for evaluating Ope-
nAI models on MT task is shown in Figure 6.

E Example Conversation with LLAMMAS

Table 12 shows an example multi-turn conversation
with LLAMMAS held in Estonian.
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CSR QA GEC MTEN→ET MTET→EN
acc. acc. F0.5 BLEU BLEU

Llama-2-7B

TRTASKEN→ET + Alpacas 58 61.2 55.1 24.6 1.5
1) TRTASKEN→ET 2) Alpacas 58 64.7 51.2 24.5 27.4

Alpacas 61 51.8 34.2 13.9 24.8

Llama-2-7B pretrained on 1B tokens of Estonian-centric data

TRTASKEN→ET + Alpacas 53 63.5 57.5 24.4 1.5
1) TRTASKEN→ET 2) Alpacas 55 70.6 55.5 25.7 23.0

Alpacas 66 74.1 50.5 20.8 32.4

Table 9: Comparison of cross-lingual training strategies across two different base models. Results are reported on
development datasets.

Model TrTask CSR QA MTEN→ET MTET→EN GEC
size acc. acc. BLEU BLEU F0.5

TrTaskEN→ET + Alpacas 1M 53 63.5 24.4 1.5 57.5
TrTaskEN→ET + Alpacas 100K 56 71.8 21.1 1.6 56.2
TrTaskHigh quality EN→ET + Alpacas 6K 57 69.4 22.2 3.6 57.5

Alpacas - 66 74.1 20.8 32.4 50.5

Table 10: Quantity vs quality: examining the impact of translation task dataset composition. Results are reported on
development datasets.

Model TrTask CSR QA MTEN→ET MTET→EN GEC
ET→EN acc. acc. BLEU BLEU F0.5

TrTask100k + Alpacas 50% 59 76.5 20.4 32.7 56.2
TrTask100k + Alpacas 25% 55 74.1 21.2 32.6 58.1
TrTask100k + Alpacas 0% 56 71.8 21.1 1.6 56.2

Alpacas - 66 74.1 20.8 32.4 50.0

Table 11: Fine-tuning Llama-2-7B further pretrained on 1B token. Translation task ET→EN direction proportion is
modified. 0% means that all of TrTask data is in EN→ET direction. The amount of translation task data is fixed at
100k sentence-pairs. Results are reported on development datasets.

<|user|>

Tere!

<|assistant|>

Tere! Kas saaksin teid kuidagi aidata?

<|user|>

Kuidas alustada kirja kirjutamist?

<|assistant|>

Figure 5: Chat format following (Wang et al., 2023a).
After <|assistant|> the model generates the response.

Translate the following {src_lang} text into
{tgt_lang}:
{src_text}

Figure 6: Prompt used for evaluating OpenAI models
on MT task.
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MT evaluation prompt
Translate the following {source language} text into {target language}.

GEC evaluation prompt
Reply with a corrected version of the input sentence in {language} with all grammatical and

spelling errors fixed. If there are no errors, reply with a copy of the original sentence.

EstCOPA evaluation prompt (the best on development set)

Olgu eelduseks lause "{premise}"

Mis on selles lauses kirjeldatud olukorra {question}?

VALIKUD:

- {choice1}

- {choice2}

COPA evaluation prompt (the best on development set)

{premise}

What is the {question} of the preceding sentence?

OPTIONS:

- {choice1}

- {choice2}

EstQA evaluation prompt (the best on development set)

Tekst: {paragraph}

Küsimus: {question}

XQuAD evaluation prompt (the best on development set)

Here is a question about this article: {paragraph}

What is the answer to this question: {question}

Figure 7: Instruction prompts for evaluating LLAMMAS. The prompts are inserted into Alpaca-style formatting (see
Table 4). In the case of conversational model, the Alpaca-formated prompts are inserted into the chat format (see
Table 5).
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User:
Tere! Kuidas läheb?

Assistant:
Tänan küsimast, täitsa hästi. Kuidas sinul läheb?

User:
Hästi, kuigi viimased päevad on olnud väsitavad.

Assistant:
Mis teid väsinuna tunneb? Kas teil on midagi konkreetset, mis seda põhjustab? Võite jagada
oma muret ja ma aitan leida lahendusi.

User:
Keeruline öelda. Võimalik, et asi on selles, et olen liiga vähe puhanud.

Assistant:
Võib-olla peaksime proovima erinevaid stressileevendamise meetodeid nagu meditatsioon või
lõdvestusharjutused. Samuti võiksime planeerida rohkem aega endale ning luua struktuurse
rutiini, et tagada piisav uni ja puhkus. Räägime sellest veelgi edasi, kui see on vajalik.

User:
Paku mulle üks stressileevendusmeetod

Assistant:
Proovi regulaarselt praktiseerida joogat, mis aitab sul rahus ja harmoonias olla. Sellel on
mitmeid tervistavaid efekte, sealhulgas parem kehaline painduvus, suurenenud energia ja vaimne
selgus. Jooga sobib ideaalselt igapäevaselt harjumuseks muutmisena, aidates sul stressirohke
elustiiliga toime tulla. Alusta tasakaaluharjutuste, venituste ja hingamisharjutustega ning avasta
joogamaailmas uued võimalused endaga paremini kontaktis olemiseks. Leia sobiv stiil ja õpetaja
ning alusta oma joogateekonda juba täna.

User:
Tahaks midagi lihtsamat.

Assistant:
Kirjuta endale märkmikusse positiivsed eneseütlemised, näiteks "olen tugev" või "olen nutikas".
Lugege neid regulaarselt ja visualiseerige end heade omadustega inimesena. See aitab teil end
motiveerida ja uskuda iseendasse. Lisage ka motivatsiooni tsitaate, nagu "Elu pole mitte ainult
selle kohta, millistes asjaoludes meie juhtumeid saame, vaid ka selles, kuidas me reageerime."
- Walt Disney. Tegele ka füüsiliselt aktiivsema eluga, näiteks treeningu või jalutuskäikudega
värskes õhus. Need meetmed aitavad teil stressi maandada ja enda eest hoolitseda. Ärge unustage
naeratada ja leida huumorit igapäevaelus. Naeratused levitavad head energiat ja loovad positiivse
atmosfääri.

User:
Tänan!

Assistant:
Olete teretulnud! Ma olen siin, et sind toetada ja aidata. Palun anna mulle teada, kui sul on
mingeid muid küsimusi või abisoove. Soovin sulle imelisi hetki ja palju edu!

Table 12: An Example conversation with the LLAMMAS model. Generated using sampling with top-p of 0.9,
temperature of 0.6, repetition penalty of 1.2, and beam size of 1 (no beam search).
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